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Kurzfassung

Ein Algorithmus zur effizienten Lösung der mit Nédélec-Elementen diskretisierten Maxwell-
Gleichungen im magnetostatischem Regime wird präsentiert. Er basiert auf einer Algebrai-
schen Mehrgitter (AMG) Methode, die als Vorkonditionierer für die Methode der konju-
gierten Gradienten verwendet wird. Eine entscheidende Komponente ist die Prolongation
von [RS02], welche den Kern des curl-Operators korrekt auf den gröberen Gittern erhält.
Diese Prolongation wird außerdem mit Techniken angelehnt an [BGH+03] geglättet um
besser Konvergenz und Robustheit im Regularisierungsparameter zu erhalten. Der Beitrag
dieser Arbeit ist ein neuer Vergröberungsalgorithmus, der zu einer verbesserten Robustheit
für große Sprünge in der Permeabilität führt.
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Abstract

An algorithm to efficiently solve the magnetostatic case of Maxwell’s equations discretized
by Nédélec elements [Né86] is presented. It is based on an algebraic multigrid (AMG)
method used as a preconditioner to the conjugate gradient method. One main component
is the prolongation proposed in [RS02] to properly treat the kernel of the curl operator.
This prolongation is then smoothed with techniques similar to [BGH+03] to obtain better
convergence and robustness in the regularization parameter of the magnetostatic problem.
The main contribution of this thesis is to obtain improved robustness with respect to big
jumps in permeability by introducing a new coarsening algorithm.
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1. Introduction

In this thesis we are concerned with numerically solving the magnetostatic case of Maxwell’s
equations. The equations can be stated in a general form as

curl curlu+ κu = ji,

with appropriate boundary conditions. Since the magnetostatic case with κ = 0 is ill-posed,
we need to regularize the problem with a small κ > 0. The finite element discretization for
such problems is typically done with so called Nédélec edge elements [Né86]. To solve big
linear systems of equations arising from the discretization, typically the preconditioned con-
jugate gradient method is employed. With typical Jacobi-like preconditioners, the method
leads to a condition number of [Zag06]

cond(C−1A) =
1

h2κ
.

[Hip99] and [AFW00] proposed smoothers to make geometric multigrid methods also robust
in the model parameter κ. Of essential consideration is that the exact sequence property
of the de Rham complex is conserved on all levels of the multigrid hierarchy. To retain
the same property in the Algebraic Multigrid setting [RS02] introduced a prolongation
honoring the exact sequence property. We present an Algebraic Multigrid method based
on this prolongation. To further improve the condition number we adapt the smoothed
prolongation proposed in [BGH+03].
Our main contribution is to introduce a new coarsening algorithm, based on computing

collapse weights. The main point is to demonstrate improved convergence for cases with
big jumps in the parameters. Those jumps in parameters can occur for example in setups
where an electromagnetic coil has an iron core. The magnetic permeability in such cores
is magnitudes bigger then the permeability in air. In the numerical tests for this thesis
we apply the proposed preconditioner to such examples and show its performance and
robustness.

Implementation

All implementations were done in C++ on top of Netgen/NGSolve1 [Sch97][Sch14] and ex-
posed as a Python library to be used together with Netgen/NGSolve.

1https://ngsolve.org

1
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2. Fundamental Electromagnetics

We mostly follow the introduction in [Zag06]. For a related treatment with a focus on
inverse problems see [Mon03].

2.1. Maxwell’s Equations

Electromagnetic phenomena are modeled by Maxwell’s equations, introduced by and named
after Clark Maxwell. The equations describe the relation between the electric field and the
magnetic field. They are given as the electric and magnetic field intensities E and H
respectively. Further useful are the electric displacement field D (also called the electric
flux) as well as the magnetic induction field B (also called the magnetic flux). We give
their relationship by the Maxwell’s equations in differential form:
Faraday’s law of induction describes how a change in the magnetic field produces an

electric field

curlE = −∂B

∂t
.

Ampère’s circuital law describes an analogous reverse statement. A change in the
electric field or a current will produce a magnetic field

curlH =
∂D

∂t
+ jt,

where j is the current density.
Gauß’ law describes that charges (given as a scalar field of current density ρ) are sources

(positive charge) and sinks (negative charge) of electric fields:

divD = ρ.

Gauß’ law for magnetostatics describes that the magnetic field is divergence free,
meaning there are no sources for the magnetic field. Vector fields with this property are
also called solenoidal fields.

divB = 0

To relate the intensities and fluxes of the electric and magnetic fields we can use the
following material equations, where ε is the permittivity and µ is the permeability of the
material:

D = εE

B = µH

Furthermore the total current density jt is given as a sum by the conduction current jc
and the impressed current ji:

jt = jc + ji

2
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2. Fundamental Electromagnetics

The impressed current is introduced by some external current source and the conduction
current is a result of the potential difference and is obtained by Ohm’s law as

jc = σE,

where σ is the electrical conductivity.
In this thesis we only concentrate on cases where the material parameters ε, µ and σ are

time independent, isotropic, and bounded. Thus they can be modeled by scalar fields over
the bounded domain Ω and are elements of L∞(Ω).

2.1.1. Interface Conditions

It is instructive for the further treatment to understand the behavior of the introduced
fields across interfaces of domains. Considering a simply-connected domain Ω ⊂ R

3 split
into two disjoint domains Ω1 and Ω2, we are interested in the behavior of the fields E
and B across the shared interface Γ := Ω1 ∩ Ω2. Here nΓ is the unit normal vector on
Γ pointing from Ω2 to Ω1 and Bi is the field B restricted to the respective volume Ωi.
First we use the integral formulation of Gauß’ law to derive a condition for the jump term
[B · nΓ] = (B2 −B1) · nΓ:

0 = −
∫

∂Ω
B · n dx+

∫

∂Ω1

B1 · n dx+

∫

∂Ω2

B2 · n dx

= −
∫

∂Ω1∩Γ
B1 · nΓ dx+

∫

∂Ω2∩Γ
B2 · nΓ dx

=

∫

Γ
[B · nΓ] dx

Since this derivation holds for an arbitrary interface Γ between arbitrary volumes V1, V2,
we can conclude that the normal component for the magnetic flux B across interfaces needs
to be continuous.
A similar derivation is used for the electric field E. We use Faraday’s law in integral

form with a surface Σ crossing the interface Γ. The interface splits Σ into two disjoint
surfaces Σ1 and Σ2. Here τ denotes a tangential vector along respective boundaries and
L := ∂Σ1 ∩ ∂Σ2 is the boundary curve shared by Σ1 and Σ2. Again we obtain a condition
for the corresponding jump term [E · τL] = (E2 −E1) · τL:

0 = −
∫

∂Σ
E · τ ds+

∫

∂Σ1

E1 · τ1 ds+
∫

∂Σ2

E2 · τ2 ds

=

∫

∂Σ1∩L
E1 · τ1 ds+

∫

∂Σ2∩L
E2 · τ2 ds

=

∫

L
[E · τL] ds

Now this implies, that the tangential component of the electric field needs to be continuous
across interfaces.
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2. Fundamental Electromagnetics

2.1.2. Boundary Conditions

To obtain a boundary value problem we still need boundary conditions. For reference we
only note the two simplest types: Neumann- and Dirichlet-type. For other kind of boundary
conditions see [Zag06].
Neumann-type boundary conditions correspond to so called perfect electric conductors.

E × n = 0 on ΓN

Dirichlet-type boundary conditions correspond to so called perfect magnetic conduc-
tors.

H × n = 0 on ΓD

2.2. Vector Potential Formulation

The formulation we will use depends on the representation of B by a vector potential B =
curlA with Coulamb-gauging divA = 0. Further we can choose A such that E = −∂A

∂t .
Thus we arrive at the vector potential formulation of Maxwell’s equations:

curlµ−1 curlA+ σ
∂A

∂t
+ ε

∂2A

∂t2
= ji

For the details of the derivation see [Zag06].
The thesis is mainly concerned with the magnetostatic case. In this regime Maxwell’s

equations simplify to

curlH = ji, divB = 0, and B = µH. (2.1)

With the mentioned vector potential A we obtain the simplified magnetostatic vector
potential problem

curlµ−1 curlA = ji. (2.2)

A similar argument as in Section 2.1.1 leads to the essential boundary conditions

A× n = 0 on ΓB,

which imply that the magnetic flux through the boundary is zero:

⇒ div(A× n) = curlA · n−A · curln︸ ︷︷ ︸
=0

= B · n = 0 on ΓB.

The natural boundary conditions

µ−1 curlA× n = −jS on ΓH

model impressed surface currents

H × n = −jS on ΓH .

Other regimes like time-harmonic, eddy-current, and time-stepping formulations lead to
similar equations, which can be summarized in the general curl-curl problem:

4
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2. Fundamental Electromagnetics

Problem 1. Let Ω ⊂ R
3 be a bounded domain with boundary ∂Ω = ΓD ∪ ΓN . Find u

such that

curlµ−1 curlu+ κu = f in Ω ⊂ R
3, (2.3)

(u× n)× n = gD on ΓD, (2.4)

µ−1 curlu× n = gN on ΓN . (2.5)

From this, the magnetostatic case is obtained again by setting κ = 0. We will see that
this leads to an ill-posed problem. This issue can be alleviated by regularizing with a small
contribution of the L2-term. So effectively we work with 0 < κ ≪ 1.
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3. Finite Element Framework

3.1. Variational Formulation

As a next step we show, that the Problem 1 is actually solvable. Again we mostly follow
[Zag06].
First we put a restriction on the domain we use. Specifically, it should be a bounded

Lipschitz domain as defined below.

Definition 1. (Lipschitz domain [Zag06]) The boundary of a domain Ω ⊂ R
3 is called

Lipschitz continuous if there exists a finite number of domains ωi, local coordinate systems
(ξi, ηi, ζi), and Lipschitz continuous functions b(ξi, ηi) such that

• ∂Ω ⊂ ⋃ωi with ∂Ω ∩ ωi =
{
(ξi, ηi, ζi) | ζi = b(ξi, ηi)

}
,

• Ω ∩ ωi =
{
(ξi, ηi, ζi) | ξi > bi(ξi, ηi)

}

Ω is then called a Lipschitz domain.

So the boundary ∂Ω is piecewise Lipschitz continuous and the domain lies on one side
of it. For such domains we get a few important properties:

• For every point on the boundary we can define an outward pointing unit normal
vector n almost anywhere. (See [Mon03] and references therein.)

• The following results hold [GR86]:

H1(Ω) = C∞(Ω)
‖·‖

1
, H(curl,Ω) = C∞(Ω)

‖·‖
curl

, H(div,Ω) = C∞(Ω)
‖·‖

div

Here C∞(Ω) is the space of infinitely differentiable functions over the closure of Ω and
the other spaces are defined as

H1(Ω) = {v ∈ L2(Ω) | grad v ∈ [L2(Ω)]
3},

H(curl,Ω) = {v ∈ [L2(Ω)]
3 | curlv ∈ [L2(Ω)]

3},
H(div,Ω) = {v ∈ [L2(Ω)]

3 | div v ∈ L2(Ω)},

where the norms ‖·‖1, ‖·‖curl, and ‖·‖div are induced by the corresponding scalar products:

(u, v)1 =

∫

Ω
gradu · gradu dx+

∫

Ω
u · v dx

(u,v)curl =

∫

Ω
curlu · curlv dx+

∫

Ω
u · v dx

(u,v)div =

∫

Ω
divu · div v dx+

∫

Ω
u · v dx

6
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3. Finite Element Framework

Theorem 1 (Trace theorem and integration by parts in H(curl,Ω)). Let Ω ⊂ R
3 be a

bounded Lipschitz-domain.

1. The classical trace map

trτ (v)(x) := v(x)× n(x) ∀x ∈ Γ

can be extended from [C∞(Ω)]d to a continuous and linear map (still denoted by trτ )

trτ : H(curl,Ω) → [H−1/2(∂Ω)]3, and
∥∥trτ (v)

∥∥
−1/2

�‖v‖curl ∀v ∈ H(curl,Ω),

2. There holds the integration by parts formula
∫

Ω
curlu ·ϕ dx =

∫

Ω
u · curlϕ dx−

∫

Γ
trτ (u)·ϕ dx ∀x ∈ H(curl,Ω), ∀ϕ ∈ [H1(Ω)]3

(3.1)

Proof. See [Zag06] Theorem 3.6 and [Mon03] Theorem 3.29.

With this prerequisites we choose to look for solutions to Problem 1 in H(curl,Ω). First
we multiply Equation (2.3) with a test function v ∈ H(curl,Ω), integrate over the domain
and then apply the integration by parts formula (Equation (3.1)) to arrive at:

Problem 2. Find u ∈ H(curl,Ω)
∫

Ω
µ−1 curlu · curlv dx+

∫

Ω
κu · v dx =

∫

Ω
j · v dx ∀v ∈ H(curl,Ω) (3.2)

and appropriate boundary conditions.

Then we can prove, that Problem 2 gives rise to a continuous and coercive bilinear form
on H(curl,Ω) and a continuous linear functional on the right hand side. So following from
Theorem 2, the problem admits a unique solution in H(curl,Ω).

Theorem 2 (Lax-Milgram). Given a Hilbert space (V, (·, ·)), a continuous, coercive bilinear
form a(·, ·) and a continuous linear functional F ∈ V ′, there exists a unique u ∈ V such
that

a(u,v) = F (v), ∀v ∈ V. (3.3)

Proof. See [Bre] Theorem (2.7.7).

3.2. The De Rham Complex

A very useful tool in the context of computational electromagnetics is the de Rham complex :

R
id−→ H1(Ω)

grad−−−→ H(curl,Ω)
curl−−→ H(div,Ω)

div−−→ L2(Ω) → 0. (3.4)

Theorem 3. The chain in Equation (3.4) forms an exact sequence, meaning that the range
of each operator on the left of a space is exactly the kernel of the operator to the right of
the same space.
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3. Finite Element Framework

Proof. See [Zag06][Mon03] and the references therein.

The theorem holds true for simply connected domains and also with Dirichlet boundary
conditions. For other boundary conditions and non-simply connected domains, the exact
sequence property is violated by a finite dimensional subspace, the so called cohomology
space [Mon03]. We will see, that it is a guiding principle to try to honor the exact sequence
when deriving subspace and discrete operators. For a modern treatment see [AFW06].
The most important part of the de Rham complex for electromagnetics is the space

H(curl,Ω) and the surrounding operators:

gradH1(Ω) = ker(H(curl,Ω)), (3.5)

where the classical analog is a well-known vector calculus identity.
A closely related property is the Helmholtz decomposition, which tells us, that a vector

field can be represented by the curl of another vector field and the gradient of a scalar
field.

Theorem 4 (Helmholtz decomposition). Every vector field u ∈ L2(Ω)
3 admits an orthog-

onal decomposition

u = gradϕ+ curlψ, with ϕ ∈ H1(Ω) and ψ ∈ H(curl,Ω)

Proof. See [Zag06] and the references therein.

3.3. Discretization

In this thesis we concern ourselves only with meshes discretized by tetrahedrons and lowest
order elements. For related elements on other primitives and also higher order elements see
[Zag06]. Therefore only the Nédélec Element of first kind [Né86] of order 0 is presented.
Often they are referred to as edge elements.

Definition 2 (Nédélec element of first kind of order 0 [Zag06]). The lowest order edge-
element on a tetrahedron K is given by

• the local space N I
0 (K) defined as

N I
0 (K) := {a+ b× x | a, b ∈ R

3} with dim(N I
0 (K)) = 6.

• the edge-based degrees of freedom:

NN0
α : v →

∫

eα

v · τ dx for α = 1, . . . ,
∣∣⌉K
∣∣

i.e. the line integrals of the tangential component over each edge eα ∈ EK .

Since the degrees of freedom of these elements are tangential components we can con-
struct tangential continuous fields. Therefor the finite element space, spanned by these
elements over a discretization, forms a conforming subspace Vh ⊂ H(curl,Ω) [Zag06]. This

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. Finite Element Framework

Figure 3.1.: Nédélec Element type 0 for a tetrahedron

association of degrees of freedom with the tangential components of the edges is schemati-
cally depicted in Figure 3.1.
With the same reasoning as in the previous chapter, we obtain a unique solution of

Problem 2 where V = Vh. The viability of the discretization is shown with Céa’s lemma.
It bounds the discretization error by the approximation error. We can directly apply this
lemma to our situation with V = H(curl,Ω) and Vh.

Theorem 5 (Céa’s Lemma). Suppose the same conditions for the Hilbert space (V, (·, ·))
and the bilinear form a(·, ·) hold as in the Lax-Milgram theorem. Furthermore Vh is a closed
subspace of V . Then we have

‖u− uh‖V ≤ C

α
min
vh∈Vh

‖u− vh‖V , (3.6)

where C is the continuity constant and α is the coercivity constant of a(·, ·) on V .

Proof. See [Bre] Theorem (2.8.1).

We summarize the other used spaces in the global discrete sequence [Zag06, Theorem
4.28 and chapter 4.3]

R
id−→ Qh(Ω)

grad−−−→ Vh
curl−−→Wh

div−−→ Sh(Ω) → 0, (3.7)

where Qh is the FE-space spanned by continuous first order nodal elements, Wh is the
FE-space spanned by lowest order Raviart-Thomas elements, and Sh is the space spanned
by discontinuous lowest order elements. All mentioned finite element spaces are conforming
subspaces of the corresponding spaces in equation (3.4).
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4. Iterative Solving of Maxwell’s Equations

With a suitable finite element subspace we arrive by the Galerkin approximation at the
linear system

Ax = b, with b ∈ R
n given. (4.1)

Typical direct solvers like LU- or Cholesky-decompositions to compute the inverse A−1

have an asymptotic behavior for the amount of work of O(n3), where n is the number of
degrees of freedom of our problem. Therefor one resorts to iterative methods to solve prob-
lems with a high number of degrees of freedom, since they often provide better asymptotic
behavior in cases where they are applicable. A short discussion of this motivation can be
found in the introductions of [Hac16, Chapter 1.5] and [vdV03, Chapter 1].

4.1. Conjugate Gradient Method

For a symmetric positive definite (SPD) matrices the first choice for an iterative method is
the conjugate gradient (CG) method.

Theorem 6. Conjugate Gradient Convergence. Let A be SPD with the minimal and maxi-
mal eigenvalues γ1 := γmin(A), γ2 := γmax(A). We abbreviate the spectral condition number
by cond(A) = γ2/γ1. The errors em = x− xm (where x is the solution to Equation (4.1))
of the CG iterates xm after m steps satisfy the estimate

‖em‖A ≤ 2cm

1 + c2m
‖e0‖A (4.2)

with c :=

√
cond(A)−1√
cond(A)+1

=
√
γmax−√

γmin√
γmax+

√
γmin

.

Proof. See [Hac16, Theorem 10.14].

The convergence thus only depends on the spectral condition number. To improve the
convergence, the spectral condition number of the problem can be tweaked by applying
preconditioners as described in the next chapter.

4.2. Preconditioner

To further improve the speed of convergence one idea is to instead solve the preconditioned
system

C−1Ax = C−1b, (4.3)

where C−1A hopefully has a better condition number.
A good preconditioner should fulfill the following conditions as presented in [vdV03,

Chapter 13].
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4. Iterative Solving of Maxwell’s Equations

1. The cost for the setup of the preconditioner C shouldn’t be too expensive.

2. The inverse of the preconditioner matrix C−1 should be a good approximation to the
system matrix inverse A−1 in some sense.

3. The preconditioned system Cy = z should be cheaper to solve than the original
equation.

We see that conditions 2) and 3) work against each other, as the optimal choice for the
second condition would be the matrix A itself as the preconditioned Equation (4.3) reduces
to x = A−1b, but then we are back at the problem of having to invert the matrix. Contrary
the ideal choice for the third condition would be the identity matrix I since it is trivially
invertible.
Typical preconditioners are Jacobi and Gauß-Seidel preconditioners. They are also often

called smoothers and performing one application is called smoothing or relaxation.
For Problem 1 they suffer from a condition number of

cond(C−1A) =
1

κh2
, (4.4)

where h is a measure for the mesh size [Zag06, Section 6.2.1]. For the magnetostatic
problems, with a small κ for regularization, we end up with a high condition number. So
the first goal is to get rid of this dependency on κ. Preconditioners without this dependency
are called κ-robust.

Definition 3. We call a preconditioner C κ-robust, if its spectral bounds are independent
of the problem parameter κ, i.e.,

γ1C(u,u) ≤ a(u,u) ≤ γ2C(u,u). (4.5)

Two popular preconditioners to solve this were proposed in the setting of geometric
multigrid. They deal with the kernel of the curl operator in the smoother.

1. A preconditioner based on treating the kernel of H(curl,Ω) [Hip99]

2. A block Gauß-Seidel preconditioner based on edge patches [AFW00]

Applying the second preconditioner directly leads to a condition number [Zag06, Section
6.2.1] of

cond(C−1
ArnoldA) =

1

h2
.

4.3. Multigrid

It was shown for various discretizations of elliptic problems that the multigrid algorithm
is an optimal preconditioner. This means that the number of iterations does not increase
with increasing number of degrees of freedom and the amount of work and memory is
linear in the number of unknowns [Bre]. Such a solver makes a prime candidate to use as
a preconditioner for the CG method as introduced Section 4.1.
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4. Iterative Solving of Maxwell’s Equations

4.3.1. Motivation for Multigrid

The general idea of multigrid solvers is to solve a linear system arising from a finite element
discretization on several so called levels. This allows to better approximate and relax errors
of frequencies corresponding to those levels. This principle is illustrated by the following
example.

Problem 3. Let I = [0, 1] be the unit interval. Find a function u solving Poisson’s equation
on I with homogeneous Dirichlet boundary conditions

∂2u

∂x2
= 1 on I,

u(0) = u(1) = 0.

In Figures 4.1a to 4.1f we show the behavior of applying a Jacobi smoother on different
initial values. The analytical solution u(x) = 1

2(x
2 − x) to Problem 3 is plotted in blue.

Figure 4.1a shows the solution of the Poisson equation with an added random uniformly
distributed noise of amplitude 0.01. We see that the smoother acts well in suppressing
errors with frequencies similar to the mesh grid (Figure 4.1b). For an overlap of low
and high frequency errors we take a look at an initial guess of a sinus function with the
same uniformly distributed noise as before (Figure 4.1c). The Jacobi smoother is not able
to quickly correct the low frequency error as seen in Figure 4.1d). On the other hand
Figure 4.1e and Figure 4.1f show that the low frequency error is effectively corrected by
the Jacobi smoother on the coarser grid.
Generally smoothers are well understood and cheap to implement, but they are only able

to quickly reduce errors which are in the frequency corresponding to the discretization. As
demonstrated this is due to the nature of such smoothers to average across neighboring
degrees of freedom.
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4. Iterative Solving of Maxwell’s Equations

(a) Solution with added random noise.
(b) Solution with added random noise after 3

steps of Jacobi smoothing.

(c) Low frequency initial guess with added
high frequency random noise.

(d) Low frequency initial guess with added high
frequency random noise after 3 steps of Jacobi
smoothing.

(e) Low frequency initial guess on a coarse grid.
(f) Low frequency initial guess on a coarse grid

after 3 steps of Jacobi smoothing.

Figure 4.1.: Smoothing property of a Jacobi preconditioner on different grid resolutions.
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4. Iterative Solving of Maxwell’s Equations

4.3.2. General Multigrid Topics

There are two major classes of multigrid methods:

• One is the so called geometric multigrid (GMG), which relies on a hierarchy of dis-
cretization meshes of the geometry. For each mesh a finite element space is con-
structed. The prolongation operator is directly given by this hierarchy of meshes.
The hard part here is to choose an appropriate smoother for each level.

• In contrast, the algebraic multigrid (AMG) method doesn’t rely on a hierarchy of
geometrical meshes, but only uses the matrix arising from the FEM discretization of
a fixed mesh size h. The hard part here is to choose appropriate prolongations which
then provide a suitable hierarchy of coarse matrices where the smooth errors can
be represented. On the other hand it is easier to smooth each level, since standard
smoothers can be used once a matrix for the level is given.

Given a hierarchy of finite element spaces

V0 ⊂ V1 ⊂ · · · ⊂ Vlmax
,

we need two essential ingredients for any multigrid algorithm on each level l such that
0 ≤ l < lmax:

• A prolongation operator Pl : Vl → Vl+1 to map coarse grid functions to fine grid
functions. The transpose P T

l : Vl+1 → Vl is called the restriction operator and maps
fine grid functions to a coarser grid.

• A smoothing operator Sl : Vl → Vl.

The setup for such multigrid methods could be as presented in Algorithm 1.

Algorithm 1 General setup for multigrid

1: procedure Setup(Al)
2: if level l < lmax then

3: Build prolongation Pl

4: Restrict the system matrix Al−1 = (Pl)
TAlPl

5: Setup(Al−1)
6: else

7: Perform a factorization of Al

For both the GMG and AMG methods, the setup can be viewed as returning a matrix
C−1
l to be applied as a substitution for the inverse matrix A−1

l . Depending on the actual
cycle used for the multigrid method we get different schemes for applying this matrix C−1

to a vector. For a multiplicative V-cycle multigrid loop see Algorithm 2. The inputs of
the procedure are the current level l, the right hand side fl and the return value as the
solution ul to

ul = C−1
l fl.
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4. Iterative Solving of Maxwell’s Equations

To use this multigrid scheme as a preconditioner for the conjugate gradient method it is
essential to obtain a symmetric method. So in case of using Gauß-Seidel methods for the
smoothing, one needs to reverse the order of unknowns in the second smoothing step. That
is why this step is sometimes called backward smoothing.

There are several alternatives to this specific multigrid loop. First one could use an
additive instead of a multiplicative approach. In practice multiplicative approaches seem
to work better.
Also instead of the V-cycle, one can employ a different cycle method. Another popular

method is the W-cycle.

Algorithm 2 Multiplicative Multigrid V (νF , νB)-cycle.

1: procedure MultiGrid(ul, fl, l)
2: if l = lmax then

3: ul = (Al)
−1fl with a direct solver

4: else

5: Smooth νf times on Alul = fl
6: Calculate the defect dl = fl −Alul

7: Restrict the defect to the next coarser level l + 1: dl+1 = P T
l dl

8: Set ul+1 = 0
9: MultiGrid(ul+1, dl+1, l + 1)

10: Prolongate the correction sl = Plul+1

11: Update the solution ul = ul + sl
12: Smooth νB times on Alul = fl

4.4. Algebraic Multigrid

The AMG methods are relevant for problems where there is no hierarchy of geometries
possible or available. One of the original treatments for elliptic equations can be found in
e.g. [RS87].
Since there is no hierarchy of meshes for AMG one of the essential questions is how to

obtain a suitable coarser representation of the system. Remembering again the typical be-
havior of smoothers shown in Section 4.3.1, we note that it would be beneficial to construct
the coarse representations and the associated prolongation operators such that they are
capable of representing so called smooth errors. In a more mathematical sense, an error is
called smooth if it has slow convergence with respect to a smoother S [RS87]:

‖e‖1 ≈‖Se‖1
Although this concept is derived from the geometric perspective it doesn’t necessarily need
to correspond to a low frequency error.
The concept of strong connections was derived from this notion of smooth errors. The

main idea of it is that a smooth error varies slowly in the direction of a strong connection.
This concept can then be used to construct a coarsening algorithm by clustering vertices
with strong connections between them into one group and then assigning this group to
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4. Iterative Solving of Maxwell’s Equations

one coarse vertex. A similar concept adapted to the H(curl,Ω) setting is discussed in
Section 5.4.

4.4.1. Reitzinger/Schöberl Prolongation

To use the AMG approach for Maxwell’s equations, Reitzinger and Schöberl developed the
first prolongation to treat the kernel of the curl operator correctly [RS02]. We follow their
presentation for this chapter.
Let ωe

l and ωe
l+1 be the set of edges on the fine and coarse level respectively and ωn

l and
ωn
l+1 the set of nodes on the fine and coarse level. The number of nodes on level l is Nn

l

and the number of edges is N e
l . Then the index map is defined by a coarsening algorithm

as the map of fine nodes to their corresponding coarse nodes:

ind : ωn
l → ωn

l+1.

This implies that nodes on the fine level i, j ∈ ωn
l prolongate from the same coarse node if

and only if ind(i) = ind(j). The nodal prolongation operator is thus defined as

(Pn)ij =

{
1 i ∈ ωn

l , j = ind(i),

0 otherwise.
(4.6)

It has full rank, since every fine node has one corresponding coarse node.

Definition 4 (Conforming edge prolongation [RS02]). The edge prolongation is defined
for i = (i1, i2) ∈ ωe

l , j = (j1, j2) ∈ ωe
l+1

(P e)ij =





1 if j = (ind(i1), ind(i2)),

−1 if j = (ind(i2), ind(i1)),

0 otherwise.

(4.7)

From the definition we see that taking the orientation of the edges into account is a key
aspect. This prolongation also has full rank, since every coarse edge maps to at least one
fine grid edge.
To show the usefulness of the prolongation, we first need a few concepts. The Galerkin

isomorphisms map assignments of degrees of freedoms to actual functions in our finite
element spaces:

Ge : Vl → Vl

Gn : Ql → Ql

with Vl = R
Ne

l and Ql = R
Nn

l . We need the Galerkin isomorphisms to describe the discrete
gradient operator gradl : Ql → Vl,0, where Vl,0 = {vh ∈ Vh, curlG

evh = 0}. It is given for
ql ∈ Ql by

gradl ql = (Ge)−1 gradGnql.

With this notions, we can state the following two theorems, which show, that the exact
sequence property of the de Rham complex is retained on the coarse level.
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4. Iterative Solving of Maxwell’s Equations

Lemma 1. For ql+1 ∈ Ql+1 there holds

Pe gradl+1 ql+1 = gradl Pnql+1 ∀ql+1 ∈ Ql+1. (4.8)

This implies that the we obtain the commuting diagram:

Ql+1
gradl+1−−−−−→ Vl+1yPn

yPe

Ql
gradl−−−−→ Vl

.

Proof. See [RS02] p. 12.

Lemma 2. The coarse grid kernel functions are exactly gradient functions, i.e., there holds

Vl+1,0 = gradl+1Ql+1. (4.9)

Proof. See [RS02] p. 12.

4.4.2. Auxiliary-space Maxwell Solver

Another related algebraic multigrid approach to tackle Maxwell’s equation, which is worth
mentioning here, is the so called Auxiliary-space Maxwell Solver (AMS) introduced by
Hiptmair and Xu in [HX07].
The idea is to use the already well developed theories of algebraic multigrid methods

for H1 problems and apply one of them for each vector component of the H(curl,Ω) and
also one extra H1 AMG to the kernel of the curl operator, similarly to the Hiptmair
preconditioner.
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5. Algorithm

In this chapter, we describe our proposed algorithm. Parts of it are based on previous work
[Sch16]. For recent similar developments see [NP19].

5.1. Overview

To construct the hierarchy of matrices we choose to first make an abstract mesh repre-
sentation which includes just the connectivity information from the discretization mesh.
No actual geometric information is preserved there. It can be argued that the proposed
method is not a pure AMG method, since it relies on the connectivity information of edges
to vertices of the available mesh. For cases where the mesh is not available for some reason,
the connectivity information could be also obtained by setting up a lowest order nodal finite
element problem (e.g. Poisson problem) and obtain the connectivity information from the
resulting system matrix. This relies on the fact, that the off-diagonal entries only occur for
vertices connected by an edge.
To obtain a coarser representation we use weights to decide how to build a coarser version

of this mesh. With these weights we decide how to proceed with so called collapsing, where
edges are chosen and collapsed, meaning their end vertices are considered as one coarse
vertex. We remember that map of fine vertices to coarse vertices and can then calculate
a prolongation from it. (See Section 4.4.1). With the resulting prolongations we can
restrict the system matrix to a coarser level with fewer degrees of freedom. We stop this
coarsening process, when the size of the current coarse system matrix is small enough to
quickly calculate its inverse as shown in Algorithm 2. To compute the inverse we use the
sparse Cholesky factorization provided by NGSolve. During this coarsening process we also
construct a Block Jacobi smoothers and H1 AMG for the nodal problem by means already
existing in NGSolve. This concludes the setup of the preconditioner.

5.2. Weight Calculation

In the proposed algorithm we use the concept of weights in several places. Here a weight is a
scalar value assigned to an edge or a face. We compute these weights during the assembly
phase of the finite element system matrix. We recall from Definition 2, that Nédélec
elements of the first kind of order 0 have one degree of freedom (DOF) per edge. So the
element matrices are matrices of size 6 × 6 for the tetrahedral elements. The presented
concept of substitution matrices is similar to the concept of edge matrices introduced in
[Kra06].
Edge weights are calculated as the Schur complement of the element matrix with respect

to the single index corresponding to the edge. And for faces, we add up the diagonal entries
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5. Algorithm

of the Schur complement of the three edges corresponding to the face. This properties can
be viewed as a minimal extension principle. For more details on the relation of Schur
complements to the minimal extension principle see Appendix A.

Definition 5 (Spectral equivalence). Two symmetric positive semi-definite (SPSD) matri-
ces A and B are called spectrally equivalent with bounds γ1, γ2 iff:

γ1u
TBu ≤ uTAu ≤ γ2u

TBu ∀u ∈ R
n (5.1)

We can view these weights as entries in a spectrally equivalent matrix similar as in
[HLRS01]. An element matrix can thus be approximated by a diagonal matrix for the edge
weights, and a diagonal matrix for the face weights together with the coupling of local
edges to faces.

∫

K
curlu·curlv+u·v dx ≈ CURL ·




wF1
0 0

0
. . . 0

0 0 wF4


·CURL

T +




wE1
0 0

0
. . . 0

0 0 wE6


 , (5.2)

where CURL is the local discrete curl operator defined as the mapping of faces to its
contained edges while respecting the edge orientations and wE and wF are edge and face
weights respectively.
For further discussion it is important to note, that the system matrix discretized by

the edge elements is not an M-matrix but SPSD. With this local approximation matrices,
we can also construct a global approximation matrix which is spectrally equivalent to the
assembled system matrix. This global spectral equivalence is guaranteed by the following
theorem:

Theorem 7. Let the stiffnes matrix Kh ∈ R
Nh×Nh be SPD, and Kh be composed from

SPSD element matrices K(r) ∈ R
nr×nr , r ∈ τh i.e., Kh can be represented in the form

Kh =
∑

r∈τh
CT
r K

(r)Cr, (5.3)

where τh denotes the index set of all finite elements, and Cr ∈ R
nr×Nh are the element

connectivity matrices. Further, let us suppose that, for all r ∈ τh, there are SPSD matrices
B(r), such that the spectral equivalence inequalities

c
(r)
1 B(r) ≤ K(r) ≤ c

(r)
2 B(r), ∀r ∈ τh (5.4)

hold, with h-independent, positive spectral equivalence constants c
(r)
1 and c

(r)
2 . Then the

matrix
Bh =

∑

r∈τh
CT
r B

(r)Cr (5.5)

is spectrally equivalent to the stiffnes matrix Kh, i.e.,

c1Bh ≤ Kh ≤ c2Bh (5.6)
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5. Algorithm

with the spectral equivalence constants

c1 = min
r∈τh

c
(r)
1 and c2 = max

r∈τh
c
(r)
2 .

Additionally, the matrix Bh is SPD. If Kh is only SPSD, the spectral equivalence inequalities
Equation (5.6) remain valid, Bh is SPSD, and ker(Bh) = ker(Kh).

Proof. See Lemma 2.2 in [HLRS01].

5.3. Coarsening Algorithm

To construct the hierarchy of abstract meshes we start with a given abstract mesh on a level
and apply the coarsening algorithm as described here in more detail. First an edge is chosen
based on some priority and then its two vertices are collapsed, which means we consider
them as the same vertex on the coarser level. To obtain the priority for edges we introduce
so called collapse weights. The exact calculation for the collapse weights is described in the
next section. Figure 5.1 shows a representation of a coarse abstract mesh (red) obtained by
collapsing some fine edges (black) and Algorithm 3 summarizes the coarsening algorithm.

Algorithm 3 Coarsening

1: procedure Coarsening(AbstractMesh)
2: Compute collapse weights for all edges in the Mesh
3: Sort edges by their collapse weight
4: for all edges e in priority sorted edges do
5: if no connected edge is already collapsed then

6: Collapse edge (Identify vertices of the edge with a single coarse vertex)

7: Build the coarse abstract mesh from the collapse information

Figure 5.1.: Schematic of the coarsening process for a mesh
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5. Algorithm

Figure 5.2.: Cell patch with the red highlighted center edge ec and a highlighted center
face.

5.4. Collapse Weights

In this section, we describe the algorithm and underlying heuristic to obtain the collapse
weights. It is based on the notion that after collapsing an edge a flux through collapsed
faces needs to be diverted via adjacent faces.
First we need to get some notation out of the way. Figure 5.2 shows a red highlighted

center edge ec with the corresponding cell patch around the edge. The cell patch is described
by all cells which contain ec. We call these center cells in the following discussion.
Center faces (denoted as Fc) are all faces which contain ec. The set of center faces is

Fc. One such face is highlighted in a transparent yellow color in Figure 5.2. If we were to
collapse the center edge, also all center faces would collapse and no flux could pass through
any of these center faces.
All edges in the cell patch which are connected to the top vertex vt, but excluding

the center edge, are called top edges and notated as et ∈ Et. Also Ft denotes the set of
faces formed by two top edges. Respectively, all edges connected to the bottom vertex vb
excluding the center edge are called bottom edges and similarly notated as eb ∈ Eb and Fb

is the set of faces formed by two bottom edges.
Every center face contains exactly one top edge, one bottom edge, and the center edge.

Since the number of center cells, center faces, top edges, and bottom edges are thus all
identical we designate their number by Nc.
We start by looking at a global discrete flux Bh ∈ Wh and its corresponding discrete

global vector potential uh ∈ Vh. As before it holds that Bh = curluh. First we want to
express this vector potential locally on the patch by its degrees of freedom. Since we use
lowest order edge elements, each degree of freedom corresponds exactly to one edge. Thus
uh can be described on the edge path via the following degrees of freedom:

• one DOF corresponding to the center edge uc ∈ R

• one DOF uet per top edge et ∈ Et, therefor all DOFs corresponding to the top edges
are collected in the vector ut ∈ R

Nc
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5. Algorithm

• one DOF ueb per bottom edge eb ∈ Eb, therefor all DOFs corresponding to the bottom
edges are collected in the vector ub ∈ R

Nc

The degree of freedom of the flux Bh corresponding to the center face Fc is called BFc
.

These DOFs are collected in the vector Bc ∈ R
Nc . Now to judge how ”easy” it would be

to divert Bc via the other faces connected to top and bottom edges, we will look at the
following two norms.

‖Bh‖21 = min
ut,ub,uc

Bc(u)=Bc

∑

Fc∈Fc

wFc
|BFc

|2 +
∑

et∈Et
wet |uet |2 +

∑

eb∈Eb
web

∣∣ueb
∣∣2 (5.7)

‖Bh‖22 = min
ut,ub,uc

Bc(u)=Bc

∑

Fc∈Fc

wFc
|BFc

|2 +
∑

et∈Et
wet |uet |2 +

∑

eb∈Eb
web

∣∣ueb
∣∣2

+




∑

et∈Et

∑

et⊂F
F /∈Ft

F /∈Fc

wF |uet |2



+

∑

Ft∈Ft

et1 ,et2∈Ft

wFt

∣∣∣uet1 − uet2

∣∣∣
2

+




∑

eb∈Eb

∑

eb⊂F
F /∈Fb

F /∈Fc

wF

∣∣ueb
∣∣2



+

∑

Fb∈Fb

eb1 ,eb2∈Fb

wFb

∣∣∣ueb1 − ueb2

∣∣∣
2

(5.8)

We see that the second norm is the same as the first norm with additional terms for the
non-center faces connected to the top and bottom edges. Similar to Section 5.2, we are
looking for spectral equivalence of the norms, such that for any given flux Bh it holds that

‖Bh‖2 γ1 ≤‖Bh‖1 ≤ γ2‖Bh‖2 . (5.9)

Heuristically, a flux is easy to divert through the non-center faces if the norms are very
similar. This would mean that the additional terms in the second norm don’t have an
disproportional high contribution. Since all weights are positive and therefor the additional
terms in the second norm can only have positive contributions we know that γ2 ≤ 1. Thus
the value of interest is the lower bound γ1 of the equivalence Equation (5.9). Assuming we
can represent the two norms by matrices N1 and N2 we can determine the lower bound as
the smallest eigenvalue of the generalized eigenvalue problem (EVP):

N1x = γN2x (5.10)

For each edge ec we can then setup this generalized EVP corresponding to the cell patch
around ec and assign the biggest eigenvalue γ1 of this problem as the collapse weight to the
edge. How to obtain such matrices for the EVP from the norms described as minimization
problems will be the topic of the next subsection.
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5. Algorithm

5.4.1. Solving the Minimization Problem

Both norms, Equation (5.7) and Equation (5.8), can be generalized to a common structure
as shown in Equation (5.11). DFc

is the diagonal matrix built by the face weights of the
central faces. Mt and Mb are the non-center parts contributing to the norm which differ
between the two norms.

‖Bh‖ = min
ut,ub,uc

ut−ub−uc1=Bc

‖Bc‖2DFc

+‖ut‖2Mt
+‖ub‖2Mb

+ wecu
2
c (5.11)

We can solve this minimization problem via the method of Lagrange multipliers. In the
following derivation I is the identity matrix, 1 is the one vector and λ is the vector of
Lagrange parameters. The Lagrange system for Equation (5.11) is given by




Mt I
Mb −I

wc −1T

I −I −1







ut

ub

uc
λ


 =




0
0
0
Bc


 . (5.12)

Now from the first and second equation of the system we get

ut = −M−1
t λ, ub = M−1

b λ.

We plug these identities into the fourth equation and solve for the Lagrange parameters:

Bc = ut − ub − uc1

Bc =
(
−M−1

t −M−1
b

)
λ− uc1

λ = −
(
M−1

t +M−1
b

)−1

︸ ︷︷ ︸
M

(uc1+Bc) = −M(uc1+Bc) (5.13)

A short side note on inverting the matrices Mt and Mb here: They are not necessarily
regular, but this can be fixed by adding a small ε regularization. Since they are inverted
twice to obtain the matrix M , the error for M is again in the order of ε.
Also ut and ub can be expressed in terms of uc by plugging this result back into the first

and second equation of the Lagrange system:

ut = −M−1
t M(uc1+Bc), ub = M−1

b M(uc1+Bc)

With Equation (5.13) for the Lagrange multipliers together with the third equation of
the Lagrange system we can solve for uc:

0 = wcuc − 1
Tλ

0 = wcuc + 1
TM(uc1+Bc)

uc =
−1TMBc

wc + 1TM1
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5. Algorithm

Now we look to the original norm Equation (5.11) again and represent the norms with
their respective matrices to simplify the equation with the obtained minimizers. The next
step is to eliminate ub and ut:

‖Bc‖ = BT
c DFc

Bc + min
ut,ub,uc

ut−ub−uc1=Bc

uT
t Mtut + u

T
b Mbub + wcu

2
c

= BT
c DFc

Bc

+ min
ut,ub,uc

ut−ub−uc1=Bc

wcu
2
c

+ (uc1
T +BT

c )
❍
❍❍MT ❍

❍❍M−T
t ✚

✚Mt✟
✟✟M−1
t M(uc1+Bc)

+ (uc1
T +BT

c )
❍
❍❍MT ❍

❍❍M−T
b ✚

✚Mb✟
✟✟M−1
b M(uc1+Bc)

= BT
c DFc

Bc +min
uc

(uc1
T +BT

c )M(uc1+Bc) + wcu
2
c

Finally we can plug in the minimizing uc to arrive at the desired matrix representation of
the norms:

‖Bc‖ = BT
c DFc

Bc +

(
−1TMBc

wc + 1TM1
1
T +BT

c

)
M

(
−1TMBc

wc + 1TM1
1+Bc

)
+ wc

(
−1TMBc

wc + 1TM1

)2

= BT
c DFc

Bc +
(1TMBc)

2

(wc + 1TM1)2
1
TM1− 2

1
TMBc

wc + 1TM1
1
TMBc +B

T
c MBc + wc

(1TMBc)
2

(wc + 1TM1)2

= BT
c DFc

Bc +B
T
c MBc −

(1TMBc)
2

wc + 1TM1

= BT
c



DFc

+M − 1

wc + 1TM1
MT

11
TM

︸ ︷︷ ︸
M̃




︸ ︷︷ ︸
N

Bc

The algorithm based on this heuristic is summarized in Algorithm 4.

5.5. Smoothed Prolongations

Another technique to improve the condition number of our solver is to smooth the prolon-
gation by means of a damped Jacobi method as first introduced in [Van95]. The sections
follows the presentation in [BGH+03], where the concept was adapted to the H(curl,Ω)
setting.
The intuition behind the technique comes from the fact, that smooth error components

are typically characterized by a small energy. With Al scaled such that ‖Al‖ = 1 this
can be written as: eTAle ≪ eTe. To reduce the energy of the interpolated coarse grid
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5. Algorithm

Algorithm 4 ComputeCollapseWeights

1: procedure ComputeCollapseWeights(AbstractMesh,EdgeWeights,FaceWeights)
2: for all edges ec ∈ E do

3: for i = 1, 2 do

4: Build Mt and Mb matrices of ‖·‖i with respect to ec

5: Compute M :=
(
M−1

t +M−1
b

)−1

6: Compute M̃ := M − 1
wc+1TM1

MT
11

TM

7: Ni := DFc
+ M̃

8: Set the edge collapse weight wec , to the minimal eigenvalue of the generalized
EVP N1x = γN2x

correction P̂lul+1 on level l, with a given tentative edge prolongation P̂l, we can instead
use an associated smoothed prolongation

Pl = (I − αD−1
l Al)P̂l, (5.14)

where I is the identity matrix, α is the damping parameter, Al is the system matrix on
level l and Dl is its diagonal. The essential argument for the application of this method
to the context of H(curl,Ω) multigrid is the following lemma, where instead of Al we use
the part of the system matrix arising from the curl part of Equation (3.2). Here denoted
as Ke

curl,l.

Lemma 3 (Lemma 1 in [BGH+03]). Assume that an unsmoothed edge interpolation op-
erator, P̂ e

l , satisfies the commutative relation (4.8) and that (5.14) is used for Ke
curl,l to

produce a smoothed interpolation operator, P e
l . Then P e

l also satisfies (4.8).

Proof. We have

P e
l+1 gradl+1 = (I − αD−1

l Ke
curl,l)P̂

e
l gradl+1

= (I − αD−1
l Ke

curl,l) gradl P
n
l

= gradl P
n
l ,

where we use the fact that
Ke

curl,l gradl = Θ

and Θ denotes the zero matrix.

Empirically we found that it is benificial possible to use the full system matrix instead of
only the curl part since the mass term has a very low coefficient anyway. Also empirically
we determined a damping parameter of α = 1

2 .
One problem we encountered with the smoothed prolongation is, that it drastically in-

creases the operator complexity (see Definition 6), which is a measure for the overhead due
to the multigrid levels.
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5. Algorithm

no smoothing smooth P̂ on every level smooth three levels

AMG complexity 2.2 41.8 2.0

Table 5.1.: Comparison of AMG complexities for several smoothed prolongation schemes.

Definition 6 (Operator complexity).

AMG complexity =

∑N
l=1 nnz(Al)

nnz(A1)
, (5.15)

where nnz(A) are the number of non-zero entries of a matrix A.

In [BGH+03] this problem is resolved by putting more than two fine vertices into an ag-
glomerate which then corresponds to a coarse vertex on the next level. Since our coarsening
is based on collapsing edges, at most two fine vertices are mapped to one coarse vertex on
the next level. To handle the increased operator complexity, we skip building system ma-
trices on some levels by first multiplying three Reitzinger/Schöberl-prolongations and then
smooth the resulting prolongation:

Pl = (I − αD−1
l Al)(P̂lP̂l+1P̂l+2) : Vl → Vl+3. (5.16)

Table 5.1 summarizes the impact of smoothing on the operator complexity for an example
setup as in Chapter 6. The third column shows that the technique from Equation (5.16) is
comparable to no smoothing in terms of operator complexity.
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6. Numerical Experiments

To show the robustness and performance of the proposed algorithm we apply it to two
magnetostatic problems. Both problems consist of a coil placed in a box of air. The first
problem contains an iron rod as a core and the second problem has a closed iron ring as a
core. The driving force is a current impressed in the coil for both problems.

6.1. Example Setup

A picture for the discretized geometry of the first problem is depicted in Figure 6.1. Fig-
ure 6.3 shows the same for the second problem. Figure 6.2 and Figure 6.4 show the field
lines of the B-field.

Homogeneous Dirichlet boundary conditions are used on the box boundary. These model
a perfect magnetic conductor as presented in Section 2.1.2. We can clearly see the orthogo-
nal field lines at the box boundaries for both problems in the Figures 6.2 to 6.4 as discussed
in Section 2.2.
The main fixed parameters of the examples are given as follows:

• Impressed current ji = 1000A/m2

• Vacuum permeability µ0 = 1.257× 10−6Hm−1

To see the effect of different regularization parameters, κ is varied for the timings pre-
sented in Section 6.2. Typically permeabilities are given as relative permeabilites µr with
respect to the vacuum permeability such that µ = µrµ0. In the region of the iron core
the relative permeability µr,Fe is varied to examine the solvers behavior for parameter
jumps. The relative permeability of the coil as well as the air are set to 1 which is a good
approximation for the permeabilitys of copper and air.
The Python setup is the same for both examples and it is attached in Appendix B. Only

the geometries are different.
The preconditioner was used together with the conjugate gradient solver provided by

NGSolve. It was set up to iterate until a residual reduction of 10−8 is achieved. Our AMG
coarsening setup was configured to reduce down to an abstract meshes with 1000 vertices.
On the coarsest level we used the sparse Cholesky inverse provided by NGSolve.

6.2. Timings and Results

Table 6.1 and Table 6.2 show the condition number, iterations, and timings for several
parameter combinations. The condition number is determined via an Lanczos eigenvalue
solver available in NGSolve. Overall the algorithm is quite stable with respect to the
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6. Numerical Experiments

Figure 6.1.: Mesh of a coil with an iron rod as a core.

Figure 6.2.: Field lines of the B-field of the first model problem.
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6. Numerical Experiments

Figure 6.3.: Mesh of a coil with a closed iron ring as a core.

Figure 6.4.: Field lines of the B-field of the second model problem.
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6. Numerical Experiments

#DOFs κ µr,Fe levels cond(C−1A) iterations setup t solver t total t

8k 1 1 4 5.2 21 1.6s 0.2s 1.8s
8k 1 1e6 4 6.1 22 1.5s 0.2s 1.7s
8k 1e-8 1 4 5.1 17 1.3s 0.2s 1.5s
8k 1e-8 1e6 4 6.0 18 1.3s 0.1s 1.4s

680k 1 1 13 17.2 37 79.5s 12.3s 91.8s
680k 1 1e6 13 18.9 40 84.3s 12.8s 97.1s
680k 1e-8 1 13 16.6 33 88.9s 11.0s 99.9s
680k 1e-8 1e6 13 27.3 38 77.0s 12.1s 89.1s

5M390k 1 1 16 39.9 57 525.7s 155.2s 680.9s
5M390k 1 1e6 16 230k 95 603.2s 255.5s 858.7s
5M390k 1e-8 1 16 37.4 50 513.1s 150.6s 663.7s
5M390k 1e-8 1e6 16 66.0 94 533.9s 251.1s 785.0s

Table 6.1.: Numerical results for the rod core example.

#DOFs κ µr,Fe levels cond(C−1A) iterations setup t solver t total t

8k 1 1 4 5.9 22 1.7s 0.2s 1.9s
8k 1 1e6 4 11.3 26 1.7s 0.2s 1.9s
8k 1e-8 1 4 6.0 17 1.8s 0.2s 2.0s
8k 1e-8 1e6 4 50k 33 1.9s 0.3s 2.2s

680k 1 1 13 18.1 38 67.0s 11.2s 78.2s
680k 1 1e6 13 44.0 45 81.5s 15.7s 97.2s
680k 1e-8 1 13 17.6 34 75.9s 11.5s 87.4s
680k 1e-8 1e6 13 35.6 65 75.9s 21.6s 97.5s

5M390k 1 1 16 40.6 57 507.1s 142.3s 649.4s
5M390k 1 1e6 16 18k 101 575.0s 326.3s 901.3s
5M390k 1e-8 1 16 35.0 49 576.9s 129.3s 706.2s
5M390k 1e-8 1e6 16 159.9 135 529.9s 407.0s 936.9s

Table 6.2.: Numerical results for the closed core example.
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6. Numerical Experiments

Figure 6.5.: Full trace plot of an example with 680k degrees of freedom.

Figure 6.6.: Trace plot of the solving stage of an example with 680k degrees of freedom.
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6. Numerical Experiments

#DOFs RAM iterations total time

980k 2 GB 37 22sec
5M380k 10 GB 53 2.5min
42M217k 88 GB 77 25min

Table 6.3.: Additionial numerical results

regularization κ in both examples. Certain combinations have very high conditions numbers
but a reasonable number of iterations. This behavior is due to single spurious eigenvalues.
The solution time seems roughly linear with respect to the number of degrees of freedom.

The biggest part is in the setup time which is almost exclusively to the bad performance
of the collapse weight calculation algorithm. It should be noted that also the time spend
on determining the eigenvalues for the condition number is included in the setup time.
This extra overhead amounts to approximately the time used for solving. In concrete
applications the calculation of the condition number is not necessary.
Details of the timings are shown in the ViTE1 trace plots Figure 6.5 and Figure 6.6. We

see a good utilization of all 10 threads in the first plot. The red bars are the dominating
edge collapse weights computations. In the second plot we see blue bars recursively stacked.
They represent the V-cycle part of our multigrid and the higher levels are surrounded by
the smoothers shown in green and red.
All the previous timings were done with 10 Threads on an Intel Xeon CPU E7-4850

machine. Even more promising are the timings shown in Table 6.3 produced with 8 threads
on an Intel Core i7-9800X CPU by Matthias Hochsteger at CERBSim GmbH.

1http://vite.gforge.inria.fr/index.php
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7. Conclusion and Outlook

We combined several techniques to establish a preconditioner for magnetostatic problems,
which is robust in the regularization parameter. Improved robustness with respect to the
mesh-size and jumps in the permeability parameter were demonstrated.
Also the performance of the algorithm looks very promising. The most time consuming

part is currently the setup of the preconditioner where a lot of time is spent in calculating
the collapse weights. This is the prime candidate for further optimizations.
One could extend the work to properly handle complex coefficients, which arise in the

case of eddy-current problems. Most parts of the algorithm can already handle complex
coefficients and entries and also NGSolve is capable of using complex numbers. The main
problem here seems to be the proper combination with an iterative solver, since the pre-
requisites for conjugate gradient method are not fulfilled for this regime. One would need
to resort to GMRES or related algorithms.
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A. Schur Complement

The material of this chapter is from [Axe94] chapter 3.2. We consider a matrix A split in
the following way

A =

[
A11 A12

A21 A22

]
,

where Aii, i = 1, 2 are square matrices.

Definition 7 (Definition 3.4 in [Axe94]). If A11 is non-singular, we define

S := A/A11 := A22 −A21A
−1
11 A12

which is called the Schur complement of A with respect to A11.

It is the matrix resulting from a block Gauß elimination with A11 as the pivot block.
The triangular factorization of A can be stated as:

A =

[
I 0

A21A
−1
11 I

][
A11 0
0 S

][
I A−1

11 A12

0 I

]
(A.1)

Theorem 8 (Theorem 3.8 in [Axe94]). Let A be a Hermitian positive definite, A11 be

regular, and x =

[
x1

x2

]
be a partitioning of x consistent with the partitioning of A. Then

(a) A11 and A22 are Hermitian and positive definite.

(b) x∗Ax ≥ x∗
2Sx2

(c) For any x2, minx1
x∗Ax = x∗

2Sx2

(d) minx,x2 6=0 x
∗Ax = minx2 6=0 x

∗
2Sx2

Proof. To prove (a) note that x∗Ax = x∗
1A11x1 if x2 = 0 and if x = (x1,x2) is partitioned

consistently with the partitioning of A. Hence, it follows that x∗
1A11x1 > 0∀x1 6= 0, so

A11 is positive definite. Similarly A22 is positive definite. For (b) consider the factorization
Equation (A.1) and A∗

12 = A21:

x∗Ax = (x1 +A−1
11 A12x2)

∗A11(x1 +A−1
11 A12x2) + x

∗
2Sx2 ≥ x∗

2Sx2

. Then (c) and (d) follow by choosing x1 = −A−1
11 A12x2 for the above equation.
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B. Code Listing of Example

import ngso lve as ngs
from ngso lve import x , y , c u r l

from hcurl amg import HCurlAMG # import the Precond i t ioner

ngs . SetNumThreads (10)

with ngs . TaskManager ( ) :
mesh = ngs .Mesh( ’ c o i l c o r e 0 . 2 . vo l ’ )
f e s = ngs . HCurl (mesh , order=0, d i r i c h l e t=’ outer ’ )

u = f e s . Tr ia lFunct ion ( )
v = f e s . TestFunction ( )

mu0 = 1.257 e−6

r e g u l a r i z a t i o n f a c t o r = 1e−6
mu r i ron = 200000

nu d i c t = { ’ a i r ’ : 1/mu0 , ’ c o i l mat ’ : 1/mu0 ,
’ i r on ’ : 1/( mu r i ron ∗ mu0) }

nu = ngs . Coe f f i c i en tFunc t i on ( [ nu d i c t [ mat ] for mat in

mesh . GetMater ia l s ( ) ] )

a = ngs . Bi l inearForm ( f e s , symmetric=Fal se )
a += ngs . SymbolicBFI (nu ∗ cu r l (u) ∗ cu r l ( v ) )
a += ngs . SymbolicBFI ( r e g u l a r i z a t i o n f a c t o r ∗ nu ∗ u ∗ v )

c = HCurlAMG(a , { ’ l e v e l s ’ : 30 ,
’ v e r t e x f a c t o r ’ : 0 . 9 ,
’ min edges ’ : 1000 ,
’ t e s t ’ : True ,
’ node amg ’ : True })

a . Assemble ( )

# Setup the impressed current in the c o i l
cur = 1000/16
r = ngs . s q r t ( x∗x+y∗y )
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B. Code Listing of Example

c u r r e n t d i c t = { ’ c o i l mat ’ : ( cur ∗ y/r , cur ∗ −x/r , 0) ,
’ a i r ’ : ( 0 , 0 , 0) ,
’ i r on ’ : (0 , 0 , 0) }

cur r ent = ngs . Coe f f i c i en tFunc t i on ( [ c u r r e n t d i c t [ mat ] for mat
in mesh . GetMater ia l s ( ) ] )

f = ngs . LinearForm ( f e s )
f += ngs . SymbolicLFI ( cur rent ∗ v )
f . Assemble ( )

u = ngs . GridFunction ( f e s )
bvp = ngs .BVP( bf=a , l f=f , g f=gfu , pre=c )
bvp .Do( )

ngs .Draw( cu r l (u ) , mesh , ’B− f i e l d ’ , draw sur f=Fal se )
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