Engineering Device-Independent
Web Services

Ph.D. Thesis

Engin Kirda

Engineering Device-Independent Web Services

An XML/XSL-based approach to creating flexible and extensible multi-device
services

Ph.D. Thesis

at

Technical University of Vienna
submitted by
Dipl.-Ing. Engin Kirda
Distributed Systems Group, Information Systems Institute,
Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria

19th August 2002

© Copyright 2002 by Engin Kirda

Advisor: 0. Univ.-Prof. Dr. Mehdi Jazayeri
Second Advisor: a.0. Univ.-Prof. Dr. Gabriele Kotsis

Abstract

The popularity of computing devices such as Personal Digital Assistants (PDAS) and
mobile phones have been increasingly and these devices have been getting more powerful
every day. Although the latest PDAs are even able to display frames, it is still important
to adapt the content for these devices in order to provide a satisfactory surfing experience
for users. Web services in the near future will not only have to support mobile access, but
will also have to deal with other forms of Web access such as voice interfaces. Hence, Web
services will often need to be device-independeraind will have to support different XML
Web formats.

Although much work has been done on providing mobile access to Web content, the focus
has mainly been the adaptation of HTML content to make it viewable on mobile devices that
might have memory and screen-size limitations. Only afew attempts have been made to date
to integrate device-independence into the design, implementation and maintenance phases
of Web services.

This dissertation provides solutions to the problem of designing and implementing in-
teractive, maintainable, device-independent Web services. It introduces a novel XML/XSL-
based design and implementation technique and a development tool suite to support the Web
developer. The constructed services can be accessed by awide range of Web devices such as
mobile phones, PDAs with micro HTML browsers, speech-based Web interfaces and tradi-
tional full-fledged HTML browsers.

My genera thesis is that Web services can effectively be made device-independent if
device-independence support is integrated into the Web service design, implementation and
maintenance phases. | present an extended model of the traditional Web service life cycle
that takes device-independence support into account and describe the Device-Independent
Web Engineering (DIWE) framework for engineering device-independent Web services. |
introduce the novel concepts of page splitting, process partitioning and XSL stylesheet pre-
processing.

Kurzfassung

Elektronische Gerate wie Personal Digital Assistants (PDAS) und Mobiltelefone sind in
den letzten Jahren sehr popular und leistungsfahig geworden. Die neuesten PDAs kdnnen so-
gar Frames in Webseiten darstellen. Trotzdem ist es noch immer wichtig, den Webinhalt fur
diese Gerate so anzupassen, dass die Benutzer zufrieden sind und eine positive Erfahrung mit
der Website haben. Bald werden viele Websites nicht nur mobilen Zugang, sondern andere
Formen des Webzugangs wie zum Beispiel Sprachschnittstellen unterstiitzen. Die Websites
der Zukunft miissen gerateunabkingig (device-independersgin.

Der Fokus der Forschung bis jetzt ist die Anpassung und Abbildung des HTML Inhalts
von Websites gewesen damit sie auf mobilen Geraten mit wenig Hauptspeicher und klei-
nen Displays dargestellt werden konnen. Nur wenige Forschungsgruppen haben versucht,
Gerateunabhangigkeit in den Design-, Implementierungs-, und Wartungsphasen der Website
Zu integrieren.

Diese Dissertation presentiert Losungen zum Problem des Entwerfens und der Im-
plementierung von interaktiven, gerateunabhangigen Websites. Sie beschreibt eine neue
XML/XSL-basierte Methodol ogie und eln Webentwicklungswerkzeug.

Contents

1

2

Introduction 1
L1 OVErVIEW e e e e 1
1.2 Contribution of thisDissertation 2
1.3 Structureof thisDissertation 3
Web Engineering basics 5
21 Terminology e 5
2.2 Webengineering: Anemergingfield 6
2.3 Web service characteristicsand requirements 8
2.3.1 Information transfer characteristics 8
232 Stakeholders 8
233 BasicWebservicerequirements 8
24 Web ServiceLifeCycle. 9
241 RequirementsAnalysis. 10
242 Design ... 11
243 Implementation 11
244 Mantenance e 11
25 Hexibility 12
251 XML . . . 13
252 XSL 14
2.6 Thedevice-independent Web engineering problem 15
26.1 Historicaloverview 15
2.6.2 Problem: Constructing maintainable, interactive device- indepen-
dentWebservices 18
2.7 SUMMAY . . o o e e e e e e 21

3 Related Work
3.1 Brief overview of research on device-independent Web access
Traditional Web engineeringapproaches

3.2

3.3

3.4
3.5

3.6

321
322
3.2.3
324
325
3.2.6
3.2.7

The Dexter hypertext referencemodd
The Relationship Management Methodology (RMM)
Object-Oriented Hypermedia Design Methodology (OOHDM) . . .
W3DTandeW3DT
Webcompositionand W30bjects
Strudel . ..

Mobile Web accesstechniques

331
332
333
334
3.35
3.3.6

Quality awaretranscoding
Digestor e
Annotation-based Web content transcoding
The Business Card Search Service(BCSS)
Web accesswith PDAs. PowerBrowser
Web content and form summarization

A taxonomy for device-independent Web engineering
Device-independent Web engineering approaches

351
352
3.5.3
354
355
3.5.6
357
3.5.8
3.59

OO-HMethod

CoCOON
Microsoft ASPNET and the Mobile Developer Toolkit
Totaleemobile

SUMMANY . . . e e e e e

4 DIWE: A conceptual framework for device-independent Web engineering
Rethinking the Web ServiceLifeCycle
Basis of solution: Separation of Layout, Content and Logic (LCL)
Main requirements for a device-independent Web engineering framework
Overview of theDIWE framework

4.1
4.2
4.3
4.4

4.5
4.6

44.1
4.4.2

Web service design, implementation, deployment and maintenance .
Processors

Flexible Web service constructioninthreesteps
Device-independent Web service constructionin threesteps.

22
22
23
23
24
24
25
26
26
27
27
28
28
29
30
30
30
31

36
37
37
37
38
39
40
41
42

47 TheMyXMLlanguage i it 54

471 OVEIVIEW o e e e e e e e e e 54
472 MyXMLNamespace i 55
473 A smpleMyXML example: Searching for musicals 57
4.74 Another MyXML example: ShoppingCart 59
475 Post XSL stylesheet application 63

4.8 XSL stylesheet pre-processing for stylesheetreuse. 64
49 Pagesplitting 66
4.9.1 Pagesplitting descriptorsand parameters 68

49.2 A smplepagesplitingexample 69

4.10 Processpartitioning 71
4.10.1 Processpartitioningparameters 72
4.10.2 A simpleprocess partitioningexample. 72

4.11 Device-independent application logicinterfacing 76
4.11.0.1 Cdlingthelogicinthreesteps 76

41102 Asmpleexample L. 78

412 SUMMAIY . . oo e e e e e e e e e 78
The MyXML tool suite: A prototype implementation 79
51 TheMyXMLtoolsuite 79
52 TheMyXMLcompiler 82
521 Usage 82

522 Implementation 83

5.3 Configurable device-independencecomponents 85
531 TheDispatchercomponent 86
53.1.1 Configurationgrammar 86

53.1.2 Aconfigurationexample 87

5313 Implementation 88

532 TheCoallectorcomponent. 89
5321 Configurationgrammer 89

5322 Aconfigurationexample 90

5323 Implementation 91

533 TheOutputcomponent 91
5331 Configurationgrammer 91

5332 Aconfigurationexample 92

5333 Implementation 93

54 MyXMLDesigner 93
541 OveviewofthelDE 9

542 Supportfordesign 95

54.3 Support for implementation, 96
5.4.4 Support for configuration and deployment 96

5.4.5 Support for Web page creation and maintenance. 97

54.6 Architectureand implementation., 98

55 Summary 99

6 Case Study: VIF e-Commerce Web service 100

6.1 TheViennalnternational Festival (VIF) Website 100
6.1.1 Serviceoverview e 101

6.1.2 ManVIFcomponents, 101

6.2 VIFecommerceWebservice. L 102
6.21 Theprogramme. o i i 102

6.2.2 Detailed eventinformation 102

6.2.3 Ticket availability, date and priceinformation 103

6.24 Theshoppingcart. i 103

6.2.5 Completing the order (checkingout) 103

6.3 Implementation withthe MyXML tool suite 104
6.3.1 Design 104
6.3.1.1 Deviceidentification. 104

6.3.1.2 Dataorganizationplanning 104

6.3.1.3 Content definition 105

6.3.1.4 XSL stylesheet definition 106

6.3.2 Implementation 106
6.3.21 Constructionof thepages 106

6.3.2.2 Integration of PDA devicefamily 107

6.3.3 Deployment. 108
6.34 Mantenance 108

6.4 USAQESCENANOS v v o o e e e e e 109
6.4.1 Ordering aticket using atraditional browser 109

6.4.2 OrderingaticketusnganiPAQPDA 109

6.4.3 Ordering aticketusingaWAPphone 110

6.5 Summary 110
7 Evaluation and Future Work 122
7.1 Empirical proof of concepts. 122
711 Settingupanexperiment 122

7.1.2 Example: Measuringreadability 123

7.2 Anaysisanddiscussion. 123
7.2.1 Stylesheet complexityandnumbers 123
7211 DISCUSSION . . . o v e 124

7212 Concluson. 124

722 Complexity 125
7221 DISCUSSION o e 125

7222 Concluson. 125

7.23 Layoutadaptation. 125

7231 DIiSCUSSION 126

7232 Concluson. 126

7.24 Graphical and navigational design 126

7241 DISCUSSION o o e 127

7242 Concluson. 127

7.25 Layout/Content/Logic (LCL) separation 127

7251 DISCUSSION e 127

7252 Concluson. 128

7.2.6 Comparison of the DIWE framework to other approaches. 128

7.3 Layingoutfuturework 131
7.3.1 Higherlevel abstractions 131

732 UMLforvisua modeling 131

7.3.3 Re-engineering for device-independence. 132

T4 SUMMAY . . . o e e e 132

8 Conclusion 133
A Sample case study code listings 135

Bibliography 147

List

21
2.2

2.3
24
25
2.6

31
3.2
3.3

34

35

4.1
4.2
4.3
4.4

4.5
4.6
4.7

4.8
4.9
4.10
411
4.12
4.13

of Figures

LifeCycleof aWeb Service[Sch98b, TL97] 10
The difficulty of supporting small displays: The DSG homepage as seen on
aniPAQPDA 16
Screenshots of the 1995 and 2001 VIF homepages 17
Part of the Perl script implementing the HTML grading service 19
Part of the Perl script implementing the WAP grading service 19
Part of the VIF 2000 servlet code implementing ashoppingcart 20

Adaptation of HTML for mobile computing devices (Hori et. al [HKO™00]) 29

OO-H Design Process (Gomezetal. [GCPO1]) 35
WebML graphic notation for data units, and a possible rendition in HTML
(Cerietad.[CFBOQ]) i 36
A sample iStudio fragment that defines an XHTML form (Skarra et a.
[SHKEOL]) e e 38
Partof alogicsheetinCocoon 40
Life Cycle of adevice-independent Web Service. 44
Web service design, implementation, deployment and maintenance 438
Differencesindescriptiongranularity 49
Interactions between the user’s device, the Web server and the generated
gtaticcontent 50
Interactions between the user’s device, the Web server, the application logic

and the generated functionality that produces the dynamic content 51
Seguence diagram showing the i nteractions between the device-independence
componentsfor staticcontent L oL 52
Sequence diagram showing the interactions between the device-independence
componentsfor dynamiccontent L. 53
Example MyXML filetosearchinadatabase 58
XSL stylesheet for formatting theoutput 58
Part of the generated JavaSourceCode 59
MyXML content definition for ashoppingcart 60
XSL layout definition for the shoppingcart 61

Part of the generated shopping cart Java code encapsulating the HTML code 62

10

4.14 Invokingthegeneratedcode 63

4.15 XSL Stylesheet reusewithpre-processing 65
4.16 XSL Stylesheet for PDA access after pre-processing. 66
4.17 XSL Stylesheet for full HTML access after pre-processing 66
4.18 Page splittingusinggroupsandsubgroups L. 67
4.19 MyXML document for theeventspage 69
4.20 XSL layout definitionfor HTML eventpage 69
4.21 XSL layout definitionfor WML eventpage 70
4.22 An online WML-based order with process partitioning compared to a tradi-

tional HTML-basedorder 71
4.23 XSL layout definition for HTML Webform 73
4.24 Screenshot of smpleHTML Webform 73
4.25 XSL layout definition for the partitioned HTML Web form 74
4.26 Screenshot of the partitioned HTML Web form—Firstgroup 75
4.27 Screenshot of the partitioned HTML Web form —Secondgroup 75
4.28 Invoking the Checkoutayout/content class from the application logic . . . 77
4.29 The MyXML-generated Checkoutayout/contentclass 77
5.1 Relations between thetoolsinthe MyXML tool suite 79
5.2 The MyXML tool suite in Web service construction and operation based on

theDIWEframework 81
5.3 Flowchart showing the main steps taken by the MyXML compiler 83
54 UML class diagram describing the architecture of the MyXML compiler . . 84
5.5 The Dispatcher component configurationDTD 87
5.6 A Dispatcher configurationforaservice 88
5.7 UML class diagram showing the architecture of the Dispatcher component . 89
5.8 The Collector component configurationDTD 90
59 A typical XML Collector component configuration 90
5.10 UML class diagram describing the architecture of the Collector Component 91
5.11 The Output component configurationDTD 92
5.12 A typical XML Output component configuration 92
5.13 UML classdiagram of the Output component 93
5.14 The MyXMLDesigner visual Integrated Development Environment (IDE) . 94
5.15 Configuring general deviceproperties 97
5.16 Simplified UML class diagram describing the architecture of MyXMLDesigner 98
6.1 ManVIFComponentsin2000 101
6.2 Screenshot of the project panefor theVIFproject 107
6.3 Addingthe PDA layouttotheWeb service. 107

6.4 Default HTML programmepage« o v v v v v i i i oo e 111

6.5 Default HTML detailed eventinformation
6.6 Default HTML ticketreservationpage oo oo ...
6.7 Default HTML shoppingcart
6.8 Completing the order (checking out) in the default HTML layout
6.9 Default HTML order confirmation

6.10 Programme, detailed event information and ticket reservation for the PDA
device family (screenshots from an iPAQ running WindowsCE)

6.11 Shopping cart and order form for the PDA device family (screenshots from
aniPAQrunningWindowsCE),

6.12 Programme, detailed event information and ticket reservation for the WAP
devicefamily (assseenonaWAPemulator)

6.13 Part of ticket reservation and shopping cart for the WAP device family (as
secenonaWAPemulator)

6.14 Order form for the WAP device family (as seen on aWAP emulator)

7.1 Thefull HTML interface of the VIF programme as seen on an iPAQ PDA

117

118

119

126

List of Tables

31
3.2

4.1

4.2
4.3

5.1
5.2
5.3

6.1
6.2

7.1
7.2

Comparison of device-independent Web engineering approaches 32
Comparison of device-independent Web engineering approaches 33
Page splitting-related CGI parameters that the page splitting processor inter-

PretS . . . L e e 68
Descriptors that the page splitting processor substitutes at run-time 68
Table showing process partitioning-related CGI parameters the Collector

componentunderstandso 72

The Web service life cycle phases each tool in the MyXML tool suite supports 80

The functionality provided by the toolsin the MyXML tool suite 80
Table showing the device-independence components and the functionality

theyprovide e 85
Identification of MyXML dynamic content functionality oneachpage . . . 105
Device configurationsfor theVIFcasestudy 108
Comparison of the DIWE framework with other approaches 129
Comparison of the DIWE framework with other approaches 130

13

Chapter 1

| ntroduction

1.1 Oveview

Millions of pages and terabytes of information exist on the World Wide Web (WWW) today.
The Web is a dynamic, constantly changing medium and it is the largest growing area of the
Internet. With the advent of the WWW, the demand for Web sites (i.e., services) suddenly
grew and many organizations realized the huge potential of the Web. The Web quickly
became a powerful and important means to stay in contact with customers, provide online
services, express opinions and make profit with e-commerce applications.

The primary language used on the Web is still the Hypertext Markup Language (HTML)
supported by the Hypertext Transfer Protocol (HTTP). HTML was originally created be-
cause scientists at CERN were looking for ways to share information and documents over
the Internet [BCL"94]. It was never expected to gain popularity this fast and it was not de-
signed for the requirements we see in Web sites today: Web sites need to be manageable,
changeable, and need to provide dynamic functionality for interaction with users. The typ-
ical Web development environment usually needs a combination of different technologies,
tools and architectures.

Until the late 90s, the focus of Web service engineering research was the development
of tools, technologies and methodologies for the design, implementation and maintenance
of HTML-based Web sites. The common assumption was that a Web site would always be
accessed by a browser found on a personal computer or a laptop. Recent developmentsin
mobile computing software and hardware not only have changed this view, but have also
increased the importance of device-independeiatcess to Web content: The ability to access
Web sites using a wide variety of Web devicesA Web device is any hardware or software
that can be used to access Web content [LS99] such as telephones equipped with speech
recognition software, digital televisions and Personal Digital Assistants (PDAS).

One of the next challenges faced by the research community and the World Wide Web
Consortium (W3C) is the definition of standards, tools, methodologies and technologies for
the “browser-less Web” and device-independent Web sites.

A major drawback of HTML has turned out to be its lack of support for device-specific
content specification. An HTML Web page, with its tables, fonts, forms, etc., usually only
adequately supportsthe display of apersonal computer and may cause usability problemsfor

CHAPTER 1. INTRODUCTION 2

Web devices with smaller display and memory sizes (e.g., mobile phones). Further HTML
drawbacks are the inflexibility to easily incorporate layout (i.e., presentation, user interface)
design changes and the inability to reuse content embedded in HTML.

In order to eliminate HTML's shortcomings and to define extensible standards that ad-
dress current Web requirements, the World Wide Web Consortium (W3C) defined the eXten-
sible Markup Language (XML) [W3C98a] and the eXtensible Stylesheet Language (XSL)
[W3CO00]. XML is a syntactic meta-language for defining content and other languages and
XSL was proposed and designed because XML by itself does not contain any layout seman-
tics. XSL can be used to add presentation information to content defined in XML. XML and
XSL have gained popularity fast both in industry and in academia. These standards have
paved the way in creating the device-independent Web by providing a basic flexible infras-
tructure to independently define content and layout information. This separation of layout
and content allows the same content to be displayed on different devices by providing the
appropriate presentation information.

XML and XSL alone are not sufficient to design and build device-independent Web sites
that are easy to manage and that can be adapted to meet changing requirements. Users fre-
guently expect interaction, personalization and up-to-date information. Often, major updates
involving multiple documents and external information sources such as databases are neces-
sary.

To support the increasing variety of devices used by people to access Web content, Web
service providers and devel opers are increasingly concerned with the questions:

e How can a service be designedand implementedo that it is able to support different
Web devices?

e How can we make a service device-independent without increagiagnaintenance
effort significantly?

This dissertation provides solutions to the questions and problems mentioned above. It
introduces a novel XML/XSL-based design and implementation technique and a develop-
ment tool suite to support the Web devel oper in engineering device-independent, interactive
Web services. These services can be accessed by a wide range of Web devices such as mo-
bile phones, PDAswith micro HTML browsers, speech-based Web interfaces and traditional
full-fledged HTML browsers.

1.2 Contribution of this Dissertation

Theintegration of device-independence support into the Web service design, implementation
and maintenance phases has not received much attention. Most solutions that have been
proposed only tackle a part of the problem (e.g., Web access through mobile computing
devices), but ignore the bigger problem of how to deal with device-independent Web access
in general. These approaches do not always work when many different devices with varying
display and memory sizes have to be supported.

The new generation of PDAs (e.g., the Compaq iPAQ) and mobile phones (e.g., the Nokia
Communicator) are getting more powerful every day so limitations such as memory and CPU

CHAPTER 1. INTRODUCTION 3

power will probably become lessimportant in the near future. Although the latest PDAs are
even ableto display frames, it is still important to adapt the content for these devicesin order
to provide a satisfactory surfing experience for users.

Thisdissertation introduces the notion of adevice-independent Web service and definesit
asaservicethat can be extendedo support different Web devices of widely varying technical
capabilities. It treatsthe mobile Web access probleama special case of device-independence
support.

My general thesis is that Web services can effectively be made device-independent if
device-independence support is integrated into the Web site design, implementation and
maintenance phases. Adaptation is not only the key to mobile information access [Sat96b],
but to multi-device access in general.

To this end, the dissertation makes the following contributions to knowledge:

e A taxonomy for the comparison of device-independent Web site engineering ap-
proaches.

e A novel XML/XSL-based conceptual framework for building device-independent Web
sites by using a reuse strategy. A constructed site can be easily extended by adding
device-specific user interfaces to it and existing functionality does not have to be mod-
ified.

e The concept of page-splitting and steppingy layout marking so that the information
on a Web page can be split into chunks to support devices with restricted memory or
display sizes.

e The concept of process-partitioning and steppiry layout marking so that Web form-
based interactions in a Web site can be divided into independent steps for interactions
with devices that have restricted memory or display sizes.

e The concept of device-specific XSL stylesheet pre-procesBingeusing existing X SL
stylesheets to ease the overall maintenance effort.

All the concepts have been implemented and demonstrated in a prototype implementation
that is available on the Web for download . The prototype implementation, the MyXML tool
suite includes a visual integrated Development Environment (IDE) for engineering device-
independent Web sites and supports device configuration, device maintenance and device-
independent content authoring.

1.3 Structure of this Dissertation

This dissertation is structured as follows:

The next chapter gives a brief introduction to the Web engineering discipline and intro-
duces basic terms and concepts such as XML, XSL and the World Wide Web service life
cycle. It describes the device-independent Web site engineering problem.

Ihttp://www.infosys.tuwien.ac.at/myxm

CHAPTER 1. INTRODUCTION 4

Chapter 3 presentsthe related work and discusses the different existing strategies and ap-
proaches to creating and supporting device-independent Web sites. It introduces a taxonomy
for the comparison of device-independent Web site design and implementation approaches.

Chapter 4 presents an extended model of the traditional Web service life cycle that takes
device-independence support into account. It presents the Device-Independent Web Engi-
neering (DIWE) conceptual framework for engineering device-independent Web sites and
discusses the novel concepts of page splitting, process partitioning and XSL stylesheet pre-
processing.

Chapter 5 presents and discusses the MyXML tool suite for engineering device- indepen-
dent Web sites. The tool suite is a prototype implementation of the conceptual framework
presented in Chapter 4. The suite consists of the MyXML processor, three configurable
run-time device-independence components and the MyXMLDesigner visua Integrated De-
velopment Environment (IDE).

Chapter 6 discusses the usage of the MyXML tool suitein the device-independent imple-
mentation of the Vienna International Festival e-commerce Web service. It shows how the
tool suite was used to provide Web site access to full-fledged HTML browsers, PDAs and
WA P-enabled mobile phones without the need to modify the existing functionality.

Chapter 7 evaluates the presented concepts and the MyXML tool suite. It discusses
potential problems and lays out future work.

Chapter 8 summarizes and concludes this dissertation.

Chapter 2
Web Engineering basics

This chapter provides an introduction to the Web engineering discipline. It introduces basic
technologies such as XML and XSL and discusses concepts such as the Web service life
cycle. It describes the device-independent Web site engineering problem.

2.1 Terminology

| first define some basic termsthat will be used with consistent meaning in the context of this
dissertation.

Theterm Web Servichas been used since the mid 90sto describe the information offered
to userson aWeb site (e.g., see [CFBOO, ICL97, KIKS01, Sch97]), it isrecently often being
used to denote browser-lesgi.e., machine) access to content on a Web site (e.g., see [Alp,
dev, Sun]). Hence, to eliminate possible confusion and ambiguity, | make the following
definitions:

e Content: Theinformation that is offered to the user (e.g., the price for a book).

e Static content: Content that does not change at run-time. It is mainly stored in files
on servers or in databases and is presented to the user without any processing (e.g., a
home page defined in HTML).

e Dynamic content: Content that is generated at run-time based on the interaction with
the user (e.g., an e-commerce application that presents a welcome text and lists the
current itemsin a user’s shopping cart).

e Layout (i.e., user interface): The formatting information with which the content is
formatted for presentation (e.g., fonts, graphics, buttons, tables, etc.).

e Application logic: Thefunctionality that isnecessary for providing the interaction and
servicesto the users (e.g., maintaining the dialog between the user and the service that
culminatesin the purchase of aticket.).

e Web page: Static or dynamic content on aWeb sitethat isintended for browser-access
and that is accessible through a unique URL.

5

CHAPTER 2. WEB ENGINEERING BASICS 6

e Web service (or Web application): Functionality supported by one or more Web
pages that provide some sort of interaction or information to the user for achieving a
certain task (e.g., booking aticket, retrieving price information, searching). The access
to a Web service can be browser-less, or via browser.

e Static Web service: A Web service that returns static content.
e Dynamic Web service: A Web service that returns dynamic content.

e Web site: Collection of Web pagesnd Web services asingleadministrative domain
(e.g., the Web site of acompany).

e Web tool: A software application that eases the construction of Web applications in
some way.

e Web technology: An industry standard or a collection of Web tools for constructing
Web applications.

e Web engineer: A Web developer who follows a systematic approach to construct Web
Services.

2.2 Web engineering: An emergingfield

With the advent of the WWW, the demand for home pages suddenly grew; many organi-
zational Web sites were initially created without a systematic approach by individuals who
were interested in this new technology and who quickly gained basic knowledge of HTML.
Although the ability of anybodyto put anyinformation on the Web has clearly contributed to
the popul arization and success of the Web, it also resulted in several problems that are found
in many of today’s Web sites.

First, because of thelack of understanding for the Web and hypermediaconcepts, asingle
employee, often referred to as webmasterwas often designated to diverse tasks related to
the Web site such as designing the information, the graphical look of the pages and the
management and updating of information. The workload in many cases was too much for
a single person to handle. Large and complex Web sites usually require a team of content
providers and graphic, layout and interface designers. Indeed, management is a collaborative
task [Str95]. Hence, many webmasters designed the Web pages according to their taste
and picked the information that theyfound important. This sometimes conflicted with the
business objectives of the management level and the image they wished to convey.

Second, webmasters did not have previous hypermedia experience in many cases and the
lack of design guidelines showing what is good and bad on the Web resulted in excessive
use of Web technol ogies such as frames and JavaScript. Furthermore, dynamic functionality
(e.g., a Web-based database program for checking in and checking out books in a library)
is often developed in an ad-hoc manner and most of the time the programs are script-based
and not well documented or designed. This increases the management complexity of Web
sites and makes maintenance difficult. Maintenance becomes especially sophisticated once
the webmaster, not rarely the single person who has a complete understanding of the system,

CHAPTER 2. WEB ENGINEERING BASICS 7

leaves the organization. Some authors have referred to the current situation on the Web as
the Web crisige.g., [GM01]) and have likened it to the software crisige.g., [She95]) in the
1960s when much of the produced software was not reliable and failed to reach basic levels
of quality and user satisfaction.

Due to the nature of the Web, users expect a Web site to offer interactive and up-to-date
content. Managing and maintaining a Web service, hence, usually becomes a challenging
task once the number of services and the amount of offered information exceed a certain
limit. Web engineerin¢e.g., [GMO01, KIJKS01]) isadiscipline that deals with the systematic
design, implementation, and deployment of large-scale, complex, Web-based information
systems. It attempts to define processes and provide devel opment tools that cover all phases
in the life cycle of a Web service. The Web engineering discipline is young and there is
consensus on the need for more evaluation, but many challenges remain, including issues
such as scalability, multi-device access, increased performance, robustness, extensibility,
maintainability and flexibility.

Much of the initial research on Web site design and development was based on the re-
sults of more than thirty years of hypertext research (e.g., see[Eng95, Nel95]) and amajority
of Web engineering researchers came from a hypertext background. A Web site, after all,
consists of a collection of hyperlinks. Although the WWW is not actually hypertext accord-
ing to the Dexter Hypertext Model [HS94], hypertext researchers were quick to realize that
many concepts involved in the design of hypertext are also applicable to the design and im-
plementation of Web sites. Asaresult, several approaches emerged that integrated hypertext
navigational structure considerationsinto the design process (e.g., [DIMG95, ISB95, SR95)).

As the demand for Web sites steadily increased and the amount of information grew,
many sites started using relational databases to store and manage a large proportion of the
offered information (e.g., news sites such as Reuters, CNN, portals such as Yahoo and e-
commerce sites such as E-Bay). Hence, the database community also started working on
Web site design and maintenanceissues, but their focus mainly being the engineering of data-
intensive, relational database-backed sites. Several approaches were proposed that adapted
database concepts for Web site management and design. (e.g., [Goe98, CFP99, FFKL 98]).

Since the mid-90s, the Web engineering field has been gaining popularity fast and re-
searchersinvolvedin thisarea possessall sorts of backgrounds such hypertext, data engineer-
ing, databases, library sciences, education, and lately even reverse engineering. The software
engineering community, however, has been slow to pick up on the trend and to make a sig-
nificant contribution with its knowledge. As a result, many of the well-known approaches
for Web service design and implementation mainly concentrate on staticor database-based
content and fall short in supporting dynamicWeb-based interactions such as those needed in
e-commerce applications.

Hence, many Web applications and services are developed in an ad-hoc manner today
and the main reason is the lack of practical methodol ogies, approaches and guidelines. Doc-
umentation, for example, is asimportant in Web engineering as it isin software engineering
and unfortunately often equally ignored. One reason for this is sometimes the general mis-
conception that the services being built are “simple”’ anyway, and are to be used only for “this
year”. A Web service, however, is often put together using a number of different technolo-
gies and dependencies. Due to the nature of the Web, the architectures of Web applications
are distributed and not always easy to comprehend.

CHAPTER 2. WEB ENGINEERING BASICS 8

As the Web engineering discipline is becoming more mature, it is becoming evident that
methodol ogies, tools, and technol ogies are needed that can effectively deal with the differing
requirements for building Web-based information systems.

2.3 Web service characteristicsand requirements

2.3.1 Information transfer characteristics

The World Wide Web (WWW) consists of the classical client/server model where clients
(i.e., browsers) contact Web servers and request information. The information is returned to
the client in areply message. Users have to locate and retrieve the information actively and
have to remember (or bookmarl the locations of services they are interested in.

One of the main reasonsfor the success of the Web isthe possibility of integrating legacy
applications, data sources and external services under auniform, platform-independent inter-
face (e.g., publicly available gateways provide access to libraries and flight booking systems
that are often legacy applications with a Web interface).

The HTTP protocol used in the Web is stateless and insecure. A transaction management
function often needs to be added to Web applications because of the lack of state and secu-
rity. Most Web servers support the Secure Socket Layer (SSL) protocol for protecting Web
communication against eavesdropping.

2.3.2 Stakeholders

Just like in software engineering (e.g., see [GIM91]), there are different stakeholdersin Web
site engineering projects. The content managerare responsible for providing and maintain-
ing the content to be offered on the Web site. The graphic designerdeal with the appearance
of the Web pages in the site. The Web engineerbave to develop the application logic and
have to integrate it with the content and the layout information. Usually, one or more project
managers are responsible for the timeliness of the project and the overall coordination. Fi-
nally, the visitors (i.e., users) of the site are the target audience that consume the offered
information and use the services.

2.3.3 Basic Web servicerequirements

Each stakeholder in a Web site engineering project will have a different set of requirements
for the Web site.

The content managers will mainly beinterested in easy-to-use update mechanisrisey
will need content management applicationsthat allow them to edit, delete and enter informa-
tion into the Web site and versioning mechanisnis enable them to keep track of changesin
content and work concurrently.

The graphical designerswill be interested in providing an attractive, appealing graphical
look that will attract visitors and that will increase the acceptance of the Web site.

CHAPTER 2. WEB ENGINEERING BASICS 9

The visitors of the Web site will be mainly interested in up-to-date contenénd usabil-
ity. If there is no consistent navigational modahd the site is difficult to use, the typical
visitor will leave and not come back again. This is because the attention spans of usersin
hypermedia environments are very low, and users are impatient [RM98].

Visitorswill also want to use different Web devices they have to access the coimtém
site. A user, for example, will appreciate a Web service that provides a satisfactory surfing
experience with her PDA. On the other hand, she will be frustrated if the information is
difficult to find or access with the PDA.

The project managers will mainly be interested in decreasing the implementation and
maintenance costs and will look for waysto decrease the time-to-market.

All these factors and requirements create a great challenge for Web engineers. The
changes need to be integrated into the site swiftly, without the need for the Under Con-
structionsign that is now infamous, and highly unpopular among Web surfers.

The Web engineerswill look for the ability to integrate off-the-shelf software components
to ease construction and for ways to utilize information in legacy data repositoriés elim-
inate the need to redefine content. Further, they will aim to provide location independence
in case the service needs to be migrated. Their overall goal will be to design and construct
the service in such away so that future requirements can be integrated with ease: They will
attempt to construct extensible, changeabservices.

The key to successfully dealing with al these requirementsis to systematically cover all
the phases in the Web Service Life Cycle

24 Web ServicelLifeCycle

Some authors [NN95] have likened Web engineering to the software engineering process
[GIM9]1]. There are fundamental differences, however. Web engineering includes some
additional tasks: Data analysis, information architecting, navigation management and data
organization. Using the software engineering process in Web engineering may be both diffi-
cult and inadequate [Sch98b].

Every Web service hasalife cycle [TL97] that consists of a sequence of four major steps.
Requirements AnalysiBesign Implementatiorand MaintenanceMost of the existing Web
authoring systems concentrate on the implementation phase and only few provide support
for the design stage. All stages, however, are important for Web services and have to be
supported. Figure 2.1 depicts the Web service life cycle.

From the very beginning of the Web, tools first concentrated on content authoring using
HTML. Later, more sophisticated tools were introduced that provided WY SIWY G support
for authoring content. The next generation of tools started providing help in navigating,
interface design and site management.

The vast majority of the available Web toolstoday are able to create pages and graphical
layouts using simple templates, but lack support for handling major updates involving mul-
tiple documents, dynamic data, and the integration of external information sources such as
databases.

A typical Internet development environment is still quite fragmented. A combination of

CHAPTER 2. WEB ENGINEERING BASICS 10

Requirements

Analysis
*
[
|
: Design
[
| 1
' |
' |
! | Implementation
|
|
| | !
| | |
[| |
________ A1l ——— 5 Maintenance

—» Waterfall Cascades

— — » lterative Feedback

Figure 2.1: Life Cycle of aWeb Service [Sch98b, TL97]

many tools is necessary to implement a Web service. Several aternative approaches have
been introduced (e.g., [GWG97a, Mau96]) that attempt to support all phases of the Web
engineering process.

24.1 Requirements Analysis

The first step in Web engineering is to analyze what type of information needs to be pro-
vided and in what way. Standard software requirements analysis is often necessary when
interactive services need to be provided and Web applications need to be written.

All stakeholders are involved in this phase and each state what they expect the site to do.
The Web engineers usually do not have explicit requirements. Extensibility, for example, is
avaluable asset and a requirement for the Web engineer, but not really a requirement for the
other stakeholders.

The Web engineer’s job is to fulfill the requirements of the other stakeholders. If the
Web services that are designed and constructed can easily be modified and extended, it will
make the Web engineers’ liveseasier once requirements start to changein the future. Clearly,
Web engineers have the main responsibility in building maintainable, extensible Web sites
because other stakeholders are mainly interested in havingtheir requirements covered, but
not in howthey are implemented.

CHAPTER 2. WEB ENGINEERING BASICS 11

24.2 Design

The information collection is organized in the design phase and an architecture of the service
is defined.

Different stakeholders are involved in the design phase. The graphical designers provide
layout mock-ups of the Web pages and use them to get feedback from prospective visitors
and other stakeholders. The usability of the mock-ups and the graphical appearance are
evaluated and improved in an incremental process.

Content managers identify the information that will be offered to visitors and plan and
coordinate how it will be inserted into the site.

The Web engineers design the architecture of the Web service application logic and plan
the integration of the content and the layout. Further, they design the content update mecha-
nisms that will be used to insert content into the site.

The project managers coordinate the activities between the stakehol ders, organize regular
meetings and keep track of the progress.

24.3 Implementation

In the implementation phase, the information and functionality planned and organized in the
design phase is coded in an appropriate format.

Most Web sites use HTML files to deliver static content. These HTML documents can
be written using editors or generated from relational databases using widely available Web
tools.

The functionality and support for interactionsis usually implemented using popular Web
technologies. Most of these technol ogies generate dynamic content by either writing HTML
to a stream that is sent back to the calling client or by mixing layout information with ap-
plication logic in files that are interpreted at run-time by an application server An example
of the first form of interaction are the Perl script[Pag], Java servlet[Jaw98], and C# Arc01]
technologies and an example of the second form are the PHP[RSS™99] and Coldfusion[col]
technologies.

Scripting languages can be server-sideor client-side Perl, for example, is a server-side
scripting language that is interpreted on the Web server. Javascript, on the other hand, is
embedded into HTML and isinterpreted locally on the user’s browser.

Usually, a combination of different technologies are used to implement the interactive
functionality. A server-side Perl script may be used in an e-commerce application, for ex-
ample, to check arelational database for shopping cart information. To save bandwidth, the
user’s input may be validated on the browser using a client-side Javascript beforeit is sent.

2.4.4 Maintenance

Service maintenance is one of the most important and costly issues in Web Engineering.
Similar to software management, the handling of a Web service becomes non-trivial onceits
Size increases [Sch97].

CHAPTER 2. WEB ENGINEERING BASICS 12

Most Web sites today change their appearance at least once a year to stay attractive.
Minor changes in the look-and-feel of a site several times a year are very common, and
major modifications are not rare.

Modifications are motivated by better understanding of user needs based on previously
gained feedback, new requirements, optimization strategies and new market directions.

Service maintenance involvesinfor mation updates and content management, naviga-
tion management, ver sion management and service migration.

Ad hoc navigational links are embedded almost anywhere in Web services. Unfortu-
nately, links may be broken due to the nature of the Web. Navigational management is
necessary for checking the validity of the links and resources for consistency and integrity.

Service migration is the movement of a part of, or the entire Web service, to another
host. Service migration isoften necessary as hardware is updated, performance reguirements
change, and new versions of software components become available.

Version management is an important issue in service maintenance because it allows Web
engineersto issue releases of scriptsand source code and keep track of functionality changes.
Furthermore, a versioning system allows content managers to work concurrently. Versions
increase the manageability and maintainability of the service — especially when dynamic
content isinvolved.

Versioning also allows the analysis of the evolution of the site. By checking the logs,
site-specific information can be retrieved such as the pages that had to be updated regularly
and those that did not change much. Thisinformation can be utilized to maintain and adapt
the services according to the users needs.

Standard versioning systems, such as CV'S, [cvs] may be deployed for version manage-
ment.

2.5 Flexibility

A flexible Web service isa service that is easy to extend and maintain. The modificationsin
the graphical layout and the look-and-feel of the service is one important flexibility issue for
Web services. The most important aspect of flexibility, though, isthe ability to integrate new
functional requirements without having to do major modifications to the system.

The first generation of HTML document standards lacked support for layout flexibility.
Attempts were later made to eliminate these shortcomings by extending the HTML stan-
dard with technologies such as the Cascading Style Sheets [W3C]. CSS defines common
formatting properties such as font size, font family, font weight, paragraph indentation and
paragraph alignment. One can specify, for example, that all H2 HTML elements should be
formatted in 24pt Times New Roman font. Multiple stylesheets can be applied to a single
element and the styles then cascade according to a particular set of rules.

In order to eliminate HTML's shortcomings and to define extensible standards that meet
requirements such as layout flexibility, the World Wide Web Consortium (W3C) defined the
eXtensible Markup Language (XML) standard along with the XML Style Sheet Language
(XSL).

CHAPTER 2. WEB ENGINEERING BASICS 13

Both technologies are important for Web engineering because they are standards and
have gained popularity fast. Many software vendors are integrating XML and XSL support
into their products and a wide range of XML/XSL-based tools are available today such as
editors and configuration tools.

251 XML

XML isaset of rulesfor defining semantic tagsthat break adocument into parts and identify
the different parts of adocument. It is a meta-markup language that defines a syntax used to
define other domain-specific, structured markup languages [Har99].

XML is not just another markup language such as HTML. HTML defines a fixed set of
tags (e.g., H1 for Heading 1, H2 for Heading 2, etc.) that describe a fixed number of ele-
ments. The main difference of XML isthat it is amarkup language in which one can define
tags as one wishes. These tags must be organized according to certain general principles, but
their meaning isflexible.

Suppose we would like to describe students by noting their name, age and computer
science knowledge. We can create tags for each of these. The XML definition of thisinfor-
mation may look something like this:

<?xm version="1.0"7?7>
<st udent >

<nanme> Engi n Kirda </ nane>

<age> 28 </age>

<know edge> Expert :-)) </know edge>
</ student >

Thislisting uses meaningful tags such as ageand namethat we defined.

Thetags we defined can be documented in aDocument Type DefinitiogfidTD). The DTD
[W3C98b] can be thought of as a vocabulary and a syntax for certain kinds of documents.
XML definitions do not necessarily need to have a corresponding DTD. A DTD merely
alows the validity (i.e., the conformance to the syntax defined in the DTD) of XML infor-
mation to be checked. All XML documents, however, have to follow a specific set of rules
such as having a header at the beginning and having a closing tag for every opening tag (e.g.,
if there is an <engin> tag, then there mustbe an </engin> closing tag). XML documents
that conform to these specific set of rules are said to be well-formed Well-formednessis the
minimum requirement for XML information.

While one might find it useful to write documents that use a single markup vocabulary,
it is sometimes even more useful to mix tags from different XML definitions. The problem,
however, isthat when mixing tags from different XML definitions, one might find the same
tag used for two different things. In an e-commerce related XML definition, for example,
the tag namecould refer to the name of an article rather than the name of a student as in
the previous example. Namespacedisambiguate these instances by associating a Universa
Resource Identifier (URI) with each tag set and attaching a prefix to each element to indicate
which tag set it belongsto. Thus, one could have a students:namé&sg and an articles:name

tag.

CHAPTER 2. WEB ENGINEERING BASICS 14

Unlike HTML, XML does not describe the layout (i.e., formatting/presentation) of the
elements on a page. It describes a document’s structure and meaning and only contains tags
that say what isin the document and not howthe document should be presented.

A layout can be added to an XML document with a stylesheet. For this purpose, XSL is
used.

252 XSL

XSL isan advanced stylesheet language specifically designed for use with XML documents.
In fact, XSL documents themselves are XML documents.

XSL isdividedinto two parts: transformations (XSLT) and formatting objects (XSL:FO).
XSL:FO is alanguage for describing 2D layout of text in both digital and printed media.
XSLT, on the other hand, is a language for transforming one XML document into another
textual format.

XSL documents contain a number of rules (called template¥ that apply to particular
patterns of XML elements. An XSL processor reads an XML document and compares it to
the rules in the stylesheet. Whenever arule is recognized, transformation rules are invoked
and corresponding output text is generated. Unlike CSS, the output text isarbitrary and is not
limited to the input text plus formatting information. XSL is far more flexible and powerful
than CSS and it is better suited to XML documents. XML documents can aso be easily
converted to HTML documents with CSS styleshests.

The following simple XSL stylesheet prints the HTML fragment “
This is some
name
" for every student nametag defined in the previous XML definition. Every time
it recognizes a studentag, it recursively processes student names.

<?xm version="1.0" ?>
<xsl : styl esheet
xm ns: xsl ="http://ww. w3. org/ XSL/ Transform 1. 0">
<xsl : tenpl at e mat ch="student ">
<xsl : appl y-tenpl at es/ >
</ xsl :tenpl at e>

<xsl:tenpl ate mat ch="nane">

This is sone nane

</ xsl :tenpl at e>

Template rules defined by the xd:template element are the most important part of an
XSL stylesheet. Each template rule is an xdl:template element. These associate particular
input with particular output. Each xsl:template element has a match attribute that specifies
which nodes of the input document the template isinstantiated for.

To get beyond the root element(i.e., the first tag, studentin our example), the XSL
processor needs to be told to process the children of the root. In general, al child elements
are recursively processed using the xd:apply-templates directive.

CHAPTER 2. WEB ENGINEERING BASICS 15

XSL provides advanced functionality such as conditional loopsif/then/casedirectives
and a powerful mechanisms (i.e., XPath for selecting elements.

One frequent use of the XML and XSL technologies is to create flexible static content
for multi-purposepublishing® [LS99]. Using XSL, the content in XML is transformed into
an appropriate format for different target devices.

Although the XML and XSL standards have created a basic flexible infrastructure to
independently define content and layout information, they are not sufficient alone to design
and build device-independent Web sites that are flexible and maintainable.

2.6 Thedevice-independent Web engineering problem

This section discusses the device-independent Web site engineering problem that this disser-
tation tackles. It presents simplified, as well as real-world examples to define and illustrate
the problem.

2.6.1 Historical overview

The problem of device-independence is not new in computer science. Since the very early
days of computing, computer displays and hardware have always had widely varying techni-
cal characteristics. Hence, differences such as display sizes and graphical capabilities had to
be supported by operating systems and programs. Modern operating systems provide device
abstractions to programs and support different devices using drivers.

The situation was similar for the Web in the mid 1990s. Many users existed that did not
have access to graphical browsers and were using browsers such as Lynx on dumb terminals
with text-only characteristics. As aresult, it was considered good Web design practice to
offer the content in pure textual form (without graphics) as well as in a more appealing
graphical look. The reader familiar with the Web since its early days will remember pages
that had a “text only” link in the navigation bar. Another solution that was often used to
deal with limited text-based devices was to keep the design of the HTML-pages as simple as
possible so that all browsers and displays could satisfactorily cope with the rendering of the
content.

In fact, the original HTML definition did not contain elements such as and the
font sizeattribute. Generic font type and size tags such as <h1> and <h2> were used that
were device-independent: The browserinterpreted the size and fonts of headings according
to user settings or the device characteristics.

As concepts such as corporate imageor identity [Qui94] started emerging and gaining
in importance, however, the demand for more functionality grew and companies such as
Netscape and later Microsoft started expanding the HTML element set to meet the demand.
As aresult, HTML incompatibilities occurred because of the different HTML namespace
implementations. Unfortunately, thisis still the case sometimes in Web development. It is
not uncommon, for example, for atable to look quite different on a browser such as Netscape
when compared to the Internet Explorer. These differences are the main reason why Web

1Sometimes also called syndication

CHAPTER 2. WEB ENGINEERING BASICS 16

companies and customers usually agree on a browser in projects that will be guaranteed to
work with the provided functionality.

With the increase in available functionality, the trend of supporting alternative, simpler
text interfaces largely disappeared. Instead, users visiting a site were often “encouraged” to
download a newer version of a browser (e.g., the infamous “This site is best viewed with
Netscape version...” type messages) and the common assumption that a user would at |east
have 600-pixel width screen estate started to establish itself among Web designers. Many
Web sites today require at least a mid-size display (i.e., minimum 800x600 pixel size) for
a satisfactory surfing experience and HTML extensions such as frames cause problems on
smaller displays. Figure 2.2 illustrates the difficulty of supporting small displays. Note that
the user cannot see a large proportion of the information on the site. Much scrolling is
required, thus, increasing the cognitive overhead and decreasing usability [RM98].

) £l Interne ore i

sxxer http: [feewre infosys. tuwien.ac.at/ ~||Los

Distribnled Sysiems Group i)
Technische Universitat Wien
: =

A

|
Ansicht Extras <= [2) (3 B3|

Figure 2.2: The difficulty of supporting small displays: The DSG homepage as seen on an
iPAQ PDA

Even though most browsers conform to the W3C HTML standardsthat were |ater agreed
upon, browser-specific (and therefore device-specific) functionality already exists and ele-
ments that are not device-independent such as have therefore been standardized.

Figure 2.3 depicts the differences in design between the 1995 version of a commercial
Web site (the Viennalnternational Festival home page) and the 2001 version. Note how much
simpler the 1995 version is compared to the newer version. Tables are used extensively by
the graphical designersin the 2001 design.

Recent developments mobile computing software and hardware (e.g., Wireless Access
Protocol (WAP) access provided by mobile phone providers) and speech technology (e.g.,
the definition of the VoiceXML XML language for defining speech-based Web applications)
have highlighted the need for device-independent Web access, once again [BFJT01]. The

CHAPTER 2. WEB ENGINEERING BASICS 17

| [SeMeshamesekAmpaihamepage html o [Eosearch] | ¢§§°

Altavista %5 AlTheWeh

WIENER
FEST
WOCHEN

Uber die Wiener Festwochen
Geschichte & Anmerkungen

Schwerpunkte

Schauspliel, Hoppla, wir leben & Zeit [Schnitte 1985
Musiktheater, Musikfest & Musiksommer (Klangbogen)

Lesungen & Ausstellung
MNew im Frogramm
Ubersicht

Kalendar, Organisatoren & Auffiihrungsorte Y

Information

Earten, Adressen & Fresseforos

1995

pow mp o @ @ ﬁ‘@suchen (il Favaricen 38 verlauf |%v S ' & 2

trih

¥ostenlose Hotmail @Links ANPassEn @W‘iﬂdmwsa Dy RealPlaver
Home Programm Tickets News Archiv Hontakt English

Vom 11.Mai - 18. Juni 2001 ' (
wird's kritisch. e \
fiener

"Einer Kulturnation unwurdig!" Festwochen

Highlights

'_2_9.0;.2@!31 | Ausstellung Erwartung - Arbeiten von Giinter Brus
<Odeon, 31 Waiund 1. Juni; 14 .00 - 13.00 Uhe, Eirtritt frei > seiter

Ak Bpril e sktuelizten Festwochen-
Informationen aus den Kuttursendungen des. 20.05:2001 | Progr i i - Heu im Programm

i i i ;
QB{‘V sammenigstasst aut > ORE KULTUR “Gastzpiel CUERPOS A banderados von Bestriz Catani, disthester Kinstlerhaus, 14,15, 16.,
A7, Juni, 20030 Uke > wveiter

Eizherzsiorarunden, Bultur-Check - der Test

It

2903 2@01 | Progr i i - Heu im Programm
Ursuffihrungizzenizche Lesung Der biblische Weg von Arnold
SchionberghiuseumsGuartier, Halle E, 4. Juni, 1930 Uhr ¥ weiter

Hews

©2001-03-30 | Einfihrung SzenePenthesileaEinTraurn(1999-2000)

Wit -Christian Ofenbauer, LIf Schirmer, Lutz Graf, Klaus-Peter Kehr, Dominigue Mentha, Birgit
Meyer und SalistenMaderation: Peter Dugsek, Theater an der Yien, grofker Pausenraum, 17,
bilai, 17 .50 Uhr, Freier intritt- > weiter

2001-03-30 | Programmeinfithrung Erwartung / Lohengrin
won Christisn Baier, Cdeon, 30., 31 Mai, 1. Juni, 19.00 Uhr, Eirdeitt frei > weeiter

Hauptaponzoren

i +2001-03-30 | Programmeinfiihrung Intolleranza und Erwartung / Lohengrin
Wilener Festwochen :

Mit: Muria Sehoenkery Mono, Peter Burwil, Salvators Sciarring, Christian Meyer, Klaus-Peter
Kehrivioderation: Peter Duzek &rmold Schidnbery Certer, 28 &prit, 1108 Uhr, Freier Eintritt >
wgiter

2001

Pressespiegel

2001

Figure 2.3: Screenshots of the 1995 and 2001 VIF home pages

CHAPTER 2. WEB ENGINEERING BASICS 18

challenge, however, is greater this time. The Web site has to be accessible by users using
Web devices that have a wide range of display sizes and memory limitations, and that may
require aspecial XML -based Web formate.g., the Wireless Markup Language (WML) isan
XML language that has been specially designed to describe small pages that can be accessed
by WA P-enabled mobile phones).

The next section describes and illustrates the device-independence problem from the Web
engineering point of view.

2.6.2 Problem: Constructing maintainable, interactive device- inde-
pendent Web services

One Web-based mobile computing service that has become quite popular in the last couple
of yearsis providing custom-tailored information for PDAs that users can download from a
Web site for offline-browsing.

Varnum in [VarO0], for example, discusses how PDA-services were deployed at Ford
and presents an experience report. The problem was that managers and company leaders
that were higher up in the company hierarchy did not have any time to get information
from the company intranet. These people were always busy and only had time between
meetings. They preferred to get their emailsin paper form and had time for correspondence
in cars, during flights, etc. Interestingly, though, it was observed that PDAs had found a high
acceptance by these people.

The IT department decided to utilize the wide usage of PDAS (i.e., Pams in this case)
and developed a system with which Web sites in the intranet can be downloaded to these
devices. The interactions are offline and any forms submitted are queued in the PDA. All
requests are sent once the PDA is synchronized and connected to the PC.

Only some services are offered for PDAs and the server-side scripts offering these ser-
vices had to be modified or duplicated. One observation was that it pays to make low use
of images on the Palm output. Users are primarily interested in acquiring information and
the images do not serve an important navigational purpose on low-resolution displays. Even
after eliminating graphics, though, there is till precious little screen space available. Fur-
thermore, although the PDA is able to render tables, simpler pages render faster. Thus,
performance considerations played a significant role in designing the pages.

The server-side scripts were in Perl and it was not too difficult to modify them in this
case.

The problems, however, were: 1) Therewasllittle logic reuse — hence making code main-
tenance more difficult as the site grows, and 2) The modification of the Perl scriptsis an
ad-hoc solution and although it solves the problem, the solution is temporary and does not
guarantee that the services will be able to support other Web devices and formats in the fu-
ture as the requirements evolve. Supporting a speech interface using VoiceX ML, or creating
a PDF version of the information in the intranet for the managers, for example, would need
a considerable implementation and maintenance effort.

In the Distributed Systems Group at the Technical University of Vienna, we experienced
asimilar problem. We had a Web-based grading service that enabled the studentsto look up
the grades they had earned in courses. This service was a script-based solution using Perl.

CHAPTER 2. WEB ENGINEERING BASICS

rpackage gr adi ng;
dbnopen (%iles,"files", undef);

#-- gradi ngCodeLayout ---------------“-“““““----- - -
$cl asses{" gradi ngCodeLayout"} =

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 3.2 Final//EN'>
<HTM_>

<TITLE> Engin Kirda </TITLE>

<BODY BGCOLOR=#FFFFFF TEXT=#000000
LI NK=#0000FF ALI NK=#000000 VLI NK=#800080 >

<t abl e border="0" wi dth="100% cell spacing="0" cell paddi ng="0">
<tr>
<td bgcol or ="#000000" VALI G\=" CENTER' >
<ing src= inmages/title.gif ALT="Docurment Title">
</ TD>

</tr>
</t abl e>
<t abl e><tr><t d>
Grades $f orwhom </td></tr>
<tr><td>
$content </ td></tr></tabl e>';

Figure 2.4: Part of the Perl script implementing the HTML grading service

rpackage gr adi ng;
dbnopen (%iles,"files", undef);

#-- gradi ngCodeLayout ------------------------- -
$cl asses{"gradi ngCodeLayout"} = '<?xm version=\"1.0\"7?>
<! DOCTYPE wmr PUBLIC \"-//WAPFORUM / DTD WML 1.1//EN”
\"http://ww. wapforumorg/DTD/wr _1.1. xm\">
<wni >
<t enpl at e>
<do type=\"prev\"> <prev/> </ do>
</tenpl at e>

<card id=\"result\" title=\"Query Results\">
<p>

Grades $forwhom </ p>
$cont ent

</ card>
</ wm >

sub gr adi ngCodelLayout # call as gradi ngCodelLayout
($cont ent, $f or whom $ht t pr oot , $now)

| ocal ($content, $f orwhom $httproot, $now) = @;
$_ = $cl asses{"gradi ngCodeLayout "};

eval qq/"$_"/;
}

Figure 2.5: Part of the Perl script implementing the WAP grading service

19

CHAPTER 2. WEB ENGINEERING BASICS 20

After seeing that WAP services were being offered by Web sites such as banks and cinemas,
we decided to offer the grading service we had through an additional WAP interface.

Figures 2.4 and 2.5 depict parts of the Perl scripts that provide the functionality. The
layout information (e.g., tags such as <html>, <wml>, <table>) are directly hard-coded
into the source code. Note, also, that there is a considerable amount of overlap and duplica-
tion between the scripts. This approach is typical and the easiest solution to building Web
servicesthat can support more than one device. It clearly does not scale and may cause main-
tenance nightmares. If, for example, there is a need to generate a PDF report for the student
grades, the source code hasto be copiedand modified in an ad-hoc manner to incorporate the
new requirement. This approach would solve the problem for a while, but whenever there
is a need to change the underlying application logic, the duplicated logic would have to be
modified aswell.

The described problem is wide-spread when popular, traditional technologies such as
Java servlets, PHP and ASP are used. Figure 2.6 shows a fragment of the Java servlet code
from a commercial Web site that provides shopping cart functionality. The servlet displays
the contents of the user’s shopping cart in HTML. The entire HTML information is inter-
mixed with the content and the application logic and is hard-coded into the code.

One source-code level solution would be to integrate device-specific content and layout
information into the application logic for every new device. Thisintegration, however, isnot
necessarily easy because it involves the analysis and modification of the code. This can be
an error-prone and expensive task. It may become especially difficult when different display
sizes have to be supported and memory limitations exist.

/1 Go through the Shopping List and print everything...
for (int i=0; i<=eventList.size()-1;i++) {
Shoppi ngCart Event event = (Shoppi ngCart Event)
event Li st.elenment At (i);
dat abase. get Event I nfo(event. get Eventld());
out.println
("<tr><td colspan=\"3\" align=\"center\">"+
dat abase. get Event Titl e() +"</ b></td></tr>");

if (!database. get SecondEventTitl e().equal s("Nothing")) {
out.println("<tr><td colspan=\"3\" align=\"center\">"+
"Shown together with:
"+
dat abase. get SecondEvent Titl e() +
"</ b></td></tr>");

Figure 2.6: Part of the VIF 2000 servlet code implementing a shopping cart

The presented examples show that the main device-independence Web site engineering
problem is the increase in maintenance complexity as the number of devices that need to
be supported grows. Because Web sites are usually not designed to support Web devices of
varying technical characteristics, it is sometimes difficult and costly to integrate support for
anew device.

A maintainable, higher-level solution isneeded to support the design and implementation
of interactive, device-independent Web sites. The solution has to cover the following main

CHAPTER 2. WEB ENGINEERING BASICS 21

requirements:

=

. It should provide support for the different phases in the Web service life cycle.
2. It should support both static and dynamic content.

3. Application logic reuseshould be possible so that the logic does nohave to be dupli-
cated. The samelogic needs to workvithout modifications with any Web device no
matter what its display and memory sizeis.

4. 1t should be possibleto providethe content in the sitein any standard XML Web format
(e.g., VoiceXML, WML).

5. It should notincrease the maintenance effort significantly.

| define the notion of a device-independent Web sitethis dissertation as a site that is
flexibleand can be extendedo support different Web devices of widely varying technical ca-
pabilities and propose a solution that fulfills the requirements listed above. | present a novel
XML/XSL-based Web service design and implementation technique that allows the system-
atic construction of device-independent, flexible Web sites. New Web device support can be
added to the Web sites with ease and existing functionality does not have to be modified.

2.7 Summary

This chapter provided a brief introduction to the Web engineering discipline. It introduced
basic technologies such as XML and XSL and discussed the Web service life cycle and ser-
vice flexibility. It described the device-independent Web site engineering problem and de-
fined the goalsfor a solution that allows the engineering of maintainable, device-independent
Web sites.

Chapter 3

Related Work

Much research has been done since the early 1990s on Web service design techniques,
methodol ogies and development tools. Most of the existing work focuses on the construc-
tion of HTML-basedNeb services. Since the beginning of the year 2000, device-independent
Web engineering has been receiving growing interest.

This chapter presents related work. First, it describes and discusses traditional Web en-
gineering approaches and mobile Web access techniques that do not explicitlyattack the
device-independent Web engineering problem, but that are relevant and important as back-
ground work. Second, it introduces a taxonomy for classifying and comparing the solutions
that explicitly tackle the device-independent Web engineering problem and third, it describes
and eval uates these approaches.

The next section gives a brief overview of research on device-independent Web access.

3.1 Brief overview of research on device-independent Web
access

The majority of the authors describe the mobileinformation and Web accesproblem (e.g.
[Sat96b, KAK*00Q]). Many conferences and workshops are being held that address problems
related to information access from mobile computing deviceswith restricted capabilities such
as mobile phones and PDASs.

The term mobile e-commercgSen00] has also recently gained popularity. There is a
genera expectation that much commerce over the Internet and the Web will be performed
viamobile devicesin the next decade (e.g. [Gla01]).

At the same time, there is another growing market: Web access via speech recogni-
tion and synthesis technologies. This application area is especially important for companies
involved in the speech technology market. Speech recognition systems are aready being
deployed in many organizations such as airports and banks. They allow customersto call by
phone and retrieve information such as flight information and the current account balance.
Providing speech access to the Web, thus, isinteresting for these companies.

Research in speech-based Web access has led to the specification and development of
VoiceXML [Luc00]. VoiceXML is an XML-based language that alows interactive speech

22

CHAPTER 3. RELATED WORK 23

applicationsto be written that provide access to Web content. It has been quickly adopted by
companies and the number of VoiceXML devel opment environments and tools are increasing
every day.

Ralph in [RS01], for example, looks a8 WAP's “failure”. Much hype was involved in
marketing WAP and users expectations were not met. Interactions with WAP devices are
usually so difficult that, according to Ralph, speech interfaces based on VoiceXML will
increase in importance.

Ralph also states that British Telecom (BT) has been experimenting with Portia, a cor-
porate voice portal that provides a voice interface to the systems that people use every day
in the course of their work. It was discovered that people that are using a portable laptop or
a PDA also use Portia. The experimental usage results were promising and users use Portia
because it seems to be quick. Portia has been running in atrial setting with 200 users (see
[RSO1]).

Clearly, the problem is not only mobile or speechaccess to the Web, but device-
independent access in general. As a result, a device-independent Web working group was
established within the World Wide Web Consortium last year and this group aims to address
general device-independence issues that are related to Web access from a wide variety of
fixed and mobile devices such as watches, televisions, telephones, PDA s and mobile phones.

3.2 Traditional Web engineering approaches

Traditional HTML-based Web engineering approaches and tools have been classified in the
past (e.g., [Fra99, Scho8b]) as belonging to four groups: Page-based editors, site manage-
ment tools, Web service models and object-based approaches.

Among the phases in the life cycle of a Web service, the design phase is usually the
one that is either ignored or that receives less attention (e.g., [GMO01, KIJKS01]). Since the
mid 90’s, the specia importance of the design phase in the Web service life cycle has been
identified by many authors (e.g., [BMY 95, BN96, NN95, Qui94, Stro5]). Several models
and methodol ogies have been proposed for the construction of Web services and hypermedia
systems.

3.2.1 TheDexter hypertext reference model

The Dexter Hypertext Reference Model [HS94] isthe most influential hypermediareference
model in literature. It was defined because many hypermedia systems existed and it was
difficult to classify and compare them. Because of the existing differences, it was important
to capture the significant abstractions both formally and informally.

The Dexter Hypertext Reference Model consists of three layers: The Within-component
Storageand Run-timeayers. The Within-component layer covers the content and structures
within hypertext nodes The Storage layer describes the network of nodes and links that is
the essence of hypertext. The Run-time layer describes mechanisms supporting the user’s
interaction with the hypertext.

CHAPTER 3. RELATED WORK 24

The model focuses on the storage layer and the mechanisms of anchoringand presenta-
tion specification that form the interfaces between the three layers. The fundamental entity
in the storage layer is the component. A component is either an atom, a composite entity or
alink made from other components.

At the time the Dexter Hypertext Reference Model was defined, no hypertext systems
existed that had to support more than one type of layout. The model, however, is quite
flexible and there are no restrictions that only a single layout has to be built on top of the
Storage and Within-component layers.

Unfortunately, the Web is not hypertext according to the Dexter Model because a storage
layer that contains a database of nodes (i.e., content) and links does not exist. “Broken” links
can exist on the Web whereas thisis not possible in a hypertext system.

Another shortcoming of the Dexter model is that it does not take application logic into
consideration.

3.2.2 TheRéationship Management M ethodology (RMM)

The Relationship Management Methodology (RMM) [DIMG95, 1SB95] for building hyper-
text applications is well-known in the Web engineering community. It is one of the first
attempts to define guidelines for the systematic construction of Web applications (i.e., hy-
pertext).

RMM is based on a data modeling language, Relationship Management Data Model
(RMDM), that is developed by the authors and based on the Entity Relationship (ER) Model
(e.g., [TYF86]) used in database modeling.

The methodology is based on the traditional software engineering process and focuses
on the design, implementation and construction phases for hypermedia applications. It has
seven steps for hypermedia service management: 1.) ER Design2.) Slice Design3.) Nav-
igational Design 4.) Conversion protocol desigrb.) User-Interface screen desigb.)
Run-time behavior desigand 7.) Construction Steps four to seven are tasks beyond the
modeling of hypermedia information and must either be done manually, or by using tools
that provide automated support for these steps. (e.g., RMC [DIMG99)).

The RMM Methodology is well-suited for applications that have aregular structure, es-
pecially where there is afrequent need to update the information to keep the system current.
Traditional sitesthat rely heavily on aRDBMS can benefit from the usage of this methodol-
ogy.

The main restriction of the methodology is that it has no support for the design and
integration of application logic.

3.2.3 Object-Oriented Hypermedia Design M ethodology (OOHDM)

The Object-Oriented Hypermedia Design Methodol ogy [RSL 99, SR95, SRB96, Sd98] (OOHDM)
consists of four steps. The methodol ogy uses Object-Oriented (OO) concepts and techniques
for systematically building hypertext applications.

CHAPTER 3. RELATED WORK 25

The OOHDM steps are 1.) Domain Analysis2.) Navigational Design3.) Abstract
Interface Designd.) Implementation

In the domain analysis step, a conceptual model of the application domain is built using
well-known OO modeling principles. The model is augmented with some primitives such as
users and tasks.

In the navigational design stage, the navigational structure of the hypermedia application
is described in terms of navigational contexts that are induced from navigation classes such
as nodes, links, indices and guided tours. Links are derived from conceptual relationships
defined in the first step.

In the abstract interface design phase, the abstract interface model is built by defining
perceptible objects (e.g., apicture, acity map, and for so forth) in terms of interface classes.
Interface objects map to navigational objects, providing a perceptible appearance.

Finally, in the implementation phase, interface objects are mapped to implementation
objects.

Just like RMM, OOHDM assumes that Web services are merely hypertext. The main
focus of the methodology is the design of the navigation, but no real support is provided for
the implementation and maintenance stages.

In theory, it could be possible to use OOHDM to model the user interfaces and navigation
for different devices that a Web service supports.

3.24 W3DT and eW3DT

The WWW Design Technique [BN96] (W3DT) has been proposed by Bichler and Nussler.
The authors present observations that have a high practical value. In [BN96], the authors
identify the problems on the Web well and also note the insufficiency of traditional hypertext
modeling methodol ogies such as OOHDM and RMM.

The difference of their technique, they state, is that it has been designed for large Web
sites(in contrast to hypertext). Analogous to our previous discussion, the authors note that
although the Web is based on hypertext, it is not realy hypertext according to the Dexter
model. Their paper identifies the importance of communication between the different par-
tiesinvolved in a Web project (users, designers, application developers, etc.). Furthermore,
it draws attention to distributed services and states that Web services might be distributed
across organizations and corporations. It notes that design mechanisms and methodol ogies
are missing in this area.

According to Bichler and Nussler, models are needed for communication between man-
agement, end-users and programmers. These models help to avoid structural inconsistencies
and the reusing of global structures of applications becomes possible.

W3DT is a simple-to-use graphical methodology. They have also implemented a ssm-
ple tool that provides support during the graphical modeling. The tool generates HTML
templates and CGI code from the model.

Scharl and Bauer [BSO0b, Sch98a] have extended W3DT and called it the Extended
Wa3DT (eW3DT). The ideas they present attack the problem of meta-modeling Web-based
Information Systems (WISs) for communication between users, managers, designers and

CHAPTER 3. RELATED WORK 26

implementors. It presents a graphical representation of Web interactions?.

The graphical models the authors present are HTML-based (e.g., they are graphical no-
tationsfor HTML pages), the content is embedded in HTML pages and there are no consid-
erations for device-independent access.

3.2.5 Webcomposition and W30bjects

Webcomposition [GWG97b, GGS*99] concentrates on the manageability and maintainabil-
ity of hypertext services and extends OOHDM. A Web application is decomposed hierarchi-
cally into so called components. At the higher level, acomponent may model a page or even
a site. Further down, a component relates to parts of HTML pages such as tables and nav-
igation bars. The Webcomposition model allows the sharing of components and prototype
documents.

A component in Webcomposition can be associated with any complete resource such as
an HTML page or a Perl script generating an HTML page.

Some of theideas presented in Webcomposition are quite similar to W3Objects[DM CS95,
ICL96, ICL97]. InW30bjects, componentsare simply called objects. Different viewscan be
built on services and ‘ components'. So called W3OScriptsare able to access the functional
interface of a service. This mechanism can be used to include other views as components.

Both W30bjects and Webcomposition provide support for covering all the phasesin the
Web service life cycle.

3.26 Strudd

In [FFKL98], the authors present a Web site management tool, Strudel, that adapts database
concepts for Web site management. The key idea of thetool isthe separation of the structure,
content and visual presentation of Web sites.

The designer first creates a uniform model of all the information in the site. Then, the
builder buildsthe site using a query language — StruQL.

Strudel is based on a semi-structured data model of labeled, directed graphs. This model
was introduced to manage semistructured data, which is characterized as having few type
constraints, irregular structure, and rapidly evolving or missing schema.

One disadvantage of the tool is that existing data needs to be integrated using wrappers
and scripts written by hand. Furthermore, the authors state that Strudel does not have any
dynamic content generation support.

The layout, in Strudel, is integrated using HTML templates. The authors state that the
usage of HTML templatesin their system have many advantages. The usage of HTML tem-
plates, however, is not new and many industry tools such as PHP [RSS*99] and Coldfusion
[col] provide similar functionality. One disadvantage of using HTML templatesis that they
do not support complex navigational structures.

INote that the same problem was picked up by Conallen later and he extended UML to model Web interac-
tions — see [Con99]

CHAPTER 3. RELATED WORK 27

3.2°7 Araneus

Araneus [AMM*98a, AMM98b] aims to define an environment for managing unstructured
and structured Web content in an integrated system called Web-Based Management Sys-
tem (WBMYS). A relational database is used to store data and meta-data about the structural
information.

The Araneus system has a conceptual model and a design process. First, the database
is modeled using the traditional EER [TYF86]. Then, the hypertext conceptual modeling
formalizes navigation by converting the EER schema into an Navigation Conceptual Model
(NCM) schema. The implementation is done using page-schemas in the Penelopdanguage
that specifies how the physical pages are constructed from the content in the database and
the logical page schemes.

One disadvantage of Araneusisthat it requires a proprietary HTML-dependent template
language for specifying the layout. Furthermore, it does not have any support for application
logic integration.

3.3 Mobile Web accesstechniques

Initially, much of mobile computing research concentrated on operating system, file, resource
and datamanagement support for mobile usersmainly carrying laptops(e.g., [LB96, MES95,
Sat96h, Sat96a, Sat89]). As the importance of the Web increased, more people have started
working on mobile Web access problems and some have even predicted that one of the next
big challenges of the Internet is mobile access to Web content (e.g., [AF99, Frad7]).

Severa transcodingtechniques have been proposed that attempt to convert and adapt
content available in HTML to be viewable on mobile devices. The quality of images, for
example, may be decreased at run-time for devices that have limited memory sizes. Another
exampleisdisplaying images of varying quality to the user based on the available bandwidth.
Some approaches try to automatically convert content available in an unsuitable form (e.g.,
HTML with frames) to a suitable form (e.g., WML, HTML without tables, etc.). The am
of these approaches is to provide “intelligent” algorithms that can convert the content with
minimal information loss and provide a satisfactory surfing experience for users.

Some researchers are focusing on summarizatiortechniques that attempt to automati-
cally summarize Web content by extracting important information and making it viewable
on devices with small displays or memory limitations. Rules have to be often set up with
which summarization and extraction can be’'guided’.

Existing summari zation approaches belong to two classes[HM00]: Knowledge-poor and
Knowledge-rich approaches.

Knowledge-poor approachesrely on not having to add new rulesfor each new application
domain or language. Knowledge-rich approaches assume that if you grasp the meaning of
the text, you can reduce it more effectively, thus yielding a better summary.

Summaries may be extracts or abstracts. Knowledge-poor approaches, at least for the
short term, are likely to dominate applications, particularly when augmented with extraction
learning mechanisms.

CHAPTER 3. RELATED WORK 28

Summarization research isstill young and there is consensus on the need for more evalua-
tion [HM00]. Many challenges remain, including the need to scale techniques for generating
abstracts.

The transcoding and summarization techniques that have been proposed to date solely
concentrate on providing Web access to PDAs and mobile phones.

3.3.1 Quality awaretranscoding

Chandra et a. have proposed transcoding techniques to provide differentiated service to
Web devices and to dynamically allocate available bandwidth among different device classes,
while delivering good quality of information content for all clients[CEV 99, CE99, CEV00Q].

The idea presented is to deliver the information on a Web server according to network
connectivity and client device characteristics. The technique proposed concentrates on adapt-
ing JPEG images based on bandwidth information. If the connection isweak (i.e., slow), for
example, the quality of the JPEG images on the server are reduced to increase the speed of
access.

The authors state that in theory, they can use their technique to transcode other multi-
media binary objects as well. They say that while they restrict their efforts to the “single
metric” (i.e., JPEG images), the techniques are equally valid for any transcoding with well-
understood tradeoff characteristics. The solution proposed, however, cannot be used for
transcoding text content.

Chandra et a. give some interesting statistics about the percentage of images in Web
sites. 77% of the bytes accessed through the Web, they state, belong to multimedia objects.
Of these, 67% are transfered for images.

The authors al so state that image transformations are important for mobile devices. They
provide solutions for a part of the device-independence Web engineering problem: A way to
deal with images on mobile devices.

3.3.2 Digestor

Bickmore and Schilit’s Digestor [BS97] is a software system that automatically re-authors
arbitrary documents from the Web to display appropriately on small screen devices such as
PDAs and mobile phones. Bickmore and Schilit’s paper on Digestor is one of thefirst papers
in literature that explicitly mentions device-independence.

Digestor is implemented as an HT TP proxy that dynamically re-authors requested Web
pages using a heuristic planning algorithm and a set of structural page transformations to
achieve “the best looking document” for adisplay size. HTML pages are analyzed and split
into a number of smaller pages that are more easily displayed on PDAs.

WAP and many other Web formats such as X SL:FOP for PDF generation did not exist at
the time the system was designed so the tool only concentrates on HTML to simple HTML
(e.g., no cascading tables) conversions.

Digestor deals with images by providing a set of techniques that transform all imagesin
the pages by pre-defined scaling factors (25%, 50% and 75%) and making reduced images

CHAPTER 3. RELATED WORK 29

hypertext links back to the originals.

The authors state that Digestor does a good job of automatically re-authoring Web pages
for display on devices with small screens. They do note, however, that the pages are not
always aesthetically pleasing.

3.3.3 Annotation-based Web content transcoding

Hori et al. present an annotation-based Web content transcoding technique in [HKO*00].
They introduce a framework of external annotation, in which existing Web documents are
associated with content adaptation hints as separate annotation files. The authors also present
aWY SIWY G annotation tool and a transcoding module that they have implemented.

Desktop PC
S U]
Authoring Tool Existing -

Document —=

2 =

] Adapted
Annotation 3 Document

Externa Transcoding

Annotation Proxy

Creation & 6) Adapted

Annotation Document
(]

1) New
Document

Weh-enabled
personal devices

Figure 3.1: Adaptation of HTML for mobile computing devices (Hori et. a [HKO*00])

Figure 3.1 illustrates Hori et al.’s annotation framework for transcoding HTML docu-
ments for mobile devices. As the syntax of the annotation files, RDF is used. In addition,
W3C XPath and XPointer technologies are used for associating annotated portions of a do-
cument with annotating descriptions.

The idea the authors present is quite ssimple and effective. By using their visual tool,
portions of a Web page can be marked (i.e., annotated). For example, a navigation bar can
be marked to be displayed on a separate page on a PDA and the page header can be left out
for PDA access. This*"extraction” information is stored in external files.

Whenever a PDA device accesses the pages, a proxy server converts the pages based on
the annotation information. Hence, large amounts of information on an HTML page that do
not fit on a mobile device can be split and spread over a number of smaller pages.

The approach does have amajor disadvantage, though. Every time the annotated HTML
pages change, the annotation definitions need to be updated.

Furthermore, the presented approach only supports PDAs and similar devices with
HTML browsers.

CHAPTER 3. RELATED WORK 30

3.3.4 TheBusnessCard Search Service (BCSS)

In [KAK™00], Kaasinen et a. describe their experiences in adapting and summarizing exist-
ing HTML pages for WAP access.

The authors have implemented a case study service, Business Card Search Service
(BCSS), that users can use to search contact information by making queries to a business
card database. They have used this application to test how users interact with WML pages
that have been converted from HTML.

The HTML/WML conversion proxy server they have developed converts HTML-based
Web content automatically and on-lineto WML. This approach givesthe mobile userstrans-
parent access to their familiar Web pages from their mobile phones and other mobile devices.

The study the authors present indicates that if HTML-based Web services follow certain
guidelines, they can be converted automatically to WML and adapted to the client device.
They state that Web services need to be mobile-awaran order to produce acceptable results
for users.

The authors report that conversion is not always easy and does not always deliver usable
results.

3.3.5 Web accesswith PDASs. Power Browser

In [BGPOO], Buyukkokten et al. address the problems of interacting with the Web through
wirelessly connected PDAs. Asaway to address bandwidth and battery life limitations, they
provide local site search facilitiesfor all sites.

They incrementally index Web sites in real time as the PDA user visits them. These
indexes have narrow scope at first, and improve as the user dwells on the site, or as more
users visit the site over time. The authors address the keyword input problem by providing
site specific keyword completion, and indications of keyword selectivity within sites.

The PowerBrowser system the authors have built provide two aternative techniques for
interacting with the Web through PDAs. These techniques are of two categories: The first
supports browsing. The second hel ps users search more effectively.

The user browses the Web through an HTTP Proxy server. The proxy server fetches
Web pages on the PDA’s behalf, dynamically generates summary views of Web pages, and
manages the site search facility. The connection between the PDA and the Power Browser
Proxy Server is established through a wireless modem in the implementation.

The PowerBrowser mainly focuses on easing searching on PDA devices and dealing with
input limitations,

3.3.6 Web content and form summarization

In [BGPO1] and [KBGPO1], the authors present algorithms they have adapted and used for
summarizing Web pages and forms so that they can be displayed on handheld devices. They
take HTML pages using a proxy, partition (i.e., split) the pages and the user is able to ‘'mine’
into the partitions.

CHAPTER 3. RELATED WORK 31

In [BGPO1], Buyukkokten et al. discussfive alternative methods for displaying Semantic
Textual Units (STUSp find out how effective each of them are in helping users solve infor-
mation tasks on PDAs quickly. STUs are page fragments such as paragraphs, lists, or ALT
tags that describe images.

The first method, Incrementaldisplaying, is the same as the method used in the Power-
Browser discussed in the previous section.

The All display method shows the text of an entire STU in asingle state. No progressive
disclosureis enabled.

The third method, Keywords displays in its first state the “important” keywords that
occur inthe STU by using a specia algorithm.

The Summarymethod consists of only two states. In the first state the STU’s’most sig-
nificant’ sentence is displayed. The second state shows the entire STU. The authors present
an algorithm for determining significant sentences.

The Keyword/Summarynethod combines the previous two methods. The first state
shows the keywords. The second state shows the STU’s most significant sentence. Findly,
the third state showsthe entire STU.

The authors have conducted experiments with users to find out which technique is most
efficient. Keyword summary (i.e., displaying some keywords instead of the whole text)
seems to be the most efficient technique.

[KBGPO1] issimilar to [BGPO1], but thistime the authors describe algorithms for effec-
tively displaying Web Forms on PDAs.

The approaches mainly concentrate on HTML to simple HTML summarization.

3.4 A taxonomy for device-independent Web engineering

No one to date has attempted to analyze and classify existing approaches that tackle the
device-independent Web engineering problem. One reason is probably because different,
digunct research communities (e.g., database, mobile computing and Web engineering peo-
ple) are working on the problem in parallel.

This section introduces a taxonomy of device-independent Web engineering approaches.
Tables 3.1 and 3.2 present the comparison of solutions that tackle the device-independence
problem.

The taxonomy is structured as follows: A genera section lists the main objective of
the approach and the technical features it provides such as static and dynamic content and
external database integration support.

Thelife cycle support section lists the support provided by the approaches for the design,
implementation and maintenance phases in the Web service life cycle.

The usability section focuses on the usability aspects of the approach such asits ease of
learning and the required developer skills.

The standards section indicates if the standard content and layout definition technologies
are used in the approach (e.g., XML or relational databases for content and XSL for layout).
Some approaches use proprietary formats for defining the content and layout.

32

CHAPTER 3. RELATED WORK

General Technical

Features

Life Cycle Support

Usability

Approach Name OOH WebML JML SISL UIML iStudio Cocoon MS MDT ﬂwﬂ___m-
To support To support all To support To support To support
Main Objective To supportall | To support all | To support all speech User To supportall flexible mobile mobile
Web devices | Web devices | Web devices . Web devices . . .
interfaces Interfaces services devices devices
Conceptually
Platform Yes Yes Yes Yes Yes Yes Yes No Yes
Independent
=izl _um.Scmmm No Yes Yes No No No Yes Yes Yes
Integration
Static Content
Support Yes Yes Yes No Yes No Yes No Yes
DFIENTIE ST =i Yes No No Yes Yes Yes Yes Yes Yes
Support
Design Support Yes Yes No No No Yes No No No
Ll Gl g Yes Yes Yes Yes Yes Yes Yes Yes Yes
Support
UG Yes Yes Yes No No Yes Yes No No
Support
Ease of Learning Low Medium High Medium Medium Medium Medium High Medium
R i) . Medium Medium High Low Medium Medium High Low Medium
Developer Skills
Service Complexity [Medium Medium Medium Low Low Medium Medium A:__mmﬁ:v Unknown
Visual Interface Yes Yes No No No Yes No Yes No

Table 3.1: Comparison of device-independent Web engineering approaches

33

CHAPTER 3. RELATED WORK

Device-
Independence

Flexibility and
Maintainability

Standards

Support

Approach Name OOH WebML IML sIsSL UIML iStudio Cocoon | MS MDT qﬁﬂ__w.
Standard Content
Definition (e,g,, No Yes Yes No Yes Yes Yes No Yes
XML)
Standard Layout
Definition (e.g., No No No No No No Yes No Yes
XSL)
O<m.ﬂm__.m2<_.nm Medium Medium Low Low Low Medium High Low Medium
Maintainability
O<m1m__.w.m.2_om Medium Medium Medium Low Low Medium High Low Medium
Flexibility
LC Separation No Yes Yes No No No Yes No Yes
LL Separation Yes No No Yes Yes Yes Yes No Yes
LCL Separation No No No No No No Yes No No
Logic Reuse Yes No No Yes Yes Yes Yes No Unknown
XML Web Formats Yes Yes Yes No Yes Yes Yes Yes Yes
Device Detection No No No No No No Yes Yes Yes

Table 3.2: Comparison of device-independent Web engineering approaches

CHAPTER 3. RELATED WORK 34

The flexibility and maintainability section assesses the flexibility and maintainability of
the solution and identifies if there is application logic reuse, Layout/Content (LC), Lay-
out/Logic (LL), or Layout/Content/L ogic separation in the solution.

The device-independence support section indicates if the solution is able to support dif-
ferent XML Web formats and if there is device detection support.

3.5 Device-independent Web engineering approaches

Some technologies and tools have been proposed to support the implementatiorof device-
independent Web services, but only few have drawn attention to the lack of support for the
designand maintenancehases (e.g., [FKSTO0Q)).

Several Web engineering proposals have appeared lately that explicitly tackle the device-
independent Web engineering problem.

351 OO-H Method

The Object-Oriented Hypermedia (OO-H) method is proposed by Gomez et al. in [GCPO1].
The authors state that their approach allows Web devel opersto conceptually model and gen-
erate device-independent Web services.

OO-H attempts to provide a standard-based framework to capture all the relevant prop-
erties involved in the modeling and implementation of Web application interfaces. The
methodology contains two views. the navigation view extends a class diagram with hyper-
media navigation features and the presentation view usesthe different elementsregarding the
interface appearance and behavior to model a number of interconnected template structures
expressed in XML.

The navigational views are defined in so called Navigational Access Diagrams (NADS)
and presentation views are defined in so called Abstract Presentation Diagrams (APDS).
Both NADs and APDs capture the interface-related design information with the aid of a set
of patterns, defined in an interface pattern catalog integrated in the OO-H method proposal.

A model compiler in the framework generates the Internet application front-end for the
desired client platform and/or language (e.g., HTML, XML, WML). The authors state that
they have devel oped a CA SE tool that automates the devel opment of Web applications mod-
eled with the OO-H method.

Each NAD instance reflects the information, services and required navigation paths for
the associated user’s navigation requirements fulfillment. Figure 3.2 illustrates the OO-H
design process.

The authors have adapted a template approach for the specification of the visual appear-
ance and page structure (i.e., APDs) on the Web. The framework contains five types of
templates: tStruct tStyle tForm, tFunctionand tWindow

tStructinstances define the information that has to appear on the abstract page. tStylein-
stances define features such as physical placement of elements, typography or color palette.
tForm instances define the data items required from the user to interact with the system.

CHAPTER 3. RELATED WORK 35

Class diagram NADs APDs

Design process Refinements O
1. Start from class diagram

2. Create a NAD instance

3. Generate a default APD Pattern HTML ASP
4. Apply refinements to APD catalog XML and
5. Generate deliverables WML ISP

Figure 3.2: OO-H Design Process (Gomez et al. [GCPO1])

tFunctioninstances capture client functionality and tWindowinstances define a set of ssimul-
taneous views available to the user.

The framework allows the Web developer to choose patterns and to instantiate and use
them in the application being constructed. These patterns can be instantiated by using com-
mands such as:

Dl i st->addAPDPage(h); h.nanme’ head’

The command above, for example, inserts a header template into a page.

In their paper, the authors present a case study HTML Web site that can be used to
manage discussion lists. The user first sees a list of discussion topics and by clicking on
the link, she sees the list of messages in that discussion group and is able post replies and
messages to it. The authors state that they have developed the sample application using
JavaServer pages and Java Bean components as the server-side and HTML as the client-side
technology.

The authors say that by invoking the model compiler, they are able to generate user
interfaces for different devices and present the screenshot of a page as seen on aWAP device
to illustrate the device-independence of the approach. The paper does not give any details
about the model compiler.

A single page in the example site they provide contains alist of discussion topicsand the
message overview pageslist all the messagesin adiscussion group. To support WAP devices,
the model compiler they describe takes the page specifications and generatesa WML version
of the functionality.

One problem is that a single page that contains too much information such as a high
number of messagesin a discussion group may cause errors on devices with memory limita-
tions. The approach of mapping asingle HTML page to another device does not always give
satisfactory results.

The OO-H method is a promising new approach that specifically tackles the device-
independence problem.

CHAPTER 3. RELATED WORK 36

352 WebML

The Web Modeling Language (WebML) [CFP99, CFBO0Q] isahigh level modeling and spec-
ification language for Web sites. The language was developed in an EU project and it is
completely XML-based. WebML is an evolution of AutoWeb [FPO0] developed by the same
research group.

WebML enables designers to express the core features of a site at a high level without
committing to architectural details. A CASE tool is provided that can be used to create XML
specifications that are then used to automatically generate server-side scripts.

The system has a structureand hyperteximodel. The hypertext model consists of Com-
position Navigation Presentatiorand Personalizatiormodels.

The fundamental elements of WebML structure model are entities that are containers of
data elements (i.e., data unitg, and relationships, which enable the semantic connection of
entities. Figure 3.3, for example, depicts the graphical notation for data units and a possible
rendition in HTML. The data unit displays the contents of the Artist entity.

e e S
Artist
First Name: C e] i ne
%l Last Name: DiO]]
6 Photo:
Artist

Figure 3.3: WebML graphic notation for data units, and a possible rendition in HTML (Ceri
et a. [CFBO00])

WebML uses the notion of pages that can be used to compose the content in data units.
The layout information is defined using a special, tool-supported XML syntax.

In their paper (i.e., [CFBOQ]), the authors state that they are able to generate layout code
of their choice such as WML for WAP devices and HTML for traditional browsers. They
say that WebML can be used to support “multi-access” Web sites.

The examples they provide in the paper show atraditional, HTML-based service being
constructed. As future work, they state that they are working on WML extensions to the
language.

Because large database query results cannot aways be displayed on some devices in
practice because of memory limitations, in their project Web site [web01], the authors de-
scribe the problem and indicate that they have done some extensions to the tool that allows
the database query results to be automatically split for WAP devices.

WebML does not provide any support for dynamic content and only deals with static
content that is stored in relational databases.

CHAPTER 3. RELATED WORK 37

353 JML

In [BS00a], Barta and Schranz describe the Jessica Markup Language (JML). IML attacks
the multi-purpose publishing problem so that Web content can be generated for varioustarget
platforms such as XML, WML and HTML.

JML provides object-oriented support to abstractly describeinformation for the Web. The
authors state that the approach includes typical OO benefits such as encapsulation, reusabil-
ity, and inheritance. The most basic components of JML are pages and layouts. JML isan
XML-based language. It is quite similar to the Jessica system (e.g., see [BS98]), but has
some extensionsthat allowsit to support formats other than HTML.

JML solely aims to separate the layout and the content for static content and does not
deal with dynamic content.

354 SISL

Several Interfaces Single Logic (SISL) [BCD"00, GJILOQ] is a system that has been de-
signed and developed by L ucent technologies.

The idea in SISL is to use reactive constraint graphs to model the service logic. The
authors have developed an XML language for writing special SISL programs. They claim
that programs written in SISL are device-independent. They have constructed a service
that reuses the application logic and supports voice interfaces in VoiceXML and an HTML
interface.

A special service monitortakes care of the interaction between the user interfaces and
service logic. User interfaces can be developed in the language of choice and the service
monitor runsit.

SISL separatesthelogic from thelayout but does not attempt to separate the content from
the application logic. A static text such as“Welcome to this site”, for example, is embedded
into the source code.

The authors state that they provide mechanismsto customize the user interface. Themain
HTML interface forms depicted in [BCD*00] are generated automatically.

The developers of SISL say that they plan to use SISL for PDAs and mobile devices.
The papers on SISL give a detailed analysis of the problems related to speech/ voice

interfaces. The tool does not attempt to cover the design and maintenance phasesin the Web
service life cycle.

355 UIML

The User Interface Markup Language (UIML) [APBW99, AP99, Abr00, Lin01] seeks to
create one canonical syntax that can be used to specify user interfaces. Using this syntax, the
user interface definition becomes platform and language independent. By using specialized
model compilers, a common user interface description can be converted to WML, HTML,
VoiceXML, Java Swing, etc.

CHAPTER 3. RELATED WORK 38

InUIML, auser interfaceisa set of user interface elements with which the user interacts.
Each interface element has data (e.g., text, sound) used to communicate information to the
user. Runtime interaction is done using events. Events can be local (i.e., between user
interface elements) or global (i.e., between interface elements and objects that represent an
application’sinternal program logic).

UIML is truly device-independent and has model compilers for WML, VoiceXML,
HTML and Java and it has been shown to work in example sites.

UIML treatsthe Web as just another user interface for the application logic. Web applica-
tions, however, are more than user interfaces because they also have hypertext characteristics
such as embedded links and a significant content maintenance overhead. UIML isalanguage
that can be effectively used to describe user interfaces and components.

One disadvantage of the approach is that although it separates the layout from the logic,
the content is often embedded into the UIML specifications. Although UIML has atemplate
mechanism to group common user interface elements, supporting a common Web look-and-
feel and multi-lingual Web sitesis still not easy because the content is intermixed with the
user interface definition.

The authors state that they attempt to separate the content from the user interface but the
content they refer to is content describing user interface elements (e.g., text on buttons).

Similar to SISL, UIML does not attempt to cover the design and maintenance stages in
the Web service life cycle.

3.5.6 iStudio

iStudio [SHKEOQ1] is an application development environment based on the Java, XML and
XSL technologies. The developers of iStudio state that the tool can be used to build device-
independent Web services. The application logic can be reused to support different devices
such as VoiceXML browsers, PC browsers and WAP devices.

r ~

<i s:fragnment nanme="body” >
<f orm met hod="post” acti on="val i dateUser” >
<is:attr nanme="action”>
<is:link objAlias="Transfer Tabl e” cl earParans="true”>
<i s: param name=“acti on”><i s: content/></is: paran»
</is:link>
</[is:attr>
<t abl e>
<tr><td> Cellular # (10 Digits): </td>
<td><i nput type=“text” nane=“user| D’ size="10" val ue="">
<is:attr nane="value”><is:tenp name="user| D' /></is:attr>
</input></td></tr>
</tabl e>
<p><i nput type=“submit” name="subnmit” val ue="*SUBM T"/></p>
</ fornmp
</is:fragnent>

. S

Figure 3.4: A sample iStudio fragment that defines an XHTML form (Skarra et al.
[SHKEO1])

CHAPTER 3. RELATED WORK 39

The main objective of iStudio is to support the service creation and the reduce devel op-
ment time through the definition of reusable and extensible application components. The
developer uses XML in the approach to specify a service (i.e., its business logic, data pre-
sentation, authentication and permissions, configuration). A suite of iStudio tools transform
the specifications into a collection of Web-capable objects that implement the service.

A run-time engine in the system interprets service code and responds to client requests.

iStudio is conceptually similar to the W30bjects and Webcomposition approaches dis-
cussed in Section 3.2.5. Instead of intermixing the layout and logic as Webcomposition and
W30bjects do, though, iStudio uses a concept the authors denote fragmentgo separate the
layout and to map elementsin the layout to the application logic. The fragments are compa-
rable to components and objects in the Webcomposition and W30Dbj ects systems.

To support different devices, fragments have to be written that produce the appropriate
code (e.g., WML for WAP, HTML for PCs). One problem with these fragments is that
fragments containing content may need to be duplicated for different devices. Figure 3.4
depicts atypical fragment that defines an XHTML form. Much of the embedded content in
the fragment, for example, would have to be duplicated for WML and other devices. This
would have a negative effect on maintainability.

3.5.7 Cocoon

Cocoon is a Java servlet-based application server that is based on freely available XML
parses (e.g., Xerces [Apa0lb]) and XSL processors (e.g., Xalan [Apa0la]). Cocoon can be
used for thereal-timetranglation of XML fileson aweb server to HTML and any XML -based
Web format such as WML.

Cocoon isdesigned to allow Developers, Business Analysts, Designers, and Administra-
torsto work with each other in parallel without breaking the other person’s contribution.

The Cocoon community believes that the problem with using technol ogies such as ASPs
[RASOQ] or ColdFusion [col] templatesisthat “ all of the thelook, feel, and logic are inter-
mixed.” Maintenance, hence, is often much more difficult, costs more and takeslonger. If the
site layout design is introduced late in the design phase, for example, the cost of integrating
the graphical look may become significantly higher. Cocoon aims to separate concerns and
to enable the involved parties to work in parallel as much as possible.

The Cocoon project proposes two technologies for providing flexible and layout inde-
pendent dynamic content in web pages; X SP (eXtensible Server Pages) and DCP (Dynamic
Content Processor). XSP is completely based on XML/XSL technology and uses XSL tag
libraries and associated code generation style sheets (logic sheets) to generate compilable
source code. DCP uses asimpler approach than XSP but is an interpreted language and thus,
has a performance drawback. DCP is only intended to support dynamic content.

Cocoon supplies a number of different components for the Web developer. The types of
components are Generators TransformersSerializers Readersand Actions

A Generator will create SAX? events for a SAX stream. A FileGenerator for example,

2SAX isthe Simple API for XML, originaly a Java-only API. SAX was the first widely adopted API for
XML in Java, and is a de facto standard. The current version is SAX 2.0.1, and there are versions for severa
programming language environments other than Java.

CHAPTER 3. RELATED WORK 40

reads an XML file from an input source, and convertsit into a SAX stream.

Transformers read a SAX stream, manipulate the XML stream, and send the results to
the next component in the chain. The provided LDAPGeneratoyfor example, is a class that
can be plugged into a pipeline to transform the SAX eventsthat passesthrough it into queries
and responses to and from an LDAP interface.

Actions are the main form of logic processing in Cocoon. There are a number of ap-
proaches that can be taken when developing Actions. One possibility isto create a specific
action for each piece of application logic. This approach is heavy handed and requires much
development time to create actions.

The preferred method for creating actions in Cocoon is to provide a generic action that
can handle awide range of specific actions. The Database Actionsand Validator Actions are
examples of this approach. They will read a configuration file specified by a parameter, and
they will modify the specific results based on the configuration file.

Seridlizers read a SAX stream and convert it into the serviet’s output stream. Readers
read an input stream and copy the results to the servlet’s output stream.

Cocoon also provides functionality for querying, updating and embedding content stored
in relational SQL databases.

e N

<p>
Name: <text name="“nanme“ size="30“ required="true“/>

<xsp: | ogi c>
if (<xsl-fornval:is-toosmall nanme="nane"“/>)
<xsp:text>“Name“ nmust be at |east 5 characters</xsp:text|>
} else if (<xsp-fornval:is-toolarge nanme="nanme“/> {
<xsp:text>"Name“ was too | ong</xsp:text>
</ xsp: | ogi c>
</ p>

Figure 3.5: Part of alogic sheet in Cocoon

Figure 3.5 shows part of alogic sheet in the Cocoon system. Although Cocoon aims to
separate the layout, logic and content, these are still intermixed to a certain degree.

An interesting feature of Cocoon is its ability to automatically detect devices based on
the HTTP request header information. The system can be configured to detect devices and
to invoke the corresponding stylesheets.

Cocoon is only an implementation technology and does not provide any direct support
for the design and the maintenance phases of Web services.

3.5.8 Microsoft ASP.NET and the Mobile Developer Toolkit

Microsoft’'s new ASPNET framework [dev] has extensive support for the creation of Web
pages and Web services. The Visua Studio graphical development environment enables
Web developers to rapidly create Web pages, Web sites and Web services. For example,
Microsoft’s C# has been designed to make it easy to export C# methods as Web services.

CHAPTER 3. RELATED WORK 41

The way ASPNET deals with Web services is quite low-level: The framework lacks
a higher-level, language-independent model for dealing with device-independent Web ser-
vices.

Recently, Microsoft has started shipping the Mobile Developer Toolkit that is an exten-
sion to the Visual Studio Development Environment. Thistoolkit providesavisual environ-
ment for creating and deploying Web services for mobile devices.

The developer creates an application by placing components such as buttonsand text
fieldsinto forms. Content is also inserted into these forms in terms of label components.
Based on the characteristics of adevice (e.g., PDA, WAP phone, etc.), the platform automa-
tically adapts and renders the forms to be viewable on the device.

The main advantage of this development platform is that applications can be rapidly
developed without a high technical knowledge. The disadvantage is that the created appli-
cations are not flexible and rather difficult to maintain because of the use of forms (e.g.,
changing a logo on each page could mean that the developer has to manually delete each
logo component on every form).

Similar to Cocoon, the Maobile Developer Toolkit provides an implementation platform
and technology, but does not aim to support the design or maintenance stages of Web ser-
vices.

359 Total eemobile

There are several commercial systems that claim to enable the construction of device-
independent Web services. Bluestone's Total-e-Mobile business solution [blu02], for ex-
ample, isone such system and is a good representative.

Unfortunately, it is not always possible to find out technical details about these commer-
cial products and to test how good they work.

Bluestone says that its solution is device-independent and that “regardless of the device
being used, Total-e-mobile can serve up correctly formatted, fully functional content from a
single URL. It does this by automatically sensing the client device and using HP Bluestone's
Dynamic-Stylesheet-Engine (DSE) to format content appropriately for any known device
whether it isabrowser, a cell phone or a vending machine” [tot01].

The product uses XSL to define layout information for new services and can support
various mobile devices. It uses conversion techniques for existing HTML pages. Devices
are defined and identified by cookies that the clients store.

Technologies such as Bluestone, though, usually do not provide any support for the de-
sign phase of Web applications. In their white papers, for example, Bluestone state that
XSL stylesheets can be simply used to define layouts for different devices. They do not
explain, however, how the developer can designthe stylesheets and the service to minimize
redundancy and maximize reuse.

CHAPTER 3. RELATED WORK 42

3.6 Summary

This chapter presented related work. It described and discussed traditional Web engineer-
ing approaches and mobile Web access techniques that do not explicitlyattack the device-
independent Web engineering problem, but that are relevant and important as background
work. It then introduced a taxonomy for classifying and comparing the solutions that explic-
itly tackle the device-independent Web engineering problem and described and evaluated
these approaches.

Chapter 4

DIWE: A conceptual framework for
device-independent Web engineering

This chapter introduces a novel conceptual framework for device-independent Web engi-
neering. The Device-Independent Web Engineering (DIWE) framework is composed of an
XML-based Web language that is used to separate the layout, content and application logic
to construct flexible Web services and four default run-time processors that provide device-
independence support during service execution.

The framework introduces and uses two novel techniques, page splittingand process
partitioning by layout marking, that allow the Web devel oper to tune the selected information
and the sizes of generated pages according to the characteristics of a device that is being
targeted. Thesetechniquesattack the problem of displaying Web pages on deviceswith small
displays and memory sizes. The adaptation of content for a\Web deviceis performed during
the design and implementation stages of Web site engineering. During the implementation,
the Web engineer has full control over the partitioning and selection of information.

The framework also introduces a novel technique called XSL stylesheet pre-processing
that allowsthe reuse of existingXSL stylesheets when adding new devices to a Web service.
The approach, advocated by the W3C, of having a new XSL stylesheet for every supported
device does not work effectively and thereis often quite alot of duplication in the stylesheets.
As a conseguence, the maintenance overhead increases. Stylesheet pre-processing signifi-
cantly reduces the maintenance overhead because a lesser number of XSL stylesheets are
needed.

The chapter isstructured asfollows: First, the Web servicelife cycle discussed in Chapter
2 isrevisited and device-independence considerations areintegrated. Second, an overview of
the conceptual framework isgiven. Third, the concepts of page splitting, process partitioning
and XSL stylesheet pre-processing are presented and discussed.

4.1 Rethinkingthe Web ServiceLife Cycle

Adaptability is an important issue when building software of any sort [GIM91]. Require-
ments change between the time when the customers say what they want and the time when
the software is actually delivered. Fayad states in [FC96] that software that is being built

43

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 44

must be adaptable with respect to the ability to change the system’s capabilities in amount
and in kind, and the ability to fix the system without “breaking” other parts.

Requirements Analysis

— DT AT S |

Requirements
Collection

4
Device Family

Identification
—_— e i — — _k —_— i ——— J /
Design for
Device Family
L Y
Implementation
for Device
Family
A \i
Deployment

A A
Maintenance

»| for Device

——» Waterfall Cascades Fami ly

-------- » lterative Feedback

Figure 4.1: Life Cycle of a device-independent Web Service

As motivated in the previous chapters, one more adaptability requirement must be in-
cluded for Web sites: device-independence

Figure 4.1 depictsthe WWW Service Life Cycle model with theintegrated device-related
processes. The requirements analysisincludes traditional steps such asidentifying the target
audience, the functionality goals of the service and quality parameters. Devices families
need to be identified that the service will support. A device family is made up of acollection
of Web devices that have similar characteristics. PDAs with high memory capacity and a
display size larger than 200x300 pixel size, for example, could make up a device family for
a particular service. Another example of a device family is the collection of WA P-enabled
phones and PDAS.

Each Web service will at least support one device family during its life time: the default
device family. For example, a typical decision in a cultural event Web site could be to
support afull HTML browser interface for the entire site as the default device family and a
WA P-based mobile phone interface for the ticketing service only.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 45

The main difference in the design, implementation and maintenance stages in compar-
ison to the traditional Web service life cycle modéd is that these phases differ individually
according to the device familiesthat are to be supported. The WAP design, for example, will
show differencesto the HTML design: The navigation will be different and due to the mem-
ory limitations of mobile phones, the amount of information per page that can be displayed
will also differ. The maintenance overhead is clearly higher than in traditional, HTML-only
Web services because of the higher number of formats and devicesthat need to be supported.
At the same time, changes may occur that only affect one device family and have no effect
on the others. For example, changing the HTML layout to give the site a more appealing
look-and-feel will not affect the WAP pages.

One important difference in the model is the introduction of a deploymenphase. The
deployment phase is ignored by well-known Web service life cycle models (e.g. [Sch98b,
TL97]). Deployment is especially important when more than one Web device has to be
supported and requires a significant planning, coordination and configuration effort.

As requirements change and new devices have to be supported, the Web engineer will
often go back to the device family identification stage in the requirements analysis phase and
iteratively design and implement support for anew device family.

The XML/XSL-based solution proposed in this dissertation is a flexible approach that
eases the implementation stage and attempts to reduce the overall design, maintenance and
deployment effort in engineering device-independent Web sites by reusing stylesheets and
application logic.

4.2 Basis of solution: Separation of Layout, Content and
Logic (LCL)

The basis of a solution to the device-independence Web site engineering problemisto find a
way to effectively separate the layout (i.e., user interface) from the application logic.

The idea of separating the user interface from the application logic for achieving flexibil-
ity is not new and well-known (e.g., [Coc96]). User interfaces in software systems change
frequently. Keeping the user interface “outside” the system and making the system program-
driven has been adiscussion issue in software engineering for many years. Thisseparationis
not always easy to achievein traditional, large and complex software systems. The question
which modules belong to the user interface and which do not cannot always be answered
with ease. For example, should keyboard inputs be handled by the user interface component,
or are they part of the application logic?

Because Web services are event-drivenit is easier to separate the layout from the appli-
cation logic. A Web service reactsto user input by returning HTML that isthen displayed on
the user’s browser so the interaction of the user with the service is session oriented. Every
time the user gives some sort of input to the system, a connection to the serviceis built from
the user’s browser.

Thislayout and logic separation by itself, however, is not enough to enable the engineer-
ing of truly device-independent Web sites. An interfacing mechanism is needed for interac-
tions that allows layouts of varying sizes to be supported with the same application logic.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 46

Furthermore, the content needs to be separated from the layout and the logic as well to in-
crease maintainability and flexibility. Clearly, afull Layout/Content/Logic (LCL) separation
is needed for achieving flexible, maintainable device-independent Web sites.

Although the XML and XSL technologies solve the layout and content separation prob-
lem, they do not address application logic separation in Web sites. The concepts presented
in this chapter fill this gap.

The next section discusses and summarizes the main requirements for a conceptual
framework that supports device-independent Web site engineering.

4.3 Main requirements for a device-independent Web en-
gineering framewor k

There are four important requirements that a device-independent Web engineering frame-
work should meet: It should use industrial standardgo enable the use of existing tools, it
should be platform and implementation language-indepengderghould support the defini-
tion and generation of content and layout in XNidr non-HTML Web devices and most
importantly, it should not increase the maintenance effort significantly

The design of the DIWE framework presented in this chapter was guided by thefollowing
goals:

e Support should be provided for the design, implementation, deployment and mainte-

nance phases of a device-independent Web site

e The XML and XSL standards should be used as core underlying technolbtpag
Web developers are already familiar with XML and XSL and there is wide third party
tool support.

e Both static and dynamic content should be supporide framework should enable
the construction of interactive Web sites as well as Web pages that are static in nature.

e The integration of content in Relational Database Management Systems (RDBMSSs)

should be supportedRDBMSs are widely used in Web sites to store and manage
content. Providing RDBM S support is essential .

e Adaptation of the application logic in the Web site for a new device should not be

necessary The same logic needs to work for any device (independent of its display
and memory size) so that application logic maintenance is eased.

e Layout adaptation should be possibke page that can be displayed without problems
on a device with a large display may be too large for other devices and needs to be
split. Support should be provided for splitting pages.

e The use of stylesheets and separation of Layout, Content and Logic (LCL) should not

increase the maintenance effort significantdy typical consequence of LCL separa-
tion may be that the number of project files and resources increase.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 47

4.4 Overview of the DIWE framework

The DIWE framework consists of the MyXML languagea compiler that can interpret the
language, and four basic run-time processorghat are configured and deployed on the Web
server at run-time to provide device-independence support. These processors are Web ser-
vices themselves.

A device-independent Web service in the DIWE framework is a Web service that can
be extendedo support different Web devices of widely varying technical capabilities. The
first step in constructing a device-independeMeb service, hence, is to construct a flexible
Web service with the MyXML language. The language provides support for LCL separation
and is used by the Web devel opers to design and define the content and the interfaces to the
application logic. A MyXML language compiler integrates the layout and generates static
content embedded in HTML or XML, or source code that providesinteractive functionality.

A Web device that accesses the Web server interacts with the instance of the run-time
processors that filter and adapt the output produced by the MyXML-generated Web services.
If no layout adaptation is required, the device may also be configured to directly access a
Web service.

441 Web service design, implementation, deployment and mainte-
nance

Figure 4.2 illustrates the usage of the framework in the design, implementation, deployment
and maintenance stages of Web services.

During the design stage of a Web service, the content, layout and the application logic
are designed and defined. The application logic is written using a technology of choice such
as Javaservlets. The MyXML language is used to define the content and the interfacesto the
application logic and the layout is defined using XSL styleshests.

To benefit from the advantages of XSL, the developer needs to follow traditional XSL-
based Web engineering guidelines such as analyzing the commonalities of the pages and not
encoding any content into the stylesheetsto enable reuse (e.g.,[KKJKO01]).

Content definition covers the structuring of information to be displayed in the Web ser-
vice so that it can be adapted according to the characteristics of different device families.
The content needsto be designed carefully to make it accessible from heterogeneous devices.
Having the content in XML does not necessarily guarantee that it will be automatically ac-
cessible by all devices. The description granularity the degree the content is described in
XML, hasto have the correct depth. If the description granularity is not deep enough, it will
not be possible for some devices to select it using XSL. More descriptive tags will have to
be inserted into the XML content later and the maintenance overhead will increase.

Figure 4.3 illustrates the description granularity problem. The content definition on the
left has a lower description granularity than the definition on the right. Suppose only one
sentence per page can be displayed because the Web device is a watch with a mini browser
(e.g., adevice such as IBM’s Linux watch [NKR"02]). The content definition on the left
would cause problems because the entire content is wrapped up in asingle <text> tag. The
definition on the left, in comparison, marks each sentence using extra <sentence> tags and

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 48

I I

| |

1) : Content Layout Application |
l definition definition logic !

b [omumyx (XSL) definition |

|

L e e .

Design

, T T T T T T

! Static or | |

2) I | MyXML Language | 4 XSL — | dynamic | |
: content | |

(Content (Files or (

(Source Code)| |

I I

I |
! Static or Device- !
3)| dynamic| 4 |Processor| — specific [
: content content | |
| l
(|
.
Deployment
V. e T T T T T T T
A} Layout |
I definition Content :
: for new management |
! device :
| [

Maintenance

Figure 4.2: Web service design, implementation, deployment and mai ntenance

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 49

<t ext >

<sent ence>
This is a long exanple text:
</ sent ence>

<t ext > <sent ence>

This is a |long exanple text: To be or not to be. To be or not
to be. To be or not to be. To be

To be or not to be. To be or or not to be.

not to be. To be or not to be. </ sent ence>

To be or not to be.

be or not to be. To be or not <sent ence>

to be. To be or not to be. be or not to be. To be or not to
be. To be or not to be.

To be or not to be. To be or </ sent ence>

not to be.

</text> <sent ence>
To be or not to be. To be or not
to be.

</ sent ence>

</text>

Figure 4.3: Differencesin description granularity

thus, allows the selection of sentences one by one. The more descriptive the content is, the
better it is for device-independent access.

During the implementation stage, acompiler that interpretsthe MyXML languageisused
to process the content and add an XSL layout to it. The resulting dynamic or static content
is processed by the run-time processors during the deployment phase and device-specific
content is generated.

During the maintenance phase, the XSL layout is extended for new devices (e.g., using
new XSL stylesheets or XSL stylesheet pre-processing) and the XML content is maintained.

4.4.2 Processors

The four default run-time processors in the DIWE framework are: The device detectign
logic interfacing page splittingand process partitioningorocessors. These processors are
instantiated and used at run-time in combination with the static and dynamic Web services
defined by the MyXML language and generated with a MyXML language compiler. The
Web developer can optionally construct and deploy application-specific processors that can
process the content produced by the MyXML-generated Web services (e.g., to generate PDF
receipts for an e-commerce order).

The device detectiomprocessor is responsible for device detection and identification. It
can be configured to detect the device a user is using based on the HTTP request header and
respond accordingly.

The logic interfacingprocessor provides device-independent application logic interfac-
ing support to the services specified by the MyXML language. It allowsthe application logic

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 50

to be written once and used for multiple device-specific MyXML-generated Web services
without any modifications.

The page splittingand process partitioningrocessors provide layout adaptatiorsupport.
Layout adaptation in Web site construction deals with the problem of displaying pages on
device families with small display and memory sizes. It also deals with the problem of
providing Web form-based interaction support to users on devices with limited capabilities.
An e-commerce application, for example, may collect information from the user such as her
name, address and credit card number in asingleHTML page. Thisinformation may be too
large for aweak device such as a WAP phone.

The page splittingtechnique deals with the page size problem by using a combination
of specia tags that are encoded into the XSL stylesheets that are interpreted by the page
splitting processor at run-time. Based on this “ splitting” information, the content of asingle
page can be incrementally displayed on the target device family over a number of steps.

The process partitioning processor appliesthe process partitioningechniqueto deal with
Web form-based input and interactions on devices with small displays and limited memory.
It collects the required input from the user partially over many smaller pages. The applica-
tion logic is invoked once all the information has been submitted. The process partitioning
technique uses the page splitting technique to adapt the layout to the device.

4.5 Flexible Web service construction in three steps

XML file

Device

HTTP Request

Read

Reply (HTML/XML)

______.|:l_______________________

o o N SE—

Figure 4.4: Interactions between the user’s device, the Web server and the generated static
content

The first step in creating a flexible Web service that is extensible and supports LCL
separation is to define the content in a so called MyXML document These documents are

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 51

MyXML Generated Layout/

Content class

Web server Application logic class
T

Device

HTTP Request

i

Instantiate and invoke

LN
-

Instantiate and invoke

Reply (HTML/XML)

;|_:|
@

Figure 4.5: Interactions between the user’s device, the Web server, the application logic and
the generated functionality that produces the dynamic content

well-formed XML documents that contain the structured content and can also be based on a
document type definition (DTD) that defines the content’s overall structure. MyXML docu-
ments consist of XML content enriched with XML tags from the MyXML namespaceThe
MyXML namespace defines the elements in the MyXML language. The language enables
the devel oper to add database integration functionality and dynamic content to a\Web service.

In the second step, all the necessary layout information is added to the content defined
in MyXML documents as separate XSL documents. Context information can be used in
the layout definition rules and enables the processing of elements only if they appear in a
predefined context (e.g., if they have a certain parent element, if they have an attribute with
agivenvaue etc.). XSL stylesheets can also be used to add static content, such as common
headers and footers to the documents.

If the service being constructed produces static content, a MyXML language compiler is
used to processthe MyXML document and the X SL layout definition and generatean HTML
or XML file. The generated files are then deployed on the Web server. Figure 4.4 shows a
sequence diagram describing the interactions between the user’s device, the Web server and
the generated static content.

If the service is dynamic, source code that encapsulates the content and layout informa-
tion is generated. The reference implementation produces Java sources and this source code
provides hooksthat the application logic can use to instantiate and invoke it. The Web de-
veloper then provides the application logic in the third step and uses the generated sources

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 52

to produce the dynamic content at run-time. Figure 4.5 shows a sequence diagram describ-
ing the interactions between the user’s device, the Web server, the application logic and the
generated functionality that produces the dynamic content.

4.6 Device-independent Web service construction in three

) ; Page splitting/Process
Device detection MyXML Generated HTML/ Baes solIRdbeeiss.
Web server XML file partitioning

Device

HTTP Request

s
Q
(2}
)
=1
=
2
@
@
=1
o
-
<
S
L

y ©

Read

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
:
1
Result stream

e e e e e e e e e]

Pyl
@
=
<
1=

5
=
C
x
<
z

Figure 4.6: Sequence diagram showing the interactions between the device-independence
components for static content

The first step in creating a device-independent Web service is to create a flexible Web
service asdescribed in the previous section. The Web service can later be extended to support
multiple layouts with the same content by either using different XSL stylesheets or XSL
stylesheet pre-processing. Page splitting and process partitioning information is embedded
into the stylesheets during service definition.

In the second step, the device detectioprocessor is configured and deployed on the Web
server. At run-time, based on the request and the device the user isusing, the device detection
processor responds by dispatching the HTTP request to the corresponding device-specific
pages that have been prepared by using the MyXML language.

If the service the user is accessing is static, the device detectiomprocessor reads the
MyXML-generated HTML/XML file and passes the result stream to the page splittingand

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 53

Web server Device detection | | Application Logic ic i Ebebd]_Gorrstes Loy || Zagisil BnaiTiopeses.
Content class partitioning

Device

HTTP Request

Instantiate and invoke

Dispatch request and device name

(] 1]

Send parameters and devicgl name

Send parameters

I- 1]

Result stream

)

Result stream

HV

Reply (HTML/XML)

Figure 4.7: Sequence diagram showing the interactions between the device-independence
components for dynamic content

process partitioningorocessors. These processors process the result stream and split the
pages and interactions accordingly. They return HTML/XML to the requesting client device.
Figure 4.6 shows the sequence diagram that illustrates the interactions between the default
processors in the framework for processing static content.

Thethird step isonly needed if the service being constructed is dynamic. In this step, the
logic interfacingprocessor is configured and deployed on the Web server. The logic inter-

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 54

facing processor transparently and automatically invokes the corresponding layout/content
classes based on the name of a device family.

Figure 4.7 shows a sequence diagram that illustrates the interactions between the de-
fault processors in the framework at run-time for processing dynamic content. The device
detectionprocessor receives the HT TP request and invokes the application logic. The appli-
cation logic instantiates and invokes the logic interfacingprocessor with the device name it
has received from the device detectioprocessor and parameters it would like to passto the
layout/content class. Thelogic interfacingprocessor then instantiates the corresponding lay-
out/content class and invokesit. It passes the result stream returned from the layout/content
class to the page splittingand process partitioningprocessors. These processors process the
page splitting and process partitioning information in the stream and return HTML/XML to
the calling client device.

4.7 TheMyXML language

The MyXML language used in MyXML documentsis a simple XML -based language that
uses loops, variables and database access functions.

One of main advantages of an XML-based Web language is that it allows the definition
of functionality that is platform and technology independent. Although the reference imple-
mentation is based on the generation of Java sources, any popular programming or scripting
language can be generated from the MyXML documents and XSL specifications with an
appropriate MyXML language compiler.

47.1 Oveview

Each element in the MyXML language has a special meaning and is processed accordingly
by the MyXML language compiler. Variable definitions are the most important elementsin
the MyXML namespace because they define the interface between the application logic and
the generated sources containing the layout and the content.

There are two types of variablesin the language: Singlesand Multiples. Singlevariables
map to String objectsin Java(i.e., character arraysin C) and Multiple variables map to arrays
of String objects (i.e., n dimensional character arraysin C).

A Loopin the MyXML language defines a block of content and MyXML elements that
are iterated according to the number of elements in the Multiple variable in the Loop. Each
Loop has to have at least one Multiple variable in it and Multiples cannot exist without an
encapsulating Loopblock as its parent. A Loopblock, for example, that contains a Multiple
variable names will be processed by the MyXML language compiler to produce Java source
code (i.e., in aJavaimplementation) that looks like the following (pseudo code):

for(i=0;i<=nanes.|ength;i++) {
DO SOVETHI NG . . .;

<print out> nanmes[i] ...;
DO SOVETHI NG . . .;

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 55

The Loop, Singleand Multiple statements are all a Web developer needs to successfully
separate the application logic from the content and the layout. The MyXML language, how-
ever, also provides CGI and database functionality that eases the construction of interactive,
database-backed Web services.

4.7.2 MyXML Namespace

The MyXML namespace describes 18 elements that belong to the MyXML language. The
language has 8 core elements that are needed for constructing flexible Web services. Fur-
thermore, it provides 10 general utility elements for tasks such as accessing and embedding
the current date and time into the content and formatting functionality for eliminating car-
riage returns and spaces. The XML syntax of the language allows the easy definition and
extension of the general utility functionality.

The 8 core el ementsin the MyXML namespace arethe <myxml:single-, <myxml:multiple>,
<myxml:loop>, <myxml:cgr>, <myxml:sgb, <myxml:dbcommansd, <myxml:dbitern-
and <myxml:attribute- elements.

The <myxml:single> element describes a Singlevariable that can be used arbitrary times
inaMyXML document. The value of a <myxml:single> element is determined at run-time
(i.e., provided by the application logic) and the same value is used whenever the element
appears. A possible use of the <myxml:single> element is to print a customized welcome
text depending on who is currently logged in. For example, the MyXML document:

<?xm version="1.0"7?>
<wel conme_text> Wel cone to this site </wel cone_text>
<nyxm : si ngl e> nanme </ nyxm :single>

defines a welcome text and a Singlevariable name that is instantiated by the application
logic at run-time (e.g., name="Engin”, producing “Welcome to this site Engin”).

The <myxml:loop> and <myxml:multiple> elements provide the Loop and Multiple
variable functionality. For al values provided as input for the <myxml:multiple> element,
the part of the document enclosed in the <myxml:loop> element is processed. For example,
the MyXML document:

<?xm version="1.0"7?>

<nmyxm : | oop>
<wel cone_text> Welcone to this site </wel cone_text>
<nyxm :nul tipl e> nanes </ nmyxm :nmultiple>

</ myxm : | oop>

defines awelcome text for every name in the Multiple variable names that is instantiated by
the application logic at run-time (e.g., names={“Engin”,”John” }, producing “Welcome to
this site Engin”, “Welcome to this site John”). <myxml:loop> elements can be cascaded.
L oops within other loops can be used, for example, to print a table containing al the books
in a bookstore along with a list of authors for each book. The dimension of the Multiple
variable is determined based on its position within the loop (i.e., dimension of 1 within the
first loop, dimension of 2 within the second loop and so on).

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 56

The <myxml:cgi> element supports direct access to HTTP CGI parameters within a
MyXML document. The definition of the <myxml:cgi> element has to correspond to the
name of the CGI parameter it refersto (e.g., the name of the input field in an HTML form).
For example, the MyXML document:

<?xm version="1.0"7?>
<wel come_text> Wel cone to this site </wel cone_text>
<nyxm : cgi > nane </nyxm :cgi>

defines a welcome text for a user who's name is received by a CGI parameter posted by a
Web form.

The <myxml:attribute> element is used to define an attribute of a parent element that
is not in the MyXML namespace. The usage and functionality of this element is simi-
lar to the <xdl:attribute> element from the XSL namespace. The main difference is that
<myxml:attribute> can be used for dynamiccontent whereas <x9l:attribute> is only for
static content. For example, the <myxml:attribute> element in the MyXML document:

<?xm version="1.0"7?>
<a> Cick here
<nyxml :attribute nanme="href">
<nyxm :single> url </nmyxm :single>
</nmyxm :attribute>
</ a>

defines a hypertext link and sets the href attribute of the HTML a element to the value of the
Singlevariable url at run-time.

The <myxml:sqb element represents adatabase query. It issimilar to the <myxml:loop>
element. The document fragment enclosed by the <myxml:sgl> element is processed
for every record in the query’s result set. Access to database fields is provided by the
<myxml:dbitem> element. The query to be executed isdefined by the <myxml:dbcommand>
element and can contain other MyXML elements from the MyXML namespace such as Sin-
gle variables. A possible use of the <myxml:sgl> element is to generate XML from the
content stored in arelational DBMS. For example, the MyXML document:

<?xm version="1.0"7>
<nyxm : sql >
<nyxm : dbcommand>
sel ect * from nanes
</ myxm : dbcommand>
<t heNane>
<nyxml : dbi ten> nane </ nyxm : dbitenpr
</t heNane>
</ nmyxm : sql >

defines an SQL query in the database that selects al records in the table names and wraps
the contents of the field name in XML theNameags. The resulting static content produced
by the MyXML language compiler could look like this:

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 57

<?xm version="1.0"7>
<t heNane>
Engi n
</t heNane>
<t heNane>
John
</t heNane>

The <myxml:currentdate> element isagood representative of the functionality provided
by the general utility elementsin the MyXML namespace. For example, the MyXML docu-
ment:

<?xm version="1.0"7?>
<date> Today’s date is:

<nmyxm : currentdate/>
</ dat e>

defines the content “Today’s date is.” enriched with the system date functionality. The
MyXML language compiler inserts the necessary date for static content or produces the
system date source code for dynamic content.

Other general utility functions alow the Web developer to control the parsing and for-
matting of the content and insert output produced by external system scripts and commands
into it (e.g., inserting the output of the UNIX Is command into the content).

4.7.3 A smple MyXML example: Searching for musicals

Suppose a search form needs to be implemented. The form lets the user search for musicals
in the Web site of a cultural organization that specializes in selling musical tickets. All
musicals containing a certain keyword need to be retrieved from the database and have to be
displayed in a Web page in a given layout. The content is dynamic because it is generated
according to user input. The user enters a keyword that is then transmitted to the Web page.

Figure 4.8 shows the MyXML document that defines this functionality. There is a strict
separation of content and layout as only the content and its structure are defined in the
MyXML document. The example illustrates the use of CGI parameters and the handling
of SQL queries with the MyXML language. The CGI parameter is used to construct the
query string (see lines 6 and 7) and after the query is executed, the title field is extracted
from the result set (see lines 9-11).

After the content has been defined, an XSL stylesheet is used to add a simple layout to
the content. The search result is displayed in atable. Figure 4.9 depicts the XSL stylesheet
used to format the output.

The XSL stylesheet generates HTML output and adds a heading to the document. For
every record in the query’s result set, a new row is added to the table. Of course, real world
stylesheets would contain more complex rules and a more sophisticated layout would be
defined.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 58

1. <?xm version="1.0"7?>
2. <! DOCTYPE VI F>
3. <VIF xm ns: nyxm =".../ns/ myxm ">
4. <query>
5. <nyxm : sqgl >
6. <nyxm : dbcomand>SELECT * FROM VI F_EVENTS WHERE title LIKE
7. <nyxm : cgi >nusi cal _title</myxm:cgi>
8. </ nyxm : dbconmand>
9. <db_title>
10. <nyxm : dbitenptitl e</ nmyxm : dbitenp
11. </db_title>
12. </ nyxm : sqgl >
13. </ query>
14, </VIF>
Figure 4.8: Example MyXML file to search in a database
r N
1. <?xm version="1.0"7?>
2. <xsl:style sheet version="1.0"
3. xmns:xsl=".../Transfornt
4. xmns:nyxm =".../ns/myxm ">
5. <xsl:inport href="nyxm.xsl"/>
6. <xsl:output nmethod="htm " indent="yes"/>
7.
8. <xsl:tenplate match="query">
9. <htm ><h2>The result of your search is:</h2>
10. <t abl e><xsl : appl y-tenpl at es/ ></t abl e>
11. </htm >
12. </xsl:tenpl ate>
13.
14. <xsl:tenplate match="db_title">
15. <tr><td><xsl:apply-tenplates/></td></tr>
16. </xsl:tenpl ate>
17. </xsl:style sheet>

Figure 4.9: XSL stylesheet for formatting the output

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 59

public class VIF {
protected HttpServl et Request request = null;
protected ResultSet SQO = null;
public VIF(HtpServl et Request request) {
this.request = request;

}
protected String get CA Paraneter(String paranmNane) {
return request. get Par anmet er (par amNane) ;

CONOUIAWNE

}
10. protected ResultSet processSQStatenent (
11 String select, String user,

12. String pwd, String url, String driver) {

13. /1 do sql query using JDBC here!

14. }

15. public void printContents(PrintWiter pw) {

16 pw. println("<htm >");

17 pw. printl n(<h2>"

18 pw. pri ntl n(The result of your search is:");
19. pw. printl n(</ h2>");

20. pw. printl n(<t abl e>");

21 print HTMLSQLO(pw) ;

22 pw. printl n(</table>");

23. pw. println("</htm >");

24. }

25. publi c{voi d printContentsSQO(PrintWiter pw) {
26. try

27. SQLO = processSQSt at enent (

28. "SELECT title, isbn_nr FROM VI F_EVENTS WHERE title LIKE"
29. +get CA Par arret er(nu5| cal title")

30. +";", "user", "pwd", "connect", "dbdriver");
31. whi | e (S(lo next()) {

32. pw. println(" <tr>");

33. pw. println(" <td>");

34. pwpnntln(SQ_O getStr|ng(title"));

35. pw. println(" </td>");

36. pw. println(" </tr>");

Figure 4.10: Part of the generated Java Source Code

The Java source code that is generated from the MyXML document and the XSL
stylesheet is shown in Figure 4.10. This generated Java class encapsulates the layout and
the content information that was separately defined in the MyXML document and the XSL
stylesheet file. Whenever anew layout is needed, only the XSL stylesheet hasto be adapted.

The application logic can now create a new instance of this layout/content class and call
its printContents()method (see line 15). The output produced by the method (e.g., see lines
16-23) isusualy directly sent back to the calling client.

4.7.4 Another MyXML example: Shopping Cart

Suppose a flexible e-commerce Web service needs to be built for the cultural organization
that specializes in selling musical tickets. The shopping cart is to alow users to manage
tickets that they wish to buy.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 60

1. <?xm version="1.0" encodi ng="US-ASCI | " ?>

2. <IDOCTYPE cart>

3. <cart xm ns:nyxm ="http://ww.infosys.tuw en.ac. at/ns/nmyxm ">
4. <title>

5. This is a sinple shopping cart exanple using MyXM.

6. </title>

7.

8. <user>

9. <nyxm :singl e>user name</ myxm : si ngl e>

10. </user>

11.

12. <itens>

13. <nmyxm : | oop>

14. <l tenp

15. <nyxm :nul tiple nane="id" create_nane_el ement ="no">
16. product _id</nyxm :multipl e>

17. <nyxm :nul tiple name="nanme" create_nane_el enent =" no" >
18. product nane</nmyxm :nultipl e>

19. <nyxm :nmul tiple nane="quantity" create_nane_el enent="no">
20. product _quantity</nyxm :multiple>

21. <nyxm :nul tiple name="price" create_nane_el enent ="no">
22. product _price</nyxm :multiple>

23. </itenp

24. </ nyxm : | oop>

25. </itens>

26. </cart>

Figure 4.11: MyXML content definition for a shopping cart

Again, the content and the layout are defined in separate files. The dynamic content of
the shopping cart is provided by the application logic a run-time. The application logic
determines from user input which tickets have been booked and gives out the contents of the
shopping cart using the MyXML generated layout/content encapsulating Java class.

Figure 4.11 depicts the MyXML document file for the shopping cart application. A
<myxml:single> variable provides the value for the name of the user currently logged in. A
<myxml:loop> element isused to iteratively step through the contents of the user’s shopping
cart. In the loop, <myxml:multiple> elements access the contents of the user’'s shopping
cart. Anitemin the cart, consists of an ID number, aname, a price and the quantity of tickets
the user wishes to order.

The layout of the shopping cart is defined with an XSL stylesheet. Figure 4.12 showsthe
XSL layout definition for the shopping cart. In this simple example, a welcome message is
printed for the user and atable contains all the items currently stored in the shopping cart.

Note that a special myxml.xsktylesheet isimported in the layout definition (see line 5).
The imported stylesheet contains the default set of XSL processing rules for the MyXML
namespace.

The rule for the <cart> element provides a basic HTML structure (see line 9-16). The
content of the <user> element (seelines8-10in Figure 4.11) isused to print an introductory
message including the user’s name (see lines 18-20 in Figure 4.12). In the HTML docu-
ment’s body, asimple table is constructed containing the shopping cart’s contents. For every
<item> element (see lines 12-23 in Figure 4.11), a new table row is added that contains

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 61

<?xm version="1.0"?>

<xsl:styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni'
version="1.0">

<xsl :inport href="nyxm . xsl"/>

<xsl :out put nethod="htm " indent="yes"/>

<l-- root elenment: create HTM. skeleton -->
. <xsl:tenplate nmatch="cart">

10. <htnl ><head><title>

11. <xsl :val ue-of select="title"/>

12. </titl e></head><body>

13. <xsl : appl y-tenpl at es/ >

14. </ body>

15. </htm >

16. </xsl:tenpl ate>

17.

18. <xsl:tenplate match="user">

19. Shopping cart for user <xsl:apply-tenplates/>
20. </ xsl:tenpl ate>

CONOURWNE

22. <xsl:tenplate match="itens">
23. <table border="1"> <xsl:apply-tenplates /></tabl e>
24. </xsl:tenpl ate>

26. <xsl:tenplate match="itenl>

27. <tr><td><xsl:apply-tenplates select="*[@anme="id |" /></td>
28. <td><xsl :apply-tenpl ates sel ect="*[@ane="nanme']" /></td>

29. <td><xsl :apply-tenpl ates sel ect="*[@ane="'quantity']" /></td>
30. <td><xsl:apply-tenpl ates sel ect="*[@ane="price']" /></td>
31. </tr>

32. </xsl:tenpl ate>

33. </ xsl:styl esheet>

Figure 4.12: XSL layout definition for the shopping cart

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 62

1. inmport java.io.*;

2. public class cart {

3. ...

4. public cart(String usernanme, String[] product _quantity,
5. String[] product_id,

6. String[] product_nane, String[] product price) {
7. this.usernane = usernane;

8. this.product_quantity = product_quantity;

9. this.product _id = product _id;

10. this.product_nanme = product_nane;

11. this.product_price = product_price;

12. }

13. public void printContents(PrintWiter pw) {

14. pw. println("<htm ><head><title>");

15. pw. printl n(

16. "This is a sinple shopping cart exanple using MyXM..");
17. pw. println("</title></head><body>");

18. pw. printl n(

19. "This is a sinple shopping cart exanple using MyXM..");
21. pw. pri ntl n(”Shoppi ng cart for user ");

22. pw. pri ntl n(usernane);

23. pw. println("<table border=\"1\">");

24. print Cont ent sO(pw) ;

25. pw. printl n(”</tabl e></body></htm >");

26. }

27. public void printContentsO(PrintWiter pw) {

28. for(int i=0; i<product_id.length; ++i) {

29. pw. println("<tr> <td>");

30. pw. printl n(product _id[i]);

31. pw. println("</td> <td>");

32. pw. printl n(product_nanme[i]);

33. pw. println("</td> <td>");

34. pw. println(product_quantity[i]);

35. pw. println("</td> <td>");

36. pw. printl n(product_price[i]);

37. pw. println("</td> </tr>");

38. }

39. }

40. }

Figure 4.13: Part of the generated shopping cart Java code encapsulating the HTML code

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 63

1. // test application for cart.java

2.

3. inmport java.io.*;

4.

5. public class carttest {

6. public static void main(String args[]) {

7.

8. /1 provide shopping cart val ues

9. String usernane = "Engin Kirda";

10. String[] id = {"1", "3", "4"};

11. String[] name = {"PS/2 Muse", "Cherry Keyboard",
12. "Logitech Wngnan"};

13. String[] quantity = {"2", "1", "1"};

14. String[] price = {"399", "599", "799"};

15. cart ¢ = new cart(usernanme, quantity, id, name, price);
16. PrintWiter pw = new PrintWiter(Systemout);
17. c. printContents(pw);

18. pw. f I ush();

19. pw. cl ose();

20. System out. println("Done.");

21.

22. }

Figure 4.14: Invoking the generated code

table data elementsfor all the characteristics of the itemsin the shopping cart (i.e., ID, name,
quantity and price) (seelines 22-24 and 26-32 in Figure 4.12).

Figure 4.13 shows the Java code that the MyXML language compiler generates (i.e., in
a Java implementation) from the content and layout definitions and Figure 4.14 depicts how
the generated code is invoked from the application logic (see lines 15-17 in Figure 4.14).
Item information in the shopping cart such as the ID, name and quantity are passed to the
layout/content code using string arrays (see lines 9-14 in Figure 4.14).

4.75 Post XSL stylesheet application

In some cases, it is not advantageous to generate static content in HTML/XML or source
code functionality that produces dynamic content. There are situations when the devel oper
does not wish to add a layout to the content during the implementation, but would like to
keep it flexible and add it when the service is run. For example, the layout may be changing
often and generating HTML or source code might be costing too much time.

Post stylesheets are XSL stylesheets that can be applied to the content at run-time. For
example, if the first XSL stylesheet produces XML data instead of adding a layout to the
content, a second stylesheet, the post XSL stylesheet, can be used to process it and add a
layout. When the MyXML-generated source code is compiled and run, the specified post
stylesheet is automatically applied to the generated content.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 64

4.8 XSL stylesheet pre-processing for stylesheet reuse

The examples given in the previous sections used a single X SL definition to add a layout to
the content. Clearly, if the aim isto support multiple devices, it is possible to use a different
stylesheet for every device.

The problem isthat asthe number of devicesincrease, the number of stylesheetsincrease
proportionally. The stylesheets are often quite similar with respect the processing rules.
Often, the only difference is the formatting specifications and the Web format being used
(e.g., HTML, WML, etc.). In aservice with 4 stylesheets, for example, 12 stylesheets would
be necessary to support 3 different devices. There would be much redundancy and hence,
the maintenance overhead would significantly increase.

Before a layout is added to the content, atechnique called XSL stylesheet pre-processing
isused to eliminate the described duplication and enablethereuse of existing X SL stylesheets:
Instead of the traditional approach of using a new XSL stylesheet for every new device, the
information necessary for the device is integratedinto the existing stylesheets using spe-
cial descriptors that help differentiate between the device-specific layout in the stylesheets.
The MyXML language compiler processes these specifications and generates the appropriate
XSL stylesheet for a particular device.

Figure 4.15 depicts a portion of an XSL stylesheet from a commercial Web site. The
single XSL match template (see lines 1-42) defines an HTML layout for traditional full-
fledged browsers and a ssmpler HTML version of the page for PDAs. The @myxml.device
descriptors (e.g., see lines 3 and 9) are used to define device-specific output. In the exam-
ple, HTML for traditional browsers is the default device family (see Section 4.1) and this
output is marked in @myxml:device:defaulilocks (e.g., see lines 3-6). The PDA-specific
output, on the other hand, is marked in @myxml:device:pd&locks (e.g., see lines 9-14).
New devices can be added to the stylesheets by embedding layout content in blocks of the
form @myxml:devicezName of device, where the name can be any string description of a
device family.

In the example, a descriptor of the form @myxml:device:default,pda the stylesheet
(see lines 16-18) indicates that the layout is valid for the default device family aswell asthe
PDA devicefamily. A commacan be used between device namesto signal the compiler that
the following layout definition is valid for more than one device.

Figure 4.17 showsthe X SL stylesheet for the traditional browser version of the page after
pre-processing. Figure 4.16 shows the XSL stylesheet for the PDA version of the page after
pre-processing. Pre-processing filters out the layout definitions that are not needed for the
device for which the XSL stylesheet is being generated.

The XSL pre-processing technique eliminates the need to copy the stylesheets and adapt
themfor anew device. Thisisimportant because X SL stylesheets can become quite complex
in real-world Web sites. Using a separate stylesheet for a new device only shifts the problem
of copyingand adapting source code to copyingand adapting stylesheets.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 65

1. <xsl:tenplate match="event list">

2 <!-- %8086880808808680 HTNL %88868808488808888068880806 - >

3 @ryxm : devi ce: def aul t {

4 <tabl e border="0">

5. <tr><t d>Event </ b></t d><t d>Locati on</ b></td></tr>
6. } @ryxm : devi ce

7.

8 <!-- %884888080880808s PDA %B88L886L888L88688806086 - >

9 @ryxm : devi ce: pda{

11 <xsl :apply-tenpl ates sel ect="//expl anation"/>

12. <t abl e border="1" cell spacing="0" cell paddi ng="2">

13. <t r><t d>Event s</ b></t d><t d>Locat i on</ b></td></tr>
14. } @ryxm : devi ce

15.

16. @ryxm : devi ce: def aul t, pda{

17. <xsl : appl y-tenpl at es/ >

18. } @yxm : devi ce

19.

20. <l-- %9808888080008080 HTM. %8888000888808808008080808086 - >
21. @ryxm : devi ce: defaul t {</tabl e>} @yxm : devi ce

23. <! -- %A8L8R8888088 PDA YARB8BELLLLBBBEL0L888 - >
24, @ryxm : devi ce: pda{

25 </t abl e>
 <tabl e border="0" w dt h="400">
26. <tr><td alight="left">

27. <a href="/wf/

28. di spl ayevent s?devi ce=pda" >

29. <i mg border="0" src="/inmages/english/buttons/
30. vorige.gif"

31. al t="Previ ous events"/></td>

32. <td alight="right">
33. <a href="/wf/
34. di spl ayevent s?devi ce=pda“ >

35. <ing border="0" alt="Mre events"”

36. src="/images/ english/buttons/naechste.gif"/>
37. </td></tr></tabl e>

38.

39. Back to the

40. first event

41. } @wyxnl : devi ce
42. </ xsl:tenpl ate>

Figure 4.15: XSL Stylesheet reuse with pre-processing

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 66

1. <xsl:tenplate match="event list">

3 <xsl :apply-tenpl ates sel ect ="//expl anation"/>

4. <tabl e border="1" cell spaci ng="0" cell paddi ng="2">

5. <tr><t d>Event s</ b></t d><t d>Locat i on</ b></td></tr>
6 <xsl : appl y-tenpl at es/ >

7 </tabl e>

8

9 <tabl e border="0" w dt h="400">

10. <tr><td alight="left">
11. <a href="/wf/

12. di spl ayevent s?devi ce=pda" >

14. <inmg border="0" src="/imges/english/buttons/vorige.gif"
15. al t="Previ ous events"/>

16. </td>

17. <td alight="right">
18. <a href="/wf/

19. di spl ayevent s?devi ce=pda" >

21. <img border="0" alt="Mre events"

22. src="/inmages/ english/buttons/ naechste.gif"/>
23. </td></tr></tabl e>

26. Back to

27. the first event </ a>
29. </ xsl:tenpl ate>

Figure 4.16: XSL Stylesheet for PDA access after pre-processing

<xsl :tenpl ate match="event _|ist">
<t abl e border="0">
<t r><t d>Event </ b></ t d><t d>Locat i on</ b></td></tr>
<xsl : appl y-tenpl at es/ >
</t abl e>
</ xsl :tenpl ate>

oakwWNE

Figure 4.17: XSL Stylesheet for full HTML access after pre-processing

4.9 Page splitting

The main idea behind page splitting in Web site construction is to split and partition the
content in XSL layout files by groupinglayout elements. A groupidentifies a single unit of
information on the page that adevicefamily isableto display. Groups can also be partitioned
and split using subgroupsand thus, different splitting granularities can be achieved.

Figure 4.18 illustrates the concept of grouping and subgrouping on a commercial Web
page (belonging to the Vienna International Festival Web site) that displaysalist of cultural
events(i.e., exhibitions, ensembles, theaters, performances) and their locations. On the page,
the entire event information has been marked as belonging to a group. Every two events on
the page make up a subgroup.

Depending on the order they appear on a page, each group and subgroup implicitly re-
ceives an ID to make it uniquely identifiable (the ID count starts from 0). In the Figure, for
example, thereis one group with the ID 0, and the depicted subgroups have IDs 0, 1 and 2.

Each timethe layout is presented, only the information in asingle group is displayed and

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 67

. an

From 11 May to 18 June,

it will get eritical \’ \’
Wiener

*Apparently, we do. not deserve anything better.” Festwochen
Exant L
FPlease click on an event to see detaled Opening Rathausplatz g o
information about it. Intolleranza Theater an der Wien ub roup
pmiami cm:@) o e O R R 2
Bank™\ustria Lieder matinee of Olaf B[] Theater an der Wien g a
a ubGrou
Mudan Ting (The Peony Paviion), Part FH 1o s curms Quarter, 3
alle I
MuseumsQuartier,
Ahe msulted and njured
The Insulted and Injured Halle E S G
ub roup
MuseumsQuartier,
The Tragedy of Hamlet ik E
Now That Communism Is Dead My Life MuseumsQuartier,
Feels Empty Halle G
MuseumsQuartier,
Brecht Wuolijoki Puntila Schleef Halle G
MuseumsQuartier,
go onl A 4
The show must go on Halle G
O
Le Costume (The Suit) I‘:{ugfuim SR
Halle G
% MuseumsQuartier,
Supermarket Halle G
3 Group
Roberto Zucco Akademietheater
gute miene boeses spiel Odeon
Erwartung / Expectation / Lohengrin Odeon
Die Feuersbrunst / The Fire Odeon
dietheater
Instructions for Forgetting
Instuctions for Forge K O Dlerhaus

Figure 4.18: Page splitting using groups and subgroups

the other groups are ignored. If, for example, the layout in Figure 4.18 is presented with
the group ID 1, no event information would not be displayed and one would only see layout
elements that do not belong to any groups (i.e., the header, title, logo in the page).

If a group contains subgroups, similarly, the subgroups are displayed one after one. Only
the group and subgroup with the given ID would be displayed. For example, to display the
information in the second subgroup, the layout in Figure 4.18 would be presented with the
group ID 0 and subgroup ID 1.

By setting a so called stepvalue, the subgroups that are to be displayed can be further
adjusted. For example, a step value of 2 and a subgroup ID of O would display the first
and the second subgroup and then stop. The next time the layout is presented, the next two
subgroups would be displayed. With a step value of 3, the first three subgroups would be
displayed, then the next three and so on.

The described simple mechanism allows the selection of portions of a page during Web
site construction so that they can be incrementally displayed on devices with small displays
and limited memory sizes.

The page splittingprocessor in the DIWE framework is responsible for giving out the
information partially over many smaller steps. It keeps track of the group and subgroup
numbers and can receive commands on which splits (i.e., layout fragments) to give out.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 68

4.9.1 Page splitting descriptorsand parameters

Parameter Description
ui Indicates the group number to display
sg Indicates the subgroup number to display

Signals that all internal counters (e.g.,

reset subgroup and group count) should be reset

Table 4.1: Page splitting-related CGI parameters that the page splitting processor interprets

Descriptor Functionality

Substitute this descriptor with the next

@myxml:nextGroup group number

Substitute this descriptor with the

myxml:currentGrou
@y P current group number

Substitute this descriptor with the

@myxml:previousGroup previous group number

Substitutes this descriptor with the current

@myxml:currentSubgroup subgroup number

Substitutes this descriptor with the previous

@myxml:previousSubgroup subgroup number

Substitutes this descriptor with the next

@myxml:nextSubgroup subgroup number

Table 4.2: Descriptors that the page splitting processor substitutes at run-time

Group and subgroup informationisinserted into the XSL stylesheetsusing @myxml:group
and @myxml:subgroupescriptors. When processing an output stream at run-time, the page
splitting processor looks for these descriptors to split a page.

Further, a Web page is constructed in such a way that when a user follows a link, the
page splittingprocessor is invoked with CGI parameters that signal to it which group and
subgroup number it should display. Table 4.1 lists the page splitting-related CGI parameters
the page splittingprocessor understands. The ui parameter indicates the group and sg the
subgroup number to display. The resetparameter can be used to reset all internal group and
subgroup counters. The page splittingprocessor can accept CGl parameters using both the
GET and POST HTTP methods.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 69

Because it is not always possible to know how many splits a page consists of and what
the next group or subgroup number is, the page splittingprocessor is able to recognize
and interpret descriptors at run-time that request group/subgroup information. Table 4.2
lists descriptors that the page splittingprocessor substitutes with appropriate values. The
@myxml:nextGroulescriptor, for example, is substituted with the next group number in
the page splittingorocessor’sinternal counters.

4.9.2 A smple page splitting example

Suppose the information on the HTML page in Figure 4.18 has to be displayed on a WAP
device. Clearly, the information on the HTML page istoo large and cannot be displayed in a
single WML page.

N
/

1. <event list>

2. <nyxm : sqgl >

3. <nyxm : dbcomuand>

4. sel ect * from W2001_EVENTSENGLI SH as e, W-2001_ LOCATI ON
5. as | where (e.location_id=l.id)

6. </ myxm : dbconmand>

7. <event >

8. <title>

9. <li nk>

10 <nyxm :dbitenr title </ nyxm :dbiten>
11 </link>

12 </title>

13 </ event >

14 </ nyxm : sqgl >
15. </event list>

Figure 4.19: MyXML document for the events page

N
/

1. <xsl:tenpl ate mat ch="event">

2. <tr>

3. <xsl : appl y-tenpl at es/ >

4. </[tr>

5. </ xsl :tenpl at e>

6.

7. <xsl:tenplate match="title">

8. <td>

9. <xsl:apply-tenpl ates select="1ink"/>
10. </td>

11. </ xsl : tenpl at e>

12.

13. <xsl:tenplate match="1ink">

14. <a> <xsl:apply-tenplates/> </ a>
15. </ xsl : tenpl at e>

Figure 4.20: XSL layout definition for HTML event page

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 70

s N\
1. <xsl:tenpl ate mat ch="event">

2. @ryxm : group{

3. <xsl : appl y-tenpl at es/ >

4, } @ryxm : group

5. </ xsl : tenpl at e>

6.

7. <xsl:tenplate match="title">

8. @ryxm : subgr oup{

9. <p>

10. <xsl:apply-tenpl ates select="1ink"/>
11. </ p>

12. <a href="/coll ector?ui =@wyxnl : next G oup
13. &anp; sg=@ryxm : next SubG oup” >

14. Next Page

15. </ a>

16. } @ryxm : subgr oup

17. </ xsl : tenpl at e>

18.

19. <xsl:tenplate match="1ink">

20. <a> <xsl:apply-tenpl ates/> </ a>

21. </ xsl:tenpl at e>

Figure 4.21: XSL layout definition for WML event page

Figure 4.19 shows the simplified MyXML document for the page. A <myxml:sgl>
element selects the event information from a relational database. The event names in the
database column “title” are picked using the <myxml:dbitem> element.

Figure 4.20 shows a part of the XSL layout definition for the HTML version of the page.
Figure 4.21 shows the layout definition for the WML version of the page. The stylesheets
are quite similar except for the differences in HTML and WML tags and the grouping and
subgrouping in the WML definition (e.g., compare the lines 1-5 in Figure 4.20 with the lines
1-5inFigure 4.21).

In the WML stylesheet in Figure 4.21, groups and subgroups are defined using the de-
scriptors @myxml:groupand @myxml:subgroupAs in the page shown on Figure 4.18, the
entire event information is defined in a group, but each event is marked as a subgroup (see
lines 1-5 and 7-17). The @myxml:nextGroupnd @myxml:nextSubGrougescriptors in the
stylesheet are automatically replaced by the next group and subgroup numbers by the page
splitting processor at run-time. Whenever the user clicksthe “Next Page” link, the next sub-
group in the current group is presented by the page splittingprocessor. If there are no more
subgroups, the next group and the first subgroup in the group are fetched and the information
isincrementally given out to the device. Setting the stepping count to 2, hence, would give
out the subgroups at 2 step intervals.

In the example, the page splittingorocessor is accessed viathe URL /collector(seeline
12 in Figure 4.21) and receives two parameters. ui for the group and sg for the subgroup
number to display.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 71

4.10 Processpartitioning

The page splitting concept solves the problem of dealing with different page sizes various
Web devicesare ableto display. A database query, for example, can be made to display three
results per page for WAP devices and ten results per page for desktop browsers.

An important problem page splitting does not solve, however, is how to deal with inter-
active Web pages that use Web forms. If a Web form in a page is split and distributed over
two other pages, for example, it will not work because every Web form has a corresponding
target URL(i.e., the application logic) that it invokes with the parameters it collects. Hence,
if the parameters on the first page are submitted, the information in the following pages will
be missing.

Process partitionings a technique that allows Web devel opers and designersto deal with
Web form-based dynamic interactions on devices with display and memory size limitations.
Process partitioning uses the page splitting technique to incrementally display Web forms
and provides a mechanism to partition the interactive process over a number of independent

steps.

WML Client

Name
Address

E-mail

Credit
card info
Response

0
Wl
00

]]
[]

Collector

[
[

Application Logic

a) WML Scenario (process partitioning)

HTML Client

[
[/

Name
Address

E-mail

Credit
card info
Response

Application Logic

b) HTML Scenario

Figure4.22: Anonline WML -based order with process partitioning compared to atraditional
HTML-based order

Using process partitioning in a WAP e-commerce application for selling cultural event
tickets, for example, the ordering process would be distributed over several WML pages.
Each time a part of the required information would be collected (e.g., customer’s name in
thefirst step, her addressin the second, and so on) and sent to an intermediary processor that
temporarily stores the input. The intermediary processor would invoke the application logic

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 72

with theinput data it has collected when all necessary datais submitted. In the DIWE frame-
work, the functionality of the intermediary processor is provided by the process partitioning
Processor.

Figure 4.22 depicts the ordering of an event ticket using HTML and WML. The HTML
page is able to collect all of the information in a single page, but the process is partitioned
into multiple steps for WML.

4.10.1 Processpartitioning parameters

Parameter Description
colstat Signals that the collection process is finished
Indicates the target URL to invoke once
target . D
collection process is finished

Table 4.3: Table showing process partitioning-related CGI parameters the Collector compo-
nent understands

Two CGI parameters are used by the Collector component that help control the input
collection process over several steps. Table 4.3 lists these parameters and describes their
functionality. The colstatCGI parameter is used to signal the process partitioningprocessor
that the collection isfinished. The process partitioningprocessor then invokes the URL that
it receives with the target parameter.

4.10.2 A simple process partitioning example

Figure 4.23 depictsthe XSL stylesheet for asimple HTML Web form that displaysfour input
fields and collects the user's name, age and address information and some miscellaneous
comments. A button is placed at the bottom of the form (see line 5) and the user has to press
it to submit the information. The POST method is used to submit the values in the input
fields and the target URL that processes the results is a program (i.e., servlet, script, etc.)
/showin the example (see line 3). Figure 4.24 shows the Web form as seen on a desktop
browser.

Figure 4.25 depicts the XSL stylesheet for the same HTML Web form that has been
partitioned into two HTML pages using page splitting. The target URL has been changed
from /showto /collector (see line 3) which isthe URL for the process partitioningprocessor
in this example. The process partitioningprocessor accepts a command parameter ui that
indicates which group in the page should be displayed next. This command is embedded
into the form as a hidden input element and uses a @ myxml:nextGroupdentifier to retrieve
the next group number (seeline 5).

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE

Rt

CoNogrwbE

<xsl :tenpl ate nmat ch="page" >
<ht m ><head> <title> Page </title> </ head> <body>
<form acti on="/show' mnet hod="post">
<xsl : appl y-tenpl at es/ >
<i nput type="submt"/>
</ fornp
</ body></htm >
</ xsl :tenpl at e>

<xsl :tenpl ate mat ch="nanme">
<h2>
<xsl : appl y-tenpl at es/ >
<i nput type="text" nanme="nane"/>
</ h2>
</ xsl : tenpl at e>

<xsl:tenpl ate nmatch="age">
<h2>
<xsl :appl y-tenpl at es/ >
<i nput type="text" nanme="age"/>
</ h2>
</ xsl :tenpl at e>

<xsl :tenpl ate nmat ch="address" >
<h2>
<xsl : appl y-tenpl at es/ >
<i nput type="text" nane="address"/>
</ h2>
</ xsl : tenpl at e>

<xsl:tenpl ate match="mi sc">
<h2>
<xsl : appl y-tenpl at es/ >
<i nput type="text" name="m sc"/>
</ h2>
</ xsl : tenpl at e>

73

Figure 4.23: XSL layout definition for HTML Web form

Bl Edit view GO Communicator

| £ aitavista g2 AlThewen

@ w» A F I T

Back Forward Reload Home Search Met

m" Bookmarks i Location I-Ettp F##localhost: 8080/t

Name: II

Age: |

Address: I

Mise: I

Submit Queryl

Figure 4.24: Screenshot of smple HTML Web form

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 74

1. <xsl:tenplate match="page">

2 <ht M ><head> <title> Page </title> </head> <body>
3. <formaction="/coll ector" nethod="post">

4. <xsl : appl y-tenpl at es/ >

5. <i nput type="hidden" nane="ui" val ue="@wyxnl : next G oup"/>
6 <i nput type="submt"/>

7. </ fornmp

8. </ body></ht m >

9. </xsl:tenplate>

10.

11. <xsl:tenplate nmatch="mai n">

12. @ryxm : group{

13. <xsl : appl y-tenpl ates sel ect ="nane"/>

14. <xsl : appl y-tenpl ates sel ect ="age"/ >

15. <i nput type="hidden" name="target" val ue="/show'/>
16. } @ryxm : group

17.

18. @ryxm : group

19. <xsl : appl y-tenpl ates sel ect ="address"/>

20. <xsl :apply-tenpl ates sel ect="m sc"/>

21. <i nput type="hidden" name="col stat" value="true"/>

22. } @ryxm : group
23. </xsl:tenpl ate>

24.

25. <xsl:tenpl ate mat ch="nane">

26. <h2>

27. <xsl : appl y-tenpl at es/ >

28. <i nput type="text" nane="nane"/>
29. </ h2>

30. </xsl:tenplate>

31.

32. <xsl:tenplate nmatch="age">

33. <h2>

34. <xsl : appl y-tenpl at es/ >

35. <i nput type="text" nanme="age"/>
36. </ h2>

37. </xsl:tenpl ate>

38.

39. <xsl:tenpl ate match="address">

40. <h2>

41. <xsl : appl y-tenpl at es/ >

42. <i nput type="text" nane="address"/>
43. </ h2>

44, </ xsl:tenpl ate>

45,

46. <xsl:tenplate match="m sc">

47. <h2>

48. <xsl : appl y-tenpl at es/ >

49, <i nput type="text" nanme="nisc"/>
50. </ h2>

51. </xsl:tenplate>

< ~/

Figure 4.25: XSL layout definition for the partitioned HTML Web form

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 75

In the XSL template for main (see lines 11-23), two groups have been defined with
@myxml:group The nameand ageinput fields are in the first group and the addressand
miscinput fields are in the second (see lines 12-16 and 18-22).

There is a hidden input named targetin the first group (see line 15). Thisis a specia
parameter that is passed to the process partitioningorocessor and that identifies the target
URL for this collection session. In the case of the example, this is the URL /show The
process partitioningprocessor, hence, knows that it has to invoke this URL once it has col-
lected all parameters from both groups. The colstathidden input in the second group (see
line 21) signals the process partitioningprocessor that it can invoke the target URL after it
has received the results of the second group. It indicates that there are no more groups and
input parametersin the page.

Fle Eui NI au Urmrrrs

| £ altavista ¢ AlTheweb
<« = A [S
Back Foryard Reload Harme Sea

| ™ Bookmarks i Location: fhttp: //localhost

Name: I

Age:

Bubinit Queryl

Figure 4.26: Screenshot of the partitioned HTML Web form — First group

| ¢ attavista g AlTheweb
<« =» A4 4 a
Back Forward Reload Harme Searcl

| .~ Bookmarks M Location: fhttp: //localhost:§

Address: I

Misc: |

Submt Queryl

Figure 4.27: Screenshot of the partitioned HTML Web form — Second group

Figures 4.26 and 4.27 depict screenshots of the partitioned HTML Web forms as seen on
a browser. Once the information in the first group has been submitted (i.e., first page), the
second group isdisplayed (i.e., second page) and the user is prompted for input. Pressing the
submit button in the second group invokes the application logic at the URL /show

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 76

4.11 Device-independent application logic interfacing

The traditiona approach to supporting different layouts with the same application logic is
to build conditiona (e.g., if/then/elsg statements into the code and to present the layout
based on some criteria (e.g., the user chooses a device name from alist). For example, the
following pseudo application logic code:

... do sonme donmain specific task ...
if (device="htm ") present HTM._LAYQUT

else if (device="wap") present WAP_LAYQOUT
do sonme domain specific task ...

checks the value of a variable named deviceand presents the appropriate HTML or WAP
layout.

The disadvantage of this approach is that the application logic has to be modified and
extended for every new device that is being supported. While writing the application code,
the Web developer often needs to know in advance what type of devices will be supported.
She has to try to design and optimize the code so that it can easily be extended: A task that
is not always easy to achieve.

The logic interfacingprocessor provides a solution to this problem and allows the ap-
plication logic to be reused for arbitrary devices. It acts as a wrapper to the layout/content
and eliminates the need for the application logic to explicitly choose and invoke a MyXML-
generated |ayout/content class.

4.11.0.1 Callingthelogicin three steps

Thefirst step in invoking a MyXML-generated layout/content class in a device-independent
wal isto create an instance of the logic interfacingprocessor.

In the second step, instead of directly instantiating the layout/content class with the pa-
rametersit requires (e.g., asin the MyXML Web service construction example presented in
Section 4.7.4), the parameters are written in an array.

Thelogic interfacingprocessor provides a method invoke()that the application logic can
use to invoke layout/content classes. In the third step, this method is used to present the
output of the appropriate device-specific layout/content class.

The invoke()method has the following signature (i.e., in a Java implementation):
public void invoke(String nanme, Object array[]);

The method accepts two parameters. a string containing the name of the layout/content class
to be invoked and an Object array that the application logic uses to pass the parameters that
the layout/content class requires.

The logic interfacingprocessor uses a ssimple trick to enable a single invoke() method
in the application logic to work for arbitrary layout/content classes: A class naming con-
vention is used to identify layout/content classes that belong to the same page and this
enables the logic interfacingprocessor to automatically instantiate and invoke the appro-
priate layout/content class. The default device family layout/content class name for a page

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 77

' N
1. CQut put out put = new Qut put (new

2. Checkout Request W apper (request), response);
3. oj ect[] parans = new Obj ect[20];

4.

5. parans[0] = cart.get Tot al Nunber O Ti cket s();

6. parans[1l] = cart.getM nimunPrice();

7. parans[2] = cart.getMaxi munPrice();

8. paranms[3] = "";

9. parans[4] =

10. paranms[5] = ;

11. parans[6] = ;

12. paranms|[7] = ;

13. parans|[8] =

14. paranms[9] =

15. parans[10 '
16. parans[11
17. parans[12
18. parans[13
19. par ans[14
20. par ans[15
21. par ans[16
22. parans[17

cart. get Event Name();
cart.get Event Location();;
cart.get Event Date();
cart.get Event Ti me();
cart.get Nunber O Ti cket s();
cart. get Cat egor yNane() ;
23. par ans[18 cart.get Cat egoryl nfo();
24. parans[19] = credit Cards;

25. out put . i nvoke(" Checkout", parans) ;

Figure 4.28: Invoking the Checkoutayout/content class from the application logic

1. public Checkout (String total Nunmber Of Ti ckets, String mini munPri ce,
2. String maximunPrice, String errorMssage, String nane, String address|
3. String phonePrivate, String phoneWrk, String enmail, String coments,
4. String cardNumber, String validThru, String event _nane[],

5. String event location[],String event _date[], String event tinge[],
6. String nunber_of tickets[][],String category name[][],

7. String category info[][],String creditCard[])

8. t hi s. total Nunber O Ti cket s=t ot al Nunber O Ti cket s;

9. this. m nimunPri ce=m ni munPri ce;

10. thi s. maxi munPri ce=maxi munPri ce;

11. this. errorMessage=errorMessage,;

12. t hi s. name=nane;

13. thi s. addr ess=addr ess;

14. t hi s. phonePri vat e=phonePri vat e;

15. t hi s. phoneWor k=phoneWr k;

16. this.email =enmmil;

17. thi s. comment s=conment s;

18. t hi s. car dNunber =car dNumber ;

19. thi s.validThru=validThru;

20. t hi s. event _nanme=event nane;

21. this.event | ocation=event | ocation;

22. this. event dat e=event date;

23. this.event tinme=event tine;

24. this. nunber of tickets=nunber_of tickets;

25. this. category_nane=cat egory_nane;

26. thi s. category_i nfo=category_info;

27. this.creditCard=credit Card,;

28. }

Figure 4.29: The MyXML-generated Checkoutayout/content class

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 78

is taken as the base identifier and device names are apprehended to this identifier for all
other device-specific layout/content classes. For example, if the name of the layout/content
classishomepagéor the default device family, for the PDA layout/content class this would
be homepagepdé.e., device name is “pda’), for the WAP layout/content class this would
be homepageap (i.e., device name is “wap”) and so on. A CGI parameter called device
signas the logic interfacingprocessor the name of the device the application logic is being
invoked for. For example, if the user is visiting the home page that is available at the URL
/homepagecaling the URL as /homepage?device=pdaould make the logic interfacing
processor invoke the PDA layout/content class homepagepdaThe component would add
the “pda’ device name to the default family layout/content class name (i.e., homepageand
instantiate that class with the parameters.

The advantage of this simple approach isthat the application logic is device-independent:
It can be used for many devices as long as the devel oper keeps to simple naming conventions
that the logic interfacingprocessor can correctly interpret.

4.11.0.2 A smpleexample

Figure 4.28 depicts a part of the Java application logic from an e-commerce Web application.
First, an instance of the logic interfacingprocessor is created (a Java implementation called
Output in this case — see lines 1-2). Then, a Java Object array is created that accepts 20
parameters (see lines 3-24). Finally, the layout/content class isinvoked using its class hame
(i.e., Checkouin this case) and the parameters it requires (see line 25). Figure 4.29 depicts
the constructor of the Checkoutayout/content class.

Suppose an aternative PDA layout has to be provided. To cover thisrequirement, first, a
PDA layout/content class would be created using the MyXML compiler. Following the lay-
out/content class naming conventions, the device family name would be apprehended to the
name of the default device family layout/content class. The PDA layout/content class, hence,
would be called CheckoutpdaThe logic interfacingprocessor would instantiate and invoke
the appropriate layout/content class based on the name of the device family the application
logic isbeing invoked for.

4.12 Summary

This chapter introduced a novel conceptual framework for device-independent Web engi-
neering. The Device-Independent Web Engineering (DIWE) framework consists of the
MyXML languagea compiler that can interpret the language, and four basic run-time pro-
cessorghat are configured and deployed on the Web server at run-time to provide device-
independence support. These processors are Web services themselves. The framework in-
troduces two novel techniques, page splittingand process partitioningpy layout marking,
that allow the Web developer to tune the selected information and the sizes of generated
pages according to the characteristics of a device that is being targeted. The framework also
introduces a novel technique called XSL stylesheet pre-processitigt alows the reuse of
existingXSL stylesheets when adding new devices to a Web service.

Chapter 5

TheMyXML tool suite: A prototype
Implementation

This chapter presents the MyXML tool suite, an implementation of the Device-Independent
Web Engineering (DIWE) framework discussed in the previous chapter. The tool suite con-
sists of the MyXML compiler, three configurable run-time device-independence components
and avisual Integrated Development Environment (IDE).

5.1 TheMyXML tool suite

The MyXML compiler and the MyXMLDesigner IDE are development tools used to con-

struct flexible, XML/XSL-based Web services using the MyXML language. The config-

urable device-independence components in the tool suite are implementations of the device
detection logic interfacing page splittingand process partitioningprocessors discussed in

the previous chapter. These components are configured and deployed on the Web server at

run-time to provide device-independence support.

Configurable
Device-
Independence
MyXMLDesigner IDE| Deployment | Components

MyXML Compiler| | configuration

[

Figure 5.1: Relations between the toolsin the MyXML tool suite

Each tool in the tool suite addresses a specific part of the Device-Independent Web En-
gineering (DIWE) framework. Table 5.1 shows the Web service life cycle phases each tool
in the tool suite supports and Table 5.2 shows the functionality each one provides.

Figure 5.1 depicts the relations between the tools in the suite. MyXMLDesigner is a
visual development environment and a user-friendly graphical front-end to the functionality

79

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 80

Phase/Tool MyXML Compiler IndeDsg;Cdeence MyXMILDIZ)Eesigner
Components
Design X
Implementation X X X
Deployment X
Maintainence X

Table 5.1: The Web service life cycle phases each tool in the MyXML tool suite supports

Device- MyXMLDesigner
Functionality/Tool | MyXML Processor| Independence y IDE g
Components
LCL Separation X
(with XML/XSL)
Logic Reuse X
XSL Reuse X
RDBMS
. X
Integration
User-friendly IDE X
Device Detection X
Device
Configuration X X
Device X
Management
XML Content and X
Layout Generation
Layout Adaptation X

Table 5.2: The functionality provided by the toolsin the MyXML tool suite

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 81

Development MyXML Compiler

Environment

A ¢

' |
[|
| |
' |
[|
' :
' |
| .

. MyXMLDesigner IDE |
' |
' |
| |
' |
' |
[|
' |
' |
[|

4 Y .
Device-
XML Lodi Independence
XSL ogic Component
Collection
——e— e e e e — — — — —————— |
I
Application Logic 1'
I
|
I
MyXML :
Generated Web 4|
|
I
I
I
I
|
I
I
|
I

Web Server
(Run-time)

Device-
Independence
Components

|

|

|

|

[

[

|

[

[

I -
: Service
|

|

[

|

|

[

|

|

-~ Deployment

-¢+—— |Interactions

Device-Specific
Web Page

Web Device
(Client)

Figure 5.2: The MyXML tool suite in Web service construction and operation based on the
DIWE framework

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 82

provided by the tools in the tool suite. Device-independent Web sites can be created and
maintained with MyXMLDesigner and interactive functionality can be constructed.

Based on MyXML language specifications, MyXMLDesigner uses the MyXML com-
piler to generate static content embedded in HTML or XML, or Java source code that pro-
vides interactive functionality.

Although the MyXML compiler and the device-independence components can be con-
figured and deployed manually, the MyXMLDesigner IDE has integrated support for their
automated, user-friendly configuration, deployment and usage.

Figure 5.2 illustrates the role of the MyXML tool suite in Web service construction and
operation based on the DIWE framework discussed in the previous chapter. A typical deve-
lopment environment consists of MyXML Designer and the MyXML compiler. The device-
independence components are stored in a repository (i.e., component collection) integrated
into the MyXMLDesigner IDE. The developer creates (or integrates) XML content and X SL
layout definitions. If static layout is being generated, there is no need for application logic.
If dynamic content is being created, however, an application logic (i.e., Java source code) is
created (or integrated) using editorsin MyXMLDesigner. The application logic, the gener-
ated layout and source code files, and the configured device-independence components are
automatically compiled, configured and deployed on the Web server.

52 TheMyXML compiler

The implementation of the MyXML language compiler in the MyXML tool suite is a plug-
gable, stand-alone application. As a part of this dissertation, three versions of the MyXML
compiler have been developed since early 2000: rudimentary prototypesto estimate the fea-
sibility of the tool (e.g., [KKO01, KK0Q]) and the final version that is pluggable into external
applications and that can support arbitrary content types and XML content. This section
focuses on the final version (called MyXML version 1.3 Xenon).

521 Usage

The MyXML compiler has a command-line interface that can be used to invoke it by hand
or from scripts. It can be started with the syntax:

java nmyxm . Xenon <MyXML Fil e> <XSL Fil e>
-p <XSL Post Styl e> <C ass/ Docunent Nane>
<Connect URL> <User nane> <Passwor d>
<Devi ce Name>

The user provides:

e A MyXML document file
e An XSL stylesheet that defines the layout
e Anoptional XSL post stylesheet

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 83

e A Java class name for the generated layout/content class or a name for the generated
static content HTML/XML file
e A connection URL, user name and password for the relational database

e A device namefor XSL stylesheet pre-processing
The compiler also provides a Java Application Programming Interface (API) to its func-

tionality and can be configured and invoked from inside programs. The MyXML Designer
visual IDE usesthis API to start the MyXML compiler.

5.2.2 Implementation

Command-line / API
parameters MyXM L
Compiler Documents
\ 4
Read content and MyXML Document
MyXML elements \/\
Device-specific
Read layout layout in XSL file
Generate XSL for
device
\ 4
Apply XSL to
content read
Process MyXML
elements

Content and layout in

Generate HTML/XML
HTML/XML

Are all MyXML
elements static?

Java source code
Generate Java encapsulating
source code content and layout

-

Figure 5.3: Flowchart showing the main steps taken by the MyXML compiler

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 84

The flowchart in Figure 5.3 shows the main steps taken by the MyXML compiler during
the processing of MyXML documents and XSL specifications.

The compiler is invoked using either command-line parameters or its Application Pro-
gramming Interface (API). First, the compiler readsthe MyXML document it isgiven. Then,
it reads the XSL layout definition. Based on the device for which the content and layout is
being generated, X SL stylesheet pre-processing is performed and an XSL stylesheet is gen-
erated for the target device.

The generated device-specific XSL stylesheet is applied to the MyXML document and
the elements from the MyXML namespace are parsed and interpreted. If al MyXML el-
ements are static (i.e., do not contain any variables, loops, CGI elements that need to be
instantiated at run-time), an HTML or XML file is generated based on the layout informa-
tion in the XSL definition. If dynamic MyXML elements exist, on the other hand, a Java
source codefile (i.e., Javaclass) is generated that encapsul ates the content and the layout.

Xenon

+generate()
+getDirectory() : String
+loadFile() : String
+main()

+processDevices() : String
+processimports() : String Generated from XenonLex JLex specification
+setDirectory()
T
______ f]
|
|
1
N2
parser XenonLex
o [l [p—— > I e ——
Generated from parser.cup specification I_ 1
|
LI 1
| bmmamamaa—-
(| 1
| 1
! I I
| 1 N/
N | LexCurrentData
sym : -booleanData : Boolean
| -stringData : String
| -intData : Integer
| +getBooleanData() : Boolean
_\V +getintData() : Integer
Variables +getStringData() : String
+addMultiple()
+addSingle()
|====9 +addSoapSingle() [T~ |
: +getLastMultiple() :
| +getMultiples() \
] +getSingles()]
I +getSoapSingles() |
I |
I 1
Single Multiple
+getName() : String +getLevel() : Integer
+getName() : String

Figure 5.4: UML class diagram describing the architecture of the MyXML compiler

The MyXML compiler reference implementation has been written in Java (JDK Version
1.2). The compiler first uses the Apache Xalan [Apa0Ola] XSL processor and the Apache

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 85

Xerces[Apallb] XML parser to parse MyXML documents (i.e., XML content and MyXML
elements) and to add a layout to them. The resulting documents are then processed by
the JLex lexical analyzer [Ber0l] and the JCup code generator [AniO1] and the embedded
MyXML elements are interpreted and resolved.

Figure 5.4 shows the architecture of the MyXML compiler with simplified UML class
diagram. The classes parser(i.e., code generator), symand XenonLexXi.e., lexical analyzer)
are generated from JLex and JCup lexical analysis and grammar specifications and are used
for content and code generation.

The class Xenonprovides a command-line interface and an APl to the compiler. The
classes XenonLexCurrentDatavariables Singleand Multiple are used to pass information
from thelexical analyzer to the code generator and to keep track of MyXML variablesduring
the parsing.

5.3 Configurable device-independence components

There are three components in the MyXML tool suite that provide device-independence
support: The Dispatcher Outputand Collector components. These components are imple-
mentations of the default device-independence run-time processors in the DIWE framework
that were discussed in Chapter 4. The components are configurable and are instantiated and
used at run-time in combination with the static and dynamic Web services generated by the
MyXML compiler based on MyXML language specifications.

Table 5.3 showsthe Dispatcher Outputand Collectordevice-independence components
and lists the functionality each one provides.

Functionality/

Component Dispatcher Output Collector

Device Detection X

Application Logic
Interfacing

Page Splitting X

Process
Partitioning

Table 5.3: Table showing the device-independence components and the functionality they
provide

The Dispatchercomponent is responsible for device-detection and is a Java implemen-
tation of the device detectiomprocessor. It can be configured to detect the device a user is
using based on the HTTP request header and respond accordingly.

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 86

The configurable Outputcomponent provides device-independent application logic inter-
facing support to the services generated by the MyXML compiler and is an implementation
of the logic interfacingprocessor discussed in the previous chapter. It allows the applica-
tion logic to be written once and used for multiple device-specific MyXML-generated Web
services without any modifications.

The Collectorcomponent is one of the most important run-timetoolsin the MyXML tool
suite. It provides layout adaptation support and is an implementation of the page splitting
and process partitioningrocessorsin the DIWE framework.

5.3.1 TheDispatcher component

The Dispatchercomponent detects devices by analyzing the User-Agentattribute that is
sent by most clients (i.e., browsers) in the HTTP request header. This attribute provides
information about the client the user is using to access the Web service such asits name and
version number.

By maintaining alist of clients and URL s they should be ” mapped” to (i.e., the appropri-
ate response), the Dispatchercomponent allows two users on two different devicesto access
the sameURL, but see two differing pages that have been custom-tailored for the device.

Detecting devices based on the User-Agentattribute is not a new idea. Other systems
and programs have been using this attribute for various purposes (e.g., collecting statistics
on browser usage) since the early days of the Web. One limitation of the approach is that not
al clients may send the User-Agentittribute with HT TP requests. Therefore, the component
allows the configuration of adefault action if it cannot detect the client agent.

A second limitation of detecting devices based on the User-AgenHTTP attribute is that
alist of known devices have to be maintained. If the user is using an unknown device that
isnotinthelist (e.g., anew micro-browser for the Compaq iPAQ PDA), the Dispatchemwill
not be able to detect it. Nevertheless, by analyzing the Web access logs, it is possible to
find out what devices users are using to access a particular service. The configuration of the
Dispatchercomponent, thus, can be adjusted for each service.

5.3.1.1 Configuration grammar

The Dispatchercomponent provides an XML configuration language. Figure 5.5 depictsthe
DTD that defines the configuration grammer of the Dispatchercomponent.

A typical configuration consists of alist of user agents and a default agent in case there
are no matches (see line 3). Each agent entry is accompanied by a name and amapping URL
(i.e., <name> and <map_to> elements— see lines 5-6 and 12-15). The name entry definesa
string that should be matched to the contents of the User-Agentttributein the HT TP request
header.

The Dispatchercomponent can dispatch or redirect requests. Redirecting requests means
that the Dispatchercomponent forwards the request to another URL viaHTTP. Dispatching
requests, on the other hand, means that the Dispatchercomponent invokesanother compo-
nent internally with the parameters it has received. Each agent entry in the configuration

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 87

~
/

<?xm encodi ng="UTF- 8" ?>
<! ELEMENT agents ((agent)+, defaul t >

<! ELEMENT agent (name, map_to)>
<! ATTLI ST agent action CDATA #l MPLI ED>

<! ELEMENT default (target, action)>
<! ELEMENT target (#PCDATA) >
<! ELEMENT action (#PCDATA) >

©CONOO A WN

[
=)

12. <! ELEMENT nane (#PCDATA) >
13.

14. <! ELEMENT map_to (#PCDATA) >

15. <! ATTLI ST map_to static CDATA #| MPLI ED>

Figure 5.5: The Dispatcher component configuration DTD

definition accepts an action attribute (see line 6). This attribute defines if the request should
be dispatched or redirected (i.e., its value can be “dispatch” or “redirect”).

The <map_to> element accepts an attribute static(see line 15). The attribute signalsthe
Dispatchercomponent that the service that is being configured is static. It is assumed per
default that the service being configured is dynamic.

5.3.1.2 A configuration example

Imagine device detection support is needed for a service that is accessible at the URL
http://kirda.com/welcome/There are users that access the service with traditional desktop
HTML browsers and users that access it using micro-browsers on PDAS.

The goal is that users on PDAs should automatically see the contents in the URL
http://kirda.com/welcome/pdahd the desktop browser users should see the content at the
URL http://kirda.com/welcome/pc/

First the Web server has to be configured to divert any requests that come to the URL
http://kirda.com/welcomeb the Dispatchercomponent. Web servers offer configuration
facilities with which thisis easily done. Then, based on the User-Agentttribute, the Dis-
patchercomponent has to be configured to dispatch the request to the device-specific URLs
listed above.

Figure 5.6 depicts the XML Dispatchercomponent configuration for the service. The
action="dispatch” attributesin the agententries (see lines 4,9,14) signal to the Dispatcher
component that it should dispatch arequest instead of redirecting it. The nameand mapto
tags in the agent entries define the mapping between the name of a user agent (i.e., device)
and the URL it should be mapped to (e.g., see lines 5-6). In the example, two user agents,
Windows CEand Palm, are mapped to the /welcome/pddJRL (see lines 5-6 and 10-11).
PDASs running the Windows CE and Palm operating systems usually send these strings in

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 88

~N
/

1. <?xm version="1.0" encodi ng="UTF-8""?>

2. <! DOCTYPE agents SYSTEM "agents.dtd">

3. <agent s>

4. <agent action="di spatch">

5. <nane> W ndows CE </ nanme>

6. <map_t o> /wel cone/ pda </ map_t o>
7. </ agent >

8.

9. <agent action="di spatch”>

10. <name> Pal m </ name>

11. <map_t o> /wel cone/ pda </ nmap_t o>
12. </ agent >

13.

14. <agent action="di spatch">

15. <name> Mozilla </ nanme>

16. <map_t o> /wel cone/ pc </ map_t o>
17. </ agent >

18.

19. <defaul t >

20. <map_t o> /wel cone/ pc </ map_t o>
21. </ defaul t>

22. </ agent s>

Figure 5.6: A Dispatcher configuration for a service

the HTTP requests they make. When the Dispatchercomponent receives an HT TP request
header User-Agentttribute that contains these strings, it dispatches the request to the URL
designated for the PDA.

In the example, the Dispatchercomponent detects Mozilla-based browsers and dis-
patchesthem to the /welcome/pdJRL (seelines 14-17). Thedefault rulein thisconfiguration
isto dispatch all requeststo the /welcome/ptJRL (seelines 19-21).

It isusually not necessary to configure a Dispatchercomponent for every single pagein
a service. The home page, for example, can act as an entry point into the device-specific

pages.

5.3.1.3 Implementation

The Dispatchercomponent has been implemented as a stand-alone Java servlet and uses the
Apache Xerces XML parser for processing configuration files. It is based on the Java Servlet
API Version 2.3 and has been tested with the Tomcat Servlet Engine version 4.0 (Catalina).

The Dispatcherclassisinstantiated and invoked by the servlet engine (i.e., Web server).
The RequestWrappetlass is used in the Java Servlet APl Version 2.3 to wrap and mod-
ify/extend anincoming HT TP request. It isusually used in request dispatching. The ParseEr-
rorHandler class is used by the Xerces XML parser to process errors that are encountered
during the parsing.

Figure 5.7 depictsa UML class diagram that describes the architecture of the Dispatcher
component.

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 89

Dispatcher
+doGet() RequestWrapper
+doPost()
+getClassName()
+getDefaultAction() - & = = == J+setParams()
+getDefaultTarget() +getParameter() : String
+getManageCookies() +getParameterNames() : Object
+getMapRelative() +getParameterValues() : Object
+getRequest()
+getResponse()

+getSessionID()

+init()
+mapActionDescription()
+processAction()
+processRequest()
+setClassName()
+setDefaultAction() +error()
+setDefaultTarget() = = ——— - 9 +fatalError()
+setManageCookies() +warning()
+setMapRelative()
+setRequest()
+setResponse()
+setSessionlD()
+Dispatcher()

ParseErrorHandler

Figure 5.7: UML class diagram showing the architecture of the Dispatcher component

5.3.2 TheCollector component

The Collector component in the MyXML tool suite is a configurable, stand-alone applica
tion that provides both the page splittingand process partitioningorocessor functionality
discussed in the previous chapter. It is responsible for giving out the information partially
over many smaller steps, keeps track of the group and subgroup numbers and can receive
commands on which splits (i.e., layout fragments) to give out. Furthermore, it invokes the
application logic with the input data it has collected when all necessary data has been sub-
mitted.

5.3.2.1 Configuration grammer

The Collector component provides an XML configuration language that allows the Web
developer to define page splitting stepping values and content typegor devices. A Web
device requests information from the Web server with a specific content type HT TP attribute.
A WAP phone, for example, signals the Web server with the content type vnd.wap.wmthat
itisawaitinga WML page.

Figure 5.8 depictsthe DTD that defines the configuration grammer of the Collectorcom-
ponent.

A typical configuration consists of alist of device names and the corresponding content
type definitions and stepping values. There is also default device definition (see line 3).

The XML definition contains a list of <device> elements with <contentType> and
<steps> elements (see line 5). Each device name is mapped to a content type definition

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 90

r ~

1. <?xm encodi ng="UTF- 8" ?>

g <l ELEMENT config ((device)+, default>

g. <! ELEMENT devi ce (nane, content Type, st eps) >
g <! ELEMENT default (contentType, steps)>

26. <! ELEMENT cont ent Type (#PCDATA) >

i;: <I ELEMENT st eps (#PCDATA) >

. S

Figure 5.8: The Collector component configuration DTD

and a stepping value.

5.3.2.2 A configuration example

r N
1 <?xm version="1.0" ?>

2 <confi g>

3.

4, <devi ce>

5. <nane> pda </ name>

6 <cont ent Type> text/htm </content Type>

7 <steps> 3 </steps>

9 </ devi ce>

10. <devi ce>

11. <name> wap </ name>

12. <content Type> text/vnd. wap. wr </content Type>
13. <steps> 3 </steps>

15. </ devi ce>

16. <def aul t >

17. <cont ent Type> text/htm </contentType>

18. <steps> </steps>

19. </ def aul t >

20. </ config>

Figure 5.9: A typical XML Collector component configuration

Figure 5.9 shows the Collector component configuration file for a Web service. The
content typefor the default devicefamily isHTML (i.e., text/htm] seeline 17) and astepping
valueisnot given (i.e., no page splitting or process partitioning is required).

Two other devices, PDAs and WAP phones, are also supported. The content type defini-
tion for PDA devicesisHTML (i.e., text/htm) see line 6) and WML for WAP phones (i.e.,
vnd.wap.wmlsee line 12). Both devices use a stepping value of 3.

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 91

5.3.2.3 Implementation

The Collectorcomponent has been implemented as a stand-alone Java servlet. It is uses the
request dispatching and session management feature of the Java Servlet APl Version 2.3.
The component has been tested with the Tomcat Servlet Engine version 4.0 (Catalina).

Figure 5.10 shows a UML class diagram describing the architecture of the Collector
component. The class Collectorprocessesthe result stream that the calling component passes
toit. Inatypical setting, the Dispatchercomponent instantiates and invokes this main class.
The class CollectorStoras used to keep track of group and subgroup numbers and the target
URLSs for process partitioning. The class ParameterStores used to keep track of all CGlI
parameters that the Collectorcomponent receives so that they can be forwarded to the target
URL when the collection is finished.

CollectorStore

+getContentType() : String
+getCurrentUserlInterfaceNumber() : Integer
+getNextSubGroupNumber() : Integer

+getNextUserInterfaceNumber() : Integer Collector

+getParameter() : String

+getParameters() : Object -

+getPreviousSubGroupNumber() : Integer +dispatchToTargetServiet()

+getPreviousUserInterfaceNumber() : Integer +30S9t0

+getRequest() : Object +doPost() ParameterStore
+getSubGroupNumber() : Integer :gg:gggﬁz‘;ﬁmfe() —————— N

+getSubGroupSteps() : Integer N T T TTTTTT -

+geﬂ—arget0 :pStrir?g 0 g +g§tReponse() +getParameterName() : String
+getUserlnterface() : String *init() +getParameterValue() : String
+incSubGroupNumber() +processRequest() +setParameterName()

+init() +setCollectorStore() +setParameterValue()
+setContentType() :Zggizus:ts(()e() +ParameterStore()
+setParameters() ool tp

+setRequest() ollector()

+setSubGroupNumber()

+setSubGroupSteps()

+setTarget()
+setUserlnterface()
+CollectorStore()

Figure 5.10: UML class diagram describing the architecture of the Collector Component

5.3.3 TheOutput component

The Outputcomponent in the MyXML tool suite is a stand-alone application that provides
the functionality of the logic interfacingprocessor in the DIWE framework. Just like the
other two device-independence components, it can be configured to adjust its behavior.

5.3.3.1 Configuration grammer

The Outputcomponent provides an XML configuration language that allows the Web de-
veloper to specify how the component should deal with the output that it receives from the
layout/content classes. Figure 5.11 depicts the DTD that defines the configuration grammer
of the Outputcomponent.

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 92

<?xm encodi ng="UTF- 8" ?>
<! ELEMENT config ((device)+, defaul t>

<! ELEMENT devi ce (name, processor) >

Nookwd e

<! ELEMENT default (#PCDATA) >

Figure 5.11: The Output component configuration DTD

A typical configuration consists of alist of device names and the appropriate processor
that the Outputcomponent should invoke with its output. Usually, the Outputcomponent
will invoke the Collector component with an output stream that should be processed for
page splitting and process partitioning. However, the configuration mechanism of the Out-
put component provides flexibility and allows other processors to be invoked as well. For
example, an output stream for a device could be sent to a specific Java servlet developed by
the Web devel oper for creating and saving PDF files.

Figure 5.11 shows the Outputcomponent configuration DTD. The XML definition con-
tains a list of <device> elements with <name> and <processor> elements (see line 5).
Each device name is mapped to a processor available at a specific URL. Furthermore, a de-
fault processor is also given for the default device family using the <default> element (see
lines3 and 7).

5.3.3.2 A configuration example

1. <?xm version="1.0" ?>

2. <confi g>

3.

4, <devi ce>

5. <nane> pda </ nanme>

6. <processor> /col |l ector </processor>

7 </ devi ce>

8. <devi ce>

9. <nanme> wap </ name>

10. <processor> /col |l ector </processor>
11. </ devi ce>

12. <devi ce>

13. <nane> pdf </name>

14. <pr ocessor > / pdf generat or </processor>
15. </ devi ce>

16. <def aul t >

17. / col |l ector

18. </ defaul t>
19. </ config>

Figure 5.12: A typical XML Output component configuration

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 93

Figure 5.12 shows the Outputcomponent configuration file for a Web service. The pro-
cessor for the default device family is the Collector component available at the URL /col-
lector (see lines 16-18). The device families pdaand wap have been configured to use the
Collectorcomponent aswell (seelines4-7 and 8-11). The device family pdfhas been config-
ured in this case to use a processor available at the URL /pdfgenerator The Web devel oper
has written this processor herself.

5.3.3.3 Implementation

The Outputcomponent has been implemented as a simple Java class and uses the Apache
Xerces XML parser for processing configuration files. It uses the Reflectionmechanism of
Javato create instances of layout/content classes from their class names.

Figure 5.13 shows the UML class diagram of the Outputcomponent. The application
logic creates an instance of the OutputJava class. Errorsin the configuration files are pro-
cessed with the ParseErrorHandlercl ass.

Output ParseErrorHandler
+invoke() =TT Z+erron()
+init() +fatalError()
+Output()() +warning()

Figure 5.13: UML class diagram of the Output component

54 MyXMLDesigner

A user-friendly visual development environment is important for device-independent Web
engineering because of the increased complexity of Web sites that are built with XML and
XSL. The Web site planning, organization and maintenance overhead may increase signif-
icantly with the use of XML and XSL technologies [KKJKO01]. Web sites may become
even more complex when application logic separation support is also provided and separate
layouts have to be managed for different Web devices. The MyXMLDesigner visua de-
velopment environment attacks this problem and aims to ease device-independent Web site
development and maintenance.

Compared to other visual Web site devel opment tool sand environments, one of MyXML-
Designer’s distinguishing features is its editing support for the separation of layout, content
and logic during theimplementation. Furthermore, MyXML Designer isone of thefew visual
development environments that aims to support the construction and maintenance of device-
independent Web sites. It provides a user-friendly interface to the MyXML compiler and the
device-independence componentsin the MyXML tool suite.

MyXMLDesigner provides the following functionality to Web devel opers:

e Customizable, XML-based meniag layout, content and logic separation, and page
splitting and process partitioning support.

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 94

e Configuration mechanisntbat allow the definition and management of devices and
the configuration of the Dispatcher Collectorand Outputdevice-independence com-
ponents.

¢ User-friendly code editing facilitiesith syntax highlighting for MyXML, XML, XSL
and Java documents.

¢ Creation, organization and managemeniVeb projects and project files.
¢ Visual definition and managemesftWeb pages that support multiple layouts.

e Generation, deployment and compilatioh static and dynamic content (using the
MyXML compiler).

54.1 Overview of thelDE

MysMLDes igner I
File Edit Yiew MyXML Layvout Logic Project Devices Help

=L

(Praject View [File ¥iew | :

FHlayout.xsl

=/l

[Source View |[TreeView |

|<7xm] wersion="1.0" 7».

<xs]:stylesheet xmins:xs1="http:/ fwww.w3.org/1999/X5L/Transform™ xml
<xs1:import href="/homesek eksstuff/xenon/resources fxenon.xs1" />,
<xs]:import href="/home/ek /eksstuff/xenon/resources /well-formed-html
<xs]:output method="html" dindent="yes"/=.

jVienna International Fes
9 Q“. Components

@ [E7 Event Infarmation

@ [E] Ticket booking
9 Q“. Content

r_:%] Display Events

=| Show Cart
r%:] Ticket Informatio
r_:%] Display an Event

<xs]:template match="root"=.

@ [T styles chtmls=.
@ Main Stylesheet <hEI'&C|'>.
<tTtTes.
A‘;,}] Receipt PDA Wiener Festwochen 2001.
@ Checkout WAP /tTitTes.
@ Main Stylesheet A <Tink href="/includes /fext.cs55" rel="stylesheet” fype="fext/,
</ heads.

@ Show Cart
@ Receipt WAP
@ Show Cart PDA

J;Qs‘] Ewents (all) WAFP

<hody aTink="#C000007" background=",STmages /devtsch Amgs bpl. g1
<script Tanguage="javascript”™ src="/includes se_navigation.js
<tabkle border="0" cellpadding="0" cellspacing="0" width="100
<tr align="center ">,

<t

@Ticketlnfcrmatio <table border="0" cellpadding="0" cellspacing="0"=.
&3} main stylesheer <tr valign="top">.
@ Ticket Infarmatia <td>.

<img height="2" src="/images senglish/Tmgs /mix.gif" width="86
B s

<td=<a onMouselver="self.s5tatus="Vienna International Festiwj
<td=<a onMouselwer="self.status="Programme 2001°; return frud

| 0]

&2 show carc war
@ Ewvent Details POA
J;Qs‘] Ticket informatig |

L]

Frocessing component: ShowCart, device:
Frocessing component: ShowCart, device:wap...
Finished processing.

| Kl

Figure 5.14: The MyXMLDesigner visual Integrated Development Environment (IDE)

The MyXMLDesigner IDE contains of a desktop that is able to display multiple docu-
ments. Figure 5.14 presents a screenshot of the application. The MyXML, Layoutand Logic

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 95

menu items in the main menu are customizable by the user. To add and manage devices,
the user chooses the Devicesmenu item. The Project menu contains items that allow the
generation of pages, compilation of sources, managing of projects and configuration settings
(e.g., setting the Java CLASSPATH Environment).

A message pane is embedded into the bottom of the desktop pane that displays system
messages. In the screenshot, for example, the messages indicate that the user (i.e., Web
developer) has processed and generated pages for the project using the MyXML compiler.

The project view on the left side of the desktop supportstwo views: the project view and
the file view: The project view provides a collapsible tree view of the MyXML documents
and XSL layout definitions in the project, the pages in the Web site and the devices each
page supports. The file view provides a collapsible tree view of the files in the project and
their physical locations.

By clicking on the nodes of the collapsible tree, page properties can be displayed, new
pages can be created by visually combining MyXML documents and XSL definitions, and
the contents of the files in a project can be opened as documents in the desktop. In the
screenshot, for example, an XSL stylesheet layout.xslhas been opened and is being edited.

5.4.2 Support for design

One important feature of MyXMLDesigner is its support for data organization. Data orga-
nization is an old issue in Web site design. A frequent problem is that as the site grows,
content managers lose track of the files and resources in the site. The results are often bro-
ken (or dangling) linksa growing need for extra storage space and files that are “forgotten”
[KKJKO1, RM9g]. If XML/XSL technologiesare deployed, data organi zation problems may
worsen because the number of involved files and their dependencies increases. In atypical
site, for example, an XML file may reference aDTD, import other XML files and point to a
stylesheet that, yet again, imports other stylesheets. Data organization planning also includes
writing makefiles and scriptsthat allow the easy compilation of sources and copying of files.

MyXMLDesigner decreases the data organization planning and management effort by
automatically creating content, layout and source code directories and generating makefiles.
Static and dynamic content can then be generated and deployed by calling these makefiles.
Files that are being inserted into the project, as well as new content, layout and application
logic filesthat are created are automatically stored in the corresponding locations.

In MyXMLDesigner, a projectis the highest organizational unit. Web sites and Web
services are treated as projects in MyXMLDesigner. The project in MyXMLDesigner de-
fines the content, layout and application logic resources that are available and the necessary
settings for the devel opment environment such as the location of the deployment directories.

A Web site can constitute asingle project in MyXMLDesigner. From a management and
organization point of view, it is more practical to structure Web sites as a combination of
separate projects. For example, a main project can be created that defines the main layout
infrastructure and content in the Web site and other projects can then import and extend this
functionality.

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 96

5.4.3 Support for implementation

HTML editors are quite popular in Web development. They often provide syntax highlight-
ing for editing HTML content. One common feature of such editorsistheir ability to gener-
ate HTML elements: The developer can choose HTML layout elements such as
 and
<table> from a menu that are then inserted into the HTML document that is being edited.
The customizable development menua MyXMLDesigner are similar. The menus allow
Web developers to encode layout, content and application logic-specific elements and code
into MyXML, XSL and Java documents.

The advantage of having customizable development menus is that the Web devel oper
can extend them to contain device and problem-specific code. The layout definition menu
supports HTML, WML and MyXML layout code by default, but the Web developer, for
example, can add VoiceXML elementsto it ssmply by extending the XML menu definition.

Contrary to other Web site construction tools that intermix the layout, content and appli-
cation logic information, MyXML Designer guides the Web development during the imple-
mentation and supports the layout, content and logic separation by enabling and disabling
menu items. For example, when the Web developer is editing an XSL layout file, menu ele-
ments from the MyXML Namespace are disabled and cannot be automatically inserted into
the document.

In real-world projects, it is sometimes necessary to mix layout and content to some de-
gree (e.g., when embedding links). The separation mechanism, does not prevent the Web
developer in inserting elements manually. It merely encourages the separation and provides
some guidance.

MyXMLDesigner provides syntax highlighting and editing support for pure text, XML,
XSL, MyXML and Javacodefiles. By displaying thefile contentsin acombination of colors,
the Web devel oper can distinguish between MyXML, general XML and XSL elements and
identify the layout, content and logic during the development.

5.4.4 Support for configuration and deployment

Figure5.15 showsascreenshot of MyXMLDesigner’ sdevice configuration dialogs. MyXML-
Designer provides a graphical user interface for the configuration of the Dispacher Collec-
tor and Outputdevice-independence components. Device families and their properties can
be easily configured and managed without the need to edit the XML configuration files by
hand. In the screenshot, for example, the Web service (the Vienna International Festival e-
commerce component in this case) has been configured to support 5 device families: PDAs
(device name pda), PDF generation (device name fop), speech-recognition interface using
VoiceXML (device name voicg and WAP access (device name wap).

In the screenshot, the properties of WAP devices are currently being edited. The splitting
step has been set to 3 and the Collectorcomponent available at the URL /collectorhas been
selected as the processor for the device.

Whenever a Web site is generated, MyXMLDesigner automatically instantiates, con-
figures and deploys the device-independence components on the Web server based on the
project settings.

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 97

MysMLDes igner 5
File Edit Yiew MyXML Layvout Logic Project Devices Help

==

(Project View rFiIe View |

jVienna International Festiv]

@ D Components
@ [E] Event Infarmation

Q ListOfEvents

A — Device Mame [Content Type | Splitting Steps | Processor nsform™ xm
g Ref: Display £ pda text/html 3 /callactar cxs17 /=
i pd
? L"p 2 fop text/html 1 /fopproces... formed-htm
@ .
2| Ref: Event vaice text/html 1 fcallectar
&D default wap text/vnd.w... |3 fcallectar
GPD wap
log EventDetails
@ &7 Ticket booking Edit Device Profi
9 [Content Name of device:
r%] Display Events |wap |
F:E] Show Cart Content type: type="text
r%] Ticket Infarmation [rext/wnd. wap wml | Simgs /bgl
r%] Display an Event Splitting steps: vigation j‘
® [T styles E | " width="10
@ Main stylesheet Pracessar context:
&2 Receipt PDA |/ collectar -] '
.
@ Checkout WAFP | oK | | Cancal |
gzl Main Stylesheet PDA i
@ Show Cart F" width="§
@ Receipt WAP fonal Fest?d
@ Show Cart PDA return fr
& Events (alll WAP i - - true” hre
Q vents (all) | oK || Edit | MNew device Deleta || Canceal [
@ Ticket Infarmation| eturn true
. T T e BT e T T s T L T e T e ear e refurn tr
Jé?‘l Main Stylesheet WA : <tdm<a onMouselver="self.status="Contact uws'; refurn frue”
@Ticketlnformation U <td=<a onMouseldver="self.status="Deutsche Version'; return
n]

[»]

Figure 5.15: Configuring general device properties

5.4.5 Support for Web page creation and maintenance

Compared to other visual Web tools, one of the main distinguishing features of MyXMLDe-
signer isits support for device-independent Web page creation and management. The Web
developer can add device-specific layouts to pages and multi-device support is part of the
page creation and management process.

MyXMLDesigner provides visual mechanismsfor:

Listing the pages that constitute a service or asite (i.e., Site overview).

Displaying information about each device a page supports.

Grouping of pages to ease organization and management.

Displaying which MyXML documents and XSL stylesheets each page uses.

A page is created with a dialog that alows the Web developer to enter descriptive in-
formation about the page such as its name and purpose. The user is then presented a page

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 98

propertydialog that displays the MyXML documents and layout stylesheets in the project.
The minimum setting needed to create a pageisto choose aMyXML document and a layout
stylesheet for the default device family.

The developer can later choose a page and add arbitrary numbers of devices to it by
simply specifying the stylesheet in the project that applies the suitable layout for the device
(i.e., either anew stylesheet or an existing one that uses X SL stylesheet pre-processing).

The devices each page supports are listed in a collapsible tree in the project view. In the
screenshot in Figure 5.15, for example, the project panel contains a page ListOfEventdhat
supports the PDA, WAP and HTML device families. By expanding each device node in the
tree, the layout components that they support become visible.

5.4.6 Architectureand implementation

MyXMLDesigner has been implemented in Java and uses the Swing Graphical User Inter-
face (GUI) classes. It accesses and uses the MyXML compiler using the processor’s API.
The device-independence components are stored and managed in a repository on the local
file system.

MyXML Designer generates XML makefilesthat can be processed by the Apache Jakarta
Ant [ant02] tool. Furthermore, it usesthe Ant librariesto compile Java sources generated by
the MyXML compiler.

MyXMLDesigner

N/

My XML
Processor

Notepad

K——1 W
MainFrame

P = = =" | JakartaAnt

=1 F Tl - |-

-

iy

Jakarta Ant

__aJakartaAntBuiIder \

ComponentCollection

Figure 5.16: Simplified UML class diagram describing the architecture of MyXML Designer

Figure 5.16 shows a simplified UML class diagram describing the architecture of the
MyXMLDesigner IDE. The MyXMLDesignerclass is the main class of the application and
creates the desktop with the MainFrameclass. MyXML, XML and Java documents are
opened in the desktop using the Notepadclass. The device-independence components are
stored and accessed using the ComponentCollectionlass. The IDE imports the MyXML
compiler and Jakarta Ant packages. The MyXML compiler is directly accessed using its
APl in the Xenonclass (see Section 5.2). The Jakarta Ant libraries are accessed using the

CHAPTER 5. THEMYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 99

JakartaAntclass (for makefile generation) and the JakartaAntBuilde(for source code com-
pilation).

5.5 Summary

This chapter presented the MyXML tool suite, an implementation of the Device-Independent
Web Engineering (DIWE) framework discussed in the previous chapter. The tool suite con-
sists of the MyXML compiler, three configurable run-time device-independence components
and avisual Integrated Development Environment (IDE). The set of toolsin the suite provide
support for the design, implementation, deployment and maintenance of device-independent
Web sites.

Chapter 6

Case Study: VIF eeCommerce Web
service

The two previous chapters discussed the conceptual details of the Device-Independent Web
Engineering (DIWE) framework and presented the technical details of its prototype imple-
mentation; the MyXML tool suite.

To evaluate the DIWE framework and its concepts of LCL separation, page splitting,
process partitioning and XSL pre-processing, the MyXML tool suite was used to design,
implement and extend adevice-independent version of the online ticket booking and ordering
Web servicef the Viennalnternational Festival (VIF) Web site.

The Web service supports a default full-fledged HTML layout for traditional Web
browsers on medium to large displays, a smpler HTML layout for PDA micro-browsers
and small displays, and a WA P-layout for WA P-enabled mobile phones. Furthermore, after
the user has completed an order, she has the possibility of downloading the receipt asaPDF
file. The PDF information is generated dynamically and is treated as an additional device
layout that the developer can add to an existing service.

The case-study Web service demonstrates that the devices a Web service will have to
support inthe near future might not only have varying display sizesand technical capabilities,
but may also use different Web formats (e.g., WML for WAPR, XSL:FOP for PDF, etc.). It
shows that devices supported by a Web service do not necessarily have to be mobile or
computingdevices (e.g., PDF file generation).

The next sections give an overview of the Vienna International Festival (VIF) Web site,
the functionality of the VIF e-commerce Web service and the device-independent implemen-
tation of the service with the MyXML tool suite.

6.1 TheViennalnternational Festival (VIF) Web site

The Viennalnternational Festival (Wiener Festwoch@gnsthe mgjor cultural event in Vienna.
Visitors from around the globe come to Vienna during the festival. The festivitiestake place
invarious famoustheater locations and concert halls. The annual festival, which usually lasts
five weeks, presents operas, plays, lectures, concerts, musicals and exhibitions, featuring and
hosting eminent international directors, performers and ensembles.

100

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 101

6.1.1 Serviceoverview

The VIF Web site provides an extensive range of services to the visitors. Event locations,
information on the current programme, an archive on former performances since 1995, on-
line ticket service, as well as maps of major stages and venues are just some of the service
offerings by the site. All of the information and interactive services are designed bilingualy,
in English and German, with the potential for extending the service to integrate other lan-
guages.

The number of services offered vary each year. The received user input and collected
site statistics are analyzed annually, and the services offered, including the look-and-feel of
the site, are tuned accordingly. These modifications can be anything from minor changes to
significant transformations with major implications on the provided services.

6.1.2 Main VIF components

The festival programme, the archive system and the ticket reservation service are the main
components of the VIF Web site. Additionally, services are offered that inform the user on
stage highlights, press coverage, site news and some text translations of musicals and stage
performances. The site visitor is able, anytime, to switch between German and English ver-
sions of the offered information.

Press

English

Version
i Update
. Facility
Shopping Programme
Cart Search

Figure 6.1: Main VIF Componentsin 2000

All of the site is indexed and coupled with a search engine. The user can search ex-
tensively in the archive and the current programme for specific locations, performances and
events.

The programme information and the ticket management data are stored in an external

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 102

data source: arelational DBMS. The DBMS is used to manage all performance and event-
related information.

The programme information is very dynamic and changes occur frequently. Online Web
forms enabl e the content managersto modify the information in the DBMS. Theinformation
stored in the DBMS is retrieved every night and static HTML pages are compiled from it.
Figure 6.1 depicts the various VIF components.

6.2 VIF eccommerce Web service

The VIF e-commerce Web service allows users to browse through cultural events such as
operas and theater performancesin the festival, retrieve detailed information about them and
order tickets online.

The application is backed by aMySQL database (version 3.22.32). The layout and |ook-
and-feel of the e-commerce Web service change every year. The general information struc-
ture and the way it is presented to the user is usually the same.

The graphical look of the site has aso shown similarities in the last couple of years.
There is a header on each page that contains logos and a navigation bar that allows the user
to jump to different sections of the site. Sponsor logos are usually placed at the bottom and
sides of pages.

This information is presented to the user over a number of pages: the programme (i.e.,
overview of events), detailed event information, ticket information, the shopping cart and the
order form. The information in the database in the case study is from the 2001 festival.

6.2.1 Theprogramme

The programme page gives an overview of the eventsin the festival for the specific season.
There are about 30-40 events that are displayed in a clickable list. By clicking on an event,
the user istaken to a page that provides more in-depth information about the event.

The typical HTML implementation of the festival programme displays all of the events
inasingle page. The user needsto vertically scroll to get an overview of al the events. This
scrolling is acceptable as the number of eventsis low.

6.2.2 Detailed event infor mation

In each detailed event page, the user can retrieve information about the event such as its
language, short and long descriptions, dates and times, length, performers, authors and di-
rectors. Typically, some events also provide an introductory image.

After looking at the details of an event, the user can either go back to the programme
overview, or can decide to book tickets for the event.

By clicking on a button (i.e., image) that is designated for ticket reservation, the user is
taken to a page that displaysticket booking information for the event.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 103

6.2.3 Ticket availability, date and price information

The ticket reservation page provides price and booking information about the available tick-
etsfor an event.

The page displaysalist of dates, times and |ocations that show where and when the event
is performed. By typing in the number of ticketsinto a corresponding input field, the user is
able to specify the number of seats she would like to book for a specific performance. Once
she has booked the tickets, her order is placed in avirtual shopping cart.

If the tickets for a specific performance are sold out, the input field for that date is re-
placed by an image that indicates that no more tickets are available.

The number of performances of a single event usualy vary. There is often one perfor-
mance per day and events may be performed for up to seven days. The entire informationis
displayed on asingle page.

There are four different price categories for the tickets. A,B,C,D — A being the most
expensive. The prices per category change from event to event and are listed with the perfor-
mance dates, times and locations.

6.24 Theshopping cart

Whenever the user books aticket for an event, sheistaken to a page that displaysthe contents
of her virtual shopping cart.

The user is shown alist of tickets she has booked, the dates, times and locations of the
performances, the prices of the tickets and the total sum she has to pay for the ticketsif she
decides to confirm and go ahead with the booking.

At the shopping cart page, the user can choose to go back to the programme page to
browse information about other events and to book more tickets. She can aso decide to
complete the order (i.e., check out) by providing the necessary purchase information such as
her name and credit card number.

6.2.5 Completing the order (checking out)

Once the user decides to go ahead with the purchase and buy the tickets she has booked, she
is taken to a page that displays an order form.

The page presents a list of tickets she has booked with the corresponding dates, times
and locations. The total sum that she hasto pay for the ticketsis displayed.

If there are any errors in the bookings, the user has a final chance to go back and make
modifications. Otherwise, by entering the necessary purchasing information such as her
name, address, credit card number and e-mail address, she confirms the bookings she has
made and the order is sent to the festival organization.

The user is displayed a finishing page that thanks her for the purchase. It serves as a
receipt for the purchase.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 104

6.3 Implementation with the MyXML tool suite

Using the MyXML tool suite, a device-independent version of the VIF e-commerce Web
service was designed and implemented. The constructed e-commerce Web service was ex-
tensible and able to support different devices with the same application logic.

The engineering of the case study covered four phases. Design, implementation, deploy-
ment and maintenance. In all engineering phases of the case study, the MyXMLDesigner
visual IDE was used.

The target development and deployment environment for the case study consisted of the
Java Development Kit (JDK) version 1.2 and the Apache Tomcat servlet engine version 4.0.
MM_MY SQL version 1.1b was used as the JDBC driver for the MySQL relational database.

Some extra libraries were also needed for implementing the application logic. The fol-
lowing libraries were used: PerlTools version 1.2.0a, Apache FOP toolkit version 0.20.2,
Apache Xerces XML parser version 1.4.0 and the Apache Xaan XSL processor version
2.2.D6.

6.3.1 Design

The design phase consisted of five stages. device identification, data organization planning,
content definition and XSL stylesheet definition.

6.3.1.1 Deviceidentification

The default device family for the VIF e-commerce Web service was identified as being the
traditional HTML access that the VIF had been supporting since 1995. The default family
was to provide full support to al the functionality.

It was also decided to provide full functionality and service support to PDA devices. The
total provided information, however, would be less. The detailed event pages, for example,
would not present long descriptions of events because of the smaller display sizes. The user
would be ableto access al the pageswith aPDA and book and purchase tickets onlinewith a
custom-tailored layout. Thislayout would be asimpler HTML layout that would not contain
as many images and tables as the default family HTML layout.

The objective was to initially provide support for the default and PDA device families
and to add additional devices during the maintenance phase.

6.3.1.2 Data organization planning

MyXMLDesigner provided support for the data organization and planning of the case-study.
A new project was created for the e-commerce Web service and a development directory
structure was created automatically. Build files (i.e., makefiles) were also generated that
enabled command line compilation and generation outside of MyXMLDesigner.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 105

6.3.1.3 Content definition

The content definition identified which MyXML elements would be necessary to select the
content from the relational database and how the XML content should be structured.

Page MyXML Functionality

<myxml:sqgl> (<myxml:dbcommand>,

P <myxml:dbitem>)

<myxml:sqgl> (<myxml:dbcommand>,

Event details <myxml:dbitem>),<myxml:cgi>

Ticket details <myxml:single>,<myxml:multiple>
Shopping cart <myxml:single>,<myxml:multiple>
Order form <myxml:single>,<myxml:multiple>
Receipt <myxml:single>,<myxml:multiple>

Table 6.1: Identification of MyXML dynamic content functionality on each page

Six different types of pages had to be constructed: The programme, event details, ticket
information, shopping cart, order form and a final receipt.

By analyzing the content provided in these pages, some commonalities were identified:
The final page, for example, displayed the tickets the user had ordered and its contents over-
lapped with the contents of the shopping cart page. The order form also displayed the con-
tents of the user’s shopping cart and there was again a commonality with the shopping cart

page.

In the pages that had to be constructed, the content often had to be retrieved from the
database. <myxml:sgl> elements were necessary to retrieve the contents from the database
and in some of the pages, there was also aneed for <myxml:single> and <myxml:multiple>
elements for dynamic content.

Table 6.1 presents the list of pages in the case study and the MyXML elements that
they use. The programme page uses a <myxml:sgl> command to select all the event titles
from the database. The detailed event pages are constructed by passing a CGI database 1D
parameter to the service (using <myxml:cgi>) with which the necessary event details are
retrieved (using <myxml:sgl> again). Pages such as the shopping cart, on the other hand,

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 106

receive dynamic content from the application logic directly. A <myxml:single> element,
for example, is used that contains the total number of tickets the user has ordered. The total
sum is calculated in the application logic.

The content is structured in four different MyXML documents. Show eventsShow event
details Shopping cartand Ticket information Two pages, the receipt and the order form,
reuse existing content definitions. The description granularity was kept as high as possible.

Appendix A lists the content definition for the shopping cart and the order form.

6.3.1.4 XSL stylesheet definition

During the XSL stylesheet definition, the default HTML layout was analyzed and common-
alities were identified such as header, footer and navigational constructs. The main am in
defining the XSL stylesheets was to keep the number of stylesheets needed to generate the
pages as small as possible.

The XSL stylesheets for the pages were defined incrementally: First, stylesheets were
written that generated the common layout elements and that were to be imported by the rest.
Then, XSL stylesheets were built that displayed simple HTML pages (i.e., without icons,
logos, pictures, etc.) that implemented the functionality and that were used for testing.

The XSL stylesheet infrastructure that had been defined was then extended and adapted
to the graphical ook of the default HTML layout: Headers, navigational constructs, icons,
images and the correct fonts were added.

Appendix A liststhe XSL default device family layout definition for the shopping cart.

6.3.2 Implementation
6.3.2.1 Construction of the pages

The application logic was created traditionally using servlet session management to keep
track of the tickets the user had booked. The logic accessed the database to check for ticket
availability and to build the dynamic content accordingly. Based on the discussion in Chapter
5, it used the Outputcomponent to pass the dynamic content to the layout/content code by
using string variablesand arrays. Appendix A liststhe Javaapplicationlogic for the shopping
cart servlet.

MyXMLDesigner's page creation and management functionality was used to construct
pages by choosing MyXML documents and X SL layout files.

Figure 6.2 shows a screenshot of the project pane in MyXMLDesigner for the VIF e-
commerce Web service. Two groups have been defined to organize the pages. Event infor-
mationand Ticket booking The following pages have been defined: ListOfEventqi.e., the
programme page), EventDetailqi.e., the detailed event information), TicketDetailg(i.e., the
ticket information), ShowCart(i.e., the shopping cart), Checkouf(i.e., the order form) and
Receipf(the receipt page).

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 107

Lo | —— |
Project View |File View | :

P Wienna International Festiv

o} L‘. Components

@ [E] Event Information
&= ListOfEvents

o EventDetails

@ [Ticket booking
- Checkout
o Receipt

o= TicketDetails
= ShowCart

Figure 6.2: Screenshot of the project pane for the VIF project

6.3.2.2 Integration of PDA device family

After the default device family pages had been implemented, the aim now was to integrate a
PDA layout that had been identified in the design phase.

Because of the smaller display sizes of PDAS, page splitting and process partitioning
information was integrated into the existing stylesheets. The HTML pages for PDAs had
lessimages and simpler tables and the selected content also varied. The detailed event page,
for example, presented less information and omitted a long description of the event. PDA
devices were added to the existing pages in MyXMLDesigner as discussed in the previous
chapter.

Project View |/File View |

[——— R R
Vienna International Festival

§ [Companents

@ [E] Event Information
o ListOfEvents

[':%] Ref: Display Events
g D pda]
[!_5_351 Ref: Events (all)
o Q default
@ Ref: Events {all}
@& [wap :

®@= || EventDetails

Figure 6.3: Adding the PDA layout to the Web service

Figure 6.3 presents a screenshot of the project pane for the case study that showsthe PDA
and default stylesheets the ListOfEventgage supports. This implementation uses the same
stylesheetsfor the default and PDA layouts and makes use of XSL stylesheet pre-processing.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 108

6.3.3 Deployment

Device name Content type definition Steps Processor
default text/html none /collector
pda text/html 3 /collector
wap text/vnd.wap.wml 2 /collector
pda text none [fopprocessor

Table 6.2: Device configurations for the VIF case study

Four devices were configured for the service during deployment. Table 6.2 shows the
device configurations for the VIF e-commerce Web service. A stepping value of 3 is used,
for example, for the PDA device family.

Thedefault family service was configured to be accessible viathe URL /wf/displayevents
The Dispatcher component detects the device the user is using (see discussion in the previous
chapter) and dispatches the corresponding URL.

6.3.4 Maintenance

During the maintenance, it was decided that a WAP layout should be added to the e-
commerce service. The WAP layout was to support full access to the service.

Page splitting and process partitioning had to be used again to provide WAP access sup-
port. In contrast to the default and PDA device families, no images were used for the WAP
pages.

The existing service was extended by both adding new device stylesheets to the pages
(where necessary) using MyXMLDesigner, and by extending the existing stylesheets using
stylesheet pre-processing.

During the maintenance phase, it was aso decided that the receipt page that the user
sees at the end of a completed order should be downloadable as a PDF file. A PDF device
family was added to the receipt page that generates XSL:FOP commands. The XSL:FOP
information is sent to a FOP processor (i.e., via URL /fopprocessor The FOP processor
then generates PDF information that is sent to the user’s browser.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 109

6.4 Usagescenarios

This section illustrates the usage of the device-independent VIF e-commerce Web service
with three different devices. Screenshots from the Web service are presented.

6.4.1 Orderingaticket using atraditional browser

Imagine Dr K is using a common PC browser, the Internet Explorer, and would like book
and purchase a ticket. He is thinking about going to Le Nozze di Figaravhen the festival
starts a couple of months later.

He accesses the service and sees the complete list of eventsin the festival programme.
Figure 6.4 showsthe screenshot of the default device layout that Dr K sees.

He clickson the link for Le Nozze di Figar@nd is taken to a page that provides detailed
information about the event. Figure 6.5 presents the screenshot of the default detailed event
information page for Le Nozze di FigaroDr. K reads a description of the opera and decides
that he would like to go. He clicks on an image for ticket reservation.

He sees a page that lists performance dates and locations for Le Nozze di FigargFigure
6.6). He decides to book and purchase one ticket for the 18th of June. He typesin “1” in
the input field for Category A (that may cost between 1800 and 2450 ATS depending on
availability).

When Dr K submitstheticket booking form, he sees apage that showsthe contents of his
shopping cart. Figure 6.7 shows a screenshot of his shopping cart. He decides to go ahead
with the booking and clicks an image to complete the order.

He is presented a page that displays the tickets he has reserved and a number of empty
input fields prompting for information such as his name and credit card number (Figure 6.8).
Hefillsin the information and confirms the order.

He sees a confirmation and receipt page (Figure 6.9). He clicks on alink at the bottom
of the page and downloads his receipt as PDF.

6.4.2 Ordering aticket using an iPAQ PDA

A few days later, Dr K is attending a meeting with his Compag iPAQ Windows CE PDA.
During a short break, he decides to book another ticket and accesses the VIF e-commerce
application with his PDA.

He sees apage that fits his PDA display and that uses simple tables and small images for
navigation. Figure 6.10(a) shows a screenshot of the programme page that Dr K sees. By
pressing the previousand nextbuttons, he is able to see two event titlesat atime (i.e,, heis
browsing through the page splits on the same page).

He clicks on Intolleranzaand sees a new page that displays information about the event.
Figure 6.10(b) shows a screenshot of the PDA Intolleranzainformation page. He sees that
the event is in German and the music is by Luigi Nono. He has heard of him before and
decidesto buy aticket.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 110

Once Dr K clicks the ticket reservation button, he is presented a number of small pages
with booking information (i.e., the ticket information page splits). He clicks through the
pages by pressing the nextbutton. Figures 6.10(c) and 6.10(d) present screenshots of the
PDA page splits for the ticket availability and information page that Dr K is shown. He
decides to book a ticket for the 15th of May. He enters the amount into the input field and
submitsthe form.

Dr K is shown the contents of his shopping cart —again, over anumber of smaller pages
(i.e., Figure 6.11(a) depicts the first page split).

Dr. K clicks the link to complete the order and sees a final confirmation page that lists
the tickets he is buying (i.e., Figure 6.11(b)). He continues by pressing the nextbutton and
is prompted for input over a number of smaller pages (i.e., page splits) where he enters
information such as his name and address (i.e., Figures 6.11(b), 6.11(c) and 6.11(d)).

Finally, he sees areceipt page that confirms that his order has been successfully sent.

6.4.3 Ordering aticket using a WAP phone

Dr K iswaiting at an airport and is waiting for his flight to Chicago. He will be attending a
conference there. He decides book another ticket for Intolleranzaand invite somebody when
he is back. He takes out his WAP phone and accesses the VIF service.

He is able to browse through the festival programme over a number of smaller WAP
pages and sees two events per page (i.e., Figure 6.12(a) shows thefirst page split). He clicks
on Intolleranzaand is displayed a page that provides short information about the event such
asitslength and language (i.e., Figure 6.12(b)).

He clicks on ticket reservation and is presented a number of smaller pages that contain
general ticket reservation information (i.e., ticket information page splitsin Figures 6.12(c)
and 6.12(d)).

He then chooses the 5th of May again and clicks a link to book a ticket for Category A
(i.e., Figure 6.13(a)).

He is shown his shopping cart over anumber of pages(i.e., page splitsin Figures 6.13(b),
6.13(c) and 6.13(d)).

Heclicksalink to complete the order and istaken to afinal confirmation page. He enters
information such as his name and address over a number of smaller pages and confirms the
order (i.e., Figures 6.14(a), 6.14(b) and 6.14(c)).

Finally, he sees a page that confirmsthat hisorder has been sent successfully (i.e., Figure
6.14(d)).

6.5 Summary

This chapter presented the case study Vienna International Festival (VIF) Web site. It de-
scribed the functionality of the VIF e-commerce Web service and the device-independent
implementation of the service with the MyXML tool suite.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 111

-3 wiener Festwochen 2001 - Microsoft Internet Explorer

J Datei Bearbeiten Ansicht Favoriten Ewiras 7 ‘

J 4= Zuriick v = v () wad | Qsuchen [Favoriten £ verlauf ||%v S r - O

JAdreSSB I@ httpe /famd0S.infosys. buwien, ac. at 080/ wf fdisplayevents j ﬁWechseIn 2u
JLinkS &]Kostenlose Hotmail @] Links anpassen &] Windows @ RealFlayer

Programme Tickets Archive Contact German

From 11 May te 18 June,
it will get eritical i \",
Wiener

"apparently, we do rot deserve Festwoche

Event Location
[Please clhick on an event to see detaled Opening Rathausplatz
information about it. Intolleranza Theater an der Wien
Le nozze di Figaro Theater an der Wien
Bank™ \ustria Lieder matinee of Olaf B0 Theater an der Wien
Nhitlar Tmg, (The Don's Daviion) Partlell | s o iaimer
Halle E
: MuseumsQuartier,
The Insulted and Inured Hale E
MuseumsCuartier,
The Trazedy of Hamlet Halle E
Mow That Communism Is Dead My Life MuseumsQuartier,
Feels Empty Halle G
S : MuseumsCuartier,
Brecht Wuolijoli Puntila Schleef Halle G
MuseumsCuartier,
The show rmust go on!
The show must g0 on Halle G
: MuzeumsQuartier,
Le Costume (The Suit) Halle G

B [% .
4 I

|&] critique |_|_|0 Internet 4

Figure 6.4: Default HTML programme page

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 112

“} Wiener Festwochen 2001 - Microsoft Internet Explorer

J Datei Bearbeiten Ansicht Favariten Extras 7 |

J A Zurick v o= v @ o | @5uchen (3] Favariten @\-‘erlauf ||%1r S W~ =

Jﬁ'—"-dl’ESSE IE http:{amdS.infosys. tuwien, ac, ab: 3080/ wF feventdet ails Fevent=3 j & Wiechseln zu
JLinkS & |Kostenlnse Hotmail @ Links anpassen] Windows @YRealPlayer

Tickets Archive Contact German

From 11 May to 18 Junhe, \" "
Wiener ‘

it will get critical

"Apparently, we do.not deserve anything better.” Festwoche

Le nozze di Figaro (Theater an der Wien)

Please press "reserve ticket”

to book a ticket for this
Event.
Bank™\ustria Music by Wolfgang Amadeus Mozart,
Text by Lorenzo da Ponte , inspired by -
Beaumarchais
Language: Italian

In "Le nozze di Figaro", Susanna's woice becomes a theme, The means of

representation 18 transmuted into the object of representation. "There 1

nothing unpleasantly prim o prudish about het", Toachim Eaiser clatns. And

vet Mozart has mchided a number of shrill (hut not necessarily extremely

high) notes far removed from belcanto in the score to characterise Susanna's
= 7

«
|&] l_l_lﬂ Internet o

Figure 6.5: Default HTML detailed event information

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 113

A Wiener Festwochen 2001 - Microsoft Internet Explorer
J Datei Bearbeiten Ansicht Favoriten Exfras 7 ‘

J A Zurick v o=h v @ al | @Suchen (3] Favoriten @\-‘erlauf ||%v = ¥ ~ -
JAdFESSE I@ http: f amdS. infosys buwien, ac, at:S080,wE ticket details 2event=3 j Wechseln 2u
JLinkS & Kostenlose Hotmal @] Links anpassen @] Windows dyRealPlayer

Programme Tickets Archive Contact German

From 11 May to 18 Juhe,
it will get critical _ \’ \’
‘Wiener

"Apparently, we do.not deserve anything better.® Festwoche

Order Form
Please enter the nmber O_E Tickets matked in red () are not available any more.
tickets requested (in Arabic
mumerals) per category and
day. You may also order

tickets of different categories

Le nozze di Figaro

for the same day. 2001-06-18 Theater an der Wien 19:00 o
e 0 [tickets to be ordered: Category 4, 1800-2450 ATS
tickets requested by you will [tickets to be ordered: Category B, 1000-1400 ATS
be placed i your personal I_ i _
ordler fist, which you may tickets to be ordered: Category C, 700-500 ATS
rodify anytirne you wish, I_ tickets to be ordered: Category D, 100-500 ATS
BankNAustria 2001-06-20 Theater an der Wien 19:00
[tickets to be ordered: Category A, 1800-2450 ATS
[| ket to be ordared: @obgoiy B, 10001400 AT
I_ tickets to be ordered: Category C, 700-500 ATS
I_ tickets to be ordered: Category D, 100-500 ATS
2001-06-23 Theater an der Wien 19:00 _Ij
1] | »
|@ Fertig |_|_|ﬂ Inkernet 4

Figure 6.6: Default HTML ticket reservation page

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 114

2 Wiener Festwochen 2001 - Microsoft Internet Explorer

JDatei Bearbeiten Ansicht Favoriten Exfras 7 |

J A Zurick v o= v @ i | @5uchen (3] Favariten @\-‘erlauf ||%1r S W~ g

J Adresse IE =@ber3d_C_11=fter3 D_l1=3&terd_A_1Z=8fer3_B_1Z2=&ter3_C_1Z=fter3_D_1Z2=&submit, x=28%submit,v=2 j ﬁWechseIn zu

J Links #&]Kostenlose Hotmail @] Links anpassen @] Windows dYRealPlayer

From 11 May to 18 June,
it will get critical

Tf wou have entered all tickets
rou watit inte your order lst,
please click "Order This
will connect you with our
secure server, whete you catn
enter all mformation recuired
for processing your order,
such as your address and
mode of payment.

Tickets Archive Contact German

o\

“Apparently, we do,net deserve anything better.” Festwoche

Crder List

So far, you have ordered the tickets listed here. Tou can add to this list by
selecting tickets for other events from the Vienna Festival's Programme |

When ordering tickets, vou will dinulge personal iformation that, howewer, will
be transmitted using a secure, state-of-the-art transmission protocol

Bank™\ustria
Le nozze di Figaro (Theater an der Wien) e
2001-06-18 , 1900
1 ticket(s) Categoty 4 Prices 1800-2450 ATS
Mumber of tickets: 1
4 | ;IJ
|&] Fertig l_l_lﬂ Internet o

Figure 6.7: Default HTML shopping cart

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 115

A Wiener Festwochen 2001 - Microsoft Internet Explorer

J Datei Bearbeiten Ansicht Favoriten Extras 7 ‘

J A Zurick » = - @ i | @Suchen (3] Favariten @Verlauf |%v S W = D

J Adresze IE http: }famd0S.infosys buwien, ac, ak: S0G0)wf icheckout Fnew=t j & Wiechseln zu

J Links #&]Kostenlose Hotmail & Links anpassen & | Windows @YRealPlayer

From 11 May to 18 June,
it will get critical L \’\’
Wiener

"Apparently, we doynot deserve anything better.” Festwoche
Tou are ordering the following tickets:
Please fill in the mizsing felds
with the required information
and presz "order” to complete i !
L Le nozze di Figaro { Theater an der Wien)
2001-06-18 , 19:00 i
BanlS\ustria 1 ticket(s) of Category & | Prices 1800-2450 ATH
Humber of ickets: 1
Minimum price: 1800
Mazximum price: 2450
Marne: IEngin Kirda
Address:
|Argentinierstr. 8/184-1 ﬂ =
4 | L'J
|&] Fertig I_ ’_ | Inkernet 4

Figure 6.8: Completing the order (checking out) in the default HTML layout

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 116

4 Wiener Festwochen 2001 - Microsoft Internet Explorer

J Datei Bearbeiten Ansicht Favariten Exfras 7 |

J A Zurick v o= v @ i | @Suchen (3] Favariten @\-‘erlauf ||%v S W - g 0D

JAdrESSB IE http: jfamd0s. infosys. buwien. ac. at: 8080/ wf i checkout j @J;’Wechseln 2u
JLir‘lks & Kostenlose Hotmail @]Links anpassen & Windows dyReallayer

Programme Tickets Archive | Contact German

From 11 May to 18 Juhe,
it will get critical i \’\’
Wiener

"apparently, we do 1 better. " Festwoche

Tou have ordered the following tickets:

Le nozze di Figaro { Theater an der

Bank™\ustria Wien)
2001-06-18, 1200
1 ticket(s) of Category & | 1800-2450 AT

Humber of tickets: 1
Mlinirmum price: 1800
Ilamitrm price: 2450

Thanlk you for your purchase. Please clicl here to receive a PDF copy of the
tickets you have ordered,

to the programme

.
1| | »

|@ Fertig l_l_lﬂ Internet 4

Figure 6.9: Default HTML order confirmation

3l Interne are

http:ffamdis.infosys. tuwien.ac.a ~||Los

Please click on an event to see detailed
nformation about it

Events Location
Dpening |Rathausplatz
Intolleranza | Theater an der Wien

previous. | next |

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE

E:ﬂ Internet Explorer

http:ffamdis.infosys. tuwien.ac.a «

Intolleranza { Theater an der Wien)

Music by Luigi Mono, Plot
inspired by Angelo Maria
Ripelino

Language: German

Length: 2 hours

to the programme

Ansicht Extras <= [4] {03 E|*

nsicht Extras <= |4] 03 E|*

(a) Programme (first page split)

3l Interne are

http:ffamdis.infosys. tuwien.ac.a ~||Los

(b) Detailed event information

3l Interne are

http:ffamdis.infosys. tuwien.ac.a ~||Los

If vou click Reserve, al tickets requested b
ou will be placed in your personal order
ist, which you mmay modify anytinne you

ish,

oL are on PAGE: 2

ntolleranza

2001-05-15 Theater an der Wien 20000

[1]tks categary &, 820-000 ATS

[Jtks category B, 540-700 4TS

[tks category ¢, 300460 ATS

[tks categary D, 20-250 &T5S

[q previous |
tothepconmne | ocer

#nsicht Extras <= {nl

E|A

#nsicht Extras <= {nl

E|A

(c) Ticket reservation (first page split)

(d) Ticket reservation (second page
split)

117

Figure 6.10: Programme, detailed event information and ticket reservation for the PDA de-
vice family (screenshots from an iPAQ running Windows CE)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 118

23| Interne ore 23| Interne ore

http:ffamdis.infosys. tuwien.ac.a «|[{Los | |httpeffamc0S infosys. tuwien,ac.a «||Los

FIMAL COMFIRMATION, “You are ardering
the folowing:

Ehopping cart contents:

ntolleranza { Theater an der Wien)
F001-05-15, 20:00
1 tks, Category & |, Prices 320-900

ntolleranza { Theater an der Wien)
F001-05-15, 20:00
1 tks, Category &, 520-900 ATS

L R > W —

Ansicht Extras <= o} E|* Ansicht Extras <= ol E|*

(a) Shopping cart (first page split) (b) Order form (first page split)

72| Interne are 72| Interne are

http: ffamd0s.infosys. tuwien.ac.a «|[{Los | |http:ffamd0S infosys. tuwien.ac.a «[| Los

Please enter the name on your credit card, | Please enter the biling address,
WE= B oddress:

|Engin kirda | Lrgentinierstr, 8154

2

Ansicht Extras <= [7] {5} E|4 Ansicht Extras <= [7] {5} E|*

(c) Order form (second page split) (d) Order form (third page split)

Figure 6.11: Shopping cart and order form for the PDA device family (screenshots from an
IPAQ running Windows CE)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE

='W Festwochen = '|

== W Festwachen —_—

also arder tickets of
different categories for
the same day.

Flease click on an
event to see detailed
infarmation about it

P

(c) Ticket reservation (first page

split)

='W Festwochen Eﬁ'l

Intolleranza (
Theater an der Wien
)

Language: German
Length: 2 hours

== W Festwochen ==

= |
list, which you may
modify anytime you

(d) Ticket reservation (second
page split)

119

Figure 6.12: Programme, detailed event information and ticket reservation for the WAP
device family (as seen on a WAP emulator)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 120

= Festwochen ==
You are on PAGE: 2
Intolleranza
2001-05-15 Theater an
der Wien 20:00

| = W .Festwochen =

ﬂ:ur prnceaalng your
order, such as your
address and mode of

prevﬂ

(a) Ticket reservation (third page (b) Shopping cart (second page
split) split)

=" Festwochen = ='W Festwochen ==

el dngd | | N b e 1
Theater an der Wien s
finirmum price: 820

)
2001-05-15 |, 20:00 | Ma}{lmum price: 900

23 tks. Category A,
Eriras 30900

(c) Shopping cart (third page split) (d) Shopping cart (fourth page
split)

Figure 6.13: Part of ticket reservation and shopping cart for the WAP device family (as seen
on a WAP emulator)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 121

E W Festwochen == ;EW.FeatwnchenE'

' FINAL Please enter the name
COMFIRMATION, ¥ ou on your credit card.

are ordering the
following:
Intolleranza (

I'I'I i

1 \.GD”'

I'.E W Festwochen = =YW Festwochen =
Flease enter the billing Thank you for your

address. purchasel Please go
| back to the IR

(c) Order form (third page split) (d) Final message

Figure 6.14: Order form for the WAP device family (as seen on a WAP emulator)

Chapter 7

Evaluation and Future Work

The device-independent implementation of the VIF case study with the MyXML tool suite
provides access to four different Web devices: traditional HTML browsers, micro browsers
on PDAs, WA P-enabled mobile phones and PDF readers. The case study backs my general
thesis that Web services can effectively be made device-independent if device-independence
support is integrated into the Web service design, implementation and maintenance phases
and that adaptation is not only the key to mobileinformation access [Sat96b], but to multi-
device access in general.

This chapter analyzes the DIWE framework and the concepts of page splitting, process
partitioning and XSL stylesheet pre-processing in practice. It discusses the advantages and
disadvantages of the concepts and compares the DIWE approach to existing solutions. The
chapter aso lays out future work.

7.1 Empirical proof of concepts

This section discusses the difficulty of providing useful empirical datato measure and com-
pare the extensibility and maintainability of Web service engineering approaches. The prob-
lem may become even more complex if device-independence is involved.

7.1.1 Setting up an experiment

To set up controlled experiments to measure the flexibility, extensibility and maintainability
provided by the tools and concepts presented in the dissertation, software metrics are neces-
sary. Some software metrics and methods for metric definition have already been introduced
that can be used to measure qualities such as complexity, productivity and maintainability
(e.g., see [Fen96, vSB99]). The problem, however, is that Web services are not traditional
software: They do not only consist of source code and libraries, but also content, layout files
and alarge number of resources such as images.

The following example illustrates the ineffectiveness of using traditional software engi-
neering metrics for Web services.

122

CHAPTER 7. EVALUATION AND FUTURE WORK 123

7.1.2 Example: Measuring readability

If traditional metrics are used, one can show that the readability of the logic code improves
using the DIWE framework: It has been reported that readability of code is an important
factor in determining maintainability.

De Young and Kampen defined (in [YK79]) the readability R of programs as:

R=0. 295a- 0. 499b+0. 13c

The variable aisthe average normalized length?! of variables, b isthe number of lines contain-
ing statements, and ¢ is McCabe's cyclomatic number? (see [Fen96]). The authors derived
thisformulausing regression analysis of data about subjective evaluation of readability. They
discovered that readability worsens as the number of lines in a program increase no matter
how complex it is and how long the variables are. Based on this finding, it can be deduced
that the readability of the logic source code increases when the DIWE framework is used.
This is because the layout is not encoded into the source code and as a result the logic has
less number of lines.

This empirical evidence, however, is not really convincing. Readability might improve
for the application logic source code, but there is no evidence about the readability of XML
and XSL files and other resources that the Web service depends on.

Special metrics are needed to measure the flexibility, extensibility and maintainability
of Web services. The field of Web metricss young (e.g., [MMCO1]) and much work is
still needed. This chapter presents a qualitative analysis of the concepts introduced in this
dissertation.

7.2 Analysisand discussion

This section analyzes the device-independent implementation of the VIF e-commerce Web
service with the DIWE framework (i.e., the MyXML tool suite) and comparesit to the tradi-
tional single-device implementationsin the past.

7.2.1 Stylesheet complexity and numbers

Using traditional servlet writing techniques, the layout information is often encoded into
the source code. This can be a tedious and error-prone task. The header information that
contained alogo and anavigation bar in atypical servlet-based implementation, for example,
need to be duplicated in all the servlets. Whenever there is a requirements change and the
genera layout needs to be adapted, all the duplicated code has to be analyzed and modified.
Although this approach works, the code usually becomes difficult to maintain and reuse
(e.g., for different devices), and may show the typical symptoms of spaghetti codde.g.,
poor readability).

INumber of charactersin avariable
2Defines the complexity of the code

CHAPTER 7. EVALUATION AND FUTURE WORK 124

The usage of stylesheets for defining and generating the layout is criticized sometimes.
The argument isthat the effort spent in separating the layout information by using stylesheets
is not less (and sometimes even more) than integrating the layout into the code directly. This
argument is justified to a certain degree. Not separating the layout, however, makes device-
independence support difficult.

In the case study, the use of stylesheets eased the integration, separation and maintenance
of layout information. Commonalities could be grouped together and imported.

Although using stylesheets has advantages, it has disadvantages as well. The following
discussion lists two stylesheet-related problems and presents solutions.

7.2.1.1 Discussion

The DIWE framework allows developers to use a separate stylesheet for each supported
device, but this feature may have a negative and significant effect on maintainability. When
a separate stylesheet is used for each device in a project, the number of XSL stylesheets
needed to implement the service increase proportionally to the number of supported devices.
For a service that supportsfour devices, for example, each XSL stylesheet is duplicated four
times. Hence, it may become difficult to maintain repeated complex XSL functionality such
as cascading <xsl:when> statements.

XSL stylesheet pre-processing support in the DIWE framework eliminates the problem
of increased number of stylesheets in projects. The stylesheets, however, become more
complex. Each stylesheet usually supports more than one device and good documentation
(i.e.,, comments in the stylesheets) became a critical factor in reducing the complexity and
readability.

When adding new devices, it is often easier to copy and adapt an XSL stylesheet rather
than integrate a new layout directly into existing stylesheets with XSL pre-processing. This
is because the unnecessary layout code in the stylesheet can be completely deleted — hence,
increasing readability — and the new layout can be incrementally built in.

7.2.1.2 Conclusion

Obviously, atradeoff is necessary in deciding between using separate stylesheets or stylesheet
pre-processing when adding new devices. The aim isto combinethe advantages of both ap-
proaches.

An effective solution isto initially use separate stylesheets by copying and adapting ex-
isting ones. Once the layout has been debugged and is functioning correctly, the layout
is extracted and integrated into the default family stylesheets by using XSL stylesheet pre-
processing.

Asaresult, the total number of stylesheets does not increase and one can effectively deal
with the increased complexity of using XSL pre-processing when adding new devices.

CHAPTER 7. EVALUATION AND FUTURE WORK 125

7.2.2 Complexity

The traditional, single-device implementation of the VIF e-commerce Web service with
servlets took three days, but more than a week was needed to have a first running device-
independent version. This section discusses the problem of increased design and implemen-
tation complexity of device-independent Web services.

7.2.2.1 Discussion

Obviously, the design and implementation of device-independent Web servicesis more com-
plex than traditional Web engineering techniques and needs more time. The main reason is
because more steps are involved (e.g., content definition with a sufficient description gran-
ularity) and the separation of layout, content and application logic not only needs more
analysis, but is also more difficult to implement.

XSL requires the programmingof the layout by use of templates and XSL commands.
Hence, although the layout becomes more flexible, building and debugging theinitial layout
requires asignificantly higher effort.

7.2.2.2 Conclusion

The advantages provided by the DIWE framework may not be apparent during the design
and implementation phase, but the extra deployment effort pays off once new devices are
added to the service.

In the case study, although it took longer to create a device-independent version of the
VIF e-commerce Web service, adding new device layouts during maintenance was much
easier than traditional approaches and technologies. For example, once the XSL infrastruc-
ture had been built, both the PDA and WAP layouts were built within one day without any
maodifications to the application logic.

The more devicesthat need to be supported by the Web service, the more the usage of the
DIWE framework pays off. Setting up a service initialy is more difficult, but it enables the
construction of custom-tailored services that can meet evolving access requirements (e.g.,
VoiceXML-based speech accessin the near future).

7.2.3 Layout adaptation

Figure 7.1 shows the screenshot of the full HTML layout of the VIF programme as seen on
aniPAQ PDA and motivates the usage of the page splitting and process partitioning concepts
in the case study. The user isonly able to see asmall proportion of the available information
and needsto scroll alot.

Although the idea of page splitting and process partitioning works, how much effort is
necessary to deploy the techniques? The following discussion evaluates page splitting and
process partitioning in practice.

CHAPTER 7. EVALUATION AND FUTURE WORK 126

. Internet Explorer 13:23
http: HamdDS infosys.tLwisn.ac.a - Lus

Please click Qpening
an an

event fo Intoleranza
SEE
detailed il
information Le nozze di Figarn
about it

: ; F Olaf

Baml % sl iz

-

[4] i [r]

Ansicht Extras ¢ [3] ﬁ E3| E|‘

Figure 7.1: The full HTML interface of the VIF programme as seen on an iPAQ PDA

7.2.3.1 Discussion

When a PDA layout was being added to the VIF e-commerce Web service in the case study,
groups and subgroups had to be defined in the stylesheets.

The same group and subgroup definitions were used in the stylesheets for supporting
WAP access. Only minor adaptations were necessary. By using different step values (i.e.,
3 for PDA and 2 for WAP),the grouping and subgrouping infrastructure could be reused for
page splitting and process partitioning on two different device families.

Hence, the design of groups and subgroups for device families with similar restrictions
and characteristics is only required once and the design can often be reused.

7.2.3.2 Conclusion

Clearly, splitting and process partitioning imposes an extra design effort on the Web devel-
oper. This effort, however, is acceptable because 1) it is not needed for every device family
2) in most cases, it can be reused (e.g., for mobile devices).

In the case study, for example, four devices are supported and page splitting and process
partitioning is only needed for PDAs and WAP phones. For both devices, grouping and
subgrouping was done once.

7.24 Graphical and navigational design

In the usage scenarios presented in the last chapter, Dr K. accesses the VIF service using
different devices. Although the functionality is the same, the ways the interactions are sup-
ported are different. When viewing the shopping cart contents on a PDA, for example, Dr K
isrequired to press the nextbutton at the bottom of each page to continue, but no such button
existsin the default layout.

CHAPTER 7. EVALUATION AND FUTURE WORK 127

The following discussion analyzes the graphical and navigational design issues involved
in device-independent Web service engineering.

7.2.4.1 Discussion

One difficulty of device-independent Web engineering isthat the main navigation and layout
features may not work on some devices. Inthe case study, for example, the main navigational
information in the default HTML layout was in the header of each page. Putting the naviga-
tional information in the header of the PDA interface, on the other hand, did not make any
sense because of the small display size. Furthermore, using a header was also not possible
on WAP devices.

Hence, the navigation and layout features may not always be portable to other devices.
As a consequence, the graphical design process of device-independent Web services differ
from traditional, single-device Web services and there is a need for a systematic approach.

7.2.4.2 Conclusion

The DIWE framework does not focus on navigation and layout design issues. Itsfocusison
the engineering of flexible and extensible Web services that can effectively support different
layouts for different Web devices.

The layout and navigation features of a device-independent Web service often have to
be redesigned for most devices and there is a considerable effort involved. It is important
to consider this effort during the design stage. When more than one layout is involved, the
interactions and the navigational model have to adapted to the device characteristics.

7.25 Layout/Content/Logic (LCL) separation

This section discusses LCL separation in device-independent Web engineering.

7.25.1 Discussion

Although a full LCL separation has many advantages such as multi-lingual * and multi-
device support, afull separation is not always easy to achieve. Application logic separation
can be quite easy, but the main problem is the separation of content and layout. The effort
needed to achieve afull separation of layout and content may not be trivial and there may be
atendency by Web devel opers to make quick fixedy intermixing them.

Dealing with hyper-links, for example, often raises the question of where the links be-
long: are they content or layout? It is usually better to treat hyper-links as content because
a link description (i.e., text such as “click here to continue”) is described in a specific lan-
guage. Encoding thislink directly into a stylesheet eliminates the possibility of reusing the
stylesheet for multiple languages.

3e.g., Separating the content enables the stylesheets to be reused for supporting content in different lan-
guages

CHAPTER 7. EVALUATION AND FUTURE WORK 128

On the other hand, it is often much easier and faster to encode links directly into a
stylesheet without defining and selecting them as content.

7.25.2 Conclusion

Obvioudly, a tradeoff is necessary in separating layout and content. The aim should be to
achieve a compl ete separation of layout and content whenever possible, but if there are time
problems, content may be encoded into the stylesheet. It is important, however, to make
corrections later and to continue supporting the separation for easing maintenance and future
extensions.

The process is similar to writing source code and documenting it later. Unfortunately,
the problems with this approach are also similar: Just as there may be a tendency not to
document code although it iswritten with the intention of documenting later, there may also
be atendency to ignore the LCL separation goal during maintenance.

7.2.6 Comparison of the DIWE framework to other approaches

This section compares the DIWE framework to the related approaches. Tables 7.1 and 7.2
show the comparison and evaluation of the DIWE framework with the device-independent
Web engineering taxonomy defined in Chapter 3.

Table 7.1 compares the general technical features, the life cycle support and the usability
of each approach. Based on the discussion in Chapter 4, the Deploymenphase has al so been
inserted into life cycle section in the table.

It can be seen in the table that OOH, | Studio and WebML are the only approaches besides
DIWE that have full life cycle support. Although these approaches cover the Web service
life cycle, only DIWE provides all the technical features that are important for constructing
Web services. WebML, for example, does not have any dynamic content support and OOH
does not support the integration of external databases.

In comparison, Cocoon and Total e-mobile are conceptually platform independent and
provide all important technical features, but do not cover the full Web service life cycle.

When usability is evaluated, DIWE isnot easy to learn and requires high developer skills
when compared to the other approaches. A user interface, however, is provided to make its
usage easier.

Table 7.2 compares the standard usage, flexibility and maintainability and device-
independence support of each approach.

Only Cocoon, Total e-mobile and DIWE use layout and content definition standards.
Most of the other approaches at least use one standard for content definition (e.g., XML in
WebML), but the layout is defined in a system-specific, proprietary way.

When the flexibility and maintainability of each approach is evaluated, the table shows
that Cocoon and DIWE arethe only approaches that provide a maximum flexibility and main-
tainability because they support the complete layout, content and logic separation (LCL).

The importance of logic reuse has been identified by most of the approaches. SISL,
UIML, iStudio, Cocoon and DIWE all support logic reuse.

129

CHAPTER 7. EVALUATION AND FUTURE WORK

General Technical

Features

Life Cycle Support

Usability

Approach Name OOH WebML JML SISL UIML iStudio Cocoon MS MDT A_,MMM_._M- DIWE
To support | To support all To support To support To support
Main Objective To mcuqu: all | To wcuuo.: all | To m:_o_uo.: all speech User To w:uvo.: all flexible mobile mobile To m:uvo.: all
Web devices | Web devices | Web devices . Web devices . . . Web devices
interfaces Interfaces services devices devices
Conceptually
Platform Yes Yes Yes Yes Yes Yes Yes No Yes Yes
Independent
e _um.ﬁm_ommm No Yes Yes No No No Yes Yes Yes Yes
Integration
Static Content
Support Yes Yes Yes No Yes No Yes No Yes Yes
VRIS (A AT Yes No No Yes Yes Yes Yes Yes Yes Yes
Support
Design Support Yes Yes No No No Yes No No No Yes
[jpE e e Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Support
DI e ! Yes Yes No Yes Yes Yes Yes Yes Yes Yes
Support
HEITERTETEE Yes Yes Yes No No Yes Yes No No Yes
Support
Ease of Learning Low Medium High Medium Medium Medium Medium High Medium Medium
REE LIRS . Medium Medium High Low Medium Medium High Low Medium High
Developer Skills
Service Complexity | Medium Medium Medium Low Low Medium Medium ﬁ:__mmﬁ\:v Unknown Medium
Visual Interface Yes Yes No No No Yes No Yes No Yes

Table 7.1: Comparison of the DIWE framework with other approaches

130

CHAPTER 7. EVALUATION AND FUTURE WORK

Device-
Independence

Flexibility and
Maintainability

Standards

Support

Approach Name OOH WebML JML SISL UIML iStudio Cocoon MS MDT .__.,\ﬁ_uwﬂ___w- DIWE
Standard Content
Definition (e,g,, No Yes Yes No Yes Yes Yes No Yes Yes
XML)
Standard Layout
Definition (e.g., No No No No No No Yes No Yes Yes
XSL)
O<m._.m__.mw_.<_.om Medium Medium Low Low Low Medium High Low Medium High
Maintainability
O<m<m__.m.m.2_om Medium Medium Medium Low Low Medium High Low Medium High
Flexibility
LC Separation No Yes Yes No No No Yes No Yes Yes
LL Separation Yes No No Yes Yes Yes Yes No Yes Yes
LCL Separation No No No No No No Yes No No Yes
Logic Reuse Yes No No Yes Yes Yes Yes No Unknown Yes
XML Web Formats Yes Yes Yes No Yes Yes Yes Yes Yes Yes
Device Detection No No No No No No Yes Yes Yes Yes

Table 7.2: Comparison of the DIWE framework with other approaches

CHAPTER 7. EVALUATION AND FUTURE WORK 131

Cocoon, MS MDT, Total e-mobile and DIWE are the only approaches that have full
device-independence support. Although WebML, OOH, JML, UIML and iStudio support
different XML Web formats, they provide no support for device detection.

The tables show that although DIWE is not easier to learn or use than most of the other
approaches, it provides maximum flexibility and maintainability, important technical device-
independence features and full support for the Web service life cycle. Furthermore, it is one
of the only approaches that uses standards for content and layout definition and hence can be
used together with other industrial tools.

7.3 Layingout futurework

The DIWE framework supports and enabl es the engineering of device-independent Web ser-
vices, but there is room for improvement. This section discusses and lays out future work.

7.3.1 Higher level abstractions

One of the difficulties of Web projects is the lack of easy-to-use and easy-to-understand
graphical notations for communicating with the customers. For example, UML has become
a standard in software engineering projects for communicating system requirements and ar-
chitecture, but how does one describe and communicate the structure of aWeb siteto the cus-
tomers? Existing Web design methodologies (e.g., [ISB95, SR95]) aretoo low level for Web
managers or customers without a technical background to appreciate and may cause confu-
sion and misunderstanding (i.e., technical terms such as nodeand entity are often unknown
to customers). Although these methodol ogies are useful for the developers in designing the
site, they are not as useful during the requirements discussions with the involved parties.

No graphical notations have been proposed that support device-independent Web access.
It would be useful, for example, to able to depict which pages provide which services on
different devices.

There is a need for more work in this area for improving communication with non-
technical users and customers.

7.3.2 UML for visual modeling

In [Con99] Conallen proposed an extension of UML for modeling Web applications. How-
ever, the use of UML in modeling Web applications has not universally been accepted by
Web developersyet. These extensions of UML for the Web domain concentrate on the mod-
eling of the architecturesof Web applications and not the information structurefor Web
sites. Furthermore, it remains to be seen if UML will be easy to understand by Web man-
agers and customers who may lack technical knowledge and experience in object-oriented
domain modeling.

The UML model that Conallen proposes assumes that the Web service will be HTML-
based. The model, hence, needs to be extended for device-independent Web services.

CHAPTER 7. EVALUATION AND FUTURE WORK 132

7.3.3 Re-engineering for device-independence

An important question that remains to be discussed is how to deal with existing Web ap-
plications. In many cases, it is not feasible to rewrite these applications to meet the new
device-independence requirements.

Not much work exists on the re-engineeringof Web applications to make them flexible
and multi-device-aware. The developer in the field often has to deploy ad-hoc techniques
and tools if she is faced with a need to re-engineer Web sites and applications for device-
independent access.

Although some work has been done in re-engineering and analyzing Web sites (e.g.,
[RPOO, RTO1]), the adaptation of legacy Web applications to make them flexible and multi-
device-enabled has received less attention. [HHO1] presents a framework to recover the
architecture of Web applications to gain a better understanding of the underlying system. It
does not deal with the code-adaptation of Web applications, though.

Kienle §KMO1] states that Web application reverse- engineering is ad-hoc and tradi-
tional reverse-engineering tools are ill-equipped to meet the needs of Web devel opers.

There is a need for re-engineering approaches and tools that aim to adapt existing Web
services to make them device-independent.

7.4 Summary

This chapter analyzed the DIWE framework and the concepts of page splitting, process par-
titioning and X SL stylesheet pre-processing in practice. It discussed the advantages and dis-
advantages of the concepts, compared the DIWE approach to existing solutions and briefly
discussed future work.

Chapter 8

Conclusion

When thefirst laptop computers became commercially available, they were quite weak com-
pared to desktop computers. Their displays were small and they had memory limitations.
Many believed that software applications had to be adapted to cope with the technical re-
strictions. They were wrong. Laptops and notebooks have become so powerful in the last
decade that many companies are only issuing notebooksto their employees and are not using
desktop computers anymore. While notebook sales are constantly increasing, desktop sales
are decreasing.

The popularity of computing devices such as PDASs (e.g., the new generation such asthe
Compag iPAQ) and mobile phones (e.g., the Nokia Communicator) have been increasingly
and these devices have been getting more powerful every day. Limitations such as memory
and CPU power will probably become less important in the near future. Although the latest
PDAs are even able to display frames, it is still important to adapt the content for these
devices in order to provide a satisfactory surfing experience for users. Web services in the
near future will not only have to support mobile access, but will also have to deal with other
forms of Web access such as voice interfaces. Hence, Web services will often need to be
device-independeiand will have to support different XML Web formats.

My genera thesis was that Web services can effectively be made device-independent if
device-independence support is integrated into the Web service design, implementation and
mai ntenance phases.

Much work has been done on providing mobile access to Web content, but the focus has
mainly been the adaptation of HTML content to make it viewable on mobile devices that
might have memory and screen-size limitations. Only afew attempts have been madeto date
to integrate device-independence into the design, implementation and maintenance phases
of Web services.

The dissertation presented an extended model of the traditional Web service life cycle
that takes device-independence support into account and presented the Device-Independent
Web Engineering (DIWE) framework for engineering device-independent Web services. It
introduced the novel concepts of page splitting, process partitioning and X SL stylesheet pre-
processing. The MyXML tool suite is a prototype implementation of the DIWE framework
and consists of the MyXML processor, three configurable run-time device-independence
components and the MyXMLDesigner visua Integrated Development Environment (IDE).
The MyXML tool suite was used in the device-independent implementation of the Vienna

133

CHAPTER 8. CONCLUSION 134

International Festival e-commerce Web service. The service provides Web access to full-
fledged HTML browsers, PDAs and WA P-enabled mobile phones with the same application
logic.

Nielsen predicts in [Nie99] that the Web will eventually suffer a usability meltdown
unless the vast majority of Web sites are improved considerably. He states that the emphasis
has to be placed on quality content and software and not on “dazzle and coolness.” Not only
these factors will determine the future of the Web, but also the development and usage of
device-independent Web engineering techniques and tools.

Appendix A

Sample case study code listings

MyXML Document for shopping cart

<?xml version="1.0" ?>
<root xmIns:myxml="http://www.infosys.tuwien.ac.at/myxml/ns">

<pagelnformation>
<explanation>
If you have entered all tickets you want into your order list, please click
"Order". This will connect you with our secure server, where you can
enter all information required for processing your order, such as your address
and mode of payment.
</explanation>
<explanation2>
Please fill in the missing fields with the required information and press "order" to
complete your purchase.
</explanation2>
</pagelnformation>

<ticketinfo>
<myxml:loop>
<booking>
<event_information>
<event_name>
<myxml:multiple> event_name </myxml:multiple>
</event_name>
<event_date>
<myxml:multiple> event_date </myxml:multiple>
</event_date>
<event_location>
<myxml:multiple> event_location </myxml:multiple>
</event_location>
<event_time>
<myxml:multiple> event_time </myxml:multiple>
</event_time>
</event_information>

135

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 136

/

</root>

<tickets>
<myxml:loop>
<loop>
<category_info>
<myxml:multiple> category_info </myxml:multiple>
</category_info>
<category_name>
<myxml:multiple> category _name </myxml:multiple>
</category_name>
<number_of_tickets>
<myxml:multiple> number_of_tickets</myxml:multiple>
</number_of_tickets>
</loop>
</myxml:loop>
<[tickets>
</booking>
</myxml:loop>
<[ticketinfo>
<summary>
<totalNumberOfTickets>
<myxml:single> totalNumberOfTickets </myxml:single>
</totalNumberOfTickets>
<minimumPrice>
<myxml:single> minimumPrice </myxml:single>
</minimumPrice>
<maximumPrice>
<myxml:single> maximumPrice </myxml:single>
</maximumPrice>
</summary>
<orderform>
<errorMessage> <myxml:single> errorMessage </myxml:single> </errorMessage>
<name> <myxml:single> name </myxml:single> </name>
<address> <myxml:single> address </myxml:single> </address>
<phonePrivate> <myxml:single> phonePrivate </myxml:single> </phonePrivate>
<phoneWork> <myxml:single> phoneWork </myxml:single> </phoneWork>
<email> <myxml:single> email </myxml:single> </email>
<comments> <myxml:single> comments </myxml:single> </comments>
<creditCard>
<myxml:loop>
<creditCardType>
<myxml:multiple> creditCard </myxml:multiple>
</creditCardType>
</myxml:loop>
</creditCard>
<cardNumber> <myxml:single> cardNumber </myxml:single> </cardNumber>
<validThru> <myxml:single> validThru </myxml:single> </validThru>
</orderform>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 137

XSL stylesheet for shopping cart

<?xml version="1.0" ?>

<xsl:stylesheet xmiIns:xsl="http://www.w3.0rg/1999/XSL/Transform" xmlns:myxml="http://
www.infosys.tuwien.ac.at/myxml/ns" version="1.0">

<xsl:import href="/home/ek/eksstuff/xenon/resources/xenon.xsl"/>

<xsl:import href="/home/ek/eksstuff/xenon/resources/well-formed-html.xsl"/>

<xsl:output method="html" indent="yes"/>

<myxml:import name="/home/ek/eksstuff/xenon/case-study-devices/Styles/layout.xsl"/>

<xsl:template match="ticketinfo">

@myxml:device:default{

<tr><td class="hl1" align="Ileft"> Order List </td></tr>

<tr><td>

So far, you have ordered the tickets listed here. You can add to this list by selecting tickets

for other events from the Vienna Festival's

Programme.
<br clear="none" /><br clear="none" />When ordering tickets,
you will divulge personal information that, however, will be transmitted using a
secure, state-of-the-art transmission protocol.</td>

</tr>

<tr><td>

<table border="0" cellpadding="2" cellspacing="0">

}@myxml:device
<xsl:apply-templates/>

@myxml:device:default{

</table>

<ftd></tr>

}@myxml:device

</xsl:template>

<xsl:template match="booking">

@myxml:device:pda{

@myxml:group{

Shopping cart contents:

<table border="1" cellspacing="0" cellpadding="0">

}@myxml:device

<xsl:apply-templates/>

@myxml:device:pda{

</table>

<table width="400" border="0">

<tr><td align="left">

<img border="0" alt="Show previous

page" src="/images/english/buttons/vorige.gif'/>

</td><td align="right">

<img border="0" alt="Show next page" src="/

images/english/buttons/naechste.gif'/>

<ftd></tr>

</table>

}@myxml:group

}@myxml:device
</xsl:template>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 138

/

<xsl:template match="event_information">
<xsl:apply-templates select="event_name"/>
<xsl:apply-templates select="event_date"/>
</xsl:template>

<xsl:template match="event_name">
@myxml:device:default{
<tr><td class="hl1" colspan="4">
<xsl:apply-templates/>
<xsl:apply-templates select="../event_location"/>
</td></tr>
}@myxml:device

@myxml:device:pda{
<tr><td>
<xsl:apply-templates/>
<xsl:apply-templates select="../event_location"/>
</td></tr>
}@myxml:device
</xsl:template>

<xsl:template match="event_location">
(<xsl:apply-templates/>)
</xsl:template>

<xsl:template match="event_date">
@myxml:device:default,pda{
<tr><td>
<xsl:apply-templates/>
<xsl:apply-templates select="../event_time"/>
</td></tr>
}@myxml:device

</xsl:template>

<xsl:template match="event_time">
,<xsl:apply-templates/>
</xsl:template>

<xsl:template match="tickets">
<xsl:apply-templates/>
</xsl:template>

-

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS

139

/

<xsl:template match="loop">
@myxml:device:default{
<tr>
<xsl:apply-templates select="number_of_tickets"/>
<xsl:apply-templates select="category_name"/>
<xsl:apply-templates select="category_info"/>
</tr>
}@myxml:device

@myxml:device:pda{
<tr><td>
<table border="0">
<tr>
<xsl:apply-templates select="number_of_tickets"/>tks.
Category <xsl:apply-templates select="category_name"/>, Prices
<xsl:apply-templates select="category_info"/>
</tr>
</table>
<ftd></tr>
}@myxml:device
</xsl:template>

<xsl:template match="category_info">
@myxml:device:default{
<td align="center">
Prices <xsl:apply-templates/> ATS
</td>
}@myxml:device

@myxml:device:pda{
<td>
<xsl:apply-templates/>
</td>
}@myxml:device
</xsl:template>

<xsl:template match="category_name">
@myxml:device:default{
<td align="center">
Category <xsl:apply-templates/>
</td>
}@myxml:device

@myxml:device:pda{
<td>
<xsl:apply-templates/>
</td>
}@myxml:device
</xsl:template>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS

140

éxsl:template match="number_of tickets">
@myxml:device:default{

<td align="center">
<xsl:apply-templates/>ticket(s)
</td>

}@myxml:device

@myxml:device:pda{
<td>
<xsl:apply-templates/>
</td>
}@myxml:device
</xsl:template>

<xsl:template match="minimumPrice">
@myxml:device:default{
<tr><td>
}@myxml:device

Minimum price: <xsl:apply-templates/>
@myxml:device:pda{
 }@myxml:device

@myxml:device:default{

</td></tr>

}@myxml:device
</xsl:template>

<xsl:template match="maximumPrice">
@myxml:device:default{
<tr><td>
}@myxml:device

Maximum price: <xsl:apply-templates/>
@myxml:device:pda{
 }@myxml:device

@myxml:device:default{

</td></tr>
}@myxml:device
</xsl:template>

<xsl:template match="totalNumberOfTickets">
@myxml:device:default{
<tr><td>

}@myxml:device
Number of tickets: <xsl:apply-templates/>
@myxml:device:pda{
 }@myxml:device

@myxml:device:default{

<ftd></tr>

}@myxml:device
(/xsl:template>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 141

/

<xsl:template match="summary">
@myxml:device:default{
<xsl:apply-templates/>
<tr><td>
<table border="0" width="460">
<tr><td align="left">

</td>
<td align="right">

</td></tr>
</table>
</td></tr>
}@myxml:device

<!-- %%%%%%%%%%%%%%%%%%% PDA
%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %-->

@myxml:device:pdaf

@myxml:group{

<xsl:apply-templates/>

<table width="400" border="0">

<tr><td align="left">

<img border="0" alt="Show previous

page" src="/images/english/buttons/vorige.gif'/>

</td><td align="right">

<img border="0" alt="Show next page" src="/

images/english/buttons/naechste.gif'/>

<ftd></tr>

</table>

}@myxml:group

@myxml:group{

 Please choose:

<table width="400" border="0">

<tr><td align="left">

<img border="0" src="/images/english/buttons/
programm.gif'/>

</td><td align="right">

<img border="0" src="/images/english/
buttons/abschliessen.gif*/>

</ftd></tr>

</table>

}@myxml:group

t@myxml:device
</xsl:template>

<xsl:template match="orderform">
<!--Ignore -->
</xsl:template>

</xsl:stylesheet>

-

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 142

Application logic for shopping cart

/

public class ShoppingCart {

private String totalNumberOfTickets = null;
private String minimumPrice = null;
private String maximumPrice = null;
private String[] event_name = null;
private String[] event_location = null;
private String[] event_date = null;

private String[] event_time = null;

private String[] termin_id = null;

private String[][] number_of_tickets = null;
private String[][] category_name = null;
private String[][] category_info = null;

public void init(String totalNumberOfTickets, String minimumPrice, String maximumPrice,
String[] event_name, String[] event_location, String[] event_date, String[] event_time,
String[][] number_of _tickets, String[][] category_name, String[][] category_info) {

this.totalNumberOfTickets = totalNumberOfTickets;
this.minimumPrice = minimumPrice;
this.maximumPrice = maximumPrice;
this.event_name = event_name;
this.event_location = event_location;
this.event_date = event_date;

this.event_time = event_time;
this.number_of_tickets = number_of _tickets;
this.category_name = category_name;
this.category_info = category_info;

}

public void addEvent(String terminID, String eventName, String eventLocation, String eventDate, String
eventTime) {

if (event_name==null) {
event_name = new String[1];
event_location = new String[1];
event_date = new String[1];
event_time = new String[1];
termin_id = new String[1];

event_name[0] = eventName;
event_location[0] = eventLocation;
event_date[0] = eventDate;
event_time[0] = eventTime;
termin_id[0] = terminID;

number_of_tickets = new String[1][];
category_name = new String[1][];
category_info = new String[1][];
return;

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS

/

else {
int dimension = event_name.length+1;
String[][] number_of_tickets2;
String[][] category_name?2;
String[][] category_info2;
number_of_tickets2 = new String[dimension][];
category_name2 = new String[dimension][];
category_info2 = new String[dimension][];

for (int i=0;i<event_name.length;i++) {
number_of _tickets2[i] = number_of_tickets][i];
category_name?2[i] = category_nameli;
category_info2[i] = category_info[i];

}

number_of_tickets = number_of_tickets2;
category_name = category_namez2;
category_info = category_info2;

}

String[] name = new String[event_name.length+1];
String[] location = new String[event_location.length+1];
String[] date = new String[event_date.length+1];
String[] time = new String[event_time.length+1];
String[] termin = new String[termin_id.length+1];

for (int i=0;i<event_name.length;i++) {
name[i] = event_nameli];
location[i] = event_location[i];
date[i] = event_date[i];
time[i] = event_time[i];
termin[i] = termin_id[i];

}

name[event_name.length] = eventName;
location[event_name.length] = eventLocation;
date[event_name.length] = eventDate;
time[event_name.length] = eventTime;
termin[termin_id.length] = terminlID;

event_name = name;
event_location = location;
event_date = date;
event_time = time;
termin_id = termin;

}

public void addOrder(String numberoftickets, String categoryname, String categoryinfo) {
int eventindex = event_name.length-1;
String tickets[];

String categories[];
String categoryinfos][];

-

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS

144

/

}

if (number_of_tickets[eventindex]!=null) {
tickets = new String[number_of_tickets[eventindex].length+1];
categories = new String[number_of_tickets[eventindex].length+1];
categoryinfos = new String[number_of_tickets[eventindex].length+1];

for (int i=0;i<number_of_tickets[eventindex].length;i++) {
tickets[i] = number_of_tickets[eventindex][i];
categories[i] = category_name[eventindex][i];
categoryinfos[i] = category_info[eventindex][i];
}
}

else {
tickets = new String[1];
categories = new String[1];
categoryinfos = new String[1];

tickets[0] = numberoftickets;

categories[0] = categoryname;
categoryinfos[0] = categoryinfo;
number_of_tickets[eventindex] = tickets;
category_name[eventindex] = categories;
category_info[eventindex] = categoryinfos;
return;

}

tickets[number_of_tickets[eventindex].length] = numberoftickets;
categories[number_of_tickets[eventindex].length] = categoryname;
categoryinfos[number_of_tickets[eventindex].length] = categoryinfo;

number_of_tickets[eventindex] = tickets;
category_name[eventindex] = categories;
category_info[eventindex] = categoryinfos;

public String getTotalNumberOfTickets() {

int total = 0;

for (int i=0;i<event_name.length;i++) {
for (int t=0;t<number_of_tickets[i].length;t++) {
Integer totallnt = new Integer(number_of_tickets[i][t]);
total = total + totallnt.intValue();
}

}
totalNumberOfTickets = new Integer(total).toString();

return totalNumberOfTickets;

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 145

/

public String getMinimumPrice() {
int total = 0;

for (int i=0;i<event_name.length;i++) {
for (int t=0;t<category_info[i].length;t++) {
String str = category_info[i][t];
if (str.indexOf("-")==-1) {
Integer totallnt = new Integer(category_infoli][t]);
total = total + totallnt.intValue()*new Integer(number_of_tickets[i][t]).intValue();
}
else {
Integer totallnt = new Integer(category_infol[i][t].substring(0,category_infol[i][t].indexOf("-")));
total = total + totallnt.intValue()*new Integer(number_of_tickets][i][t]).intValue();
}
}
}

minimumPrice = new Integer(total).toString();

return minimumPrice;

}

public String getMaximumPrice() {
int total = O;

for (int i=0;i<event_name.length;i++) {
for (int t=0;t<category_info[i].length;t++) {
String str = category_infol[i][t];
if (str.indexOf("-")==-1) {
Integer totallnt = new Integer(category_info[i][t]);
total = total + totallnt.intValue()*new Integer(number_of_tickets][i][t]).intValue();
}
else {
Integer totallnt = new Integer(category_info[i][t].substring(category_infol[i][t].indexOf("-
")+1,category_info[i][t].length()));
total = total + totallnt.intValue()*new Integer(number_of_tickets][i][t]).intValue();
}
}
}

maximumPrice = new Integer(total).toString();

return maximumpPrice;

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS

146

/

}
\

public String[] getEventName() {
return event_name;

}

public String[] getEventLocation() {
return event_location;

}

public String[] getEventDate() {
return event_date;

}

public String[] getEventTime() {
return event_time;

}

public String[][] getNumberOfTickets() {
return number_of_tickets;

}

public String[][] getCategoryName() {
return category_name;

}

public String[][] getCategoryInfo() {
return category_info;

}

Bibliography

[Abro0]

[AF99]

[Alp]
[AMM+984]

[AMMO98D]

[AniO1]

[ant02]

[APOQ]

[Apa0ld]
[Apa0lb]
[APBWO9]

Marc Abrams. Device-Independent Authoring with UIML. In W3C
Workshop on Web Device Independent Authoring, Bristol, Englandm,
http://www.harmonia.com/resources/pape@tctober 2000.

Prathima Agrawal and David Famolari. Mobile computing in next generation
wireless networks. In 3rd international workshop on Discrete algorithms and
methods for mobile computing and communications (DIAL 99), Seattle, WA,
USA August 1999.

Alphaworks. Web Services - http://www.al phaworks.ibm.com/webservices.

P. Atzeni, G. Mecca, G. Merialdo, P. Masci, and G. Sindoni. The Araneus
Web-Based Management System. In L.M. Haas and A. Tiwary, editors, Pro-
ceedings of the International Conference Sigmod98, Exhibits Program, Seat-
tle, WA, USApage 544 546, June 1998.

P. Atzeni, G. Mecca, and P. Merialdo. Design and Maintenance of Data
Intensive Web Sites. In . Ramos H. J. Schek, F. Saltor and G. Alanso, editors,
Proceedings of the International Conference on Extending Database Technol-
ogy, EDBT98, Valencia, Spaipage 436 450, March 1998.

Scott Anian. JCup: CUP Parser Generator for Java -
http://www.cs.princeton.edu/ appel/modern/java/ CUP/ , 2001.

Apache Jakarta ANT -
http://jakarta.apache.org/ant. Technical report, 2002.

Marc Abrams and Constantinos Phanouriou. UIML: An XML Language
for Building Device-Independent User Interfaces. In XML '99 Conference,
Philadelphia, PA, USA, http://www.harmonia.com/resources/pajeesem-
ber 1999.

Apache. Xalan XSL Processor - http://xml.apache.org/xalan-j , 2001.
Apache. Xerces XML Parser - http://xml.apache.org/xerces-j , 2001.

Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, and
Stephen M. Williams. UIML: an appliance-independent XML user interface

147

BIBLIOGRAPHY 148

[Arc01]
[BCD*00]

[BCL+94]

[Ber01]

[BFJTO1]

[BGPOO]

[BGPO1]

[blu02]
[BMY95]

[BN96]

[BS97]

[BS98]

language. In Proceedings of the 8th International World Wide Web Confer-
ence, Toronto, Canadaolume 31 of Computer Networksage 1695 1708.
Elsevier Science, 1999.

Tom Archer. Inside C# Microsoft, 2001.

Thomas Ball, Christopher Colby, Peter Danielsen, Lalita Jategaonkar Ja-
gadeesan, Radha Jagadeesan, Konstantin Laeufer, Peter Mataga, and Kenneth
Rehor. Sidl: Several interfaces, single logic. International Journal of Speech
Technology3:93 108, 2000.

T. Berners-Lee, R. Cailliau, A. Loutonen, H. F. Nielsen, and A. Secret. The
World-Wide Web. Communications of the ACN37(8), August 1994.

Eliot Berk. JLex: A Lexical Analyser Generator for Java-
http://www.cs.princeton.edu/ appel/modern/javal/JLex/, 2001.

George Buchanan, Sarah Farrant, Matt Jones, and Harold Thimbleby. Improv-
ing Mobile Internet Usability. In Proceedings of the 10th International World
Wide Web Conference, Hong Kong, Chilveay 2001.

Orkut Buyukkokten, Hector Garcia-Molina, and Andreas Paepcke. Focused
Web searching with PDAs. In Proceedings of the 9th International World Wide
Web Conference, Amsterdam, Netherlamdiay 2000.

Orkut Buyukkokten, Hektor Garcia-Molina, and Andreas Pagpcke. Seeing the
Wholein Parts: Text Summarization for Web Browsing on Handheld Devices.

In Proceedings of the 10th International World Wide Web Conference, Hong
Kong, China May 2001.

Hp bluestone home page, http://www.bluestone.com, 2002.

V. Balasubramanian, Bang Min Ma, and Joonhee Yoo. A Systematic Approach
to Designing aWWW Application. Communications of the ACN38(8):47-8,
August 1995.

Martin Bichler and Stefan Nusser. Modular Design of Complex Web-
Applications with W3DT. In Proceedings of the 5th Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE ,96)
page 328 333. IEEE Comput. Soc. Press., Los Alamitos, CA, USA, 1996.

Timothy W. Bickmore and Bill N. Schilit. Digestor: Device-Independent Ac-
cess To The World Wide Web. In Proceedings of the 6th World Wide Web
Conference, Santa Clara, CA, USW97.

Robert Barta and Markus W. Schranz. JESSICA — An Object-Oriented Hy-
permedia Publishing Processor. Computer Networks and ISDN SysteB%1—
7):281, Apr. 1998.

BIBLIOGRAPHY 149

[BS004]

[BS00D]

[CE99]

[CEV99]

[CEV00]

[CFBOO]

[CFPOg]

[Coc96]

[cal]

[Con99]

[cvs]

[dev]

Robert Barta and Markus Schranz. Syndication with IML. In Proceedings
of the ACM Symposium on Applied Computing, Como. ,l{adges 962—70,
March 2000.

C. Bauer and A. Scharl. Tool-supported Web Development: Rethinking Tra
ditional Modeling Principles. In Proceedings of the 8th European Conference
on Information Systems, Vienna, Austnalume 1, pages 282—289. Vienna
University of Econ. and Bus. Adm., 2000.

S. Chandraand C.S. Ellis. JPEG Compression metric as a quality aware im-

age transcoding. In Proceedings of the 2nd USENIX Symposium on Internet
Technologies and Systempsage 81 92. USENIX Assoc., Berkeley, CA, USA,
1999.

Surendar Chandra, Carla SChlatter Ellis, and Amin Vahdat. Multimedia Web
Services for Mobile Clients Using Quality Aware Transcoding. In 2nd ACM
International Workshop on Wireless Mobile Multimedia (WoWMoM 99), Seat-
tle, WA, USAAugust 1999.

Surendar Chandra, Carla Schlatter Ellis, and Amin Vahdat. Application-Level
Differentiated Multimedia Web Services Using Quality Aware Transcoding.
IEEE Journal on selected areas in communicatjat&12):2544 2565, De-
cember 2000.

Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language
(WebML): a modeling language for designing Web sites. In Proceedings of
the 9th World Wide Web Conference, Amsterdam, Netherjaotisne 33 of
Computer Networkgage 137 157. Elsevier Science B.V, May 2000.

Stefano Ceri, Piero Fraternali, and Stefano Paraboschi. Data-Driven, One-
To-One Web Site Generation for Data-Intensive Applications. In Malcolm P.
Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and
Michael L. Brodie, editors, VLDB’99, Proceedings of 25th International Con-
ference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scot-
land, UK pages 615-626. Morgan Kaufmann, 1999.

Alistair Cockburn. The Interaction of Social |ssues and Software Architecture.
Communications of the ACN39(10):40-6, October 1996.

Coldfusion home page, http://www.col dfusion.com.

Jim Conallen. Modeling Web Application Architectures with UML. Commu-
nications of the ACMOctober 1999.

CVS,
http://cellworks.washington.edu/pub/docs/cvs.

Essential .NET :Component Development with C#. Technical report, Devel-
opmentor.

BIBLIOGRAPHY 150

[DIMGY5]

[DMCS95]

[Eng95]

[FC96]

[Feno6)
[FFKL98]

[FKSTO0]

[FPOO]

[Frag7]

[Fraog]

[GCPO1]

[GGS*+99]

[GJILOO]

AliciaDiaz, Tomas | sakowitz, Vanesa Maiorana, and Gabridl Gilabert. RMC:
A Tool To Design WWW Applications. December 1995.

D.B.Ingham, M.C.Little, S.J. Caughey, and SK. Shrivastava. W3ODbjects:
bringing object-oriented technology to the Web. In Proceedings of the 4th
International World Wide Web Conference, Boston, MA, | IS85.

Douglas C. Engelbart. Toward Augmenting the Human Intellect and Boosting
our Collective Q. Communications of the ACN38(8):30-3, August 1995.

Mohamed Fayad and Marshall P. Cline. Aspects of Software Adaptability.
Communications of the ACN39(10):58-9, October 1996.

Norman E. Fenton. Softare Metrics Thomson Computer Press, 1996.

Mary Fernandez, Daniela Florescu, Jaewoo Kang, and Alon Levy. Catching
the Boat with Strudel: Experiences with a Web-Site Management System. In
Proceedings of Sigmod '98, Seattle, Washington, Uge 414 425, June
1998.

Thomas Feyer, Odg Kao, Klaus-Dieter Schwebe, and Bernhard Thalheim.
Design of Data-Intensive Web-Based |nformation Services. In Proceedings of

the First International Conference on Web Information Systems Engingering
volume 1, page 462 467. IEEE Computer Society, Los Alamitos, CA, USA,
2000.

Piero Fraternali and Paolo Paolini. Model-Driven Development of Web Ap-
plications: The Autoweb System. ACM Transactions on Information Systems
18(4):323 382, 2000.

Larry Francis. Mobile computing - afact in your future. In 15th Annual Inter-
national Conference on Computer Documentation (SIGDOC 97), Snowbird,
UT, USA October 1997.

Piero Fraternali. Tools and approaches for developing data-intensive applica-
tions: A survey. ACM Computing Survey81(3):227 263, 1999.

Jaime Gomez, Christina Cachero, and Oscar Pastor. Conceptual Modeling of
Device-Independent Web Applications. IEEE Multimedia 8(2):26-39, April-
June 2001.

Martin Gaedke, Hans-W. Gellersen, Albrecht Schmidt, UIf Stegemueller, and
Wolfgang Kurr. Object-oriented web engineering for large-scale web service
management. In Proceedings of the 32nd Annual Hawaii International Con-
ference on System Sciend&fE Computer Society, Los Alamitos, CA, USA,
January 1999.

Patrice Godefroid, Lalita Jagadeesan, Radha Jagadeesan, and Konstantin
Laeufer. Automated systematic testing for constraint-based interactive ser-
vices. pages 40-50. ACM Press, November 2000.

BIBLIOGRAPHY 151

[GIM91] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engi-
neering Prentice-Hall, Englewood Cliffs, NJ, 1991.

[Gla0]] Steve Glasgow. Enterprise Applications, Electronic Commerce and XML. In
Proceedings of OMG Days, Vienna, Austi@2M G, February 2001.

[GMO1] Athula Ginige and San Murugesan. Web Engineering: An Introduction. IEEE
Multimedia, Special Issue on Web Engineeri®():14-18, March 2001.

[Goedg] Karl M. Goeschka. Architectures of Web applicationBhD thesis, 1998.

[GWG97a)] Hans Werner Gellerson, Robert Wicke, and Martin Gaedke. Web composi-
tion: An object oriented support system for the web engineering life cycle.
Computer Networks and ISDN Systepagles 1429-38, April 1997.

[GWG97b] Hans Werner Gellerson, Robert Wicke, and Martin Gaedke. Web composi-
tion: An object oriented support system for the web engineering life cycle.
Computer Netowrks and ISDN Systepagles 1429-38, April 1997.

[Har99] Elliotte Rusty Harold. XML Bible 1DG Books, 1999.

[HHO1] Ahmed Hassan and Richard C. Holt. Towards a better understanding of Web
applications. In Scot Tilley, editor, Proceedings of the 3rd Web Evolution
Workshop, International Conference on Software Maintenance 2001, Flo-
rence, Italy page 112 116. |EEE Computer Society Press, November 2001.

[HKO*™00] Masahiro Hori, Goh Kondoh, Kouichi Ono, Shin ichi Hirose, and Sandeep
Singhal. Annotation-based Web content transcoding. In Proceedings of the
9th International World Wide Web Conference, Amsterdam, Nether|&ays
2000.

[HMOQ] Udo Hahn and Inderjeet Mani. The challenges of automatic summarization.
IEEE Computer33(11):29 35, November 2000.

[HS94] Frank Halasz and Mayer Schwartz. The Dexter Hypertext Reference Model.
Communications of the ACN87(2):30-39, February 1994.

[1CL96] D. B. Ingham, S. J. Caughey, and M.C. Little. Fixing the ”broken
link” problem: the W3Objects approach. In Proceedings of the 5th Interna-
tional World Wide Web Conference, Paris, Frangelume 28 of Computer
Networks and ISDN Systeppege 1255 1268. Elsevier Science, 1996.

[ICL97] D. B. Ingham, S. J. Caughey, and M.C. Little. Supporting highly manageable
Web services. In Proceedings of the 6th International World Wide Web Con-
ference, Santa Clara, Californjaumber 29 in Computer Networksand ISDN
Systems, page 1405 1416. Elsevier Science, 1997.

[1SB95] Tomas Isakowitz, Edward A. Stohr, and P. Balasubramanian. Rmm: A
methodol ogy for structured hypermedia design. Communications of the ACM
38(8):34-43, August 1995.

BIBLIOGRAPHY 152

[Jawos]
[KAK*00]

[KBGPO1]

[KJIKS01]

[KKOO]

[KKO1]

[KKJIKO1]

[KMO1]

[LB96]

[Lin01]

[LS99]

[LucO0]

J. Jaworski. Java 1.2 UNLEASHEDSams Publ ., 1998.

Eija Kaasinen, Matti Aaltonen, Juha Kolari, Suvi Melakoski, and Timo
Laakko. Two approaches to bringing internet services to wap devices. In
9th International World Wide Web Conference, Amsterdam, Nether|&ays
2000.

Oliver Kaljuvee, Orkut Buyukkokten, Hector GarciaMolina, and Andreas
Pagpcke. Efficient Web Form Entry on PDAs. In Proceedings of the 10th
International World Wide Web Conference, Hong Kong, Chiviay 2001.

Engin Kirda, Mehdi Jazayeri, Clemens Kerer, and Markus Schranz. Experi-
ences in Engineering Flexible Web Services. IEEE Multimedia 8(1):58-65,
April-June January - March 2001.

Engin Kirda and Clemens Kerer. MyXML: An XML based template engine
for the generation of flexible Web content. In Proceedings of WEBNET 2000,
San Antonio, Texas, USNovember 2000.

Clemens Kerer and Engin Kirda. Layout, Content and Logic Separation in

Web Engineering. In Proceedings of the 9th International World Wide Web
Conference, 3rd Web Engineering Workshop, Amsterdam, Netherlands, May
200Q number 2016 in Lecture Notes in Computer Science, page 135 147.
Springer Verlag, 2001.

Clemens Kerer, Engin Kirda, Mehdi Jazayeri, and Roman Kurmanowytsch.
Building XML/XSL-Powered Web Sites: An Experience Report. In Proceed-
ings of the 25th International Computer Software and Applications Confer-
ence (COMPSAC), Chicago, IL, USAEE Computer Society Press, October
2001.

Holger M. Kienle and Hausi A. Mueller. Leveraging Program Analysis for

Web Site Reverse Engineering. In Scot Tilley, editor, Proceedings of the 3rd
Web Evolution Workshop, International Conference on Software Maintenance
2001, Florence, Italypage 117 125. |EEE Computer Society Press, November

2001.

Songwu Lu and Vaduvur Barghavan. Adaptive resource management algo-
rithms for indoor mobile computing envoironments. In ACM SIGCOMM 96,
Stanford, CA, USAAugust 1996.

Sumanth Lingham. UIML for Voice Interfaces. In UIML Europe 2001 Con-
ference, http://www.harmonia.com/resources/papétsich 2001.

Hakon Wium Lie and Janne Saarela. Multipurpose Web Publishing: Using
HTML, XML, and CSS. Communications of the ACM2(10), October 1999.

Bruce Lucas. Voicexml for web-based distributed conversational applications.
Communications of the ACM3(9):53 57, September 2000.

BIBLIOGRAPHY 153

[Mau9e]

[MES95]

[MMCO1]

[Nel95]

[Nie99]

[NKR*+02]

[NNOS5]

[Pag]

[Qui94]

[RASO0]

[RM98]

[RPOO]

[RSO1]

[RSL99]

Hermann Maurer. Hyper-G now Hyperwave, the next generation Web solution
Addison-Wesley England, 1996.

Lily B. Mummert, MariaR. Ebling, and M. Satyanarayanan. Expoliting weak
connectivity for mobile file access. In 15th ACM Symposium on Operating
Systems Principles, Copper Mountain, CO, UBAcember 1995.

Emilia Mendes, Nile Mosley, and Steve Counsell. Web Metrics — Estimat-
ing Design and Authoring Effort. IEEE Multimedia 8(1):50-67, April-June
January - March 2001.

Theodor Holm Nelson. The Heart of Connection: Hypermedia Unified by
Transaction. Communications of the ACN8(8):31-3, August 1995.

Jacob Nielsen. User interface directions for the web. Communications of the
ACM, 42, January 1999.

C. Narayanaswami, N. Kamijoh, M. Raghunath, Inoue T, T. Cipolla, J. San-
ford, E. Schlig, S. Venkiteswaran, D. Guniguntala, V. Kulkarni, and K. Ya
mazaki. IBM’s Linux watch, the challenge of miniaturization. IEEE Com-
puter, 35(1):33-41, January 2002.

Jocelyne Nanard and Marc Nanard. Hypertext design environments and the
hypertext design process. Communications of the ACN38(8):49-56, August
1995.

Perl Home Page. http://www.perl.com.

Christine A. Quinn. From Grass Rootsto Corporate Image - The Maturation of
the Web. In Proceedings of the 2nd International World Wide Web Conference,
Chicago, lllinois, USA, 17-20 October 199actober 1994.

Rob Howard Richard Anderson, Alex Homer and Dave Sussman. A Preview
of Active Server Pages#\Vrox Press, 2000.

Louis Rosenfeld and Peter Morville. Information Architecture for the World
Wide Web O’ Reilly & Associates, February 1998.

F. Riccaand P Tonella. Web siteanaysis: Structure and evolution. In Proceed-
ings of the International Conference on Software Maintenance 3@ 76
86. IEEE Computer Society Press, 2000.

D. Ralph and C. G. Shephard. Services via mobility portals. BT Technology
Journal 19(1):88-99, January 2001.

Gustavo Rossi, Daniel Schwabe, and Fernando Lyardet. Web Application
Models are more than Conceptual Modelslume 1727 of Lecture Notes in
Computer Sciencehapter Proceedings of the World Wide Web and Concep-
tual Modeling 99 Workshop, ER '99 Conference, page 239 252. Springer,
Paris, 1999.

BIBLIOGRAPHY 154

[RSS+99]

[RTO1]

[Sat89]

[Sat964]

[Sat96h]

[Scho7]

[Schoga]

[Schosb]

[Sdog]

[Sen00]

[Shegs]

[SHKEO1]

Harish Rawat, Sascha Schumann, Chris Scollo, Jesus M. Castagnetto, and
Deepak T. Valiath. Professional PHP ProgrammingVrox Press. Incorporated
ISBN: 1861002963, 1999.

F. Ricca and P. Tonella. Understanding and restructuring Web sites with
ReWeb. IEEE Multimedia 8(2), April-June 2001.

M. Satyanarayanan. Coda: A highly available file system for a distributed
workstation environment. In Proceedings of the Second IEEE Workshop on
Workstation Operating Systems, Pacific Grove, California, USaitember
1989.

M. Satyanarayanan. Fundamental challenges in mobile computing. In 15th
Annual ACM Symposium on Principles of Distributed Computing, Philadel-
phia, PA, USAMay 1996.

Mahadev Satyanarayanan. Accessing information on demand at any location:
Mobile information access. |IEEE Personal Communicationpages 26-30,
February 1996.

M. W. Schranz. Management process of WWW services: An Experience
Report. In Proceedings of the@ International Conference on Software Engi-
neering and Knowledge Engineering (SEKE '97),Madrid, Spaages 16-23.
Knowledge Systems Institute, June 1997.

Arno Scharl. Reference Modeling of Commercial Web Information Systems

Using the Extended World Wide Web Design Technique (€W3DT). In Pro-
ceedings of the 31st Hawaii International Conference on System Sciences
(HICSS-31), Hawaii, USAEEE Computer Society Press, 1998.

Markus W. Schranz. World Wide Web Service Engineering — Object Oriented
Hypermedia Publishing PhD thesis, Distributed Systems Group, Technical
University of Vienna, September 1998.

Daniel Schwabe and Rita de Almeida Pontes. OOHDM-WEB: Rapid Pro-
totyping of Hypermedia Applications in the WWW. Technical Report MCC
08/98, Department of Informatics, PUI-Rio, Brasil, 1998.

James A. Senn. The emergence of m-commerce. IEEE Computer33(12):148—
51, December 2000.

Deri Sheppard. An Introduction to Formal Specification with Z and VDIVhe
McGraw-Hill International Seriesin Software Engineering, 1995.

Andrea H. Skarra, Karrie J. Hanson, Gerald M. Karam, and Jeff Elliott. The
iStudio Environment: An Experience Report. In Proceedings of the XML in
Software Engineering Workshop (XSE 2001), 23rd International Conference
on Software Engineering (ICSE 2001)ay 2001.

BIBLIOGRAPHY 155

[SRO5]

[SRBY6]

[Strog]

[Sun]

[TLO7]

[totO1]

[TYFS6]

[Var00]

[VSBOY]

[W3C]

[W3C984]

[W3C98D]

[W3C00]

[web01]
[YK79]

Daniel Schwabe and Gustavo Rossi. The Object-Oriented HypermediaDesign
Model. Communications of the ACN38(8):45-6, August 1995.

Daniel Schwabe, Gustavo Rossi, and Simone D.J. Barbosa. Systematic Hy-
permedia Application Design with OOHDM. In Proceedings of the Seventh
ACM Conference on Hypertext, New York, NY, U%8e 116 128, 1996.

Norbert A. Streitz. Designing hypermedia: A collaborative activity. Commu-
nications of the ACM38(8):70-1, August 1995.

Sun. Implementing Services on Demand with the SUN Open Net Environment
— Sun ONE. Technical report, Sun Microsystems.

Kenji Takahashi and Eugene Liang. Analysis and Design of web-based In-
formation Systems. In Proceedings of the 6th International World Wide Web
Conference, Santa Clara, CA, USW97.

Hp bluestone mobile and wireless computing description,
http://www.bluestone.com, March 2001.

TJ. Teorey, D. Yang, and J. Fry. A logical design methodology for relational
databases using the extended entity-relationship model. ACM Computing Sur-
veys 18(2):197-222, 1986.

Ken Varnum. Information @ your fingertips. porting library services to the
PDA. Onling, 24(5):14 17, September - October 2000.

Rini van Solingen and Egon Berghout. The Goal/Question/Metric Method: A
Practical Guide for Quality Improvement of Software DevelopmBiiGraw
Hill, 1999.

W3C.
Cascading Style Shests,
http://ww.w3.0rg/Style/CSS . Technical report.

W3C. Extensible Markup Language (XML) 1.0 -
http://www.w3.0rg/TR/1998/REC-xmI-19980210. Technical report, Feb.
1998.

W3C.
XML Specification DTD
http://ww.w3.0rg/X M L/1998/06/xml spec-report-19980910.htm. Technical

report, Sep. 1998.

W3C. eXtensible Stylesheet Language 1.0 -
http://www.w3.0rg/TR/xdl/. Technical report, Jan. 2000.

The webml tool site, http://webml.org, 2001.

G. E. De Young and G. R. Kampen. Program factors as predictors of pro-
gram readability. In Proceedings of the Computer Software and Applications
Conference (COMSAQ)ages 668—673. IEEE Computer Society Press, 1979.

