Dissertation

THE WAYFINDING METAPHOR—
COMPARING THE SEMANTICSOF WAYFINDING IN THE

PHYSICAL WORLD AND THE WWW

ausgefuhrt zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften unter der Leitung von

O.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Frank
E127

Institut fir Geoinformation und Landesvermessung

eingereicht an der Technischen Universitét Wien

Fakultét fur Technische Naturwissenschaften und Informatik
von
Dipl.-Ing. Mag. art. Hartwig Hochmair
Matrikelnummer 9272156

Margaretenstral3e 52/12a
1040 Wien

Wien, Juni 2002

Dissertation

THE WAYFINDING METAPHOR—
COMPARING THE SEMANTICSOF WAYFINDING IN THE
PHYSICAL WORLD AND THE WWW

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

submitted to the Vienna University of Technology

Faculty of Science and Informatics

by

Dipl.-Ing. Mag. art. Hartwig Hochmair
Margaretenstral3e 52/12a
1040 Wien

Advisory Committee:

Univ.Prof. Dipl.-Ing. Dr.techn. Andrew U. Frank
Institute for Geoinformation

Vienna University of Technology

Univ.Prof. Dipl.-Ing. Dr.techn. Werner Kuhn
Institute for Geoinformatics

University of Minster, Germany

Vienna, June 2002

For my father

per aspera ad astra

ABSTRACT

Wayfinding is a common human task. The terms ‘wayfinding and ‘navigation’ are
traditionally associated with an activity that takes place in the real world. The development of
new electronic media induces humans to navigate artificially created environments, e.g., the
World Wide Web (WWW), computer games, or virtua environments. Although real
environment and artificial environment show different features—e.g., in the definition of a
distance between places or in the organization of space—we claim that the concepts of
wayfinding in the real world can aso be found in the WWW.

A goal of the thesis is to determine what the term wayfinding means, i.e., to describe the
semantics of wayfinding. Analyzing severa wayfinding definitionsin literature we found that
there is no unique meaning for the term wayfinding, although there seem to be some core
properties of the underlying process. Therefore we consider wayfinding to represent a radial
category. From the definitions analyzed we get the centra meaning of wayfinding, and
describe it through a set of axioms. The axioms define constraints on agent and environment.
If the axioms are satisfied, the activity performed by the agent describes a wayfinding
process.

Another goal of the thesisis to show that within the wayfinding metaphor, the semantics
of wayfinding is similar for both the real world and the WWW. We hereby abstract the
conceptual wayfinding model through algebraic specifications and give two parallel
instantiations. We show that both instantiations satisfy the axioms, and thus the term
‘wayfinding’ can also be used for the Web space—expressing a similar semantics as in the
physical world.

The axioms are invariant under the applied strategy and the type of environment.
Therefore we can choose any wayfinding strategy that is capable of coping the wayfinding
tasks given in the two cases studies (where the environment is unknown to the agent). The
chosen wayfinding strategy relies on ‘information in the world’ and applies a semantic
decision criterion. A wayfinding simulation shows that the formal algebraic specifications of
the agent-based model are executable.

KURZFASSUNG

Wegesuche ist ein Teil des taglichen Lebens. Die Begriffe Wegesuche und Navigation werden
traditionsgemad mit der realen Welt assoziiert. Durch die Anwendung von neuen
Technologien findet Wegesuche auch in kinstlich geschaffenen Umgebungen statt (z.B. im
World Wide Web, in Computerspielen oder in der virtual reality). Obwohl sich reale Welt und
kinstlich geschaffene Umgebung in bestimmten Punkten unterscheiden—wie etwa in der
Definition von Distanzen oder in der Strukturierung des Raumes—nehmen wir an, dass die
wesentlichen Konzepte, die den Wegesuche-Prozess in der realen Welt beschreiben, auch im
WWW angewendet werden kénnen.

Ein Ziel der vorliegenden Arbeit ist es, die Bedeutung des Begriffs Wegesuche zu
klaren. Durch die Analyse von verschiedenen Wegesuche-Definitionen haben wir festgestellt,
dass Wegesuche kein eindeutig beschreibbarer Prozess ist. Trotzdem scheint es enige
zentrale Eigenschaften eines Wegesuche-Prozesses zu geben. Daher sehen wir den Begriff
Wegesuche als Vertreter einer radialen Kategorie. Aus den verschiedenen Wegesuche-
Definitionen extrahieren wir die zentralen Eigenschaften von Wegesuche und beschreiben
diese mit Hilfe von Axiomen. Die Axiome stellen bestimmte Anforderungen an den Agenten
und seine Umgebung. Wenn diese erfillt sind, kann man den beschriebenen Prozess as
Wegesuche bezeichnen.

Ein weiteres Ziel der Arbeit ist es, zu zeigen, dass durch die Wegesuche-Metapher die
Bedeutung des Begriffs Wegesuche sowohl in der realen Welt as auch im Web-Raum eine
dhnliche ist. Dazu formalisieren wir das konzeptuelle Wegesuche-Modell mittels
algebraischer Spezifikationen, welche fur zwei Typen von Agent und Umgebung instanziiert
werden. Wir zeigen, dass beide Instanzen die Wegesuche-Axiome erfullen und daher der
Begriff Wegesuche auch im Web-Raum sinnvoll angewendet werden kann—und zwar in einer
ahnlichen Bedeutung, wie er sie auch in der realen Welt hat.

Die Axiome sind unabhangig von verwendeter Wegesuche-Strategie und Art der
Umgebung. Deshalb konnen wir dem modellierten Agenten eine beliebige Strategie zur
Losung des Wegesuche-Problems, das ihm in einer Simulation gestellt wird, geben. Dabel
bewegt sich der Agent in einer ihm unbekannten Umgebung. In seinem Entscheidungsprozess
verwendet der Agent Information aus der Umgebung und trifft die Entscheidungen
vorzugsweise aufgrund semantischer Kriterien. Die Simulation zeigt, dass die algebraischen

Spezifikationen ausfuhrbar sind.

ACKNOWLEDGEMENTS

Writing a dissertation is along journey. Finally reaching the destination would not have been
possible without the support of a number of people.

First of al | want to thank my advisor Andrew Frank for his encouraging discussions
throughout the last years. Some insight in his broad and interdisciplinary knowledge helped
me to find ways out of dead ends, and circumnavigate research cliffs and obstacles along the
way. The research directions and approaches he suggested were essential for writing this
work. | also want to thank my second advisor, Werner Kuhn, who provided me with
comments and suggestions for improvement.

| appreciated the discussions with my colleagues of the institute about my topic. Here, |
want to thank my former roommate Martin Raubal, who patiently listened to all my questions
and shared much of his experience with me. | think that we spent some good years together.
Further thanks go to Gerhard Navratil and Andreas Grinbacher for their formal help.

| also want to thank Albert McMahon who helped me to improve the grammar and style
on some sections of this treatise.

Last but not least | want to thank my parents for their encouraging words throughout all
the past years. They supported me in all my decisions, let me go my own way, and gave me
the feeling to do the right thing. | am sure that my father would have also been proud of mein
this moment.

TABLE OF CONTENTS

1. Introduction 1
1.1 Motivation 1
1.2 Hypothesis 1
1.3 Approach 2
1.4 Contribution of the Thesis 3
15 Audience 4
1.6 Organization of the Thesis 4

2. TheCase Studies: Wayfinding in Airportsand the WWW 7
2.1 Airport Environment 8

211 Setting and Task 8
21.2 Ontology of the Airport Environment 9
213 Semantic and Metric Information in the Airport Environment 10
214 The Abstract Simulated Test Area 12
2.2 The Case Study in the World Wide Web 13
221 What is the World Wide Web? 13
222 Searching Tactics in the WWW 14
223 Setting and Task 16
224 Ontology of the WWW Environment 17
225 Semantic and Metric Information in the WWW Environment 18
2.2.6 The Abstract Simulated Test Area 18
2.3 Comparing the Abstract Environments 21
24 Summary 22

3. Contributing Disciplines 23

3.1 Metaphors 23
311 What are Metaphors ? 23
3.1.2 Classification of Metaphors 24
313 The Mapping of Semantics with Metaphors 25
314 Formal Approaches of Expressing a Metaphor 27

3.2 Wayfinding 28
321 What is Wayfinding? 28
322 Cognitive Models of Space 31
323 Epistemology—The Use of Affordances for Wayfinding in Airports and the WWW 33
324 Spatial Decision Making and Wayfinding Strategies 36
3.25 Simulating Human Wayfinding 38

3.3 Agent Theory 39
331 The Term ‘agent’ 39
3.3.2 Abstract Architectures of Agents 41
333 A Two-tiered Conceptual Model 42
334 The Sense-Plan-Act Paradigm 43
335 Basic Operations of an Agent-System 43
3.3.6 Properties of an Environment 45

34 Summary 47

4. Formal Tools 49

41 Algebraic Specifications 49
411 Definition 49
412 Example 50

4.2 Morphisms 51
421 Signature-Morphism 52
422 Homomorphism 53
423 Isomorphism 55
424 Morphisms in Formalized Metaphors 56

4.3 Morphismsin the Wayfinding Model 59

4.4 Category Theory 60
441 Definition 60
442 Functors 61

45 Type Systems and Polymorphism 63

451 Why Do We Need Type Systems? 63

452 Type Inference and Strong Typing

63

453 Polymorphism

454 Algebraic Data Types

65

455 Data Types and Functors

68

4.6 Functiona Programming

70

4.6.1 Each Expression Is a Function

70

46.2 No Side-Effects

71

4.6.3 Higher-order Functions

71

4.6.4 Why We Use a Functional Programming Language

72

4.7 Haskell

73

47.1 Classes

73

4.7.2 Instances

74

4.7.3 Classes with Multiple Parameters

75

4.7.4 Context

75

475 Pattern Matching

76

4.8 Graph Theory

78

48.1 Definitions

78

482 Shortest-Path Algorithms

79

49 Summary

80

The Wayfinding Axioms

81

5.1 Informal Description

81

511 First Axiom: Decision Points

81

51.2 Second Axiom: The Agent Has a Goal

82

5.1.3 Third Axiom: Moving Towards a Goal

82

514 Fourth Axiom: No Impact on Environment

83

515 Fifth Axiom: Order of Actions

83

5.2 Formal Description

85

53 Excluded Features

87

54 Summary

88

Conceptual Featuresof The Wayfinding Agent

89

6.1 The Structure of the Wayfinding Agent

89

6.2 The Cognitive Map

90

6.2.1 The Role of a Cognitive Map for Wayfinding

90

6.2.2 The Cognitive Map of the Airport Navigating Agent
6.2.3 The Cognitive Map of the WWW Navigating Agent
6.2.4 Comparing the Cognitive Maps of Both Agents

91

92

98

6.3 The Decision Making Process

99

6.4 Summary

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW

7.1 World

7.11 Structure of the World

7.12 Operationsin the World

7.2 The Environment

721 Nodes
722 Edges
7.2.3 Graphs

7.3 Agent Structure

7.3.1 Fact and Beliefs

7.3.2 Mental Position

7.33 Cognitive Map

734 Perception

7.35 Decision

7.3.6 Preferences

7.3.7 Incoming Direction

7.4 Externa Operations

7.4.1 Class Definition and Derived Functions

7.4.2 The Class Context

743 The Semantics of the External Operations

7.5 TheAgent’s Decision Process: An Internal Operation

751 Sub-Processes of Semantic Decision Making

7.5.2 Moving Towards the Goal

7.5.3 The Semantic Distance to the Goal

100

101
102
102
102
103
103
104
105
105
105
106
107
107
107
107
107
108
108
108
110
111
112
112
114

Vi

754 Combining the Sub-steps

7.6 Summary

8. Discussing the Computational M odel

8.1 Verification of the Wayfinding Axioms

8.2 Totality: Mappings and Functions

821 Totality of Mapping

8.2.2 Totality of Functions

8.3 Comparing Theory and Implementation

84 Summary

9. Simulation of the Wayfinding Processin an Airport Environment and the WWW

9.1 The Environments

9.1.1 Area of the Simulated Airport Environment
9.1.2 Area of the Simulated WWW Environment

9.2 TheAgents

921 Creating the Agent’s Cognitive Map

9.2.2 Creating the Agent

9.3 The World

9.4 Running the Simulation

9.4.1 Wayfinding in the Airport

9.4.2 Wayfinding in the WWW

9.5 Summary

10. Conclusions and Future Work

10.1 Summary

10.2 Resultsand Magjor Findings

10.2.1 The Semantics of Wayfinding

10.2.2 Formalized Wayfinding Model
10.3 Future Work and Open Questions

References

Appendix

Biography of the Author

116
117

118
118
119
119
120
121
122

123
123
123
125
126
126
127
128
129
129
133
138

139
139
141
142
142
143

146
152
169

vii

Introduction 1

INTRODUCTION
CHAPTER

1

1.1 Motivation

The internet-jargon uses many metaphors that stem from the domain of wayfinding in the
physical world. Examples are move to the previous web site, to be lost, visit aweb page, find a
web page, or navigate the WWW. Wayfinding, like many other everyday metaphors, is amost
invisible as we understand it immediately. But what makes common metaphors so easy to be
used? We think that the secret can be found in a small number of axioms which define the
semantics of the source domain of a metaphor and which are also satisfied in the target
domain. We explore if such axioms exist for the process of wayfinding, and if this core of the
wayfinding metaphor can be represented formally. If this method was possible in general,
abstract domains (e.g., a user interface) may be checked for the correct use of a specific
metaphor. We will see that, on an abstract level, a metaphor can be described through a
functor, i.e., a homomorphism between two categories, and that the semantics of a source
domain can be defined by the behavior of its operations.

As the WWW has rapidly grown over the last decade, web navigation plays an
increasing role in humans everyday life. Based on their searching habits, “an alarming
number of web users are not particularly efficient at reaching their online destinations’
(Pastore 2001). This lack of efficiency is partly based on missing wayfinding concepts in the
WWW. We assume that consideration of user needs and implementing user concepts of
navigating the real world into the WWW may help to make the WWW easier to navigate. For
this reason, it is important to determine what wayfinding exactly is. Metaphors have become
an essential feature of human-computer interaction (Carroll and Rosson 1994) and represent a
necessary ingredient to almost any user interface.

1.2 Hypothesis

Many metaphors are used for activities that take place in the internet. Metaphors map
semantics from one domain to the other. An important part of this metaphor concept is
therefore the task, how the semantics of the source domain can be defined. We focus on the
wayfinding metaphor and explore the semantics of the term wayfinding.

Introduction 2

The hypothesis of this work is: The semantics of the term wayfinding can be defined
through a set of axioms. The axioms describe minimum requirements on a domain to support
a wayfinding process. This set of axioms needs to be satisfied in the source and the target
domain so that the term *wayfinding’ is correctly used as a metaphor.

The axioms will be shown to be invariant under the chosen wayfinding strategy and the
type of environment.

1.3 Approach

The approach we use to explain the wayfinding metaphor is twofold. First, we find a set of
axioms that define minimum requirements on property and behavior of a domain so that the
process it defines can be called wayfinding. The axioms hereby refer to wayfinding in the real,
physical world. For creating the axioms we use wayfinding definitions found in literature,
which do not provide one unique meaning of the term ‘wayfinding’, although central elements
can be found. Therefore the wayfinding process can be seen as a radial category. As thereis
no unique opinion about what exactly wayfinding is, the presented axioms cannot describe the
correct constraints on a domain to describe a wayfinding process. The axioms rather cover a
common and convenient meaning of wayfinding.

Second, we want to show that the axioms are satisfied within the WWW domain, too.
For this part of the approach, we choose an algebraic wayfinding model that has two parallel
instantiations, one for an abstract real world (an airport domain) and one for an abstract Web
environment (a small part of the Yahoo search engine domain). We need to show that the
wayfinding axioms—that are based on human wayfinding in the real world—are satisfied for
both instances. We hereby try to express conceptual similarities between both instances with
polymorph data types and polymorph functions. Using such formal tools, on the one side,
demonstrates homomorph mappings between both domains, and on the other side, reduces the
effort for the proof that both instantiations satisfy the wayfinding axioms. We demonstrate the
conceptual similarity of wayfinding in the real world and the WWW on a formal level with
the help of algebraic concepts.

Previous work in human wayfinding, metaphor theory, cognition, psychology, and
philosophy, and existing cognitively-based computational models for wayfinding serve as a
foundation for the development of the agent-based wayfinding model. We use specific
concepts from the fields of artificial intelligence (i.e., agents, semantic networks), ecological
psychology (i.e., affordances), computer science (i.e., interface design, WWW), and cognitive
science (i.e., information processing) to design the process model. Forma tools, such as

Introduction 3

category theory, data type theory, and the theory of algebras, are the basis for the discussion
of metaphors on an abstract level.

The simulation is developed as an executable specification in Haskell (Thompson
1996), a functional programming language with a syntax close to ordinary algebra. The
prototype allows us to simulate the proposed wayfinding strategy of human wayfinding in an
airport-environment and the WWW.

1.4 Contribution of the Thesis

The maor contribution of this thesis is the ability not only to explain how a given metaphor
works—which has in various approaches already been achieved (e.g., by Lakoff and Johnson
1980; Carroll, Mack et al. 1988; Fauconnier 1997; Maglio and Matlock 1998) and formalized
(e.g., by MacCormac 1985; Kuhn and Frank 1991; Goguen 1999)—but also why certain
metaphors do not exist. Let us assume some examples in the German language. The
trandation into English is printed in brackets:

“Er findet einen Weg, das Problem zu |6sen” (He finds away to solve the problem)

»Er sucht sich mihsam seinen Weg durchs Studium® (He tries to make his way
through his studies)

“Nach langer Krankheit fand die Sangerin zurtick auf die Buhne” (After her illness
she found the way back to her daily working routine)
These metaphors are used correctly and understood by (most) German native speakers. The

next statements may sound somewhat strange:

“Siefindet ihren Weg durchs Leben” (Lifeis searching for away)

“Ich finde meinen Weg durch das Turnier” (I'm trying to find my way through this
tournament)

What we figure out in this thesis is, why examples like the first two mentioned are good
representatives for metaphors, whereas the latter examples cause problems in their use: The
latter examples violate some of the wayfinding axioms. A major task of this thesis is to
provide:

A set of axioms that define the meaning of wayfinding
A formal representation of these axioms

A demonstration of how abstract models can be checked for satisfying these axioms

Introduction 4

A summary of formal concepts that play arole in the mapping of semantics between
two domains

A computational wayfinding model that allows us to formally demonstrate the
metaphorical relation between two domains (i.e., the real world and a Web domain).
The formalized model hereby includes parts of Raubal’s work (Raubal 2001a)—a
model of agent based wayfinding in airport environments.

The role of homomorphism for the metaphor concept can be demonstrated within the
formal model.

1.5 Audience

This exploration of ‘wayfinding' involves several scientific fields. Due to the inclusion of a
‘physical world’ realm, a *“WWW’ realm, and the metaphorical connection between these two
spaces, the work is interdisciplinary and targeted to researchers in the following areas.

Software and web designers, especially those who are responsible for designing the
navigation interface: They can use the basic method proposed in the thesis (axioms,
formalization, proof) for checking any metaphor for its correct use in the user
interface.

Linguists: We show how a metaphor can be formally defined. The method describes
the domains of a metaphor independent of a specific natural language and therefore
has a high grade of generdlity.

Cognitive scientists and psychologists can apply the perceptual wayfinding model in
research on human wayfinding behavior in unfamiliar environments. The model can
function as a starting point for human subjects testing in this area.

Researchers in artificial intelligence: They can use the formalized agent-based model
for an increasing domain of people’s everyday lives, namely navigation in the
WWW.

1.6 Organization of the Thesis

In the next chapter we present the two case studies employed in this thesis, i.e., wayfinding at
the Vienna International Airport and wayfinding in the directories of the Y ahoo-domain. We
describe the particulars of wayfinding in an airport and the WWW and the ontology of both
domains. We give a description of the settings and an abstraction of the test area. Further, we
specify the wayfinding task for both types of agents.

Introduction 5

Chapter 3 reviews previous research in related disciplines. We look at the historical
understanding of the role of metaphor in human life, and discuss some models that describe
the mapping of semantics between domains with the help of metaphors, including formal
approaches. We review scientific fields concerning the modelling of wayfinding, covering
wayfinding definitions, cognitive models of space, decision making, epistemological
concerns, and existing computational models. Further we introduce agent theory including
abstract models of agents and their environments.

In chapter 4 we look at those formal tools that we need to build the computational
model of the wayfinding agent and that provide a basis for the description of the wayfinding
metaphor on an abstract level. We discuss the role of morphism, category theory, and
polymorphism in respect to metaphors, and introduce the functional programming language
Haskell.

In chapter 5 we define those axioms that express the minimum requirements on agent
and environment so that the described activity can be considered as wayfinding process. The
axioms are based on analyzed wayfinding definitions. The formalization of the axioms
provides a high grade of generality which in turn alows us to map the axioms from the
physical world to abstract domains.

In chapter 6 we discuss conceptual features of the wayfinding agent including the
agent’s structure, cognitive map, and decision strategy. We hereby point out commonalities
between the concepts used in the two instantiations of the agent. We look at the requirements
concerning content and design of the agent's cognitive map with respect to a given
wayfinding task.

In chapter 7 we develop a formalized wayfinding model that is based on the conceptual
model for perceptual wayfinding. The features from the domains (i.e., airport and WWW) are
separated into two paralel instantiations. In the description of the forma model we focus on
those parts that are fundamental for the verification of the wayfinding axioms.

Chapter 8 discusses the formal model on several points. We summarize the verification
of the wayfinding axioms for both instantiations. We discuss the totality of operations and the
totality of morphisms between both instantiations in the formal model. Further, we look at
which of the theoretical aspects of formalizing a metaphor have been in fact realized in the
formal model and have been used to express the wayfinding metaphor.

In chapter 9 we simulate wayfinding at the Vienna International Airport and in the
Y ahoo-domain. We hereby feed the formalized wayfinding models with two different data
sets. The simulation checks if the formal model is executable for both instantiations of agent

Introduction 6

and environment. We compare and analyze decisions made by both types of agent within the
simulation.

Chapter 10 presents the conclusions and directions for future work. The appendix shows
the complete Haskell code of the agent based wayfinding model.

The Case Studies: Wayfinding in Airports and the WWW 7

THE CASE STUDIES: WAYFEINDING
INAIRPORTS AND THE W\
CHAPTER

2

We use two case studies that clarify the concepts and mechanisms underlying a wayfinding
process. Wayfinding¥athe agents' tasks in the two case studies mentioned here¥zis just an
example for one of many metaphors and therefore a contribution to the long quest for a
definition of what a metaphor is (Fauconnier and Turner 1998). The case study introduced in
this section demonstrates that the meaning of a term can be mapped from the real world to
another domain, keeping its conceptual features, and therefore expressing a metaphor.

The first case study describes a wayfinding task at the Vienna International Airport
(VIE). Raubal’s PhD-thesis (Raubal 2001a) focuses on a conceptual model of understanding
signage at airports, the informational needs of the navigator at decision points, and how the
perceived information can be used for wayfinding in an unknown airport environment. His
work further classifies potential errors of the signage in airports. In contrast to Raubal, this
thesis does not focus on details of signage and errors but intends to show that the basic
operations of the wayfinding process are also used in the WWW, i.e, that the wayfinding
metaphor maps this set of basic operations from the physical world to the WWW. The second
case study is situated in the portal of the Yahoo-directories in the WWW. It describes an
agent’ stask to find a Web page of a specific content within the directory structure.

Both, wayfinding in an airport environment and searching the directories of a Web
portal are two specific modes of wayfinding. Within the two instantiations in the formalized
model, we show that particularities of the two domains and task specific instantiations (i.e.,
those features that are expressing additional functionality compared to the wayfinding
axioms) are not taken into consideration during the proof of satisfying the wayfinding axioms,
and therefore do not play arole in defining the wayfinding metaphor.

The ontology of the environment plays an important role for wayfinding, as the percepts
from the environment function as input for the decision making process. For each of the two

settings we will discuss the ontology and its abstractions for the wayfinding model.

For the conceptualization and simulation of the wayfinding process we presume the

following:

The navigator has never visited the environment before.

The Case Studies: Wayfinding in Airports and the WWW 8

The navigator does not have a map with information about the environment.

Communication with other passengers is not included, i.e., the navigator cannot ask
another person the way to his goal.

2.1 Airport Environment

2.1.1 Setting and Task

The first case study is situated in the departure level of Termina 1 in the Vienna International
Airport (VIE). Figure 1 shows the central part of the departure level indicating the major
possibilities for passengers movements.

Ebene Afhmeben
u‘m P Vsl i gj

Nicht-Schengen / Schengen
MNon Schengen 3o e Gates C 51-C 62
Fasskontrolle
~Passpart Dantrod 2

Gates A1 .Aw;/ #r, , .
: — e Gates B 22 - B 43
¢ I'ﬂ-g i Bl || - = L
ﬁi- ‘\\.\ .m* ;;/ i
-_— g g F ¥

: b W,

| e ﬁ%‘rﬁ'ﬁ?ﬂf’% L
il

g B i
|"_| . Bwlﬂuwn Chegk-in
Chedrzl

[L et R o
-
L s B a -

errminal i
Fluglinien-Verkautsschalier /

A

Airling Sales Countars

Figure 1: Central part of the departure level at VIE (from Raubal 2001a)

When planning to flight departure from the airport, passengers first have to check in their
luggage at one of the check-in counters after which they receive a boarding pass, which tells
them their boarding gate and the latest time by which they must arrive at this gate. The gates
are labeled with the letters A, B, or C—denoting the three different gate areas at VIE—and a
number. The navigator’s task in our case study is to find the way from one of the check-in
counters to the gate ‘C 54’ which is located in the Schengen-terminal of the airport (upper-
right corner in Figure 1).

As the environment is unknown to the simulated passenger, he relies partly on his
general topological knowledge of airport environments (‘knowledge in the head'), and
navigational cues from the environment (‘knowledge in the world’) (Norman 1988). The
wayfinding strategy that the agent applies will be discussed in section 6.3.

The Case Studies: Wayfinding in Airports and the WWW 9

2.1.2 Ontology of the Airport Environment

Before we explain the ontology of airport environments it is necessary to clarify the term
ontology, as there exist several views about what ontology is. By defining the ontology of a
specific domain, one describes what is in this domain in a general way (Gruber 1993). From
an Artificial Intelligence (Al) approach, ontologies are content theories which identify
specific classes of objects and relations that exist in some domain (Chandrasekaran,
Josephson et al. 1999). In its most prevalent use in Al, an ontology refers to engineering
artifacts, constituted by a specific vocabulary used to describe a certain reality, plus a set of
explicit assumptions regarding the intended meaning of the vocabulary. In a more
philosophical sense, ontology represents a subfield of philosophy, which can be defined as the
science of what is: the science of various types and categories of objects and relations in all
realms of being (Smith 2001a). Ontology in simple terms, attempts to classify entities. It deals
with the question which basic kinds of things exist. The basic kinds of things are known as
categories. The system of types and categories does not depend on a particular language:
Aristotle’s ontology is always the same, independent of the language used to describe it.
Philosopher-ontol ogists are concerned with the things themselves (the objects, properties and
relations, the states, events and processes) within a given domain. Contrarily, ontological
engineers are concerned rather with languages, descriptions, or concepts, and with software
representations constructed to a given domain, or with representations in people's heads
(Smith 2001b). To solve terminological impasse between these two meanings of ontology,
Guarino (1997) introduces the term conceptualization for the philosophical reading, using the
term ontology for the Al reading.

In his wayfinding model on airports, Raubal (2001a) uses the term ‘ontology’ in
Gruber's sensg, i.e., as a description of what is in a specific domain or microworld in a
general way. Following Gibson’s approach (Gibson 1979), Raubal subdivides the wayfinding
environment into medium, substances, and surfaces and constructs the ontology of
navigational elements from interviews in which people described their experiences during
wayfinding in airports (Raubal, Egenhofer et al. 1997). This method is based on ontology
from texts. A taxonomy of substances that is based on “IS-A” relations which allows making
transitive inferences is given in (Raubal 2001b). Among the non-cognizing objects of an
airport it distinguishes between bona-fide objects (architectural component, information
device, counter, gate) and fiat objects (area, navigational elements).

Aristotle characterizes everything that exists into certain categories. substance, quality,
guantity, relation, etc. Substance (a synonymous for ‘individuals’) is prior to the other
categories since substances exist as separate entities, while the other categories exist only as

The Case Studies: Wayfinding in Airports and the WWW 10

the qualities of substance. For each substance there is one or more qualities which are
inseparable from it. Thiswould be its essence, its essential quality.

For the proposed ssimulated wayfinding strategy used in this thesis, gates, information
devices (signs), and navigational elements (decision points and paths), are the objects with
which the agent interacts during his wayfinding process. All other substances in the discussed
hierarchy, such as airport staff, terminal, or recreational areas, are excluded from the abstract
environment in the computational model.

We consider the semantic information represented on signs as a separate layer of
ontology (besides the substances), as this layer describes a logical structure of the airport
environment in a semantic way. The structure of this layer will be discussed in the next
section. Thus, we have following classification within the airport ontology:

Layer of substances

Layer of semantic structure (represented through information on airport signs)

2.1.3 Semantic and Metric Information in the Airport Environment

As well as semantic information, the metric of the environment plays a role in the simulated
decison making process. Signs are essentia information devices, as they represent
‘knowledge in the world” (Norman 1988) and allow the agent to make wayfinding decisions
that lead him closer to the goal. A sign is attached to a corridor which leads towards the
gate(s) displayed on the sign. The gate signs can be classified into three categories (Raubal
2001b):

signswith asingle content (e.g., ‘A’, ‘C54’)

signswith alist of content (e.g., ‘C52, C53', ‘A,C’)

signswith arange (e.g., ' C52-C54’, *‘A-C’)
Concerning the number of attached signs and the usability for the decision process we classify
corridors (we abstract them as edges between nodes in the computational model) into three

categories (Figure 2). An edge can have a sign on none of its nodes, on one of its nodes, or on
both nodes.

(@ No signpost is attached to either of the two nodes. The edge as topological
connection between two nodes exists, but there is no information available (at
either of the two nodes) that could be used as semantic input for the decision
making process. Thus the edge will not be passed in any direction by the agent.
We call thisanon-labeled edge.

The Case Studies: Wayfinding in Airports and the WWW 11

(b) A signpost is attached to one of the two nodes: Based on the information on the
sign the agent may enter the edge from the node where the signpost is attached
(directed edge).

(c) A signpost is attached to both of the two nodes. The edge can be entered from
both sides (undirected edge).

(Q) l

s2

(©) o<} @hs

Figure 2: Classification of edges after the number of attached signs

2
I AN

The “direction’ of edges in the computational model therefore is defined by the agent’s need
for information from signs, and not through topologic or physical constraints (this also holds
for the WWW case). Thus, the graph itself is undirected in the model.

Besides the topology of a decision point and the number of percelved signs, metric
attributes of outgoing edges (i.e., the configuration) plays a role in the decision process. To
model the influence of metric (i.e., directions) in the decision making process, it is sufficient
to schematize the directions of edges on decision points for the computational model
(Casakin, Barkowsky et a. 2000), e.g., into a schema of 45 degree-angles. Each node can be
given a local reference frame with eight directions (Raubal 2001a), where the direction of
each of the outgoing edges falls into one of the eight directions. Thus, a wayfinding agent is
offered semantic and metric input when reaching a decision point. In the example visualized
in Figure 3, three signs (‘A’, ‘A,C’, and ‘B,C’) can be perceived from the position (indicated
through the black circle), where the angles between the edges (i.e., the signs) are indicated
through curved arrows.

The Case Studies: Wayfinding in Airports and the WWW 12

e5ta nr'-i!ll = ,'11;1-; . ¢‘
Air l'.-".Lh!.x; K ﬁ;‘ﬂ' ‘L - 6 =]
= d - J | |

Ll
s n e &

i G i | . Y

g A i " B,C

b =

) 3 : ‘. “1""\ t_

Figure 3: Perceiving semantic and metric input at a decision point

2.1.4 The Abstract Simulated Test Area

In the selected area, signposts are attached either to one or to both sides of a corridor. Thus,
the simulated environment—which is abstracted as a graph (see section 4.8)—contains
directed and undirected edges (Figure 2). The visualization of the graph for Figure 4 omits
signposts but displays nodes with their IDs, the geometry of these decision points, the position
of the check-in counter (start point), and the agent’sgoal ‘C 54°.

T3
1 10 CH4 gen)

Gates € B1-C 62

p i,
Survice Center B GRERE - BANT o .
- ; .

PLSN o

Figure 4: Environmental graph in the airport area
The test graph contains 11 nodes (including a fictive node O as reference for the agent’s
previous position at the start point) with connecting edges. Table 1 summarizes the mentioned
properties of al edges of the graph line by line. The value in the first column gives the node
ID, the second column gives the direction of the signpost in the local reference frame of the

first node (for a detailed description see Figure 46 in the simulation chapter), the third column
describes the semantic content of the sign. Columns 4-6 describe the same elements for the

The Case Studies: Wayfinding in Airports and the WWW 13

second node of the edge. Either a sign offers metric and semantic information, or it is not
attached (which is expressed through an empty value in the columns ‘Direction of sign’ and
‘Sign content’). Correspondingly, edges in the test environment are undirected or directed.

Position Direction Sign content Position Direction Sign

of Sign of Sign content
1 1 A-D 2 - -
2 0 A,B,C,D 3 - -
3 1 A 4 - -
0 A,C 5 - -
7 B,C 6 - -
4 6 C 5 2 A
5 6 B,C 6 2 A
6 6 B,C 7 - -
7 5 B 8 - -
6 C51-C62 9 - -
9 7 C54 10 - -

Table 1: Directed and undirected edges in the airport graph

2.2 The Case Study in the World Wide Web

2.2.1 What is the World Wide Web?

The World Wide Web (WWW) does not have a physical location like physical environments,
e.g., airports, have. It is “the universe of network-accessible information, an embodiment of
human knowledge”, as the World-Wide-Web Consortium, an organization the Web inventor
Tim Berners-Lee helped found, defines the WWW. A more technical definition defines the
World Wide Web as “all the resources and users on the Internet that are using the Hypertext
Transfer Protocol (HTTP)” (whatis.com 2002).

The Word Wide Web is sometimes considered as identical to the internet. Others define
the WWW as part of the internet, as the internet¥sbesides the WWW3%2also comprises
electronic mail (e-mail) or electronic telephony (chat). An outstanding feature of the WWW is
hypertext, a method of instant cross-referencing. Hypertext is the organization of information
units into connected associations that a user can choose to make. An instance of such an
association is called a link or hypertext link. Most Web browsers underline hypertext links
and represent them in a different color. Hypertext was the main concept that led to the
invention of the World Wide Web.

The Case Studies: Wayfinding in Airports and the WWW 14

The number of web users increases enormously. Industry analysts estimate the number
of World Wide Web users to have climbed to over 150 million in the year 2000 (Figure 5)
(greatlook.com 2002).

200

1590 Millions
of Users
100
Users of
al
PCs \]

E-mail

Other anling |7 199 1o 2000

e 1956
w5 Yean

Figure 5: Worldwide users of the PCs, e-mail, WWW, and other online-services between 1995 and
2000 (from greatlook.com 2002)

A two-year study by Alexa Research (www.alexaresearch.com) has revealed that%s based on
their searching habits¥za high number of web users is not efficient at reaching their online
destinations (Pastore 2001). Matthew Work, vice president of Alexa Research, says that the
study reveals that “for many web users there is a conceptual misunderstanding of how to
effectively navigate the Web”. Considering this remark from a web-designer’s view we can
conclude that essential features being necessary for applying common wayfinding strategies
in the real world are missing in numerous web interfaces. Otherwise, Web users would find
their target web page faster. Although this thesis does not discuss al elements involved in
wayfinding in the real world and the WWW, the contribution of this work is to determine
which basic concepts of wayfinding should also be represented in the Web interface.

2.2.2 Searching Tactics in the WWW

Although the term wayfinding for the physical world is discussed in section 3.2 we classify
searching tactics in the WWW, which is needed to specify the wayfinding task for this case
study. Jul and Furnas (1997) distinguish between two tactics for searching and browsing
activitiesin electronic spaces:

1. querying
2. navigation

Both of these tactics can be applied on various search engines, e.g., Yahoo, Google, or
Altavista (Figure 6). Whereas the first method describes looking for a web page through
entering one or severa search terms in an edit field, the second method describes step-wise
‘clicking-through’ the pages on the Web domain until the desired Web page is found.

The Case Studies: Wayfinding in Airports and the WWW 15

3 Altavista - The Search Company - Microsoft Intemet Explorer von Lycos Europe 2 Google Directory - Microsoft Internet Explorer von Lycos Europe
Datei Beatbeen Ansicht Favoriten Extras 7 Datei Beabeien Ansicht Favoiten Exias 2
s Ei A ke = R &) i
Zuiiick, Vodls Abbrechen Akluslisiren Statssite | Suchen Favoiten Verlauf E Zuriick. oyt Abbrechen Aklualiieren Statsste | Suchen Favoilen Vs Eail
Adiesse [&] hitp: /. alavista. comTner=2 Aciesse [&] hip: /. google comvdibpihi=en
Links &]Suchen 4] Suchoptionen &1 Tripod @] Comundo @] Fireball] Lycos Finance Channel] CHIP on Links @] Suchen @] Suchoptionen @] Tripod @] Comundo @] Fireball 7 Lycos Finance Channel 2] CHIP orline |
Try your search in: lmages + Video » MP&/Audio « News " ™
Search for: Help | Custamize Settings | Family Fitsr is off = 0 O ‘
T ‘Anylonguags 5 Directory
Search Assistant | Advanced Search Web Images Groupe
Tools: Shopping - E-rnail - Translate - Maps - Yellow Pages - Peaple Finder - Search Trends
Breaking news: Bush, an Offense, Says He'll Fight to Ke... New York Times « News search | Google Search - Ditectory Help
Featured Topics: Marketplace The web organized by topic into categories.
$hoppin Hame Refinancing
Electronics, Computers, Software, Toys, More... Insurance Quotes Arts Home Regional
COR & DVD-R Media Mavies, Music, Television C. L Eamily, Asia, Europe, Morth America,..
Travel Careers Sports Book
Flights Cars Hatels Find Jobs Post Jobs Resumes & Mote Business Kids and Teens Science
Industries, Finance, Jobs . Computers, Entertainment, School,.. Biology, Psychology, Physics,
Insurance Home Financing gﬁﬁ:‘ai‘;‘sﬂn
Auto Life Health Refinance Morigage Homeloan | Ger syzned in T Computers News Shopping
Jewelry Gitts Hardvware, Intemnet, Software,... Media, Newspapers, Current Events,... Autos, Clothing, Gifts...
AltaVista Directory:
Autos Music Best Home Loans Games Recreation Society
Buy & Sell Guides Financing tists Genres MP3 Best Web Hostin Board, Roleplaying, Video, Food, Outdoors, Travel, Issues, Penple, Religion,
§6.95 Dormain Narmes
i Quality Personals
Computing People & Chat Quality Perconale Health Reference Sports
Hardware Intemet Sale: Chat Email Persanal Altemative, Fitness, Medicine,... Education, Libraries, Maps, Eiaskethall, Football, Soccer,
Entertainment Personal
Culture Celebrities, Movie: Family,Home, Real Estate
Games Sports

Garnbling Role Playing Videa.. All Sports Baseball Hews

Figure 6: Search engines (Altavista and Google) containing an edit-field for querying, and categories for
navigating

For the second method, the user is offered a number links that represent a categorization of
the content of a Web site. The categories are organized as taxonomies or partonomies. By
clicking on one of the links, the user is moved to a web page describing this category. Then, a
number of sub-categories is offered, and so on. Figure 7 shows how a mouse-click on the
category ‘Health’ on the Y ahoo-portal opens a new Web page with sub categories of ‘Health'.

LS D |

Zurick e Abbrechen Aktualisieren Startsede

a [63‘%-

Suchen Favoriten Werauf E-Mail L
[
inke $]Suchen 4] Suchoptionen €] Tipod @] Comundo & Firebal N - @ ﬁ @ @ 8
J Zuiick | Vemdn: | Abbiechen ARuslsiersn Stamsete | Suchen Favoren Vst
m | Belisse [&] huep: /it yahoo com/Health/
Gteck Emal | Links &]5uchen &1 Suchoptionen @] Triped €] Comunda &]Fiieball @] Lyces Finance Channel €]
Yahoo! Travel i & Instant St
Air, Hotel, Vacations, Cruises W/ Downtload Yahoo! -
Yahoo! Directory
,— 58} Health
@ Autos - 2002 Car Guide, Get a Quote, Sell Your Cay
S Home » Health
Shop Auctions - Awios - Clagsifieds - Shopping - Travel - Vellow Fgs - Mag
Comnect Careers - Chat - Clubs - GeoCities - Crestings - Mail - Members - I}
Personal 4ddr Book - Briefease - Calemdar - My Vahoo! - PayDirsct Fun Categories
Arts & Humanities News & Media + Alternative Medicine (543} « Medicine (5283) New
Literature, EullCover Iv » Chats and Forums (57) » Men's Health (40
Business & Economm Recreati Children's Health (278 + Mental Health (340)
BB, Finance, Shopging. Jobs es (15) + Midwifery (50
er Products and Servicesi@ + News and Media (755
W _th and Dying@ + Nursing (495
Libranes = Dentistry(@) » Nutrition (232}
Regional « Disahilities@ « Organizations (72)
Countries, Regions, US States. » Diseases and Conditions (0454) Mew: 4 Pet Healthi@
Science » Education (60 » Pharmacy (7384) Mewr
. Azimals, Astronony, Engineeting. » Emergency Services (6/2) s Procedures and Therapies (527)
« Employment (1) » Professional Supplies and Servicesia
1 Social Science + Environmental Health (196) » Puhlic Health and Safety (2308 rnew
Elections, Military, Law, Taxes ‘Archaeslogy, Economics, Languag] o First Aid ({8 + Reference (73)
Health Society & Culture » Fitness (743) » Reproductive Health (744}
Medicine, Diseases, Drugs, Fitness. . People, Environment, Religion » General Health (7.} New » Senior Health (59)
» Health Administration () » Sexuality@
«+ Health Care (341} « Teen Health (28)
« Health Sciences (35} » Traditional Medicine (208}

Figure 7: Clicking on a category to reach its sub categories
Finding information with the technigue of querying only is often insufficient, asin only afew
searching situations will the result of the query correspond to exactly what the user islooking
for. Searching is additionally combined with the second method, i.e., navigation. As the

The Case Studies: Wayfinding in Airports and the WWW 16

navigation tactic comprises an imagined movement of the agent in addition to other features
of wayfinding in the real world, navigation seems closer to the wayfinding concept in the real
world than querying. Therefore we mean the navigation tactic as used in (Jul and Furnas
1997) when we talk about ‘wayfinding' in the WWW.

Maglio and Matlock (1998) found that Web users think of the Web as akind of physical
space in which they move, although the Web is not physical and Web users do not locomote.
This result can be concluded from an extensive use of spatial metaphors when people talk
about the WWW. Such metaphorical thought is motivated by the same basic image schemata
that people rely on to structure the physical world and the WWW. Image schemata (L akoff
and Johnson 1980) are recurring mental patterns that help people to structure space and arise
from our embodied experience. Image schemata are claimed to shape both metaphorical and
non-metaphorical thought (Johnson 1987; Lakoff 1987). A phrase like “in Yahoo" expresses
the CONTAINER schema, just like the activity of moving up and down within a
hierarchically structured Web domain. In distinction, “at Alta Vista’ suggests using the
PLATFORM schema. As well as active physica motion towards objects or destinations
(concrete or abstract), as abstract motion towards a goal (e.g., going to the ‘Yahoo
homepage) involve the image schema TRAJECTORY, comprised of a starting point, an end
point, and a path between the two.

2.2.3 Setting and Task

The first case study describes wayfinding in the directories of the Yahoo!-domain
(http://mmww.yahoo.cony). As the first online navigational guide to the Web, Y ahoo! is reaches
over 219 million unique users in 24 countries and 12 languages. Asin the portal of many Web
searching engines, the structure of the directories is hand-built and continually improved. Due
to these modifications, differences between the simulated environment and the online
directory structure may appear. For an abstraction of the simulated environment see Figure 9.

Corresponding to the airport case study, the agent’s task is to find a goa through
stepwise decision making, i.e., using a navigation tactics (section 2.2.2). The simulated goal is
defined as a web page that should provide the web agent with the possibility of purchasing
‘Nike' sneakers size 9 1/2. In the simulation the links are restricted to within the hierarchy of
the Y ahoo-directories, excluding links leading out of the domain. The agent starts at the index
page of the domain, makes his decision and chooses a link that may lead him closer to the
desired page.

We see commonalities between the two wayfinding tasks: Both tasks contain a goal, the
abstract navigators interact with an environment, and they need to make decisions during the

The Case Studies: Wayfinding in Airports and the WWW 17

navigation process. Using these cases studies, we will show that both of the task related
processes can be classified as wayfinding, and that the abstract concepts of the physical world
can be mapped to the Web space.

2.2.4 Ontology of the WWW Environment

Corresponding to the airport domain, where the ontology has two layers (section 2.1.2), the
Web space has an ontology that consists of objects and information. The topologic layer of
ontology describes the arrangement of documents and hyperlinks in the Web space, metric
information excluded. Thus, for the representation of this layer, Web domains can be
abstracted as graphs, web pages as nodes, and hyperlinks as edges connecting two nodes.

The second layer represents a semantic network that describes the semantic content of a
Web site and is visualized through information on the links (corresponding to information on
the airport signs). A semantic network is based on the idea of associations, and semantically
close information is stored close together. With a semantic network one can express
relationships such as synonymous symbols, antonymous symbols, parent categories, child
categories, or visual similarity. This type of system is most useful for organizing groups of
related symbols. Semantic nets can be visualized as directed graphs, where the nodes
represent terms (concepts), and the edges represent relations between the terms. The most
important relation is the IS-A relation that sorts terms after their generality. The properties of
general terms are inherited to elements of alower hierarchy.

In summary, we distinguish between two layers in the ontology of the Web space. In
our model, the second layer with its semantic information is used for decision making in the
proposed strategy of this thesis. The semantic layer—if describing a physical object— can
recall action affordances in the Web user’s imagination (and therefore partly corresponds to
the second layer of affordances used in the WWW navigation, see section 3.2.3.2).

the topologic structure of documents that are physically available in the web: In this
layer, the WWW can be seen as collection of multimedia documents in the form of
HTML pages connected through hyperlinks (Li and Shim 1999).

the semantic information that is represented through the information carried by the
links: The web represents an ontology of the world from the web designer’s point of
view.
Both of these layers are considered static for the duration of the agent’s navigation process,
I.e.,, no external impact changes the structure of the environment. Even if the environment
would change during the wayfinding process, the navigator would not notice, as he does not

The Case Studies: Wayfinding in Airports and the WWW 18

visit a node twice with the proposed wayfinding strategy. The web space is a graphical
representation of semantically and topologically related information; the physical components
are hardly recognized by the user (except the hardware as physical basis for the user-
interface).

2.2.5 Semantic and Metric Information in the WWW Environment

Besides semantic and topologic information, a metric property of the links is provided by the
Web interface, as each link is given a position in the coordinate system of the screen. In
Figure 8, five links are visualized in the user interface. Each of these links contains semantic
information expressed as keywords, the metric attribute is given as distance from the upper
border of the screen. In this visualization of a directory structure, the metric position of alink
does not tell the navigator anything about the content of the page to which it leads (only the
semantic content does). Therefore this metric attribute does not help the navigator to reach his
target.

X

>

Address I@ hibtp A v yahioo. comd]

yi=1| AtsSHumanities » http://....

Literature, Photography ..

WI|IN

— Business & Economy
V2 2 BOE. Figance Shaooine [oba, ™ > http://....

Computers & Internet
Internet, WA, Software, Games .

Education
College and University, K-12...

y Entertainment
V' Coollinks, Movies, Humor, Musie...

Figure 8: Metric and semantic information of hyperlinks displayed in a user interface

2.2.6 The Abstract Simulated Test Area

As with most search-engine portals (Figure 6 and Figure 7 in section 2.2.2), the abstract
simulated test area consists of several categories which are hierarchicaly structured (Figure
9). The test data used for the simulation represent only a small fraction of the complete
domain. Terms of up-links are printed in italic font and gray color, those of down links or
crosslinks in regular font and black color. Crosslinks between different categories are
visualized as dashed arrows. Links which lead to a ‘dead end’ in reference to the predefined
goa and therefore would require backtracking, are visualized as thin arrows. The
corresponding web pages are labeled with an additional ‘X’ before the id. The characterizing
property of crosslinksisthat from a Web page that has been reached through a cross link, one

The Case Studies: Wayfinding in Airports and the WWW 19

can only go back to the previous page through the ‘back’ button of the browser, but not
through a back-link (this does not exist in such case). Thus such an edge is directed. Edge 8-
12 in Figure 9 is an example of such a situation.

do shopping (down 3 -> 5) do sport
] (up5->3) recreafe

do track do
O Track shoppin
nd field f),p‘—g -

- _~="do shopping

%sport el
| X 13

clothing
-

= = Tunning

clothing do sport

-

running

unning

[

confirmy confi rm, confi m, 1
+ 1

| 22| | 23 || 24 || 25|

Figure 9: Simplified link structure of an existing web domain
In addition to the visualized links in Figure 9, each web page has links to each of its upper
category levels. For example, node 5 has up-links to node 3 and node 1. Figure 10 gives a
screen shot of the decision situation at node 5 in Figure 9, where the up-links (‘Home' and
‘Recreate’) can be found below the screen title “Y ahoo! Directory Sports’.

The Case Studies: Wayfinding in Airports and the WWW

20

Yahoo! Directory
Sports

Home = Recreation = Sports

Categories

Adventure Racing (75} Hew!
Airsoftia)

Archery (7 32)

Auto Racing (7533) new
Badminton (95}
Baseball (6971} rew
Baskethall (£305) new
Biathlon (24)
Billiardsia!

Board Sports ¢74)

Boat Raring(a)
Bobhsledding (274) new
Boomerang (%)

Bowling (702) Hew
Boxball /1)

Boxing ¢238)
Bullfighting (3/)

Camel Racing (70}

Figure 10: Up- and down-links on a Web page

Martial Arts (700350 New
Motorcycle Racing (224)
Mountainhoarding ()
Nethall (25}
Orienteering(@)
Paddlehall ()

Paddlin

Painthall (124) rvew
Picklehall /2

Polo (45)

Racewalking (73)
Racquethall (32)
Ringette(d)

Rodeo ¢/ 44)

Rounders (7}

Rowing (273)

Rughy (2442) new
Running 663, Hew

For reasons of readability, we skip all of these up-links in the model, except the one to the

category directly above. Due to the agent’ s strategy of moving towards its goal with each step

(i.e., not to move up in a hierarchy backwards to the start node), such up-links would not be

chosen at a decision point, except if the agent was |ost.

The test graph contains 25 nodes with connecting edges. Similarly to Table 1 (airport

environment), the edges of the WWW graph can be summarized in Table 2. It lists some of

the edges in the simulated WWW environment. The values in the ‘direction’ column denote

the position of the link from the upper border of the user interface. The direction is therefore

not oriented within aloca reference frame.

The Case Studies: Wayfinding in Airports and the WWW 21

Position Direction Link content Position Direction Link content
of Link of Link

1 2 “do business’ 2 1 “Home”
9 “recreate’ 3 1 “Home”

2 2 “do shopping” 4 1 “do business’

3 19 “do sport” 5 1 “recreate”

4 3 6 1 “do shopping”
61 “do sport” 7 1 “ do shopping “

7 1 “clothing” 10 - -
59 “running’ 12 1 “do sport”
76 “do track and field” 13 1 “do sport”

8 12 “do shopping” 12 - -

20 1 “confirm” 24 - -

Table 2: Directed and undirected edges in the WWW graph

2.3 Comparing the Abstract Environments

The concepts of the environments used in the two case studies show a number of similarities:

Both environments can be abstracted as graphs using the same classification of edges
(non-labeled, directed, undirected).

Nodes represent decision points.

The edges contain semantic information:

- An edge in the airport environment can have a sign attached which contains
numbers and letters representing gate names.

- A link in the WWW interface describes the page to which it leads with a
meaningful keyword.

The edges contain a metric attribute:
- The outgoing edges from a node in the airport environment enclose a certain angle
and are oriented within alocal reference frame.
- The Internet-links are visualized on a certain position of the screen which can be
described through coordinates.

The similarity of concepts allows a number of operations to be applied for both abstract
domains, for example:

Find edges with asign.

The Case Studies: Wayfinding in Airports and the WWW 22

Get the semantic information that can be perceived from a node.

Determine the degree of a node.

24 Summary

This section introduced the settings of the case studies used in this thesis, i.e., wayfinding at
the Vienna International Airport and in the Y ahoo-domain. The task for both agentsisto find
a specific place in the environment: The gate ‘C 54’ for the airport navigating agent, and a
WWW page where one can purchase sneakers with certain attributes for the WWW-
navigating agent. The conceptual and forma wayfinding model to be developed in this thesis
describes a cognitive agent which is able to cope with the given tasks in the case studies.

We described the ontology of airport environments and the Web space, and classified
the information provided by these environments into metric and semantic. Despite differences
in the physical constellation between both environments, conceptual commonalities of
operations performed in the environment can be found on a more abstract level.

Contributing Disciplines 23

CONTRIBUTING DISCIPLINES
CHAPTER

3

Discussing the wayfinding metaphor obviously involves two scientific fields, namely
metaphor theory and wayfinding theory: First we explain what metaphors are and how they
can be classified, followed by a discussion of the wayfinding process in the physical world,
i.e.,, the source domain of wayfinding metaphor. Agent theory allows for elaboration of
wayfinding on a more abstract level. We hereby restrict our discussion of human wayfinding
to some characteristic features that will be modeled within an agent based model and that
formally show the mapping of semantics between the two domains.

3.1 Metaphors

3.1.1 What are Metaphors ?

Johnson (1987) characterizes a metaphor as “...a pervasive mode of understanding by which
we project patterns from one domain of experience in order to structure another domain of a
different kind.” Following Sweetser (1990, p.8), “metaphors allow people to understand one
thing in terms of another, without thinking that the two are objectively the same”’. Research
on metaphors presents a number of obvious problems. how to determine its truth
value¥aliterally, metaphors are almost always fal se¥2 and how to recognize an expression as a
metaphor (metaphors have no consistent syntactic form) (Scaruffi 2001).

Over the years the understanding of the role of metaphors in human life has changed.
Different theories use different approaches to describe the nature of metaphors. Most
traditional theories treat a metaphor chiefly as a theoretical or artistic figure of speech
whereas contemporary theories extend the scope of metaphor to include its role in scientific
reasoning.

The view of literal-core theories is that metaphors are cognitively reducible to literal
propositions. Treated as literal figures, metaphors were considered to be nothing more than a
rhetorically powerful mode of expression without its own cognitive content (Johnson 1987).
The literal-core theories hold the objectivistic view of metaphors, which says that the
objective world has its structure, and concepts and propositions, to be correct, must
correspond to that structure. It isonly literal concepts and propositions that can do that.

Contributing Disciplines 24

In metaphorical proposition theories metaphoric imagination can create new unified
wholes within human experience rather than merely supplying novel perspectives on aready
interpreted experiences. A broad analysis of metaphors was carried out during the 1970's and
1980's by Lakoff and Johnson (Lakoff and Johnson 1980; Johnson 1987; Lakoff 1987).
Contrary to the current opinion of this time that a metaphor is a linguistic expression favored
by poets, the authors found two fundamental conclusions in their analysis: (1) al language is
metaphorical and (2) all metaphors are ultimately based on our bodily experience. They claim
that metaphor is not in the words but in the ideas and that metaphor is used for reasoning.
Once metaphor is defined as the process of experiencing something in terms of something
else, metaphors turn to be pervasive, in action and thought. In their work, Lakoff and Johnson
show how metaphors reveal the limitations of objectivism, namely the assumption that the
world is made of distinct objects with inherent properties and fixed relations between them.

Although metaphors are literally false there is some sense in which they are not only not
false, but can provide very valuable insights (Grey 2000). Thus, metaphors must consist of a
deep as well as a surface level. When the litera meaning is deactivated because of the
falsehood of the sentence a mental switching happens that activates the secondary meanings.
Let us consider the metaphor “Time is money” as an example. As soon as we apprehend that
the description is literally false, the expression becomes semantically charged with secondary
meanings. Time in our culture is a valuable commaodity, it is alimited resource that we use to
accomplish our goals. Work is usually associated with the time it takes, and it has become
customary to pay people by the amount of time for their work. Corresponding to the fact that
we act asif timeislimited and a valuable resource such as money, the metaphor is true on the
deeper level of cultural experience.

3.1.2 Classification of Metaphors

Lakoff and Johnson (1980) define three types of metaphors:

Structural metaphor where one concept is metaphorically structured in terms of
another, e.g., ‘ The meaning isright there in the words.’

Orientational metaphors which organize a whole system of concepts with respect to
another, transferring spatial orientation, such as up-down, in-out, front-back. These
metaphors use humans' experience with spatial orientation, for example in the phrase
‘Hefell asleep’.

Ontological metaphors which are based on humans experience of physical objects

and substances. Once we identify our experience as entities or substances, we can

Contributing Disciplines 25

refer to them, categorize them, group them, quantify them, and reason about them.
Ontological metaphors are ways of viewing events, activities, and ideas as entities
and substances.

When using container metaphors, as members of ontological metaphors, we use for
example the human property to be like a container, with a bounding surface and an
in-out orientation. We project our own in-out orientation onto other physical objects
that are bounded by surfaces, as for example used in the following phrase ‘He's out
of sight now’.

Grey (2000) classifies metaphors into dead, dormant, and live. A dead metaphor is an
ordinary part of our literal vocabulary and commonly not regarded as metaphor at al. The
author takes the verb ‘run’ as example. Running in its basic meaning is considered as a simple
activity which involves putting one leg in front of the other in a certain systematic and
rhythmic fashion. Through metaphorical extension the expression comes to be applied to
objects which lie outside its basic reference class, such asrivers. So it comes about that rivers
run, taps run, and fences run¥athe last example showing another feature of metaphors. By
abstracting certain elements of the activity we are able to produce a generalized meaning of
the basis sense word. For example, if we speak of fences ‘running’ around a boundary, there
IS no suggestion of motion. Instead, the metaphor creates a static sense of running, in this
case, the sense of following a path.

A live metaphor is a metaphor which we are conscious of interpreting. As the
previousdy mentioned example (“Time is money”), such a metaphor cannot be taken at its
literal face value but has to be decoded. Dormant metaphors represent an intermediate
category. They consist of expressions we use without being conscious of their metaphorical
character, but if we attend to them they are recognized as metaphors. The border between
dormant and dead metaphors is fuzzy. Metaphors that suffer the abuse of overuse, e.g., ‘the
bottom line', degenerate into cliché. Overuse is a process by which a living metaphor can
become dormant or dead.

3.1.3 The Mapping of Semantics with Metaphors

Metaphors map semantics from the source to the target domain. In a metaphorical sentence
the terms tenor and vehicle denote the two parts of a metaphor. The tenor is the literal subject
whereas the vehicle is the figurative connection, i.e., the thing that is compared to the subject
or the carrier. For example, in the metaphor “a Sahara of snow” in a poem by Robert Lowell,
the tenor is snow, while the vehicle is the Sahara desert.

Contributing Disciplines 26

The human interpretation of metaphors is discussed in severa competing models
reported in the literature. In the similarity or comparison view (e.g., Ortony 1979), preexisting
similarities between the constituent terms of a metaphorical sentence are an important source
of information for generating figurative meaning. In order to generate an interpretation, a
metaphorical sentence first has to be translated into an explicit comparison statement. Then, a
feature-matching process is applied to the representations of the noun-concepts involved in
the metaphor. If we take the example “Life is a journey”, the features of the vehicle-concept
journey are compared to features of the tenor-concept life in order to identify common
features. In the given example, possible features for the interpretation may be ‘surprise’,
‘decision point’, ‘comrade’.

In contrast to the comparison view, the interaction approach (e.g., Black 1979) claims
that similarity is not antecedent but a product of comprehension. Metaphorical meanings are
constructed by means of emergent features that appear when the representations of tenor and
vehicle as well as their corresponding domains are brought into interaction. As example we
use ‘Hercules is a lion’. Here, a feature that is neither characteristic of the tenor nor of the
vehicle, but surfaces only in the interpretation, is mythical feature (Ntckles and Janetzko
1997).

There is no clear evidence for which of the two theoretical approaches should be
accepted and which regjected. From empirical tests, Nickles and Janetzko (1997) make the
assumption that the two theories support a complementary cognitive process, and that
metaphor comprehension proceeds in two stages that the authors call analysis stage and
synthesis stage. First, an analysis of the lexical meanings of tenor and vehicle is attempted. In
case of enough similarities to produce a coherent interpretation, the comprehension process
will cease. In the other case, a synthesis of the two terms follows that requires the activation
of broader world knowledge about the domains involved.

An open question in metaphor theory is, why only parts of the semantics of the source
domain are mapped to the target. The metaphor ‘Theories are buildings, e.g., maps
‘foundation’ and ‘support’ onto the target domain, whereas ‘doors and ‘windows are not
mapped. Recent approaches have attempted to solve this problem by introducing several types
of metaphors, including primitive and compound (Grady, Taub et al. 1996).

Kuipers (1982, p.3) defines operations as the relevant parts of a domain that need to be
mapped so that one can talk of a metaphor. He claims a metaphor to be correctly used if
corresponding operations in both domains, i.e., a graphica map and the map in the head,
exist: “The ‘Map in the Head’ metaphor states that the functional behavior is the same in the

two contexts”.

Contributing Disciplines 27

3.1.4 Formal Approaches of Expressing a Metaphor

Formal approaches to define the metaphor are rarely found in the literature. A fuzzy-logical
approach that uses a four-valued logic has been formalized by MacCormac (1985). Besides
truth and falsity, the values also embrace metaphor in two forms, diaphors (metaphors that
imply the possibility of something), and epiphors (metaphors that express the existence of
something). Employing a system of fuzzy semantic markers, MacCormac defines the fuzzy
membership of one category in another as a real number ranging from zero (absolute
falsehood) to one (undeniable truth). Within this range exist the delimiters a, b, ¢, such that O
<a<b<c<1], wheretheinterval 0 to arepresents falsehood, ato b represents diaphor, b to ¢
represents epiphor, and ¢ to 1 represents literal truth. Metaphoric set membership is thus
indicated by a value in the range ato c. Novel metaphors begin life as diaphors, and migrate
along this fuzzy scale into epiphors as they lose their emotive tension through commonplace
use, to eventually find rest as dead metaphors in the literal truth interval (see the example of
the ‘bottom line' in section 3.1.2).

Gentner’s structure mapping theory (Gentner 1983) describes analogies as mappings
between source and target domains, each represented by semantic networks. The mappings
themselves are not formalized but rest on a syntactical distinction of different kinds of
relations. The author presumes that knowledge is represented as propositional network of
nodes and predicates, where the nodes represent concepts treated as wholes, and the
predicates applied to the nodes express propositions about the concepts.

An analogy between the base domain A and the target domain T maps the object nodes
of A onto the object nodes of the target domain T. Further, predicates from A are carried
across a mapping function to T. Gentner distinguishes between four different kinds of domain
comparisons which are determined by the number of attributes (sorts) and relations
(functions) mapped between the two domains. The types of domain comparison are: literal
similarity, analogy, abstraction, and anomaly. Table 3 illustrates which features are mapped in
which type of structure mapping. The right column gives an example of domain comparison
for a solar system. Other formal approaches that use algebraic structures for metaphors are
discussed in section 4.2.4.

Contributing Disciplines 28
Number of attributes Number of relations Example
mapped to the tar get mapped to the tar get

Literal similarity Many Many The K5 solar systemislike
our solar system
Analogy Few Many The atom is like our solar
system
Abstraction Few Many The atom is a central force
system
Anomaly Few Few Coffeeislike the solar
system

Table 3: Number of attributes and relations mapped in different types of domain comparison (Gentner
1983)

Goguen (1999) proposed a mathematically precise theory of semiotics, called algebraic
semiotics, as atool to study the ways in which information is mediated in computer systems.
A user interface can be considered as a representation of the underlying functionality to which
it provides access. Both the interface and the underlying functionality are considered as sign
systems. In this setting, representations appear as mappings (morphisms) between sign
systems, which should preserve as much structure as possible. A sign system can be
formalized as many sorted loose algebra plus some specific semiotic items. A Semiotic
morphism M: $;® S, provides a way to describe the mapping of signs in one system S; to
signs in another system S,. A good semiotic morphism should preserve as much of the
structure in its sign system as possible, i.e., sorts and subsorts, operations, axioms, content,
levels of sorts, and priority ordering on constructors. Empirical work showed that it is more
important to preserve structure than content. Applications for algebraic semiotics include user
interface design, cognitive linguists, metaphor theory, and cognitive poetics.

3.2 Wayfinding

In this section we review various aspects involved in wayfinding, stressing those concepts that
are needed to construct the conceptual wayfinding model of the simulated agent. First we
discuss the rough boundaries of the term ‘wayfinding’, further we look at cognitive models of
space and the process of decision making during wayfinding. The final sub section is devoted
to existing computational wayfinding models.

3.2.1 What is Wayfinding?

Within the task of this thesis to describe the wayfinding metaphor we explore if essential
concepts of the term wayfinding, as it is used in the physical world, can also be found in the
WWW. Thus we first need to focus on what wayfinding in the physical world means.

The American architect Kevin Lynch (1960) was the first to use the term wayfinding
which replaced the term spatial orientation in the late 70s. Spatial orientation refers to a

Contributing Disciplines 29

person’s ability to determine his or her location in a setting, thus, describes the static
relationship of a person to his or her spatial setting. The term cannot encompass the dynamic
aspects of people’'s movements. In the late 70s the concept wayfinding filled this missing part
of the spatial orientation concept. Wayfinding was used to account for people’' s movement in
space and their sense of being orientated, it described the process of reaching a destination,
whether in a familiar or an unfamiliar environment. In the 80s, wayfinding was modeled as
gpatia problem solving (e.g., Downs and Stea 1977; Gérling, Book et al. 1984), which within
this framework comprises three specific but interrelated processes (Arthur and Passini 1992):

Decision making and the development of a plan
Decision execution, which transforms the plan into appropriate behavior
Information processing, comprising environmental perception and cognition

The number of wayfinding-definitions that are found in the literature is extensive. Analyzing
some of the definitions, the recurrence for specific terms is higher than for other terms. Thus,
wayfinding is not uniquely defined and its boundaries seem to be unstable and rough. The
terms that are more often used in the definitions define a central case of wayfinding (akind of
prototypical wayfinding), whereas more seldom mentioned features are extensions of the
central meaning. We therefore assume that the concept of wayfinding represents a radial
category (Rosch and Mervis 1975; Rosch 1978). It has gradations, and some wayfinding
definitions represent better (more central) and worse (more peripheral) examples of the
category. Members of the category do not possess inherent features as objects in traditional
taxonomies do.

Due to the high number of wayfinding definitions, we cannot describe what the correct
concepts are that define wayfinding in general. But as we need to express basic concepts of
wayfinding (through axioms) for formalizing the wayfinding metaphor, we try to find the
central features of wayfinding, and skip the more peripheral ones. The solar metaphor
(Sutcliffe 1998) visualizes the idea of aradial category and expresses the relations of concepts
that define wayfinding: The most central wayfinding features are visualized as sun, whereas
more peripheral concepts of wayfinding are visualized as planets.

Contributing Disciplines 30

<

item relationships

mental process
~goal seek ongin
decisioRgyte

navigation

nvironmient

distance

Figure 11: Schematic visualization of the Radial Category Wayfinding using the Solar metaphor
Before we look at existing wayfinding definitions, we should clarify the (small) differences
between wayfinding and navigation. The difference seems to be based on properties of the
surrounding environment: Human movement in open spaces, e.g., flying an aircraft, involves
navigation Golledge (1999). It means to deliberately walk or make one's way through some
space. Contrarily, wayfinding involves selecting paths from an existing network (Bovy and
Stern 1990, Golledge, Jacobson et al. 2000). Allen (personal communication) claims that the
terms wayfinding and navigation are similar in their meaning and that in most cases the two
terms are interchangeable. The more similar a wayfinding situation is to plotting and

executing a course, the better that analogy is.
To find the central concepts of wayfinding we look at following definitions (frequently
used terms are written in italic font).

Allen (1999) describes wayfinding as purposeful movement to a specific
destination that is distal and, thus cannot be perceived directly by the traveler.

Successful wayfinding is reflected in the traveler’s ability to achieve a specific
destination [...] despite the uncertainty that exists.

- Golledge (1999) defines wayfinding as a process of determining and following a
path or route between an origin and a destination.

- Wayfinding involves selecting path segments from an existing network and
linking them as one travels a specific path. The process of wayfinding requires
an ability to know origins and seek a destination [...] (Golledge, Jacobson et
al. 2000).

- Two critical characteristics of human wayfinding are destination choice and path
selection (Golledge 1995).

- Bovy and Stern (1990) describe pathfinding and wayfinding as a process that
involves selecting paths from a network.

Contributing Disciplines 31

Blades (1991) defines wayfinding as the ability to learn and remember a route
through the environment.

- Wayfinding is navigation that occurs both on and off known routes (Cornell and
Heth 2000).

- Wayfinding is defined through the mental processes involved in determining a
route between two points and then following that route (Mark, Freksa et al.
1999).

- Lynch (1960, p.3) defines wayfinding as based on “a consistent use and
organization of definite sensory cues from the external environment.”

Outstanding terms of the listed definitions are destination, path selection, determine, route,
seek, environment. These terms will be considered as part of the wayfinding axioms in chapter
5.

3.2.2 Cognitive Models of Space

Arthur and Passini (1992) claim that cognitive mapping, i.e., the mental structuring process
leading to the creation of a cognitive map, is part of environmental perception and cognition.
As perception and cognition are part of the wayfinding process, the use of a menta
representation of the environment seems obvious for wayfinding tasks. The relative
importance of a mental representation in the decision making process depends on the nature
of the setting and on the wayfinding task.

The complexity of the physical world is reflected through various models that describe
an environment or its mental representation. The models stress different features of the
environment (e.g., topologic or metric relations between places, images of places) depending
on the task of abstraction. For the construction of a precise map of an area, e.g., one needs
guantitative knowledge. This allows the map user to predict precisely at which location an
object will be encountered. Contrary, to describe alocation to be identified in the real world, a
limited amount of qualitative knowledge may suffice (Freksa 1991).

Lynch (1960) interviewed residents of three cities and found out that people build their
mental model of a city based on five spatial el ements:

(1) Landmarks, distinct pointsin acity that serve as reference to the user.
(2) Paths, channels of movement.
(3) Nodes, strategic spotsin the city where the observer can enter.

(4) Edges are linear but do not facilitate movement. They form physical barriers.

Contributing Disciplines 32

(5) Didtricts are areas in a city that have some common characteristics such as a particular
architectura style.

Siegel and White (1975) describe the stages in an individual’s representation of spatial
knowledge which are likely to come with increasing age or experience.

(1) Landmark knowledge comprises distinct, typically familiar points in the environment.

(2) Route knowledge is characterized by the knowledge of paths between landmarks
(topological information).

(3) Survey knowledge allows people to locate landmarks and routes within a general frame
of reference (i.e., incorporating metric measurements).

This model has been criticized for its strict developmental sequence (Montello 1998). For
solving the problem of how an agent creates its spatial representation from its sensimotor
experiences, Kuipers, Froom et a. (1993) and Remolina, Fernandez et al. (1999) use the
computational theory Spatial Semantic Hierarchy (SSH). SSH is an ontological hierarchy of
representations for knowledge of large scale space and comprises four levels. control, causal,
topological, and metrical.

Some models of wayfinding reported in the literature stress the importance of topologic
knowledge for the wayfinding process. The TOUR-model (Kuipers 1978), e.g., is based on
the assumption that it is possible to store a topological relation between two places in the
absence of any metrical information. Knowledge about particular environments is hereby
classified into five categories (route, topological structure, relative position, dividing
boundaries, regions). Freksa (1991) clams that topologic knowledge is relevant for
wayfinding in the real world because movement in space is possible only between
neighboring locations. Evidence for cognitive hierarchical organization of space was deduced
in experiments from distance and direction judgments (Hirtle and Jonides 1985).

Several metaphors were introduced to express the characteristic of a menta
representation. The term cognitive map was first used by Tolman (1948) who claimed that rats
in a maze-learning task acquired knowledge of the spatial relation between start and goal.
Other metaphors suggested are cognitive collage, spatial mental model (Tversky 1993), or
cognitive atlas (Hirtle 1998).

Recent developments in cognitive science suggest that spatia relations do not exist in
the real world but that they rather exist in mind (Mark and Frank 1996). Due to physiological
similarities that exist among individua human beings, most people experience their
environment in similar ways. Human experience in interacting the world leads to the most
appropriate subdivision of continuous reality into objects (Frank 2001). Objects are typically

Contributing Disciplines 33

formed in such way that many of their properties remain invariant over time. Johnson (1987)
clams that experience from the environment and interaction with the environment uses
recursive, imaginative patterns, so called image schemata. Many of the image schemata are
inherently spatial or even graphical.

3.2.3 Epistemology—The Use of Affordances for Wayfinding in Airports and the
WwWw

Epistemology is the part of philosophy concerned with knowledge and knowledge
representation. The task of epistemology is to derive observable consequences from theories.
A representation is epistemologically adequate for a person or machine if it can be used
practically to express the facts that one actually has about the aspects of the world (McCarthy
and Hayes 1969). The elements of the ontology proposed in the case studies (sections 2.1.2
and 2.2.4) are mapped to the epistemology of the wayfinding subject.

In this thesis we use affordances to model the navigator’s epistemology. We hereby add
elements of cognition, situational aspects, and social constraints to Gibson's theory of
perception. In this section we describe which affordances play a role for wayfinding in an
airport environment and the WWW. The term affordance was created by Gibson (1977) when
investigating how people perceive their environment. According to Gibson the environment
consists of a medium, substances, and surfaces (see section 2.1.2). Gibson describes the
process of perception as the extraction of invariants from the stimulus flux. Surfaces absorb or
reflect light and Gibson’s radical hypothesis is that the composition and layout of surfaces
constitute what they afford. Affordances are therefore specific combinations of the properties
of substances and surfaces taken with reference to an observer. Thus, animal and environment
are modeled to be an inseparable pair. The theory of affordances is influenced by Koffka's
work (Koffka 1935) on Gestalt psychology, where he states that each thing sayswhat it is.

In his PhD work, Raubal (2001a) claims that both affordances and information are
essential for people finding their ways in an unfamiliar environment. Affordances hereby
provide possibilities for behavior and information helps people to choose between
alternatives.

3.2.3.1 Affordances in the Airport-Environment

Most of this section follows Raubal (2001a). When performing a wayfinding task in a spatial
environment people utilize a set of affordances. Some of the affordances are involved in the
control of locomotion such as moving aong a corridor, others are required for information
acquisition such as reading and interpreting different signs, etc. Raubal distinguishes

Contributing Disciplines 34

affordances concerning the realm they belong to, such as social-institutional affordances,
action affordances, physical affordances, or mental affordances.

The most relevant physical affordance for a wayfinding simulation is the ‘go-to’
affordance of a path to move along it. Its utilization leads the agent from one node to another.
Another physical affordance implemented is a sign’s affordance to reflect light, a decision
point's affordance to look around, or a doorway's affordance to go through. Mental
affordances are represented through the agent’s decision process. Sign information affords to
be matched with the agent’s goal information, paths afford to be selected, and decision points
afford searching, orienting, and deciding how to proceed. Information (such as from signs or
from amap) is necessary for the agent to decide upon which affordances to utilize. Although a
sign affords looking at it, only additional semantic information, such as letters, numbers, or
symbols, allow the navigator to use the sign as navigation aid.

Social interaction is based on social-institutional affordances: Another traveler affords
talking to, or asking. Physical and social-institutional affordances are the sources of mental
affordances. In order to utilize a mental affordance, the agent needs to perform an internal
operation. For example, letters displayed on a screen afford the navigator to perform the
internal operation of matching the letters with his goal information.

What the navigator knows about the environment, partly depends on his physical and
mental abilities, his life experience, and his task. This is due to the fact that utilizing
affordances during the wayfinding process is user dependent. As an example, Raubal
mentions the scenario of the case study where a mother is going on a flight with her 3-year-
old son. Although mother and son perceive the same objects, objects afford to them different
activities. Based on the task and the mother’s properties (e.g., being an adult), the check-in-
counter, e.g., affords the mother to put her tickets on the counter so that the check-in agent
can give her boarding passes. Thisis not afforded to the child as his properties (e.g., being too
short) do not enable him to put something on the counter.

3.2.3.2 Affordances in the Web Navigation

Gibson’'s theory states that affordances are based on the process of perception through the
extraction of invariants from the stimulus flux. Despite this connection to visual perception,
we propose that humans remember certain affordances of objects, i.e.,, humans assign
affordances to pictures, symbols, or descriptions of an object (Hochmair and Frank 2001). In
the case of web navigation, a link or icon displaying or describing an object, recalls a set of
affordances to the user. This assumption of mentaly stored affordances is an important

Contributing Disciplines 35

concept to apply the proposed decision making model in the given task of the case study, asiit
connects displayed objects to affordances of a physical object (i.e., sneakers).

In the domain of a physical computer environment, which functions as the hardware
platform for web navigation, Norman (1999) distinguishes between physical and perceived
affordances. The physical affordances are carried by computer hardware, such as keyboard,
computer screen, and mouse. These physical objects afford pressing a key, pointing, touching,
looking, and clicking. Contrary, perceived affordances are provided by displayed objects on
the user interface. Displayed objects advertise physical affordances. For example, the design
of a hyperlink on the screen does not afford clicking, but provides a target and helps the user
know where to click. Clicking on a perceived object on a screen with a pointing device isin
Norman’'s view motivated by cultural conventions (shared by a cultural group), and not
through affordances of the designed object on the screen itself.

In summary, a hyperlink (realized as text string or symbol) visualized on the user
interface provides two layers of affordances (Figure 12), where the second layer will be
shown to play arole for decision making.

1% layer (perceived layer): advertises (perceived affordance) to click (convention)
on the hyperlink or icon

2" |ayer (information layer): the information displayed as text or icon awakens the

user’s remembered action affordances of the object that is part of the web site

behind the link (only if an object is displayed aslink)
In the abstract model of the Web environment, links are expressed as edges between two
nodes with semantic information attached. Due to the second layer of affordances provided by
a hyperlink, we model the mental representation of a link in the abstract agent as the
possibility to move to another web page of which the content is related to the information
displayed on the link. The information of the link is not restricted to affordances of objects.
Figure 12 demonstrates the distinction between the two layers provided by a hyperlink. The
first layer of the displayed hyperlink advertises to the web navigator to move the displayed
arrow over the hyperlink symbol which is carried out through moving the mouse
(convention). Clicking on the symbol to reach the next web page is a'so convention. The user
performs these activities as he expects that the web page behind the link is related to cycling
(second layer) due to perceiving the picture. For example, the linked web page may contain
the result of a cycling competition or be the Web page of a biking federation.

Contributing Disciplines 36

2nd layer:
- bicycle

- compete
- sport

(1 ~N) <

= ¥

0
0
’
&’
i

’

1st layer

Figure 12: Perceived affordance, convention, and associations provided by a hyperlink
Table 4 relates objects in the abstract environments (of the physical world and the WWW) to
the agent’s epistemology. The table shows a potential approach of how objects may be
reflected in the agent’ s behavior and beliefs.

Object in the abstract environment Agent’s epistemology
edge possibility to move to endnode
signpost (airport and WWW) read content, determine direction
letters and numbers (airport) or strings (WWW) | match with concepts in cognitive map
target-node state that needs to be reached
intersection make decision

Table 4: Agent’s epistemology of objects in the simulated environment

3.2.4 Spatial Decision Making and Wayfinding Strategies

Decision theory covers a large range of models with different foci on describing how
decisions could or should be made and on specifying decisions that are made (Golledge and
Stimson 1997). We point out concepts of decision making that are general enough to hold for
the physical world and the WWW.

Literature offers numerous decision making models. A classification that distinguishes
between various types of outcomes of decisions—either optimal solutions or acceptable
solutions—is given by Gérling and Golledge (2000). The classification discusses three
approaches to the study of decision making:

The normative approach, exemplified by economic choice theory, aims at defining
optimal decisions.

Contributing Disciplines 37

The goal of prescriptive approaches is to advise human decision-makers about how
to make optimal decisions given that they possess a limited cognitive capacity to do
0.

Descriptive theories focus on approximate (heuristic) decision strategies.

Arthur and Passini (1992) distinguish between two decision making models: In the optimizing
model, the person considers all options in the light of all subjectively relevant criteria and
chooses an optimal solution whereas in the satisficing model an acceptable solution is retained
without seeking the optimum (Downs and Stea 1973). The second model tends to be more
popular for complex decision making. Different approaches may be applied to accomplish an
acceptable solution:

The rgjection of all alternative options because of some unacceptabl e aspects.
The choice of an option because some aspects are very desirable.

A more nuanced comparison of aspects of options until one aspect clearly dominates
and leads to the choice (or the rgection) of an option.

Géarling, BOok et al. (1984) propose the process of spatial decision making to consist of
following stages:

Retrieve information about the environment which is externally accessible or is
accessible in a cognitive map.

Represent decision alternatives in memory.
Evaluate the decision alternatives.
Apply adecision strategy.

I mplement the decision.

Studies have shown that heuristics for choosing the correct way at an intersection are
influenced by configurational parameters of the spatial environment and by people's
perspectives during navigation (Janzen, Herrmann et al. 2000). Golledge (1995) found that
decision criteria are influenced by changes in the structure of the environment. In his studies,
subjects had to decide between three given routes in several, slightly changed environments
on amap. He tested the subjects preferences for severa criteria, such as fewest turns, longest
leg first, preference for curves, shortest route, and most scenic route. The result showed for
example that the preference to choose the shortest path criterion varied from 54% to 90%
between dlightly changed environments.

Contributing Disciplines 38

People can apply such criteria only when they are either familiar with the environment
or have access to a map of the environment. For the wayfinding simulation in our case studies
we presume that the agent moves in an unknown environment and has no map. Thus, the
criteria applied in both environments are based on the agent’s simulated life experience and
utilization of affordances, and not on knowledge of the environment.

A place in the real world and in the WWW can be represented in several ways. Various
cognitive models of space (section 3.2.2) revedl that a place—at least in the real world—
includes metric, topologic, or semantic properties among others. Various properties of the
place can be used for its definition. Depending on the type of the goal definition, different
wayfinding strategies are applied (Hochmair and Raubal forthcoming). Besides the
representation of the goal, other circumstances of the wayfinding situation have an effect on
the decision criteria and wayfinding method applied, such as time restrictions (Stern and
Portugali 1999) or emotions (Trappl, Petta et a. forthcoming).

The decision making process is strongly based on the individua’s level of spatial
knowledge (Bovy and Stern 1990), i.e., the familiarity with a given environment. Thus, a
change in the relative use of knowledge components (i.e., the amount and type of information
retrieved from one's associative memory) can be expected as a function of navigation
frequency (Stern and Portugali 1999).

3.2.5 Simulating Human Wayfinding

There exist two approaches to ssmulate the interaction of humans with their environment. The
first one is a behavior-based approach where autonomous robots perceive and act directly in
the real world (Brooks 1986; Brooks 1991). The goal of this approach is to generate agents
that behave intelligently, without any relation to human behavior. This approach is effective
to build robots. The other approach is a computational computer model that ssimulates a
human wayfinder as a cognizing agent in a simulated environment. The approach has the
advantage that it allows simulating wayfinding behavior in various (simulated) environments
and therefore is an effective tool to express the wayfinding metaphor on an abstract level. For
this reason, the simulated wayfinding model in this thesis follows this approach.

Cognitively based computational models generally ssimulate a wayfinder that can solve
route-planning tasks with the help of a cognitive-map-like representation. The focus of these
models is to find how spatial knowledge is stored and used, and what cognitive processes
operate upon it. The TOUR mode (Kuipers 1978; Kuipers 1982) represents the first
computational theory of wayfinding. The model copes with incomplete spatial knowledge of
the environment and learning about the environment as more information is received. Several

Contributing Disciplines 39

other cognitively based computational models, such as TRAVELLER (Leiser and Zilbershatz
1989), NAVIGATOR (Gopal, Klatzky et a. 1989) or ELMER (McCalla, Reid et al. 1982),
simulate learning and problem solving in spatial networks. O'Neill (1991) designed a
biologicaly based model of spatial cognition and wayfinding. Using the metaphor of a
biological system, the model proposes a view of spatial cognition considering lower level,
physiologica mechanisms. For a more detailed description of computational models see
(Gluck 1991).

3.3 Agent Theory

3.3.1 The Term ‘agent’

In the literature, the term agent is used as a technical concept, a metaphor, or a design model
(Nwana and Ndumu 1999). In this thesis we use the term as a conceptual paradigm to
represent the human navigator. This allows us to elaborate the wayfinding problem on a more
abstract and theoretical level, and to reduce the complexity of human navigation in the
computational model. We consider the agent-based model as conceptual framework for the
representation of the domain of interest%i.e., the wayfinding process. It applies the agent
concept as a metaphor for the description of the active entities in some domain. The
conceptualization will be realized in a computational language that must be expressible and
understandable enough to allow the representation of the agent framework.

According several scientific research directions that are related to agent-theory, there
exist many definitions of an agent. Russell and Norvig (1995, p.31) define an agent as
“anything that can be viewed as perceiving its environment through sensors and acting upon
the environment through effectors’. Anything is related to the agent definition of Ferber
(1998), who proposes that physical and virtual entities can be considered as agents. Another
definition taken from Wooldridge and Jennings (1995, p.29), defines an agent as “...a
computer system that is situated in some environment, and that is capable of autonomous
action in this environment in order to meet its design objectives’. We create an agent as a
software robot that simulates people's wayfinding behavior in the domain of the physical
world and the WWW.

An intelligent agent is capable of autonomous action in order to meet its design
objectives. Intelligent agents must operate robustly in rapidly changing, unpredictable
environments, where there is the possibility that actions can fail (Wooldridge 1999). The
intelligent agent reacts to changes in the environment, exhibits a goal-directed behavior, and

Contributing Disciplines 40

has some sort of social ability which means that it can communicate with other agents in a
multi-agent system (Weiss 1999).

There are two methods to describe the interaction between agent and environment. The
first approach models an agent as part of the environment. In such a model, any of the agent’s
actions changes the state of the environment. This includes, besides actions visible from an
external point of view, also actions in the agent’s mind, e.g., making a decision. In this case,
operations of the agent lead to changes in the environment which are represented by new
environmental states after every performed operation. Formal specifications using this
approach can be found in (Frank 1999; Bittner 2001).

The second approach separates the agent from the environment. This approach can be
applied as a ssimplification if none of the agent’s operations is assumed to change the state of
the environment—as it is in the case of wayfinding. Using this approach, the agent does not
act in the environment but interacts with the environment (Figure 13).

Agent
sensors

Environment
actlons

effectors

\

perceptlons

Figure 13: Agent interacts with environment through sensors and effectors

In this thesis, we use the second approach. No activities which would change the state of the
environment are performed by the agent. Examples for such excluded actions are moving an
object, blocking aroad, or opening a door. The only activity that is ‘visible’ from an external
point of view during the wayfinding process is a change of the agent’s position after a step.
Asthe agent is not part of the environment, changes due to the agent’ s wayfinding process are
reflected in the agent, and not in the environment. To avoid a confusion of terms used in the
computational model, we distinguish between environment and world. By environment we
mean the static surrounding of the agent with which the agent interacts and that can be
abstracted as a graph. The environmental surrounding and the agent together is called world.

Contributing Disciplines 41

3.3.2 Abstract Architectures of Agents

In (Wooldridge 1999) and (Russell and Norvig 1995) several abstract architectures of agents
can be found. Ordered after their complexity (starting with the simplest architecture), the
following architectures are discussed:

Simple reflex agent

Reflex agent with internal state

Goal-based agent

Utility-based agent
A simple reflex agent reacts based on condition-reaction rules. A condition rule can formally
be written as an if-then condition. In a reflex agent with internal state, the current percept is
combined with the old internal state to generate the updated internal state. A goal-based agent
has—in addition to knowledge of the current state of the environment—some sort of goal
information describing situations that are desirable. The architecture of the utility-based agent
comprises an agent’s goal and state. Whereas a goal-based agent only makes a rough
distinction between ‘happy’ and ‘unhappy’ for decision aternatives, the utility-based agent
uses a utility function that allows ordering decision aternatives for their utility. A utility
function maps a state onto a real number, which describes the associated degree of happiness.
In our simulation, the utility function does the following: If a decision node offers severa

signs that lead to the goal, a utility function makes the agent order the alternatives according
to their utility and then choose the most preferable one.

A utility function allows coping with situations of conflicting goals where both goals
cannot be achieved to the same extent. Problems, in which outcomes are characterized by two
or more decision criteria that are evaluated at the same time, are solved by a multiattribute
utility function (Russell and Norvig 1995). For example, siting a new airport requires
consideration of the disruption caused by construction, the cost of land, the distance from
centers of population, the noise of flight operations and so on.

Decision criteria can be classified into goal-related decision criteria and agent’s
preferences. The first ones represent parameters in a utility function which are represented as
values depending on the decision situation. Preferences, on the other hand, are applied if no
unigque decision can be made based on the goal related decision criteria. As preferences are
not related to the definition of the goal, they do not necessarily lead to a better decision.
Including preferences in the decision model has the advantage that the decision behavior—
compared to a random decision—can be predicted more precisely. As the simulated
environments of the case studies are discrete, preferences come to application in severdl

Contributing Disciplines 42

decision situations. An open question remains, namely, how often such an undecided situation
that requires preferences appears in the real, continuous world. Summarizing, we can classify
decision making into:

(1) multiattribute decision (Russell and Norvig 1995)

(2) Two-step decision with a sequential use of criteria
Case (1) describes a situation where one or more criteria are ssmultaneously applied to drive a

single decision that leads to a unique result (Figure 14a). The second case aso uses goal-
independent preferencesiif step (1) does not lead to a unique result (Figure 14b).

topologic criterion I topologic criterion 1 i
semantic criterion | result semantic criterion | resu resu .
. o —> S —» preferences —» action
metric criterion action metric criterion L5 P
result n
CY (b)

Figure 14: Principles of multiattribute decision (a) and 2-step decision (b) (Hochmair and Raubal
forthcoming)

3.3.3 A Two-tiered Conceptual Model

Centuries ago, Immanuel Kant (1781) discussed the principle of epistemological dualism.
Kant reasoned that we cannot actually experience the world itself as it is, but only get an
internal perceptual replica of the world. Therefore two worlds of reality exist: the nouminal
and the phenomenal world. The nouminal world is the objective external world, which is the
source of the light that stimulates the retina. The phenomenal world is the internal perceptual
world of conscious experience, which is a copy of the external world of objective reality
constructed in our brain on the basis of the image received from the retina. Therefore the
world we experience as external to our bodies is not actualy the world itself, but only an
internal virtual reality replica of that world generated by perceptua processes within our head.

This distinction of objective world and internal perceptual world is used in the Al
tradition, where the term belief stresses the potential differences between reality and the
agent’ s possibly erroneous beliefs about reality (Davis 1990). We use a two-tiered reality and
beliefs computational model (Frank 2000) for both types of agent. The simulation separates
the representations of the environment and the agent, and the agent’'s knowledge about
himself and the environment. Each physical object in an environment can be described by
perceptible properties, such as size, weight or color. Agents are objects and therefore have
perceptible properties. In addition to non-living objects, an agent has beliefs about the world
and himself. For example, an agent may believe that he has a certain weight or color (of
which the values in the beliefs can be false).

Contributing Disciplines 43

To get aclear distinction between fact and beliefs in the agent’ s structure, we switch to
an external perspective of the situation: We consider those parts of an agent as facts which are
accessible from an external perspective. Those parts which are not accessible and perceptible
from an external view, and therefore can be accessed by the agent only, are considered as
beliefs. If the agent perceives facts of an object, the percepts are mapped to beliefs, and due to
errors in cognition potentially distorted. Thus, fact and beliefs can be distinguished through
their mode of access.

3.3.4 The Sense-Plan-Act Paradigm

A dominant view in the Al community concerning reactive architectures in the 1980s was a
decomposition of an agent’s control system into three functional elements. a sensing system, a
planning system, and an execution system (Nilsson 1980). In the Sense-Plan-Act (SPA)
approach, the flow of information among the components is unidirectional and linear (Figure
15). Information flows from sensors to the computing unit which plans the actions of the
effectors.

perceive | decide -, act

Agent

Environment

WORLD

Figure 15: Basic operations of an agent system, following the Sense-Plan-Act-approach

A maor disadvantage of the classic Sense-Plan-Act architecture is the time-consuming
planning¥s which is not relevant for the topics of this thesis. Within the planning, the world
may change in away that invalidates the resulting plan. This disadvantage does not play arole
in artificial environments, as they are deterministic, discrete and static.

3.3.5 Basic Operations of an Agent-System

3.3.5.1 External and Internal Operations

In this thesis, we follow the Sense-Plan-Act paradigm, i.e., the activity process of an agent
can be divided into three components. perception, decison making, and action. All the
simulated operations of the agent fall into one of two categories—external and internal
operations (Table 5).

Contributing Disciplines 44

External Operations Simulation
Perceive add list of signposts into agent’s state
Act Change agent’ s position to next node

Internal Operations

Decide filter percepts after semantic criteriaand apply
metric criterion to get unique decision

Table 5: Basic external and internal activities as part of the Sense-Plan-Act approach in the agent
simulation

The performance of external operations directly involves the agent’s environment. We divide
them into perception operations and action operations. The agent performs perception
operations to receive input from the environment. In our simulation, this is done by means of
simulated visual perception. Perception must not be mixed with cognition although these two
processes are both components of information processing: Whereas perception is the process
of obtaining information from the environment through senses, cognition means
understanding of information. Thus, cognizing is part of the internal actions and connected to
the perception.

Action operations execute decisions, i.e., the decisions have to be transformed into
behavior (Arthur and Passini 1992). The important thing is that each decision must be
transformed into the right activity at the right place. An action is characterized by two parts:

an activity (behavior), such as turning or moving

an environmental entity

To perform an action, the agent matches a mental image of something in the environment
with what it perceives in the environment. If the corresponding part in the environment, e.g.
sign, intersection, or landmark, is found, the action can be performed. As each step in
wayfinding is connected to one single place in the environment, wayfinding actions are
unique and ordered (see section 5.1.5).

Internal operations are performed on the agent’s beliefs inside its mind and may in
addition require specific information gained through perception. They do not have an
immediate effect on the environment but change the state of the agent. Internal operations
lead to decisions and subsequent external operations. The most important internal action in
our conceptual model is the decision making process. Other internal actions include the
extraction of semantic information from percepts, matching information with the predefined
goal, updating the mental position after a step, or getting the mental goa from the cognitive
map. Although human processing of information from perception through an assembly of
neurons is a continued and parallel activity, we model discrete agent’s activities in our

Contributing Disciplines 45

simulation. We take this approach as the axioms are invariant under discrete or continuous
activities and thus discrete, sequential activities can be modeled in a discrete environment.

3.3.5.2 Abstraction of External and Internal Operations

The function perceive represents the perception process of the agent. It maps the environment
(E) to the percepts (P), which are part of the agent’s beliefs about the environment.

perceive : E-> P
The redlization of the decision function that represents the decision making process of the
agent depends on the selected agent architecture. We distinguish between decision making of
purely reactive agents and agents with internal state. A purely reactive agent directly maps
input to output, i.e., percepts to actions (A). The decision function can be written as

decision : P -> A
Wooldridge (1999) gives athermostat as an example for a purely reactive agent. If we assume
that the thermostat’s environment can be in one of two states¥s either temperature OK, or
temperature too cold¥sthe thermostat’ s decision function has the following form (a state ‘too
hot” is not modeled in the example):

decision T

if T == OK= heater OFF
if otherwise = heater ON

An agent with internal state (I) accesses his knowledge combined with his percepts to make a
decision:

decision : Px | -> A
As a substep, an additional function next is applied, which maps internal state and percept to a
new internal state.

next : | X P -> |
The action function requires two arguments for the input: the decision of the internal state,
and the environment with that the agent interacts. The function results in an action of the

agent. The environment is needed as part of the input, as adecision is related to a place.

action : | ->E-> A

3.3.6 Properties of an Environment

Russell and Norvig (1995) distinguish between artificial and rea environments. Artificia
environments have different properties than real environments and require different kinds of
agents with different sensors and effectors. As real environments are too complex to be

Contributing Disciplines 46

exactly represented in a computational model, and as wayfinding environments in the real
world have a high degree of complexity (Rauba and Egenhofer 1998) one needs to apply
mechanisms of abstraction.

Agents have to be coupled with an environment with which they interact. Different
types of environments affect the design of agents. Normally, an agent has a repertoire of
actions available to it, which describes the agent’s ability to modify its environment
(effectoric capability). Actions have pre-conditions associated with them, which define the
possible situations and environments in which the actions can be applied. For example, the
action to ‘lift the table’ is only applicable in situations where the weight of the table is small
enough so that the table can be lifted by the agent.

The complexity of the decision making process can be affected by a number of different
environmental properties. Russell and Norvig (1995) distinguish environments after following
properties:

Accessible vs. inaccessible

In an accessible environment, the agent can obtain complete, up-to-date information
about the environment’ s state. An environment is effectively accessible if the sensors
detect all aspects that are relevant to the choice of action.

Deterministic vs. non-deterministic

An environment is deterministic if the next state of the environment is completely
determined by the current state and the actions selected by the agents. The physical
world can for all intents and purposes be regarded as non-deterministic.

Episodic vs. non-episodic

An environment is episodic if the result of an action depends only on the current
perception-action cycle of an agent, i.e., an agent’ s action does not affect subsequent
perception-action cycles.

Static vs. dynamic

If the environment can change while an agent is deliberating, the environment is
dynamic for that agent, otherwise it is static. If the environment does not change with
the passage of time but the agent’ s performance score does, the environment is called
semidynamic.

Discrete vs. continuous

An environment is discrete if there are afixed, finite numbers of actions and percepts
init. A chess game is an example of a discrete environment, whereas taxi driving is
an example of a continuous one.

Contributing Disciplines 47

In our computational model, the environment is inaccessible to the agent as the agent can only
obtain the information from the environment that it perceives at each decision point (and not
the complete state of the environment). The world (i.e., the system of agent, environment, and
time) is episodic, as an agent’s decision does not affect future steps. We make following
simplifications for the computational model:

The environment (i.e., the world in our terminology) is deterministic: The next state
of the agent is completely determined by the current agent’s state. As learning is
excluded in the agent’s computational model, the smulated agent would redo the
same action in the same decision situation.

The environment is static. First, actions of the agent are not reflected in a change of
the environmental state but in the agent’s state (section 3.3.1), and second, we
assume that no external impact changes the structure of the environment for the
duration of the wayfinding process.

As the agent can visit a limited number of nodes and perceive a limited number of
objects, the abstract environment is discrete.

3.4 Summary

In this chapter we introduced various theories and methods that are helpful for understanding
the basic features of the wayfinding metaphor, and that are part of our modeling concept of
wayfinding. We discussed structures and classifications of metaphors found in the literature
and saw that the role of metaphors in human everyday-life has changed over the years, i.e.,
that metaphoric imagination can create new unified wholes within human experience. Further
we looked at formal models that describe the process of mapping semantics between two
domains within a metaphor.

In the next sub section various wayfinding definitions were presented to help establish a
possible central meaning for wayfinding. We looked at spatial mental models and saw a
variety of features of the real world they focus on. In the field of decision making theories we
showed some classifications of sub-processes of decision making and pointed out relevant
factors that play a role in the human decision behavior. Further we described which
affordances provided by the environment are integrated in the model of the wayfinding
process in airport environments and the WWW. We gave an overview of simplifications for
abstract environments.

We discussed features of agent theory that are required to develop the agent-based
wayfinding model. The formalized agent is utility-based, has a state, and is separated from the

Contributing Disciplines 48

environment. Facts and beliefs are separate in the agent’s structure. The agent’s operations
follow the Sense-Plan-Act paradigm and can be divided into internal and external operations.

Formal Tools 49

FORMAL TOOLS
CHAPTER

A

Within the formalized wayfinding model developed in this thesis we describe the mapping of
semantics on an abstract level. Source and target domain hereby are formalized through
algebraic specifications. The mapping process between these domains involves formal tools
and theories (such as morphism, categories, polymorphism) to be discussed within this
chapter. We describe the essential features of functional programming languages and show
their advantages (for our task) compared to other programming languages. We further
introduce the class structure of the functional programming language Haskell. The class
structure describing mappings between domains. Graph theory is needed for the conversion of
real, continuous environments into discrete, abstract environments of the formalized
wayfinding model.

4.1 Algebraic Specifications

Our formal approach to describe the semantics of wayfinding in the real world and the WWW
is based on algebraic specifications. Algebraic specifications describe an abstract class of
objects and their behavior. Strictly speaking, algebraic specifications are language
independent, but they require aformal language which is capable of expressing algebraic style
specifications. The purpose of a formal specification is to formally describe the behavior of
objects. Algebraic specifications were introduced to describe data abstractions in software
design (Guttag, Horowitz et al. 1978). We use algebraic specifications to show that the
behavior of data types—denoting objects in the real and WWW environment—satisfy a
number of wayfinding axioms, so that this behavior can be caled wayfinding in the
computational model.

4.1.1 Definition

An algebrais a description of a set of connected operations that are applied to a set of types.
Thisis the generalized definition of algebra, introduced as universal algebra (Birkhoff 1945).
An algebraic specification consists of three parts (Ehrich, Gogollaet a. 1989):

aset S of sorts, naming the object classes

aset O of operations with their argument and result sorts

Formal Tools 50

a set E of axioms defining the behavior of these operations

An algebraic specification D is defined by the triple (S,0,E), which represents an algebraic
structure. The set of sorts of the participating data and the set of operations declared on the
sortsis called the signature of an algebraic specification, S = (S, O).

A sort is a collection of objects of a particular type. If the set S contains sorts of only
one type, we talk about single-sorted algebra, whereas a multi-sorted algebra includes sorts of
different types.

The set O contains operations that are applicable to the sorts of S. Operations can be
separated in constructors and observers (Liskov and Guttag 1986). Constructors are the
operations that are used to define all possible states of the sort of the algebra. Their result is an
object of the defined sort. Observers are operations to describe the functional behavior of the
sort. They take objects from the primary carrier and relate them to other carriers. Their result
is an object of another sort. A minimal set of operations that are sufficient to generate all
values of a sort is a set of basic constructors, a minimal set of operations to retrieve these

values as a set of basic observers.

Axioms can be thought of as a set of rules that describe the properties (behavior) of the
operations. Axioms restrict the behavior of operations that are given through a signature. An
axiom states that an operation can be reduced or rewritten as other operations while
preserving its meaning. If aformal language is used to describe the axioms, the existence of a
definition for operations and the consistent use of types can be checked.

Functional programming languages and algebraic specifications use a similar syntax
and have similar mathematical foundations.

4.1.2 Example

We specify a stack of natural numbers. The notation is copied from Ehrich, Gogolla et al.
(1989). After the keyword Algebra the name of the algebra is found. The keyword Sorts is
followed by types and type parameters. In the algebra, the operations and constants are listed
after the keyword Ops (operations). For an operation, the name of the operation, followed by
‘.77, and the list of argument types and the return type is given. Constants are expressed
through one type in the signature only. After the keyword Egs (‘equations’) the axioms
describing the behavior of the operations are listed.

As an example, a stack is a storage device where items are stored by the operation push.
As the stack implements the ‘last in, first out’ principle, the operation top returns the topmost
element. Access to lower itemsis only possible by first removing one by one the items above

Formal Tools 51

the item to be accessed which is done by the operation pop. The operation empty creates an
empty stack (Figure 16).

Al gebra Stack

Sorts Stack, Nat

Ops enpty :: Stack -- constructor
zero :: Nat -- constructor
push :: Nat -> Stack -> Stack -- constructor
pop :: Stack -> Stack -- observer
top :: Stack -> Nat -- observer

Eqgs top(push n s) =n

pop(push ns) =s

top(enpty) = zero

pop(enpty) = enpty
(S top enpty
stack of a

Figure 16: Functions of a stack
According to the formal notion in section 4.1.1, the given example defines an algebraic
specification D = (S, O, E), where S = { Stack, Nat}, O = { empty, zero, push, pop, top}, and E
= {al, a2, a3, a4}. The behavior of the included operations is fully explained by the axioms
al, a2, a3, and a4.

4.2 Morphisms

Morphisms are structure preserving mappings of objects and operations from a source domain
to a target domain. They are considered as basic concepts for metaphors (Fauconnier and
Turner 1998; Goguen 1999). Metaphors are partial mappings between domains, where only a
set of relevant operations on objects is maintained, and other operations are ‘lost’ in the
mapping process or change their semantics. The mapped operations and functions that
preserve their meaning are homomorph to the corresponding functions in the source domain.
When abstracting the domain to an abstract level algebraically, morphisms describe the
mapping between two algebras. Formalizing a domain as an algebra of operations (category),
the forgetting of operations during the mapping process between categories is described by
the concept of a forgetful functor (see section 4.4.2). Modeling the wayfinding process within
a constructive programming language, we can show that the structure of the domains is
preserved (through polymorphic functions and data types).

Formal Tools 52

Morphisms can be graded after their strength, i.e., how similar the mapped objects and
operations are to their corresponding counterparts in the source domain:

signature morphism

homomorphism

isomorphism
The weakest kind of similarity is a signature-morphism which is a correspondence between
the signatures defining two algebras (Ehrich, Gogolla et al. 1989). A stronger kind is the
homomor phism which is a family of mappings from the sets of domain A to those of domain
B preserving the semantics of operations. If the domains are categories, the homomorphism is

provided by functors (see section 4.4.2). The isomorphism is a bijective homomorphism that
allows a mapping in both directions without loss of information.

The concept of morphism is used to model blending of conceptual spaces (Fauconnier
and Turner 1998), and to define similarities between the world and the cognitive model of the
world within user interface theory and semiotic morphisms (Goguen 2001). Technical
developments within category theory (MacLane 1971) have spurred further and deeper uses
of morphisms within mathematics, and more recently in applied fields like computer science
(Goguen 1999).

4.2.1 Signature-Morphism

A signature morphism is a structure-preserving mapping from a signature to another. Be S; =
{S1, O} and S; = {S,, Oy} signatures. A signature morphism f: S; -> S, consists of two
mappings:
(1) amapping of the sorts: g: S; -> Sp, where s, 1 = g(S1.1); S22 = 9(S1.2), - .-
(2) a mapping of operations signatures. h: O, -> O,, where 01: t) X t7 ... t, -> sis mapped
to asignature f(oq): f(t1) x f(to) ... f(t,) -> f(S).
As an example from Ehrich, Gogolla et al. (1989) we take the functions push (in the algebra

Natstack) and in (in the algebra Natqueue). The operations are not semantically related one to
each other except for the structure of the signatures.

Al gebra Nat st ack
Sorts Nat, Stack

Ops push : Nat -> Stack -> Stack

Formal Tools 53

Al gebra Nat queue

Sorts Nat, Queue

s in : Nat -> Queue -> Queue
The signature of the operation push can be mapped to the signature of the operationsin viathe
mappings

push -> in

Stack -> Queue
Signature morphisms can be applied to the signature of functions only. What they say about
the semantics of the compared functions is that they have an equally structured data input, not

more.

4.2.2 Homomorphism

A homomorphism h from an algebra A to an algebra B is a family of mappings { hs, hy, ...h.}
from the set of objects S, in domain A onto the set of objects Sg in domain B, where the
behavior of the operations is preserved. This can be written as

h:A® B
fu(h. (@) = hy(f,(a)

where hé(é):(hﬂ(q),...hm(q)), s =sy,..svand a = (ay,...a).

The concept of homomorphism can be visualized in a commutativity diagram (Figure 17).

Dormnmain A Domain B
(—_—) —
d >
hs o
\ fa f b|
h
a : > b

Figure 17: Homomorphism diagram
Thus, when operations in one domain are performed and their results are mapped to another
domain, the results are the same as when the arguments are mapped first to the second domain
and then subjected to the corresponding operation in the second domain. The important point
here is that the semantics of the operations must be preserved within the mapping process. If
the morphism has an inverse, we talk about an isomorphism (section 4.2.3).

Formal Tools 54

Horebeek and Lewi (1989) give an example for a homomorphism between two
domains. The NAT domain consists of the set of natural numbers including zero {0, 1, 2,
3,...}, the zero function (creates a 0-value), and the successor function (increases the input by
1). The MOD2-algebra consists of the set of numbers modulo 2 {0,1}, the zero function, and
the addition-modulo-2 function, denoted by add2. Axioms about the behavior of the zero
function and the succ function are skipped here.

Al gebra Nat ural Nunbers
Sorts Nat
Ops zero :: -> Nat

succ :: Nat -> Nat

Al gebra Mdul 02
Sorts Nat
Ops zero :: -> Nat

add2 :: Nat -> Nat
We look at the mapping of objects and operations between the two domains (see Figure 18):

The mapping of natural numbers to numbers mod2 is the following: 0 and even
numbers are mapped to Oy opz, and uneven numbers are mapped to 1yiopz.

The zero function can be mapped: m(zeronat) = f(0) = Oviop2 = Zeromon?

The successor function can be mapped: m((succ)(2n)) = (add2(m(2n)) and
m((succ)(2n+1)) = (add2(m (2n+1))

ONat

Nat
ONat

SUCC — SuUCC
ONat

zero
oMOD2

Nat
OMOD2

SUCC — Qddk
oMOD2

Zero

Figure 18: Homomorphism between natural numbers and numbers modulo 2 (after Horebeek and Lewi
1989)

Formal Tools 55

In this example, no homomorphism exists from MOD2 to NAT as the mapping from the
natural numbers to the numbers mod2 has no inverse: A unique mapping of objects from
Omon2 and 1yop2 t0 {0, 1, 2, 3, ...} is not possible. Therefore, the homomorphism from NAT
to MOD2 is not an isomorphism, i.e., it isirreversible.

The concept of homomorphism is not restricted to mathematical domains and computer
science. There is a long tradition to compare two domains in respect to the semantics of the
included functions. As an example from the past consider Ludwig Wittgenstein’s picture
theory. When he talks of pictures, Wittgenstein seems to have in mind pictures of the kind we
would normally describe as ‘pictures’, but he seems to think that the basic logic of depiction
applies to a much wider class of things than we would ordinarily count as pictures (Cashell
1998). Wittgenstein claims that for a picture to represent something which is actually the case,

the elements of the picture must be correlated with elements in the situation which
the picture represents, and

they must be related to each other in the picture just as the elements of redlity are
related to one another.

4.2.3 Isomorphism

An isomorphism is a morphism h : A->B, for which exists an inverse morphisng: B-> A, s0
that gh = ida and hg = ids. The domains A and B are then called isomor phic.

A common example for an isomorphism is the logarithm function. Similar to the given
example with numbers modulo2 in section 4.2.2, it maps one domain of numbers and its
functions onto another: The first domain (A) contains positive rea numbers with
multiplication and division to rea numbers, the second domain (B) are real numbers with
addition and subtraction. The multiplication and division operators (left side in Figure 19) are
preserved as addition and subtraction (right side in Figure 19) through a mapping of
multiplication (division) to the addition (subtraction) of powers to their base. An inverse
mapping from the objects of B to A is possible using the inverse logarithm function.
Therefore, the logarithm function is an isomorphism.

log, (u>v) =log, u+log, v

log, () = log, u- log, v
\'

Figure 19: Logarithm: an isomorphic function

Formal Tools 56

4.2.4 Morphisms in Formalized Metaphors

Kuhn and Frank (1991) and Kuhn (1997) choose an algebraic approach for metaphorical
mapping. The domains of a metaphor are abstracted as algebras in which the axioms define
the behavior of objects and operations. The metaphorical mappings correspond to mappings
between algebras which preserve the structure and the semantics of operations, i.e.,
homomorphism and isomorphism. Discussing the DESKTOP metaphor—a metaphor that is
often used to organize graphical computer interfaces (e.g., Windows or Mac OS)—with the
help of algebraic mappings, the authors show that (abstract) operations from the physical
domain can be mapped to corresponding (abstract) operations in the electronic space.
Depending on the amount of semantics preserved during the mapping process, the metaphor
can be graded. As examples we give two formalized metaphors found in (Kuhn and Frank
1991) that represent a different grade of truth.

4.2.4.1 Metaphor with Algebraic Isomorphism

M etaphors can be graded, depending on their grade of truth (compare MacCormac 1985). The
first metaphor printed here, is true in the sense of semantics of operations, i.e., representing an
isomor phism. In its abstraction, a desktop-domain consists of the objects Desktop, Folder, and
Bool (Kuhn and Frank 1991). It contains operators to create a new desktop (new), put a folder
on a desktop (put), get a folder from a desktop (get), and check, whether a folder is on the
desktop (on). In the axioms, the variables (dt for desktops, f for folders) are used for the
corresponding sort.

Deskt op

Sorts Desktop, Fol der, Bool

ps new: -> Desktop
put : Deskt op x Fol der -> Desktop
get: Deskt op x Fol der -> Desktop
on: Deskt op x Fol der -> Bool

Eqs on(new,f) = fal se

on(put (dt,f1),f2)

if f1 == f2 then true

@

| se on(dt,f2)

get (put (dt,f1),f2)

if f1 == f2 then dt

el se put(get(dt,f2),f1)
Kuhn and Frank show that the desktop in the electronic space can be specified in an identical
way (except for different sort and variable names). This means, that electronic desktops
behave like real desktops with respect to the operations defined. In this example, four

Formal Tools 57

operations were considered to be salient and therefore included in the algebra. By including
additional operators, dissimilarities could be shown, such as the fact that things fall from
physical but not from electronic desktops. The designer has to decide which features of the
source domain are relevant and which are not. This process of filtering functions can be
described as a forgetful functor (see section 4.4.2). As the effects of the specified operators on
office desktops correspond to the effects of the analogous operators on electronic desktops,
and vice versa, the mapping between the two domainsis an isomor phism.

4.2.4.2 Metaphor with Signature-morphism

In the following algebraic example, the signatures between the two algebras are the same, but
the effects of some operations are different. Thus, the morphism between the algebras is a
weaker one than in the previously given example. Kuhn and Frank (1991) compare the
operations of real and electronic clipboards.

At the physical desktop, clips can be added to (put) and removed from the top (get), and
it can be checked if aclip is on the board (on). The signature of operations is similar to the
specification of desktops in the previous example, whereas the semantics of the operations is
different.

d i pboard

Sorts Board, Cip, Bool

Ops new -> Board
put : Board x Clip -> Board
get: Board -> Board
on: Board x dip -> Bool
Eqs on(new, c) = fal se
on(put(b,cl), c2) = if cl == c2 then true
el se on(b, c2)

get (put (b, c)) =b
Next, the electronic variety of clipboards, as provided by the Macintosh, is specified:

El d i pboard

Sorts El Board, ElICip, Bool

Ops new. -> El Board
put : El Board x EIdip -> El Board
get: El Boar d -> El Board
on: El Board x EICip -> Bool

Eqs on(new,elc) = false

Formal Tools 58

if elcl == elc2 then true

on(put(elb,elcl),elc2)

el se fal se

put (el b, el c)

get (put (el b,elc))
The underlined code indicates the two differences between physical and electronic clipboards:

On a real board, severa clips can be put on. Contrary, a clip remains on the
electronic clipboard only until the next clip is put on (this has not been true since the
use of multi-clipboards in operating systems).

put put !

[]
I - }{
(@) (b)

Figure 20: Different semantics of putting a clip on a real (a) and an electronic (b) clipboard

A clip can be taken from a physical clipboard only once. In distinction, getting back
a clip does not change the electronic clipboard, and the same clip can be retrieved
several times.

et et
g |:| g |:|
‘ (@) L (b)

Figure 21: Different semantics of getting a clip from a real (a) and an electronic (b) clipboard
As signatures of operations are equal in both algebras, but the axioms show differences, the
mapping from physical to electronic clipboards is a signature-morphism, and not a
homomorphism. This statement could be refined if using an object-oriented notation of the
algebra, i.e., using severa classes. Then, one could distinguish between generic operations
(section 4.7.4) and operations that are different in their instantiation.

The presented examples are ssimple in the respect that the source domains, i.e. desktop
and clipboard in the real world, are compared with target domains of exactly the same
algebraic structure (target and source domain have the same number of data types, and
axioms). Thus, we can check the two algebras of the examples for isomorphism through line-
by-line comparison.

Comparing two domains for similarity gets more complex if two abstract domains
containing a different number of classes are involved. Demonstrating the similarity of source
and target domain is then not possible through line-by-line comparison. We show a possible
approach for this task when checking two domains for satisfying a set of wayfinding axioms.

Formal Tools 59

4.3 Morphisms in the Wayfinding Model

In the computational model, the agent constructs simulated beliefs through simulated percepts
of world states. The smulated beliefs may contain errors (similar to beliefs of a living human
that may contain errors). Accordingly, a human’s action in the environment is mapped to a
simulated action (act’) which is the execution of a simulated decision (decide’). The
environment is represented as a graph. The simulation contains objects and operations that are
mapped from the real world to abstract domains, which then are formally compared.

Table 6 lists some of the features and operations we consider to be relevant for a
simulated wayfinding process (i.e., which are mapped to the abstract domains). The sub
components of objects (e.g., the agent’s preferences) and sub-processes of operations (e.g.,
matching of perceived information with the goal definition) are not listed in the table.

Reality Simulation
Physical environment or WWW Graph

Person Agent

Belief Simulated belief (belief’)

Percept Simulated percept (perceive’)

Decide Simulated decision (decide’)

Action Simulation action (action’)

Table 6: Mapping features and operations from the physical world and the Web to the simulated model
We assume that the effects of human activities correspond to the effects of the simulated
activities in the abstract computer model. Taking this into account, the mapping from the real
world domain (including human behavior in the WWW space) to the abstract domains are
assumed to be homomorphic.

Figure 22 visualizes these mappings (labeled h and g) from the real world domain and
the WWW domain to their counterparts in the computational model. These homomorphisms
are independent of any wayfinding axioms. They informally expresses that objects and
activities can be mapped from the source domains (i.e., airport and WWW in our simulation)
to the abstract domains. Several properties of involved functions from the real world are
assumed to be maintained in the abstract models. They are expressed through axioms (section
5). Depending on the class levels observed, the morphisms ml and m2 between the
instantiations are either inverse or not. The partiality and totality of morphisms and operations
in the formal model is discussed in section 8.2.

Formal Tools 60

”~
1 REAL WORLD \n

(. SIMULATED WORLD
»

AGENT AGENT PERSON

simulated 9 beliefs
beliefs D

PERSON

beliefs h simulated
beliefs

e e e e e e T

A A
HE n :% E £ 5|« c £
2 8 8 g
A\l J Q /’;] J
___________________ ' ~ e e e e e e o — e e e e — -
Figure 22: Mapping of objects and operations from the real world and the WWW to the abstract

domains

4.4 Category Theory

In this section we introduce mathematical category theory (Eilenberg and Lane 1945) which
is the algebra of functions. It is not related to the category theory of cognitive science where
classes are formed by similar objects (e.g., Rosch and Mervis 1975; Rosch 1978).

Mathematical category theory deals with categories that consist of functions of some
domains. One of its goalsisto reveal the universal properties of structures of a given kind via
their relationships with one another. Any immediate access to the internal structure of objects
is prevented, and all properties of the objects must be specified by properties of morphisms.
Instead of discussing the properties of individual objects, category theory focuses on the
properties of the operations. Thus, properties of operations are described without reference to
the objects the functions are applied to.

Category theory provides a uniform treatment of the notion of structure. This can be
seen by considering the variety of examples of categories. The classical example is Set with
sets as objects and functions as morphisms. Metric spaces form a category whose primitive
elements are points and whose primitive operation is distance. The algebra of rings represents
a category with rings as objects and ring homomorphisms as morphisms. Category theory is
popular among algebraic topologists as it helps to assign algebraic invariants to topological
structures. Thanks to its genera nature, the language of category theory enables one to
‘transport’ problems from one area of mathematics, via suitable functors, to another area,
where the solution may be easier to find. Invariants are of interest when discussing metaphors,
as they are independent of any implementation and preserve functional axioms in different
domains.

4.4.1 Definition

The following definition is taken from Bird and de Moor (1997) and Baez (1999):

Formal Tools 61

A category C is an agebraic structure with a set of objects (A, B, C,...) and a set of
morphisms (f, g, h,...) together with three total operations and one partial operation.

The first two total operations are called source and target. Both assign an object to a
morphism. f: A® B indicates that the source of the morphism f is A and the target is B.

The third total operation takes an object A to amorphism id: A® A, called the identity
onA.

The partial operation is called composition. It combines two morphisms into another
one. The composition g.f (pronounce “g after f”) is defined if and only if f: A® B and g:
B® C for some objects A, B, C, inwhich case g.f: A® C. Composition needs
to be associative, i.e., f.(g.h) = (f.g).h, and

to have identity morphisms as units, i.e., ida.f = f = f.idg
A preordered set is an example of a category. Given two set elements p,q of the preordered

set, there is a morphism f: p® q iff p isless than or equal to g. Thus, a preordered set is a
category in which there is at most one morphism between any two objects.

Another example is the set of integer numbers with the operations inc (increases a
number) and dec (decreases a number). Function composition of inc and dec gives the null-
operations and therefore describes both morphisms as inverse to each other.

inc . dec =id

dec . inc =id

4.4.2 Functors
Abstractly defined, a functor is a homomorphism between categories. Given two categories C
and D, afunctor F: C® D consists of two mappings:
mapping of objectsto objects
mapping of morphisms to morphisms
The two component mappings of a functor F are required to satisfy the property
Ff: FC® FD whenever f: C® D

A functor is required to take identity morphisms to identities and composites to composites
(called functor laws):

F(ida)=id.a and F(g.f)=Fg.Ff

the latter condition holding whenever the composite morphism g.f is defined. For morphisms

f: C® D and g: D® E, these conditions may be visualized by commutative diagrams:

Formal Tools 62

F(f id
c— 200" so—Lrsny e
\ l S[QN l&”{gl

F(E)

Figure 23: Composition and identity preserved by functor
Bird and de Moor (1997) give some examples for functors: identity functor, constant functor,

squaring functor, product functor or the list functor.

A forgetful functor ‘forgets some or al of the underlying structure of an algebraic
object. For example, the functor U: Ring® Abelian assigns to each ring R (e.g., Z;+;.) the
additive Abelian group of R (i.e, Z;+) and to each morphism f:R® R of rings the same
function f, regarded just as a morphism of addition. The multiplicative structure of theringsis
‘forgotten’.

Theidea of ‘forgetting’ operations between categories can be mapped to the concept of
metaphor: Using a metaphor, not all operations from the source domain will be represented in
the target domain. The forgetful functor keeps those invariant operations in the mapping
process that are considered as important features of the source. The rest may be forgotten by
the operator. We apply the concept of a forgetful functor when we define the wayfinding
axioms and deliberately consider few operations in the real world to be essential parts of
wayfinding (and worth being included in the computational model). Identity operation and
function composition are assumed to be preserved in the computational model for both

instances (Figure 24).
"wayfinding”
op,
.id
5 G Axiorns
op/ op,”
Ad’ id”
real world model WWW model

Figure 24: Forgetful functor: Abstracting wayfinding through a number of axioms
The ‘forgetfulness’ of the forgetful functors in the figure cannot be formalized in a
computational model, as the input of the original category, i.e., wayfinding in the real world,
is not completely accessible due to its complexity. What we do in the formal moddl, is to

Formal Tools 63

express a number of activities through parameterized operations that are instantiated with
certain data types. Functors play a role in the definition of data types through constructor
functions. Thistopic is discussed in section 4.5.5.

45 Type Systems and Polymorphism

4.5.1 Why Do We Need Type Systems?

Programming languages use data types to partition the untyped universe of values into
organized collections. The purpose of atype system is to prevent the occurrence of execution
errors during the running of a program (Cardelli 1997). In this thesis, we use type systems to
demonstrate the concepts of polymorphism and homomorphism within the class system of the
formalized wayfinding model.

We begin with the definition of an untyped universe. Untyped means that there is only
one type in the universe. For example, in a computer memory, a bit string of fixed size is
represented by the only type, called word. When looking at a piece of raw memory there is no
way of telling what is being represented. Another example isthe | -calculus, where everything
is a function. Yet there is only one type, i.e., the type of functions from values to values,
where values are themselves functions.

Types arise informally in any domain to categorize objects according to their usage and
behavior (Cardelli and Wegner 1985). In programming and mathematics, types impose
constraints which help to enforce correctness. A type protects its underlying untyped
representation from arbitrary and unintended use. Objects of a given type have a
representation that respects the expected properties of the data type. The representation is
chosen to make it easy to perform expected operations on data objects. Type systems cannot
prevent execution errors, such as divide by zero and dereferencing nil.

4.5.2 Type Inference and Strong Typing

In a programming language, types are associated with constants, operators, variables, and
function symbols. With the help of a type inference mechanism, types of expressions can be
inferred, when little or no type information is given explicitly (Cardelli and Wegner 1985).
That means that if some predefined types are given, the inference mechanism can logically
deduce types of expressions that include the predefined types. Thus, a programmer is not
forced to explicitly assign atype to each expression asit can be inferred. Type inference has a
long tradition in functional programming languages (e.g., Milner 1978).

Formal Tools 64

For explicitly typed languages, types are part of the syntax, where for implicitly typed
ones it is not. No mainstream language is purely implicitly typed, but languages such as ML
or Haskell support writing program parts where type information is omitted. The type
inference mechanism of those languages automatically assigns types to such program
fragments.

Languages in which all expressions are type-consistent are called strongly typed
languages. Thisistypical for most functional programming languages, such as Miranda, ML,
and Haskell. For strongly-typed languages, the compilers can guarantee that the programs it
accepts will execute without type errors. Run-time tags or type checking are not required,
since type checking occurs at compile-time (Goldberg 1991). All statically typed languages
(e.g., Pasca or C), i.e., languages in which the type of every expression can be determined by
static program analysis, are strongly typed, the converse is not necessarily true.

Weakly typed languages, e.g., BASIC, JavaScript, and Perl, enforce type rules with
well-defined exceptions or an explicit type-violation mechanism. They are much more
flexible about the data stored in the variables. Weak typing catches fewer errors at compile
time than strong typing does.

4.5.3 Polymorphism

In polymor phic languages, values and variables may have more than one type. A polymorphic
function is a function that can be applied to arguments of different types. Polymor phic types
are types whose operations are applicable to values of more than one type. In contrast to
polymorphic languages, monomor phic languages, such as Pascal, are based on the idea that
functions and procedures, and hence their operands, have a unique type. Every variable can be
interpreted to be of one and only one type.

Universal polymorphism can be classified into parametric polymorphism and inclusion
polymorphism. Universaly polymorphic functions work on an infinite number of types (all
the types must have a given common structure). Parametric polymorphism is the purest form
of polymorphism as the same object or function can be used uniformly in different type
contexts without changes (Cardelli and Wegner 1985). An example of afunction that exhibits
parametric polymorphism is the length function (length :: [a] -> Int). This function calcul ates
the length from alist of elements of arbitrary types ([a]), thus does its work independently of
the argument type. Inclusion polymorphism models subtypes and inheritance, which allows
the properties of one or more types to be reused in the definition of a new type. Subtypes and
inheritance, in turn, are basic features of object-oriented programming. In Haskell, inheritance
is modeled within the context of a class.

Formal Tools 65

Ad-hoc polymorphism is obtained when a function works on severa types but gives its
operations a different meaning. In overloading—one of the two kinds of ad-hoc
polymorphism—the same variable name is used to denote different functions, and the context
is used to decide which function is denoted by a particular instance of the name. Hereby, the
compiler resolves ambiguity at compile time and eliminates overloading by giving different
names to the different functions; thus overloading is a purely syntactic way of using the same
name for different semantic objects, and therefore some kind of apparent polymorphism
(Cardelli and Wegner 1985). An example for overloading is given in section 4.7.2. A
coercion—the second kind of ad-hoc polymorphism—is instead a semantic operation which
is needed to convert an argument to the type expected by a function in a situation which
would otherwise result in a type error. For example, the literals 1, 2, etc. are often used to
represent both fixed and arbitrary precision integers; or numeric operators such as ‘+ are
often defined to work on many different kinds of numbers.

4.5.4 Algebraic Data Types

Data type systems are widely used among functional programming languages. Data types can
be divided into

base types, whose values are given as primitive, and

composite (or derived) types, whose values are constructed from those of other types.

More complex types (so called user-defined data types) can be created with a type
constructor. We describe algebraic data types as used in the Haskell functional programming
language.

4.5.4.1 Base Types and Composite Types

Haskell contains following pre-defined, built-in base types in the standard prelude file: fixed
size integers (Int), arbitrary size integers (Integer), single precision floating point numbers
(Float), double precision floating point numbers (Double), Boolean values (Bool), characters
(Char). The symbol ‘::’ can be read as ‘is of type'. Integer and Double are not used in our
simulation.

1:: Int

1.0 :: Float

True, False :: Bool

‘a’ :: Char

Formal Tools 66

Composite types are lists ([t1]) and tuples (t1,t2,...tn), which consist of severa pre-defined
base types (see also section 4.5.4.3). Lists can be arbitrarily long, but all elements must be of
the same type. Strings are specia kinds of lists, namely lists of characters. A finite list is
denoted using square brackets and commas. The empty list is written as [] and a singleton
list, containing just one element aiswritten [a] .

List comprehension provides a way to write down a list in terms of the elements of
another list. The left side of the ‘| symbol denotes an arbitrary expression, where on the right
side there are one or several qualifiers. A qualifier is either a generator or a boolean-valued
expression. The symbol ‘<-’ in the generator denotes the mathematical symbol ‘T * of being
an element of a set. As an example for list comprehension we take a list Is which is [2,4,7].
The list comprehension

[2*n] n< Is, n < 5]
resultsin [4,8]. It takes the list of value 2*n, where n is drawn from the list |s (generator) and
n < 5 (boolean valued expression). If the boolean valued expression does not yield True, the
element (i.e., the value 7) is not included in the result.

A tuple consists of a predefined number of objects. The type (t1,t2) corresponds to the
cartesian product operation of set theory, where the notation ‘t1 ~ t2' is more often seen. The
number of elements is 2 or higher. Tuples represent a product type (see next section) of its
base types.

(1, ‘a’) :: (Int, Char) -- pair

("Hugs", 1.5, 4) :: (String, Float, Int) -- triple

4.5.4.2 User-defined Data Types

User-defined data types are declared by the keyword data, followed by the name of the new
type, an equals sign, followed by one or more alternatives separated by ‘|'. The alternatives
each introduce a constructor function which takes 0 or more elements. Thus the general form
of the algebraic type definition is

data Typenane = Conl t11 .tl1ln | Con2 t21.t2n .| Con3 ...
The simplest algebraic type definitions are an enumeration of the elements or values of that
new type. It is called enumerated type and represents the digoint union of its elements. For
example, the datatype

data Tenperature = Cold | Hot

introduces the data type Temperature which has two members. Cold and Hot are the
constructors of the type Temperature which both have no arguments. The vertical bar (read

Formal Tools 67

“or”) is interpreted as the operation of digoint union. Thus, distinct constructors are
associated with distinct values.

If the alternatives in a data type definition include other types, rather than being smple
constants, this gives a union type. This defines a data type in terms of other data types. For
example, the data type Either consists of 130 values: B True, B False, C asciiO, C asciil,...C
asciil2r:

data Either = B Bool | C Char
In this example, the names B and C denote constructors for building values of type Either.
Each constructor denotes a function of which the types are:

B :: Bool -> Either

C:: Char -> Either
A product type is atype that consists of at least two components which represent values from
the two constituent data types. The following example from the abstract wayfinding model in
this thesis introduces a new data type Agent. To construct an element of type Agent, one needs
to supply two values: One of type Fact, and another of type Beliefs. A user-defined data type
is called n-ary if it takes n numbers of arguments. In this example, the constructor function
takes two argument types and is therefore called binary.

data Agent = Agent Fact Beliefs

Another notation for the data type Agent is (Fact © Belief). This notation expresses that the set
of values for the product data type is the Cartesian product of values from the two constituent
types. The number of values of the data type Agent is given by the product of the number of
valuesin Fact and Beliefs.

4.5.4.3 Polymorphic and Recursive Data Types

It is also possible to define polymorphic algebraic types, where the constructor functions
become polymorphic. Hence, data types can be defined without explicitly stating the type of
its components. The type parameter must be instantiated with a type when the data is used,
such as EdgeEnv and EdgeMental in the following example.

data En = E n SignPost n SignPost

data EMn = EMn n

type EdgeEnv = E Node

type EdgeMental = EM NodeM
The data type E n represents an edge in the environmental graph. It consists of a start- and
endnode (denoted by an n), and a sign (type SgnPost) at the starthode and at the endnode.

Formal Tools 68

The data type EM n represents an edge in the agent’s cognitive map, and consists of a start
and endnode. In both data types, the parameter n represents an arbitrary node, and can
therefore be instantiated for example with the data types Node or NodeM.

Constructor functions can be used in recursive definitions, i.e., it is possible to use the
algebraic type being defined in a data definition within its own definition. Lists are a common
example of arecursive type. They are either empty or they consist of a head and a tail where
thetail isalso alist (thisisarecursive union type). A polymorphic list can be written as:

data List a = NilList | Cons a (List a)
where the Cons constructor is equally to the *:’ operator, which adds an element to the list:
(2:[2,3] = [1,2,3]). The data type definition shows that all elements of a given list must have
the same type. The same is true for the recursive data type Tree: A tree is either nil or given
by combining avalue and two sub-trees. A polymorphic treeis defined as

data Tree a = Nil | Node a (Tree a) (Tree a)

4.5.5 Data Types and Functors

In the domain of constructor functions a functor can be seen as a combination of a type
constructor F of kind *->* and a mapping function that lifts a given function of type a->b (in
its smplest case) to afunction of type f a-> f b. Thus, the mapping function is a higher order
function. In Haskell, the concept of a functor is captured by the Functor class definition:

class Functor f where
frap :: (a ->b) -> (f a->f b)
Instances of this class are supposed to satisfy the two functor laws (see also section 4.4.2):
frep id = id
frap (f.y) =fmap f . fmap y
MacLane and Birkhoff (1967, p.131) describe a functor as; “Many constructions of a new
algebraic structure from a given one also construct suitable morphisms of the new algebraic

system from morphisms between the given ones. These constructors will be called functor
when they preserve identity morphism and composites morphism”.

Typica examples of functors are recursive types such as lists or trees. In these cases, the
mapping function applies to the first argument of the data type leaving its structure intact. For
example, the list functor takes a set a to the set [a], and a function fmap f that applies to each
element of alist (which describes the functionality of the map function).

Formal Tools 69

data List a = NilList | Cons a (List a)
instance Functor List where
fmap f NilList = NilList
fmap f (Cons t 1) = Cons (f t) (fmap f 1)
The first equation shows that the Null operation of the List function is preserved. To prove
that the second functor axiom is satisfied, one needs to replace f with a composed function
(g9.h), and show that the equation

fmap (g.h) (Cons t I) ==fmap g . fmap h (Cons t 1)
yields true (which is not shown here). The Haskell prelude expresses the previously described
semantics of the map function as the instantiation of the class Functor with the list operator:

i nstance Functor [] where
frap = map

and therefore

map :: (a ->hb) ->[a] -> [b]
As an example for the map function let us consider C to be a category with a set of objects of
the data type a (e.g., of type Int), and a morphism f between its objects (e.g., the ‘+
operation). Mapping the set of objects from C to a list of objects [a] in a category D, and
lifting the morphism f to each element of the list using the fmap function, represents a functor.
The id-function (i.e., (+0)) and function composition are preserved. Figure 25 visualizes an
example with concrete integer values.

3 — g F([0) B — [
q
g.f: (+6) g: (+4) map (g.f) map g
% %]

Figure 25: Mapping between two categories with a functor that is instantiated with the List-function
The fmap function can also be instantiated for non-recursive data types. This means that a
function a->b can be lifted to non-recursive data types. Let us assume the following
parameterized data type D and the instantiation of the class Functor with D:

Formal Tools 70

data Dn = NID| Dn n Int
i nstance Functor D where
frap f NNID = NID
frap f (Dnl n2i) =D (f n1) (f n2) i
Mapping the length function, e.g., onto the components of the parameterized data type D
gives the following result:

> fmap length (D "Haskell" "code" 1)

D741

> fmap length NilD

Ni I D
As the class Functor must be instantiated for data types of kind *->*, a type constructor with
one parameter, such as List or Tree (section 4.5.4.3), is a valid functor, whereas the
declaration

i nstance Functor List Int

would result in akinding error (the data Type Tree Int is of kind *).

4.6 Functional Programming

Functional programming has some typical features that are not provided in procedural
languages. We show the advantages of these features of functional programming for the task
of this thesis. A comprehensive comparison of imperative and functional programming
languages can be found in the Turing Award lecture by John Backus (1978). Referential
transparency and strong typing, which are used in most functional languages, have been
discussed in section 4.5.2.

4.6.1 Each Expression Is a Function

Programming in afunctional language consists of building definitions and using the computer
to evaluate expressions (Bird and Wadler 1988). In a functiona programming language
everything is a function. As functions in mathematics, these expressions give the same result
for the same parameters. Programs are expressions which are evaluated and not a sequence of
statements that are executed. Functional programming is a style of programming that
emphasizes the evaluation of expressions, rather than execution of commands, and the
interpreter works by replacing equals with equals, until no further replacements are given.
Functional programming languages allow reasoning based on substitution, i.e., al values are
assigned once and cannot change their value during the execution.

Formal Tools 71

Contrary, structured programming languages, such as C, Pascal, or Modula, distinguish
between constants, variables, and functions. Constants are static, whereas variables are
dynamic. Functions are calls to pieces of code, diverting the flow of control from the calling
function to the referenced function. Structured programming languages are executed line by
line, with occasional jumps or functions calls. Constructs like begin/end, while/do,
repeat/until, or goto are examples for sequencing. In functional languages, where every
expression, even the main routine, is afunction, there is no explicit flow of control. Thisis an
advantage compared to structured programming languages, as code with loops is a regular
source of programming errors.

4.6.2 No Side-Effects

Pure functional languages are free of side-effects, they compute only their result. A side effect
is a construct that modifies the state of the system. The most common side-effects are
assignment, input and output. Functions with side effects change a global state, which can
influence the result. A typical example used in procedural languages for implicit storing of a
state is the assignment to a counter (e.g., i:=i+1). Assignment is not possible in functional
programming: Substitution of i on the right side with ‘i+1" gives asituation (‘i:=i+2') that is
different from the original line. Instead of loop, functional programming uses recursion. If a
functional language is completely free of side effects, it is called a pure functional language,
if some side effects exist, the language isimpure.

4.6.3 Higher-order Functions

A higher-order function takes a function as an argument and returns a function as the result. A
mathematical example is the derivation function, which takes a function as an argument and
yields its derivative (which is a function, too) as the result. Higher-order functions are used to
define axioms between functions in a category.

The most often cited example of higher-order functions in functional programming is
the functional composition, denoted by the dot (.) operator. The composition of two functions
f and g isthe function h such that h x = f (g X):

(f . 9 x=1(gx)

The signature of functional composition is given by:

(.) :: (b->c) -> (a->b) -> (a->c)

Function composition plays an important role for the definition of a category (section 4.4.1).
Further, functional composition expresses functions in a point-free style: A function can be
formulated without reference to specific data types but described exclusively in terms of

Formal Tools 72

functional composition and agorithmic strategies (Bird and de Moor 1997). A point-free style
of programming is free of the complications involved in manipulating formulae dealing with
bound variables introduced by explicit quantifications.

The function any is a higher-order function that composes the map (section 4.5.5) and
the or function. In a first step, any maps a boolean function to all objects of a list which
results in a list of Boolean values. In a second step (or), the resultant list is checked for any
value to be True. If thisisthe case, any results in True, otherwise the result is False.

any :: (a -> Bool) ->[a] -> Bool

any p = or . map p

For example, the execution of

any (>4) [1,3,5]
results in True. First, the function (>4) is mapped to all objects in the list which results in
[False, False, True], then function or checksthelist for a True value, which resultsin True.

The fold function folds a function f into a list of objects [a] . The operation to be folded
must be a binary function over the type a. The function fold, which is known as foldrl in
Haskell, gives an error when applied to an empty list argument (the ‘r’ in the definition is for
‘fold, bracketing to the right’). A modified definition (foldr) takes an extra argument that
defines the value on the empty list.

foldrl :: (a->a->a) ->[a] -> a

foldr :: (a->b->b) ->b ->[a] ->b

Thisisused in defining some of the standard functions of Haskell, such as:

or :: [Bool] -> Bool
or = foldr (||) False

Here, the ‘||" function on an empty list is defined as False. In the following example, folding

the‘+’ function on an empty list yields 5.

> foldr (+) 5[]
5
> foldr (+) 51,2 3]

11

4.6.4 Why We Use a Functional Programming Language

A magor advantage of using a functional programming language compared to structural
programming languages is the possibility to express parameterized functions. Parameterized
functions are used as generic functions in the simulation, i.e., the semantics of these functions

Formal Tools 73

is equal for all applied data types. In functional programming languages, type inference is
supported for parametric data types also and not only for a number of predefined data types.
This is not true for traditional programming languages, such as Pascal where functions are
defined for a specific data type. We use parameterized functions to show that certain
operations involved in wayfinding are equal for both instantiations of the simulated
wayfinding model, e.g., the perceive function. Parametric functions provide a means to
discuss the wayfinding problem on a more abstract level, free of problems that might arise
from a specific representation.

Higher-order functions—which are hardly provided by procedura programming
languages—give the possibility to express functions in a point-free notation. Especially
function composition, which is a basic operation of functional programming, makes it
possible to view the wayfinding process as a category. Thus, the behavior of functions can be
discussed, free of the implementation of specific data types.

4.7 Haskell

The lazy functional programming language Haskell is named after the logician Haskell Curry
(1900-1982). His main work was in mathematical logic with particular interest in the theory
of formal systems and processes. He formulated alogical calculus using inferential rules. The
standardization of Haskell is supported by the scientific community (Peterson, Hammond et
al. 1997). Haskell allows checking the syntax, type consistency and axioms of specifications
aready in an early phase of software development. It is a compiler that enables immediate
execution of specifications. The static type system ensures that Haskell programs are type safe
(Hudak 1989). Haskell’s type system guarantees that all type errors are detected during the
compilation process.

In this section we describe those features of Haskell which are important for this thesis.
These are

polymorphic functions and type inheritance (modeled through classes and instances)

pattern matching

4.7.1 Classes

A classis used to model the behavior of a data type or a parameterized family of data types
(Jones, Jones et al. 1997). The collection of types over which a function is defined is called
type class or simply class (Thompson 1996). Classes alow us to express polymorphic
functions (which are equally defined for all datatypes), and to overload functions (which use
different definitions at different types).

Formal Tools 74

A class consists of a set of operations expressed by functions applied to one or several
data types. The class declaration (called the header) introduces the name of the class, lists the
parameters, and may list conditions for the parameters (called context). In the lines after the
class header, the signatures of operations are given, describing name, arguments and result of
each operation.

The type class Eq as defined in Haskell's standard prelude is a simple and useful
example. It takes one parameter a in its operations. The declaration of the class is given as
follows:

class Eq a where
(==),(/=) :: a->a -> Bool
x/ =y = not (x==y)

The third line of the class declaration provides a default definition of the ‘/=" operator in

terms of the ‘==" operator. If a method for a particular operation is omitted in an instance
declaration, then the default one defined in the class declaration, if it exists, is used instead.
Thus, in this example it is only necessary to give a definition for the ‘==" operator to define

all of the member functions for the class Eqg.

4.7.2 Instances

Haskell separates the abstract definition of an algebra on a parameterized type, from the
instance which represents the implementation of an abstract data type. Thus, an instance
describes how to apply operations of a class to a particular data type. Operations in an
instance are given in form of executable equations.

In Haskell, the built-in instances of Eq include the base types Int, Float, Bool, Char, i.e.,
the function ‘==" is applicable for each of these types. It is possible to override the default
member definitions by giving an alternative definition as appropriate for specific instances of
the class. As an example from the ssmulated wayfinding model we take a data type Edge as
instantiation for the parameterized data type E n (see section 4.5.4.3) with the data type Node
and define the ‘==" function on it. Corresponding to the data type E, the data type synonym
Edge consists of four components.

type Edge = E Node -- Node SignPost Node SignPost
We can freely choose the way in which edges are compared for equality, for example just by
testing for equality of the signposts of the start node:

i nstance Eq Edge where

(==) (Edge snl sspl enl espl) (Edge sn2 ssp2 en2 esp2) = (==) sspl ssp2

Formal Tools 75

4.7.3 Classes with Multiple Parameters

Classes can also be defined for multiple parameters, which allows the modeling of multi-
sorted algebras. This feature hides implementation issues from the specification of functions.
We can for example define an operation on edges (compare to section 4.5.4.3) without
specifying how nodes and signposts are expressed:

class Edges e n s where
startnode :: ens ->n
endnode :: ens ->n
A representation (data type E) is also parameterized in a similar way (where the number of
parameters is different to the definition given in section 4.5.4.3):

data Ens =Ensns
An instantiation of the class Edges on the datatype E is defined as follows:
i nstance Edges E n s where
startnode (E nl spl n2 sp2) = nl
endnode (E nl spl n2 sp2) = n2

The type of the result is not fixed and depends on the type of argument, i.e., of which data
type the first parameter of E is.

4.7.4 Context

The concept of inheritance is modeled within the context of a class. This alows programming
in an object-oriented style. The context of a class lists conditions for its parameters, and
inherited behavior can be specified for each parameter.

Let us consider the function getS gnPostForNode from the wayfinding simulation. This
function takes a node and an edge of the environment as input and checks which node of the
edge matches the input node. For the node of the edge where the boolean value is true, the
function returns the attached signpost (Figure 26).

2
a

20 -> -> IE'

@
]

Figure 26: The function getSignPostForNode

Formal Tools 76

The function returns all signposts that are perceivable from a node. It requires comparing
nodes for equality using the ‘==" function. We must make a restriction on the arbitrary nodes
for the class Edges which says that the equality over n is defined. Thus we must add a context
to the class declaration, ensuring that for each implementation of the class Edges an
implementation of the class Eq exists. The symbol for context isan arrow (‘=>‘). This symbol
should not be read as implication; reverse implication would be a more accurate reading, the
intention being that every instance of Edgesis also an instance of Eq. Thus Eq plays the role
of a superclass of Edges.

class (Eq n) => Edges e n s where
get SignPost ForNode :: n ->ens ->3s

The implementation is defined as follows:

i nstance Edges E Node s where
get Si gnPost For Node n (E nl spl n2 sp2)
| (n ==nl) =spl
| (n ==n2) = sp2
| otherwi se = NoSign
In Haskell, polymorph operations are realized through parameterized operations in a class
definition. The type system checks the instantiations of a parameterized function for the
correctness of used data types. The definition of a function is not permitted to force any of its
arguments to be polymorphic as a variable cannot have two types in a function. Parametric
polymorphism as expressed in the class system does not guarantee that axioms of a function
are identical and express the same semantics (this in genera not possible for constructive
programming languages), except if defined as a generic function within the class declaration.

The functions that exhibit parametric polymorphism are also called generic or derived
functions. A generic function is a function that is defined by induction on the structure of
user-defined data types. Such a function can be applied over al data types, i.e, it is a
polymorph operation. A generic function expresses the same semantics for all parameterized

data types of aclass.

In creating the formal wayfinding model we tend to use severa generic functions. This
allows discussion of the semantics independent of any instantiation, i.e., both for the real
world and the WWW.

4.7.5 Pattern Matching

A successful match in pattern matching binds the formal parameters in the pattern. In Haskell,
there is a fixed set of different kinds of patterns, where matching among others is permitted

Formal Tools 77

using the constructors of any type, user-defined or not. Pattern matching provides a tool to
define case expressions, which can be used if a function definition contains a number of
equations, i.e., different semantics for different patterns. Each of these equations has a |eft-
hand side in which the function is applied to a number of patterns. Haskell applies sequential
pattern matching, i.e., it uses the first equation which applies. Failure of a pattern anywhere in
one equation results in failure of the whole equation, and the next equation is tried. With
pattern matching it is possible to define functions of which the result depends on the
constructors of a data type, and each digoint alternative of a union data type—which leads to
a case statement in the processing—can give a different implementation. This plays a role
when discussing the semantics of functions over digoint parts of several instantiations.

Let us take the data type Agent that describes a product data type. The function getFact
matches against the data type Agent and accesses the Fact component of a data type Agent:

get Fact :: Agent -> Fact

get Fact (Agent f b) = f
As an example where pattern matching is applied over different alternatives of a data type we
take another function from the simulated wayfinding model. The function dirNext computes
the agent’s incoming direction in the agent’s reference frame when the agent reaches a new
node, and is part of the metric decison making process. The data type IncomingDir in the
input represents the incoming direction in the local reference frame of a node and enumerates
two alternatives. Only the first aternative (constructor IDir) contains information (for the
airport navigating agent). On the contrary, a VWWV navigating agent lacks an incoming
direction (NolncDir) as it does not locomote but moves virtually.

data IncomingDir = IDir Direction | NolncDir
The function dirNext uses different equations for both types of agent: Matching the dirNext
function with the constructor NolncDir yields the O-ary NolncDir as result, whereas matching
the constructor function IDir yields the equation for the real world case, resulting in an integer
value that is used to describe the agent’s orientation in space. Here, pattern matching
expresses a different semantics for different types of agents.

cl ass EnvAgent Pos env where

dirNext :: env -> Pos -> PrevPos -> InconmingDir -> Incom ngDir

i nstance EnvAgent Pos Environnent where
di r Next env pos prev NolncDir = NolncDr -- WAW case
dirNext env pos prev (IDr i) -- airport case

| prev == unit0 = (IDr i)

Formal Tools 78

| otherwise = ...— gives an integer value with the IDir constructor

4.8 Graph Theory

4.8.1 Definitions

In our formalized wayfinding models in the airport- and the WWW-domain, the environments
are abstracted as finite graphs. This section explains basic concepts of graph theory that are
relevant for the description for the computational model—including the agent’s interaction
with the abstract environment and the abstract environment itself. The section is based on
definitions found in (Piff 1991; Black and Tanenbaum 2001).

A graph is a set of items (nodes, points, or vertices) connected by edges. It can be
written as G=(V,E), where V expresses the set of nodes and E the set of edges. A graph is said
to be finite if both the number of nodes and the number of edges are finite. In a graph, each
edge is determined by the pair of vertices (called endnodes) that it links. If two nodes have a
common edge they are said to be adjacent. An edge is said to be incident with a node if that
node is one of its endnodes. A loop is an edge where the endnodes are identical.

The number of distinct edges incident with a node is called the degree of the node
(Figure 27). A vertex of degree O is called an isolated vertex, whereas a vertex of degree 1 is
called a pendant vertex.

Figure 27: Vertex degrees
An undirected graph (Figure 28a) is a graph whose edges are unordered pairs of vertices.
That is, each edge connects two vertices. In such a graph, the number of edges meeting at a
node is the degree of that node.

A directed graph (or digraph) has directions assigned to its edges (Figure 28b) and
edges are represented as arrows. In a directed graph, the outdegree of a node is the number of
edges leaving the node, the indegree of a node is the number of incoming edges to that node.

Formal Tools 79

el O 5 el O 5

@ (b)
Figure 28: Undirected and Directed Graph
A graph that contains no paralel edges or loopsis caled simple graph. The aternative, where
severa edges can join the same two vertices, and a vertex can be joined to itself, is called a
multigraph or pseudograph. A graph in which every vertex is adjacent to all othersis called a
complete graph. A graph is said to be planar if it can be drawn in a two-dimensional plane so
that no two edges cross or intersect each other, i.e., edges can meet only at nodes.

A walk through a graph is a sequence of nodes <Vi, Va, ...V,> for which any two
adjacent nodes V; and V., are the endpoints of some edge (Sowa 1999). If the edgesin awalk
are all distinct it is called atrail. If the nodes in awalk are all distinct, apart from identity of
the start and the end node, it is called a path. A walk, trail or path is called closed if v,=vy,
otherwise it is open. These terms provide a hierarchy of concepts, depending on whether or
whether not edges or vertices are repeated. Finally, a walk, trail or path is called trivial if it
consists only of a single vertex, otherwise it is nontrivial. A nontrivial closed trail is called a
cycle, anontrivial closed path is called asimple cycle.

4.8.2 Shortest-Path Algorithms

There exist a number of algorithms to solve a variety of optimization problems in graphs. In
our formalized model, the semantic decision process of the simulated agent uses the criterion
of the shortest mental distance between concepts of the cognitive map. As the cognitive map
isrepresented as alist of graphs, the shortest mental distance is computed with a shortest path
algorithm. The abstracted cognitive map has no directed edges, thus it is sufficient to use the
implementation for an undirected graph.

We give a definition of a shortest path: If each edge in a connected graph G = (V,E) is
given alength function |, then the shortest path from uto v in G is a path P with edge set E',
so that I(E’) is as small as possible. For our formalized model we use Dijkstra’s shortest path
algorithm. The specification of Dijkstra’'s algorithm follows the interpretation and formal
algorithm of Kirschenhofer (1995). For a detailed description of the substeps and visualized
examples see (Kirschenhofer 1995; Car 1996). Other implementations that optimize
performance for planar graphs are given by Frederickson (1987), and for sparse networks by

Formal Tools 80

Johnson (1977). More details on different implementations can be found in (Ahuja, Magnanti
et al. 1993).

4.9 Summary

In this chapter we presented the formalization method used in this thesis, i.e., algebraic
specifications written in the functional programming language Haskell. In functional
programming languages, every expression is treated as a function, there is no explicit flow of
control, and there are no side-effects. We explained important features of functional
programming concerning our task, including higher-order functions, type inference and
polymorphism. We saw the structure of the class system in Haskell that enables programming
in an object oriented style and instantiating operations for different data types. The class
context hereby expresses inheritance between parameterized data types.

We discussed the role of morphism, category, and functor for the concept of metaphor,
and gave a formal counterpart of these concepts within the explanation of type systems. We
discussed how digjoint alternatives of a datatype are differently treated with pattern matching,
which is an important method used to compare the behavior of both instantiations of agents.
We gave agebraic examples of metaphors and morphisms from the literature and discussed

their strength of preserving semantics and structure during the mapping process.
The simulated wayfinding environment and the agent’s cognitive map are abstracted as

undirected graphs. Shortest path algorithms are used to compute mental distances between
concepts in the abstract agent’ s cognitive map.

The Wayfinding Axioms 81

THEWAYFEINDING AXIOMS
CHAPTER

S

In chapter 3.2 we gave a number wayfinding definitions reported in the literature. We saw that
a unique, ‘correct’ definition of wayfinding does not exist but rather that wayfinding
represents a radial category with a graduation of terms. Analyzing several wayfinding
definitions we found some terms that seem to describe a kind of central meaning of
wayfinding. For defining the axioms, we focus on these central properties of wayfinding and
skip peculiarities of specific wayfinding strategies. We can say that the more general the term
wayfinding is viewed, the fewer axioms are needed for its definition.

The axioms function as minimum requirements for environment, agent and the agent’s
activities to call the activity ‘wayfinding’. The semantics expressed through the axioms needs
to be mapped to another domain to give a metaphor. Thus, if a phrase in a natural language
fails one of these axioms, the phrase (i.e., ‘wayfinding’) is not used in the correct sense. We
begin with an informal definition of the wayfinding axioms and then formalize the axioms
within an algebra.

5.1 Informal Description

5.1.1 First Axiom: Decision Points

The agent makes decisions during wayfinding. In a discrete environment—as it is the case in
our computational model (we abstract both environments as an undirected graph, see section
2.1.3)—this enforces discrete decision points in the environment. In a more continuous
environment (e.g., the desert or an ocean), decision making may occur permanently, without
explicitly denoting decision points as such. We would use the term navigating for
unstructured environments.

Decision points are those points where a navigator has the opportunity to select among
different paths. Raubal and Egenhofer (1998) distinguish between points where the navigator
has one obvious option to continue the wayfinding task (enforced decision points) and points
where subjects have more than one choice to continue the wayfinding task (decision points).
In an undirected graph, a decision point is a node that has a degree > 2: One edge is described
as the incoming edge, and at least two other edges give the options from which the agent can
choose. Thus, the axiom expresses the constraint on the abstract environment to include at

The Wayfinding Axioms 82

least one node of degree > 2. This criterion is independent of the availability of information at
a decision point. Thus a decision point is defined through its topology only. For a directed
graph, the criterion would be formulated as the requirement that the outdegree of at least one
node must be >1.

An environmental graph does not need to be checked for connectedness. Even, if the
start and the goal node are not connected, the navigator can do wayfinding. The fact that the
goal can potentially never be reached (e.g., through a damaged bridge along a street in a
valley), does not play arole for the process to be defined as wayfinding.

5.1.2 Second Axiom: The Agent Has a Goal

The axiom says that the agent must have a goal. Both the representation of goal and mental
position in the environment are reflected within the agent’s mind. The goal is a desired state
(i.e., abelieved position) that the agent tries to reach. During the wayfinding process, goal and
mental position have a different value. The goal is reached if these two components become

equal.

5.1.3 Third Axiom: Moving Towards a Goal

The agent has a goal (as part of his beliefs) that he approaches with each step, i.e., the agent
intends to reduce the mental distance between goal and mental position. This constraint of
functional behavior defines the arbitrary component ‘goa’ in the conceptual model: If thereis
no intended movement towards a certain agent’s state (the goal), an activity will not be called
wayfinding, but rather described by related terms such as ‘exploring’ or ‘sight-seeing’. In such
case, the component ‘goal’ within the agent’ s beliefsloses its semantics.

There are many error sources in wayfinding, e.g., cognitive errors of perceived
directions or angles, errors in reading and understanding text on signs, an erroneous or
incomplete cognitive map, or unconventional rules of placing information signs in an
environment. If the agent plans to move towards the goal, such errors may cause an incorrect
decision behavior at decision points, i.e., lead to an action does not lead closer to the goal.
Despite such potential errors, the agent’s utility function (see section 3.3.2) stays unchanged,
i.e., the semantics (and not the resultant values) of a utility function is independent of data
used within a simulation. Thus, what counts for the axiom is the agent’s intention to move
towards the goal, and not, whether the agent in fact navigates towards the goal. Therefore the
axiom isinvariant under errors.

The Wayfinding Axioms 83

5.1.4 Fourth Axiom: No Impact on Environment

We consider the state of the environment invariant under the agent’s wayfinding activities
(see 3.3.1). Potential impacts from outside the agent on the structure of the wayfinding
environment would not be recognized by the agent (as it does not visit a node twice and the
environment is unknown). For this reason, Allen’s claim (Allen 1999) that an element of
uncertainty (e.g., in a changing environment) is a factor in every wayfinding effort, is not
contradicted in this axiom. The axiom only states that the wayfinding activity does not intend
to change the environment.

5.1.5 Fifth Axiom: Order of Actions

Actions in wayfinding are ordered. When executed in a sequence, the steps give a certain path
of states. In wayfinding, making a step needs one specific state or pre-condition (i.e., a
specific position in the environment) in order to be performed (section 3.3.5.1). Thus, a
permutation of a sequence of actions does not give a path (the unigue precondition for some
of the permutated actions is not given). As decisions are executed (i.e., they are transformed
into actions during the wayfinding process) this criterion can also be expressed in the
formulation of Arthur and Passini (1992, p.27) who claim that during wayfinding and in other
domains “Decisions are related one to each other; they are ordered”. The authors mention an
example of opening a can of mushrooms which needs some very specific decisions:

Get the can and the can opener
Apply the can opener

Activate the cutting device

One does not only have to make these three decisions, one has to execute them in a certain
order. Chaining these actions gives a mental path that leads from the initial state (unopened
can) to the mental goal (opened can). What distinguishes wayfinding from opening a can is
that the latter changes the state of the environment (which contradicts axiom 4).

Some activities in everyday life are goal directed and have the same preconditions, i.e.,
each of these actions can be performed at the same initial state (they are unordered). Let us
imagine the following situation: A person’s task is to move two bags of potatoes from
building A into another building B. He or she can carry a bag one by one only. In Figure 29,
actl denotes carrying the first bag to B, act2 denotes carrying the second bag to B.

The Wayfinding Axioms 84

A B
~ 7
AR act1
| bag 1 E P | bag 1
oA act2
| bag?2 i P | bag 2

Figure 29:Unordered actions: Moving objects from one building to another
The person can start with carrying any of the two bags, the sequence of actions is
interchangeable. The only precondition of actl is that bagl is in domain A, act2 has a
corresponding precondition with bag2. In the initial state both pre-conditions are fulfilled,
therefore one can begin with either of the two actions. The state diagram of the agent’s beliefs
shows that both, the sequence actl-act2 and the swapped sequence act2-actl lead to the same

result (Figure 30).
belief at t=0:
A: bagl, bag2
actl act2
belief at t=1: belief at t=1:
A: bag2 A: bagl
B: bagl B: bag2
act2 actl
belief at t=2:
B: bagl, bag2

Figure 30: Agent’s state diagram for unordered actions

Swapping operations is not possible for wayfinding, as is shown in the following simple
example: The moves A->B, B->C give a path A-B-C. The sequence cannot be swapped as the
sequence B->C, A->B cannot be executed (Figure 31). The operation A->B needs the
precondition of the agent to be on node A, which is not given in the swapped sequence. In
contrast to the previous example (Figure 30) where the precondition for two actions is given at
the beginning (both bags are in building A), for a wayfinding sequence A->B->C the
precondition is unique (to be at position A).

The Wayfinding Axioms 85

@)
v
Ow
) 4

OpAB -> opBC -> OpAC

B 1. C A 2. B
O O --»0 >
opBC -> opAB 1> opAC

Figure 31: Wayfinding: an ordered activity

5.2 Formal Description

The first four axioms are formalized as agebraic specifications containing objects and
operations. The objects hereby have no semantics but are formal stand-ins, i.e., they are used
to describe the flow of information. The use of objects (i.e., data types) could be avoided if
using a point-free notation (section 4.6.3). The disadvantage hereby would be a syntax that is
more difficult to read. To convert point-wise axioms into pointless style would require
currying of functions (see appendix) into functions in a single argument and then use function
combinators. Methods to convert point-wise functions into a point-free style can be found in
(Bird and de Moor 1997) and (Medak 1999). The fifth axiom is formalized as an algebra of
operations (category) and describes the properties of its operations (morphisms). The strength
of formalized axioms is their generality as they can be implemented into any system of any
types of objects.

As we are interested in the behavior of objects in the wayfinding process, the internal
structure of the used datatypesis not explicitly given, i.e., the structure of objectsis arbitrary.
Through the realization within the computational model, the arbitrary data types is given a
representation. For example, the data type Perceived in the formalized wayfinding model is
represented as alist of signs. In another model, the percepts may include further components,
such as landmarks.

Al gebra Wayfi ndi ng
Sorts:
World, Environment, Agent,

Ment al Pos, Mental Goal, CognitiveMap, Distance, Degree

Qper ati ons:
worl dStep :: World -> Wrld
dist :: Mental Pos -> Mental Goal -> CognitiveMap -> Di stance

al | Degrees :: Environment -> [Degree]

The Wayfinding Axioms 86

sensePl anAct :: Environment -> Agent -> Agent

get Goal : : Agent -> Mental Goal
get PosM :: Agent -> Ment al Pos

getCM :: Agent -> CognitiveMap

getEnv :: World -> Environnent

Egs:
any (> 2) . allDegrees == True -- axiom1l
goal /= pos where -- axiom 2

goal = get Goal agent
pos = get PosM agent

di st pos2 goal cm < dist posl goal cm where -- axiom 3
posl = get PosM agent

pos2 = get PosM . sensePl anAct env $ agent

goal = get Goal agent
cm = get CM agent
envl == env2 where -- axiom4

envl = getEnv world

env2 = getEnv . worldStep $ world
cat egory Wayfi ndi ng -- describes properties of operations
Sorts: World
Mor phi sm SensePl anAct
Axi om -- axiom5

SensePl anAct AB . SensePl anAct BC / = SensePl anAct BC . SensePl anAct AB

Thefirst axiom checks if the degree of any node in the abstract environment > 2. The function
allDegrees computes the degree of each node in the abstract environment and resultsin alist
of integers (a degree is expressed as an integer value). This list together with the boolean
function ‘> 2’ is the input for the any function (see section 4.6.3). If none of the degrees is
higher than 2, the any function resultsin False, i.e.,, the axiom is not satisfied.

The second axiom checks if the agent’s goal and mental position have a different value.
As these two elements are not semantically defined through their name (the algebra does not
understand the meaning of goal and pos), the axiom only needs to check if the agent’s beliefs
has two components of same type and different value. In the representation of the axiom, the

The Wayfinding Axioms 87

components goal and pos are local function definitions which are introduced by the keyword
where. These local functions access the agent’s goal and mental position through applying the
observer functions getGoal and getPosM.

Mental position and goal are of the same data type. These components are modeled as
parts of the agent’s cognitive map. Therefore it is possible to compute a semantic distance
between goal and mental position in the abstract cognitive map. In the notation of the third
axiom, this is provided by the function dist. The agent’s cognitive map is accessed by the
observer function getCM. The local function posl represent the agent’s mental position
before, and pos2 after a Sense-Plan-Act cycle. If the result of dist is smaller after a Sense-
Plan-Act circle, i.e., for pos2, the agent has approached the goal, and the axiom is satisfied.

The fourth axiom compares the environment of the world states before and after aworld
step. If the two environments are equal, i.e., they stay unchanged under the triggered
operations of the world step, the axiom is satisfied.

The formalization of the fifth axiom describes a property of the sensePlanAct function
within the wayfinding category: The order of applying sensePlanAct functions between two
nodes cannot be changed. As wayfinding is a category, the null-operation, i.e., an operation
that keeps the state of the system unchanged, needs to exist. The null-operation is provided
through a specific configuration of agent and environment, namely then, if the agent cannot
use perceived information for making a decision. Then, the agent’s state stays unchanged.

5.3 Excluded Features

In the axioms we included only a fraction of all the features of wayfinding found in the
wayfinding definitions (section 3.2.1). We skipped those properties and features that are
related to specific wayfinding strategies. Through this, the wayfinding axioms are kept
general and can be mapped to abstract domains. The skipped features either relate to the
behavior or the structure of the agent, or to particular properties of the environment. Examples
for features that are part of the radial category ‘wayfinding' but that were decided to ignorein
the axioms are:

An external map as navigation aid (Sheppard and Adams 1971)
Path integration abilities (Loomis and Klatzky 1999)

A marked trail in the environment (Allen 1999)

Landmarks (Lynch 1960; Stern and Leiser 1987)

The ability to determine turn angles and to maintain orientation (Golledge, Jacobson
et al. 2000)

The Wayfinding Axioms 88

Route learning (Cornell and Heth 2000)
Communication with other navigators (Dieberger 1998; H60k and al. 1998)

Short-term variations (e.g., temporary road detours) and long-term changes (e.g.,
suburban development) in the environment on which the navigator has to react
(Allen 1999)

54 Summary

In this section we defined axioms that describe the semantics of the term wayfinding. The
wayfinding axioms are based on terms and phrases used in wayfinding definitions reported in
the literature. The axioms describe the behavior of objects and operations. They give
constraints on the topologic structure of the environment, the structure of the wayfinding
agent, and the operations applied in the wayfinding process. We excluded those features from
the wayfinding axioms which are related to specific wayfinding strategies. The axioms will be
demonstrated to be satisfied in both instantiations of the functional wayfinding model used in
thisthesis.

Conceptual Features of The Wayfinding Agent 89

CONCEPTUAL FEATURES OF THE
WAYEINDING AGENT
CHAPTER

6

When introducing the case studies (chapter 2) and discussing agent theory (chapter 3.3) we
already decided to adapt some of the explained concepts for the proposed wayfinding model
(applied for both instances of agent and environment). The features discussed so far, concern

the separation of the agent from the environment (section 3.3.1)
properties and simplifications of the abstract environment (section 3.3.6)
the distinction between fact and beliefs within the agent’ s structure (section 3.3.3)

the use of the Sense-Plan-Act paradigm in the agent’s sequence of operations
(sections 3.3.4 and 3.3.5)

In this chapter we describe further features of the agent with a focus on details for both
instantiated agents. We look at the agent’s structure, including objects and the operations
between the agent’s components. As a part of the agent, we describe the agent’s cognitive
map concerning its structure and content. We will discuss how the content of a cognitive map
depends on the agent’s task. For the Web navigating agent we will demonstrate how to
implement parts of a pre-existing ontology (WordNet) into the abstract cognitive map. At the
end of this chapter we point out common features of the decision making strategy used for
both types of agents.

6.1 The Structure of the Wayfinding Agent

The concepts defining the structure of both instantiations of the wayfinding agent are similar.
Conceptual differences—either in parts of the structure or in the semantics of the operations—
can only be found at a lower level of the data type hierarchy. The structure of the agent
follows the architecture of a utility-based agent with state (section 3.3.2), its components fall
into Fact and Beliefs (section 3.3.3), the beliefs denoting the agent’s state. Figure 32 shows
the basic components of the conceptualized agent and the operations involved in the
wayfinding process. The basic operations of the Sense-Plan-Act approach are visualized in
italic font, objects in regular font. For the representation we give the agent an id (added to the
facts components). The facts of the agent are

Conceptual Features of The Wayfinding Agent 90

position
previous position.
The state of the simulated, utility-based agent (section 3.3.2) consists of following objects:
mental position
cognitive map from which the goal can be constructed
percepts, containing semantic and metric information
decision for the next action
metric preferences for the decision process

the incoming direction

~ TN
AGENT
T g)
perceive I BELIEFS (STATE)
A
—/}v-@— —_— perceps preferences
position
incomin
: cognitive map [direcﬂong])
previous .
position i ¥y /
FACTS M N : decide i
goal definition ' _I -l
mental -
position decision
\ I\, act S
ENVIRONMENT
_ _/

Figure 32: Basic components of a navigating agent

6.2 The Cognitive Map

6.2.1 The Role of a Cognitive Map for Wayfinding

Review of literature (section 3.2.2) revealed the outstanding role of cognitive maps in the
wayfinding process. We assume that the type of how the goal is defined plays a role for the
structure of the cognitive map and the information accessed in the cognitive map (section
3.2.4). We model the agent’s goa to be part of the cognitive map, independent of the
wayfinding strategy and the environment with that the agent interacts.

Although the goal of a wayfinding person exists mentaly as part of the agent’s
cognitive map, such a goal does not essentialy exist in the real world. Thus, the goa of a

Conceptual Features of The Wayfinding Agent 91

wayfinding person is assumed to exist. Approaching such assumed goals may be successful to
a certain degree as the concepts around the assumed goal in the cognitive map may be
matched with information perceived from the environment. An example for a goal that is
assumed to exist (but does not exist) on the Vienna International Airport is gate ‘C399'.
Reading a gate sign ‘C’ may lead the wayfinding person closer to his assumed goal ‘C399’,
but the goal will never be reached. In the WWW, e.g., one may try to find a Web page where
one can chat with an alien. A Web page providing this, cannot be found (except if it is afake
page). Although the second wayfinding axiom (section 5.1.2) forces the agent to have a
mental goal, it does not say anything about the existence of the goa in the environment. Thus,
even the process of trying to approach a non-existing goal can be considered as wayfinding (if
the remaining wayfinding axioms are satisfied).

In the presented case studies we have a semantically defined goal (we classify topologic
to be a kind of semantic here). For such a goal we model the cognitive map to consist of a
semantic network (see section 2.2.4) that describes hierarchical relations between concepts of
the domain—metric preference is hereby treated separately. Depending on the complexity of
the goal, the number of networks that represent an abstract cognitive map varies. Goals that
are defined through several features or attributes require a more complex structure in a
cognitive map to be represented than goals that are expressed through one feature only.

6.2.2 The Cognitive Map of the Airport Navigating Agent

As described in the introducing case study (section 2.1.1), the task of the airport navigating
agent is to find a gate labeled *C 54’ (which exists). The agent’s cognitive map represents a
semantic network, where the semantic distance between information of perceived signposts
and the mental goal is expressed through the number of edges in between (i.e., topologicaly).
Therefore the concepts (i.e., nodes) in the cognitive map must be of the same type as the
perceived information. In the airport environment, three types of gate signs can be found
(section 2.1.3).

The rules of placing signs in an airport follow a simple rule, namely to make the
navigator feel it is approaching a target gate when following a sequence of signs that match
the name of the target gate. Structure and content of the abstract cognitive map follow this
intuitive rule: The cognitive map reflects the distance between a position in the environment
and the agent’s goal through the number of mental, hierarchical levels between the two
corresponding concepts.

The gates are embedded within a hierarchical structure that can be described with the
CONTAINER image schema. The higher the hierarchical level of the concept in the cognitive

Conceptual Features of The Wayfinding Agent 92

map is, the more instances (‘ containers’) are included in the concept. For example, the goal ‘C
54’ is assumed to be in the containers ‘C53-C54' or ‘C54-C55', which in turn are in a
container of all ‘C’-gates and so on (Figure 33a). Thus, if an agent perceived two signs at a
decision point, for example ‘A,C’ and ‘C’, he would choose the edge connected to the sign
‘C’, when applying the criterion of the smallest semantic distance.

Metaphorically expressed, the agent's goal is to get into one of the inner-most
containers. The closer a sign at a decision point leads to the element ‘C54’ in the cognitive
map, the higher is the utility of the edge connected to the perceived sign. In the simulation,
the cognitive map can be simplified by dropping those hierarchical concepts that do not refer
to signs in the environment (Figure 33b). Only information of those signs that are potentially
perceived during the simulated wayfinding processis reflected in the cognitive map.

AB.CD

Y
B,

CD

/\
C C,

i
ABC
/ N\

AC BC CD
¢ AB,C.D /i-D
CJl';C“ A+C>< B.C

C52-C54 C53-C55

|| y

C53,C54 C54,C55 C51-C62

\
C54 [g‘o/o/} Cb4 (goal)

@ (b)

Figure 33: Hierarchical structure of airport signs (a) and simplified cognitive map for simulated agent (b)

R ’ \‘4 \ /
C

6.2.3 The Cognitive Map of the WWW Navigating Agent

6.2.3.1 Structure of the Cognitive Map

As the task of the case study in the WWW is defined through several concepts, e.g., size and
brand of an object that affords running with (section 2.2.3), the cognitive map of the Web-
navigating agent is abstracted through several mental graphs. It is therefore more complex
than the cognitive map needed for the case study in the airport environment. Different from
the airport-navigating agent, concepts in the cognitive map of the WWW-navigating agent are
modeled as strings, not as signs ..

Conceptual Features of The Wayfinding Agent 93

To find a suitable cognitive map for the given task in the WWW we go back to
Aristotle’s ontology that is based on substance and accident (section 2.1.2). Some objects
involve both substances and accidental parts, so that objects are partialy bearers of accidents.
The theory of affordances (see section 3.2.3) connects objects with (potential) activities, too.
Combining Aristotle's ontology with Gibson's affordance theory, we propose the WWW-
agent’ s cognitive map to consist of following graphs (italic font indicating Aristotle’ s terms).

action affordances (events)
physical object hierarchy (substances)

attributes (qualities)

Although listed in one single item, action affordances and events are not exactly the same:
Events are actual activities and action affordances are potential activities. A fourth graph,
named ‘user intended actions', describes the activities a web user wants to perform on the
desired web page. Figure 34 visualizes the basic structure of the proposed cognitive map.

action affordances

physical object hierarchy

user intended
actions

content of target web page | =

Figure 34: Structure of an agent’s semantic map
User intended actions in the web are not limited to seeking (Ellis 1989; Ellis and Haugan
1997; Wilson 1997) and browsing (Marchionini 1995) but include all potential activities in
the internet (e.g., purchasing, communicating, playing, advertising). All graphs except the

attributes are structured as partonomy or taxonomy. The structure of the cognitive map as
presented here, is sufficient for the WWW navigating agent to complete the task given in the
case study. For other tasks, the structure may have to be adapted and extended with additional
graphs. Thisis an epistemological detail which does not influence the wayfinding metaphor to
be used for the Web space.

The element in the highest hierarchical layer in each graph (most distant from the target
web page in Figure 34) expresses the most general term of a graph (except for the attribute-
graph where the order of concepts follows subjective rules). Elements of a lower layer are
either part of or kind of the term in an upper hierarchical level. The agent’s goal consists of all

Conceptual Features of The Wayfinding Agent 94

the elements in the lowest hierarchy of each graph. The mental distance to the target page
decreases with the similarity of the content of the actual web page and the defined mental
goal.

6.2.3.2 Using a Predefined Ontology

The content of cognitive maps varies between individuals as their life experience is different.
Thereforeit is not possible to simulate the navigation behavior for each individual human. For
the simulation we need one prototype agent with a prototype cognitive map. As we have not
conducted experiments with human subjects, we have to rely on an existing ontology. We
choose the ontology of WordNet (Miller 1990; Miller 1995), a database for the English
language. One of the advantages of WordNet is its free availability in the internet. The online
application can be visited at http://www.cogsci.princeton.edu/cgi-bin/webwn.

WordNet combines features of both a traditional dictionary and a thesaurus. All query
results are given in form of synsets (Jones 1986), which describe sets of those words which
can replace a particular word in a sentence without changing the way the sentence can be
employed. The synsets are connected by a number of relations. Unlike in a thesaurus, the
relations between concepts and words in WordNet are made explicit and labeled; users select
the relation that guides them from one concept to the next and choose the direction of their
navigation in the conceptual space. WordNet allows semantic queries between nouns, verbs,
and adjectives.

For a query, the WordNet user enters a single term from which he wants to start the
guery. WordNet returns a description of the term (or a list of descriptions for a polysemous
term). The user selects the intended meaning, and chooses the type of search (e.q.,
‘synonyms’). WordNet then returns the related terms or hierarchies. Due to the fact that most
terms are polysemous and the user must select the intended meaning of the term, the
simulated cognitive map cannot be created automatically but requires several manual steps.

We stepwise fill the prototype cognitive map of a WWW-navigating agent that has the
task defined in section 2.2.3. The structure of the cognitive map has been visualized in Figure
34. We use WordNet to fill the graphs ‘physical object hierarchy’, ‘user intended action’ and
‘action affordances’ in the semantic map. For attributes without 1S-A or PART-OF relations,
one needs to individually decide which values should be included in the cognitive map. How
‘happy’ a user is with an attribute-value that does not exactly correspond to the demanded
value, cannot be generalized in an ontology. For example, consider a person that wants to buy
red roses. If the store is out of red roses, the person may also be satisfied with white ones but
not with yellow ones. This subjective gradation does not follow a general rule. Similarly, we

Conceptual Features of The Wayfinding Agent 95

use a subjective gradation for the values or the attributes brand and size in our simulated case
study. As subjective gradations are not part of the WordNet ontology, we fill these two graphs
according to subjective beliefs (see section 6.2.3.6).

6.2.3.3 Physical Object Hierarchy

A hierarchy of nouns is generated by hyponymy and hypernymy relations in WordNet.
Usually a noun has only one hypernym but many hyponyms (Miller 1998). Available
semantic queries for nouns among others are:

coordinate terms (terms that have the same hypernym, ‘sisters’)
hypernyms (generic term for awhole class)
hyponyms (generic term used to designate a member of a class)

synonyms

Tofill thefield ‘ physical object hierarchy’ we request the hypernyms of ‘shoe' as the physical
part of sneakers. Bold terms in the result will be included in the prototype cognitive map. The
polysemous term ‘shoe’ has four meanings in WordNet. Taking the first meaning (‘ a covering
shaped to fit the foot’), we get following hypernyms:

shoe
=> footwear, footgear
=> covering
=> artifact, artefact
=> object, physical object
= ...
‘Footwear’ has two meanings in WordNet. Requesting the hypernyms for footwear in the

sense of clothing gives the following result:

footwear
=> clothing, clothes, apparel, vesture, wearing apparel, wear
=> covering
=> artifact, artefact
= ...
For the field physical object hierarchy, we unite the results of the two queries (see Figure 35):

shoe
=> footwear
=> clothing, clothes, apparel, vesture, wearing apparel, wear
=> covering
=> artifact, artefact
= ...

Conceptual Features of The Wayfinding Agent 96

6.2.3.4 User Intended Actions

Like nouns and adjectives in WordNet, verbs are grouped together as sets of synonyms
(synsets). English has far fewer verbs than nouns, and verbs are approximately twice as
polysemous as nouns (Fellbaum and Miller 1990). This has the consequence that the
automated generation of a graph that denotes a taxonomy or partonomy of actions is even
more complex than the generation of a noun graph.

The elements within the field ‘user intended actions’ are represented through verbs. The

verb ‘purchase’ has one meaning in WordNet. It is described as:
buy, purchase: “obtain by purchase; acquire by means of afinancia transaction”

This shows that buy and purchase are considered as synonyms. The verb ‘shop’ has four
meanings in WordNet, one of them is defined as:

patronize, shop, shop at, buy at, frequent, sponsor: "do one's shopping at; do business
with; be a customer or client of”
This, in turn, considers ‘buy’, ‘shop’, and ‘do business' as synonyms so that the terms ‘ shop’,
‘buy’, ‘purchase’, and ‘do business can be considered as synonyms. We drop the terms
‘purchase’ and ‘buy’ from the graph as they do not appear in the Y ahoo categories but use the
two others (‘do shopping’, ‘do business’) instead. They are represented at the same
hierarchical level of the graph.

We add an additional term to the graph which denotes the activity of pressing a
‘purchase’ button on the user interface to confirm the purchasing process. If this action is
offered to be performed, the Web page with the desired user intended action is reached. We
represent this activity as term ‘confirm’ in the graph. In sum, we get three terms for the graph
“user intended actions'.

confirm
=> do shopping, do business

6.2.3.5 Action Affordances

The term ‘running’ is both explained as a verb (42 meanings) and a noun (5 meanings) in
WordNet. One of the explanations of the noun ‘running’ comes close to our intended meaning
of doing sport: We search for hypernyms of the word ‘running’ in the sense of participating in
an athletic competition involving running on a track. We get the following hypernyms that
will be included in the graph *action affordances':

track, running

=>track and field
=> gport, athletics

Conceptual Features of The Wayfinding Agent 97

=> diversion, recreation
= ..

6.2.3.6 Attributes

A physical object has attributes, e.g., color or size. The attributes are expressed by nouns
whereas attribute values are expressed by adjectives or values. Nouns serve as arguments for
attributes as the value of an attribute changes, depending on the noun. What is realized in
WordNet so far, is the connection between attribute nouns and adjectives which express
values of that attribute. Examples are the noun size and the adjectives large and small or the
connection between the noun color and the adjectives red, yellow, green and so on. WordNet
has not implemented adjective-noun pairs so far, i.e., it is not possible to determine from
WordNet the important attributes of a noun.

We deliberately decide to include two attributes for sneakers (brand and size) in the
agent’s semantic map. Similar to the other graphs, the attribute-graph is hierarchically
structured, but not necessarily through is-a or part-of relations. Its structural concept rather
follows a subjective ordering. Besides the agent’s ‘ideal’ or ‘goa’ value for each attribute,
aternative values that the agent would accept, are included in the cognitive map. All other
attribute values are excluded from the graph.

Let us have alook at our simulated agent: The agent’s preferred value for the size of the
sneakersis 9 1/2. Shoes that are a half size bigger (size 10) are acceptable but provide a lower
happiness than 9 1/2; and sneakers of size 10 1/2 give the lowest happiness but still would be
accepted. All other sizes, if offered through semantic information on alink, are not part of the
mental map, and therefore no potential candidates for being selected at a decision point.
Similar considerations are made for the attribute ‘ brand’.

Combining all the fields we get the cognitive map of the prototype agent (Figure 35). It
serves as basis for the decision process in our simulation.

Conceptual Features of The Wayfinding Agent 98

physical object
Y
artifact \

physical object
hierarchy
user intended
actions \

do business ‘ | do shoppingl

confirm

10172

| purchase sneakers, Nike, 9 1/2

Y V\

Adidas

action
affordances

recreate

Figure 35: Cognitive map of the prototype agent, partly based on WordNet
When analyzing various web pages, we found that those elements of the mental goal that are
not provided by the content of the actual web page, can usually be found after clicking the
link that contains the concept of the lowest hierarchy in the graph ‘user intended actions'.
Thus we make a smplification of the criterion that determines if the goal has been reached or
not: The goal is modeled to be reached if the link labeled with the lowest element in the graph
‘user intended actions' (i.e., the ‘confirm’ button in our example) can be perceived.

6.2.4 Comparing the Cognitive Maps of Both Agents

The cognitive maps of both types of agents show following commonalities:
The cognitive map consists of hierarchically structured graphs.

The semantic distance can be expressed through the number of mental edges between

two concepts.
The number of graphs depends on the complexity of the goal.

The cognitive map implicitly defines the goal.
In contrast to the airport navigating model, where the goal is identified through a unique gate
name, the goal of the WWW navigating agent is defined through a number of features of the
target page (but not through a unique id). Thus, in our case study two or more different web
pages of the environment may function as goal for the WWW navigating agent. It depends on

Conceptual Features of The Wayfinding Agent 99

the applied wayfinding strategy, which goal (if there exist more than one in the domain) will
be reached.

6.3 The Decision Making Process

The decision making process as one of the internal operations plays a major role in the
proposed wayfinding model. We presume that the environment is unknown to the agent.
Therefore, assessing the utility of several sequential actions is not possible, and the decision
behavior of the abstract agent is based on evaluating the next single action, which is called
single-shot decision (Russell and Norvig 1995). The goals in both instances of the agent are
defined semantically as part of the cognitive map (sections 6.2.2 and 6.2.3). Therefore, and
for the fact that both environments offer semantic information on signs and links (we
summarize signs and links as signpost), the decison making process stresses the use of
semantic decision criteria. As both environments have metric properties (see sections 2.1.3
and 2.2.5), metric preference is aso considered as part of the decision making model. Thus
the model includes both, multiattribute decision making and a two-step decision sequence
(section 3.3.2) within the decision process.

(1) The agent filters those signposts from the percepts which minimize the semantic
distance to the mental goal (semantic, goal-related decision criterion).

(2) If step (1) does not result in a unique decision, he takes the edge with the most
preferred direction (metric preference as part of a two-step decision sequence).

In chapter 7.5 we will describe the sub steps of semantic and metric decision making when
introducing the formalized wayfinding model. We will show how the semantics of the
operations is defined and where similarities and dissimilarities can be found between the two
specified instances. A simple example for the principal method of semantic decision making
has been given in section 6.2.2 (for the airport environment). In the following lines we explain
how metric preferenceisrealized in each of the two environments of the case study.

For the wayfinding agent in an airport environment, the metric bias is modeled as
preferred directions within the agent’s egocentric reference frame. This reference frame is
represented through eight directions, i.e., front, back, left, right, and four directions in-
between (Figure 36a), i.e., the directions are modeled in 45° steps within an egocentric
reference frame. Each of the eight directions is given a corresponding preference value (bold
numbersin the figure). The direction in front is assigned the highest preference.

For the WWW-navigating agent, preference for metric decision making is modeled
through the position of the link on the screen (Figure 36b), giving the top-most link the best

Conceptual Features of The Wayfinding Agent 100

value. Compared to the airport navigation, metric decisions hereby are not influenced by a
local reference frame.

1&

Mowies, Music, Television,...

Business
Industries, Finance, Jobs,. .

Hardware, [nternet, Software, .

2
3 Computers
A

Games
Binard, Boleplaying, Wideo,. .

Health
Alternative, Fitness, Medicing,. ..
(b)

Figure 36: (a) preference values (bold numbers) for directions within the agent’s egocentric reference
frame (from Raubal 2001b); (b) preference values for links on a user interface

6.4 Summary

At the beginning of this chapter we explained the structure of the wayfinding agent where fact
and beliefs are separated. Further we showed which of the agent’s components are involved in
internal or external operations.

Both agents have a cognitive map that implicitly expresses the definition of the goal and
permits them to assess the mental distance between the actual position and the goa. The
cognitive map consists of alist of hierarchically structured graphs, and its complexity depends
on the definition of the goal. We showed how to make use of the WordNet-ontology for
devel oping the abstract cognitive map of the WWW-navigating agent.

We described the basic steps of the agent’s decision behavior. Both instantiations take
the semantic distance between mental position and mental goal as semantic decision criterion,
and—in case of an undecided result—use metric preferences in addition. We showed how
metric biasis defined for both instantiations of the agent.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 101

A FORMAL MODEL FOR AGENTBASED
WAYEINDING IN THE REAL WORLD AND THE

R A AV
CHAPTER

-

This section formalizes the conceptual model of the wayfinding agent using the syntax of
Haskell (Thompson 1996). The result is an executable agent-based computational model. Our
intention is to show that both the behavior of the abstract real world agent and the WWW
agent can be described as wayfinding, i.e., that the wayfinding axioms are satisfied for both

instances.

Haskell uses classes to structure the operations into semantically connected units. The
semantics of operations in a class can either be expressed through derived functions (i.e.,
independent of instances), or through axioms within an instance. The first method uses
parameterized data types in polymorph functions which are derived from other functions. The
class context (see section 4.7.4) gives constraints for the parameterized data types. The second
method uses instances that describe how to apply operations of a class to a particular data
type. If such data type includes digoint parts (formalized as union data type, see section
4.5.4.2), the instantiation of the operation may have to be overloaded for each of the digoint
parts (using pattern matching, see section 4.7.5).

In our simulation we use both methods to define the semantics of an operation, i.e.,
derived functions and instances. Those functions that we need for proving that the wayfinding
axioms are satisfied for both instances, express the same semantics for both instances (i.e., no
pattern matching over constructor functions of union data typesis required). We explain those
algebraic specifications and data type definitions that are needed for the verification of the
axioms. All other details are | eft out.

In the description of the object hierarchy we use a top-down approach, starting with the
highest level of objects and operations. Thus, we first explain data types and operations
concerning the world, followed by aformal description of the environment and the agent.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 102

7.1 World

7.1.1 Structure of the World

The world represents the highest level in the object hierarchy of the ssimulated system. It
consists of three components: a time counter, an agent, and the environment (Figure 37). We
separate the agent from the environment (see section 3.3.1) so that the state of the
environment is not changed through the agent’s operations. The world is defined through the
following product data type:

data Wrld = Wrld Time Agent Environment

Figure 37: Structure of the data type World

7.1.2 Operations in the World

The operations of the world are defined within the class WorldClass. We discuss the two
functions worldStep and iterateWorldStep. The class context gives constraints for the
parameter world. It says that the class CreateWorld must be instantiated for the data types
Time Agent Environment world. The class CreateWorld contains the createWorld function
which constructs a world of the data type World from its components. This function is part of
the worldStep function.

class (CreateWorld Time Agent Environnent world) => Wirl dC ass world where
worl dStep :: world -> world -- one sensePl anAct cycle

iterateWorldStep :: world -> [world] -- conplete wayfinding process

- derived functions
worl dStep world = createWorld (tick . getTine $ world)
(sensePl anAct (getEnv world) (getAgent world)) (getEnv world)
iterateWsrl dStep world
| (checkDegree (getEnv world) == True)
= take (get Nunber O Edges world) (iterate worldStep worl d)

| otherwise = error ("No decision points in the environment")

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 103

All activities of components of the world are triggered by the function worldStep that takes
the world as input and gives a (changed) world as result. The function triggers two single
eventsin the world:

The time in the world is updated through calling the tick function. The tick function
setsthe time +1.

The agent (accessed by the getAgent function) is triggered to perform a complete
Sense-Plan-Act cycle through calling the sensePlanAct function.

The function worldStep shows that the environment stays unchanged within this operation:
The environment is accessed through the getEnv function from the world, and then put back
into the updated world within the createWorld function, in fact without applying any function
on the environment. Thus, the fourth wayfinding axiom (‘no impact on environment’, see
chapter 5) is satisfied.

The function iterateWorldSep uses an if-clause which checks if the degree of at least
one node in the environment > 2, i.e,, if there is a decision point in the environment. This
testing routine is provided by the boolean checkDegree function. If the result of the condition
is True, the worldStep function is iterated until the program is terminated within the Sense-
Plan-Act cycle (e.g. through the agent reaching the goal). If the condition gives False, the
program is terminated with an error message before triggering the Sense-Plan-Act cycles.

checkDegree :: g e n -> Bool

checkDegree = any (> 2) . allDegrees
Figure 38 shows the hierarchy of sub functions of iterateWorldStep that are relevant for
proving the wayfinding axioms.

iterateWrl dStep

N

checkDegr ee —> worl dStep

P

tick sensePl anAct

Figure 38: Sub functions of the iterateWorldStep function

7.2 The Environment

7.2.1 Nodes

Nodes represent places and decision points in the abstract environment. They are identified
with an integer number:

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 104

data Node = Node Nodeld

type Nodeld = Int

7.2.2 Edges

An edge in the environment is constructed with the parameterized constructor function E (see
section 4.5.4.3). An edge consists of a startnode with signpost, and the endnode with signpost.

data E n = E n SignPost n SignPost
A signpost contains metric information (the direction of the signpost) and semantic
information (that is matched with concepts in the cognitive map). The direction of the
signpost is given as an integer value. To express the case where no signpost is attached to an
edge (see Figure 2, section 2.1.3), an alternative with the O-ary constructor function NoSgn is
added to the data type.

data SignPost = S Direction Info | NoSign

type Direction = Int
The semantic information of a signpost (Figure 39) consists either of a gatesign (in the airport
environment) or a text string (in the WWW). These two alternatives are denoted as the
constructors InfoR and InfoW in the union data type Info. The data type Info is also used
within further objects of agent and environment, thus, these objects have digoint parts (one
for the real world and one for the WWW). This affects among others the agent’s cognitive
map, mental position, mental goal, or decision.

data Info = It InfoR| IwInfow]| Nolnfo

type InfoR = GateSign

type Infow= Text

type Text = String

Computers & Internet
C 51 ¥ C62 Intertnet, WA, Software, Gathes...

Figure 39: Semantic information of airport sign and hyperlink
The distinction of gatesigns into three types is specified through the data type GateSgn.
Corresponding to section 6.2.2, the components of its aternatives are the data types
GateSgnSingle, GateSgnList, or GateSgnRange (see also Raubal 2001b).

data GateSign = GateSign GateSignSingle | GateSignl GateSignList | GateSign2

Gat eSi gnRange

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 105

7.2.3 Graphs

The environments are abstracted as graphs that consist of a list of edges (see sections 2.1.4

and 2.2.6). Using a polymorph constructor function G agraph isformalized as
data Ge n = GJ[e n]
We use a data type synonym for the environment, instantiating the parameterized data type e
with the constructor function E, and instantiating the parameter n with the data type Node.
type Environment = G E Node
In the visualization of the data type hierarchy of the environment (Figure 40), components of

data types are visualized within dashed boxes, whereas O-ary data type constructors are
printed as text only.

i Environment :

yTTTTTT T \
i \
l' ||“

Ry —

L Bl
g
i Node ii SignPost ii Node :i SignPost i
lemcrcccceee e - e bl

7’ - S

/' ~\~\
’ S~o
’ S~
T B .
i Direction 1, Info | | NoSign
I e A e
—————————— l--__-_l
1 GateSign p Text ! | Nolnfo
e

Figure 40: Structure of the data type Environment

7.3 Agent Structure

The structure of the formalized agent corresponds to the conceptual model discussed in
section 6.1.

7.3.1 Fact and Beliefs

The data type hierarchy reflects the two-tiered conceptual model which separates fact and
beliefs (Figure 41). The facts (Fact) consist of the agent’s id (Agentld), position (Pos), and
previous position (PreviPos). The beliefs (Beliefs) are mental position (MentalPos), cognitive
map (CognitiveMap), percepts (Perceived), decision (Decision), preferences (Preferences),
and incoming direction (IncomingDir).

data Agent = Agent Fact Beliefs

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 106

data Fact = Fact Agentld Pos PrevPos

data Beliefs = Beliefs Mental Pos CognitiveMap Percei ved Deci sion

Pref erences | ncom ngDir
The data type synonym Agentld is an integer number, the data type Pos contains the type
Node (section 7.2.1), and the data type PrevPos is a type synonym for Pos.

type Agentld = Int
data Pos = Pos Node

type PrevPos = Pos

i Agent
' Fact 1 ! Beliefs |
[=========-" 1 ______'; I________': ss\s\‘~~~
! Agentld 1] Pos 1 PrevPos : Tl
’| —————————— LI e et | =T === == mmmmm—m—— = [== LI e 1
! MentalPos | | CognitiveMap | | Perceived .: Decision | Preferences .: IncomingDir |
Ammmmmmm— = A bpmmmm - === L ettt ettt bm—————=== ylA-———mmm - - = A
- I s L o ST -
| s | T ' [——)
= r——=—=—=—=—=—=-=-=-=-- 1 r——=—=—=—=—=—==-=-=-- ,' 1 |
u ' NodeM E l ' MentaEdge ! l ! SignPost ’ _ Direction | NolncDir

Figure 41: Structure of the data type Agent

7.3.2 Mental Position

The mental position (MentalPos) consists of none or exactly one concept for each of the
graphs in the cognitive map, thus is abstracted as a list of mental nodes ([NodeM]). Hence, in
a cognitive map that is abstracted as one graph, the mental position is defined through one
single mental node, whereas in more complex cognitive maps, alist of several nodes describe
the mental position. At the beginning of the wayfinding process the mental position is an
empty list. The data type NodeM is a type synonym with the data type Info (see section 7.2.2),
thus, contains disjoint alternatives.

type Mental Pos = [NodeM

type NodeM = | nfo

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 107

7.3.3 Cognitive Map

The data type structure for the agent (Figure 41) shows that mental position and cognitive
map (including the mental goal) are separated, which is a condition for the second wayfinding
axiom (‘the agent has a goal’). The cognitive map is abstracted as a list of graphs (section
6.2.1). Each of these graphs consists of a list of mental edges that are defined through the
polymorph constructor function EM. A mental edge connects two arbitrary mental nodes n. In
the type synonym CognitiveMap, the parameter n is instantiated with the type NodeM.

type CognitiveMap = [G EM NodeM

data EMn = EMn n

7.3.4 Perception

The agent’s percepts are formalized through the data type Perceive. As the agent perceives
signposts at a decision situation, the percepts are abstracted as a list of signposts (section
7.2.2).

type Perceived = [SignPost]

7.3.5 Decision

The data type Decision is used for the result of the decision function. In our model, a decision
is defined by the semantic information of the signpost, which the agent chooses for the next
step at adecision point. After awayfinding step, the decision is reset and represented as the 0-
ary constructor function (Nolnfo). The data type Decision is a type synonym for the data type
Info.

type Decision = Info

7.3.6 Preferences

The preferences evaluate the metric direction of signposts (section 6.3). They are given as a
list of tuples, each consisting of direction and the corresponding preference value.

type Preferences = [(Direction, Preference)]

type Preference = Int

7.3.7 Incoming Direction

The incoming direction is represented through the data type IncomingDir (see section 4.7.5).
It contains digjoint alternatives for the airport navigation and the WWW navigation.

data IncomingDir = IDir Direction | NolncDir

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 108

7.4 External Operations

7.4.1 Class Definition and Derived Functions

The operations within a Sense-Plan-Act framework (sections 3.3.4 and 3.3.5) can be divided
into external and internal operations. This distinction is reflected by the used class structure.

External operations are represented in the class ExternalOps. In its class header, the
class includes two parameters, representing environment and agent. The class contains the
functions perceive and act, which take the parameterized agent and environment as input and
result in an agent with changed fact and beliefs. The sensePlanAct operation applies function
composition to perceive, decide (an internal operation, see section 7.5), and act. The three
functions are polymorph, and the semantics hereby is derived from other functions. The class
context lists conditions for its parameters env and agent, thus the parameters inherit their
behavior from other classes.

class (AgentPut Perceived agent, AgentPut Pos agent, AgentPut Fact agent,

Agent Put Int agent, AgentPut IncomingDir agent, AgentPut Mental Pos agent,

EnvAgent env, Internal Ops agent)

=> External Ops env agent where

perceive :: env -> agent -> agent
act :: env -> agent -> agent
sensePl anAct :: env -> agent -> agent

-- derived functions
percei ve env agent = put ToAgent (perceiveAtPos env (getPos agent)) agent
act env a = put ToAgent (setToZero (getDec a)) ab where
ab = put ToAgent (setToZero (getPerc a)) a4
a4 = put ToAgent (dirNext env (getPos a3) (getPrev a3) (getinchDir a3)) a3
a3 = put ToAgent (updatePosition env (getDec a2) (getPos a2)) a2
a2 = put ToAgent (updatePrev (getFact al)) al
al = put ToAgent (updateMental Pos (getPosM a) (getDec a) (getCMa)) a

sensePl anAct env = (act env) . decide . (perceive env)

7.4.2 The Class Context

The class context lists several classes that contain operations needed to execute the perceive,
act, and sensePlanAct function.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 109

The class AgentPut contains a function putToAgent that replaces a component of the

agent, and therefore contains two parameters in its class header.

cl ass AgentPut p agent where
put ToAgent :: p -> agent -> agent
The class AgentGet (which is found within the context of the class InternalOps, see section
7.5) contains get-functions that are used to navigate the agent’s hierarchical data type
structure. They allow us to access components of the agent. For example, getCM returns the
agent’ s cognitive map:
cl ass Agent Get agent where
get CM :: agent -> CognitiveNap
The class EnvAgent contains operations that take the environment and some of the agent’s
components as input: The perceiveAtPos function results in all signposts that the agent can
see from his actual position. The dirNext function gives the agent’s incoming direction in the
local reference frame if the agent enters a node; and updatePosition converts the agent’s
decision result into a movement to the next node.

cl ass EnvAgent env where

percei veAtPos :: env -> Pos -> Perceived
dirNext :: env -> Pos -> PrevPos -> InconmingDir -> Incom ngDir
updat ePosition :: env -> Decision -> Pos -> Pos

i nstance EnvAgent Environment where
updat ePosi ti on env dec pos = sndNode p2 (edgeWthSi gnAndNode dec p2 env)
wher e edgeWt hSi gnAndNode dec p2 env =

head ([e | e <- containNode pos env, containlnfo e pos dec])

Besides the signatures of these three functions, we give the (simplified) instance for the
updatePosition function. This instance is necessary for proving the fifth wayfinding axiom
(‘order of actions’). As proposed in section 5.1.5, the important part of a decision to be
transformed into behavior is the right place. Within the transformation process, the agent
matches a mental image of the environment (i.e., the semantic content of a signpost as result
of the decision process) with the environment itself. Thus the environment is part of the input
parameters (see also section 3.3.5.2). The function updatePosition executes the following

steps:

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 110

from the edges that are incident with the agent’s position (function containNode)
take the edge that contains a signpost with the information of the decision process
(containinfo)

get the other node (sndNode) of this edge for the new position

The instance shows that an action is uniquely defined through its preceding decision (i.e.,
through the semantic content of the chosen sign) and the agent’s position. As a combination
of node id and perceived information is unique in an environment, each movement is unique
in the wayfinding process and cannot be replaced by another (i.e., the actions are ordered).

Further sub functions in act are the setToZero function and the updatePrev function.
The first one resets the agent’s percepts and decision after a performed move, whereas the
second one replaces the previous position with the actual agent’ s position in the agent’ s facts.

7.4.3 The Semantics of the External Operations

The semantics of the external operations is expressed as derived functions within the class
definition. Thus, for the airport case and the WWW case, al functions need to be formulated
only once (and not instantiated separately).

The perceive function calls the perceiveAtPos function. This function gets those signs
that can be perceived from a node. The principle of the perceiveAtPos function is visualized
in Figure 42. Within the perceive function, the new percepts replace the existing percepts in
the agent’ s beliefs after having reached a new node.

3
4

Z 4]

perceiveAtPos

B —> [][s]

|

agent’s position

Figure 42: The function perceiveAtPos
The act function consists of six sub steps that change the agent’s facts and beliefs. Some of
the sub steps use environment and agent as argument (dirNext, updatePosition), the other sub
steps are internal (setToZero, updateMentalPos, updatePrev) but also part of the agent’s
move.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 111

(1) Within the updateMentalPos function, the agent's mental position is updated
corresponding to the semantic information of the sign that is chosen for the next step.

(2) The updatePrev function sets the previous position in the agent’s facts to the actual
position.

(3) The updatePosition function changes the agent’s position upon the decision (see
section 7.4.2).

(4) The dirNext function computes the incoming direction of the agent in the local
reference frame. For the WWW-navigating agent this function has no effect (see
section 6.3).

(5) The percepts are reset using the setToZero function.
(6) The decision isreset using the setToZero function.

7.5 The Agent’s Decision Process: An Internal Operation
The objective of this section is to demonstrate that the computational model satisfies the
second axiom (‘the agent has a goal’) and the third axiom (‘moving towards a goal’). We
restrict the explanations to those sub steps needed to demonstrate this.

The decide function is defined within the class InternalOps. It is applied after the
perceive function. The signature takes one parameter (denoting the agent) as input and outpuit.
The class context gives constraints for the parameterized data type agent.

(Agent Get agent, Agent Put Deci sion agent)

=> | nternal Ops agent where

cl ass Internal Ops agent where

decide :: agent -> agent
deci de agent
= if isAtGoal (getMM agent) (getPerc agent) then error ("GOAL REACHED! ")

el se put ToAgent (conposedDeci sion (get MM agent) (getPerc agent)

(getPos agent) (getPref agent) (getlncDir agent)) agent

The operation contains an if-clause which checks if the agent has reached his goal (isAtGoal
function). The goa is reached if mental position and goal correspond. In this case, the
simulation is terminated with a message. Otherwise the execution is continued and the
composedDecision function is called. This function is defined in the class ComposedDec and
triggers semantic (semanticDecision) and metric (metricDecision) decision making. The
instance of the class composedDec shows that it takes some components of the agent’s beliefs
as input, thus represents an internal operation.

i nstance ConposedDec CognitiveMap Perceived Pos Mental Pos Preferences

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 112

I nconmi ngDi r where
conposedDeci sion cm perc pos npos pref inc

= netricDecision pref inc (semanticDecision cm pos nmpos perc)

Asthe goal in our case study is semantically defined, the semantic decision making processis
the interesting part for the proof. Metric decisson making describes the agent’s bias
independently of the goal, therefore we skip its formal discussion. Figure 43 visualizes the so
far mentioned sub functions of the decide function.

deci de

N

i sAt Goal conposedDeci si on

PN

semanti cDeci sion == netricDeci sion

Figure 43: Hierarchy of the decide function

7.5.1 Sub-Processes of Semantic Decision Making

Semantic decision making consists of three steps. The term ‘filter’ in the explanation means
to keep corresponding elements. The three steps are:

(1) filter those percepts of which the semantic information can be matched with a
concept in the cognitive map

(2) exclude those percepts from the decision aternatives that would result in ‘shifting
up’ the mental position in a hierarchical graph of the cognitive map, i.e., moving
away from the god

(3) filter those percepts that have a minimal semantic distance to the corresponding
mental goal

Step (2) is the core for the proof of the third axiom (‘moving towards a goa’). The
implementation of step (3) shows that the goal can be extracted from the cognitive map, and
therefore proves the second axiom (‘the agent has a goal’). In our discussion we begin with
step (2), continue with step (3), and finally show that all three steps together represent the
complete semantic decision making process in the formal model.

7.5.2 Moving Towards the Goal

Step (2) of the above given enumeration filters those perceived signposts at a decision point
that lead the agent mentally closer to his goal. Thus, taking the path connected to such

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 113

signpost, decreases the semantic distance between the agent’'s mental goa and mental
position. Further we find situations in environments where recurring signs confirm the agent
to be on the correct path. The content of such recurring signsis not semantically closer to the
agent’s mental goal than the content of previously perceived signs. Rather the distance stays
unchanged. Such a sign of constant, unchanged mental distance will then be chosen if other
signsare not available. Thisisthe functionality of step (2).

As the abstract cognitive map consists of alist of mental graphs, the mental position is
defined through several concepts in the cognitive map—one for each graph (see section
7.3.2). Asthe mental position is an empty list at the beginning of the wayfinding process, the
positions within the mental graphs are initially undefined. During the wayfinding process they
are steadily filled through percepts from semantic information of signposts. The sub function
percHasNoMPos checks if the percelved semantic information has already a position in the
corresponding mental graph. If not, choosing a sign with such information for the next step
means approaching the goal. The filtering of perceived signs that |ead the agent closer to the
goal is provided by the function filterDowns. It either chooses a sign that reduces the semantic
distance in one of the mental graphs (through using the filterDown function), or it chooses a
sign where there is no mental position in the corresponding graph so far (provided by the
percHasNoMPos function).

The function filterEquals filters signs that express the same (and not only shorter)
semantic distance to the goal compared to the actual mental position. The filterDownBoth
function calls the filterEquals function if the filterDowns function gives an empty list (i.e., the
agent does not move closer to the target but keeps the semantic distance). We summarize
these three essential operationsin Table 7:

oper ation semantics
filterDowns filter perceived signs that |ead the agent closer to the goal
filterEquals filter perceived signs that maintain semantic distance to goal
filter DownBoth if non-empty result, call filterDowns, else filterEquals

Table 7: Functions providing that the agent approaches the goal

class SemanticDownFilter cm node sp where

filterDown :: cm-> [node] -> sp -> Bool
filterDowns :: cm-> [node] -> [sp] -> [sp]
filterEqual :: cm-> [node] -> sp -> Bool
filterEquals :: cm-> [node] -> [sp] -> [sp]

filterDownBoth :: cm-> [node] -> [sp] -> [sp]

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 114

i nstance Semanti cDownFilter CognitiveMap NodeM Si gnPost where
filterDown cm (n:ns) sp
| (goal For Node infoSp cm == goal For Node n cm
= nental Dist cmsp < nmentalDist cmn
| otherwise = filterDown cmns sp
where infoSp = getlnfoSi gnPost sp
filterDowns cmnpos sps = [S | s <- sps,

filterDown cmnpos s == True || percHasNoMPos cm s npos == True]

filterEqual cm (n:ns) sp
| (goal For Node i nfoSp cm == goal ForNode n cm
= nental Dist cmsp == nental Dist cmn
| otherwise = filterDown cmns sp
where infoSp = getlnfoSi gnPost sp

filterEquals cmnpos sps = [s | s <- sps, filterEqual cm npos s == True]

filterDownBoth cm npos perc
| f ==1[] =filterEquals cm npos perc
| otherwise = f
where f = filterDowns cm npos perc

The filterDown and FilterEqual functions are recursively defined. The central parts of these
functions are the boolean operators ‘<‘ and ‘==' applied on the mental distance. The
filterDown function compares the mental distance (mental Dist) between a perceived sign (sp)
and the goal, with the mental distance between the corresponding concept (n) in the semantic
position and the goal. The result is True (i.e., the perceived signpost provides a smaller
semantic distance to the goal than the actual position) if the first of the two values is the
smaller one (expressed by the ‘<* operation). The filterEqual function is equally defined,
except for replacing the ‘<* function with an equal sign.

7.5.3 The Semantic Distance to the Goal

We now have a closer look at how the mental distance is defined and computed. We show
that the goal is gained from the cognitive map and therefore separated from the mental
position (as clamed in the second wayfinding axiom). Hereby we look at the class

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 115

MentalPath that contains two functions, each with two parameterized data types in its
signature.

The mental distance (function mentalDist) is defined as the length of the list of nodes
(length function) that results from calculating the mental shortest path (using the
mental ShortPath function) between the semantic content of a perceived signpost and the
corresponding goal within the cognitive map. The mentalShortPath function in its
instantiation takes the cognitive map and a perceived signpost as input. It cals the
getPathFromTo function which cal culates the shortest path between two nodes of a graph.

The function getPathFromTo uses three arguments. The first argument for the function
is the information content i of the perceived signpost (which corresponds to a node the
cognitive map). The second argument is the goa of the graph that contains the concept i
(function getGoalFromGraph), and the third argument is the graph of the cognitive map
where the shortest path is to be found, i.e., the graph that contains the concept i (function
graphWithNode). The getPathFromTo function is realized through the shortest path algorithm
by Dijkstra (see section 4.8.2).

cl ass Mental Path cm sp where
ment al ShortPath :: cm-> sp -> [NodeM

mentalDist :: cm-> sp -> Int

i nstance Mental Path CognitiveMap | nfo where
nment al ShortPath cmi = getPathFroniTo i (getGoal FronGraph graph) graph
where graph = graphWthNode i cm

mental Dist cmi = length (nmental ShortPath cmi)
Figure 44 shows in a simple example the interplay of the discussed functions for getting the
utility of a perceived sign. The percept is the semantic content ‘a3’ of a signpost; the agent’s
cognitive map is abstracted through two graphs A and B. Function graphWithNode matches
the percelived ‘a3’ with the cognitive map and returns that the concept ‘a3’ is member of the
graph A. The getGoalFromGraph function computes the goa of graph A (i.e, ‘al’), the
getPathFromTo function determines the shortest path between the perceived ‘a3’ and the goal
‘al’, and mental Dist counts the number of elementsin the resultant list of nodes (which is the
value for the semantic distance). These functions together allow the agent to evaluate the
utility of each sign perceived at an intersection. The functions show that the goal is calculated
from the mental map (getGoalFromGraph), and that therefore—together with the agent’s
structure (section 6.1)—the second axiom is satisfied. How the goal is calculated from each
graph (i.e., the semantics of the getGoal FromGraph function) is not relevant for the axiom.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 116

cogM ap

——_———— . N

I S~ , ~
. A N , B N
, ~
, N /
,
. ,

o
w

&
R
R

&
R

graphWt hNode a3 coghap

!

get Goal FronGraph ‘' A

get PathFroniTo :: a3 al ‘A => [a3, a2, al]

nental Dist [a3, a2, al] = 3

Figure 44: Computing the shortest mental path in the cognitive map for a perceived sign

7.5.4 Combining the Sub-steps

The function semanticDecision in the class SemanticDec unites steps (1), (2), and (3) of
semantic decision making introduced in section 7.5.1. It takes the agent’s cognitive map,
mental position, and percepts as input and results in signposts (i.e., percepts) with a minimum
semantic distance from their goal. Hereby filterPercs represents step (1), filterDownBoth
represents step (2), and semanticDistFilter represents step (3).

class SemanticDec cm npos perc where

semanti cDecision :: cm-> npos -> perc -> perc
i nstance SemanticDec CognitiveMap Mental Pos Perceived where

senant i cDeci si on ¢cm npos perc

| f ==1[] = error ("NO SIGN | NFORVATI ON FOUND")

| otherwise = semanticDistFilter cmf

where f = filterDownBoth cm npos (filterPercs cm perc)
The semanticDecision function has following effects. If the list of signposts that satisfy
criteria (1) and (2) isempty (f==[]...), the program is terminated with an error message. In
this case, none of the perceived signposts can be used for further decision making. If thelist is
not empty, the function semanticDistFilter is applied on matched (1) and ‘down-filtered’ (2)
signposts. The semantics of the operations is equal for both instantiations of agent as no
pattern matching on the constructor functions of digoint aternatives is made.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 117

senmant i cDeci si on

~ | R

filterPercs I:>fi|terDovvnBoth I:>senranticDistFiIter

Figure 45: Functions involved in semantic decision making

7.6 Summary

In this section we formalized the conceptual model of a wayfinding agent. This resulted in a
set of executable specifications, which will be used in section 9 to simulate the wayfinding
process at the Vienna International Airport and in the Y ahoo-domain.

We started with the definition of the world with its operations that trigger the agent’s
wayfinding process and the ticking of the world-time. Then we described the hierarchical
structure of the environment that provides semantic and metric information for the agent.

Next we specified the data types for the cognizing agent according to the conceptual
model, which distinguishes between fact and beliefs. Based on the Sense-Plan-Act framework
and the agent’s wayfinding strategies we defined the formal operations of the agent. These
operations are applied on the data types introduced before. The agent’s operations are
hierarchically structured through the used class structure and the sequence of function calls.
Differences in agent structure (expressed through union data types) and operations (realized
through pattern matching on constructor functions) between both instantiations do not affect
the proof that both abstract domains satisfy the wayfinding axioms. The parts needed for the
formal proof are homomorph.

Discussing the Computational Model 118

DISCUSSING THE COMPUTATIONAL MODEL
CHAPTER

8

In this chapter we summarize the proofs that were given throughout the explanation of the
formalized wayfinding model. Further, we review the mapping process between the domains
as well as the functions within each domain concerning partiality and totality. Recalling the
formalized wayfinding model we discuss which of the formal tools that may be used to
express a metaphorical mapping have been implemented.

8.1 Verification of the Wayfinding Axioms

As the semantics of operations given in the functional model is either expressed through
derived functions (i.e., independent of their instantiation), or defined for the airport-agent and
the WWW-agent (without pattern matching over the constructor functions), proving
instantiations to satisfy the axioms could be done in one step for both instantiations.

ad axiom 1 (‘Decision points’): This axiom expresses a condition for the environment
with which the agent interacts, namely that the environment must include a node of degree >
2. In section 7.1.2 we have shown that the function checkDegree within the iterateé\WorldStep
function checks the environment for this condition. If the condition is not satisfied the
application will be terminated.

ad axiom 2 (‘The agent has a goa’): The agent’s beliefs separate the components
‘cognitive map’ and ‘mental position’ (section 7.3.1). Asthe goal isincluded in the cognitive
map (section 7.5.3), the goal is separated from the mental position. Mental position and goal
have different values throughout the wayfinding process (as claimed in the axiom). If they
correspond, the wayfinding process is terminated (see the decide function).

ad axiom 3 (‘Moving Towards a Goal’): We showed that the filterDownBoth function
(as part of semantic decision making) is applied within each decision process (section 7.5).
This function guarantees that the agent chooses only among those perceived signs for the next
step that either leads to a reduction of the mental distance between mental position and goal,
or that—for the case of ‘confirming’ signs—results in an unchanged mental distance to the
goal (section 7.5.2).

ad axiom 4 (‘No Impact on Environment’): The only operations where the environment
is part of the result are the worldStep function and the iterateWor|ldStep function. The latter
iterates the worldSep function. The worldSep function triggers both the ticking of the

Discussing the Computational Model 119

system-time, and the Sense-Plan-Act cycle of the agent (section 7.1.2). Within this function,
the environment component is read out from the world (getEnv world) and recomposed
(createWorld) unchanged with the other (changed) components into a new world. As no
operation is performed on the environment component, the environment stays unchanged
throughout the whole wayfinding process.

ad axiom 5 (‘order of actions): In section 7.4.2 we discussed the updatePosition
function (as part of the act function) which transforms an action decision into a step. We
showed that each of the agent’s movements from one node to the other is uniquely defined
through the agent’s position (i.e., node) and a sign (i.e., the agent’s decision). Thus, steps are
ordered in the ssimulated wayfinding model and cannot be swapped.

8.2 Totality: Mappings and Functions

8.2.1 Totality of Mapping

We find several mappings in our approach: The wayfinding metaphor maps the semantics of
wayfinding in the real world to other (e.g., artificial) domains. Mapping the radial category
wayfinding to a set of axioms and thereby ‘forgetting’ some features of wayfinding in the real
world represents the idea of a forgetful functor. The morphism in the functional model maps
objects and operations between the two instantiations (Figure 22). A function, is said to be
total if it is defined for al arguments of the appropriate type. The opposite is a partial
function. What we are interested in, is whether the morphism in the functional model is total,
i.e., if it maps all functions and operations from one domain to the other. Total functions are
easy to handle because they can be combined with other functions without difficulties,
wheresas partial functions (or mappings) require a condition to check if there is a valid result
before the result is used in another function.

The mapping of objects and operations between the two discussed domains is closely
related one to each other: A mapped function can only be executed if the required objects are
mapped. We discussed the object hierarchy of the world (section 7.1.1), the environment
(7.2.3), and the agent (section 7.3). The data type hierarchy uses the same components in its
upper levels for both instances (expressed through a product data type). Examples are the data
types Agent, Beliefs, or World. All operations in classes that are instantiated with such data
types are expressed through one single equation for both types of instances. Thus, the
operations and objects of this hierarchical level are homomorph between the two domains,
and the mapping is total. The mapping between instances of parameterized data types (e.g.,
the datatypes E nor G en, section 7.2) isaso total.

Discussing the Computational Model 120

Union data types (section 4.5.2) were used to express digoint unions between elements
of alow hierarchical level. Examples are the data types IncomingDir or Info. The mapping of
one aternative to the other is total on this level (with some potential loss of information,
section 4.2.2). For operations that are accessing complete alternatives of a union data type
(i.e., no single components of the alternatives), the instantiation of the operation is defined
through pattern matching on the constructor of each alternative. Thus, the equations are also
totally mapped between both instances. We must be aware of the fact that a total mapping
function does not tell us anything about the semantics of the mapped function itself (except
for using the same data type signature).

The mapping of functions that operate on components of digoint alternativesis partial.
For example, the getGateletter function, which accesses a letter from the semantic
information of an airport sign (the semantic information is represented by a union data type),
is not defined for the Web environment, as the data type Gate is not part of the semantic
information in WWW environment.

getGateLetter (Gate | n) =1

Table 8 summarizes the schema of partial and total mapping of data types and their
functions. The first row expresses the case where a data type is equally defined for both
instances of agent or environment (total mapping), the second row shows operations on a
union data type (tota mapping), and the third row describes the partial mapping of
components of digoint aternatives (and corresponding operations).

data type mapping function mapping
data A = A .. id fa=... id
data C=Cl...| ... Cl...=> C2... f(CL...) = f(cl. ..)=>f(Cz2...)
f(e...) =
data T = A al a2 a3 | B bl b2 |al => bl fl1 al, f2 a2, fl1 al =>f4 bl
f3 a3,f4 b1,
for al = bl, a2 /= b2 a2 => b2 f5 b2 f2 a2, f3 a3: no
mappi ng
a3: no mappi ng

Table 8: Total and partial mapping of components and corresponding functions

8.2.2 Totality of Functions

The data type Maybe (defined within the Haskell prelude) is to provide a method of dealing
with illegal or optional values without terminating the program, as would happen if error
were used, i.e.,, Maybe allows to make a function total. A correct result is encapsulated by
wrapping it in Just; an incorrect result is returned as Nothing. This data type is used in the
computational model to read out the utility of a metric direction from the preference-direction

Discussing the Computational Model 121

pairs (section 7.3.6), i.e., for the case that a perceived direction of asign is not included in the
list of direction-utility-pairs (which is not the case in the data sets of the simulation).

data Maybe a = Nothing | Just a

The totality of all functions in the computational model can be checked through hierarchical
deriving of the totality in bottom-up direction (we do not show this for our model here). One
needs to start with checking the totality of basic Haskell functions that are used in user
defined functions (e.g., length is total, whereas head is not). If the basic functions used within
user-defined functions are partial, the user defined functions must provide an if-clause for
input values that may cause an error within the basic function. This is possible through
pattern matching (section 4.7.5). This concept isto be continued until the top-most function is
checked to be total.

We use pattern matching, among other purposes, to define recursive functions with lists
as input. An extra equation hereby treats the case of an empty list as input which would lead
to a runtime error. Due to sequential pattern matching in Haskell, the equations for ‘specia’
values must be placed before the general cases. An example for a recursive function that uses
pattern matching is the matchGoal function. It checks if the information (getlnfoSgnPost) in
any of the agent’s percepts (p:ps) is equal to the mental goa (g). Through the first line (and
under the assumption that the applied sub functions are total, too) the matchGoal function is
made total.

matchGoal g [] = Fal se
mat chGoal g (p: ps)
| == get I nfoSignPost p = True

| otherwi se = matchGoal g ps

8.3 Comparing Theory and Implementation

Functors, i.e., the lifting of functions between categories, play a role in the theory of
metaphors (section 4.4.2). In section 4.5.5 we gave formal examples implemented in Haskell.
Analyzing the functional model we see that neither functors nor natural transformations play
an important role in the proof of both instantiations satisfying the wayfinding axioms, or in
the discussion of mapping of semantics between the two instantiations. Few functors can be
found in the computational model as the actual code is more concrete than necessary. This
means that more data types (theoretically) could have been defined through parameterized
constructor functions (and therefore represent functors). The two reasons why we did not do
so are: First, afully parameterized code leads to a higher complexity of the representation of
structures and corresponding operations. Proving the wayfinding axioms for two separate

Discussing the Computational Model 122

instantiations—one of the main goals of the thesis—would be hidden by the syntax of the
generalization mechanisms. Second, the type inference system of the Haskell compiler has
some limitsin coping with generality.

The forma model does not give a functor- and category-based description of
morphisms between two domains. Instead we made explicit use of polymorph functions in
class declarations (derived functions), and instantiated operations that use one equation for
both instances. We also used the class context to express type inheritance between
parameterized data types—a step towards a fully parameterized type system. For proving the
axioms, we made use of the forma homomorphism between the two domains so that proving
did not need to be achieved separately for both instances.

8.4 Summary

We recalled the proofs that the wayfinding axioms are satisfied for both instantiations of
agent and environment. Those operations and objects that are needed for the proofs are totally
mapped between the two abstract domains. The mapping of operations which is defined on
components of digoint unions of an agent is only partial and does not contribute to the proofs
given.

We also discussed partiality and totality on the level of operations. Haskell provides
methods to make partial operations total, the most frequently used being pattern matching.
When recalling the implemented formal methods, we saw that polymorphism and the class
structure play a dominant role in the formal description of the metaphor, whereas the concept
of functor is not found and therefore does not contribute to the formal description of a
metaphor in our formal model. Thistask can be considered as part of the future work.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 123

SIMULATION OF THEWAYFEINDING PROCESS
INAN AIRPORT =ENVIRONMENT AND THE
WA

CHAPTER

9

In this section we test the formalized wayfinding model for being executable. The framework
of the test situation is given through the cases studies introduced in section 2. We start with

the construction of the simulated environments¥s parts of the Vienna International Airport and

the Yahoo-Portal% and continue with the definition of the wayfinding agents. The abstract
environments lack completeness of the rea settings. Despite this, the data sets are extensive
enough to demonstrate the agents' wayfinding behavior. For a better understanding of the
wayfinding strategy we will analyze some decision situations in detail.

Due to the structural commonalities between objects of both instantiations, we use the
same set of operations for creating the abstract world, environment, and agent in each of the
instantiations. We use data sets that make the agent reach his goal (which isnot crucial for the
definition of ‘wayfinding’).

9.1 The Environments

The airport environment as well as the WWW environment are abstracted as static graphs
with non-labeled, directed or undirected edges (section 2.3). The graphs are identical in their
structure except for different data types denoting the semantic information on signposts
(section 7.2.2).

9.1.1 Area of the Simulated Airport Environment

In section 2.2.6, we introduced the structure of the abstract airport environment and listed the
semantic and metric properties of the included edges (Table 1). For creating the abstract graph
in Haskell, the raw data of the table are represented as a list of 4-tuples (named real Strings),
where each 4-tuple denotes an edge of the environment. A 4-tuple describes the id of the start
node of the edge (data type Int), the signpost at this node (data type SgnPost), the id of the
end node, and the signpost at the end node. Directed edges (in the sense of being potentially
entered from one side only) have avalue ‘NoSign’ instead of one of their signposts.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 124

The makeE function takes a single 4-tuple of the realSrings list and converts it into an
edge; the insertG function inserts a list into a graph. The function real Graph represents the
complete graph:

real Gcaph = foldr insertG (G []) (map nakeE real Strings)

real Strings =
[(0, NoSi gn, 1, NoSi gn),

(1,S 1 (Ir (GateSign2 (GateSignRange (LetterOnly ‘A) (LetterOnly
‘D)))), 2, NoSign),

(2, S0 (Ir (GateSignl (GateSignList [(LetterOnly ‘A), (LetterOnly
‘B),(LetterOnly ‘C),(LetterOnly ‘D)]))),3, NoSign),

(3,S1 (Ir (GateSign (GateSignSingle (LetterOnly “A)))), 4, NoSi gn),

(3, S0 (Ir (GateSignl (GateSignList [(LetterOnly ‘A), (LetterOnly
“C)1))).5 NoSign),

(3,S7 (Ir (Ga_teSi gnl (GateSignList [(LetterOnly ‘B), (LetterOnly
“C)1))).6, NoSign),

(4,S 6 (Ir (GateSign (GateSignSingle (LetterOnly “C)))),5 S 2 (Ir (GateSign
(GateSignSingle (LetterOnly “A))))),

(5,S6 (Ir (GateSignl (GateSignList [(LetterOnly ‘B), (LetterOnly ‘C)]))).,6,S
2 (Ir (GateSign (GateSignSingle (LetterOnly “A))))),

(6,S6 (Ir (GateSignl (GateSignList [(LetterOnly ‘B), (LetterOnly ‘C)]))).7,
NoSi gn),

(7, S 6 (Ir (GateSign2 (CGateSignRangel (Gate ‘'C 51) (Gate 'C
62)))), 9, NoSi gn),

(7, S5 (Ir (GateSign (GateSignSingle (LetterOnly ‘B)))), 8, NoSi gn),

(9,S7 (Ir (GateSign (GateSignSinglel (Gate ‘C 54)))), 10, NoSi gn)]
For a better understanding of how we use the local reference frame, we visualize the edge that
is part of the given data set and printed in bold letters (see Figure 46). The edge has two nodes
with theids4 and 5 (first and third component). The second component indicatesasign ‘C’ in
direction 6 of the local reference frame of node 4, and the fourth component denotes a sign
‘A’ in the direction 2 of the local reference frame of node 5. Thus, the semantic and metric
information of the edge is expressed within these four components.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 125

Figure 46: Information of an edge

9.1.2 Area of the Simulated WWW Environment

In section 2.2.6 we introduced the abstracted test area of the Yahoo domain which is
represented as a graph with nodes and edges. We create the WWW graph similarly to the
airport graph (section 9.1.1); the raw data (Table 2) are aso given as 4-tuples (webStrings).
The metric information of a signpost denotes the distance of the link to the upper margin of
the user interface (section 2.2.5), i.e., the metric position of alink is absolutely defined and
independent of a local reference frame. The complete graph is computed in the function
wwwGr aph.

ww& aph = foldr insertG (G []) (map nakeE webStrings)

webStrings =

[(1,S 2 (Iw "do business"),2,S 1 (lw "Honme")),

(1,S 9 (lw"recreate"),3,S 1 (lw "Home")),

(2,S 2 (lw "do shopping"),4,S 1 (lw "do business")),

(3,S19 (lw"do sport"),5,S 3 (lw "recreate")),

(17, 1 (lw "confirn'), 25, NoSign),
(18,S 1 (lw"confirm'), 22, NoSign),
(19,S 1 (lw"confirn'), 23, NoSign),

(20,S 1 (lw "confirnm'), 24, NoSign)]

Simulation of the Wayfinding Process in an Airport Environment and the WWW 126

9.2 The Agents

9.2.1 Creating the Agent’s Cognitive Map

An agent’s cognitive map contains a list of mental graphs. Each of these graphs consists of a
list of mental edges with two mental nodes (section 7.3.3). As the data type of a mental node
(NodeM) is a synonym for the data type Info (section 7.2.2), a mental node represents a
gatesign for the airport navigating agent (Figure 33, section 6.2.2), and a text string for the
WWW navigating agent (Figure 35, section 6.2.3.6). The raw data of a graph are given as
tuples, consisting of either gatesigns (airport case) or text strings (WWW case). The function
makeEM converts a tuple into a mental edge.

For the airport case, the complete graph is computed within the function graphSgns. As
the cognitive map consists of one graph only, the list representing the cognitive map (cmapR)
contains one element (i.e., graphSgns). The content of the cognitive map corresponds to
Figure 33b (section 6.2.2).

cmapR :: CognitiveMap

cmapR = [graphSi gns]

graphSigns = foldr insertG (G []) (map nakeEM graphSi gnsS)

graphSi gnsS =
(I
Ir
‘c

r (GateSignl (GateSignList [(LetterOnly ‘A),(LetterOnly ‘C)])),
(GateSignl (GateSignList [(LetterOnly ‘A), (LetterOnly ‘B), (LetterOnly
). (LetterOnly ‘D)]))),

(I'r (GateSignl (GateSignList [(LetterOnly ‘B), (LetterOnly “C)])),
Ir (GateSignl (GateSignList [(LetterOnly ‘A),(LetterOnly ‘B), (LetterOnly
‘C),(LetterOnly “D)]))),

(Ir (GateSignl (GateSignList [(LetterOnly “A),(LetterOnly ‘C)])),
Ir (GateSign2 (GateSignRange (LetterOnly ‘A) (LetterOnly ‘D)))),

(I'r (GateSignl (GateSignList [(LetterOnly ‘B), (LetterOnly “C)])),
Ir (GateSign2 (GateSignRange (LetterOnly ‘A’) (LetterOnly ‘D))))

(Ir (GateSign (GateSignSingle (LetterOnly ‘C))),
Ir (GateSignl (GateSignList [(LetterOnly ‘B), (LetterOnly ‘C)]))),

(Ir (GateSign (GateSignSingle (LetterOnly ‘C))),
Ir (GateSignl (GateSignList [(LetterOnly “A),(LetterOnly ‘C)]))),

(I'r (GateSign2 (GateSignRangel (Gate ‘C 51) (Gate ‘C 62))),
Ir (GateSign (GateSignSingle (LetterOnly “C)))),

(Ir (GateSign2 (GateSignRangel (Gate ‘C 51) (Gate ‘C 62))),Ilr (GateSign
(GateSignSinglel (Gate ‘C 54))))]

Creating a mental graph of the WWW navigating agent is similar to the airport case. The
cognitive map consists of five graphs (Figure 34), denoting user intended actions (graphUia),
physical object hierarchy (graphPhys), action affordances (graphAa), brand (graphBrand),

Simulation of the Wayfinding Process in an Airport Environment and the WWW 127

and size (graphSze). The complete cognitive map (see Figure 35) is computed within the
cmapW function.
cmapW :: CognitiveMap

cmapW = [graphU a, graphPhys, graphAa, graphBrand, graphSize]

graphUia = foldr insertG (G []) (map nakeEM graphU aS)
graphPhys = foldr insertG (G []) (map makeEM gr aphPhysS)
graphAa = foldr insertG (G []) (map makeEM gr aphAaS)
graphBrand = foldr insertG (G []) (map nakeEM graphBrandS)

graphSize = foldr insertG (G []) (map nmakeEM graphSi zeS)

graphU aS = [(lw "do shopping”,lw "confirni), (lw "do business",lw "confirm)]

graphAasS = [(lw "recreate",lw "do sport"”), (lw "do sport",lw "do track and
field), (lw"do track and field",lw "running")]

graphPhysS = [(I w "physical object",lw "artifact"), (lw"artifact",lw
"covering"”), (lw"covering",lw "clothing”), (lw "clothing",lw "footwear"),
(lw "footwear",|lw "shoe")]

graphBrandS = [(Iw "brand",|w "Adidas"), (lw "brand",lw "Converse"), (lw
"brand", I w "Reebok"), (lw "Adidas",Iw "N ke"), (lw "Reebok",Iw "N ke"), (lw
"Converse",lw "N ke")]

graphSizeS = [(Iw "size",lw"10 1/2"),(Iw "10 1/2", 1w "10"), (lw "10", 1w "9
1/2")]

In both instances, the agent’s goal is not explicitly given but computed from the cognitive
map through the getGoal FromGraph function (section 7.5.3).

9.2.2 Creating the Agent

This section shows how several components are composed into a whole simulated agent. For
the agent’s definition we use the previously defined cognitive maps (section 9.2.1). Union
data types for some of the agent’s components indicate digoint unions between the two
agents.

An agent is created through the user-defined data type Agent (section 7.3). The
components of the agent are filled with the data listed behind the where clause. They
represent the agent’ s state at the beginning of the navigation process.

The airport-navigating agent (called fred) has an id 1, its position is at node 1, the
previous position is the fictive node O, the mental position is empty, his cognitive map
(cmapR) has been defined in section 9.2.1, the percepts are empty, no decision is yet made
(Nolnfo), preferences correspond to Figure 36a (section 6.3), and the incoming direction is set
to 0.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 128

fred = Agent (Fact aid (Pos (Node pos)) (Pos (Node prev))) (Beliefs npos cm
perc dec pref inc)

where aid =1

pos = 1

prev =0

npos = []

cm = cmapR

perc =[]

dec = Nolnfo

pref =1(1,1),(2,2),(3,4),(4,6),(58),(6,7),(7,5),(8,3)]

inc =1Dr O
The wayfinding agent in the WWW (called charly) has identical components to the airport-
navigating agent except for the cognitive map, preferences, and the incoming direction: The id
isset to 1, the position is node 1, the previous position is node 0, the mental position is empty,
the cognitive map (cmapW) has been defined in section 9.2.1, the percepts are empty, and no
decision is yet made (Nolnfo). The preferences reflect that upper elements on the user
interface is given a higher utility (Figure 36b, section 6.3); the incoming direction is
undefined (section 4.7.5).

charly = Agent (Fact aid (Pos (Node pos)) (Pos (Node prev))) (Beliefs npos cm
perc dec pref inc)

where aid =1
pos =1
prev =0
npos = []
cm = cmapW
perc = []
dec = Nolnfo

pref =[(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9), ...
... (73,73),(74,74),(75,75),(76,76),(77,77),(78,78),(79,79)]

inc = NolncDir

9.3 The World

In the previous sections we discussed the creation of agent and environment for the
simulation. Besides these two components, the system time is part of the world. The world is
created through the user-defined data type World (section 7.1.1).

Simulation of the Wayfinding Process in an Airport Environment and the WWW 129

The world designed for the airport simulation consists of the real world navigating agent
fred (section 9.2.2), the airport environment realGraph (section 9.1.1), and a timer which is
initialized to the value 1.

wor | dAi rport = World tinme agent g

where time = 1
agent = fred
g = real Graph
The world designed for the WWW simulation consists of the WWW navigating agent charly
(section 9.2.2), the WWW environment wwwGraph (section 9.1.2), and a timer which is
initialized to the value 1.

wor | dWWV = World tine agent g
where tine = 1
agent = charly

g = wwG aph

9.4 Running the Simulation
The simulation of the navigation process is started with the sim function. It takes a data type
World as input and results in the type 1O() which stands for Input/Outpui.

sim:: vorld -> 1Q()

simworld = putStrin (showTitle ++ concat (map text (iterateWorldStep world)))
The sim function allows us to modify the output with a formatting function (function text) in
order to make it more readable for the user. The core of the function is the call of
iterateWorldStep (section 7.1.2).

9.4.1 Wayfinding in the Airport

In the first ssimulation we follow the simulated agent’s path through the abstract airport
environment. We start the simulation with the function ssmand give it the world worldAirport
(see section 9.3) asinput.

> sim worl dAi rport
TIME 1

PCSITION: 1
PREVNCDE: 0
MENTAL POSTI ON:

I NCOM NGDIR: 0

Simulation of the Wayfinding Process in an Airport Environment and the WWW 130

TIME: 2

POSI TION: 2

PREVNCDE: 1

MENTAL POSTI ON: ‘A - 'D

INCOM NGDI R 5

TIME: 3

POSI TION: 3

PREVNCDE: 2

MENTAL POSTI ON: ‘A ‘B C ‘D

I NCOM NGDI R 4

TIME: 4

POSI TION: 5

PREVNCDE: 3

MENTAL POSTI ON: A C

I NCOM NGDI R: 4

TIME: 5

POSI TION: 6

PREVNCDE: 5

MENTAL POSTI ON: ‘B C

I NCOM NGl R: 2

TIME: 6

POSI TION: 7

PREVNCDE: 6

MENTAL POSTI ON: ‘B C

I NCOM NG&DI R 2

Simulation of the Wayfinding Process in an Airport Environment and the WWW 131

TIME: 7

PCSITION: 9

PREVNCDE: 7

MENTAL PCSTION: ‘C 51 - ‘C 62

I NCOM NGDI R 2

TIME 8

POSI TION: 10

PREVNCDE: 9

MENTAL POSTION: ‘ C 54

INOCOM NGDI R 3

program error: AGENT HAS REACHED GOAL !
The output shows time, position, previous position, mental position, and the incoming
direction of the agent for each step that is made during the wayfinding process. The last line
says that the agent has successfully reached his godl, i.e., perceived the sign ‘C 54’ (section
2.1.1). The chosen path during the ssmulation is visualized in Figure 47 (bold line). The 2-step

decison making strategy using semantic decision criteria and metric preferences is
successfully applied for the given task.

'\-\.,‘-l'kﬁ
[
n Enmalz-'ﬂ“#:_;}*'-.::‘
e

¥

BT @ad s

Figure 47: Visited nodes in the airport environment during a complete navigation process
Analyzing the agent’s mental position after each step and comparing it with the agent’s
cognitive map (Figure 33b), we see that the mental position either changes towards the mental

Simulation of the Wayfinding Process in an Airport Environment and the WWW 132

goa ‘C 54" within a step (steps 1-2, 3-5, 7-9, 9-10), or keeps the mental distance from the
goal (steps 2-3, 5-6, 6-7).

We give an example for both types of steps and start with the decision situation at node
3 in the airport graph (Figure 47). This situation requires the use of metric preferences in
addition to semantic decision criteria. The agent’s mental positionisat ‘A, B, C, D’ (see the
simulation), visualized in Figure 48a in the cognitive map. In Figure 48b the agent’s position
in the environment is denoted by a grey circle. The agent’s local reference frame is visualized
as a star of arrows—direction 1 pointing to the agent’s front, direction 5 pointing to the
agent’s previous position (backwards). The agent perceives the signs ‘A’, ‘A,C’ and ‘B,C’,
each from adifferent direction.

mental position percepts
PN ik el . “y) o

ABCDY AD ~ IJ AC Jog i |
g A - | B,C [}

K Postam
-— D
[/

CHECK-IN

Cb4 [(goal)
©) (b)

Figure 48: Agent’s mental position (a) and percepts in the agent’s local reference at node 3

The first step of the decision process (semantic decision making) filters the signs which do
not lead the agent farer away from his goal (section 7.5.1). Analyzing the agent’s cognitive
map (Figure 48a) we see that the signs ‘A,C’ and ‘B,C’ fulfill this criterion—both concepts
are three edges distant from the mental goal—whereas the actual mental position is four steps
from the goal. The concept ‘A’ is not included in the mental map and therefore the mental
distance between ‘A’ and the goal is infinite. Due to the same utility of signs‘A,C’ and ‘B,C’,
metric bias is required for the decision making process. As the front direction 1 (coinciding
with sign ‘A’C’) is given the highest preference value, the agent finally chooses the path
indicated by the sign ‘A,C’. The mental position changes according to the content of the
chosen sign (Figure 43a).

The next case describes the decision situation at node 6. When reaching this node, the
agent’s mental positionisat ‘B,C’ (Figure 49a). The only sign that can be perceived is ‘B, C
(Figure 49b). This sign confirms the agent to be on the correct path. Thus, the agent chooses

Simulation of the Wayfinding Process in an Airport Environment and the WWW 133

the path with this sign attached. The agent’s mental position stays unchanged after the next

step.

mental position
ABCD AD

Lo
C
v

C51-C62

Cb4 [goal]
€)

-1 *
| Flugsisige

| Gamws

.Bl;:;;-'.-l

(b)

Figure 49: Mental position (a) confirmed through percepts (b) (photo: M. Raubal)

9.4.2 Wayfinding in the WWW

The next test case simulates wayfinding in the Y ahoo-domain. The ssimulation is started with
the sim function which takes the world wor | dWMAV (see section 9.3) asinput.

> sim wor | dWAW
TIME 1
POSITION: 1
PREVNCDE: 0
MENTAL POSTI ON:

INCOM NGDIR: No Inchir

TIME 2

POSI TION: 2

PREVNCDE: 1

MENTAL POSTI ON: do busi ness;

INCOM NGDIR: No IncDir

Simulation of the Wayfinding Process in an Airport Environment and the WWW 134

TIME: 3

PCSI TION: 4

PREVNCDE: 2

MENTAL POSTI ON: do shoppi ng;

INCOMNGDIR: No IncDir

TIME 4

PCSI TION: 6

PREVNCDE: 4

MENTAL POSTI ON: cl ot hi ng; do shoppi ng;

INCOMNGDIR: No IncDir

TIME: 5

PCSI TION: 11

PREVNCDE: 6

MENTAL POSTI ON: shoe; do shoppi ng;

INCOM NGDIR: No Inchir

TIME: 6

PCSI TION: 15

PREVNCDE: 11

MENTAL POSTION: do sport; shoe; do shopping;

INCOM NGDIR: No Inchir

TIME 7

PCSI TION: 17

PREVNCDE: 15

MENTAL POSTI ON: runni ng; shoe; do shopping;

INCOM NGDIR: No IncDir

Simulation of the Wayfinding Process in an Airport Environment and the WWW 135

TIME 8

POSI TION: 25

PREVNODE: 17

MENTAL POSTI ON: running; shoe; confirm

INCOM NGDIR: No I ncDir

Program error: AGENT HAS REACHED GOAL !
As for the airport navigating agent, each step is described through time-slot, position,
previous node, mental position, and incoming direction where the incoming direction is
undefined at each position (see section 4.7.5). The last line of the result shows that the agent
has reached his goal. This means that the agent has perceived the ‘confirm’ link (section
6.2.3.5). The visited nodes during the wayfinding process are visualized in Figure 50.

Corresponding to the simulation of the airport navigating agent, the mental position is
empty at the beginning of the wayfinding process. Except for the step 2-4, the mental position
changes with each step towards the mental goal.

We have a closer look at a decision situation that applies a two-step decision sequence

(semantic and metric decision making), similarly to the discussed situation at node 3 in the
airport environment.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 136

Figure 50: Visited nodes during the wayfinding simulation in the WWW
L et the agent’ s position be at the web page with the id 11 within the Web environment (Figure
50). The agent’s mental position, which consists of the concept ‘shoe’ for the graph of the
physical object hierarchy, and the concept ‘do shopping’ for the user intended actions is
visualized through circles in the cognitive map (Figure 52). Out of the many links offered at
node 11 (see the screen shot in Figure 51) we take three links that are related to the agent’s
goa (uplink ‘clothing’, and downlinks ‘do sport’ and ‘brand’). We consider ‘apparel’ and
‘clothing’ as synonyms, as well as ‘athletic shoes' and ‘sport shoes'. Among the three links,
‘clothing’ istop most, and ‘brand’ is bottom-most on the user interface. The positions of the

corresponding concepts in the cognitive map (Figure 52) are visualized as dashed circles.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 137

Yahoo! Commercial Directory
Shopping > Footwear

Home » Business and Economy » Shopping and Services Apparel =JFootwear

Categories
. 170) Industrial Safety(@
« Boglaots Men's (37)

Moccasins {22)

Retailers (765) Mew:

Sandals (Z4)

Sheepskin (77)

Shoe Care and Accessories {7/)
Irade Organizations (2}
Women's (85)

rand Names]
s Clogs (29)
+ Custom-Made (7 5)
« Dance Shoesa

+ Directories (%)

« Hosieryial

Figure 51: Decision alternatives at node 11
During semantic decision making, the percept of the uplink ‘clothing’ is skipped from further
considerations, as it would lead the agent away from the goal: The mental position ‘shoe’ in
the cognitive map is closer to the target than ‘clothing’. The mental position in the graphs of
the other two remaining concepts (‘do sport’ and ‘brand’) has not been defined so far. Thus,
these concepts would lead the agent closer to the goal, and are therefore valid candidates for
the further decision making process. The cognitive map shows that the semantic distance
between each of the two concepts and their corresponding goals (i.e., the concepts ‘ running’
and ‘Nike') amounts to 2 steps, thus metric preference is required. As the link ‘do sport’ is
more to the top than the link ‘brand’, the metric criterion gives a unique result, and the link
“do sport’ isfinally chosen for the next step.

Iﬁl WWW-page Mental Position in
Cognitive Map

user intended
act_igq_s -

X>
yi=1 >Clothing @ -——

—— S

yo=2 Do Sport\|'|5|
~

~
y3=3 Brand S
yY h

Figure 52: Applying semantic and metric decision making in a two-step decision sequence

Simulation of the Wayfinding Process in an Airport Environment and the WWW 138

9.5 Summary

This section simulated wayfinding at the Vienna International Airport and in the Yahoo-
domain. The abstract agents completed the tasks given in the case studies (chapter 2). The
simulation is an execution of the formal model that is hereby extended with two different data
sets—one for each instantiation. The data sets describe the abstract settings (sections 2.1.4
and 2.2.6), the abstract cognitive maps (sections 6.2.2 and 6.2.3), and the agents' preferences
(section 6.3).

After running the simulation, some decision points were analyzed in detail for a better
understanding of the applied wayfinding strategies. The results show that—with the chosen
data sets and strategy—the agent’s mental position during each step either stays in equal
distance from the mental goal or approaches the mental goal. We see that one single strategy
(a combination of semantic and metric decision making) can be applied for both agents in
different environments. The simulation demonstrates that the formal model presented in
section 7 is executable.

Conclusions and Future Work 139

CONCLUSIONS AND FUTURE WORK
CHAPTER

10

At the beginning of this section we summarize the research done in this thesis. It describes all
the stages we went through for

defining the semantics of wayfinding
formalizing the wayfinding metaphor
simulating wayfinding in the real world and the WWW

proving that the semantics of wayfinding can be mapped to the Web space.

We then present the results and major findings of our work. Finally, we propose various
directions for future research.

10.1 Summary

The goa of the thesis was to find out whether the term ‘wayfinding’ can be used in the
WWW. We hereby described the semantics of the term ‘wayfinding' in its original domain,
i.e., in the physical world, through a set of axioms. Within a formalized wayfinding model we
could show that both instances—abstract wayfinding in an airport environment and a Web
domain—satisfy these axioms. From this we conclude that the term wayfinding can be used
for the WWW, and moreover in any other domain that fulfills the wayfinding axioms.

The case studies in chapter 2 introduced two specific settings of those domains for
which the possibility of mapping the term wayfinding could be shown: As representative for
the physical world, we explained peculiarities of airport environments and introduced the
abstract structure of the Vienna International Airport. As representative of a test area in the
WWW-simulation we visualized a part of the abstract directory structure of the Y ahoo!-
Search Engine-domain and gave a classification of searching methods in the WWW. We
defined the agent’s task, looked at the two-layered ontology of both environments, and
pointed out further conceptual similarities between the two testing areas. Although the
wayfinding metaphor is invariant under the type of wayfinding environment, the two case
studies are helpful for the explanation and illustration of the agent’s conceptual wayfinding
model.

Conclusions and Future Work 140

Describing the mapping of wayfinding semantics into abstract domains is an
interdisciplinary endeavor. As a starting point we looked at theories and concepts from
different scientific fields (chapter 3). We introduced metaphor theory where we focused
especialy on how the semantics of a domain is defined and how the semantics is mapped
between domains in the various models. When discussing wayfinding theory we analyzed a
number of wayfinding definitions in the literature in order to get an idea of the central
meaning of the radial category wayfinding. For building the conceptual wayfinding model we
further looked at cognitive models of space, epistemological models found for wayfinding in
the real world and the Web space, and theories of spatial decision making. As we use an agent
based approach for the wayfinding simulation, we looked at abstract architectures of agents,
the Sense-Plan-Act paradigm, and properties of real and abstract environments.

In chapter 4 we introduced those tools and concepts that are needed to express the
semantics of wayfinding and its metaphorical use in a forma manner. Algebraic
specifications, type systems, and morphisms are the essential ingredients for a formal
description of the wayfinding metaphor. The implementation is made in Haskell, a functional
programming language. We used category theory and functors to describe the principle of
metaphors rather than as the basis for a formal description within the computational model.
Graph theory is needed for the abstraction of the settings chosen for the case studies, and for
the description of the agent’ s wayfinding behavior on an abstract level.

In chapter 5 we gave informal and formal descriptions of the semantics of the term
wayfinding with the help of a set of axioms. We tried to focus on the central and common
meaning of the term—independent of decision strategies and particulars of the environment.

Chapter 6 discussed conceptual features of the wayfinding agent with a focus on the
agent’s structure and cognitive map, the connection between cognitive map and goal, and the
influence of the goal definition on the applied decision making strategy.

In chapter 7 we formalized the conceptua model of wayfinding in two parallel
instantiations—one for wayfinding in an airport environment, the other for wayfinding in a
Web domain. The formal model reflects the conceptual commonalities between wayfinding in
these two environments. The model gives a formal abstraction of a wayfinding agent that
follows the Sense-Plan-Act paradigm, uses a two-tiered conceptual fact and beliefs
computational model, interacts with the abstract environment, and applies semantic decision
criteria combined with metric preferences for wayfinding decisions. With the help of the
functional model we demonstrated the mapping of essential objects and operations between
the two instantiations to be homomorph.

Conclusions and Future Work 141

In chapter 8 we analyzed the formal model. We summarized the proofs that the
wayfinding axioms are satisfied for both domains. We showed which parts of aforma model
in Haskell are totally mapped between the two instantiations. These parts include functions
and operations that behave homomorph and are relevant for the prove of the wayfinding
axioms to be satisfied in both instances. We discussed which of the theories introduced in the
‘formal tools -chapter have been used for proving the hypothesis, and which provided
theoretical background.

The ssimulations in chapter 9 demonstrate that the formalized code is executable for both
types of agents and environments. Some decision points were discussed in detail to make the
applied wayfinding strategies more intelligible to the reader.

10.2 Results and Major Findings

The major result of this thesis is providing a theory to explain why a term does or does not
express metaphorical use. The semantics of the term in the source domain hereby is defined
through the behavior of involved objects and operations. This behavior which represents
minimum requirements of the source domain need to be transferred to the target domain so
that the term can be used in a metaphorical sense. For the methodology of proving we
suggested a formal approach (Figure 53): The axioms that define the semantics of the termin
the source domain are formalized. Further the target-domain needs to be abstracted and
checked for satisfying the formalized axioms. If the axioms are satisfied, the term or phrase
can be used in the target domain.

Term or phrase

abstraction
in source domain

|
1
' : formal formal
1 axioms model
[
l

—— ————

abstraction
‘ target
domain
T T | T

metaphor

Figure 53: Method of proofing the metaphorical use of a term or phrase
Another major result is the ‘product’ created in this theses, i.e., a computational wayfinding
model with two parallel instantiations. Using the model we could show that the proposed
methodology of defining and abstracting the semantics of aterm, abstracting source and target
domain, and formally proving a set of axioms in both abstract domains, can be achieved. We
utilized formal tools such as algebraic specifications, polymorphism, an object oriented style
with the help of classes, and function composition as part of category theory.

Conclusions and Future Work 142

10.2.1 The Semantics of Wayfinding
We expressed central features of the term wayfinding within the following five axioms:
(1) The environment contains decision points.
(2) The wayfinding person has agoal.
(3) The wayfinding person intends to move towards the goal.
(4) Wayfinding has no impact on the state of the environment.
(5) Wayfinding comprises ordered activities.

The axioms reveal that the semantics of wayfinding isindependent of following particul arities
of the wayfinding process and the environment:

wayfinding strategy

representation of goal

grade of familiarity with the environment

‘materia’ of environment (e.g., physical, virtual, textual, semantic basis)
reaching the goal

existence of the goal

This generality of the wayfinding axioms allows mapping of these minimum requirements to
other abstract domains.

Using the semantics of the wayfinding axioms we can now explain why the improperly
used phrases in the introduction chapter (section 1.4) make problems in their metaphorical
use.

ad “Sie findet ihren Weg durchs Leben”: As the phrase does not express that life has a
goal (and this cannot be taken as a genera assumption), the goal is missing here (fails axiom
2). Thus, the phrase can also not express the person’s intention to reach the (non-existent)
godl (failsaxiom 3).

ad “Ich finde meinen Weg durch das Turnier”: Here, the environment does not provide
decision points (fails axiom 1), as the participant can (usually) not choose between his
opponents.

10.2.2 Formalized Wayfinding Model

The formalized agent based model consists of algebraic specifications that alow for
describing the structure of abstract data types and their operations. Thus, the algebraic

Conclusions and Future Work 143

specifications are particularly suited for the representation of change that is an essential part
of the conceptual model.

The agent’s operations are separated into external and internal operations which all
result in a change of the agent’s state. The model describes equal semantics for parts of both
instantiations as the operations are expressed through the same equation for both agent types.
These parts behave homomorph and are totally mapped. Digoint unions between both
instantiations are represented as union data types. Functions applied on these parts are totally
mapped but may semantically be different one from each other. These differences were shown
not to influence the proof that both instantiations satisfy the wayfinding axioms. We think that
such an ‘incompleteness’ between both domains involved in a metaphor is typical: If source
and target domain were completely equal, no metaphorical mapping would be needed.

The formal wayfinding model showed that wayfinding in the real world and the WWW
have several common concepts. When abstracting both domains as formal models and
generdizing the wayfinding process independent of particularities of both domains,
conceptual similarities were found among others in the decision making process, the interplay
of perceived information and knowledge, the definition of the goal, and the sequence of
involved sub-processes. The result of the abstraction process allows one to determine those
invariants of wayfinding that are not restricted to the physical world but can also be used in
the Web space.

Within the formal model we showed how the agent’s epistemology and the ontology of
the environment interact, and discussed the role of affordances in both domains. We found out
that—due to differences in the physical basis of the two discussed domains—different
affordances are offered by the two different types of environments. In the abstract model,
these differences disappear (at least the hierarchical level of interest), and thus the
affordances, i.e., the representation of objects in the agent’s behavior, are formalized equally
as operations in both types of agent.

10.3 Future Work and Open Questions

We have restricted to one metaphor, i.e., the wayfinding metaphor. We proposed a method to
define the semantics of the source domain through a set of axioms, and to check if these
axioms are satisfied in the target domain. To evaluate the proposed method, future work
includes testing this method—i.e., finding a set of axioms—for other metaphors. Then the
proposed method may be improved, and potential methodological problems may be detected
and discussed. It is of further interest, to find out if al types of metaphors (see section 3.1.2)
can be formalized and characterized in the presented way.

Conclusions and Future Work 144

In this respect, numerous open questions remain: Can the formalization of concepts in
the source-domain be accomplished for both nouns and verbs in the source domain? Take for
example the metaphor ‘the family is a nest’. The interpretation of the vehicle-concept ‘nest’
may be difficult to formalize through axioms as it represents static properties rather than
operations (‘nest’ is no process but an object). The question that emerges here is if static
properties can be expressed as operations and formalized as axioms. Moreover, associations
with avehicle concept may be of qualitative and emotional origin (such as ‘warmth’ or ‘well-
being’ for ‘nest’) which may require another approach for their formalization. This question
seems to be a relevant point for metaphor theory as physical and subjective experience with
the external world is considered an essential part of metaphorical thought (Lakoff and
Johnson 1980).

In metaphorical language, two concepts are combined so that they form a new concept.
For example, in the metaphor ‘marriage is a nightmare’, both marriage and nightmare acquire
a different meaning, where one reflects the nightmarish aspects of marriage and the other
reflects the marriage-like quality of a nightmare (meaning unpleasant things that happen to
you whether you want them or not). Can this melting process be described on an axiomatic
level, similar to rules for blending of conceptua spaces (Fauconnier and Turner 1996;
Fauconnier 1997)?

A further question is: Do axioms always have to be completely satisfied in the target
domain to give a correct metaphor? Are there exceptions in specific contexts where only a
part of the axioms is needed to make correct use of aterm? Consider the examples ‘theories
are buildings' (see section 3.1.3) or ‘man is a wolf’. For the latter example, the feature
‘predator’, has to be reinstantiated in the semantic domain of the tenor, i.e., not all parts of
being a predator can be mapped, depending on the context of the situation where the metaphor
is used. The question (as for most metaphors) is: Which axioms have to be fulfilled in the
context of the target domain?

Metaphor theory plays a role in user interface design and human computer interaction
(Carroll and Rosson 1994; Goguen 1999). This holds specifically for spatial metaphors (e.g.,
Dieberger 1994; Sorrows and Hirtle 1999; Fabrikant 2000). Our method shows a direction
that may help to clarify if concepts of the daily life are correctly mapped from the physical
world to the computer environment, i.e., if their use corresponds to the idea of user interface
metaphor. It is an open question and part of future work to determine to which extent the
presented approach is useful to support related fields, e.g., the theory of sign systems or
landmark theory.

Conclusions and Future Work 145

Another challenge for future work is a formal one. We claimed category theory and
functors to be useful tools to formulate the semantics of a domain and the mapping process of
semantics between two domains. Category theory has a high level of abstractness, and it
requires much experience to become familiar with its concepts so that one can use them
productively. In thisthesis, we presented a categorical point of view several times, and used it
once within the axioms. We theoretically discussed potential advantages of categorical theory,
but hardly made any use of this theory for proving the hypothesis. A part of future work
therefore will be the attempt to utilize the concepts of category theory and functors within
various tasks to describe the similarity of domains. For metaphor theory such approach may
give more abstract and generalized results than those presented in this thesis.

In order to assess the results of the simulation applied to the case studies, one needs to
compare them to the results of human subjects testing in the real world and the WWW—at
least for the tasks given in the case studies. The formalized wayfinding model used in this
thesis underlies simplifications and specific assumptions. Several human factors that may
influence human decision behavior (e.g., emotions or stress) were left out, on the one side, as
these factors are extremely difficult to handle in a model, and on the other side, to focus on
the basic parts of a decision process. Despite this, human subjects testing may help to check
the proposed wayfinding strategy for its actual use in the real world and the WWW, and it
may be useful to find out if the utility function gives plausible results.

References 146

REFERENCES

Ahuja, R. K., Magnanti, T. L. and Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications.
Englewood Cliffs, NJ, Prentice Hall.

Allen, G. L. (1999). Spatial Abilities, Cognitive Maps, and Wayfinding. Wayfinding Behavior: Cognitive
Mapping and Other Spatial Processes. R. G. Golledge (ed.). Baltimore, MD, John Hopkins Press. 46-
80.

Arthur, P. and Passini, R. (1992). Wayfinding: People, Sgns, and Architecture. Toronto, McGraw-Hill Ryerson.

Backus, J. (1978). Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its
Algebra of Programs. CACM 21 613-641.

Baez, J. C. (1999). Higher-Dimensional Algebra and Planck-Scale Physics. Physics Meets Philosophy at the
Planck Scale. C. Callender and N. Huggett (eds.), Cambridge U. Press.

Bird, R. and de Moor, O. (1997). Algebra of Programming. London, Prentice Hall Europe.
Bird, R. and Wadler, P. (1988). Introduction to Functional Programming. Exeter, BPC Wheatons Ltd.
Birkhoff, G. (1945). Universal Algebra. First Canadian Math. Congress, Toronto University Press.

Bittner, S. (2001). An agent-based model of reality in a cadastre. Institute for Geoinformation Vienna, Austria,
Technical University Vienna. PhD Thesis.

Black, M. (1979). More about metaphor. Metaphor and Thought. A. Ortony (ed.). New Y ork, Cambridge
University Press. 19-43.

Black, P. E. and Tanenbaum, P. J. (2001). Dictionary of Algorithms, Data Structures, and Problems.
http: //mww.nist.gov/dads/

Blades, M. (1991). Wayfinding Theory and Research: The Need for a New Approach. Cognitive and Linguistic
Aspects of Geographic Space. D. Mark and A. Frank (eds.). Dordrecht, The Netherlands, Kluwer
Academic Publishers. 63: 137-165.

Bovy, P. H. L. and Stern, E. (1990). Route choice: Wayfinding in transport networks. Dordrecht, Kluwer
Academic.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. |EEE Journal of Robotics and
Automation 2: 14-23.

Brooks, R. A. (1991). Intelligence without reason. International Joint Conference on Artificial Intelligence.

Car, A. (1996). Hierarchical Wayfinding - A Model and its Formalization. ESF - GISDATA Summer Institute,
Berlin.

Cardelli, L. (1997). Type Systems. Handbook of Computer Science and Engineering. A. B. Tucker (ed.), CRC
Press: 2208-2236.

Cardelli, L. and Wegner, P. (1985). On Understanding Types, Data Abstraction, and Polymorphism. ACM
Computing Surveys 17(4): 471 - 522.

Carrall, J. M., Mack, R. L. and Kellogg, W. A. (1988). Interface Metaphors and User Interface Design.
Handbook of Human-Computer Interaction. M. Helander (ed.), Elsevier: 67-85.

Carroll, J. M. and Rosson, M. B. (1994). Putting Metaphors to Work. Graphics Interface ‘94, Banff, Alberta; 18-
20 May 1994, Canadian Human-Computer Communications Society.

Casakin, H., Barkowsky, T., Klippel, A. and Freksa, C. (2000). Schematic Maps as Wayfinding Aids. Spatial
Cognition 2. C. Freksa, W. Brauer and K. F. Wender (eds.). Berlin, Springer: 54-71.

Cashdll, K. (1998). Attempt to Understand Wittgenstein’'s picture of Theory of the Proposition. Minerva - An
Internet Journal of Philosophy 2.

Chandrasekaran, B., Josephson, J. and Benjamins, R. (1999). What Are Ontologies, and Why Do We Need
Them? |EEE Intelligent Systems 1: 20-26.

Cornéll, E. and Heth, C. (2000). Route learning and wayfinding. Cognitive Mapping - Past, present and future.
R. Kitchin and S. Freundschuh (eds.). London, Routledge: 66-83.

Davis, E. (1990). Representations of Commonsense Knowledge. San Mateo, California, Morgan Kaufmann
Publishers.

References 147

Dieberger, A. (1994). Navigation in Textual Virtual Environments using a City Metaphor. Department for
Design and Assessment of Technology Vienna, University of Technology. PhD-Thesis.

Dieberger, A. (1998). Social Connotations of Spatial Metaphors and Their Influence on (Direct) Social
Navigation. Workshop on Personalized and Social Navigation in Information Space. K. Hook, A.
Munro and D. Benyon (eds.). Kista, Sweden, Swedish Institute of Computer Science.

Downs, R. and Stea, D. (1977). Mapsin Minds: Reflections on Cognitive Mapping. New Y ork, Harper and Row.

Downs, R. M. and Stea, S. (1973). Cognitive maps and spatial behavior: process and product. Image and
Environment. R. M. Downs and S. Stea (eds.). Chicago, Aldine.

Ehrich, H.-D., Gogolla, M. and Lipeck, U. W. (1989). Algebraische Spezifikation abstrakter Datentypen.
Stuttgart, B.G. Teubner.

Eilenberg, S. and Lane, S. M. (1945). General theory of natural equivalences. Transactions of the A.M.S. 58:
231-294.

Ellis, D. (1989). A Behavioral Model for Information Retrieval System Design. Journal of Information Science
15(4/5): 237-247.

Ellis, D. and Haugan, M. (1997). Modelling the Information Seeking Patterns of Engineers and Research
Scientistsin an Industrial Environment. Journal of Documentation 53(4): 384-403.

Fabrikant, S. (2000). Spatial Metaphors for Browsing Large Data Archieves. Department of Geography,
University of Colorado. PhD-Thesis.

Fauconnier, G. (1997). Mappings in Thought and Language. Cambridge, Cambridge University Press.

Fauconnier, G. and Turner, M. (1996). Blending as a central processof grammar. Conceptual Structure,
Discourse and Language. A. E. Goldberg (ed.), CSLI.

Fauconnier, G. and Turner, M. (1998). Conceptual integration networks. Cognitive Science 22(2): 133-187.

Fellbaum, C. and Miller, G. A. (1990). Folk psychology or semantic entailment? A reply to Rips and Conrad.
The Psychological Review 97: 565-570.

Ferber, J. (ed.) (1998). Multi-Agent Systems - An Introduction to Distributed Artificial Intelligence. J. New Y ork,
Addison-Wesley.
Frank, A. U. (1999). Communication with Maps: A Formalized Model for Communication with Maps Using a

Multi-Agent Formalism. International Workshop on Maps and Diagrammatical Representations of the
Environment, Hamburg, Germany.

Frank, A. U. (2000). Spatial Communication with Maps: Defining the Correctness of Maps Using Multi-Agent
Simulation. Spatial Cognition 2. C. Freksa, W. Brauer and K. F. Wender (eds.). Berlin, Springer. 1849:
80-99.

Frank, A. U. (2001). Tiers of ontology and consistency constraints in geographic information systems. 1JGIS
15(7): 667-678.

Frederickson, G. N. (1987). Fast Algorithms for Shortest Paths in Planar Graphs, With Applicationsin SIAM.
Journal of Computing 16(6): 1004-1022.

Freksa, C. (1991). Qualitative Spatial Reasoning. Cognitive and Linguistic Aspects of Geographic Space. D. M.
Mark and A. U. Frank (eds.). Dordrecht, The Netherlands, Kluwer Academic Press. 361-372.

Gérling, T., Book, A. and Lindberg, E. (1984). Cognitive mapping of alarge-scale environment: The
interrelationships of action plans, aquisition, and orientation. Environment and Behavior 16: 3-34.

Gentner, D. (1983). Structure-Mapping: A Theoretical Framework for Analogy. Cognitive Science 7: 155-170.
Gibson, J. (1979). The Ecological Approach to Visual Perception. Boston, Houghton Mifflin Company.

Gibson, J. J. (1977). The Theory of Affordances. J. Bransford. R. E. Shaw (ed.). Hillsdale, NJ, Lawrence
Erlbaum Associates.

Gluck, M. (1991). Making Sense of Human Wayfinding: Review of Cognitive and Linguistic Knowledge for
Personal Navigation with a New Research Direction. Cognitive and Linguistic Aspects of Geographic
Soace. D. Mark and A. U. Frank (eds.). Dordecht/Boston/L ondon, Kluwer Academic Publishers. 117-
135.

Goguen, J. (1999). An Introduction to Algebraic Semiotics, with Application to User Interface Design.
Computation for Metaphor, Analogy and Agents - Lecture Notes in Artificial Intelligence. C. Nehaniv
(ed.), Springer. 1562: 242-291.

References 148

Goguen, J. (2001). Towards a Design Theory for Virtual Worlds: cientific Visualization and Algebraic
Semiotics as a Case Study. Virtual Worlds and Simulation Conference, Phoenix AZ.

Goldberg, B. (1991). Tag-Free Garbage Collection for Srongly Typed Programming Languages. ACM
SIGPLAN ‘91 Conference on Programming Language Design and Implementation., Toronto, Canada.

Golledge, R. G. (1995). Path Selection and Route Preference in Human Navigation: A Progress Report. Spatial
Information Theory (COS T 95). A. U. Frank and W. Kuhn (eds.). Berlin, Springer. 988: 207-222.

Golledge, R. G. (1999). Human wayfinding and cognitive maps. Wayfinding Behavior: Cognitive Mapping and
Other Spatial Processes. R. G. Golledge (ed.). Baltimore, MD, John Hopkins Press; 5-45.

Golledge, R. G., Jacobson, R. D., Kitchin, R. and Blades, M. (2000). Cognitive Maps, Spatial Abilities, and
Human Wayfinding. Geographical Review of Japan 73 (Ser. B)(2): 93-104.

Golledge, R. G. and Stimson, R. (1997). Spatial Behavior: A Geographic Perspective. New Y ork, Guilford
Press.

Gopdl, S, Klatzky, R. L. and Smith, T. R. (1989). Navigator: A Psychologically Based Model of Environmental
Learning Through Navigation. Journal of Environmental Psychology 9: 309-331.

Grady, J., Taub, S. and Morgan, P. (1996). Primitive and compund metaphors. Conceptual structure, discourse,
and language. A. Goldberg (ed.). Cambridge, England, Cambridge University Press.

greatlook.com (2002). http://www.greatl ook.com/why.html
Grey, W. (2000). Metaphor and Meaning. Minerva - An Internet Journal of Philosophy 4.

Gruber, T. R. (1993). Toward Principles for the Design of Ontologies Used for Knowledge Sharing, Knowledge
Systems Laboratory, Stanford University

Guarino, N. (1997). Semantic Matching: Formal Ontological Distintions for Information Organization,
Extraction, and Integration. International Summer School, SCIE-97. M. T. Pazienza (ed.), Springer.
1299: 139-170.

Guttag, J. V., Horowitz, E. and Musser, D. R. (1978). Abstract Data Types and Software Validation. Comm.
ACM 21(12): 1048-1064.

Hirtle, S. (1998). The Cognitive Atlas. Using GIS as a Metaphor for Memory. Spatial and Temporal Reasoning
in Geographic Information Systems. M. Egenhofer and R. Golledge (eds.), Oxford University Press:
267-276.

Hirtle, S. C. and Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory and Cognition 13: 208-
217.

Hochmair, H. and Frank, A. U. (2001). A Semantic Map as Basis for the Decision Process in the www
Navigation. Conference on Spatial Information Theory (COST 01). D. R. Montello (ed.). Berlin,
Springer: 173-188.

Hochmair, H. and Raubal, M. (forthcoming). Topologic and Metric Decision Criteria for Wayfinding in the Real
World and the WWW. SDH.

Hook, K., Benyon, D., Dahlbéack, N., McCall, R., Macaulay, C., Munro, A., Persson, P., Sélinder, M. and
Svensson, M. (1998). Introduction: A Framework for Information Space, Personal and Social
Navigation. Exploring Navigation; Towards a Framework for Design and Evaluation of Navigation in
Electronic Spaces. N. Dahlbéck (ed.). Kista, Sweden, Swedish Institute of Computer Science.

Horebeek, |. V. and Lewi, J. (1989). Algebraic Specifications in Software Engineering - an introduction. Berlin,
Springer.

Hudak, P. (1989). Conception, Evolution, and Application of Functional Programming Languages. ACM
Computing Surveys 21(3): 359-411.

Janzen, G., Herrmann, T., Katz, S. and Schweizer, K. (2000). Obligue Angles Intersections and Barriers:
Navigating through a Virtual Maze. Spatial Cognition 2. C. Freksa, W. Brauer and K. F. Wender (eds.).
Berlin, Springer. 1849: 277-294.

Johnson, D. B. (1977). Efficient Algorithms for Shortest Paths in Sparse Networks. Journal of the Association
for Computing Machinery 24(1): 1-13.

Johnson, M. (1987). The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Reason. Chicago,
University of Chicago Press.

Jones, K. S. (1986). Synonymy and semantic classification. Edinburgh, Edinburgh University Press.

References 149

Jones, S. L. P., Jones, M. P. and Meijer, E. (1997). Type classes: exploring the design space. Glasgow,
Department of Computing Science, University of Glasgow

Jul, S. and Furnas, G. (1997). Navigation in Electronic Worlds. SSIGCHI 29(4).

Kirschenhofer, P. (1995). The Mathematical Foundation of Graphs and Topology for GIS. Geographic
Information Systems - Materials for a Post Graduate Course. A. U. Frank (ed.). Vienna, Department of
Geoinformation, TU Vienna. 1: 155-176.

Koffka, K. (1935). Principles of Gestalt Psychology. New Y ork, Harcourt Brace.

Kuhn, W. (1997). Approaching the Issue of Information Loss in Geographic Data Transfers. Geographical
Systems 4(3): 261-276.

Kuhn, W. and Frank, A. U. (1991). A Formalization of Metaphors and Image-Schemas in User Interfaces.
Cognitive and Linguistic Aspects of Geographic Space. D. M. Mark and A. U. Frank (eds.), Kluwer
Academic Press: 419-434.

Kuipers, B. (1978). Modeling Spatial Knowledge. Cognitive Science 2.
Kuipers, B. (1982). The ‘Map in the Head’ Metaphor. Environment and Behavior 14: 202-220.

Kuipers, B., Froom, R., Lee, W. and Pierce, D. (1993). The Semantic Hierarchy in Robot Learning. Robot
Learning. J. Connell and S. Mahadevan (eds.). Boston, Kluwer Academic Publishers: 141-170.

Lakoff, G. (1987). Women, Fire, and Dangerous Things. Chicago and London, The University of Chicago Press.
Lakoff, G. and Johnson, M. (1980). Metaphors we live by, University of Chicago Press.

Leiser, D. and Zilbershatz, A. (1989). The Traveller—A Computational Model of Spatial Network Learning.
Environment and Behavior 21(4): 435-463.

Liskov, B. and Guttag, J. (1986). Abstraction and Specification in Program Development. Cambridge, Mass.,
The MIT Press.

Loomis, J. M. and Klatzky, R. L. (1999). Human Navigation by Path Integration. Wayfinding Behavior:
Cognitive Mapping and Other Spatial Processes. R. G. Golledge (ed.). Baltimore, MD, John Hopkins
Press: 125-151.

Lynch, K. (1960). The image of the city. Cambridge, Mass., MIT Press.

MacCormac, E. R. (1985). Metaphor as a knowledge process. A Cognitive Theory of Metaphor. E. R.
MacCormac (ed.). Cambridge, MA/London, MIT Press.

MacLane, S. (1971). Categories for the Working Mathematician, Springer.
MacLane, S. and Birkhoff, G. (1967). Algebra. New Y ork, Macmillan.

Maglio, P. and Matlock, T. (1998). Construcing Social Spacesin Virtual Environments: Mataphors We Surf the
Web By. Workshop on Personalized and Social Navigation in Information Space. K. Hook, A. Munro
and D. Benyon (eds.). Kista, Sweden, Swedish Institute of Computer Science: 138-147.

Marchionini, G. M. (1995). Information Seeking in Electronic Environments. Cambridge, England, Cambridge
University Press.

Mark, D., Freksa, C., Hirtle, S., Lloyd, R. and Tversky, B. (1999). Cognitive models of geographical space.
1JGIS13(8): 747-774.

Mark, D. M. and Frank, A. U. (1996). Experiental and Formal Models of Geographic Space. Environment &
Planning B 23: 3-24.

McCdla, G., Reid, L. and Schneider, P. (1982). Plan Creation, Plan Execution, and Knowledge Acquisitionin a
Dynamic Microworld. International Journal of Man-Machine Sudies 16: 89-112.

McCarthy, J. and Hayes, P. J. (1969). Some Philosophical Problems from the Standpoint of Artificial
Intelligence. Machine Intelligence 4. B. Meltzer and D. Michie (eds.). Edinburgh, Edinburgh University
Press: 463-502.

Medak, D. (1999). Lifestyles - A Paradigm for the Description of Spatiotemporal Databases. Department of
Geoinformation Vienna, Technical University Vienna. PhD Thesis.

Miller, G. (1990). Nounsin WordNet: A lexical Inheritance System. International Journal of Lexicography 3(4):
245-264.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the ACM 38(11): 39-41.

References 150

Milner, R. (1978). A Theory of Type Polymorphism in Programming. Journal of Computer and System Sciences
17: 348-375.

Montello, D. (1998). A New Framework for Understanding the Acquisition of Spatial Knowledge in Large-Scale
Environments. Spatial and Temporal Reasoning in Geographic |nformation Systems. M. Egenhofer and
R. Golledge (eds.). New York, Oxford University Press: 143-154.

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Tioga, Palo Alto.

Norman, D. (1988). The Design of Everyday Things. New Y ork, First Doubleday.

Norman, D. (1999). Affordances, Conventions, and Design. interactions 6(3).

Nuckles, M. and Janetzko, D. (1997). The role of semantic similarity in the comprehension of metaphor.
Nineteenth Annual Conference of the Cognitive Science Society, Stanford, CA, Erlbaum.

Nwana, H. S. and Ndumu, D. T. (1999). A perspective on software agents research. The Knowledge Engineering
Review 14(2): 1-18.

O'Neill, M. (1991). A Biologically Based Model of Spatial Cognition and Wayfinding. Journal of
Environmental Psychology(11): 299-320.

Ortony, A. (1979). Beyond Literal Similarity. Psychological Review 86; 161-180.

Pastore, M. (2001). Search Engines, Browsers Still Confusing Many Web Users.
http://cyberatlas.internet.convbig_picture/traffic_patterns/article/0,,5931 588851,00.html

Peterson, J., Hammond, K., Augustsson, L., Boutel, B., Burton, W., Fasdl, J., Gordon, A. D., Hughes, J., Hudak,

P., Johnsson, T., Jones, M., Meijer, E., Jones, S. P., Reid, A. and Wadler, P. (1997). The Haskell 1.4
Report. http://www.haskell.org/report/index.html.

Piff, M. (1991). Discrete Mathematics. Cambridge, Camridge University Press.

Raubal, M. (2001a). Agent-based simulation of human wayfinding in unfamiliar buildings. Institute for
Geoinformation Vienna, Technical University. PhD Thesis.

Raubal, M. (2001b). Ontology and Epistemology for Agent-based Wayfinding Simulation. 1JGIS 15(7): 653-
665.

Raubal, M. and Egenhofer, M. (1998). Comparing the complexity of wayfinding tasks in built environments.
Environment & Planning B 25(6): 895-913.

Raubal, M., Egenhofer, M., Pfoser, D. and Tryfona, N. (1997). Structuring Space with Image Schemata:
Wayfinding in Airports as a Case Study. Spatial Information Theory-A Theoretical Basis for GIS
(COST97). S. Hirtleand A. Frank (eds.). Berlin, Springer. 1329: 85-102.

Remolina, E., Fernandez, J., Kuipers, B. and Gonzalez, J. (1999). Formalizing Regions in the Spatial Semantic
Hierarchy: A AH-graphs Implementation Approach. Spatial |nformation Theory (COST 99). C. Freksa
and D. Mark (eds.), Springer. 1661: 37-50.

Rosch, E. (1978). Principles of categorization. Cognition and categorization. E. Rosch and B. B. Lloyd (eds.).
Hillsdale, NJ, Erlbaum.

Rosch, E. and Mervis, C. B. (1975). Family resemblance: Studies in the internal structure of categories.
Cognitive Psychology(7): 573-605.

Russell, S. J. and Norvig, P. (1995). Artificial Intelligence - A Modern Approach. London, Prentice-Hall
International, Inc.

Scaruffi, P. (2001). Thinking About Thought. http://mww.thymos.convtat/metaphor.html

Sheppard, D. and Adams, J. M. (1971). A survey of drivers opinions on maps for route finding. The
Cartographic Journal 8: 105-114.

Siegel, A. W. and White, S. H. (1975). The development of spatial representations of large-scale environments.
Advances in child development and behaviour. H. W. Reese (ed.). 10: 9-55.

Smith, B. (20014). Objects and Their Environments: From Aristotle to Ecological Ontology. The Life and
Motion of Socioeconomic Units. A. U. Frank, J. Raper and J.-P. Cheylan (eds.). London, Taylor and
Francis.

Smith, B. (2001b). Ontology: Philosophical and Computational. The Blackwell Guide to the Philosophy of
Computing and Information. L. Floridi (ed.). Oxford, Blackwell.

Sorrows, M. E. and Hirtle, S. C. (1999). The Nature of Landmarks for Real and Electronic Spaces. Spatial
Information Theory (COS T 99). C. Freksaand D. Mark (eds.). Berlin, Springer. 1661: 37-50.

References 151

Sowa, J. (1999). Mathematical Background. http://www.bestweb.net/~sowa/misc/mathw.htm

Stern, E. and Leiser, D. (1987). Levels of Spatial Knowledge and Urban Travel Modeling. Geographical
Analysis 20(2).

Stern, E. and Portugali, J. (1999). Environmental Cognition and Decision Making in Urban Navigation.
Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes. R. G. Golledge (ed.).
Baltimore, MD, John Hopkins Press: 99-118.

Sutcliffe, A. (1998). Task-Related Navigation in Information Spaces. Workshop on Personalized and Social
Navigation in Information Space. K. Hook, A. Munro and D. Benyon (eds.). Kista, Sweden, Swedish
Institute of Computer Science: 58-65.

Swestser, E. E. (1990). From etymology to pragmatics - Metaphorical and cultural aspects of semantic
structure. Cambridge, UK, Cambridge University Press.

Thompson, S. (1996). Haskell - The Craft of Functional Programming. Harlow, England, Addison-Wesley.
Tolman, E. V. (1948). Cognitive mapsin rats and men. Psychological Review 55: 189-208.

Trappl, R., Petta, P. and Payr, S. (eds.) (forthcoming). Emotions in Humans and Artifacts. Cambridge, MA,
USA, MIT Press.

Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental model. Spatial Information Theory:
Theoretical Basisfor GIS(COST 93). A. U. Frank and |. Campari (eds.). Berlin, Springer. 716: 14-24.

Weiss, G. (ed.) (1999). Multiagent Systems - A Modern Approach to Distributed Artificial Intelligence.
Cambridge, MA, MIT Press.

whatis.com (2002). http://sear chwebmanagement.techtar get.convsDefinition/0,,sid27_gci212301,00.html

Wilson, T. D. (1997). Information Behavior: An Interdisciplinary Perspective. Information Processing &
Management 33(4): 551-572.

Wooldridge, M. (1999). Intelligent Agents. Multiagent Systems - A modern Approach to Distributed Artificial
Intelligence. G. Weiss (ed.). Cambridge, Massachusetts, The MIT Press.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice. The Knowledge Engineering
Review 10(2): 115-152.

Appendix: Haskell Code 152

APPEND I X

Haskell Syntax

Anidentifier in Haskell begins with a letter of the alphabet optionally followed by a sequence
of characters, each of which is either a letter, a digit, an apostrophe (‘) or an underbar (*).
Identifiers representing functions or variables begin with a lower case letter, whereas
identifiers beginning with an upper case letter describe a data type or a constructor function.

Readability of Haskell code is improved by the layout-rule—the level of indentation
indicates the structure of a program. Non-intended lines represent top levels of a Haskell
program. Every indentation shows that the intended line actually continues a previous, less
indented line. Equally indented lines share the same level in the structure.

Functions of more than one argument can be defined in two basic styles. Usually such
functions are represented in the curried form, where they take their arguments one at a time.
A function to multiply two integers, e.g., in the curried form is written as.

multiply :: Int ->1Int -> Int

miltiply x y = x*y
The other form, called uncurried, is defined by pairing the arguments:

multiplyuC :: (Int, Int) -> Int
mul tiplyUC (x,y) = x*y

The function curry (named after Haskell B. Curry) converts an uncurried function into a

carried one:

curry :: ((a,b) ->¢c) ->(a->b ->¢)
curry :: f ab=f (a,b)
or written in the traditional syntax:

curry:: (A= C)= B)- (A= (B" Q))

The Set of Specifications for the Wayfinding Model:

World

nodul e Wor| dC ass where

i nport ZeroOne

i mport Graphs

i nport Agent C ass

i nport Strings

—————————————————— Data types --------------------

data World = Wrld Tinme Agent Environnment deriving Show

Appendix: Haskell Code 153

—————————————————— Create a World -----------

class CreateWorid t a e w where
createWorld :: t ->a ->e ->w

i nstance CreateWorld Tinme Agent Environnment World where
createWoridt ae =Wrldt ae

—————————————————— Operations in the world ---------------

class (CreateWorld Tinme Agent Environment world) => WorldCd ass world where

getTime :: world -> Tine
get Agent :: world -> Agent
getEnv :: world -> Environnment

get Number Of Edges :: world -> Int

worl dStep :: world -> world -- one sensePlanAct circle for agent in the world
iterateWsrldStep :: world -> [world] -- conplete world steps

-- derived functions

get Number O Edges = nunber O Edges. get Env
wor | dStep world = createWrld (tick . getTime $ world)
(sensePl anAct (getEnv world) (getAgent world)) (getEnv world)
iterateWrl| dStep world
| (checkDegree (getEnv world) == True) =
take (get Nunber O Edges world) (iterate worl dStep world)
| otherwise = error ("No decision point in the environment")

i nstance Worl dd ass World where --(External Ops (G E Node) Environnent) =>
get Agent (Wrld t a g) a
getTime (Wrld t as g) t
getEnv (Wrld t as g) = ¢

class (WorldC ass world) => Analyze worl d where

visitedNodes :: world -> [Pos]
findCycle :: world -> [Pos] -- find loop for one single agent
-- axi ons

vi sitedNodes world = nap (getPos . getAgent) (iterateWrl dStep world)
-- lists all positions of a navigating agent throughout the whol e process

findCycle world = findCyclel (findRepeatingCycle positions) where
positions = visitedNodes world -- finds | oop during navigation

class Tinmer tine where
tick :: time ->time

i nstance Tinmer Time where
tickt =t +1

instance Strings Wrld where
text (Wrld tine agent world) = "\nTIME " ++ text tine ++ text agent ++ "\n"
xtext (World time agent world) = putStrLn ("\nTIME " ++ text time ++ text agent)

showTitle :: String

ShoWTl tI e = "\ n*********************************" ++

"\ NAGENT- BASED WAYFI NDI NG S| MULATI ON' ++

T\ QR AR KKKk kR Rk k ok Kk kR kkk ok ok kkkkkkkkx k| o

showCycle :: [Pos] -> String

ShOV\Q/Cle ps = "\n*********************************" ++
"\ nAgent has been caught in a loop." ++
"\n*********************************" ++
"\ nNodes: " ++ text ps ++ "\n"

sim:: Wrld -> 1Q)
simworld = putStrLn (showTitle ++ concat (map text (iterateWrldStep world))
++ showCycl e (findCycle world))

Appendix: Haskell Code 154

sinFile :: Wrld -> String
sinFile world = output where
output = showTitle ++ concat (map text (iterateWrldStep world))
++ showCycl e (findCycle world)

——————————————————————— Subfunctions for the findCycle function -------------------

mat ches :: Pos -> [Pos] -> [Pos]
mat ches pos listOfEIts = filter (pos==) listOElts
--this function picks out all occurences of an integer in a list;

findRepeatingCycle :: [Pos] -> [Pos]
fi ndRepeati ngCycle (a : as)
=if (length (matches a as) > 1) then (a : as)
el se findRepeatingCycle as
--gives a list with the repeating cycle (e.g., [1,2,3,1,2,3,1,2,3]);

findCyclel :: [Pos] -> [Pos]

findCyclel [] =[]

findCyclel (a : xa) = (a : takeWile (a /=) (xa)) ++ (a : [])
--gives a list with one occurence of the cycle;

Agent

nodul e Agent C ass where

i nport ShortestPath
i nport G aphs

i nport Strings

i nport ZeroOne

------------------ Data types ----------------------

data Agent= Agent Fact Beliefs deriving Show

data Fact = Fact Agentld Pos PrevPos deriving Show
type Agentld = Int

data Pos = Pos Node deriving (Show, Eq)

type PrevPos = Pos

data Beliefs = Beliefs Mental Pos CognitiveMap Perceived Decision Preferences |ncomngDir
deriving Show

type Mental Pos [NodeM

type Perceived [Si gnPost]

type Decision = Info

data IncomngDir = IDr Drection | NolncDr deriving Show

type Goal Criterion = Info

------------------ Sense- Pl an- Act operations ------------------

cl ass (AgentPut Perceived agent, AgentPut Pos agent, AgentPut Fact agent, AgentPut |nt agent,
Agent Put I ncom ngDir agent, AgentPut Mental Pos agent,
EnvAgent env, |nternal Ops agent)
=> External Ops env agent where

perceive :: env -> agent -> agent
act :: env -> agent -> agent
sensePl anAct :: env -> agent -> agent

-- derived functions
perceive env agent = put ToAgent (perceiveAtPos env (getPos agent)) agent
act env a = put ToAgent (setToZero (getDec a)) a5 where

a5 = put ToAgent (setToZero (getPerc a4)) a4

a4 = put ToAgent (dirNext env (getPos a3) (getPrev a3) (getlncDir a3)) a3
a3 = put ToAgent (updatePosition env (getDec a2) (getPos a2)) a2

a2 = put ToAgent (updatePrev (getFact al)) al

al = put ToAgent (updateMental Pos (getPosMa) (getDec a) (getCMa)) a

sensePl anAct env = (act env) . decide . (perceive env)

cl ass (Agent Get agent, AgentPut Decision agent) => |nternal Ops agent where
decide :: agent -> agent
deci de agent
= if isAtGoal (getCM agent) (getPerc agent) then error ("AGENT HAS REACHED GOAL ! ")
el se put ToAgent (conposedDeci sion (getCM agent) (getPerc agent) (getPos agent)
(get PosM agent) (getPref agent) (getlncDir agent)) agent

Appendix: Haskell Code 155

cl ass ConposedDec cm perc pos npos pref inc where
conmposedDecision :: cm-> perc -> pos -> npos -> pref -> inc -> Decision

i nstance ConposedDec CognitiveMap Perceived Pos Mental Pos Preferences IncomngDir where
conmposedDeci si on cm perc pos npos pref inc
= metricDecision pref inc (semanticDecision cm pos npos perc)

cl ass Semanti cDec c¢cm pos npos perc where
semanticDecision :: cm-> pos -> npos -> perc -> perc

i nstance SenmanticDec CognitiveMap Pos Mental Pos Perceived where -- 1st dec step
semant i cDeci si on cm pos npos perc
| f == 1] = error ("NO SIGN | NFORVATI ON FOUND at Node " ++ show (text pos))
| otherwi se = semanticDistFilter cmf
where f = filterDownBoth cm nmpos (filterPercs cm perc)

class MetricDec pref inc perc dec where
netricDecision :: pref ->inc -> perc -> dec

i nstance MetricDec Preferences Incom ngDir Perceived Decision where
netricDecision pref (IDr i) perc

= get | nfoSi gnPost (head (sortlLs (rotateAndUtil pref i perc))) -- real world
netricDecision pref NolncDir perc =
= getInfoSignPost (head (sortLs (dirToUtility pref perc))) -- ww

{- contains only step 2 (utility-function) for WWYagent,
and step 1 + 2 for real world agent (transformation of sign dirs and utility function-}

class SemanticFilter cmsp where

filterPerc :: cm-> sp -> Bool -- check if signpost is part of cogmap
filterPercs :: cm-> [sp] -> [sp] -- filters percs that are part of cog map
semanticDistFilter :: cm-> [sp] -> [sp] -- find shortest paths with m ni num di stance

i nstance SenanticFilter CognitiveMap SignPost where
filterPerc cmsp = isEl tCM (getlnfoSignPost sp) cm--check nenbership of signpost in cogmap
filterPercs cmsps = [sp | sp <- sps, filterPerc cmsp == True]
semanticDistFilter cmsps = [sp | sp <- sps, nmental Dist cmsp == mnLength cm sps]

cl ass Semanti cDownFilter cm node sp where

filterDown :: cm-> [node] -> sp -> Bool
filterDowns :: cm-> [node] -> [sp] -> [sp]
filterEqual :: cm-> [node] -> sp -> Bool
filterEquals :: cm-> [node] -> [sp] -> [sp]
filterDownBoth :: cm-> [node] -> [sp] -> [sp]
per cHasNoMPosSingle :: cm-> sp -> node -> Bool
percHasNoMPos :: cm-> sp -> [node] -> Bool

i nstance Senmanti cDownFilter CognitiveMap NodeM Si gnPost where
per cHasNoMPosSi ngl e cm si gnpost nodem = goal For Node i nfoSp cm /= goal For Node nodem cm
where infoSp = getlnfoSi gnPost signpost

percHasNoMPos cm sp [] = True
per cHasNoMPos c¢cm sp npos = and . map (percHasNoMPosSi ngle cm sp) $ npos

filterDown cm[] sp = Fal se
filterDown cm (n:ns) sp
| (goal For Node i nfoSp cm == goal ForNode n cn) = nental Dist cmsp < nental Dist cmn
| otherwise = filterDown cmns sp
where infoSp = getlnfoSi gnPost sp
filterDowns cm npos sps =
[s] s <- sps, filterDown cmnpos s == True || percHasNoMPos cm s npos == True]

filterEqual cm[] sp = Fal se
filterEqual cm (n:ns) sp
| (goal For Node i nfoSp cm == goal ForNode n cn) = nental Dist cmsp == nental Dist cmn
| otherwise = filterDown cmns sp
where infoSp = getlnfoSi gnPost sp
filterEquals cmnpos sps = [s | s <- sps, filterEqual cm npos s == True]

filterDownBoth cm npos perc
| f == 1] = filterEquals cm npos perc
| otherwise = f
where f = filterDowns cm npos perc

—————————————————— Operations taking environment and conponents of agent ------

Appendix: Haskell Code 156

cl ass EnvAgent env where

percei veAt Pos :: env -> Pos -> Perceived
dirNext :: env -> Pos -> PrevPos -> InconmngDir -> |IncomngDir
updat ePosition :: env -> Decision -> Pos -> Pos

i nst ance EnvAgent Environnent where

per cei veAt Pos env pos = perclnfoAt Node (unPos pos) env
dirNext env pos prev NolncDir = NolncDir -- WANcase, agent has no incoming dir
di rNext env pos prev inc@IDr i) -- airport case

| prev == unit0 = inc

| otherw se

= IDr (reverseDir (getDirSignPost (getSignPostForNode (unPos prev) incom ngEdge)))
where incom ngEdge = head (filter (isAB (unPos pos) (unPos prev)) (getEdges env))
--gives the direction where the agent conmes fromin the local reference frane

updat ePosi tion env dec pos = Pos (sndNode p2 (edgeWthSi gnAndNode dec p2 env))
where edgeW t hSi gnAndNode dec p2 env
= head ([e | e <- containNode p2 env, containlnfo e p2 dec])
p2 = unPos pos

—————————————————— Operations referred to goal --------------

cl ass Goal Reached a perc where
i SAt Goal :: a -> perc -> Bool
mat chGoal :: a -> perc -> Bool

i nstance CGoal Reached Goal Criterion Perceived where
mat chGoal g [] = Fal se
mat chGoal g (p: ps)
| g == getlnfoSignPost p = True
| otherwise = matchGoal g ps

class Goal Crit cm where
getGoal Crit :: cm-> Goal Criterion

i nstance Goal Crit CognitiveMap where
getGoal Crit cmap@ (G ((EM (Ir i1) (Ir i2)): es)):gs)
= goal ForNode (Ir (GateSign2 (GateSignRange (LetterOnly ‘A) (LetterOnly ‘D)))) cmap
getGoal Crit cmap@ (G ((EM (lwil) (lwi2)): es)):gs) = goal ForNode (lw "do business") cmap
i nstance CGoal Reached CognitiveMap Perceived where
i SAt Goal cm perc = matchGoal (getGoal Crit cn) perc
------------------ Updat e agent’s conponents ---------
cl ass Updatel a where
set ToZero :: a -> a -- reset percept/decision
updatePrev :: a -> a -- update previous node

i nst ance Updat el Perceived where
set ToZero p =[]

i nst ance Updat el Deci si on where
set ToZero d = Nolnfo

i nstance Updatel Fact where
updat ePrev (Fact a pos prev) = Fact a pos pos
------------------ CGet-functions for agent ---------------

cl ass Agent Get agent where

get Fact :: agent -> Fact
getBel :: agent -> Beliefs
getAld :: agent -> Agentld
getPos :: agent -> Pos
getPrev :: agent -> Pos

get PosM :: agent -> Mental Pos
getCM :: agent -> CognitiveMap

getPerc :: agent -> Perceived
getDec :: agent -> Decision
getPref :: agent -> Preferences

getlncDir :: agent -> IncomingDir

Appendix: Haskell Code 157

i nst ance Agent Get Agent where
get Fact (Agent f b) = f
getBel (Agent f b) = b
get Ald = getldFronfacts . getFact
get Pos = get PosFronfacts . get Fact
getPrev = getPrevFronfFacts . getFact

get PosM = get PosMFronBel . get Bel
get CM = get CMFronBel . get Bel

get Perc = getPercFronBel . get Bel
get Dec = get DecFronBel . get Bel
get Pref = getPrefFronBel . getBel
getlncDir = getlncFronmBel . getBel

—————————————————— Put-functions for agent --------------

cl ass Agent Put p agent where
put ToAgent :: p -> agent -> agent

i nstance Agent Put Fact Agent where -- put fact into agent
put ToAgent f2 (Agent f b) = Agent f2 b

i nst ance Agent Put Beliefs Agent where -- put belief into agent
put ToAgent b2 (Agent f b) = Agent f b2

i nst ance Agent Put Pos Agent where -- put pos into agent
put ToAgent p a = put ToAgent (putToFacts p (getFact a)) a

i nstance Agent Put Mental Pos Agent where -- put pos into agent
put ToAgent p a = put ToAgent (putToBel p (getBel a)) a

i nstance Agent Put Perceived Agent where -- put perceived to agent
put ToAgent p a = put ToAgent (putToBel p (getBel a)) a

i nst ance Agent Put Deci si on Agent where -- put decision to agent
put ToAgent p a = put ToAgent (putToBel p (getBel a)) a

i nstance Agent Put | ncomingDir Agent where -- put incDir to agent
put ToAgent p a = put ToAgent (putToBel p (getBel a)) a

------------------ Put and get in agent structure ---------

cl ass GetFronfacts f where
getl dFronfacts :: f -> Agentld
get PosFronfacts :: f -> Pos
get PrevFronfacts :: f -> Pos

cl ass Put ToFacts p f where
put ToFacts :: p ->f ->f

cl ass Put ToFacts2 p f where
put ToFacts2 :: p ->f ->f

i nst ance Get FronfFacts Fact where
get | dFronfacts (Fact aid pos prev) = aid
get PosFronfacts (Fact aid pos prev) = pos
get PrevFronfacts (Fact aid pos prev) = prev

i nst ance Put ToFacts Pos Fact where
put ToFacts pos2 (Fact a p pr) = Fact a pos2 pr

i nst ance Put ToFacts2 PrevPos Fact where
put ToFacts2 pr2 (Fact a p pr) = Fact a p pr2

class GetFronBeliefs b where

get PosMFronBel :: b -> Mental Pos
get CMFronBel :: b -> CognitiveMap
get PercFronBel :: b -> Perceived
get DecFronBel :: b -> Decision
getPref FronBel :: b -> Preferences
getlncFromBel :: b -> IncomingDir

class PutToBeliefs b p where
putToBel :: p ->b ->b

i nstance Get FronBeliefs Beliefs where

Appendix: Haskell Code

158

get PosMFronBel (Beliefs np cmperc dec pref inc) = np
get CMFronBel (Beliefs nmp cmperc dec pref inc) = cm
get PercFronBel (Beliefs np cmperc dec pref inc) = perc
get DecFronBel (Beliefs np cmperc dec pref inc) = dec
get Pref FronBel (Beliefs nmp cmperc dec pref inc) = pref
getlncFronBel (Beliefs nmp cmperc dec pref inc) = inc

i nstance Put ToBel i efs Beliefs Mental Pos where
put ToBel np2 (Beliefs np cmperc dec pref inc) = Beliefs np2 cmperc dec pref inc

i nstance Put ToBeliefs Beliefs Perceived where
put ToBel perc2 (Beliefs np cmperc dec pref inc) = Beliefs np cmperc2 dec pref inc

i nstance Put ToBel i efs Beliefs Decision where
put ToBel dec2 (Beliefs np cmperc dec pref inc) = Beliefs np cmperc dec2 pref inc

i nstance Put ToBeliefs Beliefs Incom ngDir where
put ToBel inc2 (Beliefs np cmperc dec pref inc) = Beliefs np cmperc dec pref inc2

cl ass Unput Pos p where
unPos :: p -> Node

i nst ance Unput Pos Pos where
unPos (Pos p) = p

class IncDirCi where
unPutl :: i -> Direction

i nstance I ncDirC Incom ngDir where
unPut!l (IDir d) =d

--------------------- I nstances for text output -------------

i nstance Strings Agent where
text (Agent (Fact aid (Pos pos) (Pos prev)) (Beliefs nmpos cmap per dec pref i))
=" \nPCSITION: " ++ text pos
++ " \nPREVNCDE: " ++ text prev ++ "\nMENTAL POSTION:
++ text nmpos ++ " \nINCOM NGDIR " ++ text i

xtext (Agent (Fact aid (Pos pos) (Pos prev)) (Beliefs npos cnmap per dec pref i))
= putStrLn ("\nID:" ++ text aid ++ " \nPOSITION: " ++ text pos
++ " \nPREVPCS: " ++ text prev

++ " \nGOAL: " ++ text (getGoal FronCogMap cmap) ++" \nPERCEPTION: " ++ text per

++ " \nDECISION: " ++ text dec ++ " \nINCOMNGDIR " ++ text i)

instance Strings [Agent] where
text (aralist) = text a ++ "\n\n" ++ text alist

text [] =[]

instance Strings |ncom ngDir where
text (IDr i) =" " ++ text i
text NolncDir =" No IncDr "

i nstance Strings Pos where
text (Pos w) =" " ++ text w

--------------------- I nstances for ZeroOne class -------------
i nstance ZeroOne Pos where
unit0 = Pos unitO
Operations on Graphs and Elements of Graphs
nodul e Graphs where

i nport Strings
i nport List
i nport ZeroOne

type Nodeld = Int
type Text = String

data Node = Node Nodeld deriving (Eq, Od, Show)
data E n = E n SignPost n SignPost deriving (Eq, Show)

Appendix: Haskell Code 159

data Ge n = G[e n] deriving (Eq, Show)
type Environment = G E Node

data SignPost = S Direction Info | NoSign deriving (Eq, Show)

type Direction = Int

data Info = Ir InfoR| IwInfoW]| Nolnfo deriving (Show, Eq)

type I nfoW= Text

type InfoR = GateSi gn

—————————————————— DATA TYPES for conponents of agent’'s beliefs -----

type NodeM = Info
type Goal = [NodeM

data EMn = EM n n deriving (Eq, Show)
type CognitiveMap = [G EM NodeM

type Preferences
type Preference

[(Direction, Preference)]
I nt

data Cost = Cost Int deriving (Eq, Od, Show)
—————————————————— DATA TYPES for signs and gates in airport environment -----

--specification of "gate-sign": 3 possibilities ->
--single: e.g., "A", "C51"

--list: e.g., "C52,C53", "A B D'

--range: e.g., "C54-C61", "A-D'

data GateSign = GateSign GateSignSingle | GateSignl GateSignList | GateSign2 GateSi gnRange |
NoGat eSi gn deriving (Show, Eq)

data LetterOnly = LetterOnly Char deriving (Show, Eq)

data GateSignSingle = GateSignSingle LetterOnly | GateSignSinglel Gate deriving (Show, Eq)

data GateSignList = GateSignList [LetterOnly] | GateSignListl [Gate] deriving (Show, Eq)

data GateSignRange = GateSi gnRange LetterOnly LetterOnly | GateSi gnRangel Gate Gate
deriving (Show, Eq)

data Gate = Gate Char Int deriving (Show, Eq)
------------------ Access elenents of airport environment ----------

class LetterOnlys letterOnly where
getLetterOnlyLetter :: letterOnly -> Char

instance LetterOnlys LetterOnly where
getLetterOnlyLetter (LetterOnly |) =1

cl ass Gates gate where
get GateLetter :: gate -> Char
get Gat eNunber :: gate -> Int
getGate :: gate -> (Char,Int)

i nstance Gates Gate where
get GatelLetter (Gate | n) =
get Gat eNunber (Gate | n) =
getGate (Gate | n) = (1,n)

——————————————————— Access Information of signsposts -------

cl ass SignPostC s where
getlnfoSignPost :: s -> Info
getDirSignPost :: s -> Direction

i nstance Si gnPostC Si gnPost where
getDirSignPost (Sdi) =d
getlnfoSignPost (Sdi) =i
get | nf 0Si gnPost NoSi gn = Nol nfo

class InfoC a where
getInfoW:: a -> Text
getInfoR :: a -> GateSign

i nstance I nfoC Info where
getlnfoW (lwi) i
getInfoR (Ir i) i

Appendix: Haskell Cod

e

160

cl ass Nodes n where

replace :: Int -
zeroNode :: n
class (Eg n) => Edg
endnode :: e n -
startnode :: e n

get Si gnPost St art

get Si gnPost End : :

get Si gnPost For No

Operations on nodes

> |nfo ->[n] ->[n] -- replaces n-th elt in[n] with info
Qperations on edges ---------
es e n where
>n

->n

e n -> SignPost

e n -> SignPost

de :: n->en -> SignPost -- signpost for edge at n

-> [Si gnPost]

-- gets other node of an edge
check if edge has certain info at given node

SignPost) -> e n

get Si gnPost For NodeMap :: n -> [e n]

getFstinfo :: en ->Info

getSndinfo :: en ->Info

isAB:: n->n->e n -> Bool

sndNode :: n ->en ->n

containlnfo :: en ->n ->Info -> Bool

nodes :: e n -> [n]

costE:: n->n->en -> Cost

equal Edge :: e n -> e n -> Bool

isEItE :: n ->e n -> Bool

hasNei ghbour n->en->1Int

makeE :: (Int, SignPost, Int,

makeEM :: (Info, Info) -> e n

-- derived function

costEn me =if isABn me then unitl else unitl100
B Qperations on graph ----

class (Edges e n) =

insertG:: en -
deleteG:: e n -
getEdges :: g e
isEltOFG:: n ->

nunber O Edges ::

edgesQut WthSign ::

edgesQut Si gnSt ar

edgesQut Si gnEnd ::
per cl nf oAt Node ::

contai nNode :: n
nodes :: g e n -
degree :: gen
cost n->n -

checkDegree :: g
all Degrees :: ¢

get Goal FrontGraph ::
fiel dPositionLi st

fieldPosition ::

-- derived funct
contai nNode n g
nunber O Edges =

nodes g = nub (c

> Graphs g e n where
>gen->gen
>gen->gen
n->J[en

g e n -> Bool
gen->Int

t:: n->gen->Je
n->gen->J[en

->gen->J[en]
> [n]

->n ->1Int

> g e n -> Cost
e n -> Bool

en ->J[lInt]
gen->n
[n]

->gen->1Int

(n]

i ons
=[e | e <- (getEdges g),
I ength . get Edges

oncat [nodesE e |

Qperations on cognitive nmap

e <-

n->gen->J[en

n]

n->gen->7[SignPost]

-> g en ->[Bool]

(startnode e

(get Edges g)])

class (Graphs g e n) => CognitiveMapC g e n where

goal ForNode :: n
get Goal Fr onCogMa
graphW t hNode ::

nodel nCogni ti veMap ::
updat eMent al Pos ::

derived funct

nodel nCogniti veMap n fs =

->[gen]
p:: [gen] ->[n]

n->[gen] ->gen
n->[gen
->n ->[g e nj]

->n

[(n]

i ons

Metric deci sion making

class DirectionC d where

-> Bool

-> [n]

-- functions to produce cnap

n)

or (map (isEltOXGn) fs) -- checks if nental

(endnode e

n]l

--for shortest path

map contai ns node n

Appendix: Haskell Code 161

nodeToAgentDir :: d ->d ->d
reverseDir :: d ->d

instance DirectionC Direction where
nodeToAgentDir dir incDir = nod (dir -1 + nmod (13 - incDir) 8) 8 + 1
-- rotates sign directions at node to directions in agent’s egocentric ref franme
reverseDir out = 1 + nod (out + 3) 8 -- nakes outgoing direction to incomng direction

class Transformations signpost where

rotateDirs :: Direction -> [signpost] -> [signpost]
dirToltility :: Preferences -> [signpost] -> [signpost]
rotateAndUtil :: Preferences -> Direction -> [signpost] -> [signpost]
order Si gnPosts :: signpost -> signpost -> Bool
sortls :: [signpost] -> [signpost]
i nstance Transformations SignPost where -- netric decision making (2nd step)

{-1. function that translates info directions in local ref. frane of the node to
directions in the agent's ref. frane; only required for real world case -}

rotateDirs incDir signposts
= map nodeToAgentDir’ signposts
where nodeToAgentDir’ (S dir info) = S (nodeToAgentDir dir incDir) info

{-2. function that converts directions in agent’s ref. frame to agent’s preferences;
transforns a list of Infos to another list of Infos where the directions are changed to
the agent’'s preferences; lookup :: Eq a => a -> [(a,b)] -> Maybe b-}

dirToltility prefs signposts -- utility function
= map | ookupl signposts
where | ookupl (S dir info) =S (unMaybe (Il ookup dir prefs)) info

--function conposition 1. & 2.
rotateAndUtil prefs incDir = dirToltility prefs . rotateDirs incDr

{-function that sorts a list of Infos according to order of preference-}
orderSignPosts i1l i2 = (getDirSignPost i1l) <= (getDirSignPost i2)

sortLs [] =]
sortLs (p:ps)
= sortlLs smaller ++ [p] ++ sortlLs |arger

wher e
smaller = [g | g<-ps , orderSignPosts g p]
larger =[] q | g<-ps , orderSignPosts p q]
--based on sortlLs (Thonpson, pl189); sorts a list of percepts according to preference;

------------------ I nstances for cognitive map --------------

i nstance Nodes NodeM wher e
repl ace poslndex info npos = genericTake (poslndex-1) npos ++ [info]
++ (genericDrop poslndex npos)

i nst ance Edges EM NodeM wher e
startnode (EM sn en) = sn
endnode (EM sn en) = en

isAB nl n2 e

= ((nl==startnode e) && (n2==endnode e)) || ((n2==startnode e) && (nl==endnode e))
nodesE (EM a b) = [a,b]
equal Edge el e2 = (startnode el == startnode e2) && (endnode el == endnode e2)
isEltE n e = startnode e == n || endnode e == n

makeEM (a,b) = EMa b

i nstance Graphs G EM NodeM wher e
insertGe (Ges) = G (e:es)
get Edges (G es) = es
get Goal FronGraph = endnode . last . getEdges -- goal for given field
fieldPositionList [] f = [False]
fieldPositionList (p:ps) f = isBEltOOGp f : fieldPositionList ps f
fieldPosition ps f = 1 + head (el em ndices True (fieldPositionList ps f))
cost n m(Ges) =cost’” n mes

where cost” n m(e:es) =if isABn me then costE n me
el se cost’ n mes
cost’ n m[] = unitl00

isEltOFG n g = any (==n) (nodes Q)

i nstance Cogniti veMapC G EM NodeM wher e
goal ForNode n (g : gs)
| isEltOFG n g == True = get Goal FrontGraph g

Appendix: Haskell Code

162

| otherw se
gr aphW t hNode [T =unit0
gr aphW t hNode (field : fields)
| isEltOFGn field == True = field
| otherwi se = graphWthNode n fields
get Goal FronCogMap = map get Goal Fr onGr aph
updat eMent al Pos [] dec f = dec : []
updat eMent al Pos nps dec (f:fs)
| (isBEltOGdec f == True) && (or (fieldPositionList nps f) == True)
= replace (fieldPosition nps f) dec nps
| (isEltOFG dec f == True) && (or (fieldPositionList nps f) == False) = [dec]
| otherwi se = updateMental Pos nps dec fs

goal For Node n gs

e R RN | |

—————————————————— Instances for environment --------------

i nstance Edges E Node where
startnode (E nl spl n2 sp2) = nl
endnode (E nl spl n2 sp2) = n2
sndNode n (E sn spl en sp2) = if n==sn then en else sn
containlnfo (E sn spl en sp2) n i

spl == NoSign && sp2 == NoSign
spl /= NoSign & sp2 == NoSign

I

| (get I nf oSi gnPost spl == i) && (n == sn)
| spl == NoSign && sp2 /= NoSign

I

(get I nfoSignPost sp2 == i) && (n == en)

++ nps

ot herwi se = (getlnfoSignPost spl==i && (n==sn)|| (getlnfoSignPost sp2==i) && (n==en))

get SignPost Start (E nl spl n2 sp2) = spl
get Si gnPost End (E nl spl n2 sp2) = sp2
get Si gnPost For Node n (E nl spl n2 sp2)

| (n ==nl) = spl
| (n == n2) = sp2
| otherwi se = NoSign

get Si gnPost For NodeMap n = map (get Si gnPost For Node n)
getFstIinfo (E nl spl n2 sp2) = getlnfoSi gnPost spl
getSndlnfo (E nl spl n2 sp2) = getlnfoSi gnPost sp2
isAB nl n2 e = ((nl==startnode e) && (n2==endnode e))
|| ((n2==startnode e) && (nl==endnode e))

hasNei ghbour n e@E nl spl n2 sp2)

| (sndNode n e /= unit0) =1

| otherwise = 0
makeE (nl, spl, n2, sp2) = E (Node nl) spl (Node n2) sp2
isEltE n e = (n==startnode e) || (n==endnode e)
nodesE (E nl spl n2 sp2) = [nl, n2]

i nstance Graphs G E Node where
get Edges (G es) = es
insertGe (Ges) = G (e:es)
degree g@G (e:es)) n = sum (map (hasNei ghbour n) (contai nNode n g))
al | Degrees g = map (degree g) (nodes Q)
checkDegree = any (> 2) . allDegrees
edgesQut SignStart sn g
= [e | e <- (getEdges g), startnode e == sn, getSignPostStart e /= NoSign]
-- edges that have startnode sn and have sign at this node

edgesQut SignEnd sn g = [e | e <- (getEdges g), endnode e == sn, getSignPostEnd e /= NoSi gn]

-- edges that have endnode sn and have sign at this node

edgesQut Wt hSign sn g = concat [edgesQutSignStart sn g, edgesQutSignEnd sn g]
-- edges that contain n and have sign at n

percl nfoAt Node sn g = nmap (getSi gnPost For Node sn) (edgesQutWthSign sn g)
-- list of perceived SignPosts at a node

—————————————————— Hel p function for Decision process =----------
unMaybe :: Maybe a -> a
unMaybe (Just a) = a
unMaybe Nothing = error ("unMaybe of Nothing")
------------------ I nstances for ZerOne class --------------------
i nst ance Zer oOne Node where

uni t 100 = Node 100

unit0 = Node unitO

i nstance ZeroOne NodeM where
unit0 = Nolnfo

i nstance ZeroOne (G EM NodeM) where
unito0 = G []

Appendix: Haskell Code

163

nst ance ZeroOne CognitiveMap where

unito = []

i nstance ZeroOne Cost where
unit0 = Cost unitO
unitl = Cost 1

uni t 100 = Cost 999999

R Connect edness of nodes on edge --

nst ance Num Cost where
(Cost f) + (Cost p) = Cost (p+f)

—————————————————— I nstances for Strings class ------

nstance Strings (EM NodeM where
text (EMn m =" " ++ text n ++ " - " ++ text m

nstance Strings (G EM NodeM where
text (Ges) =" " ++ textRep es

nstance Strings Node where
text (Node n) = text n

nstance Strings |Info where

text (lwi) = ++ text i
text (Ir i) = ++ text i
text Nolnfo =" No info"

nstance Strings SignPost where
text (Sdir info) =" SIGN" ++ text dir ++ text
text NoSign =" No sign "

nstance Strings LetterOnly where
text (LetterOnly I) =" " ++ text |

nstance Strings GateSignSingl e where
text (GateSignSingle g) = text g
text (GateSignSinglel g) = text g

nstance Strings GateSignList where
text (GateSignList Is) = text Is
text (GateSignListl gs) = text gs

nstance Strings GateSi gnRange where

info

text (GateSignRange |1 12) = text |1 ++ " - " ++ text 12
text (GateSignRangel gl g2) = text gl ++ " - " ++ text g2

nstance Strings GateSign where
text (GateSign g) =" " ++ text g
text (GateSignl g) =" " ++ text g
text (GateSign2 g) = ++ text g
text NoGateSign =" No gatesign "

nstance Strings Gate where
text (Gate c i) = text c ++ text i

Shortest Path

{- shortest path
based on dijkstra as given by kirschenhofer
i npl enent ed by andrew frank
-1

nodul e ShortestPath where

i nport G aphs

i nport Strings

i nport List

i nport ZeroOne

------------------ Data types for the Dijkstra code

data C n
data SP n

-- the list of expanded (to keep,

Cn Cost n -- the node to which, cost, previous node on the shortest path
SP [n] [n] [Cn] [Cn] -- W U, the active list,

di j kstra does an update)

Appendix: Haskell Code 164

—————————————————— Operations in Dijkstra code ------------

cl ass NodesS n where
getPathFronTo :: n->n -> GEMn -> [n]

class SPs sp n where

makesp :: n -> GEMn ->sp n

step2 :: GEMn ->sp n ->spn -- expand one node
endSt eps, testConnected :: sp n -> Bool

target Reached :: n -> sp n -> Bool

getPathTo :: n -> GEMn -> sp n -> [n]
-- the list of nodes to visit for shortest path to destination n

class CostTo ¢ n where

insertCL :: ¢ n->[cn] ->[cn]
lu :: n->[c n] -> Cost
prevShortest :: n ->[c n] ->n
dropMax :: [c n] -> [c n]
getPath :: n ->[c n] -> [n]

-- find the sequence of nodes fromstart to destination

i nst ance NodesS NodeM wher e -- find shortest path between 2 nodes
get Pat hFronifo start dest ges = getPathTo dest ges sp
where sp:: SP NodeM
sp = (makesp start ges)

i nstance SPs SP NodeM wher e
makesp x g@G es) = SP [] (nodes g) [C x unit0 zeroNode] [] -- initialize
endSteps (SP ws us _ _) = null us
test Connected (SP ws us Is _) = not.null $1Is
targetReached n (SPws _ _) = elemn ws
step2 ges (SP ws us |Is p) = SP ws’ us’ (sort(dropMax(map f us’))) p’

where | = if null Is then error "SPs - not connected"
el se head |Is
(Czluz) =1 -- the mnimumis at the head
ws' = z:ws
us’ = filter (z/=) us
luy y = luy (Is++p) -- the previous cost to this node
luy' vy (lu z (Is++p)) + (cost z y ges)
fys= luy y) > (luy)

= (I

ifo(

then Cy (luy' y) z

else Cy (luy y) (prevShortest y Is)
pr =1:p

get Pat hTo dest ges sp = getPath dest costs

where costs :: [C NodeM
costs = getlLS | astSP
getLS (SPws us Is p) =p
| ast SP = head . dropWile ((not.targetReached dest)
&&& testConnected) . iterate (step2 ges) $ sp

(&&&) condl cond2 a = (condl a) && (cond2 a)

i nstance Cost To C NodeM where

insertCL cnc cl =insert cnc cl -- this is the sorted insert
lum((Cnec _):cs) =if ne=n then c else lu mcs

lu m[] = unitl00 -- should not occur

prevShortest m((Cn c ss):cs) = if ne=n then ss else prevShortest mcs
prevShortest m[] = zeroNode -- should not occur

dropMax c¢s = filter notMax cs
where notMax (Cn c _) = c/= unitl100
get Path dest cs = reverse (getPath’ dest cs)
where getPath’ dest [] =[]
getPath’ dest ((Cn _ m:cs) = if dest==n then dest:getPath’ mcs
el se getPath’ dest cs

----------------- Functions based on the Dijkstra Algorithm ---------------------

class Mental Path cm sp where
nent al ShortPath :: cm-> sp -> [NodeM
ment al ShortPaths :: cm-> [sp] -> [[NodeM]
m nLength :: cm-> [sp] -> Int
nental Dist :: cm-> sp -> Int

i nstance Mental Path CognitiveMap Si gnPost where
nent al ShortPath cm (S d i) = getPathFronTo i (getGoal FronGraph field) field
where field = graphWthNode i cm

Appendix: Haskell Code 165

ment al Short Paths mm [] = []

nent al Short Pat hs nm (sp: sps) = nental ShortPath nm sp : nental Short Pat hs nm sps
m nLength nm sps = mi ni mum (map | ength (nental Short Paths mm sps))

mental Dist cmsp = length (nmental ShortPath cm sp)

i nstance Mental Path CognitiveMap | nfo where
nent al Short Path cmi = get PathFronmTo i (get Goal FrontGraph graph) graph
where graph graphWthNode i cm
nmental Dist cmi I ength (nmental ShortPath cmi)

instance Eq (Cn) => Od (C n) where

(<=) (Cnc) (Cn2c2_) =c¢c<=2c2
instance Eq n => Eq (C n) where

(==) (Cnc _) (Cn2c2 _) = n==n2 && c==c2
Zero-One Elements

nodul e Zer oOne where

cl ass ZeroOne z where
unitO, unitl, unitl00 :: z

i nstance ZeroOne Int where

unit0 = 0
unitl =1
uni t 100 = 100

i nstance (ZeroOne a) => ZeroOne [(a,a)] where
unit0 = [(unit0, unit0)]

Output of Data types

{-
af july99

nodul e Strings where

infixr 5 ++., ++0, ++/, ++-
class Strings a where
xtext :: a ->10()
xtext = putStr . text

text :: a -> String

textRep :: a -> String -- to showinternal rep
textRep = text

text = textRep

(++.), (++"), (++/), (++-) :: a->a->a -- String -> String -> String

—————————————————— Instances ----------------------
-* added for convenient textual representation in Hugs

Strings a =>a -> 10 ()
= putStr . text
*

X X 1

instance Strings Int where

text = show --* was show
instance Strings Float where

text = show
i nstance Strings Bool where

text = show

i nstance Strings Char where
text = show

instance Strings String where

text = id

a++. b=a++", " ++ b
a++" b=a++" " ++ b
a ++ b =a ++ "\n" ++ b
a ++ b =a ++ "\t" ++ b

instance Strings t => Strings [t] where

Appendix: Haskell Code

166

text = foldr ((++).(++ ";").text) ""
textRep = foldr ((++).(++ ";").textRep) ""
-- this adds a , after each el enent

Test data — Vienna International Airport
nodul e Vi eDatal where

i nport Worl dd ass
i nport ZeroOne

i nport G aphs

i nport Agent C ass
i nport Strings

------------------ Data for agent’s cognitive map -----------

cmapR :: CognitiveMap
cmapR = [graphSi gns]

graphSigns :: G EM NodeM
graphSigns = foldr insertG (G []) (map makeEM graphSi gnsS)

graphSi gnsS =
[(Ir (GateSignl (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘C)1)),
Ir (GateSignl (GateSignList [(LetterOnly ‘A),(LetterOnly ‘B),(LetterOnly
‘C),(LetterOnly ‘D)1))),
(Ir (GateSignl (GateSignList [(LetterOnly ‘B), (LetterOnly ‘C)])),
Ir (GateSignl (GateSignList [(LetterOnly “A),(LetterOnly ‘B), (LetterOnly
‘C),(LetterOnly ‘D)1))),
(Ir (GateSignl (GateSignList [(LetterOnly “A),(LetterOnly ‘C)])),
Ir (GateSign2 (GateSignRange (LetterOnly ‘A’) (LetterOnly ‘D)))),
(Ir (GateSignl (GateSignList [(LetterOnly ‘B),(LetterOnly ‘C)1)),
Ir (GateSign2 (GateSignRange (LetterOnly ‘A’) (LetterOnly ‘D)))),
(Ir (GateSign (GateSignSingle (LetterOnly ‘C))),
Ir (GateSignl (GateSignList [(LetterOnly ‘B),(LetterOnly ‘C)]))),
(Ir (GateSign (GateSignSingle (LetterOnly ‘C))),
Ir (GateSignl (GateSignList [(LetterOnly ‘A), (LetterOnly ‘C)]))),
(I'r (GateSign2 (GateSignRangel (Gate ‘C 51) (Gate ‘C 62))),
Ir (GateSign (GateSignSingle (LetterOnly ‘C)))),
(Ir (GateSign2 (GateSi gnRangel (Gate ‘C 51) (Gate ‘C 62))),
Ir (GateSign (GateSignSinglel (Gate ‘C 54))))]

------------------ Data for airport graph -----------

real Graph :: Environnent
real Gaph = foldr insertG (G []) (map makeE real Strings)
real Strings :: [(Nodeld, SignPost, Nodeld, SignPost)]

real Strings =
[(0, NoSign, 1, NoSign), -- fictive edge for orientation at node 1
(1,S 1 (Ir (GateSign2 (GateSignRange (LetterOnly ‘A’) (LetterOnly ‘D)))), 2, NoSign),
(2,S 0 (Ir (GateSignl (GateSignList [(LetterOnly “A’),(LetterOnly ‘B'),
(LetterOnly ‘C),(LetterOnly ‘D)]))),3, NoSign),

(3,S1 (Ir (GateSign (GateSignSingle (LetterOnly “A’)))), 4, NoSign),
(3,S0 (Ir (GateSignl (GateSignList [(LetterOnly “A’),(LetterOnly “C)]))),5, NoSign),
(3,S7 (Ir (GateSignl (GateSignList [(LetterOnly ‘B),(LetterOnly ‘C)]))), 6, NoSign),
(4,S6 (Ir (GateSign (GateSignSingle (LetterOnly ‘C)))),

5, S 2(lr (GateSign (GateSignSingle (LetterOnly ‘A))))),
(5,S6 (Ir (GateSignl (GateSignList [(LetterOnly ‘B), (LetterOnly ‘C)]))),

6,S 2 (Ir (GateSign (GateSignSingle (LetterOnly ‘A))))),
(6,S6 (Ir (GateSignl (GateSignList [(LetterOnly ‘B), (LetterOnly ‘C)]))),7, NoSign),
(7,S 6 (Ir (GateSign2 (GateSignRangel (Gate ‘C 51) (Gate ‘C 62)))),9, NoSign),
(7,S5 (Ir (GateSign (GateSignSingle (LetterOnly ‘B)))), 8, NoSi gn),
(9,S7 (Ir (GateSign (GateSignSinglel (Gate ‘C 54)))), 10, NoSign)]

—————————————————— Creating the world -----------

wor | dAi rport = Wrld tinme agent g where
time =1
agent = fred
g = real Gaph

------------------ Creating the agent ----------
fred = Agent (Fact aid (Pos (Node pos)) (Pos (Node prev))) (Beliefs nmpos cm perc dec pref

wher e
aid =1

i nc)

Appendix: Haskell Code 167

perc = []

dec = Nolnfo

pref =1[(1,1),(2,2),(3,4),(4,6),(5,8),(6,7),(7,5),(8,3)]
inc =1Dr O

Test data — Yahoo-directories
nodul e WebDat al where

i nport Worl dd ass
i nport ZeroOne

i nport G aphs

i nport Agent d ass
i nport Strings

------------------ Data for agent’s cognitive map -----------

cmapW:: CognitiveMap
cmapW = [graphUi a, graphPhys, graphAa, graphBrand, graphSize]

graphUi a, graphPhys, graphAa, graphBrand, graphSize :: G EM NodeM
graphUia = foldr insertG (G []) (map makeEM graphU aS)

graphPhys = foldr insertG (G []) (map makeEM graphPhysS)

graphAa = foldr insertG (G[]) (map nmakeEM graphAaS)

graphBrand = foldr insertG (G []) (map makeEM graphBrandS)
graphSize = foldr insertG (G []) (map makeEM graphSi zeS)

graphU aS =

[(Iw "do shopping",lw "confirni),

Iw "do business",lw "confirnt)]
graphAasS =

[(lw "recreate",lw "do sport"),

(lw "do sport",lw "do track and field"),

(lw"do track and field",lw "“running")]
graphPhysS =

[(Iw "physical object",lw "artifact"),

(lw"artifact",lw "covering"),

(lw "covering",lw "clothing"),

(Iw "clothing",lw "footwear"),

(lw "footwear", lw "shoe")]
graphBrandS =

[(Iw "brand", | w "Adi das"),

(Iw "brand", |w " Converse"),

(lw "brand", | w "Reebok"),

(lw "Adidas",lw "N ke"),

(lw "Reebok", lw "Ni ke"),

(lw "Converse",lw "Nike")]
graphSi zeS =

[(Iw "size",lw"10 1/2"),

(lw"10 1/2", 1w "10"),

(lw"10",Iw "9 1/2")]

------------------ Data for web graph -----------

wwwG aph :: Environment
wwG aph = foldr insertG (G []) (nmap nakeE webStrings)
webStrings :: [(Nodeld, SignPost, Nodeld, SignPost)]

webStrings =
[(1,S 2 (Iw "do business"),2,S 1 (lw "Hone")),
(1,S 9 (lw"recreate"),3,S 1 (lw "Honme")),
2 (lw "do shopping"),4,S 1 (lw "do business")),
19 (lw "do sport"),5,S 3 (lw "recreate")),
3 (lw"clothing"),6,S 1 (lw "do shopping")),
61 (lw "do sport"),7,S 1 (lw "do shopping")),
107 (lw "running"),8,S 1 (lw "do sport")),
90 (lw "do track and field"), 9,S 1 (lw "do sport")),
2 (lw"do sport"), 10,S 1 (lw "clothing")),
7 (lw "shoe"),11,S 1 (lw "clothing")),
1 (lw"clothing"), 10, NoSign),
59 (Ilw "running"), 12,S 1 (lw "do sport")),
76 (lw "do track and field"), 13,S 1 (lw "do sport")),
12 (lw "do shopping"), 12, NoSign),

—
N

PNNNOOTTOARW
NDOuOLLLOLOLOLOLOOW

Appendix: Haskell Code

168

(9,S 12 (lw "do shopping"), 13, NoSign),
(10, S

pvafv«rvafv«
N e e e
CoLwoNOOOU

nNnOununnmnuvunnnm

7
2

RPRRPRPONRPOWRRLUN®

(lw "shoe"), 15, NoSign),

1 (lw "running"), 21, NoSign),

(Iw "brand"), 14,S 1 (lw "shoe")),
(lw"do sport"), 15,S 1 (lw "shoe")),
(lw "shoe"), 17,S 1 (lw "running")),
(lw"clothing"), 21,S 1 (lw "running")),
(lw "do sport"), 16, NoSign),

(lw "brand"), 16,S 1 (lw "do sport")),
(Iw "running"), 17, NoSign),

(lw "Ni ke"), 18, NoSign),
(lw "Adidas"), 19, NoSign),
(Iw "Reebok"), 20, NoSign),
(lw "confirnt), 25, NoSign),
(lw "confirnt), 22, NoSign)
(lw "confirnt), 23, NoSign),
(lw "confirnm'), 24, NoSign)]

—————————————————— Creating the world -----------

wor | dWWV = World tine agent g where

time =1
agent = charly
g = wwwG aph

------------------ Creating the agent ----------

charl y=Agent (Fact aid (Pos (Node pos)) (Pos (Node prev))) (Beliefs nmpos cm perc dec pref inc)

wher e
aid =1
pos = 1
prev = 0
mpos = []
cm = cmapW
perc =[]
dec = Nolnfo

pref =1[(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9), (10, 10), (11, 11), (12, 12),

inc

(13, 13), (14, 14), (15, 15), (16, 16), (17, 17), (18, 18), (19, 19), (20, 20),

(21, 21), (22, 22), (23, 23), (24, 24), (25, 25), (26, 26), (27, 27), (28, 28), (29, 29), (30, 30),
(31,31), (32, 32), (33, 33), (34, 34), (35, 35), (36, 36), (37, 37), (38, 38), (39, 39), (40, 40),
(41, 41), (42, 42), (43, 43), (44, 44), (45, 45), (46, 46) , (47, 47), (48, 48), (49, 49), (50, 50),
(51,51), (52, 52), (53, 53), (54, 54), (55, 55), (56, 56) , (57, 57), (58, 58), (59, 59) , (60, 60),
(61,61), (62, 62), (63, 63), (64, 64), (65, 65), (66, 66), (67, 67), (68, 68), (69, 69), (70, 70),
(71,71),(72,72), (73,73), (74, 74) , (75, 75), (76, 76) , (77, 77), (78, 78), (79, 79)]

= NolncDir

169

BIOGRAPHY OF THE AUTHOR

14" August 1973
1992

1992-1993

Oct 1998

Oct 1998 — Feb 1999
Mar 1999 -

June 2000

Grants:

Sep 1997
Sep 1998

April 2000
Sep 2001

Born in Salzburg, Austria
Graduated from high-school (Bundesrealgymnasium Zell am See)
Military service

Master’s degree in geodesy, Department of Applied and Engineering
Geodesy, Technical University Vienna

Worked as surveyor with Vermessungsbtiro Hochmair, Zell am See

Research and teaching assistant at the Institute for Geoinformation,
Technical University Vienna

Master’'s degree in electroacoustic composition, University of Music
and Performing Arts Vienna

Invitation for the summer course ,2. Komponistenforum Mittersill®
(scholarship by the Salzburger Landesregierung)

Invitation for participation at the ,6™ international academy for
composition and audic-art® in Schwaz/Tirol (scholarship by the
Stadtwerke Schwaz)

Y oung researcher prize (GISRUK conference, Y ork, UK)
ESRI Student Award (COSIT 2001, Morro Bay, Ca, USA)

