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1 Preface - What is a fractal?

There exists the age old question, whether mathematics is invented by hu-
mans or discovered. Mathematical models help us to understand our sur-
rounding, but never describe reality without errors. The assumptions we take
are highly generalizing and often not realizable in the real world. Especially
in geometry we use perfect polygons, smooth curves or even straight lines,
which in reality just exist as concepts. But even in pure mathematics one is
often tempted to expect results to follow our experiences in the real world.
Fractals were often used as counter examples, like for example the continuous
but nowhere differentiable Weierstrass function or the space filling Hilbert
curve. Often described as ”mathematical monsters” many mathematicians
invented their own shapes with bizarre properties to show the limits of certain
mathematical theories. But these monsters themselves never were treated as
legitimate objects worthy of studying, until Benoit B. Mandelbrot began in-
vestigating them in the 70s of the 20th century. With his Book ”The fractal
geometry of nature” ( [13]) from 1982 he connected these early examples of
mathematical monsters, as well as natural phenomea and computer applica-
tions. Since then the theory spread and flourished and is now highly used
in computer science to generate natural looking images of trees, clouds or
mountains. But also in pure mathematics fractal appear quite naturally in
dynamical systems and even number theory.
What is a fractal? In the public understanding fractals are often mistaken
with self-similar sets, which are geometric object that consist of smaller copies
of themselves. In this chapter we will discuss some of the early examples
and their counter intuitive properties. However in todays definition not all
fractals are self-similar. Random sets of points can be fractal without any
underlying structure. Most examples we encounter are in fact self-similar in
a broader sense that we will discuss in chapter 3. Self-similarity can often be
seen in nature with examples like romanesco broccoli or ice cristals. Never-
theless since the nature of the world is not infinite but rather finite, real strict
self-similarity never occurs. As usefull self-similarity is to describe nature it
is also just another modell of the world. Also note that not all self-similar
sets are fractals, since intervals consist of smaller copies of themselves.
So since self-similarity is not the defining quality of fractals, a broader notion
needs to be established. Intuitively speaking we want to develope a measure
forthe roughness or the rippling of an object. In Chapter 2 we will develop
various concepts, in particular Hausdorff dimension, realizing these whishes

1
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as well as a general topological notion of dimension that allows us to formal-
ize our intuition of dimension using only topological properties. A fractal is
than defined as an object for which these two notions of dimension differ.
Chapter 4 will deal with a number theoretical problem that is strongly
conected to fractal geometry. A generalized notion of radix representation
leads to various examples of self-similar shapes. These objects can be under-
stood better by using the algebraic structure creating them. One of these
shapes is the Knuth Twin dragon, which has fractal boundary. We will dis-
cuss it in particular since it is the main interest of study in the last chapter.
Finally we want to intersect the Twin dragon with lines of rational slope in
Chapter 5. Following a paper by Shigeki Akiyama and Klaus Scheicher [1],
who calculated the intersection with the x- and y-axis, we want to use the
same technique to determine intersections with other lines. This is the core
part of this thesis: it is not based on literature but is self-developed contri-
bution to mathematics.
The rest of this chapter will be regarding three examples of fractals from
various viewpoints: the Cantor set, the Sierpinsky triangle and the Twin
dragon itself. On the one hand, they will not be dealt in a rigorous way,
since some questions use more general theory from the latter chapters. On
the other hand, some properties are proved to give a better understanding
the following abstract theory.
Finally I point out that this thesis only gives an introduction to fractal ge-
ometry and mainly deals with topological, measure and number theoretical
aspects of fractals. There are further approaches to the topic via dynamical
systems or computer science. The references cited in this thesis can be a
good starting point for interested readers. Please be aware that although all
sources are rigorously cited, sometimes definitions, claims or proofs vary to
fit our context.

2
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Figure 1: The first few approximations of the Cantor set C∞

The first object we want to discuss is probably the most elementary fractal
ever created. It was first defined by Georg Cantor in 1883 and starts with
a real interval, so w.l.o.g C0 ∶= [0,1]. We now obtain C1 = [0,1/3] ∪ [2/3,1]
from C0 by removing its middle third interval. The first approximation of
the Cantor set consist of two intervals and we proceed by removing the third
of them as well: this generates a decreasing sequence of sets Cn. Now we
define the Cantor set as the ”limit” of this process.

Definition 1.1. Let C0 ∶= [0,1] and Cn created by the process described
above. Then we define the Cantor set as

C∞ ∶= ∞⋂
n=0

Cn (1)

A direct consequence of this definition is the following proposition.

Proposition 1.2. Let C0, ..., Cn, ..., C∞ be defined as above and let L note
the length of a set. Then

L(C∞) = lim
n→∞
L(Cn) = 0 (2)

Proof. The proof is straight forward: L(C0) = 1 and L(Cn) = (2/3)L(Cn−1) =(2/3)n. This converges to 0 for n→∞.

Since L is not properly defined, this can only be viewed as a heuristic
argument, but it holds for the more rigorous notion of Lebesgue measure.
The next proposition shows that infact most of the original interval is cut
out by the process, but the points left over form a self-similar set.

3
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Proposition 1.3. C∞ consists of two smaller copies of itself.

Proof. This can be easily seen by the fact that C1 consists of two invervals
namely A0 and B0. Applying the same process to create the Cantor set on
these two starting intervals generates A∞ = (1/3)C∞,B∞ = (1/3)(C∞ + 2)
which satisfy C∞ = A∞ ∪B∞.

Another way to see this is by changing the process to approach C∞. In-
stead of cutting out intervals we use to functions f1(x) ∶= x/3 and f2(x) =
x/3 + 2/3 and define Cn+1 = f1(Cn) ∪ f2(Cn). Note that this generates
the same approximations as before and the limit object is invariant under
F (C) = f1(C) ∪ f2(C). This is the general approach to self-similar sets, and
one can define a notion of limit of these sets. Under pretty weak conditions
this sequence allways converges, namely if the generating functions are con-
tractions.
Since most of the unit interval gets lost in the process, Cantor posed the
question of how much points are still left. Clearly the rational endpoints
remain untouched in every step so countably infinite many points remain in
the Cantor set. However the Cantor set is uncountable.

Proposition 1.4. There is a surjection from the Cantor set to the unit
interval.

Proof. Using ternary representation we can characterize C∞ as the set of all
numbers which can be expressed by only using the digits 0 and 2. Note that
instead of 0.13 one can express the number 1/3 as 0.023, so the endpoints are
also expressible with only 0 and 2. Now define f ∶ C∞ → [0,1] by replacing
all 2’s by 1’s and interpret the representation in base two. This function is
surjective, therefore the Cantor set has uncountable many points.

This result was quite a shock when first discovered, since it contradicts
our natural understanding of quantity. A set with no length but uncoutably
many points was something quite hard to accept. Sometimes the Cantor set
is refered to as Cantor dust, since it is basically nothing but still countains as
many points als the unite interval. Furthermore the Cantor set is compact,
nowhere dense, totally disconnected.

The next famous example is was proposed by Waclaw Sierpinsky in the
year 1915. The Sierpinski triangle can be obtained by starting with a equi-
lateral triangle and in every step diveding the triangle into four subtriangles

4
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Figure 2: The Sierpinski triangle

and removing the middle one. As with the Cantor set this construction via
initiator and generator is pretty common for fractals and can be mathemat-
ically formalized. Another way to generate the Sierpinsky triangle is by only
taking the boundary of the triangle and adding more and more triangles. It
is not obvious that these two processes determine the same object, but the
self-similar property of the set, will guarantee its uniqueness, as we will see
in Chapter 3.

Definition 1.5. Let f1, f2, f3 ∶ R2
→ R2 defined by

f1(x, y) ∶= 1

2
(x, y)

f2(x, y) ∶= 1

2
(x, y) + (0, 1

2
)

f3(x, y) ∶= 1

2
(x, y) + (1

4
,

√
3

4
)

(3)

The set S ⊂ R2 fulfilling S = f1[S] ∪ f2[S] ∪ f3[S] is called the Sierpinski
triangle or Sierpinski gasket.

The existence and uniqueness of this set will be shown later, but still
we acknowlegde that different starting objects lead to the same object. In
fact the starting object is irrelevant as long as it is not the empty set. An-
other thing that follows immediately from the two possible approaches is the
following.
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Proposition 1.6. The length of the Sierpinsky triangle is infinite and its
area is 0.

Proof. In every step the length increases by a half, so the limit object has
infinite length, but the area decreases by a quarter and so the limit object
has area 0.

So again we created an object irritating our perception of the world: is
S one dimensional since it is a union of lines or is it two dimensional since
it still occupies a lot of space? The answer is neither but it makes clear that
we need a broader definition of dimension and a finer way to determine it.
One heuristic fact one can observe is that hypercubes can be broken up into
smaller cubes with the scaling factor 1/2 and depending on the dimension
n of the hypercube we obtain 2n smaller hypercubes. This fact gives us a
formula to determine the dimension:

dim = log#self-similar parts

log scaling factor
. (4)

On can apply this to the Sierpinski gasket and obtains log 3/ log 2 ≈ 1.585,
which makes sense since it lies somewhere between 1 and 2. For the Cantor
set we obtain log 2/ log 3 ≈ 0.63. This will turn out to be a good measure for
dimension in most cases, but will need rigorous mathematical methods.
Astonishingly the Sierpinsky gasket appears in number theory. Taking the
Pascal triangle and colouring all odd numbers we get a better and better
approximation of the Sierpinsky triangle the more we zoom out.
Another occasion where the fractal appears is by playing a so called chaos
game. Starting by an equilateral triangle ABC and a point x0 in the triangle,
one plays the game as following:

1. Choose a corner point A,B or C.

2. Construct the line through xn and the chosen point.

3. Construct the midpoint of the line xn+1 and draw it.

4. Repeat from step 1.

This process eventually gives you a point in the Sierpinski triangle and
every later point cannot escape the triangle. This process is actually used in
generating images of fractals and underlines the bridges to probability theory

6
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Figure 3: Approximation of the Heighway Dragon

and even more naturally to measure theory.
One close relative of the Sierpinski triangle is the Sierpinski tetrahedron,
which can be created by stacking up 4 scaled downed versions of an ob-
ject onto themselfes, where the scaling factor is 1/2. Note that if we ap-
ply the dimension calculation from above on the tetrahedron one obtains
log(4)/ log(2) = 2. The misscharacterisation that fractals are shapes of non
integer dimension is not true. The Sierpinski tetrahedron is exactly two di-
mensional, but it is still infinitely complex spreaded in 3D-space. Another
example is the one dimensional Takagi function, which still is nowhere dif-
ferentiable. For more details consult [19][Chapt. 1].

Last but not least we want to discuss the Knuth Twin dragon, which
is named after Donald Knuth, an American mathematician and computer
scientist. The Twin dragon can be constructed as a space filling curve and
is directely related to the Heighway dragon curve which is one of the most
popular self-similar shapes since it appeared in the novel Jurassic Park by
Michael Crichton. The heighway dragon can be approximated by using a
single strip of paper and just consequently folding it in half. Unfolding it,
such that all angles are 90 degrees we get a curve approximating the limit
object. The Twin dragon consists of two Heighway dragons glued together.:
therefore the name Twin dragon. Once again the construction is not essential
but the underlying self-similarities are.

Definition 1.7. Let f1, f2 ∶ C→ C with

f1(z) = −(1 + i)z
2

f2(z) = −(1 + i)(z + 1)
2

. (5)

The set K fulfilling K = f1(K) ∪ f2(K) is called the Knuth Twin Dragon.

Geometrically the two functions describe a rotations by 45 degree and
downscaling by 1/2, where f2 also translates. We can also look at the Twin
Dragon as an object in R2. We will often switch between both representa-
tions, depending on the context.
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Figure 4: The Knuth Twin Dragon

Proposition 1.8. The Twin Dragon K ∈ R2 is invariant under f1∪f2 where
f1(x) = B−1x, f2(x) = B−1(x + (1,0)) and

B = (−1 −1
1 −1) . (6)

We will in fact see that the Twin Dragon has nonempty interior and di-
mension 2. This is strange since the approximation can be achieved with a
curve. So in every step we get a more and more twisted curve that in the
limit fills out a whole area. This was very counterintuitive when first dis-
covered by David Hilbert. These Hilbert space filling curves show that the
borders between dimensions are not that strict and one dimensional lines can
be injectively and smoothly mapped to two dimensional objects. Since we
want to develope a new notion of dimension, we need to be careful claiming
invariance of dimension under maps. Depending on the definition we only
can achieve invariance under certain maps.
Although the Twin Dragon is not a fractal, its boundary is. We will de-
termine its dimension in the latter and also calculate its intersections with
various lines. We will investigate its appearance in number theory and take
a tour through measure theory, automata theory and geometry to gather
enough techniques to solve the proposed questions. Although this Dragon is
at least 50 years old, there is still a lot of mystery surrounding it. This thesis
is a small contribution to tame this beautiful mathematical monster.
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2 Topological Dimension

The naive understanding of a fractal is a geometric object, which is infinitely
curled or has infinitely many holes. In order to understand this aspect of
fractals one needs to establish a notion of topological dimension. In linear
algebra the dimension of a module is expressed purely through the algebraic
relation between its elements. A topological dimension on contrary only
uses the topological structure of the space and should coincide in Rn with
the basic understanding of dimensionality. Following Yamaguti, Hata and
Kigami in [19] we require for X ⊂ Rn that dim(X) satisfies the following:

(1) dim({p}) = 0, for p ∈ Rn, dim(I1) = 1, for I1 the unit interval and
dim(Im) =m, for Im the m-dimensional hypercube.

(2) (Monotonicity) If X ⊆ Y , dim(X) ≤ dim(Y ).
(3) (Countable Stability) If {Xj} is a sequence of closed subsets of Rn, then

dim(∞⋃
j=1
Xj) = sup

j≥1
dim(Xj). (7)

(4) (Invariance) For F a family of the homeomorphisms of Rn to Rn, dim
shall be invariant, i.e. for ψ ∈ F

dim(ψ(X)) = dim(X). (8)

The subfamily of homeomorphisms in (4) depends on the definition of the
dimension. If a dimension function is invariant under all homeomorphisms,
it is called topologically invariant. But since this cannot always be achieved,
it is sufficient to require invariance for just a specific class, in order to get
stronger other properties of the dimension function. A somewhat powerful
definition of dimension should at least be invariant under translation, rotation
and scaling; so it should at least contain the affine transformations on Rn.

The following chapter works on three different topological dimension-
function: the Lebesgue dimension or covering dimension, the Hausdorff di-
mension and the box-counting dimension. Other concepts, which are not
included, but should be mentioned, are the small and the large inductive
dimensions as also described in [5].
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2.1 Covering dimension

Definition 2.1. Let n ≥ −1 be an integer. A family F of sets has order ≤ n,
iff any distinct n + 2 sets have empty intersection. For n ≥ 0 we say F has
order n, iff F has order ≤ n, but does not have order ≤ n − 1.

By this definition we see, that the only set families with order −1 are the
empty set ∅ and the set {∅}. A family of nonempty sets is disjoint iff it is
of order 0.

Definition 2.2. Let (X, τ) be a topological space. A family A = {Ai}i∈I of
open subsets is called an (open) cover of X iff X = ⋃i∈I Ai. A refinement
of A is a cover B with ∀B ∈ B,∃A ∈ A ∶ B ⊆ A. We say X has covering
dimension ≤ n iff every finite cover of X has a refinement of order ≤ n. The
covering dimension is n iff it is ≤ n but not ≤ n−1, and we write Cov(X) = n.
If no such n exists we say Cov(X) = ∞.

Note that if we consider subsets of X and subspace topology we can
extend the definition to subsets and consider Cov as a function from all
subset of X, Sub(X), to the set N ∪ {∞}.
Proposition 2.3. Cov is topologically invariant.

Proof. Let (X, τ), (Y, υ) be two topological spaces and ψ ∶X → Y a homeo-
morphism. Consider the two cases:

Firstly Cov(X) = ∞: Suppose Cov(Y ) = n ≤ ∞. Let A = {Ai}mi=1 be
a finite cover of X. Then B ∶= {ψ(Ai)}mi=1 is a finite open cover of Y and
therefore has a refinement of order ≤ n. Applying ψ−1 gives a refinement ofA of order ≤ n. Since n is independent of the cover, we get a contradiction
to the assumption that Cov(X) = ∞. Therefore Cov(Y ) = ∞.

Secondly Cov(X) = n. Let B = {Bi}mi=1 be a finite cover of Y , thenA = {ψ−1(Bi)}mi=1 forms a cover of X and therefore a has a refinement of
order ≤ n. Applying ψ this times gives us a refinement of B of order ≤ n.
So Cov(Y ) ≤ n. To prove that Cov(Y ) = n, we use the same method as in
the first case to show, that there cannot be a cover with refinement of or der≤ n − 1.

We see that this definition is possible in arbitrary topological spaces, but
an easy example shows, that if we want to achieve some useful properties,
we need to restrict ourselves further. Let X = {1,2,3,4} and consider the
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topology {X,∅,{2,3},{3,4},{3},{2,3,4}}. The set {2,4} has dimension 1
but X itself is of dimension 0, since a cover includes X itself, which is of
order 0. This violates monotonicity. The problem here is, that there are not
enough open sets to cover X, so by restricting ourselves to metric spaces we
can work with ǫ-balls and also gain (T2) seperation axiom. In order to prove
the other conditions we required for a sufficient dimension function, we need
to investigate the properties a little further. A handy lemma in [5, Theorem
3.2.1., p.92] can be put in the more general, not necessarily metric, context.

Lemma 2.4. Let (X, τ) be a topological space and n a non negative integer.
The following are equivalent:

1. Cov(X) ≤ n.
2. A = {Ai}ki=1 is any finite open cover of X, then there exist a refinementB = {Bi}ki=1 of order ≤ n such that Bi ⊆ Ai for i ≤ k.
3. A = {Ai}n+2i=1 is any finite open cover of X, then there exist a refinementB = {Bi}n+2i=1 such that Bi ⊆ Ai for i ≤ n + 2 and ⋂n+2

i=1 Bi = ∅.
Proof. 2) ⇒ 3) and 2) ⇒ 1) are clear.

1) ⇒ 2). Suppose Cov(X) ≤ n. Then A admits a refinement W of order≤ n. For each W ∈W there is at least one i such that W ⊆ Ui. Choose one of
them, and call it i(W ). Define

Bi ∶= ⋃{W ∈W ∶ i(W ) = i}.
These sets are open and form a cover. If x ∈ X, then it belongs to at most
n + 1 sets W , because W has order ≤ n. So x belongs to at most n + 1 sets
Bi.

3) ⇒ 2). Suppose X has property 3) and let A = {Ai}ki=1 be an open
cover of X. If k ≤ n + 1, then this cover already is of order ≤ n. Suppose
k ≥ n + 2. Define W1 ∶= A1,W2 = A2,....,Wn+1 = An+1 and Wn+2 = ⋃k

i=n+2Ai.
Then there exist open sets Vi ⊆ Wi for i ≤ n + 2 which cover X and have
empty intersection. Define B1 ∶= V1,B2 = V2,....,Bn+1 = Vn+1 and Cn+2 =
Vn+2 ∩ An+2,...,Ck = Vn+2 ∩ Ak. These sets form again a cover of X and for
n + 2 ≤ j ≤ k ∶ ⋂n+1

i=1 Bi ∩ Cj = ∅. Repeat this construction for all subsets of{1, ..., k} with n+ 2 elements to reach the conclusion that the intersection of
all intersections of size n + 2 are empty.

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Edgar gives a proof of countable stability for metric spaces of dimension
1 [5, Theorem 3.2.11., p.95], which can be extended to arbitrary dimensions.
Willi Rinow shows the same in the more abstract (T4) case in [16, 34.19,
p.358]. We only state the result and use it to prove the monotonicity of the
covering dimension following [5, Theorem 3.2.13., p.96].

Theorem 2.5. Let (X,d) be a metric space and Fi, i ∈ N a family of closed
subsets of X. If Cov(Fi) ≤ n, then Cov(⋃i∈NFi) ≤ n.
Theorem 2.6. Let (X,d) be a metric space and T ⊂ X, then Cov(T ) ≤
Cov(X).
Proof. If Cov(X) = ∞, then the inequality is true in all cases. For Cov(X) =
n the proof is done in three steps:

1) Assume that T is closed and A is an open cover of T . We can extendA by X ∖ T to a cover of X and therefore get a refinement B of order≤ n. Filtering out the elements which have nonempty intersection with
T gives us a refinement of A of order ≤ n. So Cov(T ) ≤ n.

2) Assume T is open. T can be written as the union of the countable
closed subsets Fi, with

Fi ∶= {x ∈X ∶ d(x,X ∖ T ) ≥ 1

i
} (9)

Since Fi is closed, Cov(Fi) ≤ n by 1) and with countable stability it
follows that Cov(T ) ≤ n.

3) Finally T is a general subset of X and U = {U1, ..., Un+2} is an open cover
of T . Define U ∶= ⋃n+2

i=1 Ui, which is an open subset of X, therefore of
covering dimension ≤ n and we get a refinement {W1, ...,Wn+2} with
empty intersection as in Lemma 2.4. This is also a proper cover of T .

In order to check the first condition we are reminding ourselves of a pretty
wellknow fact in compact metric spaces.

Definition and Proposition 2.7. Let (X,d) be a compact metric space
and U be an open cover of X. Then there is a positive number r, called the
Lebesgue number , such that for any set A ⊆X with diam(A) < r, there is
a set U ∈ U with A ⊆ U .
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Proof. SinceX is compact assume U = {U1, U2, ..., Un}. Suppose the assertion
is false. Then we find sets Ak, k ∈ N with diam(Ak) < 1/k, that is not
contained in any Ui. So we can take sequences xi,k ∈ Ak ∖ Ui and again
because X is compact, we can assume that these sequences converge to xi.
Now d(xi,k, xj,k) < 1/k,∀k ∈ N, hence all xi are the same point x, which is
not contained in any Ui. This is a contradiction to the fact, that U is a cover
of X.

It is possible to construct a covering of the hypercube with balls of order
m. This is not hard, but a bit technical. [15, p.65] shows this for m = 1,2.
With the Lebesgue number it is easy to create a refinement of order m of
the hypercube Im ⊆ Rm, since these are compact metric spaces. Therefore
the covering dimension is the first dimension which fullfills all four properties
for a dimension function. However it is really coarse: the Cantor dust has
dimension 0 and the Sierpinski gasket has dimension 1. This is pretty un-
satisfying for various reasons, therefore we want to investigate finer notions
of dimension. In order to give respect to these special sets, we must give up
topological invariance. It is however still possible to define a more powerful
dimension, which is still invariant for a sufficiently large class of functions.

2.2 Hausdorff dimension

A notion which is closely connected to dimension, is measure. One-dimensional
objects, like Intervals and curves, have length assigned to them, whereas sur-
faces have area and 3-dimensional objects have volume. On the other hand
2-dimensional objects have no volume and if we divide them into curves, their
lengths sum up to infinity. This is the key idea behind the Hausdorff dimen-
sion: an object is s-dimensional, if its s-dimensional measure is non trivial.
To elaborate this heuristic idea, we recall Lebesgue-measure of a subset of
Rd.

Definition 2.8. Consider A = {(x1, ..., xn)∣ai ≤ xi ≤ bi,0 ≤ i ≤ d} ⊆ Rd a
axisparallel hyperrectangle, where ai ≤ bi ∈ R,0 ≤ i ≤ d. Then Voln(A) ∶=
∏d

i=1(bi − ai). For A ⊆ Rd an arbitrary subset, we define the Lebesgue
measure of A as

Ln(A) ∶= inf {∞∑
i=1

Voln(Ai)∣A ⊆ ∞⋃
i=1
Ai} (10)

where {Ai ∶ i ∈ N} is a cover of axis-parallel hyper-rectangles.
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We want to generalize this concept of approximating a set with hyper-
rectangles to arbitrary metric spaces. Since we have no distinctive shapes, we
allow all covers. Instead of the volume we consider powers of the diameter.

Definition and Proposition 2.9. Let (X,d) be a compact metric space
and U = {Ui, i ∈ I} be an open cover of A ⊆ X. U is called a δ-cover , iff
0 ≤ diam(Ui) ≤ δ. Define

Hs
δ(A) ∶= inf {∞∑

i=1
diam(Ui)s∣Ui is a δ-cover of A} (11)

and the s-dimensional Hausdorff measure of A as

Hs(A) ∶= lim
δ→0+
Hs

δ(A). (12)

Hs is an outer measure on X:

(OM1) Hs(∅) = 0,
(OM2) A ⊆ B ⇒Hs(A) ≤ Hs(B),
(OM3) Hs(⋃∞i=1Ai) ≤ ∑∞i=1Hs(Ai)
Proof. We show that the conditions hold for Hs

δ and fixed δ and prove the
claim by taking limits on both sides.

(OM1) Hs
δ(∅) = 0, since a singelton already covers ∅.

(OM2) Let A ⊆ B, then every cover of B is a cover of A. It follows thatHs
δ(A) ≤ Hs

δ(B).
(OM3) Let Ui = {Ui,j ∶ j ∈ N} be δ-covers of Ai. Then their union is a δ-cover of⋃∞i=1Ai and so Hs(⋃∞i=1Ai) ≤ ∑∞j=1∑∞i=1 diam(Ui,j)s. Since the Ui where

arbitrary we get Hs
δ(⋃∞i=1Ai) ≤ ∑∞i=1Hs

δ(Ai).

On Borel sets the Hausdorff measure even satisfises σ-additivity and
therefore is a measure. For s = n ∈ N the Hausdorff measure is a multi-
ple of the Lebesgue measure: Hn(A) = π n

2 /2nΓ(n
2
)Ln(A). The factor comes

from the volume of the n-dimensional ball. Sometimes this factor is included
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into the definition, so that the two measures coincide. Since this thesis fo-
cuses on the dimension of object and not their specific measure, it is not
necessary to use this factor in the definition; however proofs work for both
definitions.

In the following lemma we see that the Hausdorf measure is trivial for
allmost all s.

Lemma 2.10. Let A ⊆ X and s < t, δ > 0, then Ht
δ(A) ≤ δt−sHs

δ(A). Further
if Hs(A) ≤∞, then Ht(A) = 0 and if Ht(A) > 0, then Hs(A) =∞.
Proof. Let {Ui} be a δ-cover of A, then

n∑
i=1

diam(A)t = n∑
i=1

diam(A)s diam(A)t−s ≤ δt−s n∑
i=1

diam(A)s.
By taking the infimum we get the first claim and by taking limits we easily
prove the second two.

This observation is key to the definition of the Hausdorff dimension.
There is a critical point in [0,∞], where the Hausdorff measure as a function
in s jumps from ∞ to 0. Heuristically said: ”A set is d-dimensional if its
d-dimensional Volume is non trivial.”

Definition 2.11. Let (X,d) be a metric space and A ⊆X. The Hausdorff
dimension of A is defined as

dim(A) ∶= sup{s ∶ Hs(A) =∞} = inf{s ∶ Hs(A) = 0}. (13)

Moreover, A is called an s-set , if 0 <Hs(A) <∞.

Note that the Hausdorff measure at this critical point still can be 0 or∞. We quickly see, that the Hausdorff dimension of the m-dimensional
hypercubes is m, since it has non trivial Lebesgue measure.

Proposition 2.12. a) If A ⊂ B, dim(A) ≤ dim(B).
b) If {Ai}∞i=1 is a sequence of sets, then

dim(∞⋃
i=1
Aj) = sup

i≥1
dim(Ai).
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Proof. a) Since Hs is monotone we have dim(A) = inf{s ∶ Hs(A) = 0} ≤
inf{s ∶ Hs(B) = 0} = dim(B).

b) Define A ∶= ⋃∞i=1Ai. Monotonicity gives us dim(A) ≥ supi≥1 dim(Ai).
Since Hs(⋃∞i=1Ai) ≤ ∑∞i=1Hs(Ai) holds, it follows that Hs(A) = 0 for
s > supi≥1 dim(Ai). Hence dim(A) ≤ supi≥1 dim(Ai).

The Hausdorff dimension also satisfies an invariance condition. We can-
not achieve topological invariance but a rather big class of functions, which
include affine transformations.

Definition 2.13. Let (X,d), (Y, d′) be two metric spaces. A function f ∶ A ⊆
X → Y satisfies the Hölder-condition or is called Hölder continuous ,
iff there exist constants α > 0, c > 0, such that ∀x, y ∈ A

d′(f(x), f(y)) ≤ c ⋅ d(x, y)α. (14)

Iff α = 1, we call f a Lipschitz transformation . Iff for ψ ∶ A ⊆ X → Y

there are 0 < c1 ≤ c2 <∞, such that

c1d(x, y) ≤ d′(ψ(x), ψ(y)) ≤ c2d(x, y) (15)

ψ is called bi-Lipschitz transformation .

Note that Hölder continuous functions are actually continuous and bi-
Lipschitz transformations are homeomorphisms onto their images.

Proposition 2.14. Let f ∶ A ⊆ (X,d)→ (Y, d′) be Hölder continuous between
two metric spaces with constants c, α, A ⊂X and s > 0. Then

Hs(f(A)) ≤ c s
αHs(A). (16)

Further dim(f(A)) ≤ α−1 dim(A). If ψ is a bi-Lipschitz transformation, then
dim(ψ(A)) = dim(A), hence dim is invariant under bi-Lipschitz transforma-
tions. .

Proof. Let {Ui} be a δ-cover of A. Then {f(A ∪Ui)} covers f(A) and
diam(f(A ∩Ui)) = sup

x,y∈A∩Ui

d′(f(x), f(y)) ≤ c sup
x,y∈A∩Ui

d(x, y)α
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= c ⋅ diam(A ∩Ui)α ≤ cδα =∶ ǫ.
Therefore H s

α
ǫ (f(A)) ≤ c s

αHs
δ(A) Taking the limit δ → 0 we get ǫ → 0 proves

the first claim. For α = 1 we get dim(f(A)) ≤ dim(A) and if we consider ψ−1 ∶
ψ(A) → A of a bi-Lipschitz transformation, we get dim(ψ(A)) ≤ dim(A) =
dim(ψ−1(ψ(A))) ≤ dim(ψ(A)).

It is possible to show for all metric spaces, that the Hausdorff dimension
always exceeds topological dimension. This is shown in [4, p.114, 115], but
it uses inductive dimension as the main definition for topological dimension.
Since this was not yet covered in this thesis, we restrict ourselves to compact
metric spaces following [5, Theorem 6.3.1.11., p. 183]. Note that this will
suffices our purposes, because self-similar fractals are compact sets.

Theorem 2.15. Let A ⊆ X with (X,d) a metric space.Then Cov(A) ≤
dim(A).
Proof. Assume that A is compact. Let n = Cov(A). Therefore there exist
open sets U1, ..., Un+1 covering A, such that for any closed sets Fi ⊆ Ui covering
A, we have ⋂n+1

i=1 Fi ≠ ∅. Define functions on A as follows:

fi(x) ∶= dist(x,A ∖Ui),1 ≤ i ≤ n + 1 f(x) ∶= f1(x) + ... + fn+1(x) (17)

This functions have Lipschitz constants L(fi) = 1, L(f) = n + 1 and for all
x ∈ A ∶ f(x) > 0. Since A is compact, there are positive constants a, b, such
that a ≤ f(x) ≤ b, x ∈ A. Now define

h(x) ∶= (f1(x)
f(x) , f2(x)f(x) , ..., fn+1(x)f(x) ) . (18)

h is Lipschitz too, since we can deduce

∣fi(x)
f(x) − fi(y)f(y) ∣ = ∣f(x)fi(y) − f(y)fi(x)∣f(x)f(y)

≤ f(x)∣fi(y) − fi(x)∣ + fi(x)∣f(x) − f(y)∣
f(x)f(y)

≤ b(n + 2)
a2

d(x, y)
17
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and therefore L(h) ≤ b(n+2)(n+1)/a2. We claim that h[A] contains a simplex
T and conclude that Cov(A) = n = dim(T ) ≤ dim(h[A]) ≤ dim(A) with
monocity and the change of Hausdorff dimension under Lipschitz functions.
Define

T ∶= {(t1, ..., tn+1) ∈ Rn+1 ∶ ti > 0, n+1∑
i=1
ti = 1} (19)

the standard simplex in Rn+1 and for (t1, ..., tn+1) ∈ T the closed sets Fi

satisfying Fi ⊆ Ui and covering A:

Fi = {x ∈ A ∶ fi(x)
f(x) ≥ ti} .

These satisfy the conditions above and we get a point x ∈ A, such that
fi(x)/f(x) ≥ ti, but since ∑i fi(x)/f(x) = 1, we get fi(x)/f(x) = ti and
therefore h(x) = (t1, ..., tn+1). Hence we conclude that T ⊆ h[A].

We can now give a formal definition for a fractal.

Definition 2.16. Let A ⊆X with (X,d) a metric space. Define the fractal
degree as

δ(A) ∶= dim(A) −Cov(A). (20)

Then A is fractal , iff δ(A) > 0.
This definition is independent from the notion of self-similarity. While

most fractals we know of and work on have self-similar charateristics, this
is not the defining quality. In applied mathematics and science, Hausdorff
dimensions can be calculated for clouds or galaxies which have no underlying
mathematical structure. But since self-similar shapes are easier to create,
and also appear in various areas of mathematics, they spark great interest
in fractal geometry. Before we investigate these further we establish further,
properties of the Hausdorff dimension.
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2.3 Box-counting dimension

Since the definition of the Hausdorff dimension contains arbitrary covers, it
is not that practical to work with. Since we are working in Rn in most cases,
we want to develop a similar notion of dimension, which only uses coverings
with similar shapes.
Consider a covering of F ⊆ Rn by Nǫ(F ) many balls of radii ǫ/2. ThenHs

ǫ(F ) ≤ Nǫ(F )ǫs. If s < dim(F ), then Hs(F ) = ∞. So for small ǫ we can
demand Hs

ǫ(F ) > 1. Taking logarithms gives us

0 < logHs
ǫ(F ) ≤ logNǫ(F ) + s log ǫ.

Since we can get arbitrary close with s to dim(F ), we have

dim(F ) ≤ logNǫ(F )− log ǫ . (21)

In conclusion we started with an arbitrary covering of A with balls and got
an upper bound for the Hausdorff dimension. The idea for the box-counting
dimension, Box, is now to see how this bound changes in the limit. According
to Falconer [9, p. 47] there are multiple ways to define Box.

Definition and Proposition 2.17. For F ⊆ Rn the upper and lower
box-counting dimensions are defined as

Box(F ) ∶= lim inf
ǫ→0+

logNǫ(F )− log ǫ , (22)

Box(F ) ∶= lim sup
ǫ→0+

logNǫ(F )− log ǫ , (23)

where Nǫ(F ) notes one of the following:

(i) the minimal number of closed balls with radius ǫ covering F ;

(ii) the minimal number of hypercubes with sidelength ǫ covering F ;

(iii) the number of ǫ-lattice hypercubes intersecting F ;

(iv) the minimal number of set with diam ≤ ǫ covering F ;
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(v) the maximal number of disjoint balls with radius ǫ with centers in F .

Iff upper and lower box-counting dimension coincide on F , we define box-
counting dimension as Box(F ) = Box(F ) = Box(F ).
Proof. To see the equivalence of ii) and iv) note that you can cover an arbi-
trary set with diameter ǫ with an hypercube of sidelength 2ǫ by taking any
point as the centre. This cube can be devided into 2n hypercubes of length
ǫ, so Nǫ(F ) changes mostly by this multiple. Taking logarithms turns it into
an additive constant, which disappears in the limit.
Since a covering with closed balls is a 2ǫ-cover, we get factor 2 in the the
denominator, which also vanishes in the limit. This shows the equivalence to
i).
The equivalence to v) can be achieved by blowing up the balls by the factor
2 so they form a cover, we get an upper bound for the minimal number of
covers of 2ǫ-balls. Conversely, the minimal number of a cover is already an
upper bound for the max of disjoint balls. Finally the number of ǫ-lattice
hypercubes is an upper bound for the minimal number of a cover and lower
bound for the maximal number of the number of disjoint ǫ balls. Since these
limits meet, we get the equivalence to iii) by sandwich theorem.

The name box-counting dimension is now self-explanatory since we can
calculate it by lying finer and finer mashes on the set and just count how
many boxes cover parts of the set. Using (21) we already proved the following
corollary.

Corollary 2.18. For F ⊆ Rn, the following inequality always holds:

dim(F ) ≤ Box(F ) ≤ Box(F ). (24)

Another notion with which the box-counting dimension can be character-
ized is by looking at the Minkowsky content.

Definition 2.19. Let F ⊆ Rn and define the δ-parallel extension of A as

Fδ ∶= {x ∈ Rn ∶ ∣x − y∣ ≤ δ, y ∈ F} (25)

Iff there exist c > 0,0 < s ≤ n, such that

lim
δ→0+

Ln(Fδ)
δn−s

= c, (26)

then c is called the δ-Minkowsky content of A and s its Minkowsky
dimension .
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In fact Minkowsky and box-counting dimension coincide.

Theorem 2.20. Let F ⊆ Rn, then

Box(F ) = n − limδ→0+

logLn(Fδ)
log δ

, (27)

Box(F ) = n − limδ→0+

logLn(Fδ)
log δ

. (28)

Proof. If F is covered by Nδ(F ) balls with radius δ, then we achieve a cov-
ering of Fδ by blowing up the balls by a factor of 2. If we denote the vol-
ume of the n-dimensional unit ball by cn, we get the inequality Voln(Fδ) ≤
Nǫ(F )cn(2δ)n. In the log this transforms to

logVoln(Fδ)− log δ ≤ log 2ncn + n log δ + logNδ(F )− log δ .

Taking the lim inf yields

limδ→0+

logLn(Fδ)− log δ ≤ −n +Box(F )
We prove the second claim analog with lim sup.
Conversely let Nδ(F ) be the maximal number of disjoint balls with radius
δ, then we get Voln(Fδ) ≥ Nδ(F )cn(2δ)n and conclude in the same way as
above.

Not only is the box-counting dimension of practical use, it also appears
in various formulas to better understand Hausdorff dimension. In Section 3
we will prove that box-counting dimension coincides with Hausdorff dimen-
sion for some self-similar sets and therefore is a strong tool to determine
dimensions of self-similar fractals.
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2.4 Products and intersections of fractals

In almost all mathematical subjects taking products and intersections are
of great interest. Ordinary geometry gives us an idea how dimension should
behaves under these operations. So if we take the product of a n-dimensional
set E and a m-dimensional set F , the dimension of the carthesian product
E ×F is simply the sum n+m. In general only dim(E ×F ) ≥ dimE + dimF

is true for Hausdorff dimension, but in specific cases we can prove the full
equality.
To investigate how Hausdorff dimension behaves under products we have
to establish some methods to calculate Hausdorff dimensions following [9,
Chapters 4-7].

Lemma 2.21. Let F ⊆ Rn be covered with nk sets with diam at most δk for
k ∈ N and there is a constant 0 < c < 1 with δk+1 ≥ cδk. Then

dim(F ) ≤ Box(F ) ≤ lim inf
k→∞

lognk− log δk , (29)

dim(F ) ≤ Box(F ) ≤ lim sup
k→∞

lognk− log δk (30)

hold. If nkδ
s
k is bounded in the limit, it yields Hs(F ) < ∞

Proof. The inequalities between Hausdorff and box-counting dimension have
already been shown. Now let δ be arbitrary, then there is a k ∈ N such that
δk+1 ≤ δ ≤ δk and it yields

logNδ(F )− log δ ≤ lognk+1− log δk ≤
lognk+1− log δk+1 + log(δk+1/δk) ≤

lognk+1− log δk+1 + log c.
Taking limits shows the inequalities and for the last claim Hs(F ) ≤ nkδ

s
k and

therefor taking the limit yields Hs(F ) < ∞.

Since it is hard to estimate Hausdorff measure with specific covers, it is
often more constructive to work with distributions.

Definition 2.22. Ameasure µ on Rn is called a distribution, iff 0 < µ(Rn) <∞ and µ has bounded support.
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Lemma 2.23 (Distribution principal I). Let µ be a distribution on F ⊆ Rn

and for s there are constants c > 0, δ > 0, such that

µ(U) ≤ cdiam(U)s (31)

for all U with diam(U) ≤ δ, then Hs(F ) ≥ µ(F )
c

and

s ≤ dim(F ) ≤ Box(F ) ≤ Box(F ) (32)

Proof. Let {Ui} be a cover of F, then

0 < µ(U) = µ(⋃
i

Ui) ≤∑
i

µ(Ui) ≤ c∑
i

diam(Ui)s
and therefore Hs(F ) ≥ µ(F )/c > 0, which shows the last claim

This principal is important: it gives us a lower bound, while with box-
counting dimension we already have an upper bound. We can further sharpen
this idea by substituting U with r-balls.

Lemma 2.24 (Distribution principal II). Let µ be a distribution on Rn,
Br(x) the closed ball with radius r and centre x,F ⊆ Rn a Borel set and for
s there is a constant c > 0 such that

lim sup
r→0

µ(Br(x))
rs

≤ c (33)

for all x ∈ F , then Hs(F ) ≥ µ(F )
c

and

s ≤ dim(F ) ≤ Box(F ) ≤ Box(F ). (34)

Proof. Define for δ > 0
Fδ ∶= {x ∈ F ∶ µ(Br(x)) < (c − ǫ)rs,∀0 < r < δ, ǫ > 0} (35)

and let {Ui} be a δ-cover for F as well as Fδ. Let x ∈ Fδ ∩ Ui, then the ball
B with centre x and radius diam(Ui) ≤ δ contains Ui. Since x ∈ Fδ we get
µ(Ui) ≤ µ(B) ≤ cdiam(Ui)s and

µ(Fδ) ≤∑
i

{µ(Ui) ∶ Ui ∩ Fδ ≠ 0} ≤ c∑
i

diam(Ui)s.
Since the cover was arbitrary, we get µ(Fδ) ≤ Hs

δ ≤ Hs and taking the limit
δ → 0 yields µ(F ) ≤ cHs(F ).
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Another concept used in geometry, especially fractal geometry, is density.
It is used to investigate the structure of fractals further. This thesis limits
itself only to definitions and basic results without proofs. For more details
the reader is recommended to read [9, chapter 5].

Definition 2.25. Let F ⊂ Rn be an s-set. Then the upper and lower
densities of F in x ∈ F are defined as

Ds(F,x) ∶= lim inf
r→0

Hs(F ∩Br(x))(2r)s (36)

D
s(F,x) ∶= lim sup

r→0

Hs(F ∩Br(x))(2r)s . (37)

A point x ∈ F is called regular iff Ds(F,x) = Ds(F,x) = 1, otherwise x is
irregular . F is called regular/ irregular iff Hs-allmost all x are.

Proposition 2.26. Let F ⊂ Rn be an s-set. Then

a) Ds(F,x) =Ds(F,x) = 0, for Hs-allmost all x ∉ F .
b) 2−s ≤Ds(F,x) ≤ 1, for Hs-allmost all x ∉ F .

Theorem 2.27. Let F ⊂ R2 be an s-set, with s ∉ N. Then F is irregular.

Another theorem we will just state, is the existence of s-subsets of higher
dimensional sets. For a proof sketch visit [9, p. 73].

Theorem 2.28. Let F ⊆ Rn be a Borel set, with Hs(F ) = ∞. Then there is
a compact Borel subset E ⊂ F , such that 0 < Hs(E) < ∞.

We now have the necessary tools to tackle the product formulas for Haus-
dorff dimension. The hard work of the proof is done in the following lemma.

Lemma 2.29. Let E ⊂ Rm, F ⊂ Rn Borel sets with Hs(E),Ht(F ) < ∞, then
there is a constant c > 0, which only depends on s and t such that

Hs+t(E × F ) ≥ cHs(E) ⋅Ht(F ). (38)
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Proof. If Hs(E) = 0 or Ht(F ) = 0 the claim is trivial. So now suppose that
E is a s-set and F a t-set. Define a distribution on Rm ×Rn as follows:

µ(I × J) ∶= Hs(I ∩E) ⋅Ht(J ∩ F ) (39)

for I ⊆ Rm, J ⊆ Rm. This is a distribution with µ(Rm+n) = Hs(E) ⋅Ht(F ).
Using Proposition 2.26 b) we get

lim sup
r→0

Hs(E ∩Br(x))(2r)s ≤ 1 and lim sup
r→0

Ht(F ∩Br(y))(2r)t ≤ 1 (40)

for Hs-allmost all x ∈ E and for or Ht-allmost all y ∈ F . Because we defined
µ as the product of Hs and Ht we get for µ-allmost all (x, y) ∈ E × F

µ(Br(x, y)) ≤ µ(Br(x) ×Br(y)) = Hs(Br(x) ∩E) ⋅Ht(Br(y) ∩ F )
Using (40) we get for µ-allmost all (x, y) ∈ E × F

lim sup
r→0

µ(Br(x, y))(2r)s+t ≤ lim sup
r→0

Hs(Br(x) ∩E)(2r)s Ht(Br(y) ∩ F )(2r)t ≤ 1.
Lemma 2.24 garantees us that Hs+t(E ×F ) ≥ 2−(s+t)µ(E ×F ) = 2−(s+t)Hs(E) ⋅Ht(F ).
Theorem 2.30 (Product formula I). Let E ⊂ Rm, F ⊂ Rn Borel sets, then

dim(E × F ) ≥ dimE + dimF (41)

Proof. For s < dim(E), t < dim(F ) we can use Theorem 2.28 and get Borel
sets E0 ⊂ E,F0 ⊂ F with 0 < Hs(E0),F t(F0) < ∞. Using the previous
lemma we get Hs+t(E ×F ) ≥ Hs+t(E0 ×F0) ≥ cHs(E0) ⋅Ht(F0) > 0. Therefore
dim(E × F ) ≥ s + t and since s, t are arbitrary close to dim(E),dim(F ), we
proved the claim.

In general the converse inequality does not hold, but the key to prove the
full equality for self-similar set is the second product formula.

Theorem 2.31 (Product formula II). Let E ⊂ Rm, F ⊂ Rn arbitrary sets,
then

dim(E × F ) ≤ dimE +BoxF (42)
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Proof. For s > dim(E), t > Box(F ) there exists δ0 > 0 such that F can be
covered with Nδ(F ) ≤ δ−t many sets of diameter δ for all δ ≤ δ0. Let {Ui}
be a δ-cover of E with ∑diam(Ui)s < 1. For all i let Ui,j be a δ-cover of F
with Ndiam(Ui)(F ) sets of same diameter as Ui. We can cover Ui × F with{Ui ×Ui,j} which have diameter

√
2diamUi. Therefore E ×F is covered with{Ui ×Ui,j} where both i and j vary. We get

Hs+t√
2δ
(E × F ) ≤∑

i

∑
j

diam(Ui ×Ui,j)s+t
≤∑

i

diam(Ui)s+tNdiam(Ui)(F )√2s+t
≤√2s+t∑

i

diam(Ui)s+t diam(Ui)−t
=√2s+t∑

i

diam(Ui)s <√2s+t.
Hence Hs+t√

2δ
(E × F ) ≤ ∞ for all s > dim(E), t > Box(F ), which finishes the

proof.

Corollary 2.32. For BoxF = dimF it follows that

dim(E × F ) = dimE + dimF (43)

The proof of this Corollary is just combining both product formulas. So
the goal for the next section about self similarities is to prove that box-
counting dimension and Hausdorff dimension coincide. Note that one of the
sets E and F has to behave that nicely to have the full equality.

Another thing we are interested in, is how Hausdorff dimension behaves
under projection. We state the Projection Theorem:

Theorem 2.33 (Projection Theorem). Let F ⊂ Rn be a Borel set.

a) If dimF ≤ k, then dim(projΠF ) = dimF , for allmost all Π k-dimensional
subspace of Rn.

b) If dimF > k, then projΠF has positive k-dimensional Lebesgue measure
and therefore for almost all Π Hausdorff dimension k.
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Since this thesis is interested in the intersection of a line and a fractal,
we investigate how Hausdorff dimension behaves under intersection. If we
intersect a non fractal shape like a disk with a line we get that in most cases
intersection is a line or empty. So dimension reduces by one. If the line is
a tangent we get an nonempty intersection, which does not follow that rule.
If the shape gets more complicated, even fractal, we hope these exeptional
cases do not overrule and the general statement still holds. This is the case
for Borel sets. To show this, we start with a powerful lemma.

Lemma 2.34. Let F be a Borel set in R2 and Lx the line, which is parallel
to the y-axis through (x,0). For 1 ≤ s ≤ 2 the following holds:

∫
∞

−∞
Hs−1(F ∩Lx)dx ≤ Hs(F ) (44)

Proof. Let ǫ > 0 and {Ui} a δ-cover, such that ∑diam(Ui)s ≤ Hs
δ + ǫ. Let Si

be an axis-parallel square with sidelength diam(Ui) which contains Ui and
χi its indicator function. The set {Si ∩Lx} covers F ∩Lx and it follows that

Hs−1(F ∩Lx) ≤ ∑
i

diam(Si ∩Lx)s−1 = ∑
i

diam(Si ∩Lx)diam(Ui)s−2
= ∑

i

diam(Ui)s−2∫ χi(x, y)dy
Hence

∫ Hs−1(F ∩Lx)dx ≤ ∑
i

diam(Ui)s−2∫ ∫ χi(x, y)dy dx
= ∑

i

diam(Ui)s ≤Hs
δ + ǫ.

Since ǫ was arbitrary small and with the limit δ → 0 we conclude this proof.

Corollary 2.35. Let F be a Borel set in R2 and Lx the line, which is parallel
to the y-axix through (x,0). For (Lebesque-)almost all x, it holds that dim(F∩
Lx) ≤max{0,dimF − 1}
Proof. Let s > dim(F ), then Hs(F ) = 0. For s > 1 (44) yields that Hs−1(F ∩
Lx) = 0 for allmost all x, therefore dim(F ∩Lx) ≤ s − 1.

Note that since Hausdorff dimension is invariant under rotation, we can
generalize this result for arbitrary lines.
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Corollary 2.36. Let F be a Borel set in R2. For (Lebesque-)allmost all lines
L it holds, that dim(F ∩L) ≤max{0,dimF − 1}.

Further we can use the same method to proof a higher dimensional ana-
logue to this claim.

Corollary 2.37. Let F be a Borel set in Rn. For (Lebesque-)almost all m-
dimensional subspaces E ≤ Rn it holds, that dim(F ∩ E) ≤ max{0,dimF +
m − n)}.

We omit this proof since it basically just varies in the number of integral
signs. Another way to state the result is dim(F ∩E) ≤max{0,dimF +dimE−
n}. Is this true for arbitrary sets E? The answer is no, but we can get an
estimate using the dimension of the product, which in some cases actually
desolves into the sum (revisit 2.30 and 2.31). This proof is a modified version
of Falconer’s proof in [9, p.118].

Theorem 2.38. Let E,F be a Borel sets in Rn. For (Lebesque-)almost all
x ∈ E, it holds that

dim(F ∩ (E + x)) ≤max{0,dim(F ×E) − n)}. (45)

Proof. Let c ∈ Rn be an arbitrary vector and Hc the n-dimension subspace
in R2n with (x, y) ∈ Rn ×Rn ⇐⇒ x = y + c. If dim(F ×E) > n we can use
Corrolary 2.37 and get

dim((F ×E) ∩Hc) ≤ dim(F ×E) + n − 2n (46)

for (Lebesque-)almost all c ∈ Rn. Now (x, x − c) ∈ (F × E) ∩Hc ⇐⇒ x ∈
F ∩(E+c), so the projection of ((F ×E)∩Hc) on Rn×{0 ∈ Rn} is F ∩(E+c).
We use the Projection Theorem 2.33 and get the claim.

In all statements above we only have ≤, but it is also possible to prove the
opposite inequality. A sketch of the proof is outlined in [9, chapt. 8] for a
more genereal statement using techniques detailed in previous chapters. This
thesis will not make the effort of establishing all of these and therefore the
reader is refered to this or other publications. We only state the following
result:

Theorem 2.39. Let E,F be a Borel sets in Rn. It holds, that

dim(F ∩ (E + x)) ≥ dim(E) + dim(F ) − n, (47)

for x ∈ I, where I ⊂ Rn with positive measure.
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3 Self-similarity

Most of the classic examples of fractals as the Cantor set or the Koch curve
have self-similar properties: parts of the set are just scaled down copies of
the whole set. But also non fractal shapes as lines and cubes are self-similar.
Cutting a line in half and scaling it by 2 gives us back the original line or
splitting a cube in the 8 cubes with half the side length give us 23 = 8 parts
which can be scaled up by 2 to the original. This easy example can be shown
for n-dimensional hypercubes and show that the dimension is found in the
exponent. This idea leads to the definition of similarity dimension. We will
prove that it coincides with Hausdorff dimension under certain conditions.
This will bring us a big step forward in understanding the Twin Dragon
curve.
But first we extend the naive definition of self-similarity, since we can prove
a lot of theorems in this broad context. Later we will come back to the more
stricter definition of self-affine set; its theory is connected to linear algebra,
classical algebra, number theory and the theory of automata.

Definition 3.1. A function f ∶X →X, with (X,d) a metric space, is called
a contraction , iff it is Lipschitz continuous (def. 2.13) with c ∈ (0,1), that
is iff d(x, y) ≤ c ⋅ d(x, y),∀x, y ∈X. Iff d(x, y) = c ⋅ d(x, y),∀x, y ∈X, we call f
a similar contraction . We denot the Lipschitz constant of f by L(f).

We state an elementary, but very powerful theorem.

Theorem 3.2 ((Banach) Fixed point theorem). Let (X,d) be a complete
metric space and f ∶ X → X a contraction. Then there exists a unique fixed
point, that is ∃!x ∈X ∶ f(x) = x.

The clue is to put this theorem in the right context to prove the existence
of self-similar sets, which we define in the following way:

Definition 3.3. Let (fi)mi=1 ∶ X → X, be contractions. ∅ ≠ S ⊆ X is called
self-similar iff

S = m⋃
i=1
fi(S). (48)

Iff the fi are similar contractions, S is called a self-affine set.
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3.1 Existence and Uniqueness of self-similar set

Definition and Proposition 3.4. Let (X,d) be a metric space and letK(X) be the set of all non-empty compact subsets of X. The Hausdorff
metric on K(X) is defined as

dH(A,B) ∶= inf
δ≥0
{A ⊆ Bδ ∧B ⊆ Aδ} (49)

for A,B ∈ K(X) with Aδ = {x ∈ X ∣d(x, y) ≤ δ, y ∈ A} the δ-parallel extension
of A (generalisation of Def. 2.19). This is indeed a metric.

Proof. We first prove that the infimum is actually a minimum for compact
sets. If we can show that ⋂ǫ>δAǫ = Aδ, we have A ⊆ Bǫ,∀ǫ > δ ⇒ A ⊆⋂ǫ>δBǫ = Bδ and conversely A ⊆ Bδ. Since the Aǫ are monotone decreasing
take a sequence ǫn → δ. For x ∈ ⋂nAǫn we get an ∈ A such that, d(x, an) ≤ ǫn.
Since A is compact, we can assume, that an converges to an a ∈ A. We now
have d(x, a) ≤ d(x, an) + d(an, a) ≤ ǫn + d(an, a)→ δ + 0, therefore x ∈ Aδ.
Let now A,B,C ∈ K(X), then A0 = A, hence dH(A,A) = 0. Conversely if
d(A,B) = 0, then A = A0 ⊆ B ∧B = B0 ⊆ A ⇒ A = B. Symmetry is obvious
per definitionem. For triangle equality define δA ∶= dH(A,C), δB ∶= dH(B,C)
and note that (Aδ)ǫ = Aδ+ǫ . We have A ⊆ CδA∧C ⊆ AδA and B ⊆ CδB∧C ⊆ BδB

and therefore A ⊆ (CδA)δB ∧ CδB ⊆ (AδA)δB ⇒ A ⊆ BδA ∧B ⊆ AδA+δB . Hence
dH(A,B) ≤ δA + δB.

The space of all compact subsets of X forms a metric space with the
Hausdorff metric. We want to use the fixed point theorem on (K(Rn), dH),
so we need it to be complete, which is indeed the case. Following [19, Theorem
2.1., p.18] we prove the following theorem.

Theorem 3.5. Let K(Rn) be the set of all non-empty compact subsets of X
and dH the Hausdorff metric. Then (K(Rn), dH) is a complete metric space.

Proof. Let {Ai} ∈ K(Rn) be an arbitrary Cauchy sequence with respect to
the Hausdorff metric, that is ∀ǫ > 0,∃m = m(ǫ),∀i, j > m ∶ dH(Ai,Aj) ≤ ǫ.
We define

Ek ∶= ∞⋃
i=k
Ai and E ∶= ∞⋂

k=1
Ek (50)

Since {Ai} is uniformly bounded, all Ek are closed and bounded and therefore
compact. Since {Ek} is monotone decreasing, E is compact. We show that
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Ai → E ∈ K(Rn) in the Hausdorff metric to finish the proof.
Let ǫ > 0. We have to prove, that ∀q ≥ m ∶ dH(E,Aq) < ǫ. On the one hand
E ⊂ Eq ⊂ (Aq)ǫ follows directly from the definition. On the other hand let
x ∈ Aq, then there exist yp ∈ Ap, p > q, such that ∣∣x−yp∣∣ ≤ ǫ, since Aq ⊆ (Ap)ǫ.
Let z be an accumulation point of {yp}. For every k ∈ N and p > k, q we
have yp ∈ Ap ⊆ Ep ⊆ Ek. Since Ek is compact, z is in Ek and therefore z ∈ E.
Now we calculate ∣∣x − z∣∣ ≤ ∣∣x − yp∣∣ + ∣∣yp − z∣∣ ≤ ǫ + ∣∣yp − z∣∣ and since z is an
accumulation point, we get x ∈ zǫ ⊂ Eǫ. Thus dH(E,Aq) ≤ ǫ.

Note that this argument holds for all complete metric spaces with the
Heine-Borel property, which holds true iff all closed bounded sets are compact
in X. Following [5, Theorem 2.5.3., p.72] it is possible to prove the same
statement for arbitrary complete metric spaces, where the difficulty only
lies in showing that the limit is compact. We can now state and prove the
existence and uniqueness theorem.

Theorem 3.6. Let (X,d) be a complete metric space. Then (K(X), dH) is
a complete metric space.

Theorem 3.7 (Existence and Uniqueness of self-similar shape). Given a
family of contractions (fi)mi=1 ∶X →X,m ≥ 2 there exists a unique self-similar
set S.

Proof. Define the map F ∶ K(X)→ K(X) as
F (A) ∶= m⋃

i=1
fi(A). (51)

This is a well defined map, since the images of compact sets under contin-
uous maps are compact as well as their finite union. We show, that F is a
contraction with respect to the Hausdorff metric.
Let A,B,C,D ∈ K(X), then

i) dH(fi(A), fi(B)) ≤ L(fi)dH(A,B),
ii) dH(A ∪B,C ∪D) ≤max{dH(A,C), dH(B,D)}.

To prove i) set s = dH(A,B), t = s ⋅ L(fi); then ∀x ∈ A,∃y ∈ B ∶ d(x, y) ≤ s
and

d(fi(x), fi(y)) ≤ L(fi)d(x, y) ≤ t.
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Hence ∀fi(x) ∈ fi(A),∃fi(y) ∈ fi(B) ∶ d(fi(x), fi(y)) ≤ t and the converse
claim holds by the same reasoning. Together that shows dH(fi(A), fi(B)) ≤ t.
For ii) set s = dH(A,C), t = dH(B,D), r =max{s, t}. We get

A ∪B ⊆ Cs ∪Dt ⊆ (C ∪D)r
and conversely C ∪D ⊆ (A ∪B)r.
Now by using i) and ii) repeatedly we get:

dH(F (A), F (B)) = dH(m⋃
i=1
fi(A), m⋃

i=1
fi(B))

≤ max
1≤i≤m

dH(fi(A), fi(B))
≤ max

1≤i≤m
L(fi)dH(A,B)

So we have a contraction with L(F ) =≤ max1≤i≤mL(fi) < 1. We apply the
fixed point theorem (Theorem 3.2) to K(X) and F . As a result we get a
unique set S ∈ K(X) with

S = F (S) = m⋃
i=1
fi(S).

This theorem not only gives us a proof of the existence of the self-similar
set associated to a family of contractions, but the proof of Banach fixed point
theorem also shows us how to find it. Starting with an arbitrary compact set
S0 ≠ ∅ one defines a sequence Sn by repeatedly applying F . This converges
to the fixed point and self-similar set S. If S is a fractal, the elements of the
series are sometimes called pre-fractals, but note that they in general do not
have fractal dimensions.
The fact that fractals appear as fixed points of contractions shows, its connec-
tion to dynamical systems and chaos theory. Therefore we put the previous
definitions in a new light.

Definition 3.8. Let S be a self-similar set defined by the contractions{fi ∶ 1 ≤ i ≤ m}. Then the contractions form a so called iterated func-
tion system , short IFS , which is the closure of {fi ∶ 1 ≤ i ≤ m} under
composition. S is called an attractor . The map F (M) = ⋃i fi(M),M ⊆ X
is called the Hutchinson operator.
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It is also possible to allow infinite iterated function system IIFS, as ex-
plained in [10]. The main difficulty here is that applying the set function
F (S) = ⋃i∈I fi(S) does not necessarily map compact set so compact sets,
since the countable union of closed sets can be open. For further informa-
tions the reader is adviced to read Fernau’s book. However in this thesis only
finite IFS are considered.

3.2 String models, MauldinWilliams graphs and Büchi

Automata

As we recall from our previous work on the Cantor set, it is possible to
characterize the points in the Cantor set as numbers with only 0 and 2 as
digits. This concept of describing points in a self-similar set with integer
strings can be generalized. Moreover self-similar sets are strongly related to
discrete mathematics. There are ways to describe them with graphs, which
are used in computer science to generate images of them. Self-similar shapes
and fractals play a huge role in informatics, for example to create realistic
models of natural objects such as trees, mountains or clouds. But also pure
mathematics uses this notion to further investigate self-similar shapes. One
notion that appears in [1] is the Büchi automaton, which wiil be essential to
compute intersections with the Twin Dragon in Chapter 5.

First we introduce a little bit of terminology following [5, Chapt. 4],
before we establish the String model theorem.

Definition 3.9. A ratio list is a list of positive numbers (r1, ..., rm). If
0 < ri < 1,∀i the ratio list is called contracting. We say a complete metric
space (X,d) and {fi ∶ 1 ≤ i ≤ m} an IFS realize the ratio list, iff L(fi) = ri.
Let E = {1, ...,m} then we call Eω the set of all infinite strings over
the alphabet E and E∗ = {(e1, ..., en) ∶ n ∈ N0, ei ∈ E,∀1 ≤ i ≤ n} the set of
all finite strings including the empty string Λ. For each e ∈ E we define the
right shift θe ∶ Eω

→ Eω by θe(σ) ∶= eσ for σ ∈ Eω.

The idea now is to create a metric on the strings such that the right shifts
realize the given ratio list. Since every string can be listed in a tree diagram
we assign to each node a notion of diameter and construct a metric satisfying
the claim.
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Definition and Proposition 3.10. Given a contracting ratio list (re)e∈E,
there exists a metric on Eω such that {θe, e ∈ E} is a realization with self-
similarities of the ratio list. This is called the string model of the ratio
list.

Proof. Let α ∈ E∗ be a finite string, then we define wα recursively:

wΛ ∶= 1 wαe ∶= wα ⋅ re,∀α ∈ E∗, e ∈ E. (52)

Now define δ ∶ Eω × Eω
→ [0,1] as follows: if τ, σ ∈ Eω they have a longest

common prefix α. Now we set

δ(σ, τ) ∶= ⎧⎪⎪⎨⎪⎪⎩
wα , τ ≠ σ
0 , τ = σ (53)

This definition is clearly symmetrical and δ(τ, σ) = 0 ⇐⇒ τ = σ. The
triangular inequality is satisfied, since if for three strings ρ, σ, τ the first two
agree on the prefix α at most, and the last two agree on the prefix β at most
then ρ and τ agree on m ∶= min{α,β}. Therefore δ(ρ, τ) ≤ wm ≤ wα + wβ =
δ(ρ, σ) + δ(σ, τ).
Now δ(θe(σ), θe(τ)) = weα = rewα = reδ(σ, τ). (X,d) clearly forms a complete
metric space since elements of Cauchy sequences agree on longer and longer
prefixes and therefore have a shared limit.

The string model of a ratio list is in some sense the biggest realization.
On one hand the whole space Eω is invariant under the IFS, on the other
hand for every realization, there is a continuous surjection from the string
model onto the self-similar set. This is the string model theorem.

Theorem 3.11 (String model Theorem). Let (X,d) be a non empty complete
metric space and {fe}e∈E an IFS realizing the contracting ratio list (re)e∈E.
Then there is a unique continuous function h ∶ Eω

→ S, such that for σ ∈
Eω, e ∈ E

h(eσ) = fe(h(σ)) (54)

and the image of h is the invariant set of the IFS.

Proof. We will construct a sequence of continuous functions uniformly con-
verging to h. Define h0 ∶ Eω

→X as the constant function with an arbitrary
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x ∈ X and hk ∶ Eω
→ X by hk+1(eσ) = fe(hk(σ)). h0 is continuous and sup-

pose the continuity of hk is already proven. Let S ⊆ X, then the preimage
of S decomposes into the disjoint subsets Ae = {σ ∈ h−1k+1[S] ∶ ∃σ′ ∶ σ = eσ′} =
θe[h−1k [f−1e [S]]]. Since fe, hk are continuous and θ as a similarity is open, the
preimage of S is union of open sets and therefore open itself.
Furthermore the sequence (hk) converges uniformly and therefore its limit h
has the desired properties. Let r =maxe∈E re < 1. We compute

δ(hk+1(eσ), hk(eσ)) = δ(fe(hk(σ)), fe(hk−1(σ))) ≤ rδ(hk(σ), hk−1(σ)).
So sup{δ(hk+1(σ), hk(σ))} ≤ rk sup{δ(h1(σ), h0(σ))} and since Eω is com-
pact the later expression is finite. Now for σ ∈ Eω arbitrary

δ(hm(σ), hk(σ)) ≤ m∑
j=k
δ((hj+1(σ)), fe(hj(σ))) ≤ m∑

j=k
rj sup{δ(h1(σ), h0(σ))}.

Since this expression converges to 0, for m,k → ∞, we get uniform conver-
gence for the sequence of functions, proving the continuity of h.
Now we look at the set hk[Eω] = ⋃e∈E fe[hk−1[Eω]], which converges to
h[Eω]. On the other hand this is exactely the approach by constructing
the invariant set of the IFS by prefractals. Finally we prove uniqueness. Let
g, h be two functions with the defining properties. Then

δ(h(eσ), g(eσ)) = δ(fe(h(eσ)), fe(g(eσ))) ≤ rδ(h(σ), g(σ)),
but since r < 1, this means that δ(h(σ), g(σ)) = 0 for all σ ∈ Eω and therefore
h = g everywhere.

This fact gives us a way to describe the points of the invariant set of
arbitrary realizations of a ratio list. But note that h in general is not injective.

Definition 3.12. The function h described as above is called the address-
ing function and iff x = h(σ), we call σ the address of x.

Another way to approach self-similar sets is via Mauldin-Williams graphs.
These are graphs with more structure, where we also allow more than one
arrow between two vertices. Formally we define this using two function as-
signing inital vertex and terminal vertex to every edge.

Definition 3.13. A directed multigraph is the quadruple (V,E, i, t), where
V is a (finite) set of vertices and E a (finite) set of edges and i, t ∶ E → V
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assigning initial vertex and terminal vertex. A path is a sequence of edges,
such that the terminal vertex of an edge is the initial vertex of the next
one. The number of edges is called the length of the path. A multigraph is
called strongly connected, iff for every two vertices there is a path connect-
ing them. A Mauldin-Williams graph is a multigraph with a function
r ∶ E → (0,∞). Iff r(e) < 1,∀e ∈ E, we call the graph strictly contracting.

Mauldin-Williams graph are a good model for self-similar sets and lead
to an extended definition of IFS, where the functions don’t necessarily map
from the same metric space to itself.

Definition 3.14. Given a Mauldin-Williams graph (V,E, i, t, r) we define a
graph-directed iterated function system as a family of complete metric
spaces (Xv, dv)v∈V and Lipschitz functions fe ∶ Sv → Su for e ∈ E, i(e) =
v, t(e) = u and L(fe) = re. An invariant set list is a list of nonempty sets
Kv ⊆Xv such that

Ku = ⋃
v∈V

e∈E∶i(e)=u,t(e)=v

fe[Kv]. (55)

Anolouge to the previous fixed point arguments we can garantuee an
invariant set list for strictly contracting Mauldin-William graphs.

Theorem 3.15. Let (V,E, i, t, r) be a strictly contracting Mauldin-Williams
graph and (fe)e∈E on (Sv)v∈V realizing the graph. Then there exists a invari-
ant set list.

Proof. Define X ∶=∏v∈V K(Xv) and d the maximum of the Hausdorff metri-
ces on the coordinate spaces. Define

F ((Av)v∈V ) =
⎛⎜⎜⎝ ⋃

v∈V
e∈E∶i(e)=u,t(e)=v

fe[Kv]
⎞⎟⎟⎠
u∈V

.

This is contracting map on the complete metric space and therefore there
exists a fixed point. The coordinates form a invariant set list.

The last notion discussed in this section is are Büchi automata, which
supersede the notion of finite automata. In finite automata only finite paths
and finite words are considered, but with Büchi automata we allow these to
be infinite, so they are suitable to describe points in self-similar sets.
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Definition 3.16. The 5-tuple A = (Q,A,E, I, T ) is called a Büchi au-
tomaton, iff Q = {q1, ..., qN} is a finite set of states, A is a finite alphabet,
E ⊂ Q × A × Q is a set of edges and I, T ⊂ Q the intial and terminal
states. Let A∗ denote the set of all (finite) words and Aω denote the set of
all infinite words. A word l ∈ A∗, l = l1...ln is accepted by the automaton,
iff there are states qi1 , ..., qin+1 such that qi1 ∈ I, qin+1 ∈ F and for all k the
tripel (qik , lk, qik+1) ∈ E. We call such a finite path successfull and we call
an infinite path successfull, iff infintley many subpaths are successfull. An
infinte word l ∈ Aω is accepted by the automaton, if there exists an infinity
successfull paths with the label l. The set of all l ∈ Aω, that are accepted byA is called the ω-language accepted by the automaton.

Let L1, L2 two ω-languages in the same alphabet accepted by A respec-
tively B. It can be necessary to create automata accepting the union of the
languages or their intersection. The union is not difficult: one just uses the
union of states and edges, as well as the union of terminal and intial states.
The intersection is also possible, but a little bit more elaborate. This will
be used in Theorem 5.6 to determine the intersection of the boundary of the
Twin Dragon with some lines as it is in [1]

Lemma 3.17. Let L1, L2 be two ω-languages in the same alphabet A accepted
by the Büchi automata A respectively B. Then there is a Büchi automaton
accepting L1 ∩L2.

Proof. Define A × B = (QA ×QB,A,E, IA × IB, TA × TA), where E consists of

the edges (a, b) d
→ (a′, b′) with a

d
→ a′ and b

d
→ b′. Let l ∈ Aω accepted byA×B, then there exists an infinite path in the automaton. Projecting to the

first coordinate gives a infinite path through A. Therefore l ∈ L1 and with
the same reasoning l ∈ L2. Now let l ∈ L1 ∩ L2. There exists a path a1a2...
through A and b1b2... through B. Therefore (a1, b1), (a2, b2), ... is accepted
by the product automaton.
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3.3 Similarity dimension and Hausdorff dimension of

self-similar sets

This section will cover the question, what the Hausdorff dimension of a self-
similar set is. A goal is to show, that under certain conditions this dimension
coincides with box-counting dimension, so that we can use the full versions
of the theorems in Chapter 2.
Apart from our previous notions of dimension, self-similar sets have their
own measure for their complexity: the similarity dimension.

Definition 3.18. Let S be a self-similar set defined by the IFS (fi)mi=1. The
similarity dimension of S is defined as the root d of the equation

m∑
i=1
L(fi)d = 1. (56)

We denote the similarity dimension of S with Sim(S).
Note that despite the name Sim does not hold the conditions for a dimen-

sion function, but it turns out that in certain cases this value agrees with
dim and even Box. This is also of very practical use since computing the
root of the equation above is a purely analytical and numerical problem, not
a geometrical.
Without any restrictions similarity dimension holds as an upper bound for
Hausdorff dimension.

Theorem 3.19. Let S be a self-similar set, then

dim(S) ≤ Sim(S) (57)

Proof. Since S = F (S) with F (A) ∶= ⋃m
i=1 fi(A), we can split up S by applying

F k many times for fixed k ∈ N into

S = ⋃
i1,i2,...,ik

fi1(fi2(...(fik(S))...)).
Denote v ∶= (i1, i2, ..., ik) and Sv ∶= fi1(fi2(...(fik(S))...)) and λ ∶=max{L(fi)} <
1. We have

diam(Sv) ≤ diam(S) k∏
j=1
L(fij) ≤ λk diam(S)
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and therefore {Sv} forms a δ−cover of S with δ = λk diam(S). For s = Sim(S)
we compute

Hs
δ(S) ≤ ∑

v∈{1,...,m}k
diam(Sv)s

≤ diam(S)s∑
v

k∏
j=1
L(fij))s

≤ diam(S)s ( m∑
i=1
L(fi)s)

k = diam(S)s.

This inequality holds for all small δ, if k is large enough; thus Hs(V ) ≤
diam(V )s.

The converse inequality does not hold for arbitrary self-similar sets; one
needs more conditions. Before directly looking at this problem, we want to
answer the question when dim = Box. The implicit theorems as in Falconer’s
book ”Techniques in Fractal Geometry” [8, p.42-46] give two conditions for
not necessarily self-similar sets. They are called implicit, because they do
not explicitly calculate the dimensions, but use the inner structure of the set.
In the first condition we are strongly reminded of self-similar sets, since for
arbitrary small intersections of the set, we find maps to the whole set with
a bounded Lipschitz constant. In the second theorem we look at maps from
the whole set to parts of the sets.

Theorem 3.20 (Implicit Theorem I). Let E ∈ K(Rn), dim(E) = s and
a, r0 > 0. If for every set U intersecting E with diam(U) < r0 there is a
mapping g ∶ E ∩U → E satisfying

a

diam(U)∣∣x − y∣∣ ≤ ∣∣g(x) − g(y)∣∣,∀x, y ∈ E ∩U, (58)

then Hs(E) ≥ as > 0 and Box(E) = Box(E) = s.
Proof. We remember that dim(S) ≤ Box(E) ≤ Box(E) = s always holds
(Corollary 2.18). So we prove that for all d with Hd(E) < ad it follows that
Box(E) < d. By letting d converge to s we get the inverse inequality.
Suppose Hd(E) < ad, then there is a δ-cover U1, ..., Um with δ ≤min{a/2, r0}
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and ∑diam(Ui) < ad. Since E is compact, we can assume the finiteness of
the cover. Let 0 < t < d close to d such that

a−t
m∑
i=1

diam(Ui)t < 1. (59)

By the given conditions we get mappings gi ∶ E ∩Ui → E with

∣∣x − y∣∣ ≤ diam(U)
a

∣∣gi(x) − gi(y)∣∣,∀x, y ∈ E ∩Ui. (60)

This garantuees us that the gi are injective and their are inverses Lipschitz
continuous, even contractions. Define Ik ∶= {1, ..,m}k, I ∶= ⋃k Ik and for each
v = (i1, ..., ik)

Uv ∶= g−1i1 (g−1i2 (...(g−1ik (U))...))
analog to the proof of Theorem 3.19. For every k E is covered by the {Uv}, v ∈
Ik and repeated application of (60) gives us

∣∣x−y∣∣ ≤ a−k k∏
j=1

diam(Uij)⋅∣∣gi1○...○gik(x)−gi1○...○gik(y)∣∣,∀x, y ∈ E∩Uv (61)

and in particular

diam(Uv) =max{∣∣x − y∣∣} ≤ a−k k∏
j=1

diam(Uij)diam(E)
Note that the righthand side goes to 0, if we let k get bigger. Let b =
a−1min1≤i≤m diam(Ui) and r < diam(E). Then for every x ∈ E, there is a
v ∈ I, such that x ∈ Uv and

br ≤ a−k k∏
j=1

diam(Uij)diam(E) < r
. Let Nr(E) denote the minimum number of sets of diameter at most r
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covering E (def. 2.17 (iv)), then we calculate

Nr(E) ≤ ∣{v ∈ I ∶ br ≤ a−k k∏
j=1

diam(Uij)diam(E)}∣
≤ ∑

v∈I
(br)−t (a−k k∏

j=1
diam(Uij)diam(E))t

≤ r−tdiam(E)
bt

∞∑
k=0

a−kt ∑
v∈Ik

k∏
j=1

diam(Uij)t

= r−tdiam(E)
bt

∞∑
k=0
(a−t m∑

i=1
diam(Ui)t)

k

.

The last infinite sum is a geometric series because of (59) and converges to
some finite value which does not depend on r. By the definition of box-
counting dimension and c1 the constant calculated above, we conclude

Box(E) = lim sup
r→0+

logNr(E)− log r ≤ lim
r→0+

log(c1r−t)− log r = t < d,

Theorem 3.21 (Implicit Theorem II). Let E ∈ K(Rn), dim(E) = s and
a, r0 > 0. If for every closed ball B with center in E and radius r < r0 there
is a mapping g ∶ E → E ∩B satisfying

ar∣∣x − y∣∣ ≤ ∣∣g(x) − g(y)∣∣,∀x, y ∈ E, (62)

then Hs(E) ≤ 4sa−s <∞ and Box(E) = Box(E) = s.
Proof. Let Nr(E) be the maximum number of disjoint closed balls of radius
r with centres in E (def. 2.17 (v)). Suppose that for some r < min{a−1, r0}.
We will derive a contradiction from this assumption.
Let t > s, such that m ∶= Nr(E) > a−tr−t; then there are disjoint balls
B1, ...,Bm with radius r and centres in E and by the condition of the theorem,
we get gi ∶ E → E ∩B1 with

ar∣∣x − y∣∣ ≤ ∣∣gi(x) − gi(y)∣∣,∀x, y ∈ E. (63)
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Let d be the minimal distance between two of the balls. By using (63) (q−1)
times we can calculate for x, y ∈ E

∣∣gi1 ○ ... ○ gik(x) − gj1 ○ ... ○ gjk(y)∣∣ ≥ (ar)q−1d(ar)qd, (64)

with q the least integer such that iq ≠ jq. Let µ the measure on E define by
repeated subdivision such that µ(gi1 ○ ... ○ gik(E)) = m−k for all (i1, ..., ik).
Let U ⊆ Rn that intersects E and diam(U) < d and k be the least integer
such that

(ar)k+1d ≤ diam(U) < (ar)kd.
By (64) U intersects gi1 ○ ... ○ gik(E)) at most one sequence (i1, ..., ik), so
µ(U) ≤m−k < (ar)kt ≤ (dar)−tdiam(U)t. It follow from distribution principal
2.23 that dim(E) ≥ t > s = dim(E), which is a contradiction.
Therefore Nr(E) ≤ a−sr−s for sufficiently small r and therefore Box(E) ≤
s. By blowing up the balls by the factor 2 we get a cover and Hs

4r(E) ≤
a−sr−s(4r)s = 4sa−s.

As a direct result of the the two implicit theorems, we can describe the
Hausdorff dimension of certain self-affine sets [9, Corr. 3.3, Corr 3.4].

Corollary 3.22. Let E be a self-affine set with IFS {fi ∶ 1 ≤ i ≤m} consisting
of similarities. Then dim(E) = Box(E) and if {fi(E) ∶ 1 ≤ i ≤m} are disjoint
sets, then Sim(E) = dim(E).
Proof. Let ri ∶= L(fi) be the ratio list of the IFS and r0 ∶=mini ri. Let x ∈ E
and r ≤ diam(E). There is a sequence (i1, i2, ....) such that x ∈ fi1 ○ ...○fik(E)
for all k ∈ N. We can choose k such that r0r < ri1 ⋅ ⋅ ⋅ rik diam(E) ≤ r. Then
fi1 ○ ... ○ fik ∶ E → E ∩Br(x) is a similarity with ratio at least r0 diam(E)−1r,
so by thm. 3.21 we get the dim(E) = Box(E) and Hs(E) <∞. Now suppose
mini≠j dist(fi(E), fj(E)) = d > 0, then it follows, that dist(fi1○...○fik(E), fj1○
...○fjk(E)) ≥ ri1 ⋅⋅⋅rik−1d if the index vectors are distinct. Let U intersect E and
diam(U) ≤ d and x ∈ U∩E, then we find (i1, ..., ik) such that x ∈ fi1○...○fik(E)
and dri1 ⋅ ⋅ ⋅rik ≤ diam(U) ≤ dri1 ⋅ ⋅ ⋅rik−1 . Thus U is disjoint from fj1 ○ ...○fjk(E)
for all other index vectors. Hence E ∩ U ⊆ fi1 ○ ... ○ fik(E) and therefore(fi1 ○ ...○fik)−1 ∶ E∩U → E a similarity with ratio (ri1 ⋅ ⋅ ⋅rik)−1 ≥ ddiam(U)−1.
Applying thm. 3.20 we get 0 < Hs(E). Now for disjoint sets it easy to seeHs(E) = ∑m

i=1Hs(fi(E)) = ∑m
i=1 r

s
iHs(E) and since 0 < Hs(E) < ∞, we get

1 = ∑m
i=1 r

s
i and therefore s = Sim(E).
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Definition 3.23. Let E be the attractor of the IFS {fi ∶ 1 ≤ i ≤ m}. If A is
a non-empty compact subset of E satisfiying

A ⊇ m⋃
i=1
fi(A) (65)

we call it super-self-similar. If

A ⊆ m⋃
i=1
fi(A) (66)

it is called sub-self-similar.

Corollary 3.24. Let E be the attractor of the IFS {fi ∶ 1 ≤ i ≤m} consisting
of similarities.

(a) If A is super-self-similar, then s ∶= dim(A) = Box(A) and Hs(A) < ∞
(b) If A is sub-self-similar and {fi(E) ∶ 1 ≤ i ≤ m} are disjoint it follows,

that s ∶= dim(A) = Box(A) and Hs(A) > 0.
The proof to this Corrollary uses the same argument as the one before.

Note that for self-affine sets its boundary forms a sub-self-similar set. For self-
affine sets like the cantor set the first statement holds, since the similarities
are disjoint. But for many self-affine sets this assumption is too strong. In
the next subsection we can prove the same result (thm. 3.31) for a broader
class of self-affine sets including the Sierpinsky gasket or the Twin Dragon.
If the similarities are disjoint we see that in each step of the approximation
the set gets split up in more and more disjoint parts, such that the limitset
is totally disconnected.

Proposition 3.25. Let S be a self-affine set with IFS {fi ∶ 1 ≤ i ≤ m}
consisting of similarities, such that {fi(S) ∶ 1 ≤ i ≤ m} are disjoint sets.
Then S is totally disconected.

Proof. Let x, y ∈ S,x ≠ y. Then there exists an address (i1, i2, ...) of x and an
addresse (j1, j2, ...) of y. Suppose ik ≠ jk is the first occation where they differ.
Then (fik ○ ... ○ fi1)(S) ⊂ fik(S) is disjoint from (fjk ○ ... ○ fj1)(S) ⊂ fjk(S).
Since both sets are closed they have distance > 0. Therefore x, y are seperated
by two closed sets and cannot be in the same connected component. Since
x ≠ y where arbitrary, only the singletons are connected.
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Many self-similar sets we want to investigate are not totally disconnected.
On the contrary they also can be even connected. The following definition
and theorem charactarizes connected self-similar sets. Following [19, p.25]
we define:

Definition 3.26. Let {A1, ...,Am} be m subsets of Rn. We say they form a
chain, iff for any k ≠ j there is a sequence (i1, ..., in) such that

Ak ∩Ai1 ,Ai1 ∩Ai2 , ...,Ain−1 ∩Ain ,Ain ∩Aj (67)

are all non empty. We say a set A ⊂ Rn forms a ǫ-chain if for any x, y ∈ A
there is a sequence (z1, ..., zn) such that

∣∣x − z1∣∣, ∣∣z1 − z2∣∣, ..., ∣∣zn−1 − zn∣∣, ∣∣zn − y∣∣ (68)

are all ≤ ǫ.
The following proposition follows directly from the definition

Proposition 3.27. Let A1, ...,Am form a chain and each Ai form an ǫ-chain.
Then ⋃iAi forms an ǫ-chain. For any contraction ψ on a set A forming an
ǫ-chain, ψ(A) form an L(ψ)ǫ-chain.

This definition is strong enough to fully characterize connected self-similar
sets.

Theorem 3.28. Let S be a self-similar set with IFS {fi ∶ 1 ≤ i ≤ m}. S is
connected iff f1(S), ..., fm(S) form a chain.

Proof. Let S be connected, then {f1(S), ..., fm(S)} must form a chain, oth-
erwise they could be seperated be open sets. Now suppose {f1(S), ..., fm(S)}
form a chain and that S is not connected, so it decomposes in two non-empty
disjoint compact sets with distance > δ. For all ǫ < δ S does not form an
ǫ-chain. Let λ = maxiL(fi) and since S forms a diam(S)-chain we get by
the previous proposition that fi(S) forms a λ ⋅ diam(S)-chain. Again by the
Prop. and the assumption we get that S = ⋃i fi(S) forms a λdiam(S)-chain.
Be repeating that argument we get that S even forms a λl ⋅ diam(S)-chain
and since λ < 1 we can choose l, such that λl diam(S) ≤ δ. That is a contra-
diction.
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3.4 Self-affine sets

In this subsection we take a closer look at self-affine sets, which have been
well studied, since allmost all of the early examples of fractals are self-affine.
But still there are unaswered question regarding the most elementary self-
similar sets, like calculating their Hausdorff dimension. We already proved
that the Hausdorff dimension coincides with similarity dimension (and box-
counting dimension) in the case that the similarities have disjoint imagse.
We will sharpen that result and allow disjoint images of one open set. But
in general this obviously is not true, since a we can create an IFS realizing
an arbitrary ratio list, by just multiplying with the ratios. The attractor is
just the origin, which has Hausdorff dimension 0 independend of the simi-
larity dimension of the IFS. Falconer even gives an example of a set that is
self-affine, but box-counting and Hausdorff dimension differ [6, Beispiel 9.5].
In general it is very hard to get a complete characterization of self-affine sets
that satify some dimension equality.

Definition 3.29. A set of contractions {fi ∶ 1 ≤ i ≤ m} satisfies (Morans)
open set condition (OSC), iff there exists a nonempty bounded open set
V ∈ Rn, such that

⊍fi(V ) ⊆ V, (69)

in other words the contractions restricted V → V have disjoint images. U is
called a Moran open set.

This condition is pretty similar to disjoint images and is allready sufficient
for the full equality of all three dimensions. We follow the proof in [6, p.137-
139] using the following lemma.

Lemma 3.30. Let {Vi}i∈I be a family of disjoint open subsets of Rn, such
that Vi contains a Ball of radius a1r, ∀i ∈ I and is contained in a Ball by
radius a2r. Then every Ball B with radius r intersects at most (1+ 2a2)na−nn
of the closures Vi.

Proof. Let q be the number of Vi intersecting B. If B intersects Vi, then Vi is
contained in the ball with radius (1+2a2)r with same centre as B. Summing
the volums of the balls contained in Vi we get q(a1r)n ≤ (1 + 2a2)nrn, which
is equivalent to the estimation.
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Theorem 3.31. Let S be a self-affine set defined by similarities satisfying
the open set condition. Then

Sim(S) = dim(S) = Box(S) (70)

Proof. Let (fi)mi=1 be the similarities defining S and denote s ∶= SimS. Define
I ∶= {1, ..,m}N, Jk ∶= {1, ..,m}k the set of all infinite series of indices and for
r = (i1, ..., ik) ∈ Jk let Ir ⊂ I be the set of all series starting with r. For
A ⊆ Rn we denote by Ar ∶= fi1 ○ fi2 ○ ○ ○ fik(A). Therefore we can cover S
with {Sr}r∈Jk . We have

∑
Jk

diam(Sr) = ∑
Jk

∏
r

L(fil)s diam(S)
= ( m∑

i1=1
ci1)s ⋅ ⋅ ⋅ ( m∑

i1=1
cik)s diam(S)s = diam(S).

For every δ > 0 one can choose k, such that Sr ≤ (maxiL(fi))k ≤ δ, there-
fore Hs

δ(S) ≤ diam(S)s. Hence we have an upper bound for the Hausdorff
dimension by s, since Hs ≤ diam(S)s ≤∞. For the lower bound, we define a
distribution µ on I, with µ(I(i1,...,ik)) = (L(fi1) ⋅ ⋅ ⋅ L(fik))s. Easily we have
µ(I) = 1 and

µ(m⊍
i=1
I(i1,...,ik,i)) = µ(I(i1,...,ik)) = (L(fi1) ⋅ ⋅ ⋅L(fik))s m∑

i=1
L(fi)s

=
m∑
i=1
(L(fi1) ⋅ ⋅ ⋅L(fik)L(fi))s = m∑

i=1
µ(I(i1,...,ik,i)).

Therefore we have a distribution on some subsets of I. We cant lift this
distribution naturally to a distribution on S with

ν(A) ∶= µ{(i1, i2, ...) ∶ ∞⋂
i=1
S(i1,i2,...ik) ∈ A} . (71)

We want to show that ν satisfies the conditions in the distribution principal
2.23. Let V be a Moran open set for S. Since V ⊇ F (V ) = ⋃m

i=1 fi(V ) the
sequence F k(V ) converges to S monotonely from above. In particular V ⊃ S
and V r ⊃ Sr for all r ∈ Jk. Let B a ball with radius R and estimate ν(B) by
considering the sets Vr intersecting S ∩B. For every (i1, i2, ...) ∈ I there is a
k ∈ N such that

min
i
L(fi))R ≤ k∏

l=1
L(fil) ≤ R. (72)
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Let Q be the set of finite sequences obtained by that process. Since V1, ..., Vm
are disjoint so are {Vr}r∈Q. Also we get that S ⊆ ⋃Q Sr ⊆ V r. Since V
is bounded and open, there are radii a1, a2 like in the lemma above. Vr
contains a Ball of radius a1∏r L(fi) for r ∈ Q and therefore one of radius
miniL(fi)a1R since we definedQ that way. On the other hand Vr is contained
in a ball of radius a1∏r L(fi) and therefore in a ball of radius R. Let Q1

be the subset of Q such that V r intersects B for r ∈ Q1. Using the lemma
we get that cardinality of Q1 is at most q = (1 + 2a2)na−n1 (miniL(fi))−n. We
calculate

ν(B) = ν(S ∩B) ≤ µ{(i1, i2, ...) ∶ ∞⋂
i=1
S(i1,i2,...ik) ∈ F ∩ S}

≤ µ{⋃
Q1

Ir} =∑
Q1

µ(Ir) =∑
Q1

∏
r

L(fi)s ≤∑
Q1

Rs ≤ Rsq.

Hence we get for all sets U that ν(U) ≤ diam(U)q. Using the distribution
principal 2.23 we get that Hs(S) ≥ q−1 > 0 and conclude dim(S) = s. Finally
we want to show equality with the box-counting dimension. We just need to
show Box ≤ s. We use the cover of S by {Vr}r∈Q. One can show inductively
that ∑Q(∏r L(fi))s = 1 and by applying 72 to it we get that the maximal
number of elements in Q is miniL(fi)−sR−s. We now have a cover with
diam(V r) ≤ Rdiam(V ). Recalling the definition of box-counting dimension
we get

Box(S) ≤ lim
R→0

logminiL(fi))−sR−s− log(Rdiam(V )) = s
This concludes the proof.

We can now calculate the Dimension of the Twin Dragon assuming the
open set condition is fulfilled. We will show that in Chapter 4.

Proposition 3.32. Let K be the Twin Dragon, that is the attractor of the
IFS {f1, f2} with f1(x) = B−1x, f2(x) = B−1(x + (1,0)) and

B = (−1 −1
1 −1) (73)

. Then dim(K) = Box(K) = Sim(K) = 2.
47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Proof. If the opens set condition is fulfilled we imediately get the equality of
the dimensions and since L(f1) = L(f2) = √1/2 we easily get Sim(K) = 2.

We see in fact, that the Twin Dragon is not(!) fractal. In general it is
really hard to calculate Hausdorff dimension of self-similar sets, but there are
further classes of fractal with overlaps, where this is possible. For example
it is possible, to show that for IFS of finite type Hausdorff dimension and
box-counting coincide and can be calculated directely, as described in [14].

Since we are also interested in the dimension of the boundary of the
Twin Dragon, we state a more general statement about sub-self-similar sets
generalizing Corollary 3.24 following [7].

Theorem 3.33. Let E be the attractor of the IFS {fi ∶ 1 ≤ i ≤m} consisting
of similarities satisfying the open set condition. If A is a sub-self-similar
subset of E, then s ∶= dim(A) = Box(A) and Hs(A) > 0.

For calculating the dimension of the boundary one needs more structure,
but this theorem states that it is sufficient to use box-counting dimension.
The Chapter 4 gives a method for boundaries of special self-similar sets.
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4 Canonical number systems and tilings

This chapter concentrates on an algebraic, number theoretical problem, where
it turns out that fractals appear in a pretty natural way. The Twin Dragon
fractal is strongly connected to one specific example of a canonical number
system (CNS) and to get more knowledge about its geometric, topological
properties it is really usefull to investigate this connection. We will also deal
with tilings, which are ways to cover the plane with copies of a shape, with-
out overlapping. This is a geometric notion, but it also strongly relates to
the CNS property. Finite automata show up as well in this chapter, since
they are a great tool to calculate Hausdorff dimension and will help us with
the main difficulties in the last chapter.

4.1 Radix representation and Canonical number sys-

tems

Let us open this subsection with really basic mathematics to have a better
understanding for the following definitions and notions. Ever since humans
were interested in numbers, there was the need to notate big numbers and
have a representation system that lets one easily handle them. Since the
roman numerals arguably did not do a good job, we now mostly use the arabic
numerals in base 10. But also other bases like 2 or 16 are used to represent
numbers. This works because of the following well known statement.

Definition and Proposition 4.1. Let γ, β ∈ N. Then there exists a unique
representation of γ by

γ = n∑
j=0
djβ

j (74)

where 0 ≤ dj ≤ β,n ∈ N minimal such that di = 0 for i > n. This is called
the radix representation of γ, β is called the radix or base and dj the
respective digits.

If we allow negative exponents and infinite sumation for them, we even
can represent all the non negative real numbers. The numbers, which only
have negative exponents, form the interval [0,1].
Now we want to also allow negative basis for example −10 and digits < ∣−10∣.
It turns out that we have the same properties for negative basis and we can
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even expand the area of representable numbers to all reals! The numbers with
only non negative exponents shift though to [−10/11,1/11]. Expanding the
notion to algebraic and therefore even complex numbers, we have different
number fields, that can be represented.
Before we define a CNS, let us define some standard algebraic objects, which
will be necessary in the following.

Definition 4.2. A number field K is an algebraic field extension of the
rational numbers Q. An element β ∈ K is called an algebraic integer , iff
there is a monic polynomial p ∈ Z[x], such that f(β) = 0. The algebraic
integers form a ring. Define the field norm of an element α ∈ K as

N(α) = ( n∏
j=1
σj(α))

[K ∶Q(α)]

, (75)

where σj(α) are all of the roots of the minimal polynomial of α.

Following [18] we define the following notion:

Definition 4.3. Let K be a number field with ring of integers ZK. Let β ∈ ZK

and N a complete residue system mod ∣N(β)∣−. The pair (β,N ) is called
a number system in K, if each γ ∈ ZK admits a unique representation of
the form (74), where dj ∈ N , n ∈ N minimal such that di = 0 for i > n. IfN = {0,1, ..., ∣N(β)∣ − 1} we call the number system a canonical number
system (CNS). We use the same terminology as in Definition 4.1.

This is a pretty natural extension of the former definition, although in
the latter sense positive integers cannot form a base, since N does not form
a ring.
There is an even more general definition used in [1], which only uses polyno-
mials.

Definition 4.4. Let P (x) = xm + bm−1xm−1 + ...+ b0 ∈ Z[x] monic polynomial
with m ≥ 1. Let R = Z[x]/P (x)Z[x] and N a complete residue system
mod ∣b0∣ − 1. The pair (P (x),N ) is called a number system in R, if each
γ ∈R admits a unique representation of the form

γ =
n∑
j=0
djx

j (76)
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where dj ∈ N , n ∈ N minimal, such that di = 0 for i > n. If N = {0,1, ..., ∣b0∣−1}
we call the number system a CNS . If P (x) is irreducible and β is one of its
zeros, then R is isomorphic to Z[β] the ring of integers in Q[β]. In this case
the definition coincides with Definition 4.3.

These definitions show that the problem of radix representation can be
viewed from various angles. There are similar notions in every context. It is
important to note that the notions in this thesis may vary from the original
sources to suit this context.
We want to define the analogon to the fractional part of radix representation.
This will be called the fundamental domain. To do so, we need to develope
a few notions first following [1, p.558f]. Let (P (x),N ) be a CNS and let αi

be the zeros of P (x) ordered such that the first r1 are the real zeros and the
2r2 complex zeros are grouped, such that for alll j = 1, ..., r2:

αr1+2j−1 = αr1+2j Imαr1+2j−1 = − Imαr1+2j > 0.
Define the homomorphisms Φi ∶ R→ Q(αi) by

n−1∑
j=0

djx
j
↦

n−1∑
j=0

djα
j
i , (77)

And Φ ∶ R→ Rn by

Φ ∶= (Φ1, ...,Φr1 ,ReΦr1+1, ImΦr1+1, ...,ReΦr1+2r2−1, ImΦr1+2r2−1.) (78)

Further we define the matrix B

B ∶= diag(α1, ..., αr1 ,A1, ...,Ar2) where Aj ∶= (Reαr1+2j−1 − Imαr1+2j−1
Imαr1+2j−1 Reαr1+2j−1

) .
The matrix B fullfills Φ(xγ) = BΦ(γ) for γ ∈ R. We are now able to

define the fundamental domain.

Definition 4.5. Let (P (x),N ) be a number system and Φ,B as defined
above. The fundamental domain F ⊂ Rn of the number system is defined
by

BF = ⋃
d∈N
(F +Φ(d)), (79)

which is equivalent to

F = {∞∑
i=1
B−iΦ(di), di ∈ N} = { N∑

i=1
B−iΦ(di), di ∈ N ,N ∈ N}. (80)
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Once again there is another way to see the problem of number systems.
Note that the matrix B looks like a basis in the definition above and the
digits therefore are vectors. Therefore we once again define a number system
in this context.

Definition 4.6. Let M ∈ Zd×d and A = {A0 = L, ...,At−1}, t = ∣detM ∣ be
a complete residue system of the factor group L = Zd/MZd.. Let N ={a0, a1, ..., at−1} such that, a0 = 0, aj ∈ Aj. The pair (M,N) is called a num-
ber system in Zd, if each γ ∈ Zd admits a unique representation of the form

γ = n∑
j=0
M jdj (81)

where dj ∈ N , n ∈ N minimal, such that di = 0 for i > n.
If we understand these number systems in Zd, we also understand the

number systems, where the base matrix has the specific form that comes
from a number system in Z[x].
The fundamental domain is our main reason to study number systems, since
theses can form self-similar shapes. We can express the fundamental domain
as follows:

F = ⋃
d∈N

B−1(F +Φ(d)). (82)

The topological properties of the fundamental domain are studied in [12]
under the assumption that all zeros have absolute value bigger than 1. Note
that if we look at P (x) = x2 + 2x+ 2 with its roots α1,2 = −1± i the canonical
number system of P has the Twin Dragon as fundamental domain. Therefore
studying properties of these general fundamental domains directly translate
to the Twin Dragon. Following the proofs of Imre Kátai in [12] in the one
dimensional case we adapt them to higher dimensional case, as also proposed
in the preprint.

Definition 4.7. A subgroup of (Zd,+) is called a lattice in Zd. If M is a
matrix with integer entrees and eigenvalues λ1, ..., λk are distinct and ∣λi∣ > 1,
then L = MZd forms a lattice, called the lattice generated by M . Let
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A = {A0 = L, ...,At−1}, t = ∣detM ∣ be a complete residue system of the factor
group Zd/MZd. Choose a0 = 0, aj ∈ Aj, then define N ∶= {a0, ..., at−1}. We
define a function J ∶ Zd

→ Zd as follows. For n ∈ Zd, there is unique b ∈ N ,
such that n − b ∈ L. Map n to the unique number J(n) such that M ⋅ J(n) =
n − b.

We want to investigate, if (M,N) form a number system and which
properties its fundamental domain has, by analysing the dynamical system(N,Zd, J).
Lemma 4.8. LetM,N and J be defined as above. Let r ∶= ∣∣M−1∣∣ = sup{∣∣M−1x∣∣ ∶∣∣x∣∣ = 1}, K ∶=maxb∈N ∣∣b∣∣ and L = Kr

1−r . The following holds

a) If ∣∣n∣∣ > L, then ∣∣J(n)∣∣ < ∣∣n∣∣.
b) If ∣∣n∣∣ ≤ L, then ∣∣J(n)∣∣ ≤ L.

Since the ball with radius ∣∣n∣∣ contains only finite points of Zd, the sequence
n, J(n), J2(n), ... ultimately is periodic.

Proof. For J(n) we have

∣∣J(n)∣∣ = ∣∣M−1n −M−1b∣∣ ≤ r∣∣n∣∣ +Kr,
and therefore if ∣∣n∣∣ ≤ L, ∣∣J(n)∣∣ ≤ rL+L(1− r) = L. Conversely if ∣∣J ∣∣ ≥ ∣∣n∣∣,
we get ∣∣n∣∣ ≤ r∣∣n∣∣+L(1−r), which is equivalent to ∣∣n∣∣ ≤ L. By contraposition
we get a) and the last statement immediately follows from the two cases.

Definition and Proposition 4.9. A point n ∈ Zd is called periodic under
J iff there is a k ∈ N such that Jk(n) = n. Let P be the set of all periodic
elements. The following statements hold.

1. 0 ∈ P ,
2. n ∈ P ⇐⇒ n = b0 +Mb1 +M2b2 + ... +Mkn, bj ∈ N ,

3. n ∈ P ⇒ J(n) ∈ P ,
4. n ∈ P ⇒ ∣∣n∣∣ ≤ L.

Proof. 1. 0 − 0 ∈ L and M ⋅ 0 = 0.
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2. For n ∈ Zd there is a unique expansion n = b0 +MJ(n). Further we
can use the same argument for J(n) and get n = b0 +M(b1 +MJ2(n)).
Generally, for k > 0, we get

n = b0 +Mb1 +M2b2 + ... +MkJk(n), bj ∈ N . (83)

Therefore the statement is clear.

3. n = Jk(n) ⇒ J(n) = Jk(J(n)).
4. This follows directly from the previous lemma.

The proof gave us a feeling of what Jk(n) does: it gives us the rest term
in a digit expension of n. Since we know that this will ultimately be periodic,
it can only vanish iff P = {0}.
Theorem 4.10. The system (M,N ) is a number system iff P = {0}.

This theorem gives us a way to characterize number system with a simple
algorithm. Since P is in a ball of radius N , we only need to check for finite
n, if Jk(n) = n. But how long does that take? Luckily there is an upper
bound for how long it takes for an arbitrary n to end up in P by repeatedly
applying J .

Lemma 4.11. Let l(n) be the smallest integer k ≥ 0, for which Jk(n) ∈ P.
Then there is a constant c = c(M,N ), such that ∀n ∈ Zd ∖ {0},

∣l(n) − log ∣∣n∣∣
log ∣∣M ∣∣ ∣ < c (84)

Proof. For the finitely many points ∣∣n∣∣ ≤ 2L we can compute the largest c,
for which the inequality holds. Let now n be arbitrary: we want estimate
when such a n will end up in the ball of radius 4L of the first case. Denote by
l1 the smallest number k such that ∣∣Jk(n)∣∣ ≤ 2L. Then 0 ≤ l − l1 ≤ (4L + 1)d
since this is the number of elements in the cube with side length 2L and we
know that it contains P . Using (83) for k = l(n) we get: ∣∣n∣∣ ≤ K(1 + ∣∣M ∣∣ +
... + ∣∣M ∣∣k) + ∣∣M ∣∣k+12L ≤ (K + 2L)∣∣M ∣∣k+1, where the last inequality can be
shown elementary using ∣∣M ∣∣ > 1. This yields

log ∣∣n∣∣
log ∣∣M ∣∣ − k ≤ log(K + 2L) + 1.
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Since Jk−1(n) is just not yet in the cube we get again by using (83):

2L∣∣M ∣∣k−1 ≤ ∣∣Jk−1(n)Mk−1∣∣ ≤ ∣∣n∣∣ +K(1 + ∣∣M ∣∣ + ... + ∣∣M ∣∣k−2)
= ∣∣n∣∣ + ∣∣M ∣∣k−1 − 1∣∣M ∣∣ − 1 ≤ ∣∣n∣∣ +L∣∣M ∣∣k−1.

Therefore logL + log ∣∣M ∣∣(k − 1) ≤ log ∣∣n∣∣, which yields

k − log ∣∣n∣∣
log ∣∣M ∣∣ ≤ 1 − log(L)

log ∣∣M ∣∣ .
In conclusion we have a constant c1 = c1(M,N) for l1 and get

∣l(n) − log ∣∣n∣∣
log ∣∣M ∣∣ ∣ ≤ ∣l(n) − l(n)∣ + ∣l1(n) − log ∣n∣

log ∣∣M ∣∣ ∣ ≤ (4L + 1)d + c1

This estimation helps us to get information about the fundamental do-
main of a number system. Note that the following theorem holds for arbitrary(M,N), especially for number systems.

Theorem 4.12. Let F ⊂ Rd the set of all x ∈ Rd that have at least one
expansion of the form:

x = ∞∑
i=1
M−ibi (85)

Then F is compact and, for every y ∈ Rd, there are x ∈ F , n ∈ Zd ∶ y = n + x.
Proof. By our characterization of F by (82) we know, that it is the attractor
of an IFS, which is a compact set. But more specifically we can bound F by∣∣x∣∣ ≤ ∑iK ∣∣M ∣∣−i = L. We now prove the second statement. Let

Fm ∶= {x = m∑
i=1
M−ibi} , F∞ = lim

m→∞
Fm, (86)

then F is the closure of F∞. The previous lemma gives us a constant T , such
that for all m ∶ ∣∣n∣∣ ≤ ∣∣M ∣∣m we have l(n) ≤ m + T , for arbitrary n ∈ Zd. We
express n as

n = m+T∑
i=0

M ibi + pMm+T+1, p ∈ P .
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Now we consider the sets

Gm ∶= {M−m−T−1n ∶ ∣∣n∣∣ ≤ ∣∣M ∣∣m} , (87)

which satisfy Gm ⊆ ⋃p∈P p + Fm ⊆ P +F . The limit limm→∞Gm lies dense in
the cube of side length 2∣∣M ∣∣T+1 with centre in the origin. By rescaling we
conclude for the unit cube C that

C ⊆MT+1P +MT+1F =MT+1P + ⋃
b1,...,bT+1∈N

T+1∑
i=1

MT+1−ibi +F .
Therefore every z ∈ C can be expressed as z = u + x, u ∈ Zd, x ∈ F and since
every y ∈ Rd can be expressed by y = n + z, n ∈ Zd, z ∈ C we have proven the
statement.

Finally we prove some results about the Lebesgue measure of F and its
boundary.

Proposition 4.13. Let (M,N ) be a number system and F its fundamental
domain. Then Ld(F) > 0 and Ld((F + n) ∩ (F +m)) = 0,∀n,m ∈ Zd.

Proof. Since Rd = Zd + F we get the contradiction Ld(Rd) = 0, if Ld(F) = 0.
Since m,n ∈ Zd can be expressed uniquely in base M we get an exponent k,
which is the maximum in their expansion. Let Γk be the set of all points
that have expansion using exponents at most k. Note that ∣Γk∣ = detMk+1

and therefore

Ld(F)(detM)k = Ld(MkF) ≤ ∑
n∈Γk−1

Ld(F + n) = (detM)kLd(F).
Therefore Ld((F + n) ∩ (F +m)) = 0.

If the last statement is true for (M,N) we call it a just touching cover-
ing system (JTCS). We have just shown, that every number system forms a
JTCS. It is possible to prove the converse ( [12, Chapter 4.]), but we omit
this. Further, Kátai gives an algorithm to determine the n ∈ Zd, whereF ∩ (F + n) ≠ ∅, but we will develope another algorithm in the next subsec-
tion, that is more suitable.
In general we need more conditions on the number system to get more topo-
logical properties. Since the Twin Dragon forms the fundamental domain
of a canonical number system over R2 we can show a few properties us-
ing [2, p.8/9].
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Theorem 4.14. Let K be the Twin Dragon as previously defined via the
matrix B. Then K is the closure of its interior and K satisfies the open set
condition.

Proof. K is a CNS, since one can check by the algorithm proposed in Theorem
4.10. First we prove that 0 ∈ int(K). Suppose 0 ∈ ∂K, then there exists a
representation

0 = n + ∞∑
i=1
B−idi ∈ n +K.

Multiplying with Bk yields 0 ∈ Bkn+K and, since we have a CNS, the vectors
Bkn, k ∈ N are all different. Therefore 0 is in infinitely many translates of K.
Since these get arbitrarily big, it violates the compactness of ∂K. Now we
fix m ∈ N and Fm as in (86). Then for g ∈ Fm we get g ∈ int(B−mK+ g). Now

K = ⋃
g∈Fk

(B−mK + g)
yields Fk ⊆ int(K) and therefore F∞ ⊆ int(K). Taking closure on both sides

gives us K ⊆ int(K) and the reverse relation is trivial, since K is closed. The
open set condition is now satisfied with V = int(K).
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4.2 Self-similar tiles

Consider the two dimensional plane. We now ask ourselves if there is a way
to cover the whole plane with congruent compact sets, such that only the
boundaries overlap. Thinking of classic quadratic bathroom tiles or the six
sided honey comb we know, that this is possible. More interestingly we can
ask for convex tilings of Rd or if there exists a tiling given a certain set. We
will investigate self-similar tiles and their properties. For certain self-similar
tiles it is possible to calculate the dimension of its boundary, as it is for the
Twin Dragon fractal. Furthermore we will see that these tilings strongly
relate to canonical number systems.
Before we define the key notions of this chapter, we introduce a terminology
often used in this context.

Definition 4.15. Let (X, τ) be a topological space. We say two sets are
non-overlapping, iff their interiors have empty intersection.

Definition 4.16. We call T ∈ K(Rn) a tile, iff there is a countable set I and
affine transformations Ai ∶ Rn

→ Rn for all i ∈ I such that

Rn = ⋃
i∈I
Ai(T ), (88)

where every two sets are non-overlapping. We call this covering a tiling of
Rn. Tilings of R2 are sometimes called tesselations.

Now there is a multitude of terminology concerning further structur of
the tile, like convex tilings or Euclidean tilings, where only regular polygons
are used. On the other hand one can demand more structure of the affine
transformations or even allow different tiles. Finally one can search for tilings
of other geometric spaces, like the hyperbolic space or tilings of the torus.
This opens the very large theory of tilings.
This thesis is concerned with tiles that are self-similar.

Definition and Proposition 4.17. Let T ∈ K(Rn) be a self-affine set de-
fined by the IFS {fi} with L(fi) = 1/c, c < 0,∀1 ≤ i ≤ m. If fi(T ) and fj(T )
do not overlap for i ≠ j and T is the closure of its interior, we call T a
self-similar tile. In fact Rn can be tiled by copies of T .

For specific self-similar tiles it is possible to calculate the Hausdorff di-
mension of their boundary, including the Twin Dragon. Following [3] we
establish the following notions, lemmas and theorems.
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Definition 4.18. Let T be self-similar tile such that the IFS {fi} have the
form fi(x) = A−1(x+di), di ∈D, where A is a similtude given by an expensive
integer matrix and D is a set of coset representatives of Zd/A(Zd) and 0 ∈D.
We call T a self-similar digit tile and D is the digit set. We use the
notation T = T (A,D) to specify the matrix and digit set.

Although we did not prove the last two propositions, note that the Twin
Dragon satisfies all needed conditions. Another specification we yet have to
show for K is, that the boundary of the set behaves well, while approximating
it by the standard fixed point iteration.

Definition and Proposition 4.19. Let T be a self-similar digit tile, T0
be the axis parallel unit square at the origin and Tn the n-th step of the
approximation by prefractals. T has well-behaved boundary, iff one of
the following equivalent conditions is fullfilled

1. limn→∞ ∂Tn = ∂T ,
2. limn→∞ ∂Tn is not space filling,

3. Ld(T ) = 1,
4. T +Zd is a tiling of Rd .

These conditions are in fact equivalent

We prove a lemma, that gives us an estimate on how fast the boundary
is approximated by the boundary of the prefractals.

Lemma 4.20. Let T be a self-similar digit tile with well-behaved boundary
and c be the expansion factor of A as in the definition above. Let T0, Tn be
the fixed point iteration starting with the unit square. Then there is constant
a > 0 such that for the Hausdorff metric dH (3.4) we have the inequality

dH(∂T, ∂Tn) < a

cn
(89)

Proof. Let F denote the Hutchinson operator and a = dH(T,T0). First we see,
that dH(T,Tn) = dH(F (T ), F (Tn−1) ≤ 1

c
dH(T,Tn−1) ≤ 1

cn
dH(T,T0), therefore

we know that dH(T,Tn) ≤ a/cn. To show that dH(T,Tn) ≤ a/cn, we prove,
that all x ∈ ∂Tn have at most a/cn distance to some point y ∈ ∂T and other-
wise. We use three cases:
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First let x ∈ ∂T ; then choose y = x, so we get distance 0 ≤ a/cn. Next let
x ∉ T . There is a z ∈ T , such that d(z, x) ≤ a/cn, since d(T,Tn) ≤ a/cn. Inter-
secting the line between x and z with the boundary of T gives us a point y
with d(y, x) ≤ d(z, x) ≤ a/cn.
The last case is, if x is in the interior of T . Using the conditions we know
that T forms a tiling with the integer lattice and it can be shown that the
same is true for Tn. Since x ∈ ∂Tn, there is another copie y + Tn, such that
x is also in the boundary of it, but x ∉ y + T , since it is in the interior
of T and two copies of T only can intersect on the boundary. Now we use
dH(y+T, y+Tn) ≤ a/cn and find a point z ∈ y+T , such that d(z, x) ≤ a/cn and
a point w ∈ ∂T ∩ ∂(y + T ) on the segment zx, such that d(w,x) ≤ a/cn.

Another lemma, that happens to be usefull in the proof of the main
theorem of this section, is the following.

Lemma 4.21. Let T = (A,D) be a self-similar digit tile, {e1, ..., ed} the
standard basis of Rn and N0 = {0} ∪ {±e1, ..,±ed}. Then there is a unique
smallest finite set N0 ⊂ N ⊂ Zd, such that D +N ⊆ AN +D.

Proof. We define an algorithm to create N as followed. Start with N0 and
Nj+1 = Nj ∪ {x ∈ Zd∣Ax + d = y, d ∈ D,y ∈ D +Nj}. If Nn+1 = Nn for some
n stop and define N = Nn. It holds that AN +D = N +D and N0 ⊆ N by
construction. One only has to show, that this algorithm terminates after
finitely many steps. Let δ be the maximal norm of a point in D and rj the
maximal norm of a point in Nj. Since rj+1 ≤ (1/c)(rj + 2δ) holds we can
estimate

rn ≤ 2δ n∑
j=1

1

cj
+ 1

cn
≤ 2δc

1 − c + 1.
Therefore Nn is bounded and the algorithm has to terminate. Since we add
in every step the solutions that are necessary and nothing more, this set is
the smallest unique set.

Definition 4.22. We call N the (A,D)-neighbourhood. For each x ∈ N
and d ∈ D there is unique solution xd ∈ N to d + x ∈ Axd + D, since D
is a full coset representative system. Define the contact matrix as the(∣N ∣−1)×(∣N ∣−1)-matrix C = (cxy) with cxy = ∣{d ∈D∣xd = y}∣, x, y ∈ N ∖{0}.

Using the Perron-Frobenius theorem for non-negative matrices we get
that the spectral radius of C is an eigenvalue itself. This so called dominating
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eigenvalue λ will appear in the dimension of the boundary of T , but before
we can state and prove this result we need one further lemma, regarding the
powers of C.

Lemma 4.23. Let x, y be points in (A,D)-neighbourhood and C the contact
matrix. Then cnxy the entries of Cn count the number of elements d ∈Dn such
that d + x ∈ Any +Dn, where Dn =D +AD + ... +An−1D.

Proof. This proof is done by induction and for n = 1 the statement is just
the definition of the contact matrix. Now assume, that the statement is true
for n − 1. Matrix product gives us cnxy = ∑z∈N∖{0} cxzc

n−1
zy . Claim that for all

d1 ∈ D,d2 ∈ Dn−1 with d1 + x ∈ Az +D and d2 + z ∈ An−1y +Dn−1 the element
d = Ad2 + d1 ∈ D satisfies x + d ∈ Any +Dn, which is easy to check. Secondly
we claim the converse statement, meaning every element d ∈ Dn satisfying
x + d ∈ Any +Dn is of the form d = Ad2 + d1 as above. The decomposition
of d, such that d1 ∈ D,d2 ∈ Dn−1, is immediate from the definition of Dn.
Using the previous lemma we have d1 + x = Az + d′ for some z ∈ N,d′ ∈ D
and A(d2 + z) + d′ = Ad2 + Az + d′ = d − d1 + d1 + x = d + x ∈ Any + Dn =
A(An−1y +Dn−1) +D. Using the induction hypothesis the representation is
unique and we get d2 + z ∈ An−1 +Dn−1. Therefore cnxy = ∑z∈N∖{0} cxzc

n−1
zy .

Theorem 4.24. Let T = (A,D) be a self-similar digit tile with well behaved
boundary, where c is the expansion factor of A and C has dominating eigen-
value λ. Then

dim(∂T ) = logλ

log c
. (90)

Proof. Let T0 be the axis parallel unit square at the origin and Tn = F n(T0),
where F is the Hutchinson operator creating the self-similar tile. In particular

Tn = ⋃{A−n(T0 + d0 +Ad1 + ... +An−1dn−1)∣di ∈D},
in other words Tn is the non-overlapping union of copies of the smaller cubes
A−1T0 of edge length 1/c, since the rest of the terms are translations. Recall
the definition of the lattice Dn in Lemma 4.23 and note, that the lattice
points are in bijection to the cubes building Tn. Let N ′ = N(A,D) ∖ {0}
and for every matrix M let ∣M ∣ denote the sum of their entries. Lemma 4.23
shows that ∣Cn∣ is the number of triples (x, y, d) ∈ N ′ ×N ′ ×Dn, that solve
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the equation d + x ∈ Any +Dn. Let Bn be the set of all d ∈Dn, such that the
equation holds for some x, y ∈ N ′, B′n the sets of cubes building Tn and βn
their cardinality. Thus

βn ≤ ∣Cn∣ ≤ (∣N ∣ − 1)2βn. (91)

Lemma 4.21 gives us D +n ⊆ AN +D and by induction Dn +N ⊆ AnN +Dn.
Let b = b(A,D) be the largest euclidean distance from the origin to a point
in N . By Lemma 4.20 the distance between ∂T and the centers of cubes in
B′n is at most (a + b)/cn.
Now consider the tiling of Rd by cubes of edge length 1/cn

{x +A−n(T0)∣x ∈ A−n(Zd)}
The number of tiles within distance (a + b)/cn is bounded by a constant h
only depending on the dimension, not on n. Let αn be the smallest number
of tiles of edge length 1/cn covering ∂T . Thus βn ≤ hαn and αn ≤ hβn. Using
this inequalities and (91) there are a′, b′ > 0 such that

a′∣Cn∣ ≤ αn ≤ b′∣Cn∣.
Now we use a formula for calculation the spectrum of a matrix sometimes
refrered to as Gelfand theorem: limn→∞(∣Cn∣)1/n = λ. Taking logarithm gives
us

lim
n→∞

1

n
log(∣Cn∣) = logλ

Finally we can piece together the calculation for box-counting dimension
using the previous inequalities:

Box(∂T ) = lim
n→∞

logαn

log cn
= lim

n→∞
log ∣Cn∣
n log c

= logλ

log c

Since box-counting and Hausdorff dimension coincide on ∂T we get the
claimed result.

This method not only gives us a formula to calculate the dimension, [3]
also concluded, that this can be determined to prove, if the boundarys are
well behaved.
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Theorem 4.25. Let T = (T,A) be a self-similar digit tile in Rd and λ the
spectral radius of the contact matrix C. Then the boundary of T is well
behaved iff λ < ∣detA∣.
Proof. If T has well behaved boundaries Theorem 4.24 holds and dim(∂T ) =
logλ/ log c and det(A) = cd > cdim(∂T ) = λ. The inequality d > dim(∂T )
is proven in [11, p.199]. Conversely assume, that T has not well-behaved
boundary. Then there are two distinct tiles T,x+T with x ∈ Zd that overlap.
Since dimH(T,Tn) ≤ a/cn still holds, we can show that every point y in the
overlap is within distance a/cn to the boundary of Tn. Firstly we can find
z ∈ Tn, w ∈ x + Tn, such that their distance to y is less than a/cn and since
Tn ∩ (x + Tn) ≠ ∅, there is a point u ∈ ∂Tn on the segment zw, such that
d(y, u) ≤ a/cn.
As in the previous proof Tn decomposes into ∣det(A)∣n cubes. Let βn be the
number of cubes contained in the overlap and γn the number of cubes in the
overlap that intersect ∂Tn. Then there are constants a1, a2 > 0 such that

∣detA∣n ≤ a1βn ≤ a2γn ≤ ∣Cn∣.
The last inequality follows from the bijection between Dn and cubes in Tn as
in Lemma 4.23. Using Gelfand theorem

∣detA∣ ≤ lim
n→∞
∣Cn∣1/n = λ.

Now we can calculate the Hausdorff dimension of the boundary of the
Twin Dragon as it is done in [3].

Proposition 4.26. Let K be the Twin Dragon. Then

dim(∂K) = log ( 3
√
3
√
87+28
3

+ 1

3
3
√
3
√
87+28

+ 1

3
)

log
√
2

= 1.523627... (92)

Proof. K = K(B,D) is a self-similar digit tile with digit setD = {(0,0), (1,0)}
and

B = (−1 −1
1 −1) ,
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Figure 5: K and the 6 neighbouring copies

whose expansion factor is
√
2. One can calculate the (B,D)-neighbourhood

with the algorithm above and gets N = N0 ∪ {(1,1), (−1,−1)} and contact
matrix

C =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 1 1 0
0 0 0 0 0 1
2 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The charactristic polynomial is

det(C − λI) = (λ + 1)(λ2 − 2λ + 2)(λ3 − λ2 − 2),
from which the largest root is the real root of the last polynomial λ3 −λ2 −2,
which is less than ∣det(B)∣ = 2. Using the formula proven in Theorem 4.24,
we get the result.

We also want to characterize the points in the boundary of the Twin
Dragon with a Büchi Automaton. We follow a general characterization for
self-similar digit tiles with well-behaved boundaries in [17] by Scheicher and
Thuswaldner, who developed a faster version of the proposed algorithm.
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Proposition 4.27. Let T = (T,A) be a self-similar digit tile in Rd such that
T + Zd is a tiling. Then ∂T can be defined by a graph G(N). N denotes
the (A,D)-neighbourhood and holds as the set of vertices in G(N). An edge

x
d
→ y, x, y ∈ N, ∈D belongs to the graph iff ∃d′ ∈D ∶ Ax+ d′ = y + d. Let T0 be

the unit cube with center in 0 and Tn the n-th step in the approximation of
T . If Bx,n ∶= Tn ∩ (Tn + x) we have

∂T = lim
n→∞ ⋃

x∈N∖{0}
Bx,n (93)

with

Bx,n = ⋃
x

d
→y

A−1(By,n−1 + d) (94)

Proof. Since T has well-behaved boundaries we can approximate its bound-
ary by the boundaries of Tn and ∂Tn = ⋃x∈Rd∖{0} Tn ∩ (Tn + x). Further

Bx,n = Tn ∩ (Tn + x)= A−1(Tn−1 +D) ∩A−1(Tn−1 +D +Ax)= A−1 ⋃
d,d′∈D

(BAx+d′−d,n−1 + d)
Because the algorithm in 4.21 determined all y such that there is ∃d, d′ ∈ D
satisfyingy + d = Ax + d′ starting with the neighbours of the unit cube. We
can express ∂Tn = ⋃x∈N∖{0}Bx,n and also the second equation holds.

Since the maps fd(x) = A−1(x + d) are all contracting, we can interpret
this as a Mauldin-Williams graph and Theorem 3.15 gives us an invariant
set list. Further we can characterize the points in the boundary of T with a
Büchi automaton.

Proposition 4.28. Let the notation be as in the previous proposition. There
exist sets Bx, x ∈ N such that

∂T = ⋃
x∈N∖{0}

Bx (95)

with

Bx = ⋃
x

d
→y

A−1(By + d). (96)

Furthermore a point p ∈ T belongs to ∂T , iff there exists an infinite path
through G(N) labeled with the address of p.
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Proof. We only have to prove the last statement. If p ∈ ∂T then there is
an x ∈ N ∖ {0}, such that p ∈ Bx. Therefore p ∈ A−1(By + d) for some

x
d
→ y ∈ G(N). Following the same argument there is a path labeled with

the address of p. On the contrary if p has an address labeled by an infinte
path in G(N) starting with x we choose an arbitrary point in Bx and apply

fd(x) = A−1(x + d). This point lies in By for x
d
→ y ∈ G(N). If we carry

on in the same way converge to the point p but stay in ∂T , which is closed.
Therefore p ∈ ∂T .

g1 g2

g3

g4

g5 g6

1

0 0,1

0 1

0,1

0

1

Figure 6: The automaton G characterizing ∂K

Using these propositions we can now calculate the Büchi automaton G,
that accepts the points in the boundary of the Twin Dragon (see Figure 6.).
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5 Intersections of the Twin Dragon with ra-

tional lines

We finally have gathered enough background information to tackle the main
question of this thesis: What is the geometrical structure of intersection
between the Twin Dragon and rational lines? Chapter 2 introduced Haus-
dorff dimension and explicitly states that in almost all cases the dimension
is just 1 less than the dimension of the Twin Dragon, respectively its bound-
ary. Therefore we expect a one dimensional shape with a fractal boundary.
Chapter 3 gave us the tools to determine these dimension values and intro-
duced further concepts to better understand the self-similar nature of the
Twin Dragon. Chapter 4 specifically talked about self-similar digit tiles and
CNS. There already a bit of the ground work has been done to understand
the results of the following calculations.
We follow the same approach as [1], where Shigeki Akiyama and Klaus Sche-
icher calculated the intersection with the x-and the y-axis. It turns out that
these intersections are just intervalls and the intersection with the boundary
are just two points. The points in the intersection are accepted by the Büchi
automaton H (see Figure 7). For the intersection with the x-axis the initial
state is h1, for the y-axis it is h3.

h1start h2

h4 h3 start

h5

0

0

1

0 1

1

0

Figure 7: The automaton H characterizing K ∩ {x = 0} (starting with h3)
and K ∩ {y = 0} (starting with h1)
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We first analyse the intersection with the identity line and the negative
identity line, where we get the same result. In a second round we go through
the process again, but using a whole class of lines that are just translations
of the result in [1]. Further we look at limits of vertical lines. If we choose
the sequence wisely, we can use the approximated results to determine the
intersection in the limit. We give two concrete examples of this methode;
one intersection achieves fractal boundary.
As before let K denote the Knuth Twin Dragon throughout this chapter, as
well as the notation for CNS in Chapter 4.

5.1 The diagonal and the negative diagonal

Let ∆ = {(x, x) ∈ C} and ∆ = {(x,−x) ∈ C}. Following [1] we state the
following result.

Proposition 5.1. The intersection K ∩ ∆ can be recognized by the Büchi
automaton A (see Figure 8). Let QA = {q1, ..., q5} be the set of states in A,
IA = FA = {q1}. We have z ∈ K ∩∆, iff

z = ∞∑
i=1
B−iΦ(di), (97)

where d = d1d2... is accepted by the automaton.

Proof. Since P (z) = z2 + 2z + 2 and α± = −1 ± i we have

B = (−1 −1
1 −1) ,

Since Φ(di) = (di,0)T for all di ∈ N = {0,1}, we can can read (97) as z = Cd
with C ∈ R2×∞ and d = (d1, d2, ...)T ∈ R∞ with

C = (−1

2
0 1

4
−1

4

1

8
0 − 1

16

1

16
...−1

2

1

2
−1

4
0 1

8
−1

8

1

16
0 ...

) . (98)

The i-th column of C is given by the first column of B−i. Let cij denote the
entries of C. Then since B−8 = diag(1/16,1/16) we get ci,j+8 = 1/16cij, i =
1,2, j ≥ 1. Let us denote z = (x, y), then we get the digit expansion:

(x
y
) = (−d1

2
+ 0 + d3

4
− d4

4
+ d5

8
+ 0 + −d7

16
+ d8

16
+ ... + dj+8 c1j16

+ ...−d1
2
+ d2

2
− d3

4
+ 0 + d5

8
− d6

8
+ d7

16
+ 0 + ... + dj+8 c2j16

+ ... ) . (99)
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q1start q2 q4

q3

q5

0

0

1

0

1

1
0

Figure 8: The automaton A characterizing K ∩∆

From here on the proof differs from [1]. First we notice that the digits
d1, d5, d9, ..., d4k+1, ... can be choosen arbitrary since these digits keep the re-
lation x = y. The approach is now to analyse all the cases for the first eight
digits to get x = y or so close, that the other digits can diminish that differ-
ence. Luckily the second case does not appear: after eight digits we must
already have x = y. Summing up all the positive and negativ values for x and
y determines how far up or down the remaining of the digits can increase or
decrease the values. For example xmin = ∑∞i=1(−1

4
− 1

16
) 1

16i
= − 5

16
⋅

1

15
≈ −0.021.

We get the other value in the same way and have a possible correction pos-
sibility of [−0.021,0.021] in x direction and [−0.025,0.038] in y-direction.

I. Since d1 is arbitrary we start with d2 = 1. First case is, that d3 = 1 as
well and we see that the current values of x and y are equal.
If d3 = 0, then the difference x − y = −1/2. The only useful digit is d8,
since its contribution to the value of x is positive and its contribution to
the value of y is non negative. For d8 = 1 we get a difference of −0.4375
which cannot possibly be canceled out within the further digits.
So if d2 = 1, so has to be d3 = 1 and d4 = 0, since this digit just decreases
x.
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II. Now suppose that d2 = 0 and first let d3 = d4 = 1. Then the difference
x − y = 1/4 and the only way to reduce this difference within the first
eight digits is d7 = 1. The resulting difference of −1/8 can not be com-
pensated. Since that was the best case scenario for d2 = 0, d3 = 1, we
get d2 = 0⇒ d3 = d4 = 0.

We could continue this approach, but because of the structure of the matrix
we see that the proof must proceed similarly to the first four digits. That
shows that d is a label of an infinite succesfull path through the automaton
iff z ∈ K ∩∆.

The calculation for ∆ can be done in a similar way, but there is a more
clever observation proving the validity of the proposed automata.

Proposition 5.2. The intersection K ∩ ∆ can be recognized by the Büchi
automaton B (see Figure 9). Let QB = {q−1, q0, ..., q5} be the set of states inB, IB = {q−1}, FB = {q1}. We have z ∈ K ∩∆ iff

z = ∞∑
i=1
B−iΦ(di)

where d = d1d2... is accepted by the automaton.

Proof. Observe that if z = x + ix ∈ K ∩∆ then z(2i)−1 = x/2 − x/2i ∈ K ∩∆.
These points correspond to the paths with d1 = d2 = 0, since then

z = ∞∑
i=3
B−iΦ(di) = B−2 ∞∑

i=3
B−i+2Φ(di) = 1

2i

∞∑
i=1
B−iΦ(di−2).

Conversely d1 and d2 cannot be 1 because the difference x − (−y) cannot be
extinguished by the further digits.

These automata now help us determine the geometric structure of the
intersections.

Theorem 5.3. The intersection K ∩∆ consits of the line segment {(x, x) ∶
x ∈ [−3

5
, 2
5
]}. The intersection K∩∆ consits of the line segment {(x,−x) ∶ x ∈[− 2

10
, 3

10
]}
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q−1start q0 q1 q2 q4

q3

q5

0

0

1

0

1

1

0 0

0

Figure 9: The automaton B characterizing K ∩∆

Figure 10: K,∆ (blue) and ∆ (red)
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Proof. Consider an infinite successfull path labeled with d1d2d3..... accepted
by A described in Proposition 5.1. Then the sequence corresponds to the
digit expansion of

z = ∞∑
i=1
B−iΦ(di) = ∞∑

j=1
B−4j ( 4∑

i=1
B4−kΦ(dj−1+k)) .

So we divide the digits in blocks of length 4, since B−4 corresponds to the
number −1

4
and regard the blocks as a single digit in base −4. The possible 4-

letter words are: 0000,0110,1000,1110 which correspond to the digit vectors(0,0), (−1,−1), (2,2), (1,1). Since every number in [−3

5
, 2
5
] can be expressed

with the digits −1,0,1,2 in base −4, we get the first result. The second one
follows immediately from multiplication by 1

2i
.

Theorem 5.4. The intersection ∂K∩∆ consists of the two points {(−3

5
,−3

5
),

(2
5
, 2
5
)}. The intersection ∂K∩∆ consists of the two points {(− 2

10
, 2

10
), ( 3

10
,− 3

10
)}.

Proof. A point belongs to the intersection ∂K ∩∆ if its digit expansion is
accepted by the product automaton of A and G describing ∆∩K respectively
∂K. Going through all the possible starting points of G, we derive that the
only 4 step paths through G, accepted also by A, are:

g1
0110
→ g3, g1

0000
→ g6, g2

1000
→ g5, g4

1110
→ g3, g5

0110
→ g4, g5

0110
→ g2, g5

0110
→ g6.

Since g3 and g6 are dead ends, also g1 and g4 are not usable for infinite
paths. The only possible paths are going back and forth between g2 and
g5 with the paths [10000110]∞ and [01101000]∞. These correspond to the
periodic number with digit −9 in base 16 and the periodic number with digit
6 in base 16, which are the proposed points.
For the intersection ∂K∩∆ we therefore just have to check on how we can get

to g2 or g5 with a path labeled 00. This is only possible by g1
00
→ g2, g3

00
→ g5

which correspond to the endpoints of the second segment.

We see that the two diagonals are counterexamples to the expected result
for intersections of fractals and lines, as were the examples of the x- and the
y-axis considered in [1].
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5.2 Vertical lines and intersections in the limit

We saw in the previous subsection, that it takes a lot of effort to compute an
intersection and the outcome cannot be predicted beforehand. To get more
interesting results we now take an approach using the data made by Akiyama
and Scheicher in [1] regarding the intersection with the line x = 0. We can
easily derive from this computation the intersection of the Twin Dragon
with the line x = −1

2
. This can only be achieved if the first digit d1 = 1 and

the further digits produce a number (x, y) with x = 0. So the intersection
of x = −1

2
and the Twin Dragon is just a translation of the intersection of{x = 0} by the vector (−1

2
,−1

2
). Similarly, to reach the intersection with the

line x = −1

2
+ 1

8
it follows thatd1 = d5 = 1 and the other digits are accepted

by the automaton H characterizing K ∩ {x = 0}. Following that approach of
manipulating the (4k + 1)-th digit, we can generalize this result for a great
class of lines. The same can be said about horizontal lines and the (4k+3)-th
digit.

Theorem 5.5. Let R satisfy

R = N∑
i=0
(−ai

2
+ bi
8
)( 1

16
)i , (100)

with ai, bi ∈ {0,1}. Then the intersection K ∩ {x = R} is the translation ofK ∩ {x = 0} by the vector (R,R) and the intersection K ∩ {y = 1

2
R} is the

translation of K ∩ {y = 0} by the vector (−1

2
R,−1

2
R).

Proof. We prove this by induction on N . For N = 0 we calculate x− =∑∞i=1(−1

2
− 1

4
− 1

16
) 1

16

i = −13

16
⋅

1

15
≈ −0.054 < − 1

16
and x+ = ∑∞i=1(14 + 1

8
+

1

16
) 1

16

i =
13

16
⋅

1

15
≈ 0.029 < 1

16
. So if we want to have x = R we need to stay within the

rage of [R + x−,R + x+]. There are 16 possible ways for the first eight digits,
such that x = R, if we require that the remaining digits are accepted by the
automaton of K ∩ {x = 0}:

a0000b0000 a0000b0011 a0000b0100 a0000b0111
a0011b0000 a0011b0011 a0011b0100 a0011b0111
a0100b0000 a0100b0011 a0100b0100 a0100b0111
a0111b0000 a0111b0011 a0111b0100 a0111b0111

.
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Figure 11: K and {x = R} for all R as described in 5.5 varying a0, a1 and b0

It is now easy to check that if d1 ≠ a0 the remaining of the digits cannot
amount to the deficit to stay in the range and similarly if d5 ≠ b0.
Now suppose the only way to approximate a number RN−1 within the error
interval of the above form is with the prescribed digits for the first 8N digits.
Let RN be a number of the proposed form with highest exponent N . We
calculate x−N = ∑∞i=N+1(−1

2
− 1

4
− 1

16
) 1

16

i = −13

15
⋅ ( 1

16
)N+1 > −( 1

16
)N+1 and x+N =∑∞i=N(14 + 1

8
+

1

16
) 1

16

i = 13

15
⋅( 1

16
)N+1 < ( 1

16
)N+1. So within the first 8(N +1) digits

we have to stay in the range of I = [RN + x
−
N ,RN + x

+
N]. Now let RN−1 the

number such that RN − RN−1 = (−aN
2
+

bN
8
)( 1

16
)N . We now can extend the

error intervall to

I ⊆ [RN−1 + x
−
N − (aN2 )(

1

16
)N ,RN−1 + x

+
N + (bN8 )(

1

16
)N]

⊆ [RN−1 − ( 1
16
)N+1 − (1

2
)( 1

16
)N ,RN−1 + ( 1

16
)N+1 + (1

8
)( 1

16
)N]

⊂ [RN−1 + x
−
N−1,RN−1 + x

+
N−1]

Therefore RN is also an approximation of RN−1 within its error intervall.
By induction hypothesis the first 8N digits are determined and by the same
argument as in the induction start the remaining digits are as well.
Now note that the digits of numbers in K ∩ {x = R} and K ∩ {x = 0} can
only vary in finitely many positions, d4k+1 for k = 0, ...,2N . Looking at the(4k+1)-th column of the matrix in (98) one sees that the result is translation
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by the vector (R,R).
The same argument can be used to determine the intersections K∩{y = 1

2
R}

due to the similar structure of the rows of the matrix in (98). Here the digits
d4k+3 are determined by the value of R and result in a translation by the
negative value, since the x-coordinate is the negative of the y-coordinate in
these columns.

We can characterize points in the intersection with {x = R} by going
through a pre-automaton P and connecting to an infinite path in G char-
acterizing ∂K ∩ {x = 0}. Fortunately we can also generalize the result for
intersection with the boundary of the Twin Dragon.

Theorem 5.6. The intersection ∂K ∩ {x = R} consists of the two points{(−4

5
+R,R), (1

5
+R,R)}. The intersection ∂K ∩ {y = −1

2
R} consists of the

two points {(−1

2
R, 2

5
− 1

2
R), (−1

2
R,−3

5
− 1

2
R)}.

Proof. Theorem 2.12. in [1] states that the only infinte paths accepted by
the product automaton for ∂K ∩ {x = 0} are [00110100]∞ starting in g4 and[01000011]∞ stating in g3. A path accepted by the product automaton for
∂K∩{x = R} therefore has to pass through g3 or g4 at some point. These are
all the possibilities for a four step path:

g3
0100
→ g4, g3

1100
→ g4, g4

0011
→ g3, g4

1011
→ g3

Amazingly these are the paths where the first digit is arbitrary, but d4k+1
is determined by the value of R till the 8N -th digit. So there are only two
possible paths trough the product automaton corresponding to the translated
endpoints.
For the intersection with {y = 0} the only paths are [00001101]∞ starting
in g1 and [11010000]∞ stating in g6. Checking all possible four step paths
leaves us with:

g1
0000
→ g6, g1

0010
→ g6, g6

1101
→ g1, g6

1111
→ g1.

Again these are the paths where the d4k+3 digit is arbitrary, but R determines
them till the 8N -th digit. Therefore the same result holds for the intersection
with {y = −1

2
R}

What we want to do next, is to look at an arbitrary value R ∈ R. If we
find a sequence (RN)N≥0 approximation R and can determine the intersection
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h1 h2

h4 h3

h5

p2p1

p4 p3 start

p5

0

0

1

0 1

1

1

0

Λ

0

0

1

0 1

1

0

Figure 12: The automaton P −H characterizing ⋃RK ∩ {x = R}, where R
has the form (100). For a successfull path the labels of the used red edges
determine the sequence (a0, b0, a1, ..., bN).
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of the Twin Dragon with {x = RN}, is it then possible to calculate the
intersection in the limit or do new points appear in the intersection with{x = R}? We get in fact a lemma, that the second case never appears.

Lemma 5.7. Let R ∈ [−13

15
, 7

15
]. Then there is a unique sequence (RN)N≥0

such that

❼

R0 = −d1,0
2
+ d3,0

4
− d4,0

4
+ d5,0

8
− d7,0

16
+ d8,0

16
, (101)

with di,0 ∈ {0,1}.
❼ For all N ≥ 1

RN = RN−1+(−d1,N
2
+ d3,N

4
− d4,N

4
+ d5,N

8
− d7,N

16
+ d8,N

16
) 1

16N
, (102)

with di,N ∈ {0,1}.
❼ For all N ≥ 0, R = RN + ǫ(N) with ǫ(N) ∈ [−13

15
⋅ ( 1

16
)N+1, 7

15
⋅ ( 1

16
)N+1].

In particular limN→∞RN = R.
Proof. First we show that every number R can be expressed in this way. The
end points of the intervall are given by summing all negative values and all
positive values in the digit expansion. Now since −1

4
+

1

8
= −1

8
, we see that

all numbers in the fundamental domain of −2 ,[−10

15
, 5

15
], can be expressed

since the powers of this base appear in the expansion. Further using the
digits d3,i, d7,i we can express every negative of a number in the fundamental
domain of −4. Setting the other digits corresponding to a negative num-
ber to 1, we get the full intervall [−13

15
,− 8

15
]. Conversely setting every other

digit corresponding to a positive number to 1 gives us the intervall [ 2
15
, 7

15
].

Since the three intervalls are overlapping, there is a digit expansion for every
R ∈ [−13

15
, 7

15
].

The estimation of ǫ(N) is clear and has been calculated in Theorem 5.5. Now
let (RN)N≥0, (R′N)N≥0 approximate the same number R. Suppose they dis-
agree at the N -th term for the first time. Now consider the digits dj,N , d′j,N .
d1,N and d′

1,N , as well as d5,N and d5,N cannot vary, since the rest of the
expansion cannot correct the resulting error for R. Suppose d3,N = 1 and
d′
3,N = 0. If d4,N = 0 and d′

4,N = 0 the resulting impact on RN ,R
′
N is the
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same. In any other case the difference is too big to be compensated by the
remaining digits. Now if d3,N = d3,N , we calculate that d4,N = d′4,N in the
same way.
The same argument holds for d7,N , d8,N . Note that although the digits
di,N , d

′
i,N can be different, the valuesRN ,R

′
N are the same. Therefore (RN)N≥0

is unique.

We can derive a similar lemma using the second row of the matrix (98) for
values for y in [−14

15
, 11
15
], due the similar structure of the row.This lemma has

strong consequences: if we visualize the result in Theorem 5.5, we get a pre-
automaton only accepting finite paths and the Büchi automaton accepting
the remaining infintely many digits. If we get better and better approxima-
tions for R the pre-automaton gets bigger and bigger and the automaton H
eventually disappears in the limit, because there is no other way to recieve
the value R, than with the sequence (RN)N≥0. In general this infinite pre-
automaton cannot be written as a Büchi automaton, since it does not have
finitely many states. But if we choose the value of R carefully, we get a Büchi
automaton.

Theorem 5.8. Let R = −2

5
. The intersection K ∩ {x = R} is the translation

of K ∩ {x = 0} by the vector (R,R) and the intersection K ∩ {y = 1

2
R} is the

translation of K ∩ {y = 0} by the vector (−1

2
R,−1

2
R). The intersection ∂K ∩{x = R} consists of the two points {(−4

5
+R,R), (1

5
+R,R)}. The intersection

∂K ∩ {y = −1

2
R} consists of the two points {(−1

2
R, 2

5
− 1

2
R), (−1

2
R,−3

5
− 1

2
R)}.

Proof. Since R can be expressed as

R = ∞∑
i=0
(−1

2
+ 1

8
) 1

16i
,

we use the Lemma 5.7 and the results from Theorem 5.5 to get the automatonP ′ (see Figure 14) by choosing ai = bi = 1 and Theorem 5.6 to see, that the
intersection with the boundary consists of only the end points.

We can use this method to find a vertical line with a more interesting
intersection. For example, if we look at {x = −1

4
}, we see, that the only

acceptable strings of length four in the pre-automaton are: 0001, 0101, 1010,
1110 which correspond to the digit vectors (1,0), (1,−2), (1,3), (1,1) in
the base −4. The Büchi automaton for the remaining of the digits accepts
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Figure 13: K, {x = −0.4} (red) and {y = −0.2} (blue)
p′
1

p′
2

p′
4

p′
3 start

p′
5

0

0

1

0 1

1

1

Figure 14: The automaton P ′ characterizing K ∩ {x = −2

5
}

the strings 0000,0011,0100,0111 corresponding to the digit vectors (0,0),(0,−1), (0,1), (0,2). The y-coordinate of points in the intersection has to
have a expansion in base −4 starting with −2,0,1,3 and followed by digits−1,0,1,2. Therefore the intersection splits into four intervalls [− 3

20
, 2

20
] − d

4
,

with d = −2,0,1,3. So we get

K∩{x = −1
4
} = {(x, y) ∈ R ∶ x = −1

4
, y ∈ [−18

20
,−13

20
] ∪ [− 8

20
,
2

20
] ∪ [ 7

20
,
12

20
]} .

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

zostart

z1

z2

z3

z4

z5

z6

0

1

0

1

0

1

0

1

1

0

Figure 15: The automaton Z characterizing K ∩ {x = −1

5
}

We go on with {x = −1

4
+ 1

16
} and see that points in the intersection have

y-coordinate with an expansion in base −4 which starts with two digits out
of {−2,0,1,3} and end with digits −1,0,1,2. By the above lemma we can
fully characterize the intersection in the limit with a Büchi-automaton Z.
Theorem 5.9. Let R = −1

5
. The intersection K∩{x = R} can be characterized

by the Büchi automaton Z (see Figure 15) , corresponding to the set

K∩{x = −1
5
} = {(x, y) ∈ R ∶ x = −1

5
, y = 0.[d1d2d3d4...]−4 ∶ di ∈ {−2,0,1,3}}

The intersection with the boundary ∂K are points with y = 0.[d1d2d3d4...]16
with either di ∈ {−14,−12,−8,−6} for all i or di ∈ {−1,3,9,11} for all i.

Proof. We can approximate R by

RN ∶= N∑
i=0
(−1

4
+ 1

16
) 1

16i
. (103)

The valuesRN are uniquely determined. Every block of four digits is accepted
by the proposed automaton and therefore an infinite successfull path corre-
sponds to a point in K∩{x = R}. By Lemma 5.7 there can be no other point
in the intersection. The characterization of the strings 0001, 0101, 1010, 1110
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before shows the second claim. The only possible paths with 8 steps accepted
by the product automaton are 00011010,00011110,01011010,01011110 from
g3 to g3 or 10100001,10100101,11100001,11100101 from g4 to g4. These cor-
respond to the proposed digit expansions.

Figure 16: K and {x = −0.2}
Theorem 5.10. The Hausdorff dimension of K ∩ {x = −1

5
} is 1 and

dim(∂K ∩ {x = −1
5
}) = log 3

log 4
≈ 0.7925. (104)

Proof. We can interpret the intersection with {x = −1

5
} as the self-similar

digit tile in R with A = −4 and D = {−2,0,1,3}. Then K ∩ {x = −1

5
} has

non empty interior and therefor is of dimension 1. As described in Chapter
4 one can calculate the (A,D)-neighbourhood N = {0,1,−1} and the contact
matrix C given by:

C = (1 2
2 1
) .

C has the largest eigenvalues λ = 3 solving λ2 − 2λ − 3 = 0, A has expansion
factor 4 and Theorem 4.24 gives us the proposed formula.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

References

[1] S. Akiyama and K. Scheicher, Intersecting two-dimensional fractals
with lines, Acta Scientiarium Mathematicarum, 71 (2005), pp. 555–580.

[2] S. Akiyama and J. M. Thuswaldner, Topological properties of two-
dimensional number systems, Journal de théorie des nombres de Bor-
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