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Abstract

This diploma thesis presents an unusual event recognition approach in the field of traf-

fic surveillance. Such events are unusual traffic behaviour like traffic jams, accidents

or ghost drivers. An interest-point based tracking algorithm (KLT-tracker) is discussed

which pursues features on vehicles through a static camera scene. Tracking data can be

collected by observing normal traffic. Then, this data is used to learn a spatio-temporal

model of normal traffic behaviour. Thereby, training samples are generated in a learning

space by the tracking data. Thus, the spherical probability density function (p.d.f.) of the

space can be estimated. We use a Growing Neural Gas in combination with a MDL-based

pruning algorithm for unsupervised learning. The former method belongs to the class of

soft-competitive algorithms which overcome the problems of ”stranded” reference vec-

tors. In contrast to other works, the number of reference vectors has not to be constant.

The algorithm finds an optimal codebook according to the MDL principle. As the p.d.f.

only describes points and not trajectories of normal traffic behaviour, behaviour classes

of normal traffic have to be learnt additionally. This work presents a novel approach by

using the topology of the learning space which is created by Competitive Hebbian Learn-

ing. Beside the necessity of recognizing unusual events, it can also be used to analyze the

behaviour of drivers at traffic sites like intersections or road works.





Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit der visuellen Erkennung von ungewöhnlichem

Verkehrsverhalten in Verkehrsszenen. Darunter verstehen wir beispielsweise Staus,

Unfälle oder Geisterfahrer. Grundsätzlich ist jedes Verkehrsverhalten, das nicht den

Verkehrsregeln entspricht, als ungewöhnlich zu bezeichnen. Seit Jahren existieren kom-

merzielle Systeme, die automatisch solche ”abnormalen” Verkehrssituationen erkennen

können. Die meisten dieser Systeme basieren auf traditionellen Sensoren wie Induktion-

sspulen. Das Problem dieser Methoden ist, dass sie oft nur für einen sehr eingeschränkten

Problembereich anwendbar sind. Beispielsweise könnte man Induktionsschleifen auch

noch zur Messung der Verkehrsdichte heranziehen. Visuelle Methoden mittels Kamera

sind in dieser Hinsicht wesentlich flexibler. Ihr Anwendungsbereich umfasst die Zählung

der Fahrzeuge wie auch die Geschwindigkeitsmessung oder Verkehrsdichtemessung, geht

aber auch noch weit darüber hinaus. Diese vielfältige Anwendbarkeit der Technologie ist

ein sehr bedeutender Vorteil gegenüber anderen Methoden. Daraus resultiert auch die

ökonomische Überlegenheit, da Adaptierungen der Hardware bei neuen Problemstellun-

gen kaum notwendig sind. Auch sind die Kosten für Bau, Inbetriebnahme und Wartung

wesentlich geringer.

Das System, das hier vorgestellt werden soll, gliedert sich in zwei Teilbereiche. Zunächst

werden Fahrzeuge in Echtzeit im Bild verfolgt. Dies geschieht mit Hilfe eines auf Bildver-

arbeitung basierenden Interest-point Tracking Algorithmus. Es handelt sich dabei um eine

Implementation des Kanade-Lucas-Tomasi (KLT) Trackers. Interest-points, bei denen es

sich bei genauerer Betrachtung um Ecken handelt, werden auf Fahrzeugen innerhalb eines

benutzerdefinierten Detektionsbereiches erkannt und durch einen Tracking-Bereich ver-

folgt. Das Verfolgen von einem Bild zum nächsten erfolgt dabei auf verschiedenen Auflö-

sungsebenen einer Gauß-Pyramide. Der Grund für die Implementation des KLT-Trackers

innerhalb einer Multi-Auflösungs Umgebung liegt in der Tatsache, dass sich die verfol-

gten Interest-points nicht nur 2-3 sondern durchwegs 6-7 Pixel von Bild zu Bild bewegen

können. Interest-points werden in dieser Arbeit auch Features genannt.





Trajektorien von verfolgten Features heißen Tracking-Daten. Jedes Feature repräsentiert

ein Fahrzeug. Seine Trajektorie in Ort und Zeit gibt Auskunft über sein Verhalten. Alle

verfolgten Features zusammen geben somit Auskunft über das Verkehrverhalten innerhalb

einer Szene, die von einer statischen Kamera aufgenommen wird. Ein Feature identifiziert

aber kein Fahrzeug, da ja auch mehrere Interest-points auf einem Auto gefunden werden

können. Dies ist auch nicht notwendig, da ja nur das Verhalten von Verkehr beurteilt wer-

den soll und keine Verkehrsparameter wie Geschwindigkeit oder Anzahl der Fahrzeuge

ermittelt werden.

Die Erkennung von ungewöhnlichen Ereignissen basiert nun auf Tracking-Daten nor-

malen Verkehrs. Es werden Trainingsdaten in einem fünf dimensionalen Lernraum (Ort,

Zeit, Richtung) generiert. Mit Hilfe dieser Daten wird ein spatio-temporales Modell

normalen Verkehrs erlernt. Das Modell ist dabei die approximierte Dichtefunktion der

Aufenthaltswahrscheinlichkeit (p.d.f.), die durch unüberwachtes Lernen ermittelt wird.

Letzteres ist durch ein Wachsendes Neurales Gas in Kombination mit einem Mini-

mum Description Length (MDL, Minimale Beschreibungslänge) basierten Optimierungs-

Algorithmus realisiert. Ergebnis dieses Verfahrens ist eine endliche, bezüglich des MDL-

Prinzips optimale Anzahl von Referenzvektoren (Codebook). Das Codebook beschreibt

nun die Trainingsdaten. Jeder Referenzvektor beschreibt dabei einen gewissen Unterraum

des Lernraums (Voronoi Regionen). Die p.d.f. kann nun als Summe von sphärischen

Gauß-Funktionen approximiert werden, deren Mittelwerte den Positionen der Referen-

zvektoren entsprechen. Die Standardabweichungen der jeweiligen Gauß-Funktionen

entsprechen der durchschnittlichen Abweichung zwischen Trainingsbeispielen innerhalb

der Voronoi Region.

Leider reicht das spatio-temporale Modell allein nicht aus, um ungewöhnliche Verkehrssi-

tuationen zu erkennen. Daher werden alle möglichen Verhaltensmuster innerhalb der

Trainingsdaten klassifiziert. Im Gegensatz zu anderen Arbeiten nützen wir die Topolo-

gie des Lernraumes, um eine Klassifikation zu generieren. Die Topologie ist ein Zusam-

menhangsgraph der Referenzvektoren und entspricht der induzierten Delaunay Triangula-

tion. In einem ersten inkrementellen Schritt werden Trajektorien als Sequenzen von Ref-

erenzvektoren verglichen. Sind zwei Sequenzen identisch, so bilden sie eine Klasse. In

einem zweiten Schritt werden dann äquivalente Klassen zusammengefasst. Zwei Klassen

sind äquivalent, wenn die Referenzvektoren identisch oder durch eine Kante im Topolo-

giegraphen miteinander verbunden sind. Das Verfahren konvergiert zu einer endlichen

Anzahl an Klassen. Neben der Erkennung von ungewöhnlichen Ereignissen lassen sich

dadurch beispielsweise auch die Verhaltensweisen von Autofahrern vor Baustellen oder

Kreuzungen analysieren.
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Chapter 1

Introduction

I n recent years, the volume of traffic has become a significant problem. Consequently,

accidents and traffic jams are far more likely than a century ago. Many of us living in

metropolitan areas got used to the every-day traffic news about congestions. Early solu-

tions attempted to lay more pavement to avoid jams, but adding more lanes is becoming

less and less feasible. Besides, reckless, confused (e.g. ghost drivers) or drunken car

drivers are more and more a source of danger and cause many terrible accidents and jams.

Most of them ignore traffic rules and drive prohibitively in wrong directions or exceed

speed limits. Instead of increasing the capacity of existing infrastructure, contemporary

solutions of visual surveillance try to use roads more efficiently. Thereby, more and bet-

ter traffic information which is automatically gathered in real-time is emphasized. Such

information can betraffic parameterslike traffic volume, occupancy and vehicle’s speed.

Another group of morequalitative informationare unusual events (e.g. traffic jams, acci-

dents, prohibitively driving cars, etc.). The subject of this diploma thesis is to recognize

such unusual traffic events.

The quest for better traffic information and thus an increasing reliance on traffic

surveillance, has resulted in a need for better vehicle detection and traffic analysis tools.

Traditional sensor techniques like loop detectors based on induction or magnetic field

sensors are well known and used in many applications. The main drawbacks are their

impossibility to gather specific traffic information and their less flexibility. For exam-

ple, the analysis of traffic behaviour in an unknown scene is impossible to perform with

loop detectors. For that, wide area sensors are interesting. Cameras can usually observe

several lanes in parallel. Visual traffic surveillance based on video images is capable of

collecting traffic information. Though video technology has been available for a num-

1
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ber of years, decreasing computer and image processing hardware costs have recently

made solutions based on video analysis more and more attractive (ITS decision report,

http://www.path.berkeley.edu):

• Installation, operations and maintenance costs are now lower than for traditional

methods.

• Video technology has been either decreasing in cost or gaining in efficiency and

this trend is continuing.

• Digital video, while still on the order of three times more expensive than analog

equipment, offers numerous additional benefits. This will make video surveillance

more attractive as prices for digital equipment fall.

Especially the last point should be emphasized. The following list shows the most impor-

tant benefits:

• Camera information is readily understandable by human operators.

• Unusual event recognition is done rapidly.

• It is possible to identify the incident type, the level of gravity and the type of inter-

vention needed. This is generally performed by human operators.

• It delivers images focusing on the detection point of unusual events, helping the

operator to rule out false alarms.

• Collection and potential analysis of traffic and incident data. Information pro-

vided in the video sequences immediately preceding an incident can be particularly

valuable. Indeed, information analysis can provide an understanding of accidents

occurring on the network and can allow enhancement of infrastructure reliability.

Surveillance data could be used not only for safety but also for transportation ad-

ministration, planning, operations and research.

• It can classify vehicles, monitor intersections, actuate signals and read license plates

(which can be used for enforcement and travel time estimation).

• Installation typically does not require lane closures. Traffic personnel safety is en-

hanced and traffic disruptions are minimized. By repositioning cameras as road

geometry varies, visual traffic surveillance can be used during realignment or resur-

facing.
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To sum up, perhaps the major handicap of traditional visual surveillance systems is that

they are designed to operate with data taken at apoint rather than overspace. This in-

formation alone, typically volume and occupancy, has not proven to be sufficient for ef-

fective and reliable unusual event recognition. The data is deficient because volume is

not a dynamic measurement, and because occupancy is an approximate rather than true

measurement of a spatial traffic flow variable, namely density.

Most of the commercial visual traffic surveillance systems available today aretrip-

wire systems (e.g. AUTOSCOPE,http://www.autoscope.com). Small localized regions of

the image mimic conventional sensors. Multiple sensors can be located within the image

and can be easily configured to suit the road geometry. Then, image processing within

these sensors delivers traffic parameters. Thus, vehicles are not identified and are not

considered as unique targets. This approach is computationally inexpensive and can be

implemented on off-the-self computers in real-time. The drawbacks of this approach are

that the unusual event recognition algorithms remain the same as for traditional sensors,

and that the accuracy of individual sensors depends on the camera’s field of view.

Some commercial systems usefeature trackingmethods to pursue vehicles (e.g.

EVA). Visual feature tracking means pursuing image features (e.g. edges, corners, re-

gions, etc.) between two consecutive images. This is done over a long sequence of

images. These images are frames of a video or captured in real-time by an acquisition

system. Generally, these systems use region tracking, i.e. regions of movement are vehi-

cles. Individual vehicles are detected and tracked through the camera scene. This provides

a microscopic description of vehicle movements which can reveal new data on events such

as sudden lane changes, vehicles driving in the wrong direction and stationary vehicles

(e.g. accidents). This increase in sophistication requires more computing power, requires

individual vehicles to be discernible and can be even more restrictive in camera position-

ing. The latter dues to the fact, that regions are used for tracking. Unfortunately, regions

can merge if vehicles occlude each other.

The third approach, used in the Image Processing for Automatic Computer Traffic

Surveillance (e.g. IMPACTS) system, concentrates onspatially analyzingimage intensi-

ties. Instead of considering traffic on a vehicle by vehicle basis, the underlying strategy is

to describe how the visible road space is being utilized at a particular instant in time. Dis-

turbances in traffic flow can then be determined by analyzing how these descriptions vary

over time. Use of road space is divided into three categories: no traffic present, moving

traffic present, or stationary traffic. These are essentially qualitative decisions.

All described commercial products are able to extract traffic parameters. Unusual
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event recognition is based on this information. Thereby, parameters are combined to form

a response of the system according to an event. A positive alarm takes place, if a certain

manually defined threshold is exceeded. However, the purpose of this thesis is to develop

a system which learnsindependentlyunusual events. No thresholds are defined any more.

Only video examples of normal traffic of a particular static camera’s view are necessary.

Once the system has learnt normal traffic behaviour, it is able to recognize unusual traffic

events within the same scene. Furthermore, the system is able to analyze traffic behaviour

in an unknowntraffic environment. For example, the spatio-temporal behaviour of car

drivers heading to a road work or intersection could be investigated. Thus, the system is

highly flexible with less human interactions needed.

1.1 Structure of the thesis

The basis of unusual event recognition is tracking data. Chapter 2 describes a method

which generates this data. Section 2.1 introduces visual feature tracking and defines the

scope of the work. Section 2.2 gives the tracking requirements and presents a Shi-Tomasi

interest-point tracking approach. The results with different traffic scenes are presented

in section 2.3. Finally, the chapter finishes with a conclusion (section 2.4) of the main

drawbacks. It is shown that despite these disadvantages it can be used for unusual event

recognition.

Chapter 3 explains unusual events in section 3.1. They are indicated by interest-

points which are pursued by the tracker. To use especially these features has consequences

on the recognition which is described in section 3.2. Finally, section 3.3 describes the

principle of unusual traffic event recognition using tracking data of normal traffic. The

novelty of our approach is shown.

Chapter 4 treats the generation of training samples in the learning space from mea-

sured feature trajectories. The former are used as training samples for successive learning

by clustering. First, it outlines several difficulties during this generation process with re-

spect to the learning space and problems with the tracking data which have to be tackled

to improve learning (section 4.1). Then, solutions for these problems are discussed in

sections 4.2 - 4.4.

Chapter 5 treats learning a spatio-temporal model of traffic behaviour. It is shown

that the latter is an approximation of the probability density function in the learning space

which is learnt by a density estimator. Section 5.1 introduces the learning problem in gen-
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eral and gives some definitions. Then, section 5.2 introduces the basic learning paradigms

and presents several solutions. Especially, unsupervised competitive learning is treated in

detail in section 5.3. Finally, section 5.4 presents the proposed learning framework for

this work.

Chapter 6 treats the classification of traffic behaviour within a traffic scene. Sec-

tion 6.1 motivates the need for classification and presents two previously used approaches.

Both methods calculate explicitly the classification result by using a further learning step

or a co-occurrence matrix respectively. In contrast to them, section 6.2 discusses a new

approach which only uses the topology of the training data. In fact, the topology was

calculated implicitly by the learning step.

Chapter 7 presents experiments with the spatio-temporal model and classification

algorithm. Section 7.1 treats the training and test data. Section 7.2 shows experiments

with the training sample generation process. It focuses on the ability of obvious out-

lier detection and noise reduction. Section 7.3 evaluates the GNG pre-clustering and the

successive MDL-based pruning step. Section 7.4 shows the results of classification with

respect to the training data. Performance issues are also treated. Finally, the results of us-

ing the spatio-temporal model and classification on the test data are shown in section 7.5.

A summary is given in section 7.6.

Chapter 8 discusses the presented unusual event recognition approach and gives an

outlook of future work.
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Chapter 2

Visual tracking of traffic
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This chapter describes the tracking method for the traffic monitoring application.

Section 2.1 introduces into visual feature tracking and defines the scope of the work.

Section 2.2 gives the tracking requirements and presents a Kanade-Lucas-Tomasi (KLT)

interest-point tracking approach. The results with different traffic scenes are presented

in section 2.3. Finally, the chapter finishes with a conclusion (section 2.4) of the main

drawbacks of the method. It is shown that despite these disadvantages it can be used for

unusual event recognition.

7
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2.1 Overview

Visual feature tracking means pursuing image features or user-defined feature models

between two consecutive images. This is done over a long sequence. These images

are frames of a video or are captured in real-time by an acquisition system. The main

problem is to match the feature in the first frame to a collection of measurements taken

from the next. This matching problem is equal to the correspondence problem, which is

well known in 3D computer vision.

Traffic monitoring is an important application of visual feature tracking. Vehicles

are recognized and tracked through the camera view by a real-time computer system.

Data, like velocity, number of vehicles, type of vehicles, density of traffic, etc., are stored.

Traffic prediction and other high-level tasks like unusual event recognition, which is the

issue of this thesis, can then be build upon this low-level tracking system. Many motion

detection and tracking algorithms have been investigated for traffic monitoring in the last

years (Koller et al. [26], Ferrier et al. [10], Beymer et al. [3], Stauffer and Grimson [41]).

A discussion and comparison of tracking methods can be found in Pflugfelder [34].

The simplest and by researchers and practioners mostly used detection algorithms

are based on background differencing (Ullman [45]). In the simplest case, these methods

subtract the actual image frame at timet, I(t), from the background reference image.

The frame difference is then segmented in areas with and without motion. A shortcom-

ing of all of these methods is the robustness against illumination conditions and noise.

Generally, the geometry of the scene can be assumed static, because the camera is fixed.

However, intensity values cannot be assumed to be constant for the background, because

the lightning conditions change slowly due to day and night or quickly due to reflections

and noise. Therefore, the problems associated with illumination and noise have to be ad-

dressed in an application like traffic monitoring. One solution is an adaptive background

estimation process. For example, Stauffer and Grimson used a Gaussian mixture model

of intensities for every pixel which represents background colour. Then, foreground and

background pixels can be distinguished to find regions of motion which are basically ve-

hicles, because they are the only allowed objects within the scene. Beside background

differencing, a second approach exists. It is called frame differencing, because succes-

sive frames in a video sequence are subtracted. Like in the background differencing case,

the geometry of the scene and the intensity values of the background are assumed to be

static. In contrast to background differencing with adaptive background estimation, it is

sufficient to classify a pixel as foreground if its intensity value changes in time. Unfortu-
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nately, a second problem also arises with large homogenous moving objects. Pixel values

within the object do not change and are not recognized as object pixels although they are

part of the object. Thus, only the boundaries of the object can be found.

Generally, two different tracking approaches exist, namely calculation of optical

flow and feature tracking methods (Trucco and Verri [44]). The former ascertains an ap-

proximation of the dense motion field where the letter tracks merely a feature from one

to the next frame and therefore calculates a sparse motion field. Motion detection like

background differencing is then a prerequisite. Optical flow estimation is computation-

ally expensive and noise sensitive. Therefore, most of the researchers use visual feature

tracking methods for traffic monitoring. A detailed overview of feature tracking is given

in Pflugfelder [34] and in the introduction of Isard’s thesis [20].

The next section discusses a feature tracking method which is our second approach

in the field of traffic monitoring. While our first work only dealt with cars in tunnels

(Pflugfelder and Bischof [35]), the proposed method is able to address the problem of

vehicle tracking in a more general setting. However, it is not necessary that the tracker

identifies vehicles to track them. Consequently, tracking data is information about traffic

flow which is sufficient to recognize traffic jams or many other unusual events. Occluding

vehicles are a problem in all traffic approaches which are based on background differenc-

ing and thus region or blob tracking, because blobs merge to larger ones which causes the

tracker to fail. As the tracker has to pursue congested vehicles, other features should be

used.

2.2 The Approach

The aim of tracking in traffic monitoring is to pursue vehicles through a long sequence of

images. To reach this goal, the requirements of such a tracker have to be named:

(i) Reliability in detecting the vehicles,

(ii) Stability during tracking,

(iii) Accuracy in predicting the vehicle’s state (e.g. position, velocity in a specific

frame),

(iv) Real-time capability.
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Reliability in detection means that every vehicle (e.g. car, bike, truck) should be detected

while the traffic is monitored by the system. If the trajectories of pursued vehicles are

continuous then we will speak about a stable tracker. Certainly, the stability is connected

with the accuracy of the predictions. If the tracker should be practicable for real world

applications, it has to run in real-time.

Furthermore, application specific requirements have to be considered. As it is men-

tioned in Pflugfelder and Bischof [35], the following requirements arise in traffic moni-

toring especially in the environment of tunnels:

(v) Robustness against different illumination conditions (e.g. reflections on vehicles,

tunnel walls and on the road)

(vi) Robustness against vehicle occlusions

(vii) Usage of existing infrastructure (cameras, data network)

(viii) System must provide tracking data for further data processing (e.g. traffic unusual

event recognition)

Day and night changes, car lights, sun light reflections, etc. lead to difficult illumination

in the image. Besides, vehicles tend to occlude each other in case of congestions. An

appropriate tracking system has to tackle such problems. Interestingly, lots of cameras

have been installed at intersections, tunnels or streets. Unfortunately, many of them are

low cost cameras which introduce further noise. Certainly, the tracking data (trajectories

of vehicles) has to be properly stored that a successive processing like unusual event

recognition is possible.

It is a great challenge to fulfill requirements (i)-(viii) in one solution. Generally, to

build an appropriate tracker three design decisions have to be answered. First, well suited

featureshave to be defined to reliably detect the vehicles and then to guarantee a stable

tracking. Next, the right choice of amotion modelshould enable the tracker to take new

measurements of these features with high accuracy in an area of the next image. This area

has to be as small as possible as the tracker works in real-time. Finally, amatching and

state update algorithmhas to be chosen with respect to the application. For an overview

of different models see Pflugfelder [34].

Our first attempt of tracking cars in tunnels used car lights as features. They were

detected as blobs in a detection window and then tracked by a Kalman filter matching and

state update algorithm. As the motion of cars was simple (e.g. linear, because vehicles
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Figure 2.1: A typical frame of a tunnel scene video. The right car light of the visible car is
pursued through the images. Each position is shown by a cross. Positions form together
the trajectory.

Requirements Evaluation

reliability in detection - car lights are very different

stability in tracking + simple linear motion along road

accuracy in prediction + blobs are accurately detectable

real-time capability + Kalman filter and blob detection is simple

illumination and noise + blob detection is robust

occlusion robustness - impossible

usage of existing hardware+ possible

provide tracking data - only approaching cars are tracked

Table 2.1: Requirements and their evaluation by testing the first tracking approach.

drive straight along the road) and the frame-rate of the test samples was 15 frames/s, a

linear motion model was sufficient. The developed tracking system ran satisfactorily but

the main drawback was that it handled only approaching cars. The reason was that the

back lights were to small and too weak in contrast. A second problem was that neither

bikes nor trucks were detected, because the feature detection was not able to recognize the

bigger lights of the trucks or the missing light pair on bikes. Figure 2.1 shows a typical

frame of a test tunnel scene which we used for the tracker experiments. The car and its

pursued right car light is illustrated. Table 2.1 shows the evaluation of the requirements

mentioned above. The weakness in recognizing different vehicles and the impossibility

of occlusion tolerance results in the fact that this approach is insufficient to support high-

level tasks like traffic unusual event recognition.
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As a consequence the aim of the second approach is especially to meet these two

requirements. As mentioned in the last section, occlusion robustness and vehicle diver-

sity is a prerequisite of an unusual event recognition, i.e. traffic jams. In the following

three sections the feature model, namely Shi-Tomasi interest-points, are presented. It was

shown by Shi and Tomasi [39], that they are the best track-able features with respect to

a deterministic (SSD based) matching and state-update model. For example, the aperture

problem does not arise in contrast to edges. These interest points can also be interpreted

as corners. Beymer et al. [3] showed that corner features are an appropriate feature for

handling occlusions during traffic monitoring. Besides, they occur on any type of vehicle.

The motion model is a simple linear translation, because motion of vehicles is linear with

a frame-rate of 15 frames/s.

2.2.1 An appropriate motion model

Motion means the change of intensities in gray level patterns. These changes are highly

complex due to the motion of objects and noise. However, it can be used to describe

image motion as the following equation shows:

I(x, t + τ) = I(δ(x), t) (2.1)

Every pixel in image I is moved during timeτ by a functionδ. Generally,δ is nonlinear

and practically undefinable. In the application of traffic monitoring, vehicle movements

are restricted by the road. Under this assumption and an appropriate frame-rate which is

given by 15 frames/s, functionδ is approximately linear and can be written as

δ(x) = Ax + d. (2.2)

This affine motion model is represented by six degrees of freedom. The2 × 2 matrix A

defines rotation, scale and shear while the1 × 2 vectord represents translation. Given

two imagesI at timet andt + τ and a window around pixelx at timet, tracking means

determining these parameters of the motion model. A window is necessary, because the

value of the pixel can both change due to noise and be confused with adjacent pixels. The

consequence is that it is impossible to determine where the pixel went in the subsequent

frame. More details can be found in Shi and Tomasi [39], Hager and Toyama [19], Hager

and Belhumeur [18].

The quality of tracking depends on the window size, the textureness of the window

and the amount of motion between frames. However, smaller windows are preferable be-

cause they are less likely to straddle a depth discontinuity. Unfortunately,A is in that case
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harder to estimate. For this reason and that the frame-rate is sufficient, a pure translational

model

δ(x) = d (2.3)

is chosen for tracking, whereA is set to zero. The pure translational motion model for

eachx in I with its successor imageJ can be summarized as

J(x + d) = I(x) + ε(x) (2.4)

whereε is noise and the time differenceτ is set to one.

2.2.2 Matching and state update algorithm

Tracking in this case means estimating the translational vectord of the motion model.

This cannot be done exactly, because of image noise and because the motion model does

not fit perfectly. To findd, the residual

ε =
∑
W

(J(x + d)− I(x))2 (2.5)

is minimized, whereW is a given window aroundx. As an appropriate frame-rate is

assumedJ(x + d) can be linearized by its first-order Taylor expansionJ(x + d) =

I(x)+d∇I(x)+It(x)+h.o.t. It(x) is the time derivative ofI(x) and can be approximated

by a simple difference with the previous frame. The residual can be written as

ε ≈
∑
W

(d∇I(x) + It(x))2 (2.6)

To solve this minimization task, the residual is differentiated with respect tod. Then

the result is set to zero, obtaining the linear system

Cd = g (2.7)

C =
∑
W

(
Ix(x)2 Ix(x)Iy(x)

Iy(x)Ix(x) Iy(x)2

)
(2.8)

g = −
∑
W

It(x)∇I(x) (2.9)

(2.10)

The estimation ofd is improved by a Newton-Raphson iteration scheme

dk+1 = dk + C−1g (2.11)
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Figure 2.2: Multi-resolution Tracking: The last position xi of the feature is transformed
to the highest level (here 2) of the pyramid of successor Image J . Starting at level 2
with position xi the motion estimation process is performed. The resulting new position
in level 2 (dashed pixel) is then transformed to the next lower level (level 1). Now, the
motion estimation process is invoked once more. Transformation and motion estimation
are performed until full resolution of image J is reached. Lastly, the position xj is the result
of the multi-resolution tracking from frame I to J .

with d0 = 0. The iteration is stopped if no further improvementdk+1 = dk + c with

‖c‖ < Tc happens, whereTc is a user-defined threshold, ork exceeds a maximal number

of iterations.

Unfortunately, the whole motion estimation process is sensitive with respect to

the magnitude of motion between frames. During traffic monitoring, vehicles are pass-

ing the camera view with high speed. The amount of motion displacements of im-

age features can be larger than two or three pixels. Then, the estimation process fails.

Therefore, we used a multi-resolution estimation approach like the one of Birchfeld (see

http://robotics.stanford.edu/ birch/klt/). As it is shown in figure 2.2, a Gauss pyramid is

build for every successive frameJ of the video sequence. Starting at the top, with position

xi of imageI, the motion estimation process is performed for every level of the pyramid.

The resulting positionxk+dk
j is a new starting point in levelk − 1. At the end the new

positionxj of a pixel can be written as

xj = xi +
n∑

i=0

di. (2.12)
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(a) Edge (b) Corner

Figure 2.3: The aperture problem: (a) Only the motion component orthogonal to the edge
can be determined. (b) The motion of corners can always be determined.

2.2.3 Feature model

Regardless of the matching and state-update model used for tracking, not all parts of an

image contain motion information. For example, along a straight edge only the motion

component orthogonal to the edge can be determined. This fact is called aperture problem

and is shown in figure 2.3. As a consequence, features for tracking should be regions

with a rich enough texture. In this spirit, researchers have proposed to track corners or

windows with a high spatial frequency content or regions where some mix of second-order

derivatives was sufficiently high.

All these definitions yield track-able features. However, people saw these interest-

points independently of the matching and state-update model. The resulting features may

be intuitive but come with no guarantee of being the best for the tracking model to pro-

duce good results. Shi and Tomasi [39] proposed a feature model that is optimal by its

construction. Features are windows which can be tracked well. They are not good win-

dows a priori, defined by above criteria. The definition is based on the matching and

state-update model. In fact, a feature can be tracked if (2.7) represents good measure-

ments and can be solved reliably. This means thatC must be both above the image noise

level and well-conditioned. In turn, the noise requirement implies that both eigenvalues

of C must be large, while the conditioning requirement means that they cannot differ by

several orders of magnitude. Therefore, two large eigenvalues can represent corners, salt-

and-pepper textures or any other pattern which can be tracked reliably. In practice, when

the smaller eigenvalue is sufficiently large to meet the noise criterion,C is also well con-
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ditioned. This is due to the fact that intensity variations in a window are bounded by the

maximum allowable pixel value, so that the greater eigenvalue cannot be arbitrarily large.

As a consequence, every pixel and its vicinity within a region of interest is investigated if

it is an interest point or not. A window is accepted as a feature if the two eigenvalues of

C fulfill

min(λ1, λ2) > λ, (2.13)

whereλ is a predefined threshold. The determination ofλ and the explanation why such

features mainly are on vehicles is described in the next chapter.

2.3 Experiments

Three different video sequences were used for analyzing the behavior of the tracking ap-

proach. Every sequence consists of 225 frames. 2 of them for every sequence are shown

in the following figures. Figure 2.4 shows an outdoor scene in the early morning. Both

images are qualitatively bad. The reason is a bad camera and dust caused by the Danube

river beside the highway. Image 2.4(a) shows heavy traffic with growing obstructions

while in image 2.4(b) a truck changes the lane and occludes other vehicles. In contrast to

that, figure 2.5 shows a tunnel scene. Motion blur caused of the small distance between

vehicles and camera can be seen. As in all videos, noise and light reflections are evident.

In image 2.5(a) a bike appears while image 2.5(b) shows a van. The last sequence 2.6

shows vehicles entering a gate. Here, the main problems are the day/night change and the

light reflections in the tunnel. All sequences have been sampled by a rate of 15 frames/s

from a VHS/PAL video stream. The resolution of each frame amounts to720×270. Every

second row is neglected to avoid interlacing effects of the used CCD camera. Therefore,

the column resolution is 270. All algorithms, which are explained in the next two sec-

tions, were implemented as prototypes with Matlab 5.3. They are not real-time capable.

Furthermore, a real-time prototype was also implemented with the Intel Image Process-

ing Library (IPL). Critical parts were also realized in Assembler. We achieved real-time

tracking for up to 4 cameras on an off-the-self Pentium computer.

2.3.1 Feature selection

The principal outline of the Shi-Tomasi interest-point detection is shown by algorithm 2.1.

Steps 1 and 2 are simple image processing. Information about smoothing and gradient

calculation can be found in Trucco and Verri [44]. After matrixC is calculated in step
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(a) Heavy traffic (b) Truck

Figure 2.4: K01 camera video sequence: (a) shows heavy traffic with growing obstruc-
tions (b) shows a truck changing the lane and therefore it occludes other vehicles.

(a) Bike (b) Van

Figure 2.5: TV108 camera video sequence: (a) shows a bike (b) shows a van.

(a) (b)

Figure 2.6: TVS100 camera video sequence: Two typical frames are shown.
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Require: I, W , σs, σg, λ

1: Smooth image byσs

2: Compute gradients of the image byσg

3: Compute matrixCW for every pixel of image (2.8)

4: Compute smaller eigenvalue ofCW for every pixel

5: Do segmentation byλ

6: Find locally the best interest-points (non-maximum suppression)

Algorithm 2.1: Algorithm of the Shi-Tomasi interest-point detector.

W σs σg λK01 λelse

9 0.9 1.0 1000 5000

Table 2.2: The parameters of the Shi-Tomasi interest-point detector are summarized.

3 by simple convolutions its smaller eigenvalue, further called goodness value, can be

directly computed by trace and determinant ofC. In step 5 all pixels are ruled out which

have a smaller eigenvalue thanλ. In step 6 non-maximum suppression is performed. Only

interest-points should survive which have the highest eigenvalue within their vicinity.

The algorithm produces a list of interest-points with their goodness values within

an image. The higher the goodness value for a specific interest-point is, the better it is

track-able. Figure 2.7 shows three typical images for the camera video sequences 2.4, 2.5

and 2.6. All interest-points which were found are marked by crosses.

The parameters which produce these results are summarized in table 2.2.W defines

aW×W window around an interest-point. A smallerW increases the number of interest-

points and decreases their goodness values. Smaller windows are also more sensitive to

noise during tracking, as it was mentioned in section 2.2. To find interest-points which are

features to track, a trade-off has to be found forW . Interest-points on road and on vehicles

(→ features) have to be distinguishable by their goodness values. In the experiments

values of 7, 9 or 13 forW were common.σs is the standard deviation of the Gauss-kernel

that is used to smooth the image.σg also is a standard deviation of a Gauss-kernel for

computing the gradients. Both are not critical for feature detection.λ, see (2.13), must be

smaller than the goodness value of an interest-point. Then, it is a feature.

To find λ, consider the histograms in figure 2.8. They show that most interest-

points within the detection window have small goodness values. They are lying on the

static background which is in all cases the road or parts of the tunnel wall. Features have

significantly higher goodness values. Strong edges, strong textureness and a lot of corners
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Require: I, J , LF , W , σs, σg, λ, Detmin, Dispmin, Itermax, Resmax, σpyr, Srange

1: Build pyramidP with Pn levels for imageJ

2: for all FeaturesFi in LF do

3: PosPn
J (Fi)← PosPn

I (Fi) {The starting position in levelPn of J is the last position

in I}

4: for all levelsPi of pyramidP , i← n : 0 do

5: repeat

6: Compute matrixC (equation 2.8)

7: Compute vectorg (equation 2.9)

8: SolveCd = g for d

9: PosPi
J (Fi)← PosPi

J (Fi) + d

10: until ‖d‖ < Dispmin∨ iteration exceedsItermax {Newton-Raphson optimiza-

tion}

11: TransformPosPi
J (Fi) in the next lower levelPi−1

12: end for

13: end for
Algorithm 2.2: Algorithm of the deterministic feature tracker.

are the reason, why vehicles produce interest-points with higher goodness values within

the detection window. A mathematical explanation can be found in section 2.2. See

figure 2.9 as an example for an interest-point on background and a feature. The goodness

values differ about 1000 times. By settingλ to 1000 for the camera video sequence 2.4

and to 5000 for the others, a segmentation can be reached which delivers features. Another

important assumption is a small detection window where the static background guarantees

features with small goodness values.

The results are shown in figure 2.10. The segmentation method gives good results.

Sometimes, false features were detected or interest-points were not recognized. To over-

come this problemλ has to be adaptively updated. This could be done by feedback of the

tracker and a collection of statistics over a long period. False features can also be ruled

out during tracking.

2.3.2 Tracking

Algorithm 2.2 shows the implementation of the feature tracker. The tracker needs a frame

I and its successorJ as input. Further, the features are stored in a feature-listLF . First

the Gauss pyramidP with Pn levels is build (step 1). The starting positionPosPn
J (Fi)
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(a) Image 2.4(b)

(b) Image 2.5(a)

(c) Image 2.6(a)

Figure 2.7: One frame of each of the three sequences is shown: All features were selected
within a detection of interest (DOI) area without segmentation. A 9× 9 search window was
used. The frames were smoothed by a Gaussian filter with σs = 0.9. Gradients were also
calculated by a Gaussian with a σg = 1.0.
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(a) Histogram of figure 2.4(b)
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(b) Histogram of figure 2.5(a)
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(c) Histogram of figure 2.6(a)

Figure 2.8: Histograms of the number of interest-points according to their goodness values
are shown for every camera video sequence. All interest-points lying on the background
have a small Goodness value (tall bar). Interest-points with Goodness values which are
orders of magnitude larger (here ≈ 103) are features on vehicles.
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(a) Feature: Goodness value of 11230

(b) Interest-point on background: Goodness value of 145

Figure 2.9: Two interest-points are compared. The gray-level pattern (left image) and its
surface (right image), where the intensity value corresponds to the height, are shown for
both points. (a) shows a point with high Goodness value. The corner is obvious. However,
(b) shows a point with low Goodness value. Neither a corner nor a strong edge can be
recognized.
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(a) Image 2.4(b)

(b) Image 2.5(a)

(c) Image 2.6(a)

Figure 2.10: Only interest-points on vehicles (features) have survived after segmentation
(crosses). Threshold λ was set to 1000 in case of (a) and to 5000 in (b) and (c).
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Detmin Dispmin Itermax Resmax σpyr Srange

0.01 0.1 10 13 0.9 15

Table 2.3: The tracker specific parameters are summarized.

of every featureFi ∈ LF in the highest level ofP is equal to the last known position in

imageI, namelyPosPn
I (Fi) (step 3). The new position in a certain levelPi is evaluated

by computingC (step 6),g (step 7) and finallyd (step 8) which is simply added to

PosPi
J (Fi) (step 9). The evaluation is stopped when the Newton-Raphson optimization

exceeds a iteration thresholdItermax or the new position does not change significantly

any more (‖d‖ < Dispmin). PosPi
J (Fi) is then transformed toPos

Pi−1

J (Fi) (step 11)

and the evaluation starts again until the new positionPosP0
J (Fi) in the original image

resolution is determined.

The three parameters of the interest-point detector plus further 6 tracker specific

parameters have to be defined. Table 2.3 summarizes these parameters and their values

which were used for testing.Detmin is the minimal allowable determinant of matrix C. Its

value is chosen in that way that mathematical solvability of (2.7) is given. If the determi-

nant drops belowDetmin, the feature is eliminated fromLF . Dispmin gives the minimal

displacement andItermax the maximal number of iterations to optimize the position of

the feature by a Newton-Raphson iteration scheme. If the difference of the patterns in the

first and actual frame exceedsResmax, the feature will also be removed fromLF . σpyr is

the deviation of a Gauss-kernel to calculate the image pyramids.Srange defines the image

pyramid itself. Its value is the number of pixels that a feature can move from one image to

the next. Consequently, a pyramid with an appropriate number of levels will be created.

The results of the tracker can be seen in figures 2.11, 2.12 and 2.13. They show

tracked features as white crosses, pursued in 50 frames.

2.4 Conclusion

Four main problems arose from the experiments:

Motion is too big: If the displacements of feature positions are larger thanSrange, the

features cannot be tracked. (2.7) only holds if the frame-rate is high and therefore

the feature motion is small enough (2-3 pixels).
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(a) Frame 1

(b) Frame 25

(c) Frame 50

Figure 2.11: K01 camera video sequence: The solid rectangle defines the Region Of
Interest (ROI), where features are tracked. The dashed rectangle is the Detection region
Of Interest (DOI) where the interest-point detector works. (a) shows the detected features
in frame 1. (b) shows the feature positions in frame 25 and (c) in frame 50. Although the
weather conditions (fog) reduce the frame quality, vehicles can be successfully pursued.
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(a) Frame 1

(b) Frame 25

(c) Frame 50

Figure 2.12: TV108 camera video sequence: The solid rectangle defines the Region Of
Interest (ROI), where features are tracked. The dashed rectangle is the Detection region
Of Interest (DOI) where the interest-point detector works. (a) shows the detected features
in frame 1. (b) shows the feature positions in frame 25 and (c) in frame 50. This example
shows that beside cars bikes can also be pursued.
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(a) Frame 1

(b) Frame 25

(c) Frame 50

Figure 2.13: TVS100 camera video sequence: The solid rectangle defines the Region Of
Interest (ROI), where features are tracked. The dashed rectangle is the Detection region
Of Interest (DOI) where the interest-point detector works. (a) shows the detected features
in frame 1. (b) shows the feature positions in frame 25 and (c) in frame 50. The problem
in the gate scene is the day/night lightning change. The example shows that cars can
successfully be pursued even under extreme light conditions.
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Features get caught:Sometimes, features get caught on the background, because algo-

rithm 2.2 only finds a local optimum of the displacement.

Features hop: Sometimes, features can hop from one vehicle to another if they come

close together.

Noisy feature positions: Due to reflections and the image noise, the position of the fea-

tures is influenced. For example, features which lie on the border between vehicle

and background are affected by the varying background from one frame to the next.

The perspective also influences the tracking of features. As vehicles getting smaller

and smaller, the feature windows are the same and more and more background is

inside the window. This also introduces errors.

The main drawback of the tracker is the sensibility according to noise and quickly chang-

ing illumination conditions. Improvements can be made by using matching and state

update models which consider illumination and noise (Jin et al. [21]). Nevertheless, the

problem will still be evident. We argument the use of this tracking method by the fact,

that we are only interested in pursuing traffic flow to learn a model of normal vehicle

behaviour. The individual vehicle with its individual trajectory is not of interest. We

will show in chapter 4 that we can recognize caught or hopped features as outliers and

remove them from the training tracking data-set. Furthermore, a sufficient frame-rate is

guaranteed by the frame-grabber. Thus, multi-resolution tracking is always possible.

To sum up, an evaluation of the requirements (table 2.4) which were given in sec-

tion 2.2 points out three big advantages with respect to the first approach. First, all kinds

of vehicles can be detected and tracked. Problems like different sizes of cars, the per-

spective of the camera and approaching or leaving vehicles are handled. Second, different

driving directions are also track-able. Finally, occlusions of vehicles can be handled,

which is important for traffic jam recognition.
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Requirements Evaluation

reliability in detection + features can lie on every type of vehicle

stability in tracking - feature positions are noisy

accuracy in prediction - depends on the illumination conditions

real-time capability + interest-point detection and tracking is cheap

illumination and noise - very sensible

occlusion robustness + great advantage

usage of existing hardware+ possible

provide tracking data + different driving directions are possible

Table 2.4: Requirements and their evaluation by testing the used tracking approach.
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Chapter 3

Unusual traffic event
recognition

Contents

3.1 Unusual traffic events . . . . . . . . . . . . . . . . . . . . . . . . . .31

3.2 Features as traffic indicators . . . . . . . . . . . . . . . . . . . . . .33

3.3 The principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

This chapter explains unusual events in section 3.1. They are indicated by interest-

points which are tracked by the tracker described in the previous chapter. To use especially

these features has consequences on the recognition which is described in section 3.2. Fi-

nally, section 3.3 describes the principle of unusual traffic event recognition using tracking

data of normal traffic. The novelty of our approach is shown.

3.1 Unusual traffic events

Unusual traffic events are incidents caused by abnormal behaviour of vehicles in traffic

scenes. Unfortunately, the word ”abnormal” is a fuzzy description of a clear traffic situ-

ation. Such traffic incidents can occur in spatial or temporal domain. The former means

in a local position of the image plane while the latter equals the time of appearance of

31
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Unusual traffic events

spatial temporal

ghost-driver vehicle obstructions

prohibited U-turn traffic accident

one-way offence traffic signal offence

bus lane driving speeding

occupation lane driving traffic jam

dividing line offence driving too slowly

overtaking vehicle break-down

entering prohibited zones

prohibited stopping/parking

Table 3.1: This table gives some examples of unusual traffic events. Classification is done
by their occurrence in spatial, temporal or both domains.

vehicles in the scene. Therefore abnormality can be understood as a deviation in either

one or both domains from a normal traffic behaviour.

Consider the examples in table 3.1 which shows an uncompleted list of possible

unusual events. For instance, a ghost-driver who is a person that drives on the wrong

side of a highway cannot be discerned by considering the temporal domain. The abnor-

mal behaviour according normal traffic happens by driving in a prohibited direction and

therefore in the spatial domain. In contrast to this last example, a traffic jam can only be

recognized in time. To use one domain is sometimes not sufficient. Imagine a parking

area where parking is forbidden during daytime. An event like parking at noon can only

be seen if both domains are taken into account.

Beside the unusual events described in table 3.1, rare incidents can also happen as

part of normal traffic behaviour. For example, traffic signals or train crossings are such

events. The former change their state periodically where trains approach at known times.

Certainly, it could be useful to recognize such events. If we could learn a traffic light

cycle, we could detect that cars running the light are unusual, even though their traffic

behaviour was not unusual∗. However, this is not part of our work and is not considered

in the thesis.

∗If the signal light is green, then the vehicles will go through.
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3.2 Features as traffic indicators

Chapter 2 dealt with a visual feature tracking implementation. Features are interest-points

which are detected on vehicles and then tracked through the observed scene.

Unlike other tracking methods, it does not detect the vehiclesexplicitly in the scene.

For example, Johnson and Hogg [22] used an adaptive background tracker to pursue the

blobs of vehicles. Stauffer and Grimson [41] used an active shape model as a feature.

Both image features represent and identify vehicles. The assumption that interest-points

are on vehicles at detection, only guarantees a representation because it is possible that

more than one interest-point is on a vehicle. However, representation by an image feature

is a more relaxed concept than identification, with several consequences for the tracker

and the unusual traffic event recognition:

(i) The avoidance of identifying vehicles reduces the complexity of the tracking algo-

rithm. Representation is guaranteed by the interest-point detection itself.

(ii) Features can represent different vehicles during tracking. For example, if two cars

come close together the feature can hop from one car to the other. They can also

represent background for a while or forever if they stuck anywhere. In both cases

the unusual event recognition has to handle these outliers.

(iii) Decisions about occurring unusual events cannot be made with one feature.

Despite these consequences, a feature does give a basic answer about the traffic. If the

feature behaves normally according to a model of normal traffic behaviour, no unusual

event can be concluded at this point in traffic. Otherwise, a traffic problem is evident

except the feature is an outlier. Features with this semantics can also be seen as traffic

indicators.

3.3 The principle

Unusual events are incidents of abnormal traffic situations. As it was shown in the pre-

vious section, these events can happen in spatial, temporal or both domains. If it would

be possible to make a mathematical model of this domain behaviour, it would be possible

to recognize unusual events. Unfortunately, these incidents occur rarely which makes it
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practically impossible to model them. Therefore, we model normal traffic. The recogni-

tion system learns the patterns of normal traffic behaviour. One ground assumption is that

the camera isstatic. A model can only represent one traffic scene. A further requirement

is theavailability of training tracking data of such normal traffic. As normal traffic is eas-

ier to observe than abnormal traffic and is basically the usual case, any adequate number

of normally tracked features can be found.

Figure 3.1 shows the principle of an unusual event recognition system. Training

tracking data is delivered by the tracking algorithm. Unfortunately, the feature’s posi-

tions are noisy as described in chapter 2. In a first step, preprocessing reduces this noise.

Furthermore, outlier features are detected and removed from the training set. Then, the

features positions and the time instants when they were measured, generate training sam-

ples in a learning spaceL. Thus, every sample represents normal traffic behaviour in

spatialand temporal domain. In contrast to our work, the works of Johnson and Hogg

and Stauffer respectively did not consider a temporal domain inL. Therefore, they were

unable to detect unusual temporal events. If a sufficient number of samples is given, the

probability density function (p.d.f.) inL defines a spatio-temporal model of normal traf-

fic. Where the p.d.f. tends to be low, the likelihood of abnormal traffic is high and vice

versa.

Unsupervised learning is used to generate the spatio-temporal model. It produces a

codebook of reference vectors which are representatives of the underlying training sam-

ples. The process is generally called ”clustering”. All previous works described the

hard-competitive Kohonen Vector Quantization (Kohonen-VQ) algorithm for learning the

codebook. Vector Quantization means replacing a sample inL by its nearest reference

vector. This thesis proposes the Growing Neural Gas (GNG) algorithm for this task. It

is a member of soft-competitive cluster algorithms which brings improvements against

algorithms like Kohonen-VQ. It solves the problem of ”stranded” reference vectors and it

calculates not only the codebook, but also a topology ofL.

Unfortunately, the spatio-temporal model is not sufficient to describe normal traffic

behaviour. Chapter 6 gives an example. It assesses the behaviour of a feature only in

a particular point inL. However, the feature’s trajectory is not considered. Therefore,

a classification of all possible traffic movements within the static scene is also needed

to assess if a feature indicates an unusual event. Johnson and Hogg used the quantized

training set in a further Vector Quantization step (re-clustering). The resulting reference

vectors represent classes of traffic movements. Stauffer accumulated joint co-occurrence

statistics over the codebook. These data is used to perform hierarchical classification. This
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thesis presents a new approach. As mentioned, the GNG algorithm generates a topology

of L. This graph and the training set can now be used for classification. Interestingly,

this graph is created during learning. Only its evaluation (→ class generation) costs extra

efforts.

After learning, a spatio-temporal model and behaviour classes of normal traffic

within a static traffic scene exists. Every new, incoming vehicle can now be tracked by

corresponding features. The normality of behaviour can now be assessed by comparing

the position and time with the spatio-temporal model. Furthermore, the described feature

trajectory will be classified. If the probability response of the model is low or a classifica-

tion could not be done, an unusual event is detected. As features can be outliers, it will be

better to trigger a response (e.g. alarm) of the recognition system, if more features with

the similar properties (e.g. proximity) indicate an unusual event. This decision is out of

scope and is not discussed in the thesis.
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Figure 3.1: The principle of unusual traffic event recognition: In a training phase, training
tracking data of normal traffic is used to create a spatio-temporal model of traffic behaviour
and behaviour classes. The former is produced by unsupervised learning while the latter
is the result of classifying feature trajectories. The Growing Neural Gas (GNG) as new
approach (dashed box) is used to create beside a codebook also a topology of the learning
space. Then, the latter is used for classification. To recognize an unusual event, the actual
tracked features are compared to the model and are classified. If no classification was
possible or the model’s probability is low, a corresponding response of the system will
happen (e.g. alarm).
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This chapter treats the generation of training samples in the learning space from

measured feature trajectories. The former are used as training samples for successive

learning by clustering, which is treated in chapter 5. The latter is produced from measured

feature positions of normal traffic scenes by the tracking algorithm described in chapter 3.

First, it outlines several difficulties during this generation process with respect to the

learning space and problems with the tracking data which have to be tackled to improve

learning (section 4.1). Then, solutions for these problems are discussed in sections 4.2 -

4.4.

37
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4.1 Problems

Chapter 3 introduced the notation of the tracking data respectively the learning space. To

sum up, the former is given by feature’s positionspi = (xi yi)
> which are measured at

specific time instantsti. Together they form a temporal ordered set of measurements of

featurej,Mj = {(p1, t1) . . . ≺ (pi, ti) . . . ≺ (pnj
, tnj

)} with j = 1, . . . , nM wherenM

is the number of tracked features available for training samples generation.Mj is called

the measured trajectory of featurej. nj is the life-time which is the number of frames

for which featurej was tracked. The learning spaceL is defined as a five dimensional

vector space.s ∈ L is called sample which is a vector(x y dx dy t)>. p = (x y)> is

a feature’s position,d = (dx dy)> a direction andt a time instant. Ifs is related to a

feature’s measurement of the tracking data it is called training sample. Consequently, for

every trajectoryMj a path exists inL formed by training samples.

The aim of training samples generation is todefinethe relation between the training

samples and its corresponding measurements.

LetM be a measured feature trajectory of further investigation. To improve read-

ing, measurements(pi, ti) belong toM andnj is written asn. In contrast toM, consider

a new trajectory

ϑ(ti) = pi. (4.1)

ϑ is a continuous, nonlinear vector curve which interpolates all measurements of a feature.

Figure 4.1(a) shows an example of tracked feature positions interpolated byϑ. Thus, the

direction a feature takes at(pi, ti) is given by

di =
ϑ′(ti)

‖ϑ′(ti)‖
, (4.2)

which is a unit vector. It is clear thatdn exists under (4.2). However, ifdi would be

derived fromM which is simply the normalized differencepi+1−pi

‖pi+1−pi‖ , dn would be unde-

fined.

Definition 1 The relation between a training samplesi and measurement(pi, ti) ∈ Mj

is

si :=

 ϑ(ti)

di

ti

 .

As a result, figures 4.1(b) and 4.1(c) show the generated training samples in sub-spaces of

the learning space according to the example trajectory in figure 4.1(a). Together they form
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Figure 4.1: The definition of training samples by measured feature positions is illustrated.
Both are drawn by circles. The square indicates the first position respectively sample.

a path in theL. t is given by the time when the position of the feature was determined.

The squares indicate position respectively sample att = 0.

Unfortunately, several difficulties arise with training samples generation given by

definition 1:

Spatial noise: Due to inaccuracies in the tracking algorithm and the quality of image

frames the positions of tracked features are noisy. Chapter 2 discussed the reasons.

It is clear that feature positions do not lie exactly on their trajectory. Consequently,

the directions are also noisy, because they relate per definition to their correspond-

ing positions given by equations (4.1) and (4.2). However, time is not considered to

be noisy, because it is derived from the number of frames captured by the hardware

device which is assumed to be constant∗.

Illustration 4.2 depicts the consequences of noise in the learning space. Measured

feature positions which lie on similar trajectories (4.2(a)) should be transformed to

samples which also lie on similar paths. However, noise results in a sparse distri-

bution of training samples, destroys the path’s similarities and introduces outliers.

Both can be seen in figures 4.2(b) and 4.2(c). It is clear that the quality of successive

learning will be worse by using the training samples without noise reduction.

Learning-space density: The density of a sub-space of the learning space is defined by

the number of training samples within it. The more samples are found in a sub-

space the more dense it is. Furthermore, the probability of a vehicle occurrence in

a certain sub-space is defined directly proportional to the density within the space.

∗This real-time constraint can be fulfilled with proper hard- and software
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The more vehicles are observed in a certain position, direction and time, the more

training samples are generated in a sub-space of the learning space. Consequently,

this results in higher density and therefore higher probability of vehicle occurrence.

Consider a feature on a fast and slow moving vehicle. A feature in the former

case will produce far more measured positions than in the latter case, because the

frame rate during tracking is constant. Furthermore, if speed is high the training

samples are sparsely distributed. On the other hand, if speed is slow they are densely

distributed.

However, this example shows that a slow vehicle produce higher probability sub-

spaces than a fast one. Illustration 4.3 depicts this fact. Figure 4.3(a) shows three

trajectories of fast vehicles and one trajectory of a very slowly moving car respec-

tively. The parts of the learning space, where the three paths are lying, is underrep-

resented by training samples (figure 4.3(b) and 4.3(c)). Although in this example, a

vehicle occurrence is three times more likely. Besides, all trajectories show chang-

ing accelerations of vehicles. Especially, the distances of the positions of one of the

fast moving cars are conspicuously unequal. This also influences the density of the

learning space unintentionally.

These problems require appropriate solutions. Section 4.2 treats a linear regression model

for noise reduction where instead of interpolating all positions byϑ a ”smoother” curve

is used which only approximates thepi. Furthermore, the density problem can be solved

by using the idea of re-sampling the trajectories with a constant step size (section 4.3).

Beside the above mentioned problems which lie in the generation of training sam-

ples, two more problems arise with respect to the tracking data:

Outliers: It is assumed that the tracking data represents normal traffic. Unfortunately,

it is not possible to guarantee this assumption for every feature in the tracking

data. Such features are called obvious outliers. Several problems can happen during

tracking. For example, a feature can loose a vehicle and stuck for a period of time

on the background after it is finally taken out of the tracking area by another ve-

hicle. Furthermore, a feature can hop from one vehicle to another during tracking.

These problems can also happen with the same feature.

Therefore, obvious outliers which differ significantly in time from the rest of the

tracking data should be eliminated during generation of training samples to improve

successive learning. Certainly, this is only possible if the number of features avail-

able as tracking data is large enough and the number of outliers within the tracking
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data is statistically distinguishable. It is also clear, that some obvious outliers will

still be represented in the training samples, because it cannot be guaranteed to rec-

ognize all disturbed features.

Range of learning space:The values ofx andy are by orders of magnitude larger than

dx respectivelydy. While d is a unit vector and its elements have values between

[−1, 1], p lies in pixel range, for examplex ∈ [0, 383], y ∈ [0, 287] which is half

of the PAL∗ resolution. Time lies in all investigated scenes between magnitudes

of some seconds up to a minute. Certainly, this time range refers to positions of

tracked features which represent normal traffic and are used to generate training

samples.

The problem with different ranges of elements of samples is their unbalanced rel-

ative contribution during learning. Most of the clustering algorithms use the Eu-

clidean distance.p would dominate the distance measure whilee would be ne-

glectible, because the range of the values ofx andy are orders of magnitude larger

than the range of thedx respectivelydy.

A solution for obvious outlier detection is given in section 4.4. Remaining outliers, which

are represented as training samples in the training set, are the topic of a robust learning

algorithm discussed in chapter 5. Finally, the mentioned range problem is discussed in

chapter 5, because it is a problem due to the used distance measure during learning.

4.2 Spatial noise reduction via smoothing splines

As noise is introduced during the tracking process then measured positions do not longer

lie exactly on the feature’s trajectoryM. Equation (4.1) is no longer valid. Consider the

following more general linear regression model:

ϑ(ti) + εi = pi. (4.3)

εi ∼ N (0, Σ) models the noise inpi. All εi are independent random vectors.

ϑ is a continuous, nonlinear vector curve like in (4.1), but is generally unknown.

Fortunately, various estimateŝϑ can be given which approximates all measurements

within the given covarianceΣ. Thereby, noise is reduced for all̂ϑ(ti). Such curves

are called smoothing curves. The statistical problem of estimating an optimalϑ̂ is called
∗PhaseAlterningL ine is the dominating TV standard in europe.
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Figure 4.2: Noise influences the training samples in the learning space seriously. Con-
sequently, the quality of learning is decreased. (a) shows sample trajectories which are
formed by noisy feature positions of tracked features. (b) and (c) show the corresponding
samples. Notice the outliers which are shown as squares. Trajectories respectively paths
are drawn by lines whereas circles are positions and samples.
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Figure 4.3: The consequence of slow and fast moving vehicles is shown. (a) depicts four
trajectories where one represents a very slow car. (b) and (c) shows the influence on the
learning space. Although a vehicle occurrence in the area of the slow car is less likely, the
learning space is overrepresented by training samples.
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”variational” problem. It goes back to Iso Schoenberg’s work. He showed thatϑ̂ is equal

to thenatural smoothing splinewhich is the solution for the noise reduction problem in

this work. Interestingly, it is not only an estimate of a variational problem. If it is con-

sidered as a sample of a stochastic process, George Kimeldorf and Grace Wahba showed

in two classical works that it even is a Bayes estimate. This connection of variational

problems and Bayes estimation has its roots in the work of E. Parzen. All this and more

information can be found in [47].

4.2.1 Natural smoothing spline

The classical univariate regression spline is a piecewise interpolating polynomial

function fm : [t1, tn] → Rd. Each polynomial is defined in the intervals

[x1, x2), . . . , (xi, xi+1), . . . , (xk−1, xk]. The k points t1 = x1 < t2 < . . . < xk = tn

in which these functions are joint together are called knots.fm fulfills the following four

properties:

(i) Thek − 1 polynomials are of degree2m− 1

(ii) fm has2(m− 1) continuous derivatives

(iii) fm has a(2m− 1)st derivative that is a step function with jumps at[x1, xk]

(iv) fm is a polynomial of degreem− 1 outside of[x1, xk]

It is clear, that a whole Hilbert space of such functions exists which is called Sobolev

spaceWm = {fm}.

Furthermore, consider a particular splines ∈ Wm with boundary conditions

s(i)(x1) = s(i)(xk) = 0 for i = m, . . . , 2m − 1. Thus, among allfm ∈ Wm with

fm 6= s, s minimize forn ≥ m the squared integratedmth derivative∫ xk

x1

s(m)(t)2dt ≤
∫ xk

x1

f (m)
m (t)2dt. (4.4)

As a proof, expand the square on the right hand side of the following un-equation

0 ≤
∫ xk

x1

(s(m)(t)− f (m)
m (t))2dt,

which is always satisfied and rearrange the terms in a useful manner. This leads to

0 ≤
∫ xk

x1

(f (m)
m (t)2 − s(m)(t)2 − 2s(m)(t)(f (m)

m (t)− s(m)(t)))dt.
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It can be shown that the last term of the integral is zero which is the proof of (4.4). Start

by formulating it as an integration by parts, then use the fact thats(2m−1)(t) is piecewise

constant with a fixedkxi
, the construction is as follows:∫ xk

x1

s(m)(t)(f (m)
m (t)− s(m)(t))dt =∫ xk

x1

s(m)(t)d(f (m−1)
m (t)− s(m−1)(t))

s(m)(t)(f (m−1)
m (t)− s(m−1)(t))|xk

x1
−
∫ xk

x1

s(m+1)(t)(f (m−1)
m (t)− s(m−1)(t))dt

...

−
(2m−2)∑

i=m

s(i)(t)(f (i−1)
m (t)− s(i−1)(t))|xk

x1
−

k−1∑
i=1

∫ xi+1

xi

s(2m−1)(t)(f (m−1)
m (t)− s(m−1)(t))dt

−
2m−2∑
i=m

s(i)(t)(f (i−1)
m (t)− s(i−1)(t))|xk

x1︸ ︷︷ ︸
0

−
tk−1∑
i=1

kxi
(f (m−1)

m (t)− s(m−1)(t))|xi+1
xi︸ ︷︷ ︸

0

0

This unique regression functions is known under the namenatural spline. The name

”spline” was observed by Iso Schoenberg in the ship industry. It comes from the mechan-

ical counterpart used by draftsmen. It was a thin strip that was used to draw curves during

the fabrication. Ducks or weights were placed on the strip to force it to go through given

points.

As it was mentioned in the beginning of the chapter, a regression spline is not a

solution for the estimatêϑ, because it interpolates the data. Moreover, an approximating

spline was proposed as an estimate of problem (4.3). Instead of (4.4), consider a revised

minimization criterion

1

n

n∑
i=1

(pi − fm(ti))
>(pi − fm(ti)) + λ

d∑
k=1

∫ xk

x1

(fm(t)
(m)
k )2. (4.5)

The first term gives a measurement of the goodness-of-fit while the second term or

smoothing term penalizes the roughness offm. Generally, both are two conflicting goals

to minimize, because the smoother a function the worse it fits the data. This tradeoff

is well known in approximation theory. On the one hand, the data should be approxi-

mated as good as possible while on the other hand over-fitting should be prevented by the

introduction of a smoothing constraint. This process is called regularization.
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Regularization also has a Bayesian interpretation. IfΣ in (4.3) is known the first

term is proportional to the log-likelihood. If we take a prior over functionsfm, mini-

mizing a penalized sum of squares is equivalent to maximizing the posterior density over

fm. More about Regularization can be found in Ripley [36]. The Bayesian aspects are

discussed in Wahba [47].

Certainly, the quality of smoothing depends mainly on the smoothing parameterλ

which controls the influence of the regularization penalty. Ifλ → ∞, one has a simple

linear regression functions(t) = β0 + β1(t − 1
2
). On the other hand, ifλ → 0, s(t) is

an interpolating spline but not necessarily the unique natural spline, because (4.4) is not

considered under (4.5) withλ = 0.

Besides, the number of knots with respect to the number of measurements influ-

ences the result. In contrast to regression splines, if many knots are included, the penalty

prevents the smoothing spline from over-fitting. On the other hand, too few knots may

not be enough to represent the measurements and increase variance.

However, Schoenberg showed again that with a fixedλ ∈ (0,∞)

sλ(t) = arg min
fm

1

n

n∑
i=1

(pi − fm(ti))
>(pi − fm(ti)) + λ

d∑
k=1

∫ xk

x1

(fm(t)
(m)
k )2 (4.6)

is a unique optimal minimizer. He called itnatural smoothing spline. An optimal tradeoff

between goodness-of-fit and smoothness can only be given if an estimate of the optimal

smoothing parameterλ = λ∗ can be determined by any objective method. Section 4.2.3

shows some possible methods.

4.2.2 Calculation of natural smoothing splines

Remember, that splines were defined as piecewise polynomials which are joint together at

given knots. Each polynomial contribute to the whole spline within an interval[xi, xi+1).

Outside this interval it has no or a quickly vanishing influence respectively.∗ Conse-

quently,s can be defined as a linear combination of basis polynomialsΦi which are called

blending functions. This basis spreads out a vector space of possible splines where each

s can be expressed by

s(t) =
l∑

i=1

γiΦi(t). (4.7)

∗As it is shown later, the regression spline forms an exception with respect to the latter while B-splines

satisfy this assumption.
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l is the total number of free parametersγi. Remember, that feature’s positions are given

in the two dimensional image plane, therefored = 2. Thus,s is a vector spline which

approximates allpi. Then, the coefficientsγi are two dimensional vectors and can be

interpreted as control points ofs. Each positions(t) is a linear combination of all control

points which are interpolated bys.†

Consider the minimization criterion (4.5) with given feature measurements

(p1, t1), . . . , (pn, tn) and splines of form (4.7). Let

Φ =

 Φ1(t1) · · · Φl(t1)
...

...
...

Φ1(tn) · · · Φl(tn)

 , γ = (γ>1 · · · γ>l )>, P = (p>1 · · · p>n )>.

Then, (4.5) can be written as

(P − Φγ)>(P − Φγ) + λγ>Mγ, (4.8)

where the second term is the ”hard part” of this minimization result. It represents the

influence of the penalty term of (4.5). M is al × l positive definite Hessian matrix with

elements

Mij =

∫ tn

t1

Φ′′
i (t)Φ

′′
j (t)dt.

Consequently, the penalized least squares estimator for the natural smoothing spline is

sλ(t) =
l∑

i=1

γ̂iΦi(t)

with minimization constraint

(Φ>Φ + λM)γ̂ = Φ>P. (4.9)

This estimator has a long history and goes back to the results of Reinsch, who has given

an explicit solution for cubic smoothing splines (m = 2). Further information can be

found in Hastie and Tibshirani [43]. It also shows improved estimators like Marquart’s

method if (4.7) is nonlinear or ridge regression from Hoerl and Kennard who provided a

biased estimator to overcome collinearity.

There are several ways to define thel basis polynomialsΦi of (4.7). Each choice has

a significant influence on computation. For example,Φi can be chosen as thel = d+1+k

basis polynomials of the very popular classical regression spline which can be written as

s(t) =
d+1∑
i=1

αit
i−1 +

k∑
i=1

βi max(0, t− xi)
3. (4.10)

†In the later case of high order B-splines they are just approximated.
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Consequently, the basis are the polynomials

Φ1(t) = 1

Φ2(t) = t
...

Φd+1(t) = td

Φd+2(t) = max(0, t− x1)
d

...

Φd+1+k(t) = max(0, t− xk)
d

The polynomialsΦi(t), 1 ≤ i ≤ d + 1 define the spline outside the knot interval

[t1 = x1, xk = tn] which was demanded per definition as property (iv) in section 4.2.1.

Φd+2(t), . . . , Φd+1+k(t) are called truncated power functions and defines within [x1, xk).

Unfortunately, they span all intervals to the right which somehow violates the assumption

that each polynomial should only be defined over a certain one. The consequence is that

the matrix on the left hand side of (4.9) is not sparse which results in higher computational

complexity. Read chapter 3 of Lancaster and Salkauskas [27] for more information.

An alternative of truncated power functions as basis polynomials is to usel = k

functions for every knot which are zero outside of its interval. For example, B-splines

have this property. Generally, B-splines are recursively defined by the indicator functions

Bi,1(t) =

{
1 : t ∈ [xi, xi+1)

0 : t /∈ [xi, xi+1)

with

Bi,o(t) =
t− xi

xi+o−1 − xi

Bi,o−1(t) +
xi+o − t

xi+o − xi

Bi+1,o−1(t).

Parametero is the order of the B-splines. It defines the number of control points, given

by the knots, which have influence on a certains(t). For everyt there arel − o blending

functionsBi,k(t) which are zero.

Thus for example, the basis according to (4.7) can be written as

Φ1(t) = B1,4(t)

Φ2(t) = B2,4(t)
...

Φk(t) = Bk,4(t)
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Figure 4.4: Three smoothing functions s0(t) (dotted), s2·104(t) (solid) and s∞(t) (dashed)
are shown. The black points are the measured feature positions, while the circles are the
corresponding smoothed ones.

where the polynomials are cubic functions (o = 4) that span four intervals. B-splines are

nearly orthogonal which results in a numeric stable calculation. Furthermore, it makes

Φ>Φ almost diagonal (banded). This significantly reduces the computational costs and

results in fast algorithms. Chapter 11.2.3 in Foley [11] gives a good introduction into

B-splines. A classical book which shows the mathematical improvements of the well

conditioned B-spline basis against the regression spline basis is deBoor [8].

Generally, cubic (m = 2) polynomials are preferred as smoothing splines, because

the representation capability is mostly satisfactory and at the same time efficiency in cal-

culation can be achieved.

4.2.3 Estimating the smoothing parameterλ

A good noise reduction result depends mainly on parameterλ which controls the influence

of the smoothing penalty term. For example, figure 4.4 shows examples of measurements

pi and smoothing functionssλ(t). Remember,̂ϑ(t) was defined in the beginning of sec-

tion 4.2 by a natural smoothing spline or more precisely, the optimal estimatesλ∗(t) of

smoothing splines.λ∗ is the optimal smoothing parameter. The question is now: How can

λ∗ be found?

Regularization and thus determining an estimateλ∗ can also be seen as the classical

problem of minimizing bias and variance ofϑ̂ in (4.3). Therefore, the expected prediction
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error fori measurements,1 ≤ i ≤ n, is

E[(ϑ̂(ti)− pi)
2] = (E[ϑ̂(ti)]− pi)

2︸ ︷︷ ︸
bias2

+ E[(ϑ̂(ti)− E[ϑ̂(ti)])
2]︸ ︷︷ ︸

variance

(4.11)

The bias measures the extent to which the average of the estimateϑ̂ differs from the

measurements, while the variance measures the sensitivity ofϑ̂ with respect to the mea-

surements.

Consider the case wherêϑ = s∞(t) (figure 4.4, dashed curve). It is clear, that

the variance term in (4.11) will vanish, becauseE[ϑ̂(ti)] = s∞(t) = ϑ̂(ti). However,

the bias will be high, because no attention was paid to the measurements. On the other

hand,ϑ̂ = s0(t) is the other extreme. All measurements are interpolated which is shown

in figure 4.4 as dotted curve. The bias term vanishes at thepi, becauseE[ϑ̂(ti)] =

E[ϑ(ti) + εi] = ϑ(ti) = ϑ̂(ti). In their neighborhood the bias is small. However, the vari-

ance can be significant, becauseE[(ϑ̂(ti)−E[ϑ̂(ti)])
2] = E[(ϑ̂(ti)−ϑ(ti))

2] = E[ε2
i ] = Σ.

The bias-variance tradeoff is equivalent to the goodness-of-fit versus smoothness trade-

off controlled by parameterλ. If smoothness is too large then the bias of the predicted

trajectory is large. Otherwise, if every measurement is interpolated the variance becomes

large and thus also the prediction error. Consequently, the smaller the prediction error

is the better the noise reduction will be. More about the bias-variance problem and its

minimization can be read in chapter 9.1 of Bishop [7].

The determination ofλ∗ is a topic for its own. Several methods for estimating an

optimalλ∗ in this spirit of minimizing the bias-variance were suggested in the literature.

Especially Grace Wahba has intensively investigated this issue. A good source of more

information about it is chapter 4 of Wahba [47]. Basically, the choice ofλ∗ depends on

weather the covariance matrixΣ of the Gaussian noise process of model (4.3) is given or

is unknown.

Consider,Σ is known. For example, several authors have suggested for the one

dimensional case (d = 1) the so-called discrepancy method. Chooseλ = λ∗ so that

1

n
‖P − Sλ‖2 ≈ σ2 (4.12)

with ‖y‖2 = y>y and

Sλ =


sλ(t1)

sλ(t2)
...

sλ(tn)

 .
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Figure 4.5: Graphical illustration of Σλ. λ∗ is shown which satisfies ‖Σλ∗‖ ≈ ‖Σ‖.

Thereby, the left-hand side of (4.12) is a monotone nondecreasing function ofλ. To

generalize it to the d-dimensional case,σ2 is replaced byΣ. (4.12) can now be written as

Σλ =
1

n
(P − Sλ)

>(P − Sλ) ≈ Σ. (4.13)

Figure 4.5 shows an illustration of (4.13). Forλ = 0 → ∞ the entries ofΣλ becomes

larger until a certain point wheresλ(t) is a linear regression.

Unfortunately,Σ is not always known. Then,λ∗ must be determined by any ob-

jective method. For example, Wahba suggested cross-validation or also known under the

name ”leave-one-out”. The name reflects the idea of omitting a certain measurementpk

during calculation ofsλ(t). Consequently, (4.6) is replaced by

s
[k]
λ (t) = arg min

fm

1

n

n∑
i=1
i6=k

(pi − fm(ti))
>(pi − fm(ti)) + λ

d∑
j=1

∫ xj

x1

(fm(t)
(m)
j )2

Thus, the cross-validation function is

CV (λ) =
1

n

n∑
k=1

(pk − s
[k]
λ (tk))

>(pk − s
[k]
λ (tk)) (4.14)

and an estimate ofλ∗ is the minimizer of (4.14).

Cross-validation has two disadvantages. First, it is computational expensive. For-

tunately, for univariate smoothing splines updating schemes are known (see chapter 4.3

of Ripley [36]). Furthermore, it is not invariant under transformations of the underlying

data. To achieve this invariance property a ”generalized” version was proposed where the
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Figure 4.6: The result of noise reduction is shown. While, compared with figure 4.2(b), (a)
shows a slightly difference of the training samples, the noise in (b) is reduced (compare
with figure 4.2(c)).

generalized cross-validation function is

GCV (λ) =
1

n

∑n
k=1(pk − sλ(tk))

>(pk − s
[k]
λ (tk))

( 1
n
Tr(I − Aλ))2

. (4.15)

Aλ is the so called influence matrix withAλP = Sλ which maps each positionpi to the

fitted positionsλ(ti). Efficient algorithms for calculatingTr(I − Aλ) exist which are

based on several matrix decomposition methods (see chapter 11 of Wahba [47]).

Illustration 4.6 shows the result of noise reduction. For everyMj an estimatêϑ

was calculated.m was set to 2 which gives cubic polynomials as basis functions. The

parametersλ∗ were determined by the discrepancy method with assumedΣ = 9I2. Then

according definition 1, training samples were generated inL. While figure 4.6(a) shows

slightly improvements, figure 4.6(b) compared with 4.2(c) depicts the noise reduction in

the direction.

4.3 Density correction via re-sampling

Consider the learning space under definition 1. Unfortunately, the assumption that the

learning-space density correspond to the probability of vehicle occurrences can be vio-

lated by vehicle situations discussed in section 4.1. The reason is the parameterization by
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t of ϑ in (4.1) respectively (4.3). Equidistant time instantst1, t2, . . . can result in differ-

ent dense paths for several trajectories, correspondingly slow and fast moving vehicles.

Therefore, consider the following revised trajectory as regression model:

ϑ(si) + εi = pi (4.16)

with 1 ≤ i ≤ n. Instead oft, a normalized arc length parameterizations ∈ [0, 1] is chosen

which is defined by the Euclidean distance of two consecutive positions. Therefore, allsi

which correspond topi are given by

s1 = 0

si =
si−1 + ‖pi − pi−1‖∑n

k=1 ‖pk − pk−1‖
. (4.17)

Certainly, the direction of a feature changes, because it is given under the new trajectory

ϑ(si). (4.2) is replaced by

di =
ϑ′(si)

‖ϑ′(si)‖
, (4.18)

Finally, t also is not longer part of definition 1. It only depends on parameters and can

be written as function

τ(s) =

{
ti : s = si

ti + (ti+1 − ti)
s−si

si+1−si
: si ≤ s ≤ si+1

(4.19)

with 1 ≤ i ≤ n. τ interpolatest for all positions onϑ which lie between two measured

positions. Thus, a new definition of training samples can be given:

Definition 2 The relation between a training samplesi and measurement(pi, ti) ∈ Mj

under learning-space density considerations is

si :=

 ϑ(si)

di

τ(si)

 .

As the parameterization ofϑ does not depend ont, ϑ can bere-sampledwith a

constant step sizeδs. The word re-sampling is used, becauseϑ was sampled by the track-

ing algorithm at equidistant time instants given by the frame-rate.δs must be constant

for all trajectories. Otherwise the assumption about learning space density would not be

fulfilled. But which value should be chosen? In fact, it should be as large as possible,

because unnecessary training samples in the learning space do not contribute to learning.
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ϑ

ρ

Figure 4.7: The maximum chordal deviation ρ is illustrated.

However, they only increase computational costs. On the other hand, the generation of

too less data points will lead to a path representation where details are lost.

A common recursive algorithm in computer graphics for determiningδs for one

trajectoryϑ is to calculate the maximum distance from the curve to the line joining the

endpoints. Have a look into an article of the Graphics Gems written by Lindgren [28].

They called this maximum distance the chordal deviationρ of ϑ (figure 4.7). Ifρ is smaller

than a thresholdκ, normally half a pixel, the line will be part of the path. Otherwise, the

curve is subdivided into two halves (0 ≤ s ≤ 0.5, respectively0.5 ≤ s ≤ 1). Each half

is recursively subjected to the same chordal deviation analysis. An upper bound thatϑ is

represented correctly byδs is

δs ≤ 1

2r
, (4.20)

wherer is the recursion depth of the algorithm. As the distance of training samples must

be equal for every trajectory,δs is equal for allϑ. For example, an overall constant step

size for training samples generation is

δs = min
1≤j≤nM

δsj, (4.21)

whereδsj is the step size ofϑj. However, (4.20) is a rule of thumb. It can happen that

allMj are linear trajectories. For example, in highway scenes trajectories can be straight

lines. Then,δs delivered by equation 4.21 can be too large. Then, another possibility is

to chooseδs by hand like it is done in Johnson and Hogg [22].

Illustration 4.8 shows the result of re-sampling all four trajectories of illustra-

tion 4.3. The analysis of the step sizeδs delivered a value of0.0625 with κ = 1
2
. Both

figures 4.8(a) and 4.8(b) show now an equidistant distribution of training samples com-

pared to figures 4.3(a) respectively 4.3(b). Certainly, noise reduction is also performed,

because model 4.16 is an extension of model 4.3 discussed in the previous section.
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Figure 4.8: The result of re-sampling is shown. (a) depicts the training samples in a
subspace x/y/t of the learning space while (b) shows dx/dy/t. Compared to illustration 4.3
the training samples are equally distributed.

4.4 Obvious outliers

Obvious outliers are features in the tracking data which do not represent normal traffic.

Two cases can be distinguished:

1. features whose life-time differ significantly from the others.

2. features whose measured positions are disturbed due to tracking errors.

The former are in most of the cases tracked features which lost a vehicle during life and

stucked on the background for a period of time. It is clear, that no training samples

should be generated from such features, because they do not represent normal traffic.

Figure 4.9(a) shows training samples of normal features and obvious outliers. The latter

can be easily seen by their conspicuous distance from the rest of training samples.

Statistics can help to detect these temporal obvious outliers. However, the problem

can also be seen as aselectionof those features whose training samples represent nor-

mal traffic. Consider figure 4.10 which illustrates the histogram of the life-time of every

feature. As it can be seen, most of the features are distributed around a certain life-time,

because all features take similar ways and therefore approximately the same time from

detection until they vanish outside of the tracking area. A feature should be selected if at
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Figure 4.9: The feature selection result is illustrated in sub-space x/y/t of L. (a) shows
obvious outliers. (b) shows the selected features.
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Figure 4.10: Histogramm of the life-time of tracked features.
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leastκ features have survived the same life-time. The ”same life-time” means in this con-

text within the same histogram bin. On the other hand, a feature is an outlier if less than

κ features with the same life-time can be found in the training set. Certainly, this feature

selection can only be done if statistically more ”normal” tracked features than outliers are

available. Figure 4.9(b) depicts the result of feature selection. All obvious outliers are

removed.

Certainly, the outlier problem can also happen in the spatial domain ofL. For

example, during collection of tracking data it can happen, that some vehicles behave

abnormal. They stop or drive in wrong directions. This are exactly those things which

this system should recognize. Unfortunately, such situations cannot be excluded during

the generation of tracking data. Furthermore, it is not possible to detect these outliers

in one domain, for instance inx. They can only be found in the spatial sub-space ofL,

where they differ from the rest of the training samples. Therefore, outlier detection cannot

be done as a preprocessing step. It must be done during learning. How this is done, is

discussed in the next chapter 5.

The second case of obvious outliers are features whose measured positions are dis-

turbed as a result of tracking errors. Imagine a disturbed measurement(pi, ti) ∈M. It is

clear, that the whole trajectory does not represent normal traffic. Therefore, it must not be

represented as path inL. An idea for rejecting suchM is to prove, if every(pi, ti), which

corresponds tôϑ(si) with τ(si) = ti, lies within a certain confidence interval. Wahba [47]

suggests a Bayesian confidence interval in the one dimensional case with knownσ2 and

thus estimatedλ∗

[ϑ̂(si)− uα
2

√
σ2aii(λ∗), ϑ̂(si) + uα

2

√
σ2aii(λ∗)], (4.22)

whereaii(λ
∗) is the (ii)th entry of the influence matrixAλ∗. uα

2
is the α

2
point of the

normal distribution.α gives the probability that the true valueϑ(ti) and the measurement

(pi, ti) are covered by the interval.

A suggested confidence interval for the two dimensional (d = 2) case is the ellipse

(pi − ϑ̂(si))
>Σ−1(pi − ϑ̂(si)) ≤ c2. (4.23)

with Σ the covariance of model (4.3). The left hand side of (4.23) is the Mahalanobis dis-

tance ofpi from ϑ̂(si) and is chi-square distributed. The probability that the measurement

(pi, ti) is covered by the ellipse is(1− α). Then,c2 is the upper(100α)th percentile of a

chi-square distribution with two degrees of freedom. Generally, it hasd degrees of free-

dom. Figure 4.11 illustrates the usage of a confidence interval given by (4.23) to detect
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Figure 4.11: An outlier trajectory is illustrated.

time true positions measured positionsestimated positions

[frame] x[pixel] y[pixel] x[pixel] y[pixel] x[pixel] y[pixel]

1 79.81 259.08 80.75 259.53 74.70 255.52

2 76.87 215.65 74.84 219.38 79.03 218.14

3 95.51 186.79 93.99 171.88 100.63 184.27

4 146.67 178.59 141.33 177.49 140.88 176.10

5 212.75 173.64 218.52 177.11 215.86 168.98

6 261.70 137.38 255.57 139.15 249.23 138.28

7 269.14 80.66 257.16 76.57 260.94 79.15

8 256.11 33.71 262.17 38.89 263.01 39.56

Table 4.1: An example feature: True, measured and estimated positions are shown.

an obvious outlier. True positions of a feature are shown as crosses, while measurements

are plus signs. Measurements were generated according to the model (4.3) withΣ = 25I2

from true given positions. The estimated trajectoryϑ̂ is shown by the curve. All values

are listed in table 4.1.

For example, consider a measurement(145 132 4)> which is shown as square.̂ϑ(4)

has the value(140.89 176.1)>. Under a probability of0.95 of interval coverage,c2 =

5.991. Thus,

((
145

132

)
−

(
140.89

176.1

))>(
25 0

0 25

)−1((
145

132

)
−

(
140.89

176.1

))
= 78.48

78.48 6≤ 5.991
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is not fulfilled which leads to the conclusion that the measurement is wrong and the whole

feature is an outlier.
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This chapter treats learning a spatio-temporal model of traffic behaviour. It is shown

that the latter is an approximation of the probability density function in the learning space

which is learnt by a density estimator. The training samples, which are necessary for

learning, are generated as discussed in chapter 4. Section 5.1 introduces the learning

61
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problem in general and gives some definitions. Then, section 5.2 introduces the basic

learning paradigms and gives solutions. Especially, unsupervised competitive learning

is treated in detail in section 5.3. Finally, section 5.4 presents the proposed learning

framework for this work.

5.1 A definition of learning

What makes a machine a learning machine in particular? For example, Herbert Simon

tried to give a definition of machine learning:

Learning denotes changes in the system that are adaptive in the sense that

they enable the system to do the same task or tasks drawn from the same

population more effectively the next time.

(Herbert Simon, Carnegie Mellon University)

Consider, that this definition has a qualitative meaning. A change, which is triggered

by a learning step, leads always to a more effective system. However, imagine a mobile

robot which explores its environment in an empty room with one open door. Its task is

to find the door. Many learning steps will happen which will not bring the robot closer

to the door. Hence many changes of the robot’s behaviour are not effective but certainly

important, because they help the robot to explore the room. It can exclude parts of the

room where it can be sure that there is no door. In the end it will find its goal and will

exit the room. Consequently, the following more rational definition by Nils Nilson gives

a better understanding what machine learning does:

A learning machine is a device whose actions are influenced by past

experiences.

(Nils Nilson, Stanford University)

Thus, Nils Nilson suggests that learning is only driven by past experiences which explains

the learning behaviour of the mobile robot. However, both definitions do not assume any

understanding of the problem domain or problem relations. Furthermore, no implications
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to state change dependencies of the machine are done. For example, a simple regression

function of a finite data set of points in the plane is a learning machine. Learning means

in this context to find an optimal regression function by minimizing an error measure, i.e.,

the sum of squares of the distance from data-points to the function.

Consider now our problem of learning normal traffic behaviour. We suggest the

following definition:

By learning traffic behaviour we denote the estimation of a probability density

function (p.d.f.) in the learning space which is generated by training samples

of normal traffic. Thus, the p.d.f. is a spatio-temporal model of normal traffic

patterns.

Interestingly, the glamorous term ”learning” looses its fascination in this definition and

can be simply described by a rational optimization problem of model fitting. Section 5.4

will discuss the proposed solution for traffic behaviour learning in detail.

Besides, a second question arise: ”How is learning done?”. Generally, two princi-

ples of learning are conceivable, namelystatic and instantaneous learning(Fritzke[15]).

Traffic behaviour learning is an example of the former. Thereby, a given finite set of

training samples are available. The learning process derives a hypothesis of the data. For

example, the parameters of the regression function are estimated. The result is then a

knowledge about the structure of the training samples. Certainly, the number of training

samples is critical. Too few samples can lead to poor results. Otherwise, every new sam-

ple would not dramatically influence the learning result. Human beings can also show

static learning behaviour. Many skills like walking, swimming or simply grabbing a cup

of coffee have to be learnt in a way of experience the same situation many times. On

the other hand, instantaneous learning is the ability to learn from one single event. For

example, most of us learnt the meaning of ”hot” and ”cold” by associating these terms

with unique experiences. Many babies learn what hot means by touching a hot plate. Fur-

thermore, face learning happens instantaneously in human beings. We do not need to see

people hundreds of times to be able to recognize them. Indeed, one meeting with strange

people is often enough for someone to recognize them as at least seen or vague known the

next time.
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5.2 Learning paradigms

Learning can be driven by a teacher in asupervisedmanner or it is doneunsupervised. The

choice either to learn by the former or latter paradigm depends strongly on the application.

Both paradigms and their resulting learning methods are discussed in the following two

sections.

Furthermore, learning methods can beperformedin different ways:

Batch vs. incremental learning: In batch learning, every training sample is evaluated

after each other and then an adaption step is done. This learning process is itera-

tively repeated. On the contrary, in an incremental learning process training sample

evaluation and adaption is performed after each sample. An intermediate learning

process is also possible where two or more but not all training samples are evaluated

and then an adaption step is done.

Off-line vs. On-line learning: In off-line learning, all the training samples are stored

and can be accessed repeatedly. Batch learning is always off-line. In on-line learn-

ing, each training sample is learnt immediately and discarded afterwards. On-line

learning is always incremental while incremental learning can be done either on-

line or off-line.

Adaptive learning: This paradigm refers to learning machines which can forget the past

when it is not longer relevant. Thus, they can track changing environments (see

adaptive vector quantization in Gersho and Gray [16]). Practically, this means that

the learnt data is completely discarded or adapted during learning new training sam-

ples respectively.

Constructive vs. destructive learning: Learnt data is stored in fixed data structures and

is adapted by the learning algorithm. It is conceivable that these structures dynam-

ically grow or shrink during learning. The former is called constructive learning

while the latter is known as destructive learning or learning by pruning in literature.

5.2.1 Supervised learning

For example, consider a classification task which is depicted in figure 5.1. Points in the

plane belong either to class ”◦” or ”×”. The membership of every training sample is

known a priory which is calledtarget. The aim of learning is to distinguish between these
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Figure 5.1: A supervised learning task is illustrated. Samples on a plane are given which
are either of class ”◦” or ”×”. A linear decision function can be learnt to distinguish between
these two classes.

two classes and classify each new point. The straight line (decision function) is the learnt

result which divides the plane in two parts accordingly the two classes. All points that lie

above the function are assigned to class ”×” and below to class ”◦”. It is clear, that this is

a supervised learning paradigm.

Supervised learning and especially the application ofclassificationhas a major rel-

evance in machine learning. The development of neural networks (NN) has contributed

to this importance. A neural network consists of simple processing elements which are

often called neurons. These neurons are connected to each other by a network of links.

Furthermore, they can calculate a single value by a predefined function from their inputs

and put them on their output connections. Thereby, a sample which is put onto the input

produces its target value on the final output of the NN. Each link is associated with a

weight. Learning means updating these weights as long as the NN does not produce the

given target value within a small deviation on its output for every training sample. Al-

though neural networks have increased the popularity of supervised learning and leaded

to the development of various applications in the last two decades, they are not more pow-

erful than statistical methods like discriminant analysis or regression (Vapnik [46]). Their

great success lies maybe in their better understandability. More about neural networks

can be read in Bishop [7].

Indeed, they are not the only supervised learning technique. Many other methods

exist like decision trees or version space learning. The choice also depends on the type

of data which can be numeric in the case of sensor values like a temperature sensor or

symbolic. An example for symbolic data is the gender of a person which can either be
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male or female. A good introduction into the basics of supervised learning is Russell and

Norvig [37].

5.2.2 Unsupervised learning

Unsupervised learning allegedly involves no targets. Instead of learning a classification

of the data with apriori knowledge of each training sample’s classification, the classes are

determined by the distances between training samples. Typically, the Euclidean distance

is used as a distance measure. Although, other distance measures can also be used. In

unsupervised learning jargon classes are called clusters and the so-calledcluster anal-

ysis is a well known field in statistics which goes back to the sixties. Forgy [12] and

MacQueen [29] have proposed solutions for clustering which are known ask-means al-

gorithms today. Thereby,k clustersLi, 1 ≤ i ≤ k are searched in the learning space

L. The number of clustersk is apriori given. Cluster centersw1, . . . ,wk are assigned to

each cluster which partitionL into regions - the so-calledVoronoi∗ regions. Any sample

s belongs to clusterLi if

i = arg min
j∈{1,...,k}

‖s−wj‖. (5.1)

In other words, any sample is assigned the cluster with its nearest cluster center. The

graph which connects all cluster centers is calledDelaunay† triangulation. Figure 5.2

illustrates the Voronoi regions and the Delaunay triangulation.

The goal ofk-means clustering is to minimize the error function

k∑
i=1

∑
s∈Li

‖s−wi‖2 (5.2)

under the given training samples. Consequently, the cluster centers are optimal positioned

within L in a least squares sense. In fact, this constraint is not fulfilled after a first initial-

ization step where cluster centers can have any position inL. Now, the idea ofk-means

clustering is to replace every cluster center by the mean of all samples within its cluster.

Thus, ak-means learning law is given by

wi ←
1

|Li|
∑
s∈Li

s. (5.3)

This learning law guarantees convergence of thek-means algorithm. However, the opti-

mum of the error function 5.2 is not necessarily a global optimum.
∗M. G. Voronoi, German mathematician
†Boris Delaunay, Russian mathematician
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(a) Voronoi regions (b) Delaunay triangulation

Figure 5.2: An example of cluster analysis is shown. (a) depicts the Voronoi regions
defined by the cluster centers (b) depicts the corresponding Delaunay triangulation.

Forgy’sk-means variant assigns samples and update the cluster centers simultane-

ously. Thus, it is a batch and off-line learning algorithm. In contrast to that, MacQueen’s

incremental, on-line algorithm assigns each sample and updates the cluster centers al-

ternately. Unfortunately,k-means tend to stuck in local minima of the error function.

Furthermore, the cluster centers converge to the mean of their positions during learn-

ing, because they are adapted by the mean of cluster samples. Therefore, thek-means

algorithm forms an approximation to the normal mixture model (McLachlan and Bas-

ford [32]), assuming that the mixture components (clusters) all have spherical covariance

matrices and equal sampling probabilities. Balakrishnan, Cooper, Jacob and Lewis [1]

found further that thek-means algorithm used as normal-mixture approximation, recover

cluster membership more accurately than Kohonen networks which were developed by

Teuvo Kohonen in the field ofvector quantizationand are discussed in the next section.

Vector quantization is an important application of unsupervised learning algorithms.

It is a data compression technique which has gained relevance in the field of signal pro-

cessing (Gersho and Gray [16]). The task is to code given signal valuess ∈ L by a code-

book of reference vectorsC = {w1, . . . ,wm}. To gain a compression effect,m should be

chosen smaller thann (m < n). These reference vectors should now be positioned in a

way, that the expected quantization error∫
s∈L

ε(s, C)p(s)ds (5.4)
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becomes minimal. Thereby,ε(s, C) is the quantization error betweens and a fixed con-

figuration of reference vectors inC. Normally, the quantization error is defined as the

Euclidean difference‖s − wi‖ with wi ∈ C which is the nearest reference vector inC.
As mentioned in the beginning of this chapter, different distance measures are possible.

Furthermore,p is the probability density function of the data inL. Althoughp is generally

not known except for the training samples, (5.4) can be approximated by

1

|L|

m∑
i=1

∑
s∈Li

‖s−wi‖2. (5.5)

Consider, that the quantization error is squared, because this leads to better numerical

properties under minimization of (5.5). Indeed, the quantization error of the Vector Quan-

tization problem and the error function of cluster analysis only differ by1
|L| . It is clear, that

constants can be neglected if both error functions are minimized. Therefore, thek-means

algorithm can also be used in Vector Quantization to create an optimal codebook.

Since the publications of Forgy and MacQueen many people have developed vari-

ants of the above mentioned classicalk-means algorithm (Ripley [36]). For example,

Ball [2] has developed a Forgy variant which he named ISO-DATA algorithm. It allows

additional splitting and merging of clusters. Bezdek [4] proposed a fuzzyk-means vari-

ant where every sample is not clearly assigned to one cluster. Instead, it is assigned in

the spirit of fuzzy sets to all clusters by a fuzzy membership vector which lead to a more

general view of cluster membership.

5.3 Unsupervised competitive learning

Teuvo Kohonen, who has been one of the most famous researchers in Neurocomputing in

the past decades, invented several other unsupervised learning methods. All have the same

property. Reference vectors of a finite codebook compete for a single training sample.

The one which is the nearest in its distance wins, the second closest is the second and

so on. Thus, a ranking of them can be given. Duringhard-competitivelearning only

the winner is moved closer to the training sample while all other reference vectors of

the codebook remain unchanged. This type of learning is also known under the name

winner-takes-alllearning. On the contrary, if all reference vectors are moved in a decaying

manner of its rank, learning is calledsoft-competitiveor winner-takes-most. The latter

has the advantage that it is more robust against local optima during minimization of the

quantization error. Thus, different initializations of the codebook do lead to equal or

similar results.
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Unfortunately, most of Kohonen’s competitive learning methods are called ”Koho-

nen networks”, because they are realized in a neural network’s style. This often leads to

confusion by many people. Basically, Kohonen networks most often refers to one of the

following three networks:

Kohonen Vector Quantization (Kohonen-VQ): Actually, the name of this method is

”learning vector quantization”. Unfortunately, variants of the learning vector quan-

tization methods are supervised methods. To avoid confusion, the unsupervised,

hard-competitive learning vector quantization is renamed Kohonen-VQ throughout

this work. As Kohonen-VQ is part of our proposed solution, it is discussed in sec-

tion 5.3.1.

Self-Organizing Map (SOM): The idea of inventing SOMs was biological motivated

and came from the way in which various human sensory impressions are neurolog-

ically mapped into the brain (Kohonen [25]). A SOM is a soft-competitive network

of reference vectors which are arranged in one or higher dimensional maps. Fur-

thermore, they exist in an grid space which is completely different to the learning

space where the dimension is smaller than the dimension ofL. A SOM provides

a topological mapping from the learning space to the clusters which it represents.

Therefore, it is a specific type of clustering algorithm. SOMs provide a solution for

dimensional reductionof large spaces. Nevertheless, its main application is cluster

analysis.

Learning Vector Quantization (LVQ): On the contrary to all so far mentioned Koho-

nen networks, LVQ is a supervised version of Kohonen-VQ (Kohonen [23], Rip-

ley [36]). Thus, it has nothing to do with unsupervised methods and only shows the

imprecision in the Neurocomputing field. However, the learning algorithm is equal

to Kohonen-VQ, but the LVQ learning law is quite different, namely supervised.

A further competitive learning method is Competitive Hebbian learning (Mar-

tinez [30]) which is a variant of Hebbian learning (Oja [33]). In contrast to Kohonen

networks, the aim is not to learn a codebook. Instead it is an elegant method to provide

the codebook with topological structure which reflects the topology of the training set.

Competitive Hebbian learning is discussed in more detail in section 5.3.2.

A problem which arises in many unsupervised methods is the fixed number of refer-

ence vectors. Thereby, this number depends on the distribution of the data. Most methods

have the problem that either too few or many reference vectors are given apriori which
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leads to erroneous vector quantization. Fritzke [13] tried to avoid this problem by intro-

ducing a growing network of reference vectors. The Growing Neural Gas is a data-driven

growing algorithm where new reference vectors are introduced in the learning space. Re-

markably, they are not introduced randomly. However, accumulated statistics about the

quantization error leads this insertions. As this learning method is part of the learning

solution of traffic behaviour, it is explicitly discussed in section 5.3.3.

Certainly, those mentioned soft-competitive unsupervised methods are not the only

ones. Like SOMs with fixed network dimensionality, Growing Cell Structures and Grow-

ing Grids (Fritzke [14]) have also been proposed. On the other hand, Martinetz and

Schulten [31] developed another soft-competitive learning method without fixed network

dimensionality which they called Neural Gas.

5.3.1 Kohonen Vector Quantization

Kohonen-VQ is a hard-competitive learning method where the winnerws of the codebook

is moved a certain proportion of the distance between it and the corresponding training

samples. This proportion is specified by a learning rateλ and gives the Kohonen learning

law which can be written as

ws ← ws + λ(t)‖s−ws‖
wi ← wi : i 6= s, ∀i ∈ {1, . . . ,m}. (5.6)

All other reference vectors remain the same. Consider, thatλ(t) decays over the number

of learning steps. If it is fixed, Kohonen-VQ will not converge to an optimum of the error

function. As it is well known in approximation theory, convergence requires
∑

λ(t) >∞
and

∑
λ(t)2 < ∞ (Kohonen [25], page 35). Otherwise, convergence is not necessarily

guaranteed. Therefore, as time during learning goes to infinity, the learning rate decays in

a suitable manner.

Let ti be the number of times wherewi was the winner according to the so far

presented training samples. Thus, the number of learning steps is

t =
m∑

i=1

ti. (5.7)

Furthermore, letwj(ti) be the position in the learning space of thejth reference vector in

C after itstthi adaption. The initialization of the codebook atti = 0,∀i ∈ {1, . . . ,m} is
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always given by random before the first adaption or in the successive steps by previous

adoptions.

At learning stept a training samples is presented the algorithm. It determines the

nearest reference vectorws(ts) by evaluating

s = arg min
i∈{1,...,m}

‖s−wi(ti)‖. (5.8)

Remember, the learning law (5.6) describes the adaption of the winnerws(ts). It is

moved towardss where the learning rateλ(ti) defines the amount of adaption. It decays

with the number of adoptions for each reference vector and is defined by

ti = ti + 1

λ(ti) =
1

ti
(5.9)

as a harmonic sequence. In every time instantt the positions of the reference vectors are

quasi stationary. Thus, the resulting learning law is

ws(ti + 1) = ws(ti) + λ(ti + 1)(s−ws(ti)). (5.10)

All other reference vectors remain unchanged.

The complete Kohonen-VQ algorithm can be summarized as fol-

lows:

Require: codebookC = {w1, . . . ,wm}
1: ti ← 0,∀i ∈ {1, . . . ,m}
2: t← 0

3: repeat

4: t← t + 1

5: Chooses randomly from the training set

6: Evaluate winnerws according (5.8)

7: ts ← ts + 1

8: Evaluate learning rateλ(ts) according (5.9)

9: Adaptws according (5.10)

10: until t = tmax

Let xi(ti) be the training samples which adaptswi into positionwi(ti). Therefore,
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(a) (b) (c)

Figure 5.3: An illustration of Kohonen Vector Quantization. (a) shows training samples
(points) and reference vectors (dots) in R2, (b) the result after 100 learning steps, (c) the
result after 1000 learning steps.

ti − 1 adoptions were done withwi:

wi(1) = wi(0) + λ(1)(xi(1)−wi(0)) = xi(1)

wi(2) = wi(1) + λ(2)(xi(2)−wi(1)) =
xi(1) + xi(2)

2
...

wi(ti) = wi(ti − 1) + λ(ti)(xi(ti)−wi(ti − 1)) =

∑ti
j=1 xi(j)

ti

As it can be seen,wi is determined by the mean of all training samples for which it was the

nearest reference vector. Furthermore, the membership to a Voronoi regionSi of some of

thexi(ti) can change during learning. Figure 5.3 shows a demonstration of the algorithm.

Kohonen emphasized Kohonen-VQ networks asdensity estimatorsof the underly-

ing data. This needs equi-probable clusters. However, Kohonen respectivelyk-means

learning laws do not produce equi-probable clusters in every case, because the cluster as-

signment of training samples is usually not equal. An asymptotic result shows for a large

number of clusters that the density of the codebook approximates the( d
d+r

)th power of

the true probability density ind dimensions (Ripley [36]). In most cases,r = 2 which

defines the power of the quantization error in (5.5). Thus ford large and a large codebook,

Kohonen-VQ networks respectively thek-means algorithm code an approximation of the

probability density of the data. Otherwise, Desieno’s conscience value (Densieno [9])

is a popular method to obtain equi-probability which is added to each distance prior to

the competition. The conscience value for each cluster is adjusted during training so that

clusters that win more often have larger conscience values and are thus handicapped to

even out the probabilities of winning in later iterations.
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5.3.2 Competitive Hebbian Learning

To generate a topology of the training data inL, we use Competitive Hebbian Learning

(CHL). Topology is represented by a graph. Nodes are reference vectors. Two nodes are

connected by an edge if the corresponding reference vectors lie close together inL. Basis

in CHL is Hebb’s learning rule:

wij ∝ zizj

The weightwij of an edge between two reference vectorswi andwj is directly propor-

tional to the product of its activation by training samples.zi andzj are the activation

values. The smaller the distance‖s − wi‖ betweenwi and a samples is, the larger

becomes the result of itszi. The productzizj is maximal,

zrzs ≥ zizj,∀i, j ∈ {1, . . . ,m},

if one ofwi andwj is the nearest and one the second nearest reference vector tos

r = arg min
i∈{1,...,m}

‖s−wi‖ (5.11)

s = arg min
i∈{1,...,m}\{r}

‖s−wi‖. (5.12)

Therefore, these two reference vectors are neighbors and are connected by an edge.

Let B = (bij) be an adjacency matrix of reference vectorswi andwj with elements

bij ∈ {0, 1}. The algorithm evaluates in every training step the winnerwr and second

ws and set the according elementbrs = bsr = 1. Matrix B is symmetric (bij = bji),

because edges are undirected in the topology graph. The reference vectors itself remain

unchanged during training.

The complete algorithm can be summarized as follows:

Require: codebookC = {w1, . . . ,wm}
1: B ← 0

2: t← 0

3: repeat

4: Chooses randomly from the training set

5: Evaluate winnerwr according (5.11)

6: Evaluate secondws according (5.12)

7: brs ← 1

8: bsr ← 1

9: t← t + 1
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(a) (b) (c)

Figure 5.4: An illustration of Competitive Hebbian Learning. (a) shows reference vectors
in R2, (b) four samples (crosses) and the learnt edges which form the induced Delaunay
triangulation, (c) Delaunay triangulation

10: until t = tmax

Martinez has shown, that every link inB corresponds to an edge in the Delaunay

triangulation. More specific,B is a sub-graph of the Delaunay triangulation and is called

induced Delaunay triangulation. Therefore, the Voronoi regionsSi andSj are neighboring

if a training samples exists with winnerwi and secondwj or vice versa. Figure 5.4 shows

the result of CHL with training samples after some CHL learning steps.

5.3.3 Growing Neural Gas

Section 5.3 mentioned the Growing Neural Gas (GNG) algorithm as a constructive, in-

cremental and on-line variant of unsupervised learning methods. The algorithm itself is

a combination of Competitive Hebbian Learning and the Growing Cell Structures model.

A GNG state is represented by the following network:

• A codebookC with associated reference vectorsw ∈ C where eachw represents

the nodes of the network. The number of reference vectors|C| is not fixed. In the

beginning,C is initialized by two samples of the training setC = {w1,w2}.

• A set of links between these reference vectors which form a graph. LetB = (bij)

be the symmetric (bij = bji) adjacency matrix withbij ∈ {0, 1}. Its purpose is to

define the topological structure of the reference vectors.

The special characteristic of GNG is its data-driven growing nature. Starting from a

codebook with two reference vectors, new reference vectors are introduced until a certain
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criterion is reached. For example, the accumulated, statistical network quantization error

E falls below a given errorEmin or a certain network sizeCmax is reached or a maxi-

mum number of learning stepstmax is exceeded. Besides, the new reference vectors are

not added randomly. However,E is used to determine a position in the learning space.

Consider the following three assumptions:

• The accumulated, statistical network quantization error

E =
∑
wi∈C

Ei

should be minimized. If every reference vector accumulates the quantization error

Ei of the training samples for which it has won, thenE is the quantization error of

all so far processed training samples.

• The insertion of a reference vectorwr decreasesE,∑
wi∈C

Ei >
∑

wi∈C∪{wr}

Ei.

• The largest decay inE can be expected if reference vectorwr with

r = arg max
wi∈C

Ei

is inserted into the codebook.

These three properties are fulfilled by the goal of GNG learning, namely the network

quantization error’s reduction.

If ws is the nearest reference vector to training samples,

s = arg min
i∈{1,...,|C|}

‖s−wi‖2, (5.13)

its accumulated quantization error is adapted by

Es = Es + ‖s−ws‖2,

whereE1 andE2 are initially set to zero. To reduceE it makes sense to introduce a new

reference vector at a position where the local quantization error is maximal. This is done

at timeτ which is a multiple of the learning stepst. Therefore, the reference vectorwq
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with maximalEq is evaluated. Furthermore,wf which has the maximal quantization error

under the neighbors∗ of wq is determined. This can be written as

q = arg max
wi∈C

Ei (5.14)

f = arg max
wi∈Nq

Ei, (5.15)

whereNq is the set of all neighbors ofwq determined byB. A new reference vectorwn

is now inserted betweenwq andwf with

wn =
wq + wf

2
. (5.16)

The link betweenwq andwf is deleted and two new connections are generated which can

be written as

bqf = bfq = 0

bqn = bnq = 1

bfn = bnf = 1 (5.17)

As wn reduces the local quantization error in its neighborhood, the errorsEq andEf

can be reduced by a factorα. The aim is to adaptEq andEf in a way that both errors

correspond to the expected errors after insertion ofwn,

Eq = Eq − αEq

Ef = Ef − αEf . (5.18)

The errorEn is evaluated from these corrected error terms by

En =
Eq + Ef

2
. (5.19)

The topologyB is learnt in every learning stept. Beside the winner, a second

nearest reference vectorwr is determined with

r = arg min
i∈{1,...,|C|}\{s}

‖s−wi‖2. (5.20)

In the spirit of Hebbian learning,ws andwr are connected by an edgebsr = brs =

1. Unfortunately, one problem still remains: The reference vectors change its positions

during learning. Consequently, some edges could not be valid anymore. Therefore, an age
∗Neighboring reference vectorswi are connected towq by an edge (bqi = biq = 1).
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of every linkA = (aij) is introduced which is equal to the number of so far done learning

steps since its creation. If a certainaij exceeds a maximal ageamax, the corresponding

edge is removed (bij = bji = 0).

Another property of GNG is that adaption is only done for the winnerws and its

neighborhoodNs. The learning law can be written as

ws = ws + λb(s−ws)

wi = wi + λn(s−wi),∀i ∈ Ns, (5.21)

whereλb andλn are defined learning rates. After adaption all errors are decreased by a

factorβ.

The complete GNG algorithm is the following:

1: Initialize the codebook with two reference vectorsC = {w1,w2} which are assigned

to two randomly chosen samples from the training set

2: B ← 0, A← 0, t← 0

3: repeat

4: Chooses randomly from the training set

5: Evaluate winnerwr according (5.13)

6: Evaluate secondws according (5.20)

7: Increment the age of all edges emanating fromwr:

ari ← ari + 1

air ← air + 1

8: Update the local error of the winner by

Er ← Er + ‖s−wr‖2

9: Movewr and its direct topological neighbors towardss according (5.21)

10: if brs = bsr = 0 then {Create an edge}

11: brs ← 1

12: bsr ← 1

13: else{”Refresh” the age of the edge}

14: ars ← 0

15: asr ← 0

16: end if

17: Remove all edges with an ageaij > amax,∀i, j ∈ {1, . . . , |C|}. If reference vectors

are not connected any more, remove them as well.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: An illustration of Growing Neural Gas. Simulation with seven normal distributed
(σ = 2) classes in R2 are shown. (a) Initialization, (b)-(e) Intermediate states, (c) final
configuration after 40000 learning steps.

18: if t is a multiple ofτ then {Insert a new reference vector}

19: Determinewq according (5.14)

20: Determinewf according (5.15)

21: Insertwn into C according (5.16)

22: Insert edgeswqwn andwfwn,

Delete the edgewqwf according (5.17)

23: DecreaseEq andEf according (5.18)

24: Initialize Er according (5.19)

25: end if

26: Decrease allEi,∀i ∈ {1, . . . , |C|} by β

27: t← t + 1

28: until (t > tmax) ∨ (E < Emin) ∨ (|C| > Cmax)

Figure 5.5 illustrates the behaviour of the GNG. Seven normally distributed classes

of training samples were used as learning data. The parameters were set to:τ = 1000,

λb = 0.05, λn = 0.0006, α = 0.5, β = 0.0005, amax = 88. The learning was finished

aftertmax = 40000 steps.
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5.4 A learning solution

As it was outlined in section 5.1, learning in the context of traffic behaviour means learn-

ing a spatio-temporal probability density model. Section 5.2.2 discussed several unsu-

pervised methods as possible density estimators. For example, thek-means algorithm or

Kohonen-VQ could be used. But how does this probability density model look like in

detail? Consider the codebook of reference vectorsA = {w1, . . . ,wm} which is learnt

by any of these methods. Furthermore, let us assume that all sampless within clusterSi

are normally distributed according tos ∼ N (wi, σ
2
i ). The varianceσ2

i is defined by

σ2
i =

1

|Si|
∑
s∈Si

‖s−wi‖2. (5.22)

Then, clusterSi’s contribution to the approximation of the probability density function of

normal traffic behaviour for every samples ∈ L is given by

pSi
(s) =

1

(2πσ2
i )

5
2

exp(−(s−wi)
>(s−wi)

2σ2
i

).

Thus, the approximated p.d.f. is a Gaussian mixture model ofpS1(s), . . . , pSm(s). This

leads to the following definition:

Definition 3 The approximated probability density function of normal traffic behaviour

for any samples ∈ L is given by

p(s) =
1

m

m∑
i=1

pSi
(s).

So far we have discussed the estimation of the p.d.f. inL. However, we have not discussed

how to use the p.d.f. to recognize unusual events. Letξ ∈ {′′normal′′,′′ abnormal′′} be

the random variable which indicates normal or abnormal behaviour of a feature. Let

m ∈ M be a taken measurement during tracking the feature. The probability thatm

represents normal respectively abnormal traffic behaviour in a constant regionR is

Pr(ξ =′′ normal′′) =

∫
R

p(m)dm (5.23)

Pr(ξ =′′ abnormal′′) = 1−
∫
R

p(m)dm.

It was shown under the assumption of a continuous p.d.f. and a small variation of its

values withinR that (5.23) can be approximated by

Pr(ξ =′′ normal′′) ≈ p(s)V, ∀s ∈ R,
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where V is the volume ofR. Consequently,Pr(ξ =′′ normal′′) is small where the value

of the p.d.f. is small in a sufficient small regionR. For more information about this

interpretation have a look into chapter 2.5.2 of Bishop [7]. However, as a consequence, a

simple solution to recognize unusual events by using the p.d.f. and a measurement taken

from a particular feature would be to use a thresholdP . If p(m) is below this threshold

(p(m) < P ) then the feature will indicate abnormal traffic behaviour. Otherwise, it

indicates normal traffic.

Johnson and Hogg [22] respectively Stauffer and Grimson [42] have used the

Kohonen-VQ method to determine the probability density function. Both had the fol-

lowing three problems:

1. To define the right number of reference vectors,

2. How to initialize the codebook,

3. How to avoid stranded reference vectors.

The problems (1) and (2) are inherent problems of Kohonen-VQ networks. The number

of codebook vectors are fixed. Therefore, the codebook has to be large enough which

means that apriori knowledge about the complexity (number of clusters) of the learning

space is needed. Johnson and Hogg used a method of Kohonen [24] to determine the

right number experimentally. Thereby, areconstruction erroris evaluated for different

numbers of reference vectors. A point is reached when increasing the codebook does not

significantly reduce the error. Stauffer and Grimson did not use any method at all. They

defined the number by trial and error which they set to 400 reference vectors. Furthermore

regarding problem (2), both groups initialized the codebook randomly with reference vec-

tors centered at existing training samples. Finally, they referred to the last problem as the

difficulty that a reference vector may be too far from any training data. Then, it will not

win during learning and will not represent significant data. Therefore, they called such a

vector stranded vector. Remember, this problem was also mentioned in the last section as

density estimation with Kohonen-VQ was discussed. It was shown that one solution to

this problem could be the introduction of conscience values. Johnson and Hogg had the

same idea and used a similar method but named the penalty terms sensitivity values.

This work proposes a different strategy to overcome these three problems. In a first

step, the GNG algorithm is used as a constructive unsupervised method to find parts of the

learning space where there are a significant number of training samples. Neither a fixed

number of reference vectors is needed nor the codebook initialization leads to problems
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where probably some parts of the learning space are not represented by reference vectors.

The problem of stranded reference vectors is also solved by the GNG. Remarkably, the

algorithm does not only update a codebook but also generate a topology of the training

samples in form of a graph. An edge connects two reference vectors if both are close

together in the learning space and samples lie in between them. If reference vectors loose

all their links in the graph, they do not represent the underlying data and will be eliminated

by the algorithm. Especially this fact that beside the codebook a topology is learnt is used

for a classification of traffic activity in the next chapter 6. Instead of topology the term

”induced Delaunay triangulation” is often used in literature. ”Induced” means in this

context that two reference vectorswi andwj will be neighbors and linked together, if

both are the nearest or second nearest reference vectors to a sample respectively.

Certainly, the GNG also has disadvantages. The parameter settings of GNG are

crucial. Mostly, this will result in an over-segmentation of the learning space. In other

words, too many reference vectors are needed in some parts of the learning space. This

leads to two problems:

1. The number of clusters is unnecessarily high. Consequently, the more clusters the

bigger the problem of over-fitting the data.

2. The more reference vectors are in the codebook, the more complex the classification

task. If there arem reference vectors in the codebook, the amount of data used in

the classification is of orderm2.

Therefore, a pruning unsupervised method reduces the codebook until an optimum with

respect to the training samples is reached based on theMinimum Description Length

- principle (MDL)-principle (Bischof and Leonardis [5]). A description length codes

the codebook and the quantization error by a binary model. After each reduction step

the codebook is adapted by Kohonen-VQ and then a MDL-criterion is evaluated which

indicates further reduction or the end of this iteration. Thus, it tries to find an optimal

balance between the number of reference vectors and the quantization error made by using

this codebook. Principally, every unsupervised learning method could be used for the

adaption step. It is clear, that for large training sets an incremental, on-line algorithm like

Kohonen-VQ will perform more efficiently. Unfortunately, the topology could become

invalid by the reduction of reference vectors. The validation of certain edges must be

checked respectively new edges have to be introduced. Therefore, Competitive Hebbian

Learning relearns a new topology based on the reduced codebook.
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The use of such a MDL-framework (Bischof, Leonardis and Selb [6], Selb [38]) also

offers another very important fact, namely outlier detection. As was discussed in chap-

ter 4, it is not possible that all training samples in the training set represent normal traffic

behaviour. For example, vehicle situations where a car drives in the wrong direction can

happen during capturing of tracking data for learning. Certainly, these situations should

be detected from the recognition system. Consequently, these possible outliers should not

be in the training set. Neither GNG nor Kohonen-VQ methods are able to detect outliers

in the training samples. The former tends to over-fit the samples thus to represent also

outliers as reference vectors. In Kohonen-VQ outliers do influence the positions of the

reference vectors which also leads to a wrong codebook. Therefore, Johnson and Hogg

and Stauffer and Grimson removed outliers manually. Our approach can be seen as a

robust density estimation method where manually removal is not necessary any more as

long as the number of outliers is small compared to the total number of training samples.

5.4.1 Preprocessing

Chapter 4 discussed the problems of different measure-ranges in the sample elements.

To measure distances between samples, the Euclidean distance measure is used in the

proposed learning method:

d(s1, s2) = ‖s1 − s2‖ =√
(x1 − x2)2 + (y1 − y2)2 + (dx1 − dx2)2 + (dy1 − dy2)2 + (t1 − t2)2 (5.24)

Principally, other distance measures are also possible. As it can be seen, a balance of the

sample element’s relative contribution is important. Otherwise, certain elements would

dominate the distance measure and some would have little or no influence on the result.

Remember, that the direction is a unit vector hence its elementsx, y ∈ [−1, 1].

Either the position nor the time is within this interval (section 4.1). One possibility is to

re-scale them into the interval[−1, 1]. Then, all dimensions in the learning space have the

same range. Imagine, a finite training set ofk training samples. Letxi be the positionalx-

element,yi the y-element andti the time instant of samplesi. Furthermore, the following

is given:

xmax = max(x1, . . . , xk), ymax = max(y1, . . . , yk), tmax = max(t1, . . . , tk)
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Figure 5.6: The preprocessing of training samples is illustrated.

and

xmrange =
xmin + xmax

2
xrange = xmax − xmin

ymrange =
ymin + ymax

2
yrange = ymax − ymin

tmrange =
tmin + tmax

2
trange = tmax − tmin.

Then, position and time of every sample can be rescaled to[−1, 1] by

x̃i =
xi − xmrange

1
2
xrange

ỹi =
yi − ymrange

1
2
yrange

t̃i =
ti − tmrange

1
2
trange

. (5.25)

For example, figure 5.6(a) illustrates samples in the learning space before preprocessing.

Rescaling leads to samples which are shown in figure 5.6(b).

5.4.2 MDL framework

This section describes the heart of the learning algorithm which is used in this work. Sec-

tion 5.4 introduced the MDL-principle. It is explained that this principle can be used to
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training samples

GNG initialization

Adaption

Selection

Outlier detection

Convergence

spatiotemporal model

Figure 5.7: MDL-framework

assess costs of a particular codebook with respect to its quantization error. For example,

imagine several codebooks containing different numbers of reference vectors. All are a

vector quantization solution and all are a result of equation’s (5.2) minimization. Nev-

ertheless, some codebooks will represent a better generalization of the training samples

than others. In fact, the MDL-principle can be used to measure generalization capability

and to distinguish between several codebooks.

The MDL-principle decides in the MDL-framework, if the number of reference

vectors and their positions in a codebook are enough general representative with respect

to the training samples. The MDL-framework can be described as follows: First, a code-

book with more reference vectors than necessary is initialized by the Growing Neural Gas

algorithm. Remarkably, the disadvantage of over-fitting by the GNG is used in this step.

Then, the algorithm selects and removes those reference vectors which minimize the total

description length by their elimination. Furthermore, outliers are detected by evaluating

their contributing costs to the description length. They are removed from the training data

as well. Consequently, they have no influence on the positions of the reference vectors in

successive iterations. Finally, the algorithm checks if a minimum of the description length

has been found. This is true if no additional outliers are detected, no more reference vec-

tors are removed or the successive adaption by Kohonen-VQ leads to small changes in the

reference vector’s positions. The latter step closes the loop of the algorithm. Figure 5.7

shows an illustration of the MDL-framework.
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index reference vector

1 w1

2 w2

...
...

m wm

codebook

sample index quantization error

s1 3 ε(s1,w3)

s2 8 ε(s2,w8)
...

...
...

sn 2 ε(sn,w2)

Indexes and quantization errors

Table 5.1: Two data-structures are shown which store the necessary information of vector
quantization.

Remember once more the problem of Vector Quantization. A samples is replaced

by its nearest codebook reference vectorws. This quantization leads to a quantization

errorε(s,ws). This relation can be written as

s = ws + ε(s,ws). (5.26)

Let thedescription lengthbe the code-length of the codebook, the indexes which assign

each training sample to a reference vector and the quantization error. This requires some

thoughts about the necessary data structures. A codebookC = {w1, . . . ,wm} is a (m×2)

table. Each row corresponds to a reference vector. The first column represents the indexes

while the second column delivers the reference vector’s positions in the learning space.

To code (5.26) usefully, a second (n × 3) table is used where the rows correspond to

the training samples. The first column comprises their positions, the second their cor-

responding reference vector index and the last column the quantization error. Table 5.1

shows both data structures clearly. LetL(C) be the costs of coding the codebook and

L(I(C)) be the costs of coding the indexes where training setS is indexed. Furthermore,

let L(ε(S, C)) be the costs of coding the quantization errors of each samples ∈ S. Thus,

the total description length is

L(S(C)) = L(C) + L(I(C)) + L(ε(S, C)) (5.27)

bits. Up to now, no differentiation between inliersI and outliersO is done. Therefore,

(5.27) expresses a description length where the whole training setS = I+O only consists

of inliers (I = S, O = ∅). Certainly,I andO are disjunct sets. Outliers are training

samples which do not match the probability density function of training samples in the

learning space, because they do not represent normal traffic behaviour. Consequently, they

should not be quantified by reference vectors and thus extra coded. This considerations

lead to a description length of

L(S(C)) = L(C) + L(I(C)) + L(ε(S, C)) + L(O) (5.28)
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bits.

To specify the coding in more detail, consider the following two assumptions:

1. The quantities like samples or reference vector positions in the learning space are

specified with a finite precision. Consequently, both are coded withK bits.

2. Each sample is identically and independently distributed.

Both assumptions rewrite (5.28) to

L(S(C)) = mK + L(I(C)) +
m∑

i=1

∑
s∈Si

L(ε(s,wi)) + |O|K (5.29)

bits, whereSi is the Voronoi region of reference vectorwi. A proper coding ofL(I(C))
andL(ε(s,wi)) remains up to the user. Bischof, Leonardis and Selb [6] show typical

examples.

If the direct coding of samples with K bits is cheaper than the coding of the sam-

ple’s nearest reference vector and resulting quantization error thens is an outlier. Conse-

quently, the index of the corresponding reference vectorws and the errorε(s,ws) are not

coded. To summarize, a condition to marks as an outlier is

K < L((I \ {s})(C)) + L(ε(s,ws)), (5.30)

whereL((I \ {s})(C)) are the costs of coding the indexes, indexingS withouts. Further-

more,s is also an outlier if it is theonly sample in a particular Voronoi regionSi. Then,

Si is superfluous andws can be removed from the codebook. This savesK bits in the

description length. The index ofws has also not to be coded any more. However, there is

no reduction ofL(S(C)) by the quantization error, because if there is only one sample in

Si thenε(s,ws) = 0. A second condition to marks as an outlier is

K < L((I \ {s})(C)) + K. (5.31)

The goal of the MDL-based algorithm is to minimizeL(S(C)). Consequently, a

reference vectorwi is temporarily removed and the resulting change in the description

length is computed. This is done for every reference vectorw1, . . . ,wm separately. If

the removal ofwi causes a decrease of the description length, thenwi can be definitely

removed fromC. Otherwise it remains inC.
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This chapter treats the classification of traffic behaviour within a traffic scene. Sec-

tion 6.1 motivates the need for classification and presents two previously used approaches.

Both methods calculate explicitly the classification result by using a further learning step

or a co-occurrence matrix respectively. In contrast to them, section 6.2 discusses a new

approach which only uses the topology of the training data. In fact, the topology was

calculated implicitly by the learning step.
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(a) Situation 1 (b) Situation 2 (c) Situation 3

Figure 6.1: Three traffic situations are shown. (a) and (b) show two different traffic flows
which intersect with each other. If the p.d.f. is used alone as spatio-temporal model, situ-
ation (c) would also be recognized as normal traffic behaviour although traffic flow in this
direction is not allowed.

6.1 Why classification

The last chapter presented a spatio-temporal model which is used for unusual event recog-

nition. A codebook was generated by unsupervised learning and is used as a density

estimator of normal traffic within the learning spaceL. As described, a feature’s mea-

surement generates a sample inL. The feature tends to indicate an unusual event, if its

value of the probability density function (p.d.f.) goes towards zero. Unfortunately, not all

unusual traffic situations can be treated by the p.d.f.. Figure 6.1 illustrates such an exam-

ple. Figures 6.1(a) and 6.1(b) show two particular directions in which vehicles are driving.

Consider a scene where both situations are simultaneously possible. Vehicles, which be-

have as illustrated, could be described as normal traffic by a learnt p.d.f.. Consequently,

all other situations would be recognized as unusual events. However, a vehicle behaviour

like it is shown in figure 6.1(c) could not be assessed as unusual, because problems arise

in the area where vehicle trajectories of both situations intersect with each other. The

reason lies in the p.d.f. which is defined for a particularpoint in L but does not consider

thetrajectoryof a feature (i.e. from where a feature comes and where it goes).

To overcome this problem, the spatio-temporal model has to be completed by a set

of possible classes of trajectories which are learnt from the training samples. Beside a

p.d.f. evaluation of the feature’s actual position in location and time, the trajectory is also

classified. If no class matches, the feature indicates an unusual event. According to the

above example, both particular driving directions would form two classes. Hence, the

situation in figure 6.1(c) could not be classified and an unusual event would be detected.

Johnson and Hogg [22] proposed a further vector quantization approach to com-

plete the spatio-temporal model. They realized a new learning space where each sample

corresponds to asequenceof reference vectors. These sequences are generated from the
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training paths of the tracked features. Each training sample of each path is quantized by

the previous learnt codebook. Thus, vector quantization is done on basis of feature’s mea-

surements. Then, a second vector quantization is done on basis of feature’s trajectories.

Both steps were implemented with a neural network. They used a layer of ”leaky” neu-

rons in between these two networks for the representation of this new training samples.

Thereby, a leaky neuron is a single input-output unit. If it is once activated by a greater

input than output, its output value will decay over a certain period of time. Thus, the p.d.f.

of the resulting new codebook describes clusters of similar trajectories.

Grimson and Stauffer [17] [40] [42] also developed a robust tracking system which

learnt patterns of activity in a particular road scene. For example, the system can distin-

guish the different traffic activities at certain times in the image. Once the codebook is

learnt, every training sample is considered by its corresponding reference vector. As in

the previous approaches, each training path is replaced by a sequence of reference vec-

tors. A co-occurrence matrixC = (cij) can be generated where each entrycij is the

estimated probability that a sequence from the training sequences will contain an input

represented by theith reference vector and a separate input represented by thejth ref-

erence vector. These joint co-occurrence statistics are then used to create a hierarchical

binary-tree classification of traffic behaviour. Thereby, two probability mass functions

across the reference vectors of the codebook are determined which best explainC. Once

these distributions are found, each distribution is treated as another set of reference vec-

tors and their co-occurrence matrix is determined. The process is repeated to produce the

binary-tree classification with predefined height.

The fixed number of reference vectors for the successive second vector quantiza-

tion step is the most obvious disadvantage of the Johnson and Hogg approach. This

problem is solved by Grimson and Stauffer by using the hierarchical classification idea.

However, both approaches expect a second learning step. Grimson and Stauffer used a

greedy minimization to estimateC. In each learning step, its parameters are updated by a

simple learning rule which is based on the minimization of the current and estimated co-

occurrence matrix. Certainly, the most obvious drawback of this solution is its sensitivity

to stuck in a local minima. It is unclear, how this influences the classification (i.e. the

number and differences of classes). Indeed, the same training data should always result

in equal classifications.

A classification as realized by Grimson and Stauffer also offersotherpossibilities of

recognition. For example, a system mounted above a highway could automatically detect

the number of lanes on the road. Furthermore, such a system could recognize areas in
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the scene with more or less traffic activity. Classification could help in conjunction with

knowledge about date and time, to take the right steps to defuse traffic jams during road

work. Furthermore, it could help to define the duration of signal lights more intelligently.

Certainly, various other ideas of applications are possible.

6.2 The classification method

To find classes of traffic behaviour within a particular scene, the proposed methodcom-

paresthe feature trajectories of the training data pairwise. More precisely, the sequences

which all contain the same number of reference vectors are compared. For example, con-

sider two sequencesS1 =< w11,w12 > andS2 =< w21,w22 >. The pairs of reference

vectors which are compared are(w11,w21 >) and(w12,w22 >). To be able to perform

this comparison and in contrast to the previously mentioned methods, the topology of the

training samples is used. It was mentioned that the topology is the induced Delaunay tri-

angulation which is simply a graph. Nodes are reference vectors. They are connected by

edges if they are neighbors (i.e. samples exist for which two reference vectors are winner

and second). If two features show similar traffic behaviour (i.e. both represent vehicles

which turn to the left at an intersection), then their paths in the learning space are equal

(i.e. the sequences of reference vectors, where each reference vector occurs only once, are

equal). Certainly, as the size of the codebook can be large and the influence of a Voronoi

region can be small, different sequences can in fact also belong to the same behaviour

class. Therefore, theassumptionis that pairwise compared reference vectors have not

necessarily to be equal. Instead they have to be at least neighbors in the topology graph

(i.e. an edge must exist between both reference vectors). A remark should be done at this

point. Please note, the topology is only used as similarity measure. It does not necessarily

represent trajectories, i.e., generally not every trajectory from the training data has to be

represented by a path in the topology graph. The reason lies in the fact that the topology is

generated upon training samples which do not include any information about trajectories.

As in the approach of Grimson and Stauffer and in contrast to the work of Johnson

and Hogg, the number of classes has not been given at the beginning of classification.

However, no further learning is done. Remember the used learning algorithms which were

discussed in the previous chapter. The Growing Neural Gas and Competitive Hebbian

Learning algorithm produce beside a codebook an induced Delaunay triangulation which

we have called topology. Two reference vectors of the codebook are connected by an

edge, if they were a winner or a second for a particular training sample during learning
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Figure 6.2: The reference vectors (dots) of the codebook within the training paths (dotted
lines) are shown in only two dimensions (x/y) of the learning space. A sample sequence is
illustrated by a thick line.

respectively. Our algorithm finds the classification by using only this topology graph.

Instead of considering paths of training samples within the learning space, we con-

sider sequences of reference vectors. Figure 6.2 shows an illustration. Each training

sample is quantized to its nearest reference vector. All quantized training samples of a

path form together a sequence. All training paths except the outliers are quantized and

used for classification. In fact, each tracked feature runs through a certain number of

Voronoi regions depending on its behaviour. The easiest way of defining classes of traffic

behaviour is to combine all training paths which run-through thesameVoronoi regions or

which have the same sequence.

Definition 4 Let Si =< wi1,wi2, . . . > and Sj = {wj1,wj2, . . .} be two training se-

quences. Thewik andwjl are reference vectors. Generally, sequences are smaller than

their corresponding paths (|S| ≤ n), because consecutive training samples quantized to

the same reference vector occur only once in a sequence. If

∀wik ∈ Si ∃wjl ∈ Sj : wik = wjl,

then sequencesSi andSj will both belong to the same class and are equivalent.

For example, consider three sequencesS1 =< 1 2 5 7 10 >, S2 =< 2 5 7 10 > andS3 =<

1 2 5 8 9 >. S1 andS2 are equivalent.S3 is neither equivalent toS1 nor toS2, because

reference vectors 8 and 9 are unique toS3. As the codebook contains many reference

vectors which lie close together, many similar classes are generated which are actual
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equal in representing traffic behaviour. We call this form of class generationincremental

class generation, because far more classes than necessary are found.

Consider training sequencesS1, . . . , Su which are generated from training paths.

Generally,u is smaller thannM, because outliers are not used for sequence genera-

tion. Each incrementally produced classC1, . . . , Cc is represented by its corresponding

and equivalent sequences.c is the total number of classes found. The representatives

CR
1 , . . . , CR

c are sets of all reference vectors which occur in their according sequences.

The incremental algorithm is shown in algorithm 6.1.

Require: Training sequencesS1, . . . , Su

Ensure: ClassesC1, . . . , Cc

1: C1 ← {S1}
2: CR

1 ← {w11,w12,w13, . . .}
3: c = 1

4: for i = 2 to u do

5: found← false

6: for j = 1 to c do

7: if ∀w ∈ CR
j : w ∈ Si then {All representatives of classCj are part of sequence

Si}

8: CR
j ← CR

j ∪ {wi1,wi2,wi3, . . .}
9: found← true

10: break

11: end if

12: end for

13: if found = false then {Si does not belong to any class}

14: c← c + 1

15: Cc ← {Si}
16: CR

c ← {wi1,wi2,wi3, . . .}
17: end if

18: end for
Algorithm 6.1: The incremental algorithm

A first classC1 is initialized by the first training sequenceS1 in step 1, 2 and 3.

Then all otheru− 1 sequences are tested with the actual classification (steps 4 until 12).

A sequence belongs to a class, if all class representatives are part of the sequence. In

fact, step 7 defines the conditionCR ⊆ S instead ofS ⊆ CR. Thus, we guarantee that

sub-sequences belong to the same classes and do not define a new one. This is the case,
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Figure 6.3: Three typical classes of the incremental step are shown in distinct gray colours.
Their corresponding training paths are drawn by solid lines. Each sequence is shown by
thick lines which connects the class’s representatives (dots).

(a) Equivalent classes (b) Distinct classes

Figure 6.4: The decision between equivalent and distinct classes which are represented
by their reference vectors (dots respectively squares) lies in the topology (solid lines). (a)
shows two equivalent classes while (b) two distinct ones.

if a sequence does not belong to any class (steps 13 until 17).

Figure 6.3 illustrates a few typical classes which were found by the incremental al-

gorithm. Three classes are shown in different gray colours with their corresponding paths

and representatives. The latter are linked together which illustrates the class’s sequence.

Reference vectors and training paths which do not belong to these three classes are shown

in black.

As it was discussed, the incremental step produces far more classes than necessary.

Most of the classes represent the same traffic behaviour and differ only in their represen-

tationsCR from each other by a few reference vectors. Consider figure 6.4 to understand

the equivalence of classes. Although, the representatives of both classes are completely

different, figure 6.4(a) shows two equivalent classes. All representatives of both classes

lie close together, because reference vectors are connected by an edge. Therefore, both
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are candidates which could be merged together to a new class. However, figure 6.4(b)

shows two classes which are not similar, because most of the reference vectors of one

class are not linked to any reference vector of the other class. Thus, the decision about

equivalence of classes and the ability to merge them, depends on the proximity of their

reference vectors. The closer two reference vectors are inL, the more similar the be-

haviour of two features will be which are both be represented by these reference vectors.

In fact, the proximity is expressed by an edge in the topology graph.

Definition 5 Let Ci andCj be two different classes which are found by the incremental

algorithm. LetRj = CR
j − CR

i be the reference vectors inCR
j which are not inCR

i .

Furthermore, we also defineRi = CR
i − CR

j . LetB = (bij) be the topology matrix. If an

edge between reference vectorswi andwj exists, thenbij = 1. Ci andCj are equivalent

(Ci ≡ Cj), if

∀r ∈ Rj ∃w ∈ CR
i : B(r,w) = 1 ∧ ∀r ∈ Ri ∃w ∈ CR

j : B(r,w) = 1.

All equivalent classes can now be merged to one new class. LetC1, . . . , Cc be all classes

found by the incremental step.C∗
1 , C

∗
2 , C

∗
3 , . . . are the resulting merged classes, generated

by a merging algorithm which is depicted in algorithm 6.2.

Require: ClassesC1, . . . , Cc, TopologyB

Ensure: ClassesC∗
1 , C

∗
2 , C

∗
3 , . . .

1: M ← {C1, . . . , Cc}
2: i← 1

3: while M 6= ∅ do {Are there any classes to merge?}

4: Choose aC ∈M

5: C∗
i ← {Ck ∈M : Ck ≡ C}

6: M ←M \ C∗
i

7: i← i + 1

8: end while
Algorithm 6.2: The merging algorithm

In each run (steps 4 until 7) all classes are determined which are equivalent with

respect to definition 5. Thereby|M | − 1 classes are tested with a chosen classC of M .

All equivalent classes form together a new classC∗
1 which is removed fromM . Then, the

next run takes place. The algorithm is repeated untilM = ∅.

This merging is repeated for all classesC∗
1 , C

∗
2 , C

∗
3 , . . .. In each step the number

of classes decreases until a final set of classes, where all classes are unequal, is reached.
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(a) 1st merging step (b) 2nd merging step

Figure 6.5: Two consecutive merging steps are shown. Five classes are found after the
first merging step (a). Then, a second, final step finds the three classes according the three
lanes in the data (b).

This convergence must exist, because only a finite number of traffic patterns exist within

a scene. Figure 6.5 illustrates the merging of classes. All classes found in the incremental

step are merged to five classes (figure 6.5(a)). A successive second merging step, which

is illustrated in figure 6.5(b), finally results in three classes. No further merging of classes

is possible.

Once the classes are evaluated from the training paths, every sample trajectory can

be classified. Thereby, every feature’s measurement is quantized and a sequence is gener-

ated. Certainly, if the feature is currently tracked, also partial sequences can be generated.

Then, all reference vectors in the sequence are compared to the representatives of each

class. If the whole sequence matches a particular class, the classification is success-

ful. Otherwise, the feature indicates an unusual event. Summing up, the spatio-temporal

model looks as follows:

Definition 6 Letp(m) be the spatio-temporal probability density function of normal traf-

fic behaviour. LetC1, . . . , Cc be the final classes of the scene. Letm1,m2, . . . be the

measurements of a currently tracked feature. They are quantized to the partial sequence

{w1,w2, . . . ,wn}. The feature shows normal traffic behaviour if

(i) the p.d.f. is greater than a specific threshold P,

∀mi, i ≥ 1 : p(mi) > P.
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(ii) the partial sequence is a subset of the representatives of a class,

∃i, 1 ≤ i ≤ c : {w1,w2, . . . ,wn} ⊆ CR
i .

Certainly, partial sequences can belong to more than one class. However, full sequences

must belong to only one class, because otherwise the classes would have been merged.
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This chapter presents experiments with the spatio-temporal model and classifica-

tion algorithm. Section 7.1 treats the training and test tracking data. Section 7.2 shows

experiments with the training sample generation process. It focuses on the ability of ob-

vious outlier detection and noise reduction. Section 7.3 evaluates the GNG pre-clustering

and the successive MDL-based pruning step. Section 7.4 shows the results of classifica-

tion with respect to the training data. Performance issues are also treated. Finally, the

results of using the spatio-temporal model and classification on the test data are shown in

section 7.5. A summary is given in section 7.6.
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7.1 Tracking data

To gather real tracking data for training the proposed spatio-temporal model and testing

its usage for traffic recognition, we visited two different sceneries:

Highway: The highway A2 in the south of Vienna is usually congested during peak traf-

fic in the morning and afternoon. Therefore, this place was appropriate to film traf-

fic jams. Furthermore, it gave the possibility to shoot vehicles with speeds above

80 km/h. Thus, the real-time tracker could also be tested with fast driving cars.

We chose a position on a bridge at Eumiggasse/Wr. Neudorf approximately 7 m

above the ground. The camera was positioned frontally to the south of the highway.

Therefore, all three lanes plus the most right lane, which is reserved for break-

downs, were in the view of the camera and all vehicles were filmed from the back.

Figure 7.1(a) shows a typical image of this scene.

Car park: We chose the IKEA car park at the SCS shopping centre in the south of Vi-

enna as a second scenario, because of its more complex traffic situations compared

to the highway. Besides, it usually has a high volume of traffic every Saturday.

The camera was positioned on top of a building approximately 25 m above the

ground. It lay directly in front of the car park. The camera’s view was orientated

to an intersection. Most of the vehicles drove from top into it, left the view to the

bottom or drove vice versa. As most of the vehicles drove on this road we name

it ”main road” throughout this section. The perpendicular road was rarely used.

Figure 7.1(c) shows a typical image of this scene.

We used an ordinary S-VHS CCD-camera and a tripod for shooting. First, normal

traffic situations were filmed for 30 minutes at both scenes. Normal meant flowing traf-

fic without any disturbances in case of the highway and no unusual traffic obstructions

with parking or driving vehicles at the car park. Then, we took short video sequences

of unusual events. In case of the highway a traffic jam on the most left and vehicles

prohibitively driving on the most right reserved lane were shot. Figure 7.2(a) depicts a

typical frame of the former situation while figure 7.2(c) shows an example of the latter.

The car park showed itself as difficult place at this time to find unusual events. Therefore,

we pushed back our own car against the traffic. We did this on the seldom used road

and drove into the intersection, stopped and turned to the top. Figure 7.3(a) depicts this

situation. Furthermore, we filmed a second unusual situation where we turned from the

bottom to the left. We stopped our car for approximately a minute on the road. Then we

left the view of the camera. Figure 7.3(c) shows the stopped car.
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Feature detector

W σs σg λ fd

7 0.9 1 1.5 · 105 5

Feature tracker

Detmin Dispmin Itermax Resmax σpyr Srange

0.01 0.1 10 ∞ 0.9 15

Table 7.1: All chosen detection and tracking parameters are summarized.

All six video sequences were digitized by a frame-grabber board. We used the

Genesis video board from Matrox. The video streams were sampled with 15 frames

per second. Each frame was a 8 bit gray-valued image with half of the PAL resolution

(384 × 288). Features were detected and then tracked in real-time within detection and

tracking regions. According the highway, one detection region on the bottom of the image

was defined which comprises all three lanes. Additionally, a second detection region was

set on the reserved lane, because the perspective in the images did not allow for one region.

Nearly the whole frame was defined as tracking region except the opposite direction of

the highway, the area below the detection region and the upper part of the images where

vehicles are too small for tracking. Two detection regions on the top and the bottom of the

intersection were used in the car park scene. Further, we used a third region to the right

of the intersection which should only produce the unusual event with the back pushed car.

The whole area around the detection regions including parts of the rare used road were

defined as tracking area.

Table 7.1 summarizes the chosen parameters of the feature detector and tracker.

The same parameter values were chosen as in section 2.3 except forλ andResmax. The

former was set significantly larger with respect to the values in section 2.3.1 due to the

different histogram of the scene. A check of the residuals was neglected, because the per-

spective makes a comparison of the detected and actually tracked patch useless. Besides,

a parameterfd, the detection frequency, was set to 5. Thus, features were detected every

5th frame. A feature was tracked successfully, if it was pursued without any error from its

detection within the detection region until it left the tracking region. Then, the measured

trajectory of the feature was saved as tracking data. The feature was discarded in case of

an error.

During tracking of normal traffic, 2698 measured feature trajectories were gath-

ered from the highway video. Training samples were generated which formed together

the training set. A smaller subset with 400 trajectories was chosen from the tracking data.

The reason of choosing such a relatively small subset is the possibility of analyzing outlier

detection and the necessity of trajectory visualization throughout this section. 350 trajec-

tories were the result of tracking normal features with an average life-time of 70 frames.
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Training tracking data Test tracking data

Scene Trajectories Incident Trajectories

highway 2698/400 traffic jam 511

prohibitively driving 290

car park 1452/400 back pushed car 14

stopped car 12

Table 7.2: The number of trajectories which were gathered for training and testing are
summarized. 400 trajectories of each training tracking data set were chosen randomly as
subset.

Nevertheless, some of these trajectories are either obvious spatial or spatio-temporal out-

liers. They were chosen randomly from the tracking data. The final 50 trajectories were

deliberate, obvious temporal outliers. 25 of them were features with life-times below 4

frames while the rest had life-times above 100 frames. Figure 7.1(b) depicts this subset of

the tracking data which is used to investigate the behaviour of the training sample gener-

ation, the learning and the classification. The whole tracking data is used in particular for

the unusual event case studies. Figure 7.2(b) shows 511 gathered trajectories which form

the test set according to the traffic jam. The test set of the prohibitively driving vehicles

consists of 290 trajectories which are depicted in figure 7.2(d).

In case of the car park, 1452 normal features were successfully tracked and saved as

tracking data. Equally to the highway case, 350 normal feature trajectories with average

life-times of 100 frames and 50 obvious temporal outliers were chosen as a subset. Half of

them were features with life-times below 15 frames while the other half survived for more

than 200 frames. Figure 7.1(d) shows this subset of the tracking data. Figure 7.3(b) and

7.3(d) depicts the tracking data of the unusual events. The former, which shows the back

pushed car, contains 14 trajectories while the latter, which corresponds to the stopped car

scene, contains 12 trajectories.

Table 7.2 summarizes the number of gathered trajectories for training and testing.

7.2 Training samples

This section treats the training sample generation process with the previously described

highway and car park training tracking data. The two main objectives, which should be

investigated in the following, are the ability of obvious outlier detection in the spatial and
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(a) Highway scene (b) Highway tracking data

(c) Car park scene (d) Car park tracking data

Figure 7.1: Two typical frames from the video sequence of the highway (a) and car park
scene (c) are shown. (b) depicts the tracking data of the former and (d) of the latter se-
quence. Dotted lines represent feature trajectories in the image plane.
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(a) Traffic jam (b) Traffic jam tracking data

(c) Prohibitively driving (d) Prohibitively driving tracking data

Figure 7.2: Two typical video sequence frames from the traffic jam on the most left lane (a)
and prohibitively driving vehicles (truck) on the reserved lane (c) are shown. (b) depicts the
tracking data of the former and (d) of the latter sequence. Dotted lines represent feature
trajectories in the image plane.
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(a) Back pushed car (b) Back pushed car tracking data

(c) Stopped car (d) Stopped car tracking data

Figure 7.3: Two typical video sequence frames from the back pushed (a) and stopped car
(c) are shown. According the former situation, consider the Nissan Micra-mouse which can
be seen on to the right of the intersection. The same car stops in (c) on the left side of the
intersection. (b) and (d) depicts the corresponding measured feature trajectories of both
situations.



104 CHAPTER 7. EXPERIMENTS AND EVALUATION

temporal domain and the expected noise reduction by using smoothing splines.

Obvious outlier detection: Obvious outliers were discussed in section 4.4. To sum up,

spatial obvious outliers are basically tracking errors. Furthermore, features which

are tracked for a significantly shorter or longer time than others were defined as

obvious temporal outliers. Let the varianceΣ of noise during tracking be4 I2 for

all further experiments, because deviations of more than two pixels between the

measured and the smoothed position should be the result of a tracking error.

First, we examined the highway training subset. A histogram of the feature’s life-

time was generated which is shown in figure 7.4(a). The 350 normal trajectories

can be seen by two tall bars around frame 70. All other bars are representing the

50 temporal outliers. This obvious difference is caused by the fact, that normal

features need on average the same life-time, because all lanes are of similar length

within the tracking area and vehicles drive on average the same speed. We did

two experiments with two different thresholdsκ = {13, 74} to illustrate temporal

outlier detection.κ = 13 let 25 outliers be included in the training set whileκ = 74

removes all temporal outliers. These results can be seen in figure 7.5(a). All rare

and time-delayed feature trajectories were removed byκ = 13. They can be seen

in the histogram by bars with a frequency smaller than 3. The figure shows them

as thin black lines. However,κ = 74 removes further 25 outlier trajectories which

consist of only two positions. They are shown as thick black lines.

Besides, we examined the car park training subset. The histogram can be seen in

figure 7.4(c). Normal trajectory life-time is distributed around the mean of 100

frames. The scene is more difficult than the highway, because several paths along

the intersection are possible.κ was set to 34. Thus, the most frequent trajectories

which have equal life-times within the training subset were chosen. These fea-

tures represent mostly vehicles which cross the intersection from top to the bottom

and vice versa. Therefore, trajectories which drive into the perpendicular road are

seldom in the subset which was necessary for testing. The result can be seen in

figure 7.5(b). All introduced 50 temporal outliers are eliminated. Further 171 tra-

jectories are also removed. Thus, the training subset consists of 179 trajectories

after temporal outlier detection.

The latter fact shows that more trajectories are removed than necessary. This only

depends on the choice ofκ. Normal feature trajectories with similar life-times will

produce significantly taller bars than temporal unusual tracked features. The more

tracking data we have, the more obvious this difference will be and the betterκ can
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be set. If features only remain in the training set after the temporal outlier removal

which partially have similar life-times and are represented by a significant large

number within the original training set, then the possibility of a temporal outlier’s

occurrence will vanish.

Figure 7.4(b) shows the histogram of the whole highway training tracking data.

Normal tracking data is obviously Gaussian distributed around 70. We defined

κ = 57 to eliminate approximately the same amount of trajectories (≈ 12%) as

in the sub-set case. Consequently, 329 trajectories were eliminated and 2369 re-

mained in the training tracking data set. The same is also done with the car park

training tracking data. Figure 7.4(d) shows the histogram. We setκ to 65 (≈ 35%

eliminated). Thus like in the subset case, mainly trajectories from top to the bottom

of the intersection and vice versa are chosen. Unfortunately, many trajectories with

a few positions (tallest bar) are also in the resulting set. They belong to features

which are detected and then only tracked for a few frames until they move out of

the tracking area. The reason of this short life-times are the positions of the two

detection regions which cover both lanes of the main road and lie in proximity of

the tracking region’s border. Consequently, 519 trajectories were eliminated and

933 remained in the training tracking data set.

Spatial obvious outlier detection was also performed after obvious temporal out-

lier detection on both training subsets and sets respectively. The percentilec was

set to 5.991 which corresponds to a confidence interval probability ofα = 0.95.

Figure 7.6(a) and 7.6(b) show the results on the highway/car park training subset.

All trajectories show the expected, obvious tracking errors. 28/20 spatial obvious

outliers were removed. Consequently, 322/159 trajectories remained in the training

subset. In case of the whole sets, 57/61 outliers were detected which led to a final

training set of 2312/872 trajectories.

Table 7.3 summarizes the results of obvious outlier detection.

Noise reduction: Consider figure 7.7 which shows a synthetic example of a trajectory

ϑ(ti) which consists of 10 feature positions. If noise reduction is successful with

this data then we will expect the same with real data. Each feature’s position

is taken at particular time instantst1, . . . , t10. They are unknown and not rele-

vant for our noise reduction investigation, because only spatial noise is consid-

ered. Furthermore, 100 slightly different trajectoriesM1, . . . ,M100 are generated

using this ground-truth trajectory.M1, . . . ,M10 are shown by gray lines in fig-

ure 7.7. Each generated positionpi on these trajectories varies by a stochastic
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0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

κ

t [frames]

fr
eq

ue
nc

y

(b) Highway set histogram
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(c) Car park subset histogram
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(d) Car park set histogram

Figure 7.4: The histograms of the highway tracking data subset (a), set (b) and car park
tracking data subset (c) and set (d) are shown. They show for a particular time interval
t the number of features (frequency) occurring within the training subset. (a) shows the
temporal outliers by significantly smaller bars than the two bars around t = 70. (b) shows
even more that the feature’s life-times are Gaussian distributed around t = 70. (c) and (d)
show that normal features are distributed around t = 100. Besides it shows problems with
short trajectories (tallest bar).
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Figure 7.5: The results of obvious temporal outlier detection are shown. The experiments
are done with the highway and car park training subsets. (a) shows the results with the
former training set. While a threshold κ = 13 removes all obvious time-delayed feature
trajectories (thin black lines), a larger threshold κ = 76 also removes the short erroneous
trajectories (thick black lines). Consequently, the training subset is reduced to the 350
trajectories (gray dotted lines). (b) shows the result for the car park training set. κ was set
to 34. Thus, 171 trajectories were labelled as outliers (black lines) and only 179 trajectories
(gray dotted lines) remained in the training set.

(a) Highway (b) Car park

Figure 7.6: The results of the obvious spatial outlier detection are shown. (a) shows 28
outliers (black lines) in the highway training set. The remaining training set consists of 322
trajectories (gray dotted lines). (b) shows 20 outliers (black lines) in the car park training
set. The remaining training set consists of 159 trajectories (gray dotted lines).
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Highway Car park

Set Subset Set Subset

size 2698 400 1452 400

obvious temporal outliers 329 50 519 221

after removal 2369 350 933 179

obvious spatial outliers 57 28 61 20

final size 2312 322 872 159

Table 7.3: The results of obvious outlier detection are summarized.

Figure 7.7: The ground-truth trajectory ϑ(ti) is shown by a black line. Each black circle
shows a true position pi of the feature. The most right and lowest position is taken at t1.
The most left and upper position corresponds to t10. M1, . . . ,M10 are shown by gray lines.
Gray circles showM1’s positions while the positions ofM2 are drawn by squares.

processεi ∼ N (0, I2). Consequently,εi is the introduced noise.ϑ(ti), pi andεi

correlate with each other by the presented noise regression model (4.3) in chap-

ter 5. These generated trajectories are then smoothed by a smoothing spline with

λ∗ = 835. This leads to smoothed trajectoriesϑ̂1(ti), . . . , ϑ̂100(ti).

The example shows that for the average of all 100 trajectories noise is reduced until

a certain value ofλ. In fact, whileλ→∞, the smoothing spline becomes more and

more a linear regression function which increases the bias of the smoothing spline

and thus the noise. Remember the bias-variance tradeoff discussed in section 4.2.3.

Table 7.4 summarizes these results of mean noise reduction inp1, . . . , p10 for dif-

ferent increasing values ofλ. The smoothing trajectories withλ = 0 are equal to

their correspondingMi. Therefore, noise is not reduced. Forλ = 10 andλ = 100
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noise is on average reduced in all positions of allMi. Then, noise becomes larger

instead of being reduced in some positions, because the bias becomes larger.

To solve the optimal tradeoff between noise reduction and noise increase, sec-

tion 4.2.3 discussed some estimation methods forλ. The discrepancy method was

used to determineλ∗ for everyMi in this experiment. Then, an averageλ∗ = 835

was calculated and allMi were smoothed once more. Figure 7.8 shows the amount

of noise reduction with respect toλ. For all λ < 1000, only three of ten posi-

tions show an increase in noise. One position shows a declining decrease in noise

reduction. Furthermore, noise is in sum on average more reduced than increased

for the whole trajectories (see table 7.4). However, consider allλ > 1000. The

increase in noise becomes significantly larger in four positions. Also the balance

between the average decrease and increase of noise becomes uneven. More noise

is now introduced than reduced. Therefore, an averageλ∗ = 835 < 1000 is a good

estimate.

Figures 7.9 and 7.10 show the results of training sample generation with the high-

way and car park training subset without any obvious outliers. Both figures show

the training samples in sub-spaces x/y/t and dx/dy/t of the learning space. Every

training sample is the result of re-sampling the smoothing trajectory.ds was esti-

mated to 11.24/4.52 for the highway/car park subset case. Thus, 3940/4732 train-

ing samples were generated. In case of the whole setsds was estimated to 7.95/5∗.

36988/15119 training samples were generated. Table 7.5 summarizes the results.

7.3 Learning

For our experiments a GNG run was made with the highway and the car park training

subsets. In both simulations the parameters were set to:τmax = 40000, τ = 300, λb =

0.05, λn = 0.0006, α = 0.5, β = 0.0005, amax = 88. We chose the same values as in

Fritzke [15]. Thus, a codebook with135 reference vectors was created for each subset.

Figure 7.13(a), 7.13(b), 7.14(a) and 7.14(b) show the highway and car park results.

For the highway example, all three lanes are represented by the codebook. It can be

seen that 135 reference vectors are too much to represent the data. Thus, the codebook

over-represents the data which fulfills the goal that should be met by the use of the GNG.

Especially consider the sub-space< dx ∈ [0.5, 1], dy ∈ [0,−0.5], t ∈ [−0.5,−1] > in

∗This value was chosen by hand. The estimated value was too small (0.07), because of the outliers.
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mean noise reduction

λ p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0 0 0 0 0 0 0 0 0 0 0

10 0 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0

102 0 -0.08 -0.08 -0.08 -0.04 -0.07 -0.1 -0.04 -0.07 -0.02

835 -0.03 -0.17 -0.18 -0.08 0.16 -0.17 -0.2 0.32 -0.16 0.04

103 -0.03 -0.17 -0.19 -0.07 0.2 -0.18 -0.21 0.41 -0.17 0.08

104 -0.03 -0.04 -0.11 -0.32 1.07 -0.22 0.55 2.49 -0.22 2.15

105 -0.17 0.91 0.58 -0.38 0.15 1.84 3.77 4.59 0.29 6.75

106 2.07 2.1 0.39 0.22 0.59 4.39 5.72 5.16 1.62 10.21

Table 7.4: The mean noise reduction in 10 positions of the 100 randomly generated tra-
jectories is shown. While the smoothing of the trajectories becomes larger (λ → ∞), the
introduced bias also increases. Therefore, noise increases more and more in all positions
instead of being reduced.
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Figure 7.8: Noise reduction with respect to the choice of λ is shown. Noise increase and
decrease in 10 positions is drawn by gray lines. The noise increase becomes significant for
all λ > 1000. The mean of λ∗ is estimated to 835.
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Figure 7.9: The learning space of the highway training subset is shown.
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Figure 7.10: The learning space of the car park training subset is shown.
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Highway Car park

Set Subset Set Subset

ds 7.95 11.24 5 4.52

training samples 36988 3940 15119 4732

Table 7.5: The results of training sample generation are shown.

figure 7.13(b). It is obvious that this volume is over-represented. Besides, only a few

training samples can be found. Therefore, these samples are spatio-temporal outliers.

According to the car park scene, two main directions can be recognized. These

directions are from top to the bottom of the intersection and vice versa. Consider the

two areas with a dense distribution of samples. We can also recognize these two sides

of the road going in opposite directions in figure 7.14(a). All other driving opportunities

are weakly represented by the training subset. The GNG has well explored the learning

space. Most of the reference vectors lie within the two directions. Other directions are

weakly represented. Therefore, most of them will be marked as spatio-temporal outliers

in the successive MDL-based codebook pruning.

We used an instantiation of the MDL-based algorithm which is described in Bischof,

Leonardis and Selb [6]. They assumed that the indices of the codebook are encoded

with the optimal variable length according to the probability of occurrence. The error

term is encoded according to a spherical Gaussian distribution with a fixed varianceσ.

Selb [38] reported that this parameter is relatively robust with respect to the final number

of reference vectors which remain after pruning. In fact, he used relatively well defined

and distributed clusters of training samples. Unfortunately, our learning space is not of

this data distribution’s type. Clear clusters cannot be found within both the highway and

the car park training data.

Therefore, we did some experiments withσ and observed its influence on the final

number of reference vectors and the number of outliers found after the MDL step. We

expected a steady decrease of the number of reference vectors by increasingσ. Further-

more, we expected that ifσ is small the spherical influence of a reference vector is small

and therefore a large number of outliers (spatio-temporal outliers plus normal samples)

must be the consequence. This number should decline until it is equal to the number of

spatio-temporal outliers in the learning space. It should stagnate for a certain intervalI,

because all reference vectors represent normal training samples andσ is still too small

to include spatio-temporal outliers. Then, if a certain and large enough amount ofσ is

reached, all spatio-temporal outliers are represented by a few reference vectors or even
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Figure 7.11: The influence of σ with respect to the final number of reference vectors in the
codebook (dotted line) and the number of spatio-temporal outliers (solid line), which are
detected by the MDL-based algorithm, are shown. Interval I is shown in between dashed
lines. (a) shows the results for the highway training subset, while (b) shows the results for
the car park training subset.

one. Thus, a good value ofσ could be the smallest value ofI. This value is the first

one where the number of outliers start to stagnate. Furthermore, the number of reference

vectors regarding this particularσ is the largest with respect to all other values ofσ in I.

Figure 7.11(a) and 7.11(b) show the results of the experiments according to the

training subsets (highway/car park). 32/19 values ofσ were evaluated between[10−4, 3 ·
10−3] and [10−4, 4.6 · 10−3] respectively. In fact, the final number of reference vectors

shows a steady decrease whileσ becomes larger. Now, consider both outlier curves. Its

values decay quickly from 60/68 to 17/25 within the intervalsIprv
hway = [5.7 · 10−4, 8.5 ·

10−4] and Iprv
cpark = [5 · 10−4, 1.6 · 10−3] respectively. In fact, the number of outliers

stagnates for the following intervalIhway = [8.5 · 10−4, 9.3 · 10−4] andIcpark = [1.6 ·
10−3, 2.5·10−3], before it decreases further. AlthoughIhway is equally large to its previous

interval Iprv
hway the values remain between 17 and 18. Similarly in case of the car park

training subset, the outlier values ofIcpark vary between 21 and 26, althoughIprv
cpark is

only 2 · 10−4 larger. Consequently, these observations confirm our previous expectations.

Therefore, we set the value ofσ to 8.5 · 10−4 in case of the highway and1.6 · 10−3 in case

of the car park training subset.

The final results of the learnt codebook can be seen in figure 7.13(c) and 7.13(d) for

the highway and 7.14(c) and 7.14(d) for the car park respectively. Beside spatio-temporal
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outliers, which were found by the MDL-based algorithm, all training samples which are

part of the same path were also defined as outliers. Thus, the final number of training

samples were 3714/4240 and the final number of training paths 305/134. Reference vec-

tors which do not represent any training samples were also eliminated and led from 83/67

to a final codebook size of 82/51.

Figure 7.13(d) confirms our hypothesis that all samples within< dx ∈ [0.5, 1], dy ∈
[0,−0.5], t ∈ [−0.5,−1] > are spatio-temporal outliers. The MDL pruning has taken this

into account and has removed all reference vectors within this volume. Furthermore, the

codebook distinguishes the three lane directions clearer than in figure 7.13(b). Reference

vectors are more centered and those who represented training samples in between the

three main directions are removed. If figure 7.13(c) is compared with 7.13(a), the same

effect could also be seen.

In fact, a comparison of figure 7.14(b) and 7.14(d) shows the outlier detection ability

of the MDL-based algorithm clearly. Indeed, all directions beside the two main directions

are recognized as outliers. Reference vectors, which represent these samples after the

GNG step, are eliminated. The same can be seen in the sub-space x/y/t. Both main roads

of the intersection are well explored and represented. Beside these areas, the reference

vectors are removed.

The last question with respect to learning is its robustness. Four runs of the learning

algorithm with the highway training subset were done∗. The parameters are equal to the

settings which are previously discussed. The following table shows the results for each

run:

Run Codebook size Outlier paths

1 76 22

2 68 24

3 73 25

4 74 20

The final numbers of codebook vectors are similar. The difference can also be

seen in the number of outlier paths which were detected. Table 7.6 shows the percentage

(1 ≡ 100%) of identical outlier paths for a particular codebook (row) compared to all

other codebooks (columns). For example, compare codebook 1 with 2. 19 of 22 outlier

paths are equal to outlier paths given by codebook 2.

∗Although the data-set is the same in all runs, the GNG algorithm chooses samples randomly.
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1 2 3 4

1 1 19
22

20
22

19
22

2 19
24

1 20
24

20
24

3 20
25

20
25

1 18
25

4 19
20

1 18
20

1

Table 7.6: The codebook’s (row) outlier paths are compared to the outlier paths all other
codebooks (columns). The percentage of identical outlier paths with respect to the total
number is shown.

Highway Car park

Set Subset Set Subset

training samples 36988 3940 15119 4732

training paths 2312 322 872 159

reference vectors after GNG 135 135 135 135

reference vectors after pruning 119 83 115 67

outlier samples 2254 226 1775 492

outlier paths 121 17 94 25

reference vectors after removal 119 82 100 51

final training samples 34734 3714 13344 4240

final training paths 2191 305 778 134

Table 7.7: The learning results are summarized.

The number of pairwise, equal outliers is approximately the same, namely between

18 and 20. The number of outliers according to a run of the learning algorithm is of the

same order of magnitude, namely between 20 and 25. In fact, this confirms that the choice

of σ works well. Only a small amount of normal paths were falsely declared as outliers.

The small differences in the number of reference vectors due to the random choice of

training samples during learning. Fortunately, this will become less and less a problem if

the number of learning steps is increased. However, for these runs (40,000 steps), all four

codebooks cover the same parts of the learning space which can be seen in figure 7.12.

The spatio-temporal models are different in particular samples but very similar in parts

of the learning space. We also did a successive classification with all four codebooks and

the results in terms of the number of classes and their coverage of the learning space are

equal.

Table 7.7 summarizes the learning results. We used the parameter settings from the

training subsets to learn the codebook for the training sets.
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Figure 7.12: Four codebooks of four runs with the car park training subset and equal
parameters are shown. The same parts of the learning space are covered. Nevertheless,
reference vectors do not correspond.

7.4 Classification

The previously learnt codebooks of the highway and car park training subset and all train-

ing paths except outliers were used for classification. First, every training sample was

quantized to its corresponding reference vector. Thus, all paths were transformed into

sequences of codebook vectors. In case of the highway/car park, 305/134 sequences

were generated. Then, the incremental classification algorithm produced 157/79 differ-

ent classes. Seven representatives are shown in figure 7.15 and 7.16 respectively. These

classes were used by the successive merging algorithm which produced six classes for

both training subsets in a first step. A second merging step led then to the final result of

3/4 classes. Every further attempt of merging did not change the result. The second and

third column in both figures show these classes.

According to the highway scene, every class represents exactly one lane. We ex-

pected this result, because these three lanes are well separated and represented by refer-

ence vectors in the learning space. However, the car park scene classification presented a

surprise. Instead of the expected two classes which should represent the heavy used main

road in both directions, the classification resulted in four classes. For example, compare
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(a) x/y/t, after GNG exploration
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(c) x/y/t, after MDL pruning
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Figure 7.13: Highway scene: The GNG network (black nodes and edges) adapts to the
training samples (gray dots). (a) and (b) show the reference vector’s distribution within sub-
space x/y/t and dx/dy/t after 40,000 training steps. All three lanes are over-represented.
Spatio-temporal outliers can be seen in < dx ∈ [0.5, 1], dy ∈ [0,−0.5], t ∈ [−0.5,−1] >. (c)
and (d) show the results of codebook pruning by using the MDL-based algorithm. All spatio-
temporal outliers (gray crosses) are detected. Reference vectors which represented them
were eliminated. Furthermore, the final codebook represents the highway lanes clearer
without reference vectors in between the lanes.
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(c) x/y/t, after MDL pruning
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Figure 7.14: Car park scene: The GNG network (black nodes and edges) adapts to the
training samples (gray dots). (a) and (b) show the reference vector’s distribution within sub-
space x/y/t and dx/dy/t after 40,000 training steps. Beside the main road with two directions,
many other training samples exist in the learning space which are obviously spatio-temporal
outliers. Unfortunately, these samples are represented by reference vectors after the GNG
step. (c) and (d) show the results of codebook pruning by the MDL-based algorithm. All
obvious outliers are recognized and reference vectors which represented them were elimi-
nated. The remaining final codebook clearly shows both roads and directions.



7.4. CLASSIFICATION 119

1

Incrementation

2
3

4
5

6
15

7

1

1st merge

2
3

4
5

6

1

2nd merge

2
3

Figure 7.15: Three classes are the final result of classifying the highway scene with the
training subset. Every class exactly represents one lane. The first column shows the
classification result after the incremental step. The second and third column shows the
resulting classes after the first and second merging step.
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Figure 7.16: Four classes are the final result of classifying the car park scene with the
training subset. The first column shows the classification result after the incremental step.
The second and third column shows the resulting classes after the first and second merging
step. The first and last two classes seem to be identical after the second merge. However,
a further investigation shows that the former two classes differ in time and not in the image
plane. The difference of the third and fourth class can be seen in the upper part of the
scene where vehicles move straight ahead or turn to the right.
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the3rd and4th class in the third column of figure 7.16. Both classes seem to be identical

except the upper part of the scene where vehicles exit the intersection. All trajectories

of vehicles which turned to the right into the neighboring street were summarized in one

class. However, all other vehicles left the tracking area by moving straight ahead. Indeed,

this makes less difference in the image plane, but an obvious one in larger sub-spaces of

the learning space. Therefore, we considered both classes in the sub-space dx/dy/t. Fig-

ure 7.17 compares both classes and shows the differences in the direction. This fact will

be even more clearly, if the first and the second class is compared. First, no obvious dif-

ference can be recognized. However, consider both classes in the sub-space x/y/t which

are shown by figure 7.18. The difference lies in time and not in the location. Interestingly,

the first class summarize all vehicles which were delayed by the traffic at the intersection.

In contrast to that, the second class shows vehicles driving exactly into the same direction

and on the same road but without any obstructions.

The classification of the whole training sets led to the expected equivalent results.

The training subset classes are also part of the classification. Nevertheless, the final num-

ber of classes in the highway/car park case is higher (4/8). For example, consider the

highway classes which are depicted in figure 7.19. The first three classes also represent

the three lanes of the highway. In fact, the last class represents vehicles which drove in

between two lanes. Figure 7.20 shows all classes of the car park case. While the1st and

3th class, which both are depicted in the first row, are equivalent to the1st and3th class of

the training subset classification, the2nd class is a result of merging the3th and4th class.

All other classes due to outliers. For example, cars which turn right at the intersection

(7th class).

Certainly, the complexity is of particular interest during the analysis of both clas-

sification algorithms which are shown and discussed in detail in chapter 7. Consider the

incremental algorithm on page 92. The worst case effort to determine allc classes from a

set ofn sequences is
c(c + 1)

2
+ (n− c− 1)

c

2
=

cn

2
.

During initialization, the first class is created by the first sequence. Then,n−1 sequences

are compared to the current classification. In the worst case, the firstc sequences create

all classes. Then, for the finaln− c− 1 sequencesc
2

comparisons are needed on average.

If every sequence forms its own class (c = n), then the worst case effort isn
2

2
. Thus, the

complexity of the incremental algorithm isO(n2).

Generally, the number of classes should be smaller than the number of sequences

which are used for classification (c � n), because all sequences represent normal traffic
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Figure 7.17: The difference between the 3rd and 4th class depends on the feature’s direc-
tion dx/dy. Both figures (a) and (b) show the classes feature paths of vehicles which cross
the intersection on the right lane of the main road. Both classes are identical for t ∈ [−1, 0].
Then, the vehicles of the 4th class turned to the right into the neighboring street. This can
be seen in (b) by the bend feature paths.
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Figure 7.18: The difference between the 1st and 2nd class lies in time t. Both figures (a)
and (b) show the classes feature paths of vehicles which crossed the intersection. They
drove on the left side of the main road in the same direction. (a) shows paths of obstructed
vehicles which had to slow down their speed or had to stop. The life-time of these features
lies between 0.2 and 0.6. (b) shows free flowing traffic with life-times below 0.2.
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Figure 7.19: The classification result of the highway training set is shown. The result is
equivalent to the training subset classification except the 4th class.

n 50 100 200 300 400 500 600 700 1500 2005

c 40 69.6 116.2 157.8 191.4 228.9 257.4 286.6 475.2 573

σc 11 21.5 55.5 95.2 74.3 48.2 108.3 92.4 145.4 0

Table 7.8: The mean c and variance σc of c for specific n are summarized.

and arbitrary sequences (combinations) of reference vectors are impossible. To investigate

this hypothesis, 25 sets ofn = {50, 100, 200, 300, 400, 500, 600, 700, 1500} sequences

were randomly chosen from the highway training set. Then,c was evaluated by the incre-

mental algorithm for every set. Thus, the mean and the variance ofc for a specificn was

calculated which is shown by table 7.8. All 225 chosen sets and the whole training set

showed a smallerc thann. Furthermore, an increase ofc with respect ton can be seen. In

fact, an upper bound ofc must exist, because the codebook consists ofm reference vectors

which can create at most
∑m

i=1

(
m
i

)
classes. Figure 7.21 shows the relation as function

c(n) which asymptotically approaches this upper bound. Forn = 0, . . . , 600, c(n) can be

approximated byc(n) = 2.2n
2
3 . The worst case effort of the incremental algorithm with

respect to the highway training set, the codebook which was learnt by the training subset

and the former interval ofn is 1.1n1.67. Thus, the complexity forc < n is generallyO(ni)

with 1 < i < 2.

Finally, consider the merging algorithm on page 94. The algorithm is initialized (run
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Figure 7.20: The classification result of the car park training set is shown. The first three
classes represent all traffic patterns while all other classes are the result of outliers.

r=0) with a classificationMr = M0 delivered by the previously performed incrementation

step. Then, it randomly chooses a classC from Mr and comparesC with all other classes

within Mr. Consequently, the effort is|Mr| − 1 to find equivalent classes ofC. Finally,

these classes are removed fromMr which lead toMr+1. The algorithm continues until

r = rmax with Mrmax = ∅. Thus, the effort of the merging algorithm is
∑rmax

r=1 r(|Mr|−1).

Consider now the worst case, where only one class is removed fromMr in runr. Then, the

worst case effort isc(c−1)
2

with rmax = c. Thus, the complexity of the merging algorithm

is O(c2).

Generally, only a few traffic patterns exist within a scene. Therefore, many classes

in M0 are equivalent. The difference|Mr+1| − |Mr| between two runs is large which

reduces further comparisons significantly and the expected effort is much smaller than the

worst case one. In fact, this can be seen in figure 7.22 where we performed the merging

for the highway and car park training subsets.rmax was 6.|Mr| decreased exponentially

in both training cases.
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Figure 7.21: c(n) (solid) and its approximation 2.2n
2
3 for n = 0, . . . , 600, c(n) are shown.

The variance in every point is also shown (intervals).

7.5 Case studies

This section treats the results of the spatio-temporal model and the classification with re-

spect to the test tracking data described in section 7.1. As the latter represents unusual

events, the p.d.f. value should be small or no classification is expected for the measure-

ments.

First like in the training case, test samples of particular trajectories are generated.

We chose a representative trajectory from the traffic jam tracking data set (figure 7.25(a)),

a feature which pursues a van that changed onto the reserved lane (figure 7.25(b)) and a

trajectory which completely shows a prohibitively driving car (figure 7.25(c)). Accord-

ing the car park case, we chose a feature on the stopped (figure 7.27(a)) and the back

pushed car (figure 7.27(c)). Finally, a trajectory of an unobtrusive car was also selected

(figure 7.27(b)).

Exactly the same number of test samples than measurements are generated by us-

ing an interpolating spline. We avoided to use the smoothing spline, because only partial

trajectories are known during tracking. Estimated samples could otherwise become false

if more and more about the trajectory is known. To be able to classify at a certain time

instant, the feature’s partial sequence is considered which includes all so far visited ref-

erence vectors. The classification itself is simple. If all reference vectors of the partial

sequence are a subset of the reference vectors of a class, then the feature will belong to

this class. Certainly, a feature can be assigned to more than one class in the beginning of

tracking. While more information of the trajectory is gained, this number decreases until

only one or no class remain in the classification.
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Figure 7.22: The number of the remaining classes in M decreases exponentially with every
merging step. (a) shows the number of merged classes in the highway while (b) depicts the
car park case.

Figure 7.23 shows the classification result for each test feature. For example, con-

sider the left upper figure. It shows the traffic jam feature as black thick line and the

codebook as gray graph in thex/y/t sub-space of the learning space. The correspond-

ing class, which is a sub-graph, is black highlighted and represents the left lane. Indeed,

we have expected this fact, because the feature is on a car which drives on the left lane.

The prohibitively driving vehicles are classified similarly. Instead of the most left, the

most right class is assigned. The second figure in the first row shows the result for the van

which changes the lane while the third figure shows the completely prohibitive driving car.

However, the second row shows the car park results where two unclassified features are

shown. The stopped and back pushed car show traffic patterns which are not represented

by the class models. Therefore, no sub-graphs are highlighted in the first and third figure.

In contrast to that, the second figure shows an unobtrusive driving car. Consequently, it

can be classified.

Beside the classification, the response of the spatio-temporal model with respect

to each test sample has to be evaluated. Figure 7.24 shows the results for the highway

case. The left upper figure depicts the p.d.f. values for a training path. The values are

normalized to 1. All values lie between 0.86 and 1. However, the next figure to the right

shows the consequences of a traffic jam. The p.d.f. values of the model decreases to 0

within 50 frames and remain 0 with frame 100. Interestingly, it increases slightly between

frame 50 and 100. The reason is that people normally brake stronger than necessary if
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Figure 7.23: The first and second row shows the classification results of three chosen fea-
tures from the traffic jam, reserved lane, stopped car and back pushed car tracking data set.
Trajectories are thick black lines. The codebook is shown as gray graph. Corresponding
classes are sub-graphs which are black highlighted.

they see a traffic obstruction in front of them. Therefore, they release their brakes and

accelerate a bit until they finally stop their vehicle. In contrast to that, the first figure in

the second row shows the lane changing van which produces a steady decrease until 0.

Only around frame 60 a slightly increase can be seen. The test samples of the feature fit

the model better in the end, because of the camera’s perspective. The last figure shows

the model response for the wrong driving car. P.d.f. values lie between1.4 · 10−4 and 0.

Figure 7.26 depicts the p.d.f. values of the spatio-temporal model in case of the

car park. Values of a training path lie between 0.3 and 1. This relatively small values

due to the small training set. More complex scenes need far more training samples to

produce an appropriate model. The upper right figure shows the expected p.d.f. values

of the stopping car. As long as the car drives on the main road, the values are above 0.2.

Then, all values are zero, because the car shows an unusual traffic pattern by turning to

the left and stopping. The results of the normal driving car are shown in the first figure
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of the second row. All values remain above 0.1. The alternating increase and decrease

of the values can be explained by the alternating proximity and distance to a reference

vector. Finally, the last figure shows the results of the back pushed car. It is most of the

time outside the spatio-temporal model except the frames where it turns from the left of

the intersection into the main road.

7.6 Conclusion

To sum up, 2 training sample sets and 2 sub-sets were generated from two distinct scenes,

namely a highway and a car park. Besides, unusual events like a traffic jam or a back-

pushing car were used to test the capability of the spatio-temporal model and the classi-

fication. We showed that obvious outlier detection principally works with the given data

during the generation. Thresholdκ was chosen by hand after investigating the histograms.

Manual threshold selection could be avoided by rejecting a fixed percentage (e.g.15%)

of the training trajectories. The next chapter will further discuss this idea. Furthermore,

noise reduction was demonstrated by a synthetic example.

Then, both training sample sets were used to create spatio-temporal models. All

lanes of the highway and the main road of the car park were represented. Spatio-temporal

outliers were found and the codebook could be minimized. The choice ofσ is determined

by an interval where the number of outliers stagnate. The robustness of learning depends

primary on the learning steps while the accuracy of the spatio-temporal model depends

mainly on the number of training samples.

Classification delivered the expected 3 classes in the highway case. 4 classes were

found in the car park scene. The algorithm recognized successfully the different patterns

of traffic behaviour in both scenes.

Finally, we evaluated for every unusual event the normalized p.d.f. value and the

class of the corresponding feature. The results met our expectations.
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Figure 7.24: The results of the spatio-temporal model response with respect to the test
samples of the highway scene are shown. The upper left figure shows a randomly chosen
training path. The upper right figure depicts the p.d.f. values of the traffic jam feature. The
lower left figure shows the feature on a van which changes to the reserved lane. The lower
right figure shows a wrong driving car.

(a) Traffic jam (b) Changing to reserved
lane

(c) Driving on reserved
lane

Figure 7.25: The feature trajectories for testing are shown. (a) shows a feature in the traffic
jam. (b) shows a feature on a van which changes to the reserved lane. (c) shows a feature
trajectory of a car which drives wrongly.
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Figure 7.26: The results of the spatio-temporal model response with respect to the test
samples of the car park scene are shown. The upper left figure shows the p.d.f. values
of a randomly chosen training path. Then, the upper right figure shows the stopped car.
The lower left figure shows the unobtrusive car while the lower right figure depicts the back
pushed car.

(a) Stopping car (b) Unobtrusive car (c) Pushing-back car

Figure 7.27: The feature trajectories for testing are shown. (a) shows a feature on the
stopped car. (b) shows a feature on a an unobtrusive, normal driving car. (c) shows a
feature on the back pushed car.



Chapter 8

Discussion

This thesis presented unusual traffic event recognition (e.g. traffic jams, prohibitively

driving vehicles) by using a spatio-temporal model of traffic behaviour. The latter is

the probability density function (p.d.f.) in a learning space which is build by training

samples of normal traffic. These samples are generated by tracking data which is collected

by a visual interest-point tracking algorithm (KLT-tracker). Interest-points are features

on vehicles which are detected in a user-defined detection region and pursued within a

tracking area in a static camera scene. In fact, features represent vehicles but do not

identify them. The way a feature takes through the image is called trajectory. It only is

a measured trajectory, because features positions are noisy due to the properties of the

tracker. A set of trajectories is then the tracking data.

The spatio-temporal model is learnt by unsupervised learning. In contrast to other

works, we used a Growing Neural Gas in combination with a MDL-based pruning al-

gorithm as p.d.f. estimator of the learning space. First, obvious outliers in the tracking

data are eliminated. Then, smoothing splines are used to approximate the trajectories.

The reasons are the reduction of noise and the possibility of re-sampling the trajectory as

the density of the learning space should only depend on the abode probability of features.

An advantage of the MDL-based pruning algorithm is that spatio-temporal outliers are de-

tected. Thus, they do not influence the codebook of reference vectors which is the result of

unsupervised learning. Each sample is represented by the nearest reference vector. Then,

the sum of spheral Gaussians according to the Euclidean distance is the spatio-temporal

model.

We showed that it is not sufficient to recognize correctly unusual events. It only
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describes normal traffic behaviour in a point of the learning space. In fact, the properties of

trajectories are not considered. Therefore, we quantize every trajectory of the training data

into sequences of reference vectors. In a first incremental step, two sequences belong to

the same behaviour class if they are identical. Then, classes are merged by an equivalence

constraint. Two classes are equivalent, if either reference vectors of one class also occur

in the other class or at least an edge of the topology graph connects distinct reference

vectors of both classes. The topology can be interpreted as neighborhood of reference

vectors. This merging step is iteratively done until the set of classes do not change any

more.

The spatio-temporal model and the behaviour classes were then used to evaluate

some case studies. Examples of a traffic jam, vehicles on the reserved lane or a car which

stopped for an unusual time showed that the comparison of the actual traffic behaviour

with the spatio-temporal model is able to recognize unusual events.

To sum up, the tracker showed satisfying results in daylight under good illumina-

tion conditions. Our experiences correspond to the results of Beymer et al. who also used

a comparable tracking approach. They showed that it is even possible to group features

together. Thus, vehicles can be identified and counted. Other traffic parameters like speed

were also evaluated. Unfortunately, under bad conditions like reflections in tunnels the

tracker showed its weakness. As feature correspondence between two frames is estab-

lished by intensity values, the approach is inherently sensitive to noise. Thus, features get

lost or caught by other vehicles or the background. However, features on vehicles allow

tracking of heavily congested traffic. All other region or blob based tracking methods fail

in case of occluded vehicles.

In contrast to Johnson and Hogg, Stauffer and Grimson, we overcome the problem

of ”stranded” reference vectors by using a soft-competitive unsupervised learning algo-

rithm. Furthermore, we do not define a fixed number of reference vectors. Instead, an

optimal number which depends on the training data is found by the MDL criterium. Be-

side the pruning algorithm detects spatio-temporal outliers. Certainly, a weakness of the

current implementation is its off-line nature. Thus, a finite number of features have to be

tracked and stored to generate the codebook.

Interestingly, the learning alone produces behaviour classes, because the topology

graph is under closer consideration a forest. Each component represents one behaviour

class. To use the topology, which is simultaneously learned with the codebook, for clas-

sification is a novel approach and was not considered by previous works. To have a

grainer classification we developed an incremental and merging algorithm. We showed
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successfully that traffic behaviour can be analyzed and classified. The only drawback is

the quadratic complexity of the algorithms. Nevertheless, the algorithms are straight for-

ward, because only comparisons have to be done. All other works presented algorithms

which estimate the classes by a learning scheme. This is not only more computational

expensive, it also introduces further inaccuracies into the computation.

8.1 Future work

To improve the tracker with respect to illumination we could use improved KLT-Trackers

like it is discussed in Jin et al. [21]. Nevertheless, the problem illumination and noise can-

not be solved by this type of tracker, because the assumption of nearly static illumination

further exists. Thus, new tracking concepts which probably have only the assumption

of static geometry have to be found. Robust tracking algorithms under all conditions

(reflections, weather conditions) which allow occlusions are still an open question.

The obvious temporal outlier detection could also be improved. A threshold could

be neglected if the modes of the histogram could be found automatically. Then, a corre-

sponding number of features are chosen around this modes. This number results from the

number of remaining temporal outliers which can be defined as a fixed percentage of the

tracking data (e.g. 15%).

As mentioned above, one of the weaknesses of learning and classification is its off-

line implementation. Future works should try to find on-line algorithms. They have not to

be real-time capable like the tracker, because features are used as their whole trajectory is

known. This time depends on the scene but is normally some seconds. Certainly, then a

couple of features could be available as tracking data. Also the obvious temporal outlier

detection has to be modified, because it bases on the statistics of the life-time. A solution

could be a first step of gathering statistical information by collecting tracking data. Then,

in a second step the generation of the training data and the learning is done.

The decision about an unusual event was not answered at all by this thesis. During

the use of this recognition system, the properties of every actual feature are compared

to the spatio-temporal model. Furthermore, the actual trajectories are classified by the

behaviour classes. If no classification is possible or the probability value of the model

drops below a certain threshold, the feature indicates an unusual event. Indeed, it could

also be an outlier. Therefore, a robust fusion of feature responses should be performed to

get reliability of the recognition system. Unfortunately, if we use only such a threshold
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for the model’s probability we cannot differ between traffic jams or other unusual events.

Perhaps it is possible to interpret the probability values if we consider them as time series.

Then, symbolic traffic information could be collected and stores in a database for further

use.
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