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Kurzfassung

Die vorliegende Arbeit befasst sich mit der Formulierung einer KKR Theorie für so-

genannte volle Potentiale, die von dem Konzept des “Screening” Gebrauch macht.

Im Falle anisotroper Ladungsverteilungen sind Näherungen, die das Potential in

Kristallverbänden als sphärisch symmetrisch darstellen, wie die “Atomic Sphere Ap-

proximation” (ASA) oder die “Muffin Tin” Näherung, keine guten Beschreibungen

mehr. Besonders Systeme mit Fremdatomen, Oberflächen oder andere ausgedehnte

Störungen bedürfen einer Beschreibung durch die volle Potential Methode. In der Ar-

beit wird gezeigt, wie man ein System von Potentialen in eine raumfüllende Anordnung

von Wigner-Seitz Zellen zerlegen, und wie das Einfachstreuproblem für eine einzelne

solcher Zellen gelöst werden kann. Anschließend wird gezeigt, dass die Gleichungen

der Vielfachstreutheorie auch im Falle der vollen Potentiale ihre Gültigkeit behalten.

Schließlich wird das Konzept des “Screening”, das den numerischen Aufwand reduziert,

vorgestellt.

Weiters ist es wichtig die Gesamt-Energie berechnen zu können. Man stößt dabei

aber auf das Problem, dass die üblicherweise verwendete Multi-Pol Entwicklung, die

für Muffin Tins konvergiert, für benachbarte Zellen divergent ist. Führt man jedoch

einen Verschiebungsvektor ein, kann man dieses Problem vermeiden und erhält wieder

eine konvergente Summe. Die Poisson Gleichung kann unter Verwendung desselben

Prinzips ebenfalls gelöst, und die Gesamt-Energie unter Verwendung des resultierenden

Potentials ausgedrückt werden.

Schlussendlich wird ein verbesserter, auf dem Predictor-Corrector Verfahren basieren-

der Algorithmus zur Lösung der radialen Schrödinger Gleichung vorgestellt, der sich

eines Interpolationsverfahrens bedient. Dabei wird die Anzahl der verwendeten ra-

dialen Stützstellen während der Integration erhöht, was zu einer Verringerung der

Schrittweite zwischen den Punkten und gleichzeitig zu einer drastischen Verbesserung

der Genauigkeit des Verfahrens führt.
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Abstract

This thesis develops a KKR theory using full potentials and the concept of screening.

For anisotropic charge distributions the atomic sphere approximation or a muffin-tin

geometry for the atomic potentials in a crystal structure are insufficient descriptions.

Especially for systems with impurities, at surfaces or other extended defects a full

potential treatment is needed. It is shown how an arrangement of potentials can be

translated into a collection of space-filling Wigner-Seitz cells, and how for one potential

of polyhedral shape the single-site scattering problem can be solved. As an algorithm

for solving the resulting coupled radial equations the Born-approximation may be ap-

plied. Subsequently the validity of the multiple scattering equations for full potentials

is shown and the concept of screening as a means of reducing the computational effort

is introduced.

It is furthermore essential to be able to calculate the total energy of a system. However,

one runs into problems when the usual multipole expansion, which is always convergent

for muffin-tin geometries, is used, as for neighbouring cells this (angular momentum)

expansion is divergent. By introducing a certain displacement vector the expansion

can be lead to convergence once again. Using this very concept the Poisson equation

my be solved and an expression for the total energy in terms of the resulting potential

is derived.

Finally an improved algorithm, based on the predictor-corrector scheme, for solving the

radial Schrödinger equation is introduced which relies on an interpolation scheme that

increases the number of radial mesh points used during the integration. By this means

the step size between neighbouring points is decreased which improves the accuracy of

the scheme drastically.

3



Contents

Kurzfassung 2

Abstract 3

Contents 4

1 Introduction 8

2 Scattering at a Potential of Arbitrary Shape 11

2.1. The Free Particle Green’s Function 11

2.2. The Lippmann-Schwinger Equation 14

2.2.1 Regular Solutions 15

2.2.2 The α and t Matrices 17

2.2.3 Equivalent Formulation 18

2.2.4 Irregular Solutions 20

2.2.5 Coupled Equations 21

2.3. Solutions of the Coupled Equations 22

2.3.1 Expansion of the Green’s Function in Terms of Regular and Irregular

Scattering Solutions 23

2.3.2 Separating the Scattering Problem 27

2.3.3 The t Matrix 31

2.3.4 Numerical Solution with the Born Approximation 33

2.4. The Shape Function Technique 33

4



CONTENTS

3 Multiple Scattering and KKR 38

3.1. The Scattering Path Operator 38

3.2. On the Energy Shell 42

3.3. The Equation of Motion 43

3.3.1 Bandstructure Calculation 45

3.4. Screened KKR Formalism 46

3.4.1 Relations between Green’s Functions and τ Operators 47

3.4.2 Screening Transformations 49

3.5. Green’s Function 50

3.5.1 Validity for Space-Filling Cell Potentials 53

3.6. The Structural Green’s Function 55

3.7. Calculation of Physical Oberservables 58

4 Calculation of the Total Energy 63

4.1. Kinetic Energy 64

4.2. Exchange-Correlation Energy 66

4.3. Coulomb Energy 67

4.3.1 Intra-Cell Contribution 68

4.3.2 Inter-Cell Contribution 71

4.4. Relationship to the 3D KKR Structure Constants 76

5 Solution of Poisson’s Equation for Space Filling Cells 78

5.1. The Coulomb Potential 79

5.1.1 The Intra-Cell Coulomb Potential 80

5.1.2 The Inter-Cell Coulomb Potential 81

5.2. The Coulomb Energy in Terms of the Electrostatic Potential 86

5.2.1 An Expression for the Total Energy 88

5.2.2 Note on Spin-Polarization 88

5



CONTENTS

A Solutions and Numerical Treatment of the Radial Schrödinger

Equation 90

A.1. Regular and Irregular Solutions 91

A.1.1 Regular Solution 92

A.1.2 Irregular Solution 93

A.2. Numerical Treatment of the Schrödinger Equation 95

A.2.1 Coupled Radial Equations 95

A.2.2 Numerical Evaluation of the Regular Solution 97

A.2.3 Numerical Evaluation of the Irregular Solution 105

A.3. Scalar Relativistic Approximation 110

A.3.1 Wronskian 111

B Special Functions and Expansions 113

B.1. The Delta Function 113

B.2. Complex Spherical Harmonics in Condon-Shortley Convention 115

B.2.1 Gaunt Coefficients 117

B.2.2 Useful Expansions 117

B.3. The Green’s Function for Free Electrons 118

B.3.1 Partial Wave Expansion of the Free Particle Green’s Function 119

C Numerical Methods 123

C.1. Numerical Integration - Quadratures 123

C.1.1 Newton-Cotes Quadrature and Lagrange Interpolation 123

C.1.2 Gaussian Quadrature 128

C.2. Complex Energy Integration 129

C.3. Brillouin Zone Integration 131

C.3.1 Fcc (001) Plane 133

C.3.2 Fcc (110) Plane 134

C.3.3 Fcc (111) Plane 135

6



CONTENTS

References 137

Publications 146

Acknowledgements 147

Curriculum Vitae 149

7



1

Introduction

Electronic structure calculations are being applied with increasing success, as the meth-

ods have become more and more sophisticated, in order to understand the underlying

features of macroscopically observable quantities. It is not only of interest to explain

and comprehend experimental data by relating them to the underlying electronic struc-

ture, but also to predict properties of possible new materials. Especially the properties

of alloys, their surfaces and multilayer systems have attracted considerable attention

over the past decade, due to the rapid advances in the computer industry. Clearly

enough the applicability of electronic structure calculations has emerged hand in hand

with the enormous progress in developing ever more powerful computers, and it has

been only this development that made the computation of large scale systems possible.

Within the numerous methods comprised by the label of electronic structure calcula-

tions, the ab-initio type approaches feature prominently in condensed matter physics.

Such methods start out from fundamental quantum mechanics (i.e. the Schrödinger

equation) to derive structural and dynamical properties of solids, while only the atomic

numbers of given elements and usually some structural information have to be supplied

as input parameters.

There exist two different types of approaches to such first principles calculations: one

approach uses wave functions, the other makes use of Green’s functions. Wave function

methods, however, are of limited use when one wants to describe e.g. substitutional

disorder or true semi-infinite geometries. There Green’s function type techniques are

much better suited. Once the Green’s function of a system is known, essential quan-

tities like the charge density, density of states, and subsequently total energies can be

computed. Then from the knowledge of the total energy structural parameters and

other quantities may be deduced.

One method that make use of Green’s functions is the Korringa-Kohn-Rostoker (KKR)

[KR54][Kor47] method in association with multiple scattering. The KKR method
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Introduction

has been developed in the 1950s and since then undergone various modifications and

refinements [HS61][Zim65][WJM72][LS72][Hol75]. Initially the formulae were derived

for collections of muffin-tin type potentials but in the actual applications, the atomic

sphere approximation (ASA) was also successfully used. Then the theory was applied

to layered structures, and computation was made more efficient by the introduction of

the concept of screening [SÚWK94b][WZD97] , or – as it is also referred to – by the

tight-binding [ZDS+95] version [ZDS+95] of the KKR method. Another method that

makes use of Green’s functions is the closely related LMTO method [Skr84] and its

tight binding version (TB-LMTO) [TDK+97].

During the 1980s and early 90s a vital discussion took place whether the KKR the-

ory could be extended to a full potential treatment, i.e., to a formulation where no

approximation on the shape of a potential is assumed. Since the charge distribution

around impurities, at surfaces, or other extended defects is certainly anisotropic, the

assumption that the potentials are of spherical shape and only radially dependent is

an insufficient approximation. In order to apply multiple scattering theory also to

such systems it was necessary to remove this limitation, by showing that the relevant

formulations are also valid for potentials of general shape. The main concern was that

some angular momentum expansions are not convergent and that certain “Near Field

Corrections” have to be taken into account. Faulkner [Fau86], Gonis [Gon86a], Zeller

[Zel87], Badralexe [BF87b], and Brown and Ciftan [BC86] contributed most notably

to this discourse. Nowadays it seems that the issue is settled and it is agreed that the

implementation of arbitrarily shaped potentials is possible, even though actual codes

and calculations are rare. This is probably due to the computational demand, when

the method is to be applied to large scale systems, the large amount of test calculations

needed, and some conceptual difficulties.

It is for the above reasons that this thesis tries to provide a rigorous theoretical formu-

lation of a full potential screened KKR (FP-SKKR) method, with the aim to develop

a computationally efficient program. The prospects are to apply the resulting code to

surfaces and interfaces and extend it to a fully relativistic, spin-polarized formulation.

This thesis is consequently grouped along the following line: first the single site problem

for a potential of general shape is discussed, and the concept of an algorithm for the

computation of the regular and irregular wave functions and the single site t matrix is

provided. Then the theory is extended to multiple scattering and it is shown that the

resulting equations are valid for a space-filling cell geometry. To complete the chapter

on multiple scattering the concept of screening is also introduced. Using the expression

for the charge density obtained in that chapter, it is subsequently shown how the total

energy can be calculated. Again emphasis is put on the differences to potentials of

spherical shape. Furthermore the subsequent chapter is devoted to the problem of

solving Poisson’s equation, and finally, in the appendix, an improved algorithm, which

has been developed in the course of this work, for obtaining coupled solutions of the

radial Schrödinger equation is explained. From test calculations one sees that the
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resulting wave functions are highly accurate. A discussion of some further numerical

methods concludes the thesis.

At present it seems that the use of density functional theory [HK64][KS65] in self-

consistent electronic structure calculations is so self-evident that I decided not to in-

clude a discussion on it in this thesis. Density functional theory has now reached such

an important status, that the Nobel prize for its development in 1998 has come as no

surprise. Hence it should be noted that the FP-SKKR theory has to be thought of as

being contained within the concept of density functional theory and the electrostatic

potential as being a self-consistent one.
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2

Scattering at a Potential of

Arbitrary Shape

While for a spherically symmetric scatterer the single site t matrix is totally determined

through the phase shifts, this is no longer true for an anisotropic potential, where

additional contributions from the non-spherically symmetric parts of the potential have

to be added. This is a consequence of the fact that the angular momentum channels are

no longer decoupled, and the radial solutions have to be obtained from a set of coupled

equations. However, as will be shown in the next chapter, the scattering problem can

be split up into a spherically and a non-spherically symmetric one, treating the latter

as a perturbation.

In this chapter the solutions of the coupled radial equations for the single site problem

will be discussed.

2.1

The Free Particle Green’s Function

As we are assuming, that the scattering potential is of finite range, i.e. zero for |r| > S,

it is necessary to discuss the Schrödinger equation for a free particle. The energy, E,

refers to the relative energy between the scatterer and the incoming particle. It is

positive and not quantized which means that we deal with a continuous energy spec-

trum. In the presence of a single scattering potential, V (r), the stationary Schrödinger

equation for a particle with energy E can be written in atomic units as

(
∇2 + k2

)
ψ(r) = V (r)ψ(r) , (2.1)
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The Free Particle Green’s Function

where k2 = E. The discussion now follows closely the one given in [Daw92]. At a large

distance from the scattering center, the particles feel no influence of the potential, move

freely, and can be described as plane waves:

ϕ(r) = exp(ik · r) , (2.2)

which are solutions of the homogeneous Schrödinger equation:

(
∇2 + k2

)
ϕ(r) = 0 . (2.3)

The solution to equation (2.1) is easy to find by using the Green’s function correspond-

ing to the operator on the left hand side of (2.3) which describes the free motion of

particles. This function, G0(r,r′;E), satisfies the following equation:

(
∇2 + k2

)
G0(r, r′;E) = δ(r − r′) . (2.4)

First, let us find the solution of equation (2.4) by rewriting it as:

G0(r, r′;E) =
(
∇2 + k2

)−1
δ(r − r′) . (2.5)

In the integral representation the Dirac’s delta function is of the form

δ(r − r′) = (2π)−3

∫
exp [iq · (r − r′)] d3q , (2.6)

and can be substituted into (2.5) to yield

G0(r, r′;E) = (2π)−3

∫
exp [iq · (r − r′)]

k2 − q2
d3q . (2.7)

Evaluating the angular part of the integral reduces the expression to

G0(r, r′;E) = (4π2i|r − r′|)−1

∞∫

−∞

q exp (iq|r − r′|)
k2 − q2

dq , (2.8)

where q = |q|. The value of the integral depends on how the contour integration is

performed. One can include either one of the two poles, q = ±k, in the integration

path. It follows from the boundary conditions of G0(r,r′;E) for |r−r′| → ∞ which is

the proper path to be chosen. Choosing Im k > 0 results in outgoing waves

G0
(+)(r, r

′;E) = −exp(ik|r − r′|)
4π|r − r′| , (2.9)
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The Free Particle Green’s Function

and Im k < 0 in incoming waves

G0
(−)(r, r

′;E) = −exp(−ik|r − r′|)
4π|r − r′| . (2.10)

For a further discussion the angular momentum expansion of the free particle Green’s

function is needed. It is well known that a plane wave can be expanded in a partial

wave basis:

exp(iq · r) = 4π
∑

L

i` j`(qr)Y
∗
L (q̂)YL(r̂) , (2.11)

where L = (`,m), j`(qr) are spherical Bessel functions, YL are complex spherical har-

monics, and Y ∗L denote their complex conjugates. Inserting this expression in (2.7) one

obtains instead of (2.8):

G0(r, r′;E) = π−1
∑

L

YL(r̂)Y ∗L (r̂′)

∞∫

−∞

j`(qr) j`(qr
′)

k2 − q2
q2dq . (2.12)

In shorthand notation this defines the coefficients of the angular momentum expansion,

G0
`(r, r

′;E):

G0(r, r′;E) =
∑

L

YL(r̂)G0
`(r, r

′;E)Y ∗L (r̂′) . (2.13)

It is shown in the appendix that by evaluating the integral in (2.12) the partial wave

expansion of the free particle Green’s function is given by

G0(r, r′;E) = −ik
∑

L

jL(kr<)hL(kr>) , (2.14)

if one keeps in mind that the complex conjugated spherical harmonic is associated with

the second argument of the Green’s function, and therefore

G0
`(r, r

′;E) = −ik j`(kr<)h`(kr>) . (2.15)

Here r> and r< denote the larger and smaller value of r and r′, and hL(kr) =

h`(kr)YL(r̂) and jL(kr) = j`(kr)YL(r̂). The definition of the spherical Hankel func-

tions of the first kind used here is

h`(kr) = j`(kr) + in`(kr) . (2.16)

Equation (2.14) is an expansion of the Green’s function in terms of the solutions of the

corresponding Schrödinger equation. This concept will reappear several times through-

out this thesis.
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The Free Particle Green’s Function

2.2

The Lippmann-Schwinger Equation

It is the aim of this discussion to find the two linearly independent solutions of (2.1).

One of these solutions is regular at the origin and subsequently called regular solution.

The other, the irregular solution, exhibits a singular behaviour for r → 0. It is conve-

nient to write these solutions in terms of integral instead of differential equations, as

there the boundary conditions are contained implicitly. Inside the potential region the

solutions are inherently different from the solutions on the outside. The solutions in

the outside region, however, differ from the solutions of the homogeneous Schrödinger

equation (2.3), i.e., from the solutions in the absence of any potential. In the case of

spherical potentials the difference in the asymptotic behaviour is determined by a phase

shift only, whereas in the general case certain phase functions – the generalization of

the phase shifts – can be defined (see [Gon92] or [Wei90] for a discussion of the phase

functions).

The Green’s function and its expansion in terms of spherical harmonics, which has

been derived in the previous section, can be used to find the solution to (2.1). From

the theory of Green’s function (see e.g. [Ric80]) it is well known that if G0(r,r′;E) is

the solution of

(
∇2 + k2

)
G0(r, r′;E) = δ(r − r′) , (2.17)

then the solution of

(
∇2 + k2

)
ψ(r) = A(r) , (2.18)

is of the form

ψ(r) = ϕ(r) +

∫
G0(r, r′;E)A(r′) dr′ , (2.19)

which is the Lippmann-Schwinger equation [LS50]. If on the right hand side of (2.18)

A(r) = V (r)ψ(r), then we have

ψ(r) = ϕ(r) +

∫
G0(r, r′;E)V (r′)ψ(r′) dr′ . (2.20)

Before further discussion the implicit directional dependence of ψ(r) on k̂ can be

separated off by using the following expansions:

ϕ(r) = 4π
∑

L

i` YL(k̂)ϕL(r) , (2.21)

ψ(r) = 4π
∑

L

i` YL(k̂)ψL(r) . (2.22)
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The Lippmann-Schwinger Equation

Substitution, multiplication by YL(k̂), and integration over k̂ yields

ψL(r) = ϕL(r) +

∫
G0(r, r′;E)V (r′)ψL(r′) dr′ . (2.23)

The above equation is the starting point for a further discussion of the regular and

irregular solutions in the subsequent sections. In the following all equations are valid

for all “regular” potentials of arbitrary shape. As a consequence a set of coupled radial

equations is obtained. For the special case of a spherically symmetric potential these

equations decouple and a solution is straightforward. But for arbitrary potentials the

solution is more complicated and more work is needed.

2.2.1 Regular Solutions

The regular solutions are commonly denoted by RL(r). However, due to a special

normalization at the boundary of the potential (see also section 2.2.3), later on the

so called scattering solutions, denoted by ZL(r), will be used instead. For a potential

that vanishes in all space we can write the regular solution as

ϕL(r) = j`(kr)YL(r̂) . (2.24)

Then using (2.23), the regular solution in the presence of a scattering potential is given

by

RL(r) = j`(kr)YL(r̂) +

∫
G0(r, r′;E)V (r′)RL(r′) dr′ . (2.25)

In terms of a physical picture the above expression describes the scattering of an

incoming partial wave j`(kr)YL(r̂) by a potential V (r). The integration in (2.25) is

three dimensional and for convenience and numerical purposes it is possible to derive

an expression that contains only a one dimensional radial integration. This can be

straightforwardly done, by using (2.13) and the expansions for the wave function and

the potential [Dri91]

V (r) =
∑

L

VL(r)YL(r̂) (2.26)

RL(r) =
∑

L′

RL′L(r)YL′(r̂) . (2.27)

Substitution in (2.25) yields explicitly
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The Lippmann-Schwinger Equation

∑

L′

RL′L(r)YL′(r̂) = j`(kr)YL(r̂)

+

∫
dr′

(∑

L

YL(r̂)G0
`(r, r

′;E)Y ∗L (r̂′)

)

×
(∑

L′

VL′(r
′)YL′(r̂

′)

)

×
(∑

L′′

RL′′L′′′(r
′)YL′′(r̂

′)

)
. (2.28)

Multiplication with Y ∗L (r̂), integration over r̂, and using the orthonormality of the

spherical harmonics which removes the spherical harmonic with the unprimed argument

from the integral leaves

RLL′(r) = δLL′ j`(kr) +

∫
dr′G0

`(r, r
′;E)Y ∗L (r̂′)

×
(∑

L′

VL′(r
′)YL′(r̂

′)

)(∑

L′′

RL′′L′′′(r
′)YL′′(r̂

′)

)
. (2.29)

Then by rewriting this equation and using spherical (polar) coordinates one obtains

RLL′(r) = δLL′ j`(kr) +

S∫

0

r′2 dr′G0
`(r, r

′;E)
∑

L′L′′

CL
L′L′′ VL′(r

′)RL′′L′′′(r
′) , (2.30)

where S is the radius of the circumscribed sphere and the Gaunt coefficients, CL
L′L′′ are

defined as follows:

CL
L′L′′ =

∫
dr̂ Y ∗L (r̂)YL′(r̂)YL′′(r̂) . (2.31)

Now, by using

VLL′′(r) =
∑

L′

CL
L′L′′ VL′(r) , (2.32)

we can finally write (after renaming L′′′ → L′):

RLL′(r) = δLL′ j`(kr) +

S∫

0

r′2 dr′G0
`(r, r

′;E)
∑

L′′

VLL′′(r
′)RL′′L′(r

′) . (2.33)
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The Lippmann-Schwinger Equation

2.2.2 The α and t Matrices

While the behaviour of the wave function in the presence of a potential for r → 0 is

usually formulated in terms of a matrix, denoted in the following by α, the t matrix,

which also contains the information about the potential, is a transition operator be-

tween the incoming, plane waves and the scattered waves. The t matrix can therefore

be used to match the wave functions inside and outside the potential at its boundary.

In order to be able to define these two quantities the expansion coefficients of the free

particle Green’s function as given in (2.13) will be used. Then (2.25) becomes

RL(r) = j`(kr)YL(r̂)

+

∫
dr′

(∑

L′

YL′(r̂)G0
`′(r, r

′;E)Y ∗L′(r̂
′)

)
V (r′)RL(r′) . (2.34)

With (2.15) and by rearranging the terms we get for r > r′:

RL(r) = j`(kr)YL(r̂)

−ik
∑

L′

(∫
dr′ j`′(kr

′)Y ∗L′(r̂
′)V (r′)RL(r′)

)
h`′(kr)YL′(r̂) (2.35)

= j`(kr)YL(r̂)− ik
∑

L′

tLL′ h`′(kr)YL′(r̂) . (2.36)

As can be seen from (2.36) the angular momentum representation of the t matrix is

defined by

tLL′ =

∫
dr′ j`′(kr

′)Y ∗L′(r̂
′)V (r′)RL(r′) . (2.37)

Once again one can find a representation of the t matrix which contains only a radial

integral. First (2.27) on the left hand side of (2.36) and the orthogonality of the

spherical harmonics are used

RLL′(r) = δLL′ j`(kr) − ik

(∫
dr′ j`(kr

′)Y ∗L (r̂′)V (r′)RL(r′)

)
h`(kr) . (2.38)

Then using again (2.26) and (2.27) in the integrand, and by following the same steps

as in the derivation of (2.33), one obtains an expression for the regular solution outside

the scattering region:

RLL′(r) = δLL′ j`(kr) − ik tLL′ h`(kr) , (2.39)

where tLL′ is given by

tLL′ =

S∫

0

r′2 dr′ j`(kr
′)
∑

L′′

VLL′′(r
′)RL′′L′(r

′) . (2.40)
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The Lippmann-Schwinger Equation

VLL′′ has been defined in (2.32) and S again refers to the radius of the circumscribed

sphere containing a whole cell. This means that (2.37) and (2.40) are equivalent rep-

resentations of the t-matrix.

The behaviour of the regular solution in the vicinity of the origin can be investigated

by rewriting (2.33) using (2.15):

RLL′(r) = δLL′ j`(kr)

−ik




r∫

0

r′2 dr′ j`(kr
′)
∑

L′′

VLL′′(r
′)RL′′L′(r

′)


 h`(kr)

−ik




S∫

r

r′2 dr′ h`(kr
′)
∑

L′′

VLL′′(r
′)RL′′L′(r

′)


 j`(kr) . (2.41)

Since for r → 0 the first integral vanishes, in this limit the radial amplitudes RLL′(r)

are of the form:

RLL′(r) ∼= αLL′ j`(kr) , (2.42)

where the matrix elements αLL′ are obtained from

αLL′ = δLL′ − ik




S∫

0

r′2 dr′ h`(kr
′)
∑

L′′

VLL′′(r
′)RL′′L′(r

′)


 . (2.43)

Equation (2.42) expresses the amplification of the regular solution of the homogeneous

Schrödinger equation – the unperturbed wave – in the presence of a potential around

the origin.

2.2.3 Equivalent Formulation

The formulation of the regular solution given in the previous section is a very natural

way to express scattering theory as it leads to a picture of incoming and outgoing waves.

However, it is possible to reformulate the expressions with respect to the normalization

at the potential cell boundary as originally proposed by Faulkner [Fau79]. Up to now

the regular solution has been expanded in angular momentum components, each of

which have to satisfy certain boundary conditions. The angular momentum expansion

can be written in a more general form as

ψ(r) =
∑

L

bLRL(r) . (2.44)
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While RL(r) has been derived in (2.36):

RL(r) = j`(kr)YL(r̂)− ik
∑

L′

h`′(kr)YL′(r̂) tL′L , (2.45)

in complete analogy we can define another function, ZL(r), and identify it as compo-

nents of the expansion:

ψ(r) =
∑

L

aL ZL(r) . (2.46)

Using the negative of the inverse of the Wigner reaction matrix, with elements cLL′ , the

new functions are normalized such that outside the scattering region, they are given

by

ZL(r) = k n`(kr)YL(r̂)−
∑

L′

j`′(kr)YL′(r̂) cL′L , (2.47)

or by

ZL(r) =
∑

L′

j`′(kr)YL′(r̂) t−1
L′L − ik h`(kr)YL(r̂) , (2.48)

where the spherical Bessel functions j`(kr) have been used together with spherical Neu-

mann n`(kr) and Hankel h`(kr) functions respectively. The Wigner reaction matrix,

K, is defined as

K = t (1− ikt)−1 , (2.49)

where t is the t-matrix with elements tLL′ as defined in (2.40), and the elements of K

can be obtained from:

KLL′ =
∑

L′′

tLL′′ (δL′′L′ − i k tL′′L′)
−1 . (2.50)

Finally the matrix c in (2.47) is the negative of the inverse of the reaction matrix:

c = −K−1 . (2.51)

The two solutions are connected via the relation

RL(r) =
∑

L′

ZL′(r) tL′L , (2.52)
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which can be verified by direct substitution of expression (2.47) and using (2.45). Hence

(2.44) and (2.46) are equivalent formulations as long as the coefficients are related via

aL =
∑

L′

tLL′ bL′ . (2.53)

Again the components of the angular momentum matrix, ZLL′(r), have to be calculated.

In the same manner as in the previous section we use

ZL(r) =
∑

L′

ZL′L(r)YL′(r̂) , (2.54)

and the orthogonality of the spherical harmonics which yields

ZLL′(r) = δLL′ k n`(kr)− j`(kr) cLL′ , r ≥ S . (2.55)

2.2.4 Irregular Solutions

We now turn to the properties of the solution of the radial Schrödinger equation which

is not regular at the origin and hence called irregular solution. Approaching the origin

the function diverges as r−`−1 and smoothly joins a spherical Bessel function at the

boundary of the potential. As for the regular solution a Lippmann-Schwinger equation

can be formulated:

JL(r) = J0
L(r) +

∫
G0(r, r′;E)V (r′) JL(r′) dr′ . (2.56)

In there JL(r) is the irregular solution in the presence of a scattering potential V (r),

and J0
L(r) is the solution of (2.1) in the absence of a potential.

Outside the scattering region the wave function is given by spherical Bessel functions:

JL(r) = j`(kr)YL(r̂) , r ≥ S . (2.57)

From this condition an expression for the free space solution, J 0
L(r), can be deduced.

We can write:

J0
L(r) = j`(kr)YL(r̂)−

∫
dr′G0(r, r′;E)V (r′) JL(r′) (2.58)

= j`(kr)YL(r̂)

+ik
∑

L′

(∫
dr′ j`′(kr

′)Y ∗L′(r̂
′)V (r′) JL(r′)

)
h`′(kr)YL′(r̂) (2.59)

= j`(kr)YL(r̂) + ik
∑

L′

t̃LL′ h`′(kr)YL′(r̂) . (2.60)
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The above equations are valid for r ≥ S and in the last step a matrix equivalent to the

t matrix for the regular solution has been defined for the irregular solution as

t̃LL′ =

∫
dr′ j`′(kr

′)Y ∗L′(r̂
′)V (r′) JL(r′) . (2.61)

2.2.5 Coupled Equations

Instead of Lippmann-Schwinger type equations the corresponding set of differen-

tial equations, from which the coupling of the angular momentum components (“L-

channels”) is more obvious, can be investigated. The coupling arises from the non-

spherical shape of the spatially bounded scatterer and it can be shown that the chan-

nels decouple in the case of spherical symmetry. Let us denote the coupled equations

as [Gon92]:

(
∇2 + k2 − `(`+ 1)

r2

)
ψLL′′(r) =

∑

L′

VLL′(r)ψL′L′′(r) . (2.62)

As has been previously defined, the angular momentum components of the general

potential V (r) are given by

VLL′(r) =
∑

L′′

CL
L′L′′ VL′′(r) , (2.63)

or alternatively by

VLL′(r) =

∫
dr̂ Y ∗L (r̂)V (r)YL′(r̂) , (2.64)

which follows directly from (2.63) if the potential is expanded in terms of spherical

harmonics as in (2.26). Now if the potential has spherical symmetry, then the expansion

reduces to the first term, i.e.

V (r) =
∑

L

VL(r)YL(r̂) (2.65)

V (r) = V (r) =
1√
4π

V(0,0)(r) . (2.66)

If the last identity is used in (2.64), only the diagonal elements remain

VLL′(r) = δLL′ V (r) = δLL′
1√
4π

V(0,0)(r) , (2.67)
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the radial equations decouple and the only components of the radial solutions are the

diagonal ones:

ψLL′(r) = δLL′ ψ`(r) . (2.68)

Then (2.62) reduces to its well known form for a spherically symmetric scatterer

(
∇2 + k2 − `(`+ 1)

r2

)
ψ`(r) = V (r)ψ`(r) . (2.69)

It follows from (2.62) that the coupling of the angular momentum components arises

due to the anisotropic contributions to the potential.

2.3

Solutions of the Coupled Equations

This section deals with the solutions of the coupled, radial equations (2.62). It is

possible to solve this system of equations directly by employing a proper algorithm

(c.f. [Dri91]). However, the procedure is numerically demanding and not very efficient

and we will therefore not proceed in that direction. Another possibility is to treat

the problem in a perturbation type approach. This is motivated by the fact that the

spherically symmetric part of the potential is by far the most dominating one, and the

deviation from spherical symmetry occurs only in the outermost regions. Then the

potential can be looked at as consisting of a part that depends only on the distance

from the origin and an anisotropic one. The radial solutions are then obtained via a

Born approximation, where the 0-th approximations are the solutions of the spherically

symmetric problem. Hence the scheme of this section is the following. First we have to

show that the total radial solutions can be written in terms of spherically symmetric

solutions. For this it is necessary to show that the Green’s function for the single site

problem can be expanded in terms of regular and irregular solution in the same manner

as the free particle Green’s function. To achieve this, an operator formalism will be

introduced, which leads to the definition of the T-operator. Furthermore some useful

relations between Green’s functions and between Green’s functions and the T-operator

are found. After having obtained expressions for the regular and irregular solutions,

the normalization of these wave functions will again be discussed. Finally a description

of the iterative scheme of the Born approximation will be given.
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2.3.1 Expansion of the Green’s Function in Terms of Regular and Irregular

Scattering Solutions

To arrive at such an expansion let us first introduce the following operator formalism

and write the free particle Green’s function, whose coordinate representation has been

introduced in a previous chapter, in the following way:

Ĝ0 = (z − Ĥ0)−1 , (2.70)

where Ĥ0 is the Hamiltonian of free space and z = E + iε is a complex energy. In the

same manner the Green’s function of a system with a single scatterer, represented by

the potential V̂ , can be written as:

Ĝ = (z − Ĥ)−1 = (z − Ĥ0 − V̂ )−1 . (2.71)

This last expression can be manipulated in such a way that the operator Ĝ can be

expressed in a Dyson equation involving also Ĝ0 and V̂ . Thus multiplication from the

left with (z − Ĥ) yields:

(z − Ĥ0 − V̂ ) Ĝ = 1 (2.72)

(Ĝ0)−1 Ĝ = 1 + V̂ Ĝ (2.73)

Ĝ = Ĝ0 + Ĝ0 V̂ Ĝ . (2.74)

On the other hand, if (2.71) is multiplied with (z − Ĥ) from the right we get:

Ĝ (z − Ĥ0 − V̂ ) = 1 (2.75)

Ĝ (Ĝ0)−1 = 1 + Ĝ V̂ (2.76)

Ĝ = Ĝ0 + Ĝ V̂ Ĝ0 . (2.77)

The T-Operator

It is useful to define the following operator T̂ [Wei90]:

T̂ := V̂ + V̂ Ĝ V̂ . (2.78)

Now using (2.74) once yields the Lippmann-Schwinger or Dyson equation for the T-

operator:

T̂ = V̂ + V̂ Ĝ0 V̂ + V̂ Ĝ0 V̂ Ĝ V̂ (2.79)

= V̂ + V̂ Ĝ0 (V̂ + V̂ Ĝ V̂ ) (2.80)

= V̂ + V̂ Ĝ0 T̂ . (2.81)
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If (2.78) is multiplied from the left with Ĝ0 one gets:

Ĝ0 T̂ = Ĝ0 V̂ + Ĝ0 V̂ Ĝ V̂ (2.82)

= (Ĝ0 + Ĝ0 V̂ Ĝ) V̂ (2.83)

= Ĝ V̂ . (2.84)

With this it follows from (2.77) that

Ĝ = Ĝ0 + Ĝ0 T̂ Ĝ0 . (2.85)

Coordinate Representations

Now all of the above abstract operator equations can be written in corresponding coor-

dinate representations, which makes them useful for practical calculations. A Green’s

function is then the representation of the operator Ĝ in the limit ε → 0. Hence the

coordinate representations of equations (2.74) and (2.77) are:

G(r, r′) = G0(r, r′) +

∫
dr′′G0(r, r′′)V (r′′)G(r′′, r′) (2.86)

G(r, r′) = G0(r, r′) +

∫
dr′′G(r, r′′)V (r′′)G0(r′′, r′) . (2.87)

The T-operator in (2.78) can be written as [ZG89b]:

T (r, r′) = V (r)

(
δ(r − r′) +

∫
dr′′G(r, r′′)V (r′′)

)
, (2.88)

or alternatively as

T (r, r′) = V (r)

(
δ(r − r′) +

∫
dr′′G0(r, r′′)T (r′′, r′)

)
, (2.89)

which is equation (2.81). Finally the relation between the Green’s function of the single

scatterer system and the T-operator in equation (2.85) is

G(r, r′) = G0(r, r′)

+

∫∫
dr′′dr′′′G0(r, r′′)T (r′′, r′′′)G0(r′′′, r′) . (2.90)
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Expansion of the Green’s Function

The aim of this section is to show that the Green’s function defined in (2.71) can be

expanded in terms of regular and irregular scattering solutions in analogy to equation

(2.14):

G0(r, r′) = −ik
∑

L

jL(kr<)hL(kr>) . (2.91)

Using this expansion in (2.90), we obtain:

G(r, r′) = −ik
∑

L

jL(kr<)hL(kr>)

−k2
∑

LL′

∫∫
dr′′dr′′′ jL(kr<)hL(kr>)T (r′′, r′′′) jL′(kr<)hL′(kr>) . (2.92)

Now taking account of r< and r> and using the notation Ωr for a sphere of radius r

and Ωr−S for a hollow sphere with the thickness S − r, we can write:

G(r, r′) = −ik
∑

L

jL(kr<)hL(kr>)

− k2
∑

LL′


hL(kr)



∫

Ωr

∫

Ωr

dr′′dr′′′ j†L(kr′′)T (r′′, r′′′) jL′(kr
′′′)


 h†L′(kr

′)

+hL(kr)



∫

Ωr

∫

Ωr−S

dr′′dr′′′ j†L(kr′′)T (r′′, r′′′)hL′(kr
′′′)


 j†L′(kr

′)

+ jL(kr)



∫

Ωr−S

∫

Ωr

dr′′dr′′′ h†L(kr′′)T (r′′, r′′′) jL′(kr
′′′)


 h†L′(kr

′)

+ jL(kr)



∫

Ωr−S

∫

Ωr−S

dr′′dr′′′ h†L(kr)T (r′′, r′′′)hL′(kr
′′′)


 j†L′(kr

′)


 (2.93)

where † refers to the complex conjugation of spherical harmonics in j†L(kr) and h†L(kr):

j†L(kr) = j`(kr)Y
∗
L (r̂) , (2.94)

h†L(kr) = h`(kr)Y
∗
L (r̂) . (2.95)

Clearly for r ≥ S the last three terms vanish and we are left with
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G(r, r′) = −ik
∑

L

jL(kr<)hL(kr>)

−k2
∑

LL′

hL(kr)

(∫∫
dr′′dr′′′ j†L(kr′′)T (r′′, r′′′) jL′(kr

′′′)

)
h†L′(kr

′) (2.96)

If only one scatterer is present we can identify the term inside the brackets as the t

matrix:

tLL′ =

∫∫
drdr′ j†L(kr)T (r, r′) jL′(kr

′) , (2.97)

then we can write the Green’s function again in terms of spherical Bessel and Hankel

functions (for r′ > r) as:

G(r, r′) = −ik
∑

L

jL(kr<)hL(kr>)− k2
∑

LL′

hL(kr<) tLL′ hL′(kr>) . (2.98)

We could have arrived at the same expression if we had expanded the Green’s function

in terms of regular and irregular solutions:

G(r, r′) = −ik
∑

L

RL(r<)HL(r>) , (2.99)

and then used the expressions

RL(r) = jL(kr)− ik
∑

L′

hL′(kr) tL′L , (2.100)

HL(r) = hL(kr) , (2.101)

which are the proper normalizations of these functions and are valid for r ≥ S.

Now we want to find an expansion of the Green’s function if the radial solutions for a

spherically symmetric scatterer are used. For this purpose let us rewrite (2.99) as:

G(r, r′) =
∑

LL′

YL(r̂)GLL′(r, r
′)Y ∗L′(r̂

′) , (2.102)

where the matrix GLL′(r, r
′) is given by

GLL′(r, r
′) = −ik

∑

L′′

RLL′′(r<)HL′′L′(r>) . (2.103)
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If the potential has spherical symmetry then the solutions are diagonal in angular

momenta:

RLL′′(r) = δLL′′ R`′′(r) , HL′′L′(r) = δL′′L′ H`′′(r) . (2.104)

Hence for such a potential the expansion in (2.102) reduces to

G(r, r′) = −ik
∑

L

YL(r̂)R`(r<)H`(r>)Y ∗L (r̂′) , (2.105)

and instead of (2.103) we can write:

G`(r, r
′) = −ik R`(r<)H`(r>) . (2.106)

Comparing the last two equations to (2.14) and (2.15) one sees that this is the analogy

to the expansion of the free particle Green’s function for a single scattering potential.

2.3.2 Separating the Scattering Problem

The underlying idea of the following is that the potential can be separated into a

spherically symmetric and a non-spherically symmetric contribution. In contrast to

the symmetric contribution the non-spherical one is finite only in the outer regions of

the potential and can be treated as a perturbation. Exactly where the “outer region”

starts, i.e., at what distance from the origin is a matter of experience and differs from

system to system. According to (2.26) the potential can be expanded as:

V (r) =
∑

L

VL(r)YL(r̂) . (2.107)

It has been shown in section 2.2.5 that the spherical symmetric part of the potential is

just the first term of the summation. Hence we can express the total potential as the

following sum:

V (r) = V (r) +
∑

L>1

VL(r)YL(r̂) , (2.108)

where V (r) = 1/4π V1(r) and L = `(` + 1) + m + 1 has been used. If we define the

perturbation part of the potential as:

∆V (r) =
∑

L>1

VL(r)YL(r̂) , (2.109)

then the potential can be expressed as the sum of two terms:

V (r) = V (r) + ∆V (r) . (2.110)
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The angular momentum notation for the spherical symmetric part is given by equation

(2.67), and for ∆VLL′(r) we get:

∆VLL′(r) = VLL′(r)− δLL′V (r) . (2.111)

We would now like to find a Lippmann-Schwinger equation in which the solution of the

Schrödinger equation for an anisotropic potential is expressed in terms of a solution of

the equation containing the spherical symmmetric part of the full potential. In order

to find such a relation let us first denote the Lippmann-Schwinger equation of (2.23):

ψL(r) = ϕL(r) +

∫
dr′G0(r, r′)V (r′)ψL(r′) , (2.112)

where ϕL(r) is a solution of the homogeneous Schrödinger equation. Then we can make

use of relation (2.87):

G(r, r′) = G0(r, r′) +

∫
dr′′G(r, r′′)V (r′′)G0(r′′, r′) , (2.113)

where it is important to note that G(r, r′) is now the Green’s function for a Schrödinger

equation for a spherically symmetric potential. This equation can be rewritten so that

we obtain a relation for G0(r, r′):

G0(r, r′) = G(r, r′)−
∫

dr′′G(r, r′′)V (r′′)G0(r′′, r′) . (2.114)

Substitution of the above expression into the Lippmann-Schwinger equation (2.112)

yields:

ψL(r) = ϕL(r) +

∫
dr′G(r, r′)V (r′)ψL(r′)

−
∫

dr′′G(r, r′′)V (r′′)

(∫
dr′G0(r′′, r′)V (r′)ψL(r′)

)
. (2.115)

The term inside the parentheses already appeared in (2.112) and consequently we can

write:

ψL(r) = ϕL(r) +

∫
dr′G(r, r′)V (r′)ϕL(r′)

+

∫
dr′G(r, r′) (V (r′)− V (r′)) ψL(r′) . (2.116)

In this equation the first two terms are a Lippmann-Schwinger equation for the spher-

ically symmetric solution, which will be denoted by ψ`(r), because it contains the
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Green’s function of the system which is perturbed by the potential V (r). The last

term contains the difference between the full and the spherically symmetric potential

and according to (2.110) this is nothing but ∆V (r). With these observations (2.116)

reduces to:

ψL(r) = ψ`(r) +

∫
dr′G(r, r′) ∆V (r′)ψL(r′) . (2.117)

In analogy to the previous sections this integral equation can be rewritten in a form

that contains only a one-dimensional radial integration. For the derivation one has to

make use of the following identities (c.f. (2.33), (2.87), (2.111)):

ψLL′(r) = ϕ`(r) +

∫
r′2dr′G0

`(r, r
′)
∑

L′′

VLL′′(r
′)ψL′′L′(r

′) (2.118)

G0
`(r, r

′) = G`(r, r
′)−

∫
r′′2dr′′G`(r, r

′′)V (r′′)G0
`(r
′′, r′) (2.119)

VLL′(r) = δLL′V (r) + ∆VLL′(r) . (2.120)

The expression for the radial wave function ψLL′(r) is finally:

ψLL′(r) = ψ`(r) +

S∫

0

r′2dr′G`(r, r
′)
∑

L′′

∆VLL′′(r
′)ψL′′L′(r

′) . (2.121)

Regular Solutions

For the regular solutions, (2.121) is given through:

RLL′(r) = R`(r) +

S∫

0

r′2dr′G`(r, r
′)
∑

L′′

∆VLL′′(r
′)RL′′L′(r

′) . (2.122)

This equation closely resembles (2.33). But now instead of free space, the reference

system is the isotropic part of the potential, V (r). By making use of (2.106) equation

(2.122) acquires the following structure:

RLL′(r) = R`(r)− ik




r∫

0

r′2dr′R`(r
′)
∑

L′′

∆VLL′′(r
′)RL′′L′(r

′)


H`(r)

− ik




S∫

r

r′2dr′H`(r
′)
∑

L′′

∆VLL′′(r
′)RL′′L′(r

′)


R`(r) (2.123)

RLL′(r) = ALL′ R`(r) +BLL′ H`(r) , (2.124)
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where in the last step the two coefficients ALL′ and BLL′ have been defined as:

ALL′ = δLL′ − ik

S∫

r

r′2dr′H`(r
′)
∑

L′′

∆VLL′′(r
′)RL′′L′(r

′) (2.125)

BLL′ = − ik

r∫

0

r′2dr′R`(r
′)
∑

L′′

∆VLL′′(r
′)RL′′L′(r

′) . (2.126)

Irregular Solutions

The irregular solutions can be denoted in the same way as above, however, the different

boundary conditions have to be taken account of. Hence, with V (r) as the reference

system, the solutions are given by:

HLL′(r) = ϕ`(r) +

S∫

0

r′2dr′G`(r, r
′)
∑

L′′

∆VLL′′(r
′)HL′′L′(r

′) , (2.127)

where ϕ`(r) contains the boundary conditions which will be included in the following.

The asymptotic behaviour of the wave functions outside the scattering region is the

following:

HLL′(r) = H`(r) , for r ≥ S . (2.128)

If the reference system was free space, i.e., V (r) = 0, then H`(r) could be identified by

spherical Hankel functions of the first kind. It follows with equation (2.106) that ϕ`(r)

is of the form:

ϕ`(r) = H`(r) + ik H`(r)

S∫

0

r′2dr′R`(r
′)
∑

L′′

∆VLL′′(r
′)HL′′L′(r

′) . (2.129)

This can be substituted into (2.127) to yield a radial Lippmann-Schwinger equation

for the irregular solutions, written exclusively in terms of the anisotropic contributions

of the potential:

HLL′(r) = H`(r) + ik H`(r)

S∫

0

r′2dr′R`(r
′)
∑

L′′

∆VLL′′(r
′)HL′′L′(r

′)

+

S∫

0

r′2dr′G`(r, r
′)
∑

L′′

∆VLL′′(r
′)HL′′L′(r

′) . (2.130)
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Solutions of the Coupled Equations

Using again the expression for G`(r, r
′) of equation (2.106) one obtains:

HLL′(r) = H`(r) + ik H`(r)

S∫

0

r′2dr′R`(r
′)
∑

L′′

∆VLL′′(r
′)HL′′L′(r

′)

−ik H`(r)

r∫

0

r′2dr′R`(r
′)
∑

L′′

∆VLL′′(r
′)HL′′L′(r

′)

−ik R`(r)

S∫

r

r′2dr′H`(r
′)
∑

L′′

∆VLL′′(r
′)HL′′L′(r

′) , (2.131)

and finally we get

HLL′(r) = H`(r) + ik H`(r)

S∫

r

r′2dr′R`(r
′)
∑

L′′

∆VLL′′(r
′)HL′′L′(r

′)

−ik R`(r)

S∫

r

r′2dr′H`(r
′)
∑

L′′

∆VLL′′(r
′)HL′′L′(r

′) . (2.132)

Once more we can write this in a shorthand notation as:

HLL′(r) = CLL′ R`(r) +DLL′ H`(r) , (2.133)

where the coefficients are given by the following expressions:

CLL′ = −ik

S∫

r

r′2dr′H`(r
′)
∑

L′′

∆VLL′′(r
′)HL′′L′(r

′) (2.134)

DLL′ = δLL′ + ik

S∫

r

r′2dr′R`(r
′)
∑

L′′

∆VLL′′(r
′)HL′′L′(r

′) . (2.135)

2.3.3 The t Matrix

For the present case of an anisotropic, arbitrarily shaped potential, the single site t

matrix is no longer diagonal in angular momentum indices. As in the case of the

radial wave functions we can separate the problem into the calculation of the t matrix

for the spherical part of the potential, and into the calculation of the non-diagonal

contributions to the t matrix which correspond to the perturbative, anisotropic part of

the total potential.
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Solutions of the Coupled Equations

Outside the scattering region the regular solution for the potential V (r) = V (r) −
∆V (r), R`(r), is given by the well known expression:

R`(r) = j`(kr)− ik t` h`(kr) . (2.136)

In the previous section it has been mentioned that the irregular solution is normalized

to smoothly join a spherical Hankel function of the first kind in free space, thus:

H`(r) = h`(kr) , for r ≥ S . (2.137)

Furthermore the coefficients in equations (2.125) and (2.126) reduce outside the scat-

tering region, i.e. r ≥ S, to:

ALL′ = δLL′ (2.138)

BLL′ = −ik

S∫

0

r′2dr′R`(r
′)
∑

L′′

∆VLL′′(r
′)RL′′L′(r

′) (2.139)

= −ik∆tLL′ . (2.140)

In the last step the additional contribution to the total t matrix has been identified by

comparison with (2.40) as:

∆tLL′ =

S∫

0

r′2dr′R`(r
′)
∑

L′′

∆VLL′′(r
′)RL′′L′(r

′) . (2.141)

Then for r ≥ S, (2.124) is given by:

RLL′(r) = j`(kr)− ik t` h`(kr)− ik∆tLL′ h`(kr) (2.142)

= j`(kr)− ik tLL′ h`(kr) , (2.143)

where the total t matrix was identified as:

tLL′ = t` + ∆tLL′ . (2.144)
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2.3.4 Numerical Solution with the Born Approximation

Equations (2.124) and (2.133) can be used to obtain solutions for the Lippmann-

Schwinger equations through an iterative scheme. The idea is that in a first step

the wave functions RLL′(r) and HLL′(r), respectively, which appear in the integrands,

can be approximated by the solutions to the radially symmetric problem. So for the

0-th approximation we can write:

R
(0)
LL′(r) = R`(r) (2.145)

H
(0)
LL′(r) = H`(r) . (2.146)

Inserting these into (2.124) and (2.133) results in the first approximations, R
(1)
LL′(r)

and H
(1)
LL′(r). Then they are again inserted into the equations to yield the second Born

approximation. This iteration scheme can be repeated several times, but experience has

shown that the results of the second Born approximation is sufficiently accurate [Dri91].

The radial integrations are all performed by Simpson’s method which is described in

the appendix.

So once the radial solutions RLL′(r) have been obtained the t matrix can be calculated

according to (2.141) and (2.144).

2.4

The Shape Function Technique

As should be clear by now from the discussion in the previous sections, the potential

is, apart from being anisotropic, of non-spherical shape. Furthermore we require that a

periodic arrangement of this potential ought to fill up all space. The latter requirement

is achieved by the division of space into Wigner-Seitz cells. Clearly the individual

potentials are then of polyhedral shape and we have to take account of this fact by

some means. Here the introduction of so called shape functions [AW73][WSF94] helps

out. These are nothing but unit step functions, which are defined to have the value 1

inside a given Wigner-Seitz cell and 0 outside. Denoting the step function of the i-th

cell by σi(r) we may write:

σi(r) =

{
1 , if r inside the i−th cell

0 , otherwise
. (2.147)

As is illustrated in figure 2.1, the shape functions are equal to 1 as long as r ≤ rmt
and equal to 0 if r > rws. For values of r between those characteristic radii the shape

functions acquire values of either 1 or 0 depending on the direction of r. It should be

noted that rws denotes the radius of a sphere circumscribing a Wigner-Seitz cell, and
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The Shape Function Technique

Figure 2.1: A collection of Wigner-Seitz cells. Around each cell a bounding sphere of

radius rws, and inside each cell a sphere with the muffin tin radius rmt can be drawn.

A shape function cuts out those parts of the bounding sphere which do not lie inside

the i-th cell.

PSfrag replacements

i

i

rmt

rws

should not be confused with the Wigner-Seitz radius which specifies the radius of a

sphere equal in volume with a Wigner-Seitz cell.

Consider now a potential V (r) belonging to an atom at a lattice position, which we

label by i, that is anisotropic but of unspecified shape and extent. Then by folding this

potential with the shape function of cell i we do not only limit the maximum range of

the potential but also “cut” it into a certain shape. This potential is then given by:

vi(r) = V (r)σi(r) . (2.148)

Of course the shape functions can also be expanded in terms of their angular momentum

components and spherical harmonics as:

σ(r) =
∑

L

σL(r)YL(r̂) . (2.149)
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Accordingly the expansion coefficients may then by calculated from:

σL(r) =

∫
dr̂ Y ∗L (r̂)σ(r) . (2.150)

From the definition of the shape functions it is clear that these coefficients can easily

by calculated for r ≤ rmt and r > rws, where they are given by:

σL(r) = δ`0 δm0

√
4π , r ≤ rmt , (2.151)

and

σL(r) = 0 , r > rws . (2.152)

The difficulty now is to obtain the expansion coefficients in the intermediate region

by solving (2.150). Prescriptions on how to solve this integral can be found in the

literature [SAZ90][SZ91][BtVB88][AP89]. As is shown there the integration has – at

least partially – to be performed numerically.

While the shape functions are anisotropic in the region between the muffin tin and

the bounding sphere, the potential also has anisotropic contributions that extend into

the muffin tin. This is schemetically displayed in figure 2.2. The part of the potential

that is spherically symmetric lies inside the muffin tin radius and has nsph mesh points.

Beyond the corresponding radius rsph are so-called non-spherical contributions to the

potential which lie on nnsph radial points and extend up to the maximum radius rws.

Therefore the solutions of the coupled radial equations have to be obtained on these

nnsph mesh points. The value of rsph is more or less arbitrary, is due to experience, and

differs from system to system.

In systems with high symmetry, not all of the angular momentum components are

finite. Taking the case of cubic systems one can use the so-called cubic harmonics, i.e.,

we only have non-zero components for ` = 0, 4, 6, 8, 10, 12, . . . and m = 0 mod(4).

Returning now to equation (2.148) and expanding all quantities in terms of spherical

harmonics we get the following identity:

∑

L

viL(r)YL(r̂) =
∑

LL′

VL(r)σiL′(r)YL(r̂)YL′(r̂) . (2.153)

Multiplication with Y ∗L′′(r̂), an angular integration and renaming indices yields the

result:

viL(r) =
∑

L′L′′

VL′(r)σiL′′(r)C
L
L′L′′ , (2.154)
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Figure 2.2: The critical radii in relation to the regions of a Wigner-Seitz cell which

are considered to be spherically symmetric and non-spherically symmetric. rsph is an

arbitrarily chosen radius up to which the potential is considered to be spherically

symmetric and contains nsph mesh points. Then nnsph mesh points up to the

Wigner-Seitz radius rws constitute the radial mesh of the non-spherical contributions

to the potential. There are nmt points up to the muffin tin radius rmt and finally the

number of points has to be the same, i.e.: nsph + nnsph = nmt + nws.

PSfrag replacements

rmt rwsrsph0

nsph nnsph

nmt nws

where once more the Gaunt coefficients have been defined as:

CL
L′L′′ =

∫
dr̂ Y ∗L (r̂)YL′(r̂)YL′′(r̂) . (2.155)

The “folding” of the potential with a shape function has the consequence that the

angular momentum components of the potential acquire the properties of the shape

function components. Since the first derivative of the latter is not continuous on the

whole r-mesh also the components of the potential have this feature. The points where

these discontinuities occur are those values of r where a corner, or a face is touched.

E.g. in the case of an fcc lattice the intervals where the functions and their first

derivatives are continuous are:

I1 =

[
a√
8
,
a√
6

]
, (2.156)

I2 =

[
a√
6
,
a
√

3

4

]
, (2.157)

I3 =

[
a
√

3

4
,
a

2

]
. (2.158)

The first interval, I1, corresponds to the difference of the radial distances between the

centers of two faces of the cell, while the second interval, I2, is the difference in distance

between a face and a corner. Finally the third interval, I3 contains the region between

that corner and another corner whose radial distance from the cell center is identical to

the Wigner-Seitz radius, rws. This has the effect that when the radial equation is solved

the algorithm has to be stopped and restarted at these critical points. Hence we get

integration intervals where the first and last point of each interval is always a critical
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point. One can use either exponential radial meshes in each interval, or alternatively

use an exponential mesh between the origin and rmt and equidistant distributions of r

points in the intervals between rmt and rws.

It is interesting to investigate how many angular momentum components have to be

taken into account when the shape functions are calculated. We assume that we have

calculated the wave functions up to `max. Then while solving the coupled equations

(2.62) the double indexed components of the potential VLL′(r) enter. These are given

by equation (2.63) as:

VLL′(r) =
∑

L′′

CL
L′L′′ VL′′(r) , (2.159)

It follows from the selection rules of the Gaunt numbers (c.f. section B.2.1 of the

appendix) that `′′ = ` + `′, and therefore we need to compute VL(r) up to 2`max.

Consequently we can see by inspecting equation (2.154) that we need the components

of the shape functions up to 4`max.
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3

Multiple Scattering and KKR

The presence of more than one scatterer necessitates the extension of the theory to

multiple scattering. In the case of a large or infinite collection of potentials, which

have to be non overlapping and are spatially bounded, the theory becomes especially

useful, as then the electronic bandstructure and hence the physical properties of a

periodic, infinite solid can be calculated. However, it is also possible to extend the

theory to systems with interfaces or a surface.

Multiple scattering theory can either be developed by using wave functions or, alter-

natively, using operators and Green’s functions. The latter case provides a straight-

forward, formal way to arrive at the final expressions. Hence we will proceed in that

direction in the following.

The first section is devoted to the introduction of the scattering path operator which

goes back to traditions introduced by Györffy [GS77]. Then a short discussion about

the meaning of being on the energy shell follows. A rather extended section subse-

quently deals with a derivation of the Green’s function of the system in terms of the

scattering path operator and scattering solutions. A discussion of the structure con-

stants and of the calculation of physical observables finally concludes the chapter.

3.1

The Scattering Path Operator

As a first principle let us assume that the potential in the system is the sum of non

overlapping potentials centered at lattice sites labelled by i. Then in an operator
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notation we can write:

V̂ =
∑

i

vi , D(vi) ∩D(vj) = ∅ , (3.1)

where D(vi) refers to the domain of vi. If only one potential vi is present in the whole

system then the operator T̂ defined in (2.81) reduces to the single site t matrix. This

can be denoted as:

ti = vi + vi Ĝ
0 ti =

(
1− vi Ĝ0

)−1

vi . (3.2)

Returning to the case of more than one potential being present, instead of (2.81) we

can write with equation (3.1):

T̂ =
∑

i

(
vi + vi Ĝ

0 T̂
)

=
∑

i

Q̂i , (3.3)

where in the last step the quantities Q̂i were defined. They can now be manipulated

in the following manner:

Q̂i = vi + vi Ĝ
0 T̂ = vi + vi Ĝ

0
∑

j

Q̂j , (3.4)

and hence

Q̂i = vi + vi Ĝ
0 Q̂i + vi Ĝ

0
∑

j 6=i
Q̂j . (3.5)

We would now like to express this operator in terms of the t matrix, which can be

achieved by first rewriting (3.5) as:

(
1− vi Ĝ0

)
Q̂i = vi + vi Ĝ

0
∑

j 6=i
Q̂j , (3.6)

which then leads to:

Q̂i =
(
1− vi Ĝ0

)−1

vi

(
1 + Ĝ0

∑

j 6=i
Q̂j

)
(3.7)

= ti

(
1 + Ĝ0

∑

j 6=i
Q̂j

)
= ti + ti Ĝ0

∑

j 6=i
Q̂j . (3.8)

Repeated application of Q̂i in this last identity results in the following expansion:

Q̂i = ti + ti Ĝ0
∑

j 6=i
tj + ti Ĝ0

∑

j 6=i
tj Ĝ0

∑

k 6=j
tk + . . . . (3.9)
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Accordingly for the T̂ operator one obtains:

T̂ =
∑

i

ti +
∑

i

ti Ĝ0
∑

j 6=i
tj +

∑

i

ti Ĝ0
∑

j 6=i
tj Ĝ0

∑

k 6=j
tk + . . . . (3.10)

It can easily be shown that the above expansion can be written in a more compact

form as:

T̂ =
∑

ij

τ ij , (3.11)

if the scattering path operator, τ ij [GS77] [FS80], is denoted by:

τ ij = ti δij + ti Ĝ0
∑

k 6=i
τ kj (3.12)

= ti δij +
∑

k 6=j
τ ik Ĝ0 tj . (3.13)

These identities can be used to derive some expressions that will be useful later on.

Considering a specific site n in the following we can write with the above identities:

τnj = tn δnj + tn Ĝ0
∑

i6=n
τ ij . (3.14)

Then summing also over j, leaving out site n and multiplying both sides of the equation

by Ĝ0 yields:

∑

j 6=n
τnj Ĝ0 = tn Ĝ0

∑

i6=n
j 6=n

τ ij Ĝ0 . (3.15)

In the same way another expression can be obtained:

τ in = tn δin +
∑

k 6=n
τ ik Ĝ0 tn . (3.16)

Summing over i, multiplying with Ĝ0 and renaming k to j results in:

∑

i6=n
τ in Ĝ0 =

∑

i6=n
j 6=n

τ ij Ĝ0 tn Ĝ0 . (3.17)

Furthermore the diagonal element of the scattering path operator is given by:

τnn = tn +
∑

j 6=n
τnj Ĝ0 tn , (3.18)
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which leads with (3.15) to:

τnn = tn + tn Ĝ0
∑

i6=n
j 6=n

τ ij Ĝ0 tn . (3.19)

From equation (2.85) we know a relation between Ĝ and T̂ namely:

Ĝ = Ĝ0 + Ĝ0 T̂ Ĝ0 , (3.20)

which with (3.11) is identical to:

Ĝ = Ĝ0 + Ĝ0
∑

ij

τ ij Ĝ0 , (3.21)

or, taking the diagonal element at site n out of the summation:

Ĝ = Ĝ0 + Ĝ0 τnn Ĝ0 + Ĝ0
∑

i6=n
τ in Ĝ0 + Ĝ0

∑

j 6=n
τnj Ĝ0 + Ĝ0

∑

i6=n
j 6=n

τ ij Ĝ0 . (3.22)

Now the reason for making the above transformations has become clear and we can

use the identities (3.15), (3.17), and (3.19) in (3.22) to get the lengthy expression:

Ĝ = Ĝ0 + Ĝ0 tn Ĝ0 + Ĝ0 tn Ĝ0
∑

i6=n
j 6=n

τ ij Ĝ0 tn Ĝ0 + Ĝ0
∑

i6=n
j 6=n

τ ij Ĝ0 tn Ĝ0

+ Ĝ0 tn Ĝ0
∑

i6=n
j 6=n

τ ij Ĝ0 + Ĝ0
∑

i6=n
j 6=n

τ ij Ĝ0 . (3.23)

In the presence of no other scatterer than the one at site n, (2.85) is identical to:

Ĝn = Ĝ0 + Ĝ0 tn Ĝ0 , (3.24)

which is the Green’s function for an electron moving under the sole influence of the

potential vn(r). Then using this definition, (3.23) can be written as:

Ĝ = Ĝn + Ĝn
∑

i6=n
j 6=n

τ ij Ĝn . (3.25)
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3.2

On the Energy Shell

In order to clarify the conception of being on the energy shell, a short excursion to

the coordinate representation of the t matrix will be made in this section. To begin

with let us denote equation (2.89), which is an expression for a t matrix corresponding

to the potential vi at site i, in the following way (leaving out the implicitly assumed

energy dependence):

ti(r, r′) = vi(r) δ(r − r′) + vi(r)

∫
dr′′G0(r, r′′) ti(r′′, r′) . (3.26)

In the next step consider the elements of the t matrix in a plane wave representation,

ti(k,k′), which can be obtained from [GS77]:

ti(k,k′) =

∫ ∫
dr dr′ e−ikr ti(r, r′) eik′r′ . (3.27)

These elements are defined for any combination of k vectors of incoming and outgoing

plane waves. However, when one talks about elastic scattering a situation is meant

where k2 = k′2 = E. Then ti(k,k′) is the probability amplitude that a state with wave

vector k scatters into a state with wave vector k′. Hence being “on the energy shell”

refers to elastic scattering. To proceed, the famous expansion (2.11):

eikr = 4π
∑

L

i` jL(kr)Y ∗L (k̂) , (3.28)

can be used in (3.27), which yields:

ti(k,k′) = 16π2
∑

LL′

i−`+`
′
YL(k̂) tiLL′ Y

∗
L′(k̂

′
) . (3.29)

In the above equation the “on the energy shell” matrix elements tiLL′ were defined as:

tiLL′ =

∫ ∫
dr dr′ j`(kr)Y

∗
L (r̂) ti(r, r′)YL′(r̂

′) j`′(kr
′) . (3.30)
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3.3

The Equation of Motion

Györffy and Stocks have given some insight into the physical meanings of the operators

ti, τ ij, and T̂ in one of their articles [GS77]. In their picture ti is the operator that (due

to vi) generates the scattered wave from the incident wave. Then the scattering path

operator τ ij produces a scattered wave from site j incident at site i by operating on the

incident wave at site j and including all the scattering in between. Continuing along

this line of thought, T̂ then sums over all incident waves at all sites and turns them

into scattered waves emanating from all other sites and adds up all the scattering.

The task now is to find a relation between the on the energy shell components of the t

matrix and the scattering path operator which subsequently provides a powerful tool

for bandstructure calculations. In order to derive such an expression we will initially

rewrite equation (3.12) in a coordinate representation:

τ ij(ri, r
′
j) = ti(ri, r

′
i) +

∑

k 6=i

∫ ∫
dr′i dr

′′
k t

i(ri, r
′
i)G

0(r′i, r
′′
k) τ

kj(r′′k, r
′
j) , (3.31)

where the vector indices refer to the lattice sites at which the vectors are centered.

This means that two vectors, one centered at i the other at k, connecting to one and

the same point in the cell centered at k are related in the following way:

ri = Rk −Ri + rk = Sik + rk . (3.32)

With this observation it is possible to make use of the following expansion of the free

particle Green’s function (r′i > ri):

G0(r′i, r
′′
i ) = G0(r′i, r

′′
k + Sik) = G0(r′i, r

′′
k) (3.33)

= −ik
∑

L

YL(r̂′i) j`(kr
′
i)h`(k|r′′k + Sik|)Y ∗L ( ̂r′′k + Sik) . (3.34)

Utilizing furthermore the addition theorem [FR54] giving rise to the structure constants

GLL′(Sik):

−ik h`(k|r′′k + Sik|)Y ∗L ( ̂r′′k + Sik) =
∑

L′

GLL′(Sik) j`′(kr
′′
k)Y

∗
L′(r̂

′′
k) , (3.35)

leads to

G0(r′i, r
′′
k) =

∑

LL′

YL(r̂′i) j`(kr
′
i)GLL′(Sik) j`′(kr

′′
k)Y

∗
L′(r̂

′′
k) (3.36)

=
∑

LL′

jL(kr′i)GLL′(Sik) j
†
L′(kr

′′
k) . (3.37)
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The structure constants are given by:

GLL′(Sik) = −4πk i`−`
′+1
∑

L′′

i`
′′
CL′
LL′′ hL′′(kSik) , (3.38)

where the notation of the spherical Hankel functions refers to:

hL(kSik) = h`(kSik)YL(Ŝik) . (3.39)

Now we can write instead of (3.31):

τ ij(ri, r
′
j) = ti(ri, r

′
i)

+
∑

k 6=i

∑

LL′

∫ ∫
dr′i dr

′′
k t

i(ri, r
′
i) jL(kr′i)GLL′(Sik) j

†
L′(kr

′′
k) τ

kj(r′′k, r
′
j) .(3.40)

Then turning to a plane wave representation as in the previous section and taking only

the on the energy shell elements on both sides of the equation, we obtain a central result

of multiple scattering theory namely the equation of motion for the scattering path

operator or, as it is also referred to, the fundamental equation of multiple scattering:

τ ijLL′ = δij t
i
LL′ +

∑

k 6=i

∑

L′′L′′′

tiLL′′ GL′′L′′′(Sik) τ
kj
L′′′L′ , (3.41)

where the on the energy shell elements of the t matrix and the τ operator have been

defined as:

τ ijLL′ =

∫ ∫
dri dr

′
j j
†
L(kri) τ

ij(ri, r
′
j) jL′(kr

′
j) (3.42)

tiLL′ =

∫ ∫
dri dr

′
i j
†
L(kri) t

i(ri, r
′
i) jL′(kr

′
i) . (3.43)

Subsequently multiplying (3.41) with mi
LL′ = (tiLL′)

−1 from the left we get:

∑

L′′

δijm
i
LL′′ τ

ij
L′′L′ = 1 +

∑

k 6=i

∑

L′′

GLL′′(Sik) τ
kj
L′′L′ , (3.44)

and furthermore

∑

k

∑

L′′

(
δkim

k
LL′′ − (1− δki)GLL′′(Sik)

)
τ kjL′′L′ = 1 . (3.45)
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3.3.1 Bandstructure Calculation

By using the method of lattice Fourier transforms one can manipulate (3.41) to arrive

at an expression that is especially suitable for obtaining the dispersion relation E vs. k.

The following is valid for a material of ideal structure and infinite, three dimensionally

periodic, extent. Following Gonis [Gon92] let us first define the k representation of the

scattering path operator by

τLL′(k,k
′) =

1

N

∑

ij

τ ijLL′ e
i(k·Ri−k′·Rj) (3.46)

=
1

N

∑

ij

τ ijLL′ e
ik·(Ri−Rj)−iRj ·(k′−k) (3.47)

=
1

N

∑

j

eiRj ·(k′−k)

[∑

i

τ ijLL′ e
ik·(Ri−Rj)

]
, (3.48)

N being the number of lattice sites. The term inside the brackets can be replaced by

the quantity:

τLL′(k) =
∑

i

τ ijLL′ e
ik·(Ri−Rj) , (3.49)

and the sum over j is easily identified as:

1

N

∑

j

eiRj ·(k′−k) = δ(k′ − k) . (3.50)

Therefore we can denote the following identity:

τLL′(k,k
′) = τLL′(k) δ(k′ − k) . (3.51)

Furthermore the product of the structure constants and the scattering path operator

in (3.41) may by written in a shorthand notation as:

∑

k

GLL′′(Sik) τ
kj
L′′L′ =

∑

k

Gik
LL′′ τ

kj
L′′L′ = M ij

LL′ . (3.52)

The k representation of M ij
LL′ is obtained as above:

MLL′(k,k
′) =

1

N

∑

j

eiRj ·(k′−k)

[∑

i

M ij
LL′ e

ik·(Ri−Rj)
]

. (3.53)
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Insertion of (3.52) yields:

MLL′(k,k
′) =

1

N

∑

j

eiRj ·(k′−k)

[∑

ik

Gik
LL′′ τ

kj
L′′L′ e

ik·(Ri−Rk) eik·(Rk−Rj)
]

. (3.54)

The terms inside the brackets are simply the lattice Fourier transform of the structure

constants and the τ operator:

G0
LL′(k) =

∑

i

Gik
LL′ e

ik·(Ri−Rk) (3.55)

τLL′(k) =
∑

k

τ kjLL′ e
ik·(Rk−Rj) . (3.56)

Hence we have obtained the following identity:

MLL′(k,k
′) = MLL′(k) δ(k′ − k) (3.57)

= G0
LL′′(k) τL′′L′(k) . (3.58)

Because the t matrix is site diagonal it is identical to its lattice Fourier transform:

tiLL′ = tLL′(k) , (3.59)

and we can write instead of (3.41):

τLL′(k) = tLL′(k) +
∑

L′′L′′′

tLL′′(k)G0
L′′L′′′(k) τL′′′L′(k) . (3.60)

It is now straightforward to obtain a solution for the scattering path operator in k

representation, which is nothing but:

τLL′(k) =
[
mLL′(k)−G0

LL′(k)
]−1

. (3.61)

Clearly the quantity mLL′(k) denotes the inverse of the t matrix.

3.4

Screened KKR Formalism

The idea behind the so called screening transformation [SÚW95][ZDS+95]

[Zel97][SÚWK94b][WZD97] is that one has complete freedom in choosing a suitable

reference system. Originally [KR54] [Kor47] this reference system was taken to be free
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space, but one might think of a more favourable one. It would be especially pleasing to

construct it such that the KKR structure constants, which are to be discussed in one

of the following sections, are short ranged. Then beyond a few neighbouring shells of

atoms the structure constants are virtually zero. Therefore the matrices with respect

to lattice sites reduce in size and are easier to handle computationally.

First let us see how such a reference system might be constructed. One can think of a

reference system that consists of a collection of constant repulsive potentials centered

at lattice sites. Denoting the collection of reference potentials as V r(r) we can write:

V r(r) =
∑

i

vri (r) . (3.62)

Furthermore the individual reference potentials are constant inside a certain distance

d and 0 beyond it:

vri (r) =

{
const. , |r| ≤ d

0 , otherwise
. (3.63)

Note that the domains of the actual potential vi(r) and the screening potential vri (r)

should be identical. Then the distance d can in principle be either identical to the

muffin tin radius, in which case we obviously talk about a collection of repulsive muffin

tin spheres. Or we use ASA spheres, or we could also use a collection of Wigner-Seitz

polyhedra of constant potential. According to Dederichs [Ded] the screening is best

achieved by using muffin tins. However, there are no conclusive investigations of a “full

potential” reference system to date.

3.4.1 Relations between Green’s Functions and τ Operators

To show how the new reference system can be used within the theory, we first have

to find some relations between the operator Ĝ which was defined in (2.77) and (3.20),

and the scattering path operator. Inserting the expansion of the operator T̂ as given

from (3.10), into (3.20) results in an expansion of Ĝ in terms of single site t matrices:

Ĝ = Ĝ0 + Ĝ0
∑

i

ti Ĝ0 + Ĝ0
∑

i

ti Ĝ0
∑

j 6=i
tj Ĝ0

+ Ĝ0
∑

i

ti Ĝ0
∑

j 6=i
tj Ĝ0

∑

k 6=j
tk Ĝ0 + . . . . (3.64)

We can subsequently make use of lattice Fourier transforms as in the previous section.

By, for reasons of simplicity, switching to a matrix notation, where the general matrix

A(k) is simply:

A(k) = {ALL′(k)} , (3.65)
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we can write the above expansion in terms of the respective Fourier components as:

G(k) = G0(k) +G0(k) t(k)G0(k) +G0(k) t(k)G0(k) t(k)G0(k) + · · · . (3.66)

It is easily seen that we can cast this equation in the form of a Dyson equation:

G(k) = G0(k) +G0(k) t(k)G(k) (3.67)

= G0(k) +G(k) t(k)G0(k) , (3.68)

and therefore we can write:

G(k) =
[
1−G0(k) t(k)

]−1
G0(k) (3.69)

= G0(k)
[
1− t(k)G0(k)

]−1
. (3.70)

By furthermore denoting equation (3.61) in the same fashion:

τ(k) =
[
m(k)−G0(k)

]−1
, (3.71)

we can find relations between the scattering path operator and the Green’s function.

From rearranging the above equation one can find the relation:

t(k) = τ(k)
[
1 +G0(k) τ(k)

]−1
, (3.72)

which can be used in (3.67) to yield after some basic manipulations:

G(k) = G0(k) +G0(k) τ(k)G0(k) . (3.73)

Rewriting (3.71) once more to find an expression for G0(k), namely:

G0(k) = m(k)− τ−1(k) , (3.74)

the following result is obtained after insertion into (3.67):

G(k) = m(k) τ(k)m(k)−m(k) . (3.75)
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3.4.2 Screening Transformations

Clearly an expansion like (3.66) can also be written with respect to the t matrices of

the reference system. If such a t matrix is denoted as tr(k), we get for the Green’s

function of the reference system:

Gr(k) =
[
1−G0(k) tr(k)

]−1
G0(k) (3.76)

= G0(k)
[
1−G0(k) tr(k)

]−1
. (3.77)

It follows immediately that:

G0(k) = [1 +Gr(k) tr(k)]−1 Gr(k) . (3.78)

If this identity is used in (3.70):

G(k) = G0(k)
[
1− t(k)G0(k)

]−1
, (3.79)

one in fact obtains after some straightforward manipulations:

G(k) = Gr(k) [1− α(k)Gr(k)]−1 . (3.80)

Above the matrix α(k) is simply the difference between the two t matrices:

α(k) = t(k)− tr(k) . (3.81)

Using the t matrix and the Green’s function of the reference system, a τ -operator can

be defined as:

τ r(k) =
[
α−1(k)−Gr(k)

]−1
. (3.82)

If from this equation we deduce an equality for α(k):

α(k) = [1 + τ r(k)Gr(k)]−1 τ r(k) , (3.83)

and use it in (3.80) we find the relation:

G(k) = Gr(k) +Gr(k) τ r(k)Gr(k) , (3.84)

and in analogy to (3.75) we find:

G(k) = α−1(k) τ r(k)α−1(k)− α−1(k) . (3.85)
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The operator in (3.82) can be referred to as the screened scattering path operator.

Using (3.75) and (3.85) one can easily read off the following expression for the “un-

screened” scattering path operator in terms of t matrices and the screened scattering

path operator:

τ(k) = t(k)− t(k)α−1(k) t(k) + t(k)α−1(k) τ r(k)α−1(k) t(k) . (3.86)

The resulting screened Korringa-Kohn-Rostoker (KKR) method has been successfully

applied to bulk, as well as surface systems [ÚSW96][ÚSBW96][ÚSW95][SÚWK94a]

[SÚWS96][SÚW95][SÚW97][SÚPW98][SÚB+97][SZU+98][ZPU+98][ZUB+98][PZU+99].

3.5

Green’s Function

The most important quantity for the calculation of physical quantities is the Green’s

function of the system, as from its knowledge all quantities such as the density of

states, the charge density, and consequently the total energy or magnetic moments

can be derived. It is the purpose of this section to show how this Green’s function is

connected to single site quantities, namely the regular and irregular scattering solutions

and the t matrix, and to the diagonal elements of the scattering path operator. The

starting point is equation (3.25) in coordinate representation:

G(rn, r
′
n) = Gn(rn, r

′
n) +

∑

i6=n
j 6=n

∫ ∫
dri drj G

n(rn, ri) τ(ri, rj)G
n(rj, r

′
n) .(3.87)

One can easily check that outside the scattering region where the regular and irregular

solutions respectively are normalized in the following way:

ZL(rn) = −ik hL(krn) +
∑

L′

jL′(krn)mn
L′L (3.88)

JL(rn) = jL(krn) , (3.89)

the single scatterer Green’s function Gn(rn, r
′
n) can be expressed by either:

Gn(rn, r
′
n) = −ik

∑

LL′

ZL(rn) tnLL′ h
†
L′(kr

′
n) , (3.90)

or alternatively by

Gn(rn, r
′
n) =

∑

LL′

ZL(rn) tnLL′ Z
†
L(r′n)−

∑

L

ZL(rn) J†L(r′n) . (3.91)
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Here the superscript † refers to the complex conjugation of only the spherical harmonics

which e.g. for the Hankel functions means:

h†L(kr) = h`(kr)Y
∗
L (r̂) . (3.92)

To proceed we have to use two center expansions of the Green’s functions Gn which

appear in the integrand. By using

r′n = ri + Sni , (3.93)

and

rn = rj + Snj , (3.94)

we can expand expression (3.90) as:

Gn(rn, r
′
n) = Gn(rn, ri + Sni) = Gn(rn, ri) (3.95)

=
∑

LL′L′′

ZL(rn) tnLL′ GL′L′′(Sni) j
∗
L′′(kri) , (3.96)

or with respect to cell j as:

Gn(rn, r
′
n) = Gn(rj + Snj, r

′
n) = Gn(rj, r

′
n) (3.97)

= −ik
∑

LL′

hL(krn) tnLL′ Z
†
L′(r

′
n) (3.98)

=
∑

LL′L′′

jL(krj)GLL′(Snj) t
n
L′L′′ Z

†
L′′(kr

′
n) , (3.99)

In the next step the expansions (3.91), (3.96), and (3.99) are substituted into equation

(3.87) which gives:

G(rn, r
′
n) = −

∑

L

ZL(rn) J†L(r′n) +
∑

LL′

ZL(rn) tnLL′ Z
†
L(r′n)

+
∑

i6=n
j 6=n

∑

LL′L′′
L′′′LivLv

∫ ∫
dri drj ZL(rn) tnLL′ GL′L′′(Sni) j

∗
L′′(kri)

× τ(ri, rj) jL′′′(krj)GL′′′Liv(Snj) t
n
LivLv Z

†
Lv(kr

′
n) . (3.100)

Once again the on the energy shell elements of the scattering path operator can be

identified from the above expression as:

τ ijL′′L′′′ =

∫ ∫
dri drj j

∗
L′′(kri) τ(ri, rj) jL′′′(krj) . (3.101)
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Clearly in the calculations the elements of the scattering path operator are not eval-

uated by solving the above integrals. Instead equation (3.61) is used which involves

the determination of the single site t matrices, the structure constants and a matrix

inversion. The difficult part being the inversion of an, in general, infinite matrix.

After defining τ ijL′′L′′′ we are now left with the following identity:

G(rn, r
′
n) = −

∑

L

ZL(rn) J†L(r′n) +
∑

LL′

ZL(rn) tnLL′ Z
†
L(r′n)

+
∑

i6=n
j 6=n

∑

LL′L′′
L′′′LivLv

ZL(rn) tnLL′ GL′L′′(Sni)

× τ ijL′′L′′′GL′′′Liv(Snj) t
n
LivLv Z

†
Lv(kr

′
n) . (3.102)

To proceed let us first rewrite the equation of motion (3.41) in a shorthand notation

(by leaving out the dependence on angular momentum indices):

τ ij = ti δij +
∑

k 6=i
tiG(Sik) τ

kj (3.103)

= ti δij +
∑

k 6=j
τ ikG(Skj) t

j . (3.104)

These equations are similar to (3.12) and (3.13) except that this time the “on the

energy shell” elements of the respective quantities are meant. We can, for example,

manipulate (3.104) in the following way:

τnn = tn +
∑

j 6=n
τnj G(Snj) t

n . (3.105)

Multiplication with mn = (tn)−1 from the right and rearrangement leads to:

∑

j 6=n
τnj G(Snj) = (τnn − tn)mn . (3.106)

Then using (3.103) one can write:

τnj = tn δnj +
∑

i6=n
tnG(Sni) τ

ij . (3.107)

If both sides are multiplied by G(Snj) and a summation over the index j not including

site n is added we find

∑

j 6=n
τnj G(Snj) =

∑

i6=n
j 6=n

tnG(Sni) τ
ij G(Snj) (3.108)

= (τnn − tn)mn . (3.109)
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The final step is to multiply with mn from the left yielding:

∑

i6=n
j 6=n

G(Sni) τ
ij G(Snj) = mn (τnn − tn)mn , (3.110)

an identity that can be used in (3.102). We are then left with:

G(rn, r
′
n) = −

∑

L

ZL(rn) J†L(r′n) +
∑

LL′

ZL(rn) tnLL′ Z
†
L(r′n)

+
∑

LL′L′′
L′′′LivLv

ZL(rn) tnLL′m
n
L′L′′

× (τnnL′′L′′′ − tnL′′L′′′)mn
L′′′Liv t

n
LivLv Z

†
Lv(r

′
n) . (3.111)

Because of tnLL′m
n
L′L′′ = δLL′′ one obtains:

G(rn, r
′
n) = −

∑

L

ZL(rn) J†L(r′n) +
∑

LL′

ZL(rn) tnLL′ Z
†
L(r′n)

+
∑

LL′

ZL(rn) τnnLL′ Z
†
L′(r

′
n)−

∑

LL′

ZL(rn) tnLL′ Z
†
L′(r

′
n) , (3.112)

and finally the Green’s function is given by:

G(rn, r
′
n) =

∑

LL′

ZL(rn) τnnLL′ Z
†
L′(r

′
n)−

∑

L

ZL(rn) J†L(r′n) . (3.113)

Even though this equation was derived for rn and r′n outside the scattering region

(through the use of the corresponding expressions of the wave functions outside the

scattering region), it is valid also for the interior region because the Green’s function

fulfills the defining Schrödinger equation and the proper boundary conditions [Gon92].

3.5.1 Validity for Space-Filling Cell Potentials

Equation (3.113) was solemnly derived for muffin tin potentials and it is not a priori

clear that its validity can be extended to general potentials of arbitrary shape. The

nature of the problem becomes apparent by considering two vectors in adjacent cells,

as is illustrated in figure 3.1. Expansions of the type:

G0(ri, r
′
i) =

∑

LL′

jL(kri)GLL′(Sij) jL′(kr
′
j) , (3.114)

are only valid for |ri| < |Sij + rj| which is the case for the vector r
(1)
i . The vector

r
(2)
i , however, does not necessarily fulfill this condition. But if |ri| > |Sij + rj| the
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Figure 3.1: Two neighbouring cells where the region in which the muffin tin

condition is not valid is indicated.

i j

PSfrag replacements

Sij

r
(1)
i

r
(2)
i

rj

angular momentum expansion is not valid in general. Hence the formal derivation of

the scattering path operator is inhibited by this difficulty and it is not immediately

evident that (3.113) is valid for the case of non muffin tin potentials.

Along with this mathematically, formal argument comes a physical argument. Consider

a spherical wave emanating from the center of cell j with a wavefront indicated in figure

3.1 by a dashed circle. In that moment when the wavefront crosses the cell boundary the

scattering starts. But then the wave is also scattered by the neighbouring cells before

it even finished the full scattering process in cell j. Then the prominent feature of

multiple scattering theory in the muffin tin approximation, namely that the scattering

events may be treated on an individual basis, is lost. The scattering and the structural

aspects would be coupled in a very complicated way. Therefore is has been suggested

that certain “Near Field Corrections” [Fau88][Fau85][Fau86](which vanish in the muffin

tin case) have to be taken into account.

Gonis [ZG89b][Gon92][ZG89b][ZG89a][Gon86a][Gon86b][GZD+90] has provided coun-

terarguments to the mathematical as well as the physical question. Evidently a cell

of arbitrary shape can be approximated by a collection of non overlapping spheres (of

various sizes) to any degree of accuracy. By thinking of the cell as such a collection of

scatterers the expanding wavefront of this cell consist of the interference of wavefronts

emanating from the centers of all the spheres. Hence we are once again confronted

with a muffin tin geometry where the Near Field Corrections are identically zero. This

can also be shown mathematically by either treating the cells as collection of muffin tin

spheres or, alternatively, by considering individual cells. In both cases the Near Field
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Corrections vanish.

According to Zeller [Zel87][Zel88] the convergence of the angular momentum expansion

is not of interest as long as only the physically relevant angular momentum values are

taken into account.

Further arguments for the validity of the multiple scattering equations are that a proper

physical theory should be independent of a particular representation. Hence it cannot

depend on the way in which the potential is partitioned in a given space.

The validity of the multiple scattering equations for full potentials is now generally

accepted [MGZC89][ZGM89][GZN88][Nes90][Nes92][dKF96][BF87a][Bad89][BF88a]

[BF88b][BC86][BC89] and test calculations using this method [YCNB90][WZB+92]

as well as applications to bulk systems [Set99][DWZD89][ZD79][SBZD87][PZDS97b]

[PZDS97a][KPZD98] have been reported.

We will now proceed with a discussion of the structural Green’s function.

3.6

The Structural Green’s Function

In order to gain some insight in the physical meaning of the structure constants two

similar approaches for their derivation shall be presented in this section. The first

one involves a boundary value problem for the homogeneous Schrödinger equation and

the second one uses an integral or Lippmann-Schwinger type equation for the wave

function.

Following Kohn and Rostocker [KR54] we want to find the solution of (2.4):

(
∇2 + k2

)
G0(r, r′) = δ(r − r′) , (3.115)

under periodic, three dimensional (cyclic) boundary conditions:

G(r +R, r′) = G(r, r′) = eikRG0(r, r′) . (3.116)

In the last equation R is a fundamental lattice translation vector. According to (2.10),

the solution of (3.115) is given by:

G0(r, r′) = − eik|r−r′|

4π|r − r′| . (3.117)

By transition to cell centered coordinates, i.e. r = Ri+ri and r′ = Rj +r′j the lattice

translation can be expressed as:

Sij = Rj −Ri , (3.118)
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and by summing over all cells we obtain the following Green’s function as a solution

for (3.115) under periodic boundary conditions:

G(ri, r
′
j) = − 1

4π

∑

j

eik|ri−r′j−Sij |

|ri − r′j − Sij|
eikSij . (3.119)

Alternatively let us consider a solution of the inhomogeneous Schrödinger equation in

integral form, which is given by:

ψ(r) =

∫
dr′G0(r, r′)V (r′)ψ(r′) . (3.120)

As first conditions we can demand that the potential is periodic, i.e.:

V (r +R) = V (r) , (3.121)

and that therefore the wave function satisfies the Bloch condition:

ψ(r +R) = eikR ψ(r) . (3.122)

Using these properties together with (3.117) we may write instead of (3.120):

ψ(r) = − 1

4π

∑

j

∫

Ωj

dr′ V (r′)ψ(r′) eikR eik|r−r′|

|r − r′| . (3.123)

Changing once again to cell centered coordinates and noting that the potential is given

as the sum of individual potentials centered at lattice sites:

V (r′) =
∑

j

vj(r
′
j) , (3.124)

we get the following expression:

ψ(r) = − 1

4π

∑

j

∫

Ωj

dr′j vj(r
′
j)ψ(r′j) eikSij

eik|ri−r′j−Sij |

|ri − r′j − Sij|
. (3.125)

Now we only have to perform an integration over a unit cell Ωj and can identify the

structural Green’s function as:

G(ri, r
′
j) = G(k; ri, r

′
j) = − 1

4π

∑

j

eik|ri−r′j−Sij |

|ri − r′j − Sij|
eikSij , (3.126)
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which is identical to (3.119). It is easy to see that the structural Green’s function is

nothing but the lattice Fourier transform of G0(r, r′). This observation allows us to

write:

G(k; ri, r
′
j) = − 1

4π

∑

j

eikSij G0(r, r′) . (3.127)

It is shown in the appendix that the following relation holds:

1

(2π)3

∫
dq

eiq(r−r′)

q2 − k2
=

1

4π

eik|r−r′|

|r − r′| , (3.128)

implying a small imaginary part ε in the denominator in the limit ε→ 0. Substitution

of this identity into (3.126) leads to:

G(k; ri, r
′
j) = − 1

(2π)3

∑

j

eikSij

∫
dq

ei q(ri−r′j−Sij)

q2 − k2
(3.129)

= − 1

(2π)3

∑

j

∫
dq

ei q(ri−r′j) eiSij(k−q)

q2 − k2
. (3.130)

If use is made of the relation:

∑

j

eiSij(k−q) =
∑

n

(2π)3

VΩ

δ(Kn + k − q) , (3.131)

where VΩ refers to the volume of a unit cell and Kn is a lattice vector in reciprocal

space, we are left with:

G(k; ri, r
′
j) = − 1

VΩ

∑

n

∫
dq

eiq(ri−r′j) δ(Kn + k − q)

q2 − k2
. (3.132)

The integral on the right hand side can now be easily evaluated because it is only finite

for q = Kn +k. Therefore we obtain the famous expression for the structural Green’s

function:

G(k; ri, r
′
j) = − 1

VΩ

∑

n

ei (Kn+k)(ri−r′j)

|Kn + k|2 − k2
. (3.133)
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3.7

Calculation of Physical Oberservables

The usefulness of going through all the trouble of calculating the Green’s function

should become clear in this section. Once the Green’s function is known, physical

observables can be derived from it in a straightforward manner. To understand this

we first note that the Green’s function is the solution of:

(
−∇2 + V (r)− E

)
G(r, r′;E) = δ(r − r′) , (3.134)

where the energy dependence was explicitly added. It has been discussed previously

that this equation corresponds to the eigenvalue problem:

(
−∇2 + V (r)

)
ψn(r) = En ψn(r) , (3.135)

where En denotes the eigenvalues. Clearly the eigenfunctions ψn(r) fulfill the conditions

of orthonormality and completeness:

∫
dr ψm(r)ψ∗n(r) = δmn (3.136)

∑

n

ψn(r)ψ∗n(r′) = δ(r − r′) . (3.137)

With this it is a known result [TDK+97][Fau82][Wei90][Str98] that the Green’s function

may be expressed in a spectral representation as:

G(r, r′;E) = lim
ε→0

∑

n

ψn(r)ψ∗n(r′)

E − En + iε
, (3.138)

for any positive ε. Taking the trace, i.e.,

TrG(r, r′;E) = G(r, r;E) , (3.139)

and integrating over r yields because of (3.137) the result:

∫
drG(r, r;E) = lim

ε→0

∑

n

1

E − En + iε
. (3.140)

Consider now definition (B.10) of the delta function in the form:

δ(x− x0) =
1

π
lim
ε→0

ε

(x− x0)2 + ε2
. (3.141)
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Then since

lim
ε→0

1

(x− x0) + iε
= lim

ε→0

[
(x− x0)− iε

(x− x0)2 + ε2

]
(3.142)

=
1

(x− x0)
− lim

ε→0

iε

(x− x0)2 + ε2
, (3.143)

we can write

lim
ε→0

1

(E − En) + iε
=

1

(E − En)
− iπ δ(E − En) . (3.144)

It follows that the imaginary part of this expression is simply equal to the delta function:

− 1

π
Im

[
lim
ε→0

1

(E − En) + iε

]
= δ(E − En) . (3.145)

Combination of this identity with (3.140) results in the following relation between the

imaginary part of the Green’s function and the delta function:

− 1

π
Im

∫
drG(r, r;E) =

∑

n

δ(E − En) . (3.146)

The right hand side of this equation can be interpreted as the density of states because

by integrating over an energy interval ∆E = 2ε:

∑

n

E+ε∫

E−ε

dE δ(E − En) = N , (3.147)

N being the number of states in the interval. From this argument we may conclude

that the density of states n(E) is given by:

n(E) = − 1

π
Im

∫
drG(r, r;E) . (3.148)

In a similar fashion an expression for the charge density can be found. According to

density functional theory the charge density is given by:

ρ(r) =
∑

n

ψn(r)ψ∗n(r) , (3.149)

where the summation runs over all occupied states. Integrating the Green’s function

up to the Fermi energy we can derive an expression for the charge density in terms of
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the imaginary part of the Green’s function. We may write:

EF∫

−∞

dE G(r, r;E) = lim
ε→0

∑

n

EF∫

−∞

dE
ψn(r)ψ∗n(r)

E − En + iε
(3.150)

=
∑

n

ψn(r)ψ∗n(r) lim
ε→0

EF∫

−∞

dE
1

E − En + iε
(3.151)

=
∑

n

ψn(r)ψ∗n(r)

EF∫

−∞

dE

[
1

E − En
− iπ δ(E − En)

]
.(3.152)

Because the product of wave functions is real, by taking the imaginary part of both sides

of the last equality one only has to deal with the delta function in the integrand. The

integration of the delta function reduces the summation over all states to a summation

over only the occupied states. Hence we obtain the following equality:

ρ(r) = − 1

π
Im

EF∫

−∞

dE G(r, r;E) . (3.153)

Note that the energy is in general complex and the energy integration has to be per-

formed along a contour – usually either a semi circle or a straight line parallel to the

real energy axis – in the complex plane. To evaluate the expressions for the density

of states and the charge density, respectively, in terms of the specific Green’s function

derived previously, we can rewrite equation (3.113) (denoting the energy dependence

explicitly):

G(rn, r
′
n;E) =

∑

LL′

ZL(rn;E) τnnLL′ Z
†
L′(r

′
n;E)−

∑

L

ZL(rn;E) J †L(r′n;E) , (3.154)

by first taking the trace and then using the angular momentum expansions for the

regular and irregular solutions. This is done in the following manner:

G(rn, rn;E) = TrG(rn, r
′
n;E) (3.155)

=
∑

LL′

ZL(rn;E) τnnLL′ Z
†
L′(rn;E)−

∑

L

ZL(rn;E) J †L(rn;E)(3.156)

=
∑

LL′
L′′L′′′

ZLL′′(rn;E)YL′′(r̂n) τnnLL′ ZL′L′′′(rn;E)Y ∗L′′′(r̂n) (3.157)

−
∑

LL′L′′

ZLL′(rn;E)YL′(r̂n)JLL′′(rn;E)Y ∗L′′(r̂n) (3.158)

=
∑

LL′

Gnn
LL′(rn;E)YL(r̂n)Y ∗L′(r̂n) . (3.159)
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In the last step we have defined:

Gnn
LL′(rn;E) =

∑

L′′L′′′

ZLL′′(rn;E) τnnL′′L′′′ ZL′′′L′(rn;E) (3.160)

−
∑

L′′

ZLL′′(rn;E) JLL′′(rn;E) . (3.161)

Furthermore, by making use of the identity:

YL(r̂n)Y ∗L′(r̂n) =
∑

L′′

CL′
LL′′ Y

∗
L′′(r̂n) , (3.162)

where the CL′
LL′′ are the Gaunt coefficients as defined in the appendix and the identity

can be easily verified by multiplying both sides by YL(r̂n) and integrating over the unit

sphere, we can write:

G(rn, rn;E) =
∑

LL′L′′

Gnn
LL′(rn;E)CL′

LL′′ Y
∗
L′′(r̂n) . (3.163)

Finally, with the definition

Gnn
L (rn;E) =

∑

L′L′′

Gnn
L′L′′(rn;E)CL′′

L′L , (3.164)

we obtain the following shorthand notation for the Green’s function:

G(rn, rn;E) =
∑

L

Gnn
L (rn;E)Y ∗L (r̂n) . (3.165)

Using this result we can rewrite the charge density (3.153) as:

ρ(rn) = − 1

π
Im

EF∫

−∞

dE G(rn, rn;E) (3.166)

= − 1

π
Im
∑

L

EF∫

−∞

dE Gnn
L (rn;E)Y ∗L (r̂n) (3.167)

= Im
∑

L

ρL(rn)Y ∗L (r̂n) . (3.168)

Above the coefficients of the angular momentum expansion were identified as

ρL(rn) = − 1

π

EF∫

−∞

dE Gnn
L (rn;E) . (3.169)

61



Multiple Scattering and KKR

Similarly an expression for the density of states can be derived. Starting from (3.148)

we can write:

n(E) = − 1

π
Im

∫
drnG(rn, rn;E) (3.170)

= − 1

π
Im
∑

L

∫
drnG

nn
L (rn;E)Y ∗L (r̂n) . (3.171)

The evaluation of the integral can be done by making use of the shape function tech-

nique. Using:

σ(rn) =
∑

L

σL(rn)YL(r̂n) , (3.172)

we can write:

n(E) = − 1

π
Im
∑

LL′

∫

BS

drnG
nn
L (rn;E)σL′(rn)YL′(r̂n)Y ∗L (r̂n) (3.173)

= − 1

π
Im
∑

LL′

S∫

0

r2
n drnG

nn
L (rn;E)σL′(rn)

∫
dr̂n YL′(r̂n)Y ∗L (r̂n) (3.174)

= − 1

π
Im
∑

L

S∫

0

r2
n drnG

nn
L (rn;E)σL(rn) (3.175)

= Im
∑

L

nL(E) . (3.176)

In the final step the partial density of states was defined as:

nL(E) = − 1

π

S∫

0

r2
n drnG

nn
L (rn;E)σL(rn) (3.177)

= − 1

π

∑

L′L′′

CL′′
L′L

S∫

0

r2
n drnG

nn
L′L′′(rn;E)σL(rn) . (3.178)
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4

Calculation of the Total Energy

According to density functional theory the total energy may be decomposed into a uni-

versal functional G[ρ] that contains the kinetic energy T [ρ] of non-interacting particles

of density ρ and the exchange-correlation energy Exc[ρ], and a functional F [ρ], which

includes all Coulomb contributions [KS65]. Then we can write the total energy E[ρ] as

E[ρ] ≡ G[ρ] + F [ρ] . (4.1)

In view of what has been said above, G[ρ] is defined by

G[ρ] ≡ T [ρ] + Exc[ρ] , (4.2)

and the Coulomb contribution to the total energy is in general given by (using Rydberg

units, i.e. e2 = 2):

F [ρ] ≡
∫

dr ρ(r) υ(r) + U [ρ] (4.3)

In there υ(r) is some external potential, and U [ρ] is the Coulomb energy:

U [ρ] =

∫∫
dr dr′

ρ(r) ρ(r′)

|r − r′| . (4.4)

Hence in the absence of an external potential the total energy is nothing but the sum

of the kinetic, exchange-correlation, and Coulomb energy

Etot[ρ] = T [ρ] + Exc[ρ] + U [ρ] . (4.5)

These three terms, that add up to give the total energy, will be separately discussed

in the following sections, as each of them requires special considerations.
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4.1

Kinetic Energy

It follows from the Kohn-Sham equations that the kinetic energy functional can be

calculated from

T [ρ] = Eone −
∫

dr ρ(r)V (r) . (4.6)

The potential V (r) in the integrand has to be understood as the effective potential

in the Kohn-Sham equations which contains the Coulomb potential, the exchange-

correlation, and the external potential, if one is present.

The one-electron energy, Eone, can be split up into a contribution stemming from the

core and one from the valence electrons:

Eone = Ec + Ev . (4.7)

The core contribution is given simply as the sum over the electron states in the core

region

Ec =
∑

icore

Eicore . (4.8)

The second contribution is also referred to as band energy and can be evaluated from

the integral

Ev =

EF∫

−∞

dE E n(E) , (4.9)

where n(E) is the density of states for the valence electrons.

The evaluation of the one-electron energies is rather straightforward, whereas the com-

putation of the integral in (4.6) requires some consideration.

First of all it has to be noted that the charge density, which up to now is defined in all

space, can be written as the sum over the contributions from individual Wigner Seitz

cells. The region of a particular Wigner Seitz cell around a lattice position R will be

denoted by ΩR. Then the charge density in all space is given by

ρ(r) =
∑

R

ρR(r −R) , (4.10)
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where ρR(r) = 0 if r 6∈ ΩR. Of course the same idea applies to the effective potential

since both of them are interrelated via the Poisson equation. Then

V (r) =
∑

R

VR(r −R) , (4.11)

again with the condition that VR(r) = 0 if r 6∈ ΩR.

For a particular Wigner Seitz cell, the integral has now to be performed over a bounding

sphere (BS) which contains the whole cell. The angular integration however has to take

account of the polyhedral shape of such a cell and can be carried out be making use of

the shape functions σR(r). Hence we can write

∫

ΩR

dr ρR(r)VR(r) =

∫

BS

dr σR(r) ρR(r)VR(r) . (4.12)

Now employing the following expansions in terms of complex spherical harmonics

ρR(r) =
∑

L

ρRL(r)Y ∗L (r̂) , (4.13)

VR(r) =
∑

L

VRL(r)YL(r̂) , (4.14)

σR(r) =
∑

L

σRL(r)YL(r̂) , (4.15)

where as should be noted the charge density is expanded in terms of the complex

conjugated spherical harmonics, one obtains after inserting all sums into (4.12)

∫

BS

dr σR(r) ρR(r)VR(r) =

∫

BS

dr
∑

LL′L′′

YL(r̂)Y ∗L′(r̂)YL′′(r̂)σRL(r) ρRL′(r)VRL′′(r)

=
∑

LL′L′′

∫

BS

dr YL(r̂)Y ∗L′(r̂)YL′′(r̂)σRL(r) ρRL′(r)VRL′′(r)

=
∑

L′′

S∫

0

r2 dr
∑

LL′

CL′
LL′′ σRL(r) ρRL′(r)VRL′′(r) .

By defining a modified charge density, ρ̃RL(r), as

ρ̃RL′′(r) :=
∑

LL′

CL′
LL′′ σRL(r) ρRL′(r) , (4.16)

we can rename indices and finally write

∫

BS

dr σR(r) ρR(r)VR(r) =
∑

L

S∫

0

r2 dr ρ̃RL(r)VRL(r) (4.17)
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Summarizing, one can compute the kinetic energy for a cell centered at position R

from the following expression

TR[ρ] =
∑

icore

Eicore +

EF∫

−∞

dE E nR(E)−
∑

L

S∫

0

r2 dr ρ̃RL(r)VRL(r) . (4.18)

4.2

Exchange-Correlation Energy

If the density ρ is sufficiently slowly varying, the exchange-correlation energy can,

according to [KS65], be calculated from

Exc[ρ] =

∫
dr ρ(r) εxc[ρ(r)] , (4.19)

where εxc[ρ(r)] is the exchange correlation energy per electron of a uniform electron

gas and is assumed to be known from some approximation.

The integral can be evaluated in analogy to the previous section. Again we want to

compute the energy per Wigner Seitz cell and label the energy term accordingly. Then

we get for the expansion in terms of spherical harmonics

εxc,R[ρR(r)] =
∑

L

εxc,RL(r)YL(r̂) . (4.20)

As can be seen immediately, the expansion coefficients have to be obtained from the

angular integration

εxc,RL(r) =

∫
dr̂ Y ∗L (r̂) εxc,R[ρR(r)] , (4.21)

which has to be computed numerically by means of e.g. a Gauss quadrature.

Then following the same steps as in the evaluation of (4.12) and using definition (4.16),

the expression for the exchange-correlation energy for a Wigner Seitz cell at position

R is given by

Exc,R[ρ] =
∑

L

S∫

0

r2 dr ρ̃RL(r) εxc,RL(r) . (4.22)

66



Calculation of the Total Energy

4.3

Coulomb Energy

In this section an expression for the Coulomb energy of an assembly of arbitrary charge

distributions will be derived. Since the corresponding expression for charge densities

confined in a non-overlapping muffin tin geometry are not valid in general, an alterna-

tive approach is needed.

The problem arises from the fact that the solution to Poisson’s equation from classical

electrodynamics, which describes the potential due to a charge distribution by an

expansion in terms of multipole moments [Jac92] is no longer valid in the case of a space

filling geometry, such as can be constructed from Wigner Seitz cells, for neighbouring

cells. There one has to consider what has been called moon region by Gonis [Gon92].

This region is the complement of the Wigner-Seitz cell and its circumscribed sphere. If

the vector r′R, which extends into the neighbouring cell, is inside this region, its length

may be shorter than that of the vector rR, inside the cell. Then the common expansion

becomes invalid and the sum does not converge [GSS91].

It is now useful to divide the Coulomb energy into an intra-cell part, which includes all

Figure 4.1: The moon region of two adjacent cells for which the muffin tin condition

is not satisfied. It can be seen from this sketch that the vector r ′R, even though it

extends into the neighbouring cell, R′, can be shorter than the vector rR in cell R,

hence invalidating the angular momentum expansion. The minimum length of the

displacement vector is indicated by bmin.

r’

r

R’

R

R

R

bmin
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contributions from within the cell at position R, and a inter-cell part, that describes

the effects from all the other charge distributions in the crystal. Then we can write:

UR[ρ] = U intra
R [ρ] + U inter

R [ρ] . (4.23)

The intra-cell part of the Coulomb energy is computationally more straightforward and

therefore we start with its derivation.

4.3.1 Intra-Cell Contribution

In order to find an expression for this part of the energy, we will rewrite the expression

(4.4). Then let us denote the total Coulomb energy with respect to cell R in the

following way:

U [ρ] = (4.24)

∫∫
drR dr′R

(
ρ(rR)−∑

R′
ZR′ δ(rR − SRR′)

)(
ρ(r′R)−∑

R′′
ZR′′ δ(r

′
R − SRR′′)

)

|rR − r′R|
,

where the ZR are the atomic numbers and the occurring vectors have the following

meaning:

rR = r −R , (4.25)

r′R = r′ −R , (4.26)

SRR′ = R′ −R . (4.27)

From (4.24) one finds after multiplication and rearrangement of the terms, that

U [ρ] =

∫
drR ρ(rR)

(∫
dr′R

ρ(r′R)

|rR − r′R|
−
∑

R′

2 ZR′

|rR − SRR′|

)

+
∑

R′R′′
R′′ 6=R′

ZR′ ZR′′

|R′ −R′′| . (4.28)

It is then possible to write the charge density in all space as the sum of the contributions

of individual cells, with the aim to substitute the resulting sum into the integral inside

the brackets. Then:

ρ(r′R) =
∑

R′

ρR′(r
′
R − SRR′) , with ρR′(r

′
R′) = 0 , if r′R′ 6∈ ΩR′ , (4.29)
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Figure 4.2: Illustration of the notation of the vectors used in the derivation of the

electrostatic energy.

R r

R’

r’

r’

r

r’-r

S       =R’-Rr’

R

R
RR’

R’

where ΩR denotes the cell centered at position R. One thus obtains by substitution,

interchanging the integral and summation, and with r ′R−SRR′ = r′R′ :

U [ρ] =

∫
drR ρ(rR)

∑

R′



∫

ΩR′

dr′R′
ρR′(r

′
R′)

|rR′ − r′R′|
− 2 ZR′

|rR − SRR′|




+
∑

R′R′′
R′′ 6=R′

ZR′ ZR′′

|R′ −R′′| . (4.30)

Now taking only the term of the summation with R′ =R, extending the first integral

only over ΩR, and noting that, since also R′′ =R, the last term gives no contribution

we obtain:

U intra
R [ρ] =

∫

ΩR

drR ρR(rR)



∫

ΩR

dr′R
ρR(r′R)

|rR − r′R|
− 2 ZR
|rR|


 . (4.31)

This is the intra-cell Coulomb energy (in Rydberg units) for a cell labelled by the index
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R, because the integrals extend only over the region bounded by ΩR and the charge

density is confined to that region only.

Computation of the Intra-Cell Coulomb Energy

To find a representation of (4.31) that is of computational use, we have to recall the

expansions (4.13), (4.15), and (B.35). Then we get instead of (4.31):

U intra
R [ρ] =

∑

LL′L′′

∫
dr̂R Y

∗
L′(r̂R)YL′′(r̂R)

S∫

0

r2
R drR ρRL′(rR)σRL′′(rR)

×
(

4π

2`+ 1
YL(r̂R)

∫
dr̂R Y

∗
L (r̂′R)Y ∗L′(r̂

′
R)YL′′(r̂

′
R)

×
S∫

0

r′2R drR
r`<
r`+1
>

ρRL′(r
′
R)σRL′′(r

′
R)− 2ZR

rR

)
. (4.32)

Using the definition of the Gaunt coefficients leads to

U intra
R [ρ] =

∑

LL′L′′

CL′
LL′′

S∫

0

r2
R drR ρRL′(rR)σRL′′(rR)

×


 4π

2`+ 1
CLL′
L′′

S∫

0

r′2R dr′R
r`<
r`+1
>

ρRL′(r
′
R)σRL′′(r

′
R)− 2ZR

rR


 . (4.33)

The two Gaunt coefficients in this expression are different because complex spherical

harmonics are used and they are not proportional to each other. But still it is possible

to define two modified charge densities, to make the computation more efficient, as:

ρ̃
(1)
RL(rR) =

∑

L′L′′

CL′
LL′′ ρRL′(rR)σRL′′(rR) (4.34)

ρ̃
(2)
RL(rR) =

∑

L′L′′

CLL′
L′′ ρRL′(rR)σRL′′(rR) . (4.35)

Using these definitions we can write

U intra
R [ρ] =

∑

L

4π

2`+ 1

S∫

0

r2
R drR ρ̃

(1)
RL(rR)




S∫

0

r
′2
R dr′R

r`<
r`+1
>

ρ̃
(2)
RL(r′R) − 2ZR

rR


 . (4.36)

70



Calculation of the Total Energy

The integral in the brackets has to be rewritten in the following way:

S∫

0

r
′2
R dr′R

r`<
r`+1
>

ρ̃
(2)
RL(r′R) =

rR∫

0

r
′2
R dr′R

(r′R)`

r`+1
R

ρ̃
(2)
RL(r′R) +

S∫

rR

r
′2
R dr′R

r`R
(r′R)`+1

ρ̃
(2)
RL(r′R) . (4.37)

With this the intra-cell contribution to the Coulomb energy can be expressed in a

compact form:

U intra
R [ρ] =

∑

L

4π

2`+ 1

S∫

0

ρ̃
(1)
RL(rR)

(
r−`−1
R ARL(rR) + r`RBRL(rR)

)
r2
R drR , (4.38)

where the functions ARL(rR) and BRL(rR) are given by

ARL(rR) =

rR∫

0

dr′R r
′`+2
R ρ̃

(2)
RL(r′R)− 2 δ`0 δm0 ZR , (4.39)

BRL(rR) =

S∫

rR

dr′R (r′R)−`+1 ρ̃
(2)
RL(r′R) . (4.40)

4.3.2 Inter-Cell Contribution

All the energy terms that are not included in (4.31) form the Inter-Cell energy. We

inspect again equation (4.24) and find that the outer integration still extends only over

ΩR because we want to compute the Coulomb energy for the charge distribution ρ(rR)

in that cell times the contribution from all other cells whose charge distribution is given

by ρ(r′R) =
∑

R′ 6=R ρR′(r
′
R′−SRR′). Therefore the second integration does not include

ΩR. Let us denote what has been said as:

U inter
R [ρ] = (4.41)

∫

ΩR

drR

∫

Ω\ΩR

dr′R

(
ρR(rR)− ZR δ(rR)

)(
ρ(r′R)−∑

R′
ZR′ δ(r

′
R − SRR′)

)

|rR − r′R|
,

where the notation Ω \ ΩR indicates that the integration extends over all cells except

ΩR. Now it is essential to consider the contributions from neighbouring cells and such

cells which do not have intersecting bounding spheres separately. In order to treat the
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nearest neighbours, i.e., cells whose bounding spheres do intersect the bounding sphere

of the cell at R, a multipole expansion of the inverse of the difference vector in the

denominator of (4.41) will be made use of, which is the tedious part in the derivation.

This expansion then leads to a description of the electrostatic energy (and of course also

of the Coulomb potential) in terms of multipole moments, which is analogous to the

muffin tin case. First let us introduce a vector b for which the relation b < |rR−r′R− b|
is always true. Adding and subtracting this vector we can write:

1

|rR − r′R|
=

1

|−b− (rR − r′R − b)|
. (4.42)

It is advantageous to choose a particular vector b in the direction of the vector connect-

ing the centers of a given pair of neighbouring cells centered at R and R′ respectively.

Hence b will be denoted in the following as bRR′ . Then the expansion of equation

(B.35) is made use of, yielding:

1

|−bRR′ − (rR − r′R − bRR′)|
=

∑

L

4π

2`+ 1
b`RR′ Y

∗
`m(−b̂RR′)

Y`m( ̂rR − (r′R + bRR′))

|rR − (r′R + bRR′)|`+1
. (4.43)

To proceed, one condition has to be imposed on the minimum length of the vector bRR′.

It has to be at least equal to the distance between the radius of the circumscribing

sphere and the length from the cell center to the center of a face (c.f. figure (4.1). This

means that rR < |r′R+bRR′| , and the expansion (B.36) can be applied, which leads

to:

1

|−bRR′ − (rR − r′R − bRR′)|
=

∑

L

(−1)` (4π)2

2`+ 1
b`RR′ Y

∗
`m(b̂RR′)

×
∑

L′

(−1)`
(2(`+ `′)− 1)!!

(2`− 1)!! (2`′ + 1)!!
C`′m′
`m,(`+`′)(m′−m)

×
Y ∗(`+`′)(m′−m)(

̂r′R + bRR′)

|r′R + bRR′|`+`′+1
r`
′
R Y`′m′(r̂R) . (4.44)

The summations over L and L′ in (4.44) are both infinite. Because the inner sum, over

L′, is dependent on the value of L, the double summation is conditionally convergent

and its order cannot be interchanged. Therefore we continue by using the identity:

r′R + bRR′ = r′R′ − (SR′R − bRR′) . (4.45)

With this and (B.36) the following expansion is found:
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Y ∗(`+`′)(m′−m)(
̂r′R + bRR′)

|r′R + bRR′|`+`′+1
=

∑

L′′

(−1)`+`
′
4π

(2(`+ `′ + `′′)− 1)!!

(2(`+ `′)− 1)!! (2`′′ + 1)!!
C`′′m′′

(`+`′)(m′−m),(`+`′+`′′)(m′′−m′+m)

× Y(`+`′+`′′)(m′′−m′+m)( ̂SR′R − bRR′)
|SR′R − bRR′|`+`′+`′′+1

r′`
′′

R′ Y
∗
`′′m′′(r̂

′
R′) . (4.46)

which requires r′R′ < |SRR′+bRR′|. This expansion is now inserted into (4.44). Then

making use of the following identity (where for simplicity the arguments are left out

and the definitions m′′′ = m′ −m, miv = m′′ −m′ +m, and {m} = mm′m′′m′′′miv are

used):

∑

{m}
Y ∗`m Y`′m′ Y

∗
`′′m′′ Y(`+`′+`′′)miv C

`′m′
`m,(`+`′)m′′′ C

`′′m′′
(`+`′)m′′′,(`+`′+`′′)miv =

∑

{m}
Y`m Y`′m′ Y

∗
`′′m′′ Y

∗
(`+`′+`′′)miv C

(`+`′)m′′′

`m,`′m′ C
(`+`′)m′′′

`′′m′′,(`+`′+`′′)miv , (4.47)

we arrive by combining (4.44) and (4.46) at the final expression

1

|rR − r′R|
= 2π

∑

L

b` Y`m(b̂RR′)
∑

L′

r`
′
R Y`′m′(r̂R)C

(`+`′)(m+m′)
`m,`′m′

×
∑

L′′

BLL′L′′(SRR′ + bRR′)
√

4π r′`
′′

R′ Y
∗
`′′m′′(r̂

′
R′) , (4.48)

where the coefficients BLL′L′′(SRR′+bRR′) have been defined as

BLL′L′′(SRR′ + bRR′) := (−1)`
′′ 8π (2(`+ `′ + `′′)− 1)!!

(2`+ 1)!! (2`′ + 1)!! (2`′′ + 1)!!

×
√

4π C
(`+`′)(m+m′)
`′m′,(`+`′+`′′)(m+m′−m′′)

Y ∗(`+`′+`′′)(m+m′−m′′)(
̂SRR′ + bRR′)

|SRR′ + bRR′|`+`′+`′′+1
. (4.49)

Now (4.48) and (4.29) can be used in (4.41) to yield an expression for the contribution

to the Inter-Cell Coulomb energy from neighbouring cells:

U inter
R,nn [ρ] =

√
π
∑

R

∑

L

b`RR′ Y`m(b̂RR′)

×
∑

L′

√
4π

∫

ΩR

drR

(
ρR(rR)− ZR δ(rR)

)
r`
′
R Y`′m′(r̂R)

×C(`+`′)(m+m′)
`m,`′m′

∑

L′′

BLL′L′′(SRR′ + bRR′)

×
√

4π

∫

ΩR′

dr′R′ r
′`′′
R′ Y

∗
`′′m′′(r̂

′
R′)

(
ρR′(r

′
R′)− ZR′ δ(r

′
R′)

)
, (4.50)
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where the outer sum (over R) runs over nearest neighbour cells, such that R contains

the following set of vectors R′:

R =
{
R′ ∈ L

∣∣ |R′ −R| < 2SR
}

, (4.51)

if L denotes a lattice and SR is the radius of the circumscribing sphere around R.

Furthermore it is illustrated in figure 4.3 in which way the bounding spheres are shifted

apart in the directions of the vectors bRR′ for different pairs of neighbouring cells.

Equation (4.50) has been written such that the multipole moments Q̂RL

Q̂RL =
√

4π

∫

ΩR

drR ρR(rR) r`R Y
∗
L (r̂R) − δ`0 δm0 ZR , (4.52)

can easily be read off. Using this definition, (4.50) can be written in a compact form

as [GSS91, KVS99]:

U inter
R,nn [ρ] =

√
π
∑

R

∑

L

b`RR′ Y`m(b̂RR′)
∑

L′

Q̂∗RL′ C
(`+`′)(m+m′)
`m,`′m′

×
∑

L′′

BLL′L′′(SRR′ + bRR′) Q̂R′L′′ . (4.53)

The multipole moments may be readily computed by using the shape function technique

and expansions (4.13) and (4.15). One then gets

Q̂RL =
√

4π
∑

L′L′′

CL′
LL′′

S∫

0

drR r
2+`
R ρ

(2)
RL′(rR)σRL′′(rR)− δ`0 δm0 ZR , (4.54)

where S again refers to the radius of the bounding sphere. Then with definition (4.16)

the expression for the multipole moments containing only radial integrations is given

by

Q̂RL =
√

4π

S∫

0

drR r
2+`
R ρ̃

(2)
RL(rR)− δ`0 δm0 ZR . (4.55)

For cells with non-overlapping (no) bounding spheres, one can choose b = 0 and find

that, because the only contribution from the first sum comes from L = (0, 0) and using

relation (B.34):

U inter
R,no [ρ] =

1

4
√
π

∑

S

∑

L

Q̂∗RL
∑

L′

BLL′(SRR′) Q̂R′L′ , (4.56)
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Figure 4.3: The bounding spheres of neighbouring cells, which would overlap with the

bounding sphere of the cell at R are shifted away along the direction of SRR′. From

this illustration it is clear that it is of advantage to align SRR′ and bRR′ parallel

S 
   

 +
 b

R
R

’’
R

R
’’

RR’ RR’S     + bS     + b

S RR’’’

R
S
R’

if S is the set of position vectors of cells with non-overlapping bounding spheres such

that:

S =
{
R′ ∈ L

∣∣ |R′ −R| ≥ 2SR
}

. (4.57)

The BLL′(SRR′) are now given by:

BLL′(SRR′) = (−1)`
′ 8π (2(`+ `′)− 1)!!

(2`+ 1)!! (2`′ + 1)!!

√
4π C`m

`′m′,(`+`′)(m−m′)

×
Y ∗(`+`′)(m−m′)(ŜRR′)

|SRR′|`+`′+1
. (4.58)
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An interpretation of the derivation of (4.53) is the following. Initially the neighbouring

cells are displaced by the vector bRR′ until the bounding spheres are at least not

overlapping anymore. Then the energy can be expressed in terms of the multipole

moments of the undisplaced cell which corresponds to the inner summation over L′′ in

(4.53). Then by means of the outer sum (over L) the cells are shifted back to their

original position [GSS91].

The convergence of the summations depends sensitively on bRR′ , and different authors

have given different prescriptions on how the vector bRR′ should be chosen. According

to Gonis, its length should be approximately of the size of the inter-cell vector. But

Kollar et al. find that the displacement vector bRR′ is related to the radii of the

circumscribing spheres of the neighbouring cells by

|SRR′ + bRR′| = (1 + α)(SR + S ′R) , (4.59)

where the parameter α is the ratio between `max and `′max, i.e.

α =
`max

`′max

, (4.60)

and SR is the radius of the circumscribing sphere of cell R.

4.4

Relationship to the 3D KKR Structure Constants

The coefficients BLL′(SRR′) which appeared in the above derivation of the inter-cell

Coulomb energy are closely related to the traditional KKR structure constants in the

k → 0 limit. To see this we first have to note that the KKR structure constants are

the coefficients of the following expansion [Szu90]:

−ik h+
` (k|rR−SRR′|)Y ∗`m( ̂rR − SRR′) =

∑

L′

GLL′(SRR′ ; k) j`′(krR)Y ∗`′m′(r̂R) .(4.61)

The meaning of this identity is that the function h+
L(k(rR − SRR′)) =

h+
` (k|rR − SRR′|)Y ∗`m( ̂rR − SRR′), whose argument is centered around the lattice site

R′, is expanded around the site R by making use of the structure constants which are

given by:

GLL′(SRR′ ; k) = −4π k i`−`
′+1
∑

L′′

i`
′′
C`m
`′m′,`′′m′′ h

+
`′′(kSRR′)Y

∗
`′′m′′(ŜRR′) , (4.62)

where SRR′ = |SRR′| was used for ease of notation. By inspecting the limiting behaviour

of this function a relation to BLL′(SRR′) can be found. The only term that depends
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on k are the spherical Hankel functions of the first kind and for small arguments they

behave as:

h+
` (z)

z→0−→ z`

(2`+ 1)!!
− i

(2`− 1)!!

z`+1
. (4.63)

As the first term vanishes, only the second term contributes to the structure constants

in this limit. We can further write:

lim
k→0

GLL′(SRR′ ; k) = −4π i`−`
′+1
∑

L′′

i`
′′
C`m
`′m′,`′′m′′

×
[
k`
′′+1 S`

′′
RR′

(2`′′ + 1)
− i

1

k`′′
(2`′′ − 1)!!

S`
′′+1

RR′

]
Y ∗`′′m′′(ŜRR′) .(4.64)

However, the second term inside the parentheses is divergent. But because of the

selection rules of the Gaunt coefficients according to which `′′ ≤ `+`′ and m′′ = m−m′,
the term does not diverge (in the limit k → 0) if the expression is multiplied by k`+`

′

so that we get:

lim
k→0

[
k`+`

′
GLL′(SRR′ ; k)

]
= −4π i`−`

′+1
∑

L′′

i`
′′
C`m
`′m′,`′′m′′

×
[
k`+`

′+`′′+1 S`
′′

RR′

(2`′′ + 1)
− i k`+`

′−`′′ (2`′′ − 1)!!

S`
′′+1

RR′

]
Y ∗`′′m′′(ŜRR′) . (4.65)

As mentioned above the first term inside the brackets vanishes in the k → 0 limit,

whereas the second term vanishes only if `′′ 6= `+ `′. Hence we obtain with `′′ = `+ `′

and m′′ = m−m′:

lim
k→0

[
k`+`

′
GLL′(SRR′ ; k)

]
= (−1)`+1 4π C`m

`′m′,(`+`′)(m−m′)

× (2(`+ `′)− 1)!!

S`+`
′+1

RR′
Y ∗(`+`′)(m−m′)(ŜRR′) . (4.66)

Then by comparison with (4.58) one finds the following identity:

lim
k→0

[
k`+`

′
GLL′(SRR′ ; k)

]
= (−1)`+`

′+1 (2`+ 1)!! (2`′ + 1)!!

4
√
π

BLL′(SRR′) . (4.67)

Or otherwise writing BLL′(SRR′) in terms of the KKR structure constants:

BLL′(SRR′) = (−1)`+`
′+1 4

√
π

(2`+ 1)!! (2`′ + 1)!!
lim
k→0

[
k`+`

′
GLL′(SRR′; k)

]
. (4.68)
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5

Solution of Poisson’s Equation for

Space Filling Cells

Within the self-consistency cycle the electrostatic potential has to be calculated from

the charge density by solving Poisson’s equation in each iteration. If the charge distri-

bution is spherically symmetric this can be done in a rather straightforward manner

by using expansions in terms of multipole moments. However, as has been explained

in chapter 4, in the case of a space filling cell geometry these expansions are no longer

valid for neighbouring cells because of their overlapping bounding spheres. Several

solutions to this problem have been suggested. One way is to numerically evaluate

the integrals over the charge density which however is computationally demanding,

cumbersome, and not a very elegant way to resolve this matter [Pai81]. Another ap-

proach which is especially suited for FLAPW methods has been suggested by Weinert

[Wei80]. There the Fourier components of the interstitial charge density are matched

to the multipole moments of the charge density inside non-overlapping spheres. For

the construction of the potential within the KKR Method this approach is not a nat-

ural one, as an artificial division between an interstitial and a charge density inside

muffin tins would have to be made. Furthermore the Fourier components, which are

already present in the FLAPW method, would have to be computed first. Therefore

the approach suggested by Gonis et al. [MGZC89] will be used in this work which is

valid for a three dimensional periodic arrangement of potentials. The principle of the

method has already been explained in section 4.3 and references to certain expressions

derived there will be made.

In a first step the calculation of the electrostatic potential from the charge density will

be explained for a three dimensional, periodic system. Then an expression for the total

energy in terms of this potential will be obtained and a remark on spin-polarization

concludes the chapter.
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5.1

The Coulomb Potential

As the basic principle we assume that the Coulomb potential filling all space can be

written as a superposition of potentials confined to Wigner Seitz cells around each

lattice point in an infinite, periodic lattice. This can be denoted as:

V c(r) =
∑

R

V c
R(rR) , (5.1)

where V c
R(rR) = 0 if rR /∈ ΩR, and the notation of vectors has been given in section 4.3.

Then the Coulomb potential of a cell centered at lattice point R denoted by V c
R(rR),

which interacts with all electrostatic potentials in the system is (in Rydberg units)

given by:

V c
R(rR) = 2

∫
dr′R

ρ(r′R)

|rR − r′R|
−
∑

R′

2ZR′

|rR − SRR′|
, (5.2)

where the integration extends over all space. When the integral is expressed as a sum

of local integrals over Wigner-Seitz cells by using

ρ(r′R) =
∑

R′

ρR′(r
′
R − SRR′) , ρR′(r

′
R − SRR′) = 0 if r′R − SRR′ /∈ ΩR′ , (5.3)

the following expression is obtained:

V c
R(rR) = 2

∑

R′



∫

ΩR′

dr′R′
ρR′(r

′
R′)

|rR′ − r′R′|
− ZR′

|rR − SRR′|


 . (5.4)

Two physically different terms can now be distinguished from the above summation.

One term contains only contributions from the cell under consideration at lattice po-

sition R. This is the intra-cell term and is explicitly given by:

V c,intra
R (rR) = 2

∫

ΩR

dr′R
ρR(r′R)

|rR − r′R|
− 2ZR
|rR|

. (5.5)

All the remaining terms of (5.4) form the inter-cell contribution as they describe how

the potential at R is influenced by the charge distributions in all the other cells in the

crystal. We can write the inter-cell terms in the following way:

V c,inter
R (rR) = 2

∑

R′
R′ 6=R



∫

ΩR′

dr′R′
ρR′(r

′
R′)

|rR′ − r′R′|
− ZR′

|rR − SRR′|


 . (5.6)
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The intra-cell potential can be calculated in a straight forward manner, while more

work is needed to compute the inter-cell potential because of the infinite summation

and the fact that contributions from neighbouring cells have to be treated separately.

5.1.1 The Intra-Cell Coulomb Potential

This part of the Coulomb potential can be simply calculated by making use of the

shape function technique and expansion (B.35). Hence by using shape functions to

integrate over the exact shape of the Wigner-Seitz cell and by using the expansions

(4.13) and (4.15) we get for the integral in (5.5):

∫

ΩR

dr′R
ρR(r′R)

|rR − r′R|
=

∫

BSR

dr′R
ρR(r′R)σR(r′R)

|rR − r′R|
(5.7)

=
∑

LL′

S∫

0

r′2R dr′R ρRL(r′R)σRL′(r
′
R)

∫
dr̂′R

Y ∗L (r̂′R)YL′(r̂
′
R)

|rR − r′R|
. (5.8)

Now making use of the expansion

1

|rR − r′R|
=
∑

L′′

4π

2`′′ + 1

r`
′′
<

r`
′′+1
>

YL′′(r̂R)Y ∗L′′(r̂
′
R) , (5.9)

leads to the following expression for the integral:

∫

ΩR

dr′R
ρR(r′R)

|rR − r′R|
=

∑

LL′L′′

4π

2`′′ + 1

S∫

0

r′2R dr′R
r`
′′
<

r`
′′+1
>

ρRL(r′R)σRL′(r
′
R)CL′

LL′′ YL′′(r̂R) . (5.10)

In the actual calculations we are in fact not interested in the potential that depends

on three dimensional coordinates, but in the only radially dependent (and therefore L

dependent) expansion coefficients of the following series:

V c,intra
R (rR) =

∑

L

V c,intra
RL (rR)YL(r̂R) . (5.11)

Comparison of this expansion with (5.10) and taking the term containing the nuclear

charge in (5.5) into account, yields an expression for the expansion coefficients:

V c,intra
RL (rR) =

4π

2`+ 1

S∫

0

r′2R dr′R
r`<
r`+1
>

ρ̃
(2)
RL(r′R)− 2ZR

rR

√
4π δ`0 δm0 , (5.12)
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where the indices L and L′′ have been renamed and a modified charge density was

defined through:

ρ̃
(2)
RL(r′R) =

∑

L′L′′

CL′
LL′′ σRL′(r

′
R) ρRL′′(r

′
R) . (5.13)

As a final step the radial integral in (5.12) needs to be expressed in a computationally

useful way. To do this we make use of (4.37) to obtain:

V c,intra
RL (rR) =

4π

2`+ 1

rR∫

0

r′2R dr′R
r′`R
r`+1
R

ρ̃
(2)
RL(r′R)

+
4π

2`+ 1

S∫

rR

r′2R dr′R
r`R
r′`+1
R

ρ̃
(2)
RL(r′R)− 2ZR

rR

√
4π δ`0 δm0 . (5.14)

This can be written in a more transparent form by defining the two functions:

ARL(rR) =
4π

2`+ 1

rR∫

0

dr′R r
′`+2
R ρ̃

(2)
RL(r′R) , (5.15)

BRL(rR) =
4π

2`+ 1

S∫

rR

dr′R r
′−`+1
R ρ̃

(2)
RL(r′R) . (5.16)

Hence as a final expression for the expansion coefficients of the intra cell Coulomb

potential we can write:

V c,intra
RL (rR) = r−`−1

R ARL(rR) + r`RBRL(rR)− 2ZR
rR

√
4π δ`0 δm0 . (5.17)

5.1.2 The Inter-Cell Coulomb Potential

Turning now to the inter-cell potential we have to evaluate equation (5.6):

V c,inter
R (rR) = 2

∑

R′
R′ 6=R

∫

ΩR′

dr′R′
ρR′(r

′
R′)

|rR′ − r′R′|
−
∑

R′
R′ 6=R

2ZR′

|rR − SRR′|
. (5.18)

In order to calculate this expression three terms can be distinguished. One term that

describes the contributions from neighbouring cells (superscript nn), one that includes

all remaining cells (labelled by the superscript no for the “non overlapping” bounding

spheres), and one term that sums over the nuclear charges (superscript nuc):

V c,inter
R (rR) = V c,nn

R (rR) + V c,no
R (rR) + V c,nuc

R (rR) . (5.19)
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Consequently the three terms are explicitly given by:

V c,nn
R (rR) = 2

∑

R

∫

ΩR′

dr′R′
ρR′(r

′
R′)

|rR′ − r′R′|
, (5.20)

V c,no
R (rR) = 2

∑

S

∫

ΩR′

dr′R′
ρR′(r

′
R′)

|rR′ − r′R′|
, (5.21)

V c,nuc
R (rR) = −

∑

R′
R′ 6=R

2ZR′

|rR − SRR′|
. (5.22)

It is didactically of advantage to start with the evaluation of the second and third

equation and consider the term containing the nearest neighbour contributions at the

end.

Non Overlapping Bounding Spheres

Once more the shape function technique is used to evaluate the integral in (5.21).

Hence by furthermore making use of rR′ = rR − SRR′ the integral transforms to:

V c,no
R (rR) = 2

∑

S

∫

BSR′

dr′R′
ρR′(r

′
R′)σR′(r

′
R′)

|rR − r′R′ − SRR′|
(5.23)

=
∑

L

r`R YL(r̂R)
8π

2`+ 1

×
∑

S

∫

BSR′

dr′R′ ρR′(r
′
R′)σR′(r

′
R′)

Y ∗L ( ̂r′R′ + SRR′)
|r′R′ + SRR′|`+1

, (5.24)

where in the second step expansion (B.35) and the fact that rR < |r′R′ +SRR′| is always

true has been used. Subsequently inserting the following expansion:

Y ∗`m( ̂r′R′ + SRR′)
|r′R′ + SRR′|`+1

=
∑

L′

(−1)`
′ 4π (2(`+ `′)− 1)!!

(2`− 1)!! (2`+ 1)!!
C`′m′
`m,(`+`′)(m′−m)

× Y(`+`′)(m′−m)(ŜRR′)

|SRR′|`+`′+1
r′`
′

R′ Y
∗
`′m′(r̂

′
R′) , (5.25)

where use of the identity

Y(`+`′)(m′−m)(ŜR′R) = (−1)`+`
′
Y(`+`′)(m′−m)(ŜRR′) , (5.26)
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has already been made, we arrive at an equation for this part of the Coulomb potential:

V c,no
R (rR) =

∑

L

r`R YL(r̂R)
∑

S

∑

L′

(−1)`
′ 32π2 (2(`+ `′)− 1)!!

(2`− 1)!! (2`+ 1)!!
C`′m′
`m,(`+`′)(m′−m)

× Y(`+`′)(m′−m)(ŜRR′)

|SRR′|`+`′+1

×
∫

BSR′

dr′R′ ρR′(r
′
R′)σR′(r

′
R′) r

′`′
R′ Y

∗
`′m′(r̂

′
R′) . (5.27)

In order to be able to define structure constants in the same way as in (4.58) the

following relation can be substituted into the above equation:

∑

m′

C`′m′
`m,(`+`′)(m′−m) Y(`+`′)(m′−m)(ŜRR′)Y

∗
`′m′(r̂

′
R′) =

∑

m′

C`m
`′m′,(`+`′)(m−m′) Y

∗
(`+`′)(m−m′)(ŜRR′)Y

∗
`′m′(r̂

′
R′) . (5.28)

With this we can write instead of (5.27):

V c,no
R (rR) =

∑

L

r`R YL(r̂R)
∑

S

∑

L′

BLL′(SRR′)QR′L′ . (5.29)

Now in there the constants BLL′(SRR′) which depend only on the position of the lattice

points have been defined through:

BLL′(SRR′) = (−1)`
′ 8π (2(`+ `′)− 1)!!

(2`+ 1)!! (2`′ + 1)!!

√
4π C`m

`′m′,(`+`′)(m−m′)

×
Y ∗(`+`′)(m−m′)(ŜRR′)

|SRR′|`+`′+1
, (5.30)

and the multipole moments QRL were defined as usually by:

QRL :=
√

4π

∫

BSR

drR ρR(rR)σR(rR) r`R Y
∗
`m(r̂R) . (5.31)

Alternatively the multipole moments can be written in terms of only a radial integral

making use of (5.13):

QRL =
√

4π

S∫

0

r`+2
R drR ρ̃

(2)
RL(rR) . (5.32)
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The Nuclear Contributions

To proceed we will evaluate equation (5.22) by inserting expansion (B.35). Clearly

|rR| < |SRR′| is true if rR is confined to the Wigner-Seitz cell around R and we obtain:

V c,nuc
R (rR) = −

∑

L

r`R YL(r̂R)
8π

2`+ 1

∑

R′
R′ 6=R

Y ∗L (ŜRR′)

|SRR′|`+1
ZR′ . (5.33)

Returning now to the structure constants defined in (5.30) we can calculate the term

for L′ = (0, 0) which is then given by:

BL(0,0)(SRR′) =
8π

2`+ 1

Y ∗`m(ŜRR′)

|SRR′|`+1
. (5.34)

Making use of this identity, the expression for V c,nuc
R (rR) can be rewritten in the fol-

lowing way:

V c,nuc
R (rR) = −

∑

L

r`R YL(r̂R)
∑

R′
R′ 6=R

BL(0,0)(SRR′) ZR′ . (5.35)

Contrary to equation (5.29) the summation here also includes neighbouring cells with

overlapping bounding spheres. However by using the following redefinition of the mul-

tipole moments:

Q̂RL := QRL − δ`0 δm0 ZR′ , (5.36)

the two potentials can be added up and as can be easily shown one gets the compact

expression:

V c,no
R (rR) + V c,nuc

R (rR) =
∑

L

r`R YL(r̂R)
∑

L′

∑

R′
R′ 6=R

BLL′(SRR′) Q̂R′L′

−
∑

L

r`R YL(r̂R)
∑

L′

∑

R

BLL′(SRR′)QR′L′ . (5.37)
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Nearest Neighbour Terms

The problems involved in the calculation of the terms coming from neighbouring cells

have already been explained in section 4.3. Therefore use can be made of some results

already derived there. Let’s first denote the expression that has to be evaluated once

again:

V c,nn
R (rR) = 2

∑

R

∫

ΩR′

dr′R′
ρR′(r

′
R′)

|rR′ − r′R′|
. (5.38)

Since |rR′ − r′R′| = |rR − r′R| we can use the result that has been found in section 4.3,

namely that the inverse of the difference vector in this equation can be written as (c.f.

(4.48)):

1

|rR − r′R|
= 2π

∑

L

b`RR′ Y`m(b̂RR′)
∑

L′

r`
′
R Y`′m′(r̂R)C

(`+`′)(m+m′)
`m,`′m′

×
∑

L′′

BLL′L′′(SRR′ + bRR′)
√

4π r′`
′′

R′ Y
∗
`′′m′′(r̂

′
R′) , (5.39)

where the constants BLL′L′′(SRR′ + bRR′) are given by 4.49. Inserting this expansion

into (5.38) we get for this potential:

V c,nn
R (rR) =

∑

R

∑

L

b`RR′ Y`m(b̂RR′)
∑

L′

r`
′
R Y`′m′(r̂R) 4π C

(`+`′)(m+m′)
`m,`′m′

×
∑

L′′

BLL′L′′(SRR′ + bRR′)QR′L′′ . (5.40)

Where once more the multipole moments have been identified as:

QR′L′′ =
√

4π

∫

ΩR′

dr′R′ r
′`′′
R′ Y

∗
`′′m′′(r̂

′
R′) ρR′(r

′
R′) . (5.41)

Combining the results (5.37) and (5.40) an expression for the inter-cell potential can

now be given. Either the three terms can be simply added up or by observing the fact

that the structural constants BLL′L′′(SRR′ + bRR′) simply reduce to BLL′(SRR′ + bRR′)

(c.f. definition in (5.30)) for L = (0, 0) we obtain the result:

V c,inter
R (rR) =

∑

L

r`R YL(r̂R)
∑

R′
R′ 6=R

∑

L′

BLL′(SRR′) Q̂R′L′

+
∑

L

r`R YL(r̂R)
∑

R

∑

L′

[BLL′(SRR′ + bRR′)−BLL′(SRR′)]QR′L′

+
∑

R

∑

L
`>0

b`RR′ Y`m(b̂RR′)
∑

L′

r`
′
R Y`′m′(r̂R) 4π C

(`+`′)(m+m′)
`m,`′m′

×
∑

L′′

BLL′L′′(SRR′ + bRR′)QR′L′′ . (5.42)
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5.2

The Coulomb Energy in Terms of the Electrostatic

Potential

Within the code it is of advantage to compute the Coulomb energy in terms of the

Coulomb potential which reduces the computational effort. Otherwise expressions

which are more or less identical have to be calculated twice, which is not very effi-

cient. In order to arrive at such a formulation we use equation (4.30) as a starting

point:

U [ρ] =

∫
drR ρ(rR)

∑

R′



∫

ΩR′

dr′R′
ρR′(r

′
R′)

|rR′ − r′R′|
− 2 ZR′

|rR − SRR′|




+
∑

R′R′′
R′′ 6=R′

ZR′ ZR′′

|R′ −R′′| . (5.43)

According to (5.4) the electrostatic potential is generally given by

V c
R(rR) = 2

∑

R′



∫

ΩR′

dr′R′
ρR′(r

′
R′)

|rR′ − r′R′|
− ZR′

|rR − SRR′|


 . (5.44)

Then by comparison with the previous equation the electrostatic energy can also be

written in terms of V c
R(rR) as:

U [ρ] =
1

2

∫
drR ρ(rR)V c

R(rR)−
∫

drR ρ(rR)

(∑

R′

ZR′

|rR − SRR′|

)

+
∑

R′R′′
R′′ 6=R′

ZR′ ZR′′

|R′ −R′′| (5.45)

=
1

2

∫
drR ρ(rR)V c

R(rR)

−
∑

R′

ZR′



∫

drR
ρ(rR)

|rR − SRR′|
−
∑

R′′
R′′ 6=R′

ZR′′

|R′ −R′′|


 . (5.46)

The integral inside the parentheses can be rewritten as a sum over individual cells by

using:

ρ(rR) =
∑

R′′

ρR′′(rR − SRR′′) =
∑

R′′

ρR′′(rR′′) , (5.47)
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so that we get

∫
drR

ρR(rR)

|rR − SRR′|
=
∑

R′′

∫

ΩR′′

drR′′
ρR′′(rR′′)

|rR′′ − SR′′R′|
. (5.48)

Using (5.47) and (5.48) in the formula for the Coulomb energy one obtains:

U [ρ] =
1

2

∑

R′

∫

ΩR′

drR′ ρR′(rR′)V
c
R′(rR′)

−
∑

R′

ZR′



∑

R′′

∫

ΩR′′

drR′′
ρR′′(rR′′)

|rR′′ − SR′′R′|
−
∑

R′′
R′′ 6=R′

ZR′′

|R′ −R′′|


 . (5.49)

We have once again written all global integrals now in terms of local integrals over

all cells in the system. The above expression can be further modified. By taking the

term with R′′ = R′ out of the summation over R′′ we consequently get after some

rearrangement of the terms:

U [ρ] =
1

2

∑

R′



∫

ΩR′

drR′ ρR′(rR′)

(
V c
R′(rR′)−

2ZR′

|rR′|

)

− 2ZR′
∑

R′′
R′′ 6=R′



∫

ΩR′′

drR′′
ρR′′(rR′′)

|rR′′ − SR′′R′|
− ZR′′

|R′ −R′′|





 . (5.50)

The last term in this equation deserves some consideration. Recalling the expression

for the inter-cell Coulomb potential, equation (5.6), which can be rewritten as:

V c,inter
R′ (r′R′) = 2

∑

R′′
R′′ 6=R′



∫

ΩR′′

drR′′
ρR′′(rR′′)

|rR′′ − r′R′ − SR′′R′|
− ZR′

|r′R′ +R′ −R′′|


 ,(5.51)

this function can be evaluated for r′R′ = 0:

V c,inter
R′ (0) = 2

∑

R′′
R′′ 6=R′



∫

ΩR′′

drR′′
ρR′′(rR′′)

|rR′′ − SR′′R′|
− ZR′

|R′ −R′′|


 . (5.52)

One can easily see that the Coulomb energy per cell can now be written in the following

way:

UR[ρ] =
1

2

∫

ΩR

drR ρR(rR)

(
V c
R(rR)− 2ZR

|rR|

)
− 1

2
ZR V

c,inter
R (0) . (5.53)
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5.2.1 An Expression for the Total Energy

Finally, with the same argument as above, namely in order to avoid calculating things

twice we can use the last equation (5.53) to obtain a compact expression for the total

energy. We have seen in chapter 4 that the total energy per cell is the sum of kinetic,

Coulomb, and exchange-correlation terms. Summarizing we can write this as:

ER,tot = ER,c + ER,v −
∫

ΩR

drR ρR(rR)VR(rR)

+
1

2

∫

ΩR

drR ρR(rR)

(
V c
R(rR)− 2ZR

|rR|

)
− 1

2
ZR V

c,inter
R (0)

+

∫

ΩR

drR ρR(r) εxc [ρR(r)] , (5.54)

where VR(r) represents the sum of Coulomb and exchange-correlation potential:

VR(rR) = V c
R (rR) + V xc

R (rR) . (5.55)

With this and some rearrangement of terms one finds that the total energy may be

cast in the following form:

ER,tot = ER,c + ER,v −
1

2

∫

ΩR

drR ρR(rR)

(
V c
R(rR)− 2ZR

|rR|

)

− 1

2
ZR V

c,inter
R (0) +

∫

ΩR

drR ρR(rR)
(
εxc [ρR(rR)]− V xc

R (rR)
)

. (5.56)

5.2.2 Note on Spin-Polarization

In the case of spin-polarized calculations, one ends up with charge densities for spin up

and spin down electrons. Hence the total charge density is the sum of these two terms:

ρR(r) = ρ↑R(r) + ρ↓R(r) . (5.57)

Accordingly, the exchange-correlation potential has a spin up and a spin down com-

ponent. The corresponding integral, which appears in the expression for the kinetic

energy is then actually given by:

∫

ΩR

dr ρR(r)V xc
R (r) =

∫

ΩR

dr
(
ρ↑R(r)V xc,↑

R (r) + ρ↓R(r)V xc,↓
R (r)

)
. (5.58)
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The term on the right hand side of this equation can be further manipulated in the

following way:

∫

ΩR

dr ρR(r)V xc
R (r) =

∫

ΩR

dr
(
ρ↑R(r) + ρ↓R(r)

) V xc,↑
R (r) + V xc,↓

R (r)

2

+

∫

ΩR

dr
(
ρ↑R(r)− ρ↓R(r)

) V xc,↑
R (r)− V xc,↓

R (r)

2
(5.59)

=

∫

ΩR

dr ρR(r) V̄ xc
R (r)

+

∫

ΩR

dr
(
ρ↑R(r)− ρ↓R(r)

)
Bxc
R (r) . (5.60)

In the last step the obvious definitions:

Bxc
R (r) =

V xc,↑
R (r)− V xc,↓

R (r)

2
, (5.61)

and

V̄ xc
R (r) =

V xc,↑
R (r) + V xc,↓

R (r)

2
, (5.62)

have been used.
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A

Solutions and Numerical Treatment

of the Radial Schrödinger Equation

Within the full potential KKR theory it is necessary to compute the regular and irregu-

lar solutions to the radial Schrödinger or Dirac equation. Though the solutions of these

equations for a full potential are angular dependent the problem may be separated into

a spherically symmetric and a non-spherical portion. But initially one has to obtain

only the solutions for the spherically symmetric problem, for which the regular and

irregular solutions depend only on the distance from the origin of the potential sphere.

This has to be done only for one atomic site and hence this is called the single site

problem. By computing the radial solutions one can determine the single site t-matrix

which is an important quantity in multiple scattering theory. The t-matrix is site–

diagonal and, for a non-spherical potential, non-diagonal in the angular momentum

indices. However, for a muffin tin or ASA potential it is diagonal with respect to site

as well as in angular momenta and for that reason easy to calculate.

The regular and irregular solutions R`(r) and I`(r) mathematically have to fulfill the

Wronski relation,

R`(r)I
′
`(r)−R′`(r)I`(r) 6= 0 , (A.1)

where f ′(r) = df(r)/dr. Hence any pair of regular and irregular, linear independent

solutions necessarily need to meet this requirement. Since for an arbitrary potential

the solutions are seldom known analytically, they have to be computed by numerical

integration. Standard procedures are e.g. Adams or Adams-Bashforth integration rou-

tines together with Runge-Kutta [Frö85][GW89] [FM87] extrapolation for initial values.

Their accuracy is however limited and can in principle only be improved by reducing

the step size of the integration–mesh or by enhancing the order of the algorithms as

will be exhaustively explained later.
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In order to choose the proper algorithm it is necessary to know the asymptotic be-

haviour of the regular and irregular wave functions. At a large distance from the

scattering potential they behave as if no potential was present except for a phase shift

δ`. So for non-relativistic electrons the Schrödinger equation for a vanishing potential

has to be solved in that region (see e.g. [Wei90]). The resulting wave functions need

to be matched at the maximum radius of the potential sphere with the numerically

computed wave functions inside the sphere.

A.1

Regular and Irregular Solutions

The initial task is now to solve the single–site problem, which means that the regular

and irregular solutions for a single potential at an atomic site have to be obtained. In

the (non-relativistic) Schrödinger equation

Hψ(r) =
(
−∇2 + U(r)

)
ψ(r) = Eψ(r) (A.2)

has to be solved. This can be facilitated by dividing the space–filling potential, U ,

the so–called full potential, into a spherical and a non–spherical partition, V (r) and

∆V (r), such that

U(r) = V (r) + ∆V (r) (A.3)

For the part of the general potential that depends only on the distance from the origin

the general solution of equation (A.2) can be expressed as a superposition of partial

waves and products of solely radial and angular dependent functions:

ψ(r) =
∑

L

φ`(r)YL(θ, ϕ) , L ≡ (`,m) (A.4)

which leads with the substitution

R`(r) = rφ`(r) (A.5)

to the second order differential equation:

d2R`

dr2
+

(
E − V (r)− `(`+ 1)

r2

)
R` = 0 . (A.6)

The potential V (r) is of the following shape:

V (r) =

{
V (r) , r ≤ rs
V0 , else

, (A.7)
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where rs is the radius of the potential sphere.

A.1.1 Regular Solution

One solution of the radial equation (A.6) is regular at the origin and behaves in the

following manner:

R`(r)
r→0−→∼ r` (A.8)

At the sphere boundary rs it has to be matched to a solution of this equation for

V (r) = V0 which is constructed from two linear independent solutions. This can be

done by either combining spherical Bessel (j`(kr)) and Neumann (n`(kr)) functions, or

equivalently spherical Bessel and Hankel functions of the first kind (h+
` (kr)). Therefore

the solution at the sphere boundary is given by the two equivalent expressions:

R`(rs) = cos δ`(k)j`(krs)− sin δ`(k)n`(krs) (A.9)

= e−iδ`
(
j`(krs)− ikt`(k)h+

` (krs)
)

. (A.10)

According to equation (A.9) the corresponding derivative at r = rs is given by

R′`(rs) = k [cos δ`(k)j ′`(krs)− sin δ`(k)n′`(krs)] , (A.11)

where k =
√
E − V0.

In order to obtain an expression for the single site t–matrix, t`(k), the `-like phase

shifts may be derived from the relation

tan δ`(k) =
L`(rs, E)j`(krs)− kj ′`(krs)
L`(rs, E)n`(krs)− kn′`(krs)

(A.12)

where L`(rs, E) = R′`(rs, E)/R`(rs, E) defines the logarithmic derivative of the wave

function at the sphere boundary. Using equation (A.12) the reactance [Fau79][Wig46],

K`(k), is defined as:

K`(k) = −1

k
tan δ`(k) . (A.13)

Then the diagonal elements of the t–matrix are given by

t`(k) =
K`(k)

1 + ikK`(k)
. (A.14)
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Normalization

For computational purposes equation (A.9) can be manipulated such that a normal-

ization factor, A`(k), may be derived. Furthermore, instead of R`(r, E) the quantities

Z`(r, E) as originally defined by Faulkner, the so called scattering solutions, [Fau79]

are used. Dividing by sin δ`(k) and multiplying by −k yields

− kR`(r)

sin δ`(k)
= A`(k)R`(r) = Z`(r)

= r
(
kn`(kr) +K−1

` (k)j`(kr)
)
.

(A.15)

Now the coefficient A`(k) can be calculated from the condition that equation (A.9) is

valid at the boundary rs as:

A`(k) =
rs
(
kn`(krs) +K−1

` (k)j`(krs)
)

R`(rs)
(A.16)

A.1.2 Irregular Solution

There is another, though unphysical, solution to equation (A.6) which, due to its

behaviour in the vicinity of the origin, is referred to as irregular solution. Following

Faulkner, this wave function joins smoothly to j`(r), for r > rs, and is denoted by

J`(r). It diverges as its argument approaches zero as r−`, i.e.,

J`(r)
r→0−→∼ r−`−1 . (A.17)

The general expression for the irregular solution J`(r) is given as a superposition of

regular and irregular wave functions, which is still an irregular solution:

J`(r) = B`(r)R`(r) + C`(r)I`(r) , (A.18)

with

I`(r) = rφi`(r) , (A.19)

where φi`(r, E) is the second solution of (A.2).

In the actual calculation, R` and I` are the functions that are directly obtained from

the integration. The functions denoted by Z` and J` are the normalized solutions.

93



Appendix A

Normalization

The continuity condition at the boundary of the potential sphere can be used to cal-

culate the normalization coefficients B`(k) and C`(k):

B`(k)R`(rs) + C`(k)I`(rs) = rs j`(krs) ,

B`(k)R′`(rs) + C`(k)I ′`(rs) = j`(krs) + rskj
′
`(krs) .

(A.20)

From the above conditions the following expressions for the coefficients are obtained:

B`(k) =
−β`(krs)I`(rs) + rs j`(krs)I

′
`(rs)

R`(rs)I ′`(rs)−R′`(rs, E)I`(rs, E)
,

C`(k) =
β`(krs)R`(rs)− rs j`(krs)R′`(rs)
R`(rs)I ′`(rs)−R′`(rs)I`(rs)

,

(A.21)

where

β`(krs) = j`(krs) + rkj ′`(krs) = (`+ 1)j`(krs)− rkj`+1(krs) . (A.22)

94



Appendix A

A.2

Numerical Treatment of the Schrödinger Equation

In order to solve the Schrödinger equation numerically, it first has to be transformed

from a single, second order differential equation to two, first order differential equations.

Then by means of a suitable algorithm it is possible to solve those two equations

numerically. But let’s start with the transformation.

A.2.1 Coupled Radial Equations

The second order differential equation to be solved is given by equation (A.6):

P ′′` +

(
E − V − `(`+ 1)

r2

)
P` = 0 . (A.23)

In there and in the following the notation is P` = P`(r, E), P ′` = dP`/dr, P
′′
` = d2P`/dr

2

and

P` = R` or I` . (A.24)

Now, let’s define the quantity Q` = Q`(r, E) as [Lou67]:

Q` = P ′` −
P`
r
. (A.25)

Consequently P ′` and P ′′` turn out to be

P ′` = Q` +
P`
r

(A.26)

P ′′` = Q′` +
P ′`
r
− P`
r2
. (A.27)

With

P ′`
r
− P`
r2

=
Q`

r
, (A.28)

substitution of (A.27) into equation (A.23) yields

Q′` +
Q`

r
+

(
E − V − `(`+ 1)

r2

)
P` = 0 . (A.29)
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Finally the coupled equations to be solved numerically are:'

&

$

%

Q′` = −Q`

r
+

(
`(`+ 1)

r2
+ (V − E)

)
P`

Q` = P ′` −
P`
r

(A.30)

Furthermore for computational purposes it is necessary to use an equally spaced mesh

along which the wave functions have to be evaluated. While the radial distance from

the origin, r, is usually given on an exponential mesh, the equidistant variable x may

be defined and used for the calculations, where

x = ln(r) , (A.31)

and therefore

dP`
dr

= e−x
dP`
dx

,
dQ`

dr
= e−x

dQ`

dx
. (A.32)

With these transformations the coupled radial equations (A.30) for evaluation on an

equally spaced mesh become'

&

$

%

Q′` = −Q` +

(
`(`+ 1)

ex
+ ex(V − E)

)
P`

Q` = e−x(P ′` − P`)
(A.33)

Separation of a `-dependent Factor

For numerical accuracy it is sometimes convenient to separate a factor r` off the regular

solution and r−` off the irregular solution, which leads to two different sets of coupled

radial equations. First consider the regular, radial solution and write it as

P` = P̃` r
` , Q` = Q̃` r

` . (A.34)

Then the derivatives are

P ′` = ` r`−1 P̃` + P̃ ′` r
` (A.35)

= r`
(
`

r
P̃` + P̃ ′`

)
, (A.36)

Q′` = r`
(
`

r
P̃` + P̃ ′`

)
. (A.37)
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Substitution of these expressions into (A.30) yields the following two, coupled equa-

tions:'

&

$

%

Q̃′` = −
(
`+ 1

r

)
Q̃` +

(
`(`+ 1)

r2
+ (V − E)

)
P̃`

Q̃` = P̃ ′` +

(
`− 1

r

)
P̃`

(A.38)

For a better numerical treatment of the irregular solutions a factor r−` is extracted.

This is especially helpful since the irregular wave function diverges at extremely high

rates around the origin. In this case the new functions and their derivatives are:

P` = P̃` r
−` , (A.39)

P ′` = −` r−`−1 P̃` + P̃ ′` r
−` (A.40)

= r−`
(
− `
r
P̃` + P̃ ′`

)
, (A.41)

Q` = Q̃` r
−` , (A.42)

Q′` = r−`
(
− `
r
Q̃` + Q̃′`

)
. (A.43)

Then the final, new coupled equations for the irregular solutions are:

'

&

$

%

Q̃′` =

(
`− 1

r

)
Q̃` +

(
`(`+ 1)

r2
+ (V − E)

)
P̃`

Q̃` = P̃ ′` −
(
`+ 1

r

)
P̃`

(A.44)

A.2.2 Numerical Evaluation of the Regular Solution

Because of its nice and regular behaviour in the vicinity of the origin the regular

solution is relatively easy to integrate. The best way to obtain such a solution is to

start with small values of the wave function close to the origin and integrate outwards

with a predictor-corrector algorithm. Because the value of the wave function is initially

very small, the error one makes at the beginning is very small. If the wave function

subsequently increases the initial error does not cause problems as it becomes less

significant compared to the size of the wave function. Therefore the final deviation of

the numerical wave function from the ”real” wave function arises almost solely from

the accuracy of the numerical algorithm. So for the regular solution one does not have
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difficulties with what can be called ”intrinsic” errors. Those come from the fact that

one always makes a small error at the initial value or values because the exact values

are not known and because the numerical accuracy of the computer is limited. When

the initial values, however, are very large and the size of the subsequent values of the

computed function decreases an intrinsic error causes problems. Then the initial value

is large compared to the size of the wave function and the error can have an exponential

character and cause the solution to be unstable, even though the algorithm may be

extremely accurate.

Assume the exact solution of the differential equation is given by a function F (x), the

numerically computed approximate solution is f(x), and the initial values are calculated

at x0. Then the approximate solution is given by [Sch97]:

f(x) = (f(x0)− F (x0)) eλx + F (x) . (A.45)

If the initial value f(x0) exactly equals the correct solution at that point then the first

term vanishes and no intrinsic error inhibits an exact solution. However, in reality there

will always be a small error due to the limitation of computational accuracy and thus

an intrinsic error is always present. If the error, as in equation (A.45), is of exponential

character or has a similar behaviour, then of course one can run into trouble especially

if the solution varies over several orders of magnitude from large to small values.

But in the case of the regular solution no such problems have been encountered in

the course of the present work. The method that has been chosen to evaluate the

regular solution is to calculate Coulomb functions around the origin and use those as

starting values for an outward integration up to the sphere boundary using an Adams–

Bashforth–Moulton predictor-corrector algorithm.

Coulomb Functions

In the vicinity of the origin the effect of the electrons on the potential may be neglected,

the charge can be approximated by the nuclear charge (Z), and a potential, V (r), is

given by

V (r) = −2Z

r
. (A.46)

Assuming that for small r the above term is much larger than the energy, equation

(A.6) becomes [AS73]

d2

dr2
R`(r) +

(
1− 2Z

r
− `(`+ 1)

r2

)
R`(r) = 0 . (A.47)
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Equation (A.47) is called Coulomb equation. Following Abramowitz and Stegun the

regular solutions to this equation, the Coulomb functions are given by

R`(r) = C`(Z)r`+1φ`(Z, r) , (A.48)

with

φ`(Z, r) =
∞∑

k=`+1

A`k(Z)rk−`−1 , (A.49)

and where C`(Z) and A`
k(Z) are constants. The first derivative of the regular Coulomb

function, R′`(r) = dR`(r)/dr, is then obtained as

R′`(r) = C`(Z)r`φ†`(Z, r) , (A.50)

with

φ†`(Z, r) =
∞∑

k=`+1

kA`k(Z)rk−`−1 . (A.51)

The advantage of Coulomb functions is, that they are known analytically and can be

computed according to equations (A.48) and (A.50).

Predictor-Corrector Method

The predictor-corrector method (see e.g. [Sch97]) is a multiple step method in the

sense that n+1 preceding values, Pi−n, Pi−n+1, . . . , Pn−1, Pi are used to get the next,

new value Pi+1. Pi+1 is then the approximate value for the exact solution F (xi+1).

Such a method can be applied to solve a set of first order differential

equations in one variable, involving an initial value problem of the kind

F ′(x) = f(x, F (x)) = f(x, F1, F2, . . . , F3) for x ∈ [x−n, xN−n]

F (x−n) = F−n .
(A.52)

For this method it is necessary that the interval between the grid points xi, i.e. the

step size hi := xi+1 − xi > 0, is constant along the whole grid. The starting values

Fi = F (xi) are calculated for the first n grid points:

x−n < x−n+1 < · · · < x0 . (A.53)

The resulting set of points (xi, F (xi)) for i = −n, 0 are the initial values used to

calculate the approximate values Pi = P (xi) for the exact function F (xi), i = 1, N −n.
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In order to obtain the starting values, either a Runge Kutta procedure can be employed,

or as in the present case the values are given by an analytic function, or they are known

or computed by any other means.

Using the fundamental theorem of calculus, equation (A.52) becomes

F (xi+1) = F (xi) +

xi+1∫

xi

f(x, F (x)) dx for i = 0, . . . , N − n− 1 . (A.54)

It is subsequently possible to replace the function f(x, F (x)) with an interpolating

polynomial ϕn through the points (xk, Fk), k = i − n, . . . , i. Then ϕn is integrated

over the interval [xi, xi+1] to yield the approximate value Pi+1. When the interpolating

polynomial and hence the right hand side of equation (A.54) contains only values up

to Pi the formula is an explicit formula and is called the predictor.

If also the grid point xi+1 is used for obtaining the polynomial ϕn then also Pi+1 is

contained on the right hand side of the integral equation (A.54). It is therefore an

implicit formula and called a corrector.

Explicit and implicit formula can be combined to form the so called predictor-corrector

method.

From the discussion above it is clear that the points Pi+1 are only an approximation

to the real values Fi+1, which, however, are not known. Hence, obviously, the following

equation, which defines the procedural error εi+1 holds:

Fi+1 = Pi+1 + εi+1 . (A.55)

By replacing f(x, F (x)) with ϕn(x) one obtains an integral equation for the approxi-

mate values Pi+1

Pi+1 = Pi +

xi+1∫

xi

ϕn(x) dx , (A.56)

which is the Adams–Bashforth formula.

As explicit Adams-Bashforth formula, for hi = h = const., i.e. for an equidistant grid,

used as a predictor in the present calculations, the following expression is denoted:
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n = 5 : Pi+1 = Pi +
h

1440
(4277fi − 7923fi−1 + 9982fi−2

−7298fi−3 + 2877fi−4 − 475fi−5)

εi+1 ∼
19087

60480
h7

(A.57)

Since the procedural error εi+1 is proportional to hn+2 the quality of the integration can

be improved by reducing the step size of the grid points. Also an Adams–Bashforth

formula of higher order can be used. But the best way to improve the quality of the

procedure is to reduce the step size. How small h ought to be depends of course on

the specific differential equation to be evaluated.

As mentioned above the predictor formula should be combined with a corrector or

Adams–Moulton formula. The best way to do this is to use a corrector with an error

order one higher than the predictor. Next the corrector formula used in the present

calculations is given:

n = 6 : P ν+1
i+1 = Pi +

h

60480
(19087f νi+1 + 65112fi − 46461fi−1

+37504fi−2 − 20211fi−3 + 6312fi−4 − 863fi−5)

εi+1 ∼ − 275

24192
h8

(A.58)

In there f νi+1 is calculated from the predicted value of equation (A.57). Then it is used

to compute P ν+1
i+1 , and the resulting value is compared to the predicted value Pi+1.

If the two values match well enough, which is determined within the program by a

convergence condition, one can proceed to the next point. On the other hand if the

values are not close enough, another cycle of prediction – correction is performed. But

this time the corrected value P ν+1
i+1 is used to compute f νi+1 and a new corrector. The

old corrector becomes the new predictor and is compared with the new corrector and

so forth until the convergence condition is met. If the step size is small enough, usually

one or two iterations suffice.
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Figure A.1: Comparison of the numerically computed real part of the solution to the

free space Schrödinger equation for two different numbers of interpolation points, ns,

with the analytic solution (in this case the spherical Neumann functions) for ` = 0.
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Interpolation Scheme

The reduction of the step size has been done in the following manner: typically the

potential is given on an exponential, radial mesh containing about 350 to 500 mesh

points. It is an easy task to interpolate the potential on a mesh about thirty to

one hundred times denser and therefore reducing the step size by that factor. Of

course this can only be achieved at the expense of computation time, but the solutions

obtained with such an interpolation method are very stable and reliable. The Wronski

determinant in equation (A.1) has been computed and an accuracy up to 10−12 over

the whole mesh could be achieved.

So consider a given mesh of radial points ri, i = 1, n. The increment between to

neighbouring points on the mesh is denoted by ∆i(h). This increment is not necessarily

a constant – it can be, for example, an exponential expression – but h is, as demanded

by the predictor-corrector algorithm discussed above. Hence we can write

ri + ∆i(h) = ri+1 ∀i . (A.59)
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Figure A.2: Comparison of the numerically computed real part of the solution to the

free space Schrödinger equation for two different numbers of interpolation points, ns,

with the analytic solution (in this case the spherical Neumann functions) for ` = 1.
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Then let us define an interpolating mesh, sj, of m points such that

ri < sj ≤ ri+1 , j = 1, 2, . . . ,m . (A.60)

The corresponding array of functional values for all ri is f(ri). As for the radial mesh

we define an increment for the interpolation mesh such that

sj + ∆j(h/m) = sj+1 ∀j . (A.61)

And lets denote the values on the interpolation mesh as f̃(sj). Then the values of f̃(sj)

at the last point of the interpolation mesh have to match the values of f(ri), thus

f(ri+1) = f̃(sm) , (A.62)

and furthermore the function value of the first interpolation point is equal to the

function value of

f(ri + ∆i(h/m)) = f̃(s1) . (A.63)
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Figure A.3: Comparison of the numerically computed real part of the solution to the

free space Schrödinger equation for three different numbers of interpolation points, ns,

with the analytic solution (in this case the spherical Neumann functions) for ` = 2.
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From the above it is clear that the step size is now reduced by a factor m:

h→ h

m
, (A.64)

and the procedural error of the predictor formula (A.57) is

εi+1 ∼
19087

60480

(
h

m

)7

. (A.65)

Keeping in mind these considerations the following algorithm can be performed: we

start with the first mesh point, r1. For the corresponding function f(r1), an initial

value has to be determined. In the case of the regular solution, this can be a more

or less arbitrary value, but it is wise to use a rather small, positive value. Then the

mesh points sj have to be determined between r1 and r2. In order to obtain the

wave function on this mesh, the potential has to be interpolated using a Lagrangian

interpolation scheme. Having computed these values, the coupled equations are solved

for sj, j = 1,m. Then the last value of the interpolating wave function, f̃(sm), is

stored in f(r2). Now we move on to the next radial value, r3, and proceed in the same

manner. This scheme is repeated until the final mesh point rn has been reached.
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In figures A.1, A.2, and A.3 the results of test calculations are shown. The numerical

solution of the free space Schrödinger equation is plotted against the analytically ob-

tained values of the spherical Neumann function. Here one solution of the Schrödinger

equation is taken to be H`(r) = i r h`(kr), where h`(kr) is a spherical Hankel function.

Then the real part of this function is just the spherical Neumann function. From the

figures one can see the high accuracy of the interpolation scheme. Already for 30 in-

terpolation points the numerical values are identical to the analytical values except for

a few radial points closest to the origin. By using 50 interpolation points the error

for those points can be dramatically reduced and when the number is increased to 100

points the values are virtually identically over the whole mesh. Note however, that the

functions, that are displayed in the plots are practically constant lines. Hence the er-

rors occur at the 8th, 9th, or 10th position after the comma and are actually extremely

small.

A.2.3 Numerical Evaluation of the Irregular Solution

Evaluating the irregular solution to equation (A.6) is a numerically challenging task

when one tries to apply the same procedure as described above for the regular solution.

The problem here is, as has already been indicated earlier, the unpleasant behaviour

of the wave function around the origin. There it diverges as r−`, i.e. with increasing

angular momentum quantum number, `, it goes to infinity at higher and higher rates.

Hence when trying to start with some values of the Coulomb approximation (which

means to use values of the Coulomb functions) close to the origin one has to use large

values beyond the numerical accuracy of most computers. Therefore the initial error is

rather large. Even worse, the irregular solution decreases in size as the sphere boundary

is approached and tends to zero. So one starts with a large error, which becomes more

and more significant as the size of the wave function decreases, and a situation as

described in section (A.2.2) is encountered. It is therefore, for angular momentum

quantum numbers ` > 1 impossible to obtain stable solutions, even if the step size of

the predictor-corrector algorithm is reduced to extremely small increments.

A different approach to the solution of the coupled differential equations is thus needed.

The method of choice for this problem is an inwards integration using again the

predictor-corrector method and starting values which have to be obtained from a

Runge-Kutta extrapolation. To start this algorithm the boundary condition of equa-

tion (A.20) can be used. The Runge–Kutta method uses the spherical Bessel function

at the sphere boundary to extrapolate a few points and subsequently a predictor-

corrector algorithm performs an inwards integration, again interpolating the potential

on a thirty to one hundred times denser mesh. The only difference to the formulas for

the outwards integration (equations (A.57) and (A.58)) is, that h → −h. Using this

procedure, very stable irregular solutions can be obtained.

For completeness, below the expressions for the employed Runge–Kutta procedure are
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given [FM87]. For the system of coupled differential equations

P ′ = f(P,Q) , Q′ = g(P,Q) , (A.66)

where f(P,Q) and g(P,Q) are for example given by (A.30), the following coefficients

have to be computed

k1 = h f(Pi, Qi) ,

k2 = h f(Pi + (k1/2), Qi + (m1/2)) ,

k3 = h f(Pi + (k2/2), Qi + (m2/2)) ,

k4 = h f(Pi + k3, Qi +m3) .

m1 = h g(Pi, Qi) ,

m2 = h g(Pi + (k1/2), Qi + (m1/2)) ,

m3 = h g(Pi + (k2/2), Qi + (m2/2)) ,

m4 = h g(Pi + k3, Qi +m3) .

Then the next function values on the mesh are obtained from

Pi+1
∼= Pi +

1

6
(k1 + 2k2 + 2k3 + k4) , (A.67)

Qi+1
∼= Qi +

1

6
(m1 + 2m2 + 2m3 +m4) . (A.68)

In figure A.4 the accuracy of the algorithm is tested by comparing the numerical solu-

tions to the free space Schrödinger equation with analytical Hankel functions. For the

numerical solution an inwards integration has been performed using different numbers

of interpolation points. The results for 30 and 100 points are shown. It can be seen

from the numbers that the numerical results are correct up to the 12th digit after the

comma for almost all of the points on the r-mesh. Only for the last eight (30 inter-

polation points) and the last two (100 interpolation points) points on the mesh the

deviations from the analytical solutions are larger, but still correct to the 8th, 9th or

even 10th digit. However, by using even more interpolation points this small error can

be suppressed further and almost any desired accuracy can be obtained. Of course, all

this is at the cost of computation time, but tests have shown that with 50 interpolation

points the accuracy is sufficient and the computation time reasonable.

Finally it should be noted that the results in figures A.4, A.5, and A.6 are in fact repre-

sentative, since the same accuracy was obtained for even higher angular momenta, the

imaginary parts of the wave functions, different potentials (square well and Coulomb

potentials), and different energies.
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Figure A.4: Comparison of the real part of the analytic irregular solutions of the

Schrödinger equation in free space, the spherical Hankel functions (here the Neumann

functions) of the first kind with the real part of the numerical solutions, for ` = 0,

using the interpolation scheme with 30 and 100 interpolation points.
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Appendix A

Figure A.5: Comparison of the real part of the analytic irregular solutions of the

Schrödinger equation in free space, the spherical Hankel functions (here the Neumann

functions) of the first kind with the real part of the numerical solutions, for ` = 1,

using the interpolation scheme with 30 and 100 interpolation points.
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Appendix A

Figure A.6: Comparison of the real part of the analytic irregular solutions of the

Schrödinger equation in free space, the spherical Hankel functions (here the Neumann

functions) of the first kind with the real part of the numerical solutions, for ` = 2,

using the interpolation scheme with 30 and 100 interpolation points.
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A.3

Scalar Relativistic Approximation

The scalar relativistic approximation (SRA) is an attempt to describe relativistic effects

by sticking to non–relativistic quantum numbers at the expense of excluding spin–orbit

coupling. The radial dependent part of the full solution to the Dirac equation is given

by:

ψκ(r) =

(
gκ(r, E)

ifκ(r, E)

)
(A.69)

The component fκ(r, E) is usually referred to as the small component because it is of

the order 1/c smaller than gκ(r, E), the large component. Defining now the following

two quantities:

Pκ(r, E) = r gκ(r, E) (A.70)

Qκ(r, E) = c r fκ(r, E) , (A.71)

the radial Dirac equations can be written as

P ′κ =

(
E − V
c2

+ 1

)
Qκ −

κ

r
Pκ

Q′κ =
κ

r
Qκ − (E − V )Pκ

(A.72)

where κ is defined as

` =

{
κ , κ > 0

−κ− 1 , κ < 0
(A.73)

With the definition

B = B(r) = 1 +
E − V (r)

c2
, (A.74)

by noting that κ2 +κ = `(`+1) and after some elementary manipulations the following

equation can be derived:

P ′′κ
B

+
V ′

B2c2

(
P ′κ −

Pκ
r

)
+

V ′

B2c2

κ+ 1

r
Pκ +

(
`(`+ 1)

Br2
+ V − E

)
Pκ = 0(A.75)

Redefining Q as

BQκ = P ′κ −
Pκ
r
, (A.76)
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and differentiating with respect to r, an expression for P ′′κ is obtained:

P ′′κ =

(
B

r
− V ′

c2

)
Qκ +BQ′κ . (A.77)

If in equation (A.75) the term that includes the quantum number κ, the spin–orbit

coupling term, is neglected and equation (A.77) is inserted into equation (A.75), one

gets

Qκ

r
+Q′κ −

`(`+ 1)

Br2
Pκ + (E − V )Pκ = 0 . (A.78)

Rewriting (A.78), using equation (A.76), and renaming the index κ to ` (because κ has

been eliminated) a new set of coupled radial equations similar to the non–relativistic

ones is obtained (c.f. (A.30)):

'

&

$

%

Q′` = −Q`

r
+

(
`(`+ 1)

Br2
+ (V − E)

)
P`

P ′` =
P`
r

+BQ`

(A.79)

A.3.1 Wronskian

In order to compute correctly the Wronskian of the second order differential equation

(A.75), some care has to be taken as compared to the non–relativistic case. Assume two

linear independent, differentiable functions, Z`(r) and J`(r), which are both solutions

and form the fundamental set of equation (A.75). Then the determinant of the solution

matrix is the Wronskian W (Z`, J`) associated to Z`(r) and J`(r):

W (Z`, J`)(r) =

∣∣∣∣
Z`(r) J`(r)

Z ′`(r) J ′`(r)

∣∣∣∣ = Z`(r)J
′
`(r)− Z ′`(r)J`(r) . (A.80)

The Wronskian can then be used to obtain information of the linear dependence or

independence of two solutions. Two solution of the same differential equation are thus

linear independent if

W (Z`, J`)(r) 6= 0 , (A.81)

and linear dependent if W (Z`, J`)(r) = 0. Equation (A.75) is of the general form

P ′′ + b(r)P ′ + c(r)P = 0 . (A.82)
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Let one solution be denoted as Z`(r), then a second, linear independent solution is

given by

J`(r) = Z`(r)ν`(r) . (A.83)

Forming the first and second derivatives, substitution of the results into (A.82) and

performing some easy manipulations, the function defined in (A.80) is then of the

following form:

W (Z`, J`)(r) = W (Z`, J`)(r0) exp


−

r∫

r0

b(x) dx


 . (A.84)

In there the coefficient b(x) is given by

b(x) =
V ′(x)

c2 + E − V (x)
. (A.85)

Hence the integral to be evaluated in equation (A.84) is

−
r∫

r0

b(x) dx = −
r∫

r0

V ′(x)

c2 + E − V (x)
dx (A.86)

= ln

(
c2 + E − V (r)

c2 + E − V (r0)

)
. (A.87)

Finally the Wronskian is determined from the function:

W (Z`, J`)(r) = W (Z`, J`)(r0)
c2 + E − V (r)

c2 + E − V (r0)
. (A.88)

In the non–relativistic case b(r) = 0 and hence the exponential in equation (A.84) is

equal to 1.
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Special Functions and Expansions

B.1

The Delta Function

The delta function of a variable x is commonly denoted as δ(x). It has the property

of being zero for all values of x except at x = 0. There it is infinite in such a manner

that its integral that contains the point x = 0 is equal to 1:

∞∫

−∞

δ(x) dx = 1 . (B.1)

If ε is any positive number the following identity is also true:

a+ε∫

a−ε

δ(x− a) dx = 1 . (B.2)

An important property of the delta function is that if it is multiplied by any continuous

function F (x) and the resulting product is integrated it results in

∞∫

−∞

F (x) δ(x− a) dx = F (a) . (B.3)

F (x) may be any kind of continuous function and can be a scalar, a vector, or a tensor.

The usefulness of the delta function is not its value for a specific argument, but the

evaluation of the product of a function with the delta function by an integral. In this

sense the delta function is a generalized function.
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The delta function can also be represented as a limit of an analytical function such as

δ(x) = lim
L→∞

sin(xL)

πx
, (B.4)

where for x = 0, sin(xk)/πx = L/π. This function has the same properties as the delta

function. Using expression (B.4), the proof of the equation

(2π)−1

∞∫

−∞

eikx dk = δ(x) (B.5)

is simple:

(2π)−1

∞∫

−∞

eikx dk = lim
L→∞

(2π)−1

L∫

−L

eikx dk = lim
L→∞

sin(xL)

πx
= δ(x) . (B.6)

The delta function can be extended to three dimensions where it is defined as:

δ(r) = δ(x) δ(y) δ(z) = (2π)−3

∫
eikrdk (B.7)

As in the one dimensional case, when multiplied with a function and after integration

the following relation results:

∫
δ(r)F (r) dr = F (0) , (B.8)

if r= 0 is contained in the integration region. Finally there are some useful relations:

δ(r) =
δ(r)

2πr2
, δ(r′ − r) =

2

r2
δ(n′ − n) δ(r′ − r) , (B.9)

where n and n′ are unit vectors in the direction of r and r′. Further definitions of the

delta function are:

δ(x) =
1

π
lim
ε→0

ε

x2 + ε2
, (B.10)

= lim
ε→0

ε |x|ε−1 , (B.11)

= lim
ε→0+

1

2
√
πε

e−x
2/(4ε) , (B.12)

= lim
ε→0

1

ε
Ai(x/ε) , (B.13)

= lim
ε→0

1

ε
J1/ε

(
x+ 1

ε

)
, (B.14)
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= lim
ε→0

∣∣∣∣
1

ε
e−x

2/ε Ln

(
2x

ε

)∣∣∣∣ , (B.15)

= lim
n→∞

1

2π

sin[(n+ 1
2
)x]

sin(1
2
x)

, (B.16)

where Ai(x) is an Airy function, Jn(x) is a Bessel function of the first kind, and Ln(x)

is a Laguerre polynomial of arbitrary positive integer order.

B.2

Complex Spherical Harmonics in Condon-Shortley

Convention

In the literature various expression for the spherical harmonics can be found which

differ by the choice of the phase factor. Furthermore, care has to be taken whether real

or complex functions are used. Throughout this work complex spherical harmonics

with the phase convention of Condon and Shortley [CS59][Jac92] are used and the

expressions will be given below.

Let us define the spherical harmonics in the following manner:

Y`m(θ, ϕ) = CmA`|m|P
|m|
` (cos θ)eimϕ , (B.17)

where the coefficients are defined by

A`|m| =

√
2`+ 1

4π

(`− |m|)!
(`+ |m|)! , (B.18)

and

Cm = im+|m| =

{
1 , if m ≤ 0 or m even

−1 , if m > 0 and m odd
.

The associated Legendre functions, P
|m|
` (cos θ), are the solution of the generalized Leg-

endre equation (see e.g. [Jac92])

d

d cos θ

((
1− cos2θ

) dPm
`

d cos θ

)
+

(
`(`+ 1)− m2

1− cos2θ

)
Pm
` = 0 . (B.19)

Using Rodrigues’ formula for the representation of the Legendre polynomials, P`(cos θ)

P`(cos θ) =
(
2``!
)−1 d`

d(cos θ)`
(
cos2θ − 1

)`
, (B.20)
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the Legendre functions can be expressed in terms of these as

P
|m|
` (cos θ) = (−1)|m|

(
1− cos2θ

)|m|/2 dm

d(cos θ)m
P`(cos θ) . (B.21)

Then for negative m the following relation can be obtained:

P−m` (cos θ) = (−1)m
(`− |m|)!
(`+ |m|)! P

m
` (cos θ) . (B.22)

Therefore for the spherical harmonics one has:

Y`,−m(θ, ϕ) = (−1)m Y ∗`m(θ, ϕ) . (B.23)

Another useful relation is that for a space reflection

Y`m(π − θ, ϕ+ π) = (−1)` Y`m(θ, ϕ) . (B.24)

Finally the normalization and orthogonality conditions are given by

2π∫

0

dϕ

π∫

0

sinθ dθ Y`m(θ, ϕ)Y ∗`′m′(θ, ϕ) = δ``′ δmm′ , (B.25)

and the completeness relation is obtained from the sum over the angular momentum

quantum numbers:

∞∑

`=0

∑̀

m=−`
Y`m(θ, ϕ)Y ∗`m(θ′, ϕ′) = δ(ϕ′ − ϕ) δ(cos θ′ − cos θ) . (B.26)

In this work the equivalent notations

YL(r̂) ≡ Y`m(θ, ϕ) , (B.27)

are used simultaneously. Finally from (B.23) it follows that

∑̀

m=−`
Y`m(θ, ϕ)Y ∗`m(θ′, ϕ′) =

∑̀

m=−`
Y ∗`m(θ, ϕ)Y`m(θ′, ϕ′) . (B.28)
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B.2.1 Gaunt Coefficients

An important set of constants that appears frequently in the derivations is the angular

integral over a triple product of spherical harmonics:

CL′
LL′′ =

∫
dr̂ YL(r̂)Y ∗L′(r̂)YL′′(r̂) . (B.29)

Here the upper index denotes the index of the complex conjugated spherical harmonic.

These quantities are often referred to as Gaunt coefficients and as for the spherical

harmonics the equivalent notations

CL′
LL′′ = C`′m′

`m,`′′m′′ , (B.30)

will be used. Not all of these coefficients are non-zero but only those for which m′ =

m + m′′, ` + `′ + `′′ even, ` + `′ ≥ `′′, `′ + `′′ ≥ `, and ` + `′′ ≥ `′ [LS72]. From

these selection rules (triangular conditions) follow the relations for the double primed

indices:

|`− `′| ≤ `′′ ≤ `+ `′ (B.31)

m′′ = m′ −m . (B.32)

Since the Gaunt coefficients are real one finds that

CL′
LL′′ = CLL′′

L′ . (B.33)

And due to the othonormality of the spherical harmonics we get the useful relation

CL′
L,(0,0) = CL′

(0,0),L =
δLL′√

4π
. (B.34)

B.2.2 Useful Expansions

Two important expansions in terms of spherical harmonics that are used in this work

are (c.f. [Mes69], [Jac92],[LS72],[Skr84]):

1

|r − r′| =
∑

L

4π

2`+ 1

r`<
r`+1
>

YL(r̂)Y ∗L (r̂′) , (B.35)

and

1

|r − r′|`+1
Y`m(r̂ − r′) =

∑

L′

(−1)`
4π (2(`+ `′)− 1)!!

(2`− 1)!! (2`′ + 1)!!
C`′m′
`m,(`+`′)(m′−m)

× Y ∗(`+`′)(m′−m)(r̂
′)

1

(r′)`+`′+1
r`
′
Y`′m′(r̂) . (B.36)
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B.3

The Green’s Function for Free Electrons

In this section the expressions (2.9) and (2.10) will be derived in detail. The starting

point is equation (2.7):

G0(r, r′;E) = (2π)−3

∫
exp [iq · (r − r′)]

k2 − q2
dq . (B.37)

Changing to spherical coordinates

dq = q2 dq dq̂

dq̂ = sin θ dθ dϕ ,

with 0 ≤ q <∞, 0 ≤ ϕ ≤ 2π, and 0 ≤ θ ≤ π, the integral transforms to

G0(r, r′;E) = (2π)−3

∞∫

0

dq
q2

k2 − q2

∫
dq̂ exp(iq|r − r′| cos θ) , (B.38)

where q·r= qr cos θ has been used. Next the integration over dq̂ is performed:

∫
dq̂ exp(iq|r − r′| cos θ) =

2π∫

0

dϕ

π∫

0

dθ sin θ exp(iq|r − r′| cos θ) (B.39)

= −2π
exp(−iq|r − r′|)− exp(iq|r − r′|)

iq|r − r′| . (B.40)

After substitution and rearrangement in (B.38), only the one dimensional radial integral

is left:

G0(r, r′;E) =
1

4π2i|r − r′|

∞∫

0

q [exp(iq|r − r′|)− exp(−iq|r − r′|)]
k2 − q2

dq (B.41)

= − 1

4π2i|r − r′|

∞∫

−∞

q exp(iq|r − r′|)
q2 − k2

dq . (B.42)

The last expression contains a complex function of the variable q in the integral, which

has two simple poles at q = k and q = −k. For the evaluation of the integral a proper

integration path in the upper half of the complex plane has to be chosen, which includes
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either one of the two poles. According to standard analysis [WW92] an integral of the

type (B.42) is evaluated as

∞∫

−∞

f(z) dz = 2πi

n∑

k=0

Resz=zk f(z) , Im(zk) > 0 , (B.43)

where z is a complex variable, zk are the poles of f(z), and Resf(z) refers to the

residuum of the function f(z), which can be evaluated from

Resz=zk f(z) = lim
z→zk

(z − zk)f(z) . (B.44)

With

Resq=k

{
q exp(iq|r − r′|)

q2 − k2

}
=

1

2
exp(ik|r − r′|) , (B.45)

evaluation of the integral in (B.42) yields

G0
(+)(r, r

′;E) = −exp(ik|r − r′|)
4π|r − r′| , (B.46)

which is equation (2.9). If the residuum for the second pole, q = −k, is calculated,

equation (2.10) is obtained:

G0
(−)(r, r

′;E) = −exp(−ik|r − r′|)
4π|r − r′| . (B.47)

B.3.1 Partial Wave Expansion of the Free Particle Green’s Function

A commonly used description of the free particle Green’s function is its expansion in

terms of solutions of the free space Schrödinger equation and its partial wave compo-

nents. We start off by rewriting equation (2.7)

G0(r, r′;E) = (2π)−3

∫
exp (iq · r)

1

k2 − q2
exp (−iq · r′) dq . (B.48)

Using the expansion (2.11), which is also known as Bauer’s identity, we have

G0(r, r′;E) = (2π)−3

∫
dq

(∑

L

4πi` j`(qr)Y
∗
L (q̂)YL(r̂)

)

× 1

k2 − q2

(∑

L′

4π(−i`
′
) j`′(qr

′)YL′(q̂)Y ∗L′(r̂
′)

)
. (B.49)
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Transformation to spherical coordinates and some rearrangement yields

G0(r, r′;E) =
2

π

∞∫

0

q2 dq

k2 − q2

∑

LL′

i`(−i`
′
) j`(qr)j`′(qr

′)YL(r̂)Y ∗L′(r̂
′)

×
∫

dq̂ Y ∗L (q̂)YL′(q̂) . (B.50)

Now the orthogonality of the complex spherical harmonics can be used

∫
dq̂ Y ∗L (q̂)YL′(q̂) = δLL′ , (B.51)

and with i`(−i`) = 1, one can write

G0(r, r′;E) =
2

π

∞∫

0

q2 dq

k2 − q2

∑

L

j`(qr)j`(qr
′)YL(r̂)Y ∗L (r̂′) . (B.52)

Following from the fact that the integrand is even in q, this formula can be rewritten

to yield equation (2.12)

G0(r, r′;E) = π−1
∑

L

YL(r̂)Y ∗L (r̂′)

∞∫

−∞

j`(qr) j`(qr
′)

k2 − q2
q2dq . (B.53)

Hence we can define

G0
`(r, r

′;E) = π−1

∞∫

−∞

j`(qr) j`(qr
′)

k2 − q2
q2dq . (B.54)

The evaluation of the integral has to be done by contour integration in the complex

q plane. However, because the product j`(qr) j`(qr
′) does not vanish along the semi

circle in the upper half plane [MMZ87] some care has to be taken. Following Gonis

[Gon92] for r′ > r the relation

j`(qr
′) =

1

2
[h`(qr

′) + h∗`(qr
′)] , (B.55)

where h`(qr
′) is a spherical Hankel function of the first kind, helps out. After substi-

tution in (B.53) the solutions to two integrals have to be found:

I1 =
1

2

∞∫

−∞

q2 j`(qr)h`(qr
′)

k2 − q2
dq , (B.56)

I2 =
1

2

∞∫

−∞

q2 j`(qr)h
∗
`(qr

′)

k2 − q2
dq . (B.57)
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The integral I1 can be solved by using the pole at q = +k from

I1 = 1
2

2πi Resq=+k

[
q2 j`(qr)h`(qr

′)

k2 − q2

]
(B.58)

= πi

[
−1

2
k j`(kr)h`(kr

′)

]
(B.59)

= −1
2

iπk j`(kr)h`(kr
′) , r′ > r . (B.60)

The second integral can be evaluated by closing the contour in the lower half plane

and thereby including the second pole q = −k. One then gets

I2 = 1
2

2πi Resq=−k

[
q2 j`(qr)h

∗
`(qr

′)

k2 − q2

]
(B.61)

= −1
2

iπk j`(−kr)h∗`(−kr′) . (B.62)

With the identities j`(−kr) = (−1)`+1j`(kr) and h∗`(−kr) = (−1)` h`(kr), I2 finally

yields an contribution identical to I1:

I2 = −1
2

iπk j`(kr)h`(kr
′) , r′ > r . (B.63)

In total we have

I1 + I2 = −iπk j`(kr)h`(kr
′) , r′ > r . (B.64)

The same procedure has to be used for r > r′ which gives the identical result, and in

summary we can write

I1 + I2 = −iπk j`(kr<)h`(kr>) , (B.65)

and therefore

G0
`(r, r

′;E) = −ik j`(kr<)h`(kr>) , (B.66)

where r< := min{r, r′} and r> := max{r, r′}. With this result the partial wave expan-

sion of the free particle Green’s function is given by

G0(r, r′;E) = −ik
∑

L

j`(kr<)h`(kr>)YL(r̂)Y ∗L (r̂′) , (B.67)

and with the definitions:

jL(kr) = j`(kr)YL(r̂) (B.68)

hL(kr) = h`(kr)YL(r̂) , (B.69)
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we can finally write

G0(r, r′;E) = −ik
∑

L

jL(kr<)hL(kr>) , (B.70)

which is equation (2.14).
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Numerical Methods

C.1

Numerical Integration - Quadratures

In the SKKR program, essentially three types of integrals appear. One type are Bril-

louin zone integrals, where for a layered system the integration has to be performed

over a two dimensional plane in reciprocal space. A second type are complex energy

integrations which appear e.g. in the evaluation of the charge density or by computing

the Band energy part to the kinetic energy. And a third type are one dimensional

radial integrals, which are frequently used within the program. Below an account of

the mathematical basis for the numerical evaluation of these kinds of integrals is given.

The basic principle of numerical integration is to approximate the integrand f(x) by

an interpolating polynomial. Two types of approximations are possible. In one case

a function is known on a given (equidistant) mesh, in the other the mesh is chosen to

yield the highest possible accuracy [Sch97]. Initially the former case will be treated.

C.1.1 Newton-Cotes Quadrature and Lagrange Interpolation

Lagrange Interpolation

The basis of all that follows is the existence and uniqueness of polynomial interpola-

tion. Given n + 1 discrete mesh points x0, x1, x2, . . . , xn and the corresponding values

y0, y1, y2, . . . , yn, we then want to find a polynomial of n-th order

Pn(x) = a0 + a1x+ a2x
2 + . . .+ anx

n , (C.1)
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which satisfies the condition that

Pn(xi) = yi , i = 0, 1, 2, . . . , n . (C.2)

To see that such a polynomial, whose highest order is n, will always exist for any

given pair of mesh points and corresponding values, we can inspect certain Lagrange

polynomials, Li(x) for the n+ 1 mesh points:

Li(x) :=
n∏

j=0
j 6=i

x− xj
xi − xj

, i = 0, 1, 2, . . . , n . (C.3)

With this definition the Lagrange polynomials have the following property:

Li(xk) = δik =

{
1, i = k

0, i 6= k
. (C.4)

Now the polynomial Pn(x) can be written as

Pn(x) =
n∑

i=0

yi Li(x) , (C.5)

which can easily be seen when (C.4) is used:

Pn(xk) =
n∑

i=0

yi Li(xk) =
n∑

i=0

yi δik = yk , k = 0, 1, 2, . . . , n . (C.6)

The uniqueness of this polynomial can also be shown [Sch97].

These results can be used to find a computationally useful scheme for the general

interpolation of a function given on a certain mesh - the Lagrange interpolation which

has already been defined through equation (C.5). Now using (C.3) in (C.5), we find

for x 6= xi:

Pn(x) =
n∑

i=0

yi

n∏

j=0
j 6=i

x− xj
xi − xj

=
n∑

i=0

yi
1

x− xi




n∏

j=0
j 6=i

1

xi − xj




n∏

k=0

(x− xk) . (C.7)

The expression in the brackets depends only on the mesh points and can be defined as

coefficients, thus

πi :=
n∏

j=0
j 6=i

1

xi − xj
, i = 0, 1, 2, . . . , n . (C.8)
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Defining the following quantity that depends also on the new mesh point x

$i :=
πi

x− xi
, i = 0, 1, 2, . . . , n , (C.9)

we can write

Pn(x) =
n∑

i=0

$i yi

n∏

k=0

(x− xk) . (C.10)

Finally we have to find an useful expression for the last product. This can be found

by observing that for yi = 1 also Pn(x) = 1 for all i. With this it follows that

1 =

n∑

i=0

$i

n∏

k=0

(x− xk) , (C.11)

and then the product is determined through the weights $i as

n∏

k=0

(x− xk) =
1

n∑
i=0

$i

. (C.12)

Now we have found a formula for the Lagrange interpolation (C.5):

Pn(x) =

n∑
i=0

$i yi

n∑
i=0

$i

, (C.13)

which can be used in actual calculations. Within the SKKR code the subroutine that

is based on this interpolation scheme is called ylag.f.

Newton-Cotes Quadrature

Now lets turn to the numerical evaluation of integrals and start with the following

considerations: we want to integrate a real, continuous function f(x), which is given

on n + 1 mesh points x0 < x1 < x2 < . . . < xn, on the closed interval [a, b] which

contains the whole mesh. The integral is denoted as

I =

b∫

a

f(x) dx . (C.14)
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According to the previous section for the mesh points and the corresponding values

f(xk) there exists a unique interpolation polynomial Pn(x) which can be denoted using

the Lagrange polynomials Lk(x):

Pn(x) =
n∑

k=0

f(xk)Lk(x) , (C.15)

as then

Pn(xk) = f(xk) . (C.16)

In order to approximate the integral we substitute (C.15) in (C.14):

In =

b∫

a

Pn(x) dx =
n∑

k=0

f(xk)

b∫

a

Lk(x) dx . (C.17)

If the integration weights wk are defined as

wk :=
1

b− a

b∫

a

Lk(x) dx , k = 0, 1, 2, . . . , n , (C.18)

we obtain as an approximation to the integral in (C.14) the interpolating quadrature

formula

In = (b− a)
n∑

k=0

wk f(xk) . (C.19)

Simpson’s Rule

Let us consider an equidistant mesh in the interval [a, b] such that:

xi = a+ ih , i = 0, 1, 2, . . . , n , h =
b− a
n

. (C.20)

To evaluate the expression (C.18) we need to use the definition of the Lagrange poly-

nomials (C.3) and make the substitution

x = a+ (b− a)ξ , dx = (b− a)dξ , (C.21)
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which leads to:

wk :=
1

b− a

b∫

a

n∏

i=0
i6=k

x− xi
xk − xi

dx =

1∫

0

n∏

i=0
i6=k

nξ − i
k − i dξ . (C.22)

Taking n = 2 leads to the three weighting factors:

w0 =

1∫

0

(2ξ − 1)(2ξ − 2)

(−1)(−2)
dξ =

1

2

1∫

0

(4ξ2 − 6ξ + 2) dξ =
1

6
, (C.23)

w1 =

1∫

0

2ξ(2ξ − 2)

(−1)
dξ = −

1∫

0

(4ξ2 − 4ξ) dξ =
2

3
, (C.24)

w2 =

1∫

0

2ξ(2ξ − 1)

2
dξ =

1

2

1∫

0

(4ξ2 − 2ξ) dξ =
1

6
, (C.25)

which can be substituted into the quadrature formula to yield Simpson’s rule:

I2 =
b− a

6
(f(x0) + 4 f(x1) + f(x2)) =

h

3
(f(x0) + 4 f(x1) + f(x2)) . (C.26)

A better approximation of the integral is obtained if the interval [a, b] is divided into

N intervals of equal length. Then the above formula is applied on each interval and

the results are added up to give a modified Simpson’s rule:

S2 =
h

3

(
f(a) + 4 f(x1) + f(b) + 2

N−1∑

k=1

[f(x2k) + 2 f(x2k+1)]

)
, (C.27)

where

h =
b− a
2N

, xk = a+ kh , k = 1, 2, . . . , 2N − 1 . (C.28)

The function that performs this integration in the code is rsimp.f.
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C.1.2 Gaussian Quadrature

The difference to the quadrature formulas discussed above is that now the weights wk

and the mesh points xk are chosen to give a quadrature formula of the highest possible

accuracy. In close analogy to the results obtained above such a formula is given by

In =
n∑

k=1

wk f(xk) , xk ∈ [−1, 1] . (C.29)

The n mesh points xk are the zeros of the n-th Legendre polynomial, (for a proof see

reference [Sch97]) which has been defined in (B.20), and the weights wk are

wk =

1∫

−1

n∏

j=1
j 6=k

(
x− xj
xk − xj

)2

dx > 0 , k = 1, 2, . . . , n . (C.30)

It is common to choose the integration interval to be [−1, 1] as any finite interval [a, b]

may be obtained through a linear transformation. One advantage of this choice is

that the nodes xk lie symmetric around the origin and therefore the knowledge of the

non-negative nodes and their corresponding weights suffices.

Using a Gaussian quadrature to calculate an integral of the general form

I =

b∫

a

f(ξ) dξ , (C.31)

a variable substitution of the type

ξ =
b− a

2
x+

a+ b

2
, (C.32)

has to be used. Then the integral transforms to

I =
b− a

2

1∫

−1

f

(
b− a

2
x+

a+ b

2

)
dx , (C.33)

and the quadrature formula is

In =
b− a

2

n∑

k=1

wk f

(
b− a

2
xk +

a+ b

2

)
=
b− a

2

n∑

k=1

wk f(ξk) . (C.34)
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C.2

Complex Energy Integration

The Gaussian quadrature is used within the program to compute integrals over func-

tions of the complex energy. To perform these integrals a special parameterization can

be chosen such that the complex energy lies on a semicircular contour and the mesh

is denser approaching the Fermi energy. The integral to be evaluated is of the form

[TDK+97]

I =

EF∫

EB

f(z) dz , (C.35)

where z is some complex energy and EB denotes the bottom of the valence band which

in practical calculations is an energy point below the valence band. Clearly EF is the

Fermi energy. To evaluate this integral we turn to a parameterization of the complex

energy that makes use of an angle ϕ and the radius r whose meanings are illustrated

in figure C.1. The radius is thus defined as

r =
EF − EB

2
, (C.36)

and by defining z0 = EB + r, the complex energy is given by

z = r eiϕ + z0 . (C.37)

In order to obtain the desired distribution of the complex energy points ϕ is given by

ϕ = ε
(
e−y − 1

)
, (C.38)

where ε is some small number and y is

y =
1

2
(y2 − y1)xk +

1

2
(y2 + y1) . (C.39)

There the xk are the zeros of the Legendre polynomials and y1 and y2 define the first

and the last point on the contour as they are calculated from

y1 = − ln

(
ε+ ϕ1

ε

)
, (C.40)

y2 = − ln

(
ε+ ϕ2

ε

)
, (C.41)
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Figure C.1: Parameterization of the semicircular contour for the complex energy

integration.

E E
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ϕ
PSfrag replacements
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z
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Hence for ϕ1 = π and ϕ2 = 0 it can be easily checked that with xk = −1 we get

z = z0 − r and with xk = 1 we get z = z0 + r. Now with this parameterization the

initial integral can be evaluated from

I =
n∑

k=1

ρk f(zk) , (C.42)

where the parametrized weights ρk and the nodes zk are given by

ρk = − i ε e−y (y2 − y1) (zk − z0)wk
2

, (C.43)

zk = r eiϕ + z0 (C.44)

The routine that performs this parameterization is zmesh.f.

Complex Energy Integration Along a Straight Line

If instead of the semi circle an integration parallel to the energy axis is desired, things

are less complicated. Then the distribution of energy points is equidistant with an

increment ∆z:

∆z =
EF − EB
N − 1

, (C.45)

if N is the number of energy points. Hence the complex energies are given by

zk = zk−1 + ∆z + iε , (C.46)
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where ε is some small number. The corresponding weights are real and simply

wk = ∆z , (C.47)

except for k = 1 and k = N , for which we use wk = ∆z/2.

C.3

Brillouin Zone Integration

The integration over a Brillouin zone [LT72][FV76][Ban75][Kle83][Has61][HWK90]

[HKS84][JA84][PS85] is in principle performed by a simple Newton-Cotes quadrature

(c.f. equation (C.19)). Since we are dealing with layered structures, two dimensional

integrations have to be performed in reciprocal space. The sets of mesh points and

weights have to be chosen in accordance with the direction of the crystal planes and

hence are different for the (001), (110), and (111) directions. Care has to be taken

when the two dimensional reciprocal lattice is constructed since the final results are

different depending on whether it is obtained from the two dimensional, direct lattice or

from the three dimensional one. In the following the constructions of two dimensional

lattices for the three major crystallographic planes in an fcc lattice will be discussed.

Figure C.2: The 2D real space, primitive vectors a1, a2 and the corresponding

vectors in reciprocal space labelled by b1, b2. One can see that b1 (b2) is perpendicular

to a2 (a1).
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b
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Figure C.3: Fcc (001) plane. The

lengths of the diagonals are equal to

the 3D lattice constant a.
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Figure C.4: Fcc (110) plane.
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But first let us investigate the general construction of the two dimensional reciprocal

lattice.

Generally, the two basis vectors forming the primitive cell in direct space are given by

a1 = a2D

(
1

0

)
, a2 = β a2D

(
cosα

sinα

)
, (C.48)

where α is the angle between a1 and a2, and β is the asymmetry ratio of the primitive

cell, i.e. it is equal to 1 if the vectors have the same length. The 2D lattice constant

a2D of the direct lattice is related to the 3D lattice constant in ways depending on the

crystallographic plane under consideration. Because of the relation (c.f. figure C.2)

ai bj = 2π δij , i, j = 1, 2 , (C.49)

it follows that the primitive vectors of the reciprocal lattice, b1 and b2 are given by

b1 =
2π

a2D sinα

(
sinα

− cosα

)
, b2 =

2π

β a2D sinα

(
0

1

)
. (C.50)

With this we can now investigate the three different planes.
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Figure C.5: Distribution of k points

in the irreducible part of the Brillouin

zone of a two dimensional square

lattice for a fcc or bcc (001) plane.
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Figure C.6: Distribution of k points

in the irreducible part of the Brillouin

zone of a two dimensional rectangular

lattice for a fcc (110) plane.
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C.3.1 Fcc (001) Plane

In this plane, which is illustrated in figure C.3, the 2D lattice constant is related to the

3D lattice constant a via

a2D =
a√
2

. (C.51)

The lattice is of square type and therefore α = π/2 and β = 1. Hence according to

(C.48) the vectors in real space are given by

a1 = a2D

(
1

0

)
, a2 = a2D

(
0

1

)
, (C.52)

and with (C.50) the basis vectors in reciprocal space are

b1 =
2π

a2D

(
1

0

)
, b2 =

2π

a2D

(
0

1

)
. (C.53)

Now the Brillouin zone can be constructed around each lattice point. Then the irre-

ducible part of the zone, as illustrated in figure C.5, is bounded by the vectors:

k1 =
π

a2D

(
1

0

)
, k2 =

π

a2D

(
1

1

)
. (C.54)
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Figure C.7: Distribution of k points

in the irreducible part of the Brillouin

zone of a two dimensional hexagonal

lattice on a fcc or bcc (111) plane.
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Figure C.8: First Brillouin zone in a

two dimensional hexagonal lattice with

the lattice points indicated by filled,

black circles.
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The points for the integration are distributed equally along the kx and ky direction. If

n is the number of points in the kx direction then the total number of points in the

irreducible part is n(n+ 1)/2.

C.3.2 Fcc (110) Plane

In the direct lattice, displayed in figure C.4, the 2D lattice constant is a2D = a, however

the lattice is rectangular (α = π/2) and β = 1/
√

2. Therefore the vectors are given by

a1 = a2D

(
1

0

)
, a2 =

a2D√
2

(
0

1

)
, (C.55)

and with this the reciprocal vectors are obtained as

b1 =
2π

a2D

(
1

0

)
, b2 =

2
√

2 π

a2D

(
0

1

)
. (C.56)

The kx and the ky directions are subdivided into an equal number of intervals, which

means that there is the same number of points in each direction. Because of this

arrangement, n2 points are used for the integration if there are n points in one direction.

134



Appendix C

C.3.3 Fcc (111) Plane

In the (111) direction, which is illustrated in figure C.9, a hexagonal lattice is obtained.

Then also the reciprocal lattice is hexagonal. The 2D lattice constant in direct space

is given by

a2D =
a√
2

, (C.57)

β is equal to 1 and α = π/3. Hence the vectors forming the two dimensional primitive

cell are

a1 = a2D

(
1

0

)
, a2 = a2D

(
1/2√
3/2

)
. (C.58)

It follows that the reciprocal, primitive vectors are given by

b1 =
4π

a2D

√
3

( √
3/2

−1/2

)
, b2 =

4π

a2D

√
3

(
0

1

)
. (C.59)

The corresponding first Brillouin zone is illustrated in C.8 and from simple Algebra it

follows that the two vectors defining the irreducible part are simply

k1 =
π

a2D

(
2/3

0

)
, k2 =

π

a2D

(
2/3

2/
√

3

)
. (C.60)

In figure C.7 the distribution of k points in this region is displayed. Contrary to the

previous cases, the points are not distributed evenly but in a special manner.

Figure C.9: Fcc (111) plane. Indicated are the relations to the 3D lattice constant a.
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Figure C.10: Bcc (001) plane.

Indicated are the relations to the 3D

lattice constant a
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y
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a

a

a

a

BCC (001)

Figure C.11: Bcc (111) plane.

Indicated are the relations to the 3D

lattice constant a
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[ÚSW95] B. Újfalussy, L. Szunyogh, and P. Weinberger. Magnetism of 4d and 5d

adlayers on Ag(001) and Au(001): comparison between a nonrelativistic

and a fully relativistic approach. Phys. Rev. B, 51:12836, 1995.
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berger. Theory and convergence properties of the screened Korringa-

Kohn-Rostoker method. Phys. Rev. B, 52:8807, 1995.

[Zel87] R. Zeller. Multiple-scattering solution of Schrödinger’s equation for po-

tentials of general shape. J. Phys. C, 20:2347, 1987.

[Zel88] R. Zeller. Empty-lattice test for non-muffin-tin multiple-scattering equa-

tions. Phys. Rev. B, 38:5993, 1988.

[Zel97] R. Zeller. Evaluation of the screened Korringa-Kohn-Rostoker method for

accurate and large-scale electronic-structure calculations. Phys. Rev. B,

55:9400, 1997.

143



REFERENCES

[ZG89a] X. G. Zhang and A. Gonis. New, real-space, multiple-scattering-theory

method for the determination of electronic structure. Phys. Rev. Lett.,

62:1161, 1989.

[ZG89b] X. G. Zhang and A. Gonis. Secular equation of Korringa, Kohn, and

Rostoker for the case of non-muffin-tin, space-filling potential cells. Phys.

Rev. B, 39:10373, 1989.

[ZGM89] X. G. Zhang, A. Gonis, and J. M. MacLaren. Real-space multiple-

scattering theory and the electronic structure of systems with full or re-

duced symmetry. Phys. Rev. B, 40:3694, 1989.

[Zim65] J. M. Ziman. The t matrix, the k matrix, d bands and l-dependent

pseudo-potentials in the theory of metals. Proc. Phys. Soc., 86:337, 1965.

[ZPU+98] J. Zabloudil, U. Pustogowa, C. Uiberacker, P. Weinberger, and L. Szun-

yogh. Magnetic anisotropy of FexCo1−x multilayers on Cu(001): Reorien-

tation transition of magnetic moments due to different interlayer coupling.

Phys. Rev. B, 58:6316, 1998.

[ZUB+98] J. Zabloudil, C. Uiberacker, C. Blaas, L. Szunyogh, C. Sommers, U. Pus-

togowa, and P. Weinberger. Superlattice symmetry in magnetic multilayer

systems. Phys. Rev. B, 57:7804, 1998.

144



Publications

1. J. Zabloudil, C. Uiberacker, C. Blaas, U. Pustogowa, L. Szunyogh, C. Sommers

and P. Weinberger,

Superlattice symmetry in magnetic multilayer systems,

Phys. Rev. B 57, 7804 (1998)

2. R. Zeller, M. Asato, T. Hoshino, J. Zabloudil, P. Weinberger, and P. H. Dederichs,

Total-energy calculations with the full-potential KKR method,

Phil. Mag. B 78, 417 (1998)

3. L. Szunyogh, J. Zabloudil, P. Weinberger, and C. Sommers,

Concentration dependent spin-flip energies for surface magnets,

Phil. Mag. B 78, 603 (1998)

4. J. Zabloudil, C. Uiberacker, U. Pustogowa, and P. Weinberger,

Layer- and component-resolved magnetic moments and anisotropy energies in

(FexCo1−x)n/Cu(100),

Phil. Mag. B, 78, 597 (1998)

5. J. Zabloudil, L. Szunyogh, U. Pustogowa, C. Uiberacker, and P. Weinberger,

Magnetic anisotropy of FexCo1−x multilayers on Cu(001): Reorientation transi-

tion of magnetic moments due to different interlayer coupling,

Phys. Rev. B 58, 1 (1998)

6. C. Sommers, J. Zabloudil, C. Uiberacker, P. Weinberger, and L. Szunyogh,

Multiple reorientation transition of the magnetization of free surfaces of Fe on

Ag(100),

Phys. Rev. B 58, 5539 (1998)

7. U. Pustogowa, J. Zabloudil, C. Uiberacker, C. Blaas, P. Weinberger, L. Szunyogh,

and C. Sommers,

Magnetic properties of thin films of Co and of (CoPt) superstructures on Pt(100)

and Pt(111),

Phys. Rev. B 60, 414 (1999)

145



Publications

8. C. Uiberacker, J. Zabloudil, P. Weinberger, L. Szunyogh, and C. Sommers,

Lattice relaxation driven reorientation transition in Nin/Cu(100),

Phys. Rev. Lett. 82, 1289 (1999)

146



Acknowledgements

My acknowledgement goes to Prof. Dr. Peter Weinberger for his guidance and perma-

nent encouragement during the course of this work. Many thanks also to Dr. Laszlo

Szunyogh for his help on various aspects of the theoretical part of the thesis and for

many clarifying discussions.

I had the pleasure to work at the Forschungszentrum Jülich on several occasions thanks
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