
DISSERTATION

Sensor Fusion in
Time-Triggered Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

O. Univ.-Prof. Dr. Hermann Kopetz

Institut für Technische Informatik 182

eingereicht an der Technischen Universität Wien,
Fakultät für Technische Naturwissenschaften und Informatik

von

Wilfried Elmenreich

Matr.-Nr. 9226605

Südtirolerstraße 19, A-8280 Fürstenfeld

Wien, im Oktober 2002 .

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

mailto:wil@vmars.tuwien.ac.at

Sensor Fusion in
Time-Triggered Systems

Sensor fusion is the combining of sensory data or data derived from sensory
data in order to produce enhanced data in form of an internal represen-
tation of the process environment. The achievements of sensor fusion are
robustness, extended spatial and temporal coverage, increased confidence,
reduced ambiguity and uncertainty, and improved resolution.

This thesis examines the application of sensor fusion for real-time ap-
plications. The time-triggered approach provides a well suited basis for
building real-time systems due to its highly deterministic behavior. The
integration of sensor fusion applications in a time-triggered framework sup-
ports resource-efficient dependable real-time systems. We present a time-
triggered approach for real-time sensor fusion applications that partitions
the system into three levels: First, a transducer level contains the sensors
and the actuators. Second, a fusion/dissemination level gathers measure-
ments, performs sensor fusion and distributes control information to the
actuators. Third, a control level contains a control program making control
decisions based on environmental information provided by the fusion le-
vel. Using this architecture, complex applications can be decomposed into
smaller manageable subsystems.

Furthermore, this thesis evaluates different approaches for achieving de-
pendability. These approaches attack the problem at different levels. At the
transducer level, we introduce a filter algorithm that performs successive
measurements in order to improve the data quality of a single sensor. A dif-
ferent approach improves data by combining data of multiple sensors at the
fusion/dissemination level. We propose two sensor fusion algorithms to ac-
complish this task, the systematic confidence-weighted averaging algorithm
and the application-specific robust certainty grid algorithm.

The proposed methods are evaluated and used in a case study featuring
an autonomous mobile robot.

i

ii

Sensor Fusion in zeitgesteuerten
Systemen

Unter Sensor Fusion versteht man die intelligente Zusammenführung von
Sensordaten zu einem konsistenten Bild der beobachteten Umgebung.
Die Verwendung von Sensor Fusion erzielt stabiles Verhalten gegenüber
Störeinflüssen, eine Verbesserung des zeitlichen oder räumlichen Messbe-
reichs, erhöhte Aussagewahrscheinlichkeit einer Messung, eindeutige Inter-
pretationen der Daten sowie verbesserte Auflösung der Messdaten.

Diese Arbeit untersucht die Integration von Sensor Fusion in Echt-
zeitsystemen. Echtzeitsysteme müssen auf gegebene Eingabedaten inner-
halb definierter Zeitschranken reagieren. Zeitgesteuerte Echtzeitsysteme
beinhalten eine globale Uhrensynchronisation und leiten sämtliche Steu-
ersignale und Messzeitpunkte vom Fortschreiten der realen Zeit ab. Die
Verfügbarkeit einer global synchronisierten Zeit erleichtert die Implemen-
tierung von Sensor-Fusion-Algorithmen, da die Zeitpunkte verteilter Beob-
achtungen global interpretiert werden können.

In dieser Arbeit wird ein zeitgesteuerter Ansatz für den Entwurf und
die Implementierung von Sensor Fusion in Echtzeitanwendungen vorge-
stellt. Das vorgeschlagene Architekturmodell unterteilt eine Sensor-Fusion-
Anwendung in drei Ebenen, die Transducerebene, die Fusionsebene und die
Steuerungsebene. Die Unterteilung ermöglicht die Zerlegung einer komple-
xen Applikation in beherrschbare, getrennt implementierbare und wieder-
verwendbare Teile.

Der zweite Schwerpunkt dieser Arbeit liegt bei der Erhöhung der Zu-
verlässigkeit von Sensordaten mittels Sensor Fusion. Um Zuverlässigkeit
zu erreichen, werden unterschiedliche Ansätze für die verschiedenen Ebe-
nen vorgestellt. Für die Transducerebene wird ein Filter eingesetzt, wel-
cher mehrere zeitlich hintereinanderliegende Messungen zusammenführt,
um das Messergebnis zu verbessern. Auf der Fusionsebene werden Algorith-
men vorgestellt, welche es ermöglichen, aus einer Anzahl von redundanten
Messungen unterschiedlicher Sensoren ein robustes Bild der beobachteten
Umgebung zu errechnen.

Die Anwendung der vorgestellten Verfahren wird experimentiell am Bei-
spiel eines selbstfahrenden Roboters demonstriert und evaluiert. Dabei wird
die Umgebung des Roboters mittels Infrarot– und Ultraschallsensoren be-
obachtet, um selbstständig einen passierbaren Weg zwischen Hindernissen
zu finden.

iii

iv

Danksagung

Diese Arbeit entstand im Rahmen meiner Forschungs- und Lehrtätigkeit am
Institut für Technische Informatik, Abteilung für Echtzeitsysteme, an der Tech-
nischen Universität Wien.

Besonders danken möchte ich dem Betreuer meiner Dissertation, Prof. Dr.
Hermann Kopetz, der mir die Forschungstätigkeit am Institut für Technische
Informatik ermöglichte. Er unterstützte meine Arbeit durch wertvolle Anregun-
gen und stimulierende Diskussionen und prägte so meinen wissenschaftlichen
Werdegang.

Ich möchte allen meinen Kollegen und Freunden am Institut für das ange-
nehme Arbeitsklima danken. Das freundschaftliche Verhältnis, das wir unter-
einander pflegen, sowie zahlreiche fachliche Diskussionen hatten wesentlichen
Einfluss auf die Qualität dieser Arbeit. Zudem danke ich Michael Paulitsch,
Claudia Pribil, Peter Puschner, Thomas Galla sowie Wolfgang Haidinger, Ste-
fan Pitzek, Philipp Peti und Günther Bauer für das gewissenhafte Korrektur-
lesen beziehungsweise für wertvolle Hinweise bei der Arbeit an dieser Disserta-
tion.

Meiner Freundin Claudia Pribil möchte ich schließlich für ihre Geduld und
Unterstützung während meiner Arbeit an dieser Dissertation danken.

v

vi

Contents

1 Introduction 1

1.1 Related Work . 3

1.2 Motivation and Objectives . 4

1.3 Structure of the Thesis . 5

2 Basic Terms and Concepts 7

2.1 Principles of Sensor Fusion . 7

2.1.1 Motivation for Sensor Fusion 9

2.1.2 Limitations of Sensor Fusion 12

2.1.3 Types of Sensor Fusion 13

2.2 Real-Time Systems . 17

2.2.1 Classification of Real-Time Systems 18

2.2.2 Model of Time . 21

2.2.3 Real-Time Entities and Real-Time Images 21

2.3 Dependability . 22

2.3.1 Attributes of Dependability 22

2.3.2 Means of Dependability 24

2.3.3 Impairments of Dependability 24

2.4 Distributed Fault-Tolerant Systems 25

2.4.1 Fault Modelling . 26

2.4.2 Fault Tolerance through Redundancy 27

2.4.3 Transparency, Layering, and Abstraction 28

2.5 Smart Transducer Networks . 29

2.5.1 Sensors and Actuators 29

2.5.2 Microcontrollers for Embedded Systems 30

2.5.3 Smart Transducer Interfaces 30

2.6 Chapter Summary . 32

vii

3 Sensor Fusion Architectures and Applications 33

3.1 Architectures for Sensor Fusion 33

3.1.1 The JDL Fusion Architecture 33

3.1.2 Waterfall Fusion Process Model 35

3.1.3 Boyd Model . 36

3.1.4 The LAAS Architecture 37

3.1.5 The Omnibus Model . 39

3.2 Methods and Applications . 40

3.2.1 Smoothing, Filtering, and Prediction 40

3.2.2 Kalman Filtering . 41

3.2.3 Inference Methods . 44

3.2.4 Occupancy Maps . 45

3.2.5 Certainty Grid . 46

3.2.6 Reliable Abstract Sensors 48

3.3 Chapter Summary . 49

4 Architectural Model 51

4.1 Design Principles . 51

4.2 Time-Triggered Sensor Fusion Model 53

4.2.1 Transducer Level . 54

4.2.2 Fusion/Dissemination Level 56

4.2.3 Control Level . 57

4.2.4 Operator . 57

4.3 Interfaces . 58

4.3.1 Interface Separation . 58

4.3.2 Interfaces in the Time-Triggered Sensor Fusion Model . . 59

4.3.3 Interface File System . 62

4.4 Communication Protocol . 65

4.4.1 Bus Scheduling . 65

4.4.2 Clock Synchronization 68

4.5 Discussion . 68

4.5.1 Benefits at Transducer Level 68

4.5.2 Benefits at Fusion/Dissemination Level 69

4.5.3 Benefits at Control Level 69

4.6 Chapter Summary . 70

viii

5 Achieving Dependability by Sensor Fusion 71

5.1 Systematic versus Application-Specific Approach 71

5.2 Systematic Dependability Framework 72

5.2.1 Problem Statement . 72

5.2.2 Modelling of Observations 72

5.2.3 Sensor Representation Model 75

5.2.4 Representation of Confidence Values 77

5.2.5 Fusion Algorithms . 78

5.3 Robust Certainty Grid . 83

5.3.1 Problem Statement . 83

5.3.2 Robust Certainty Grid Algorithm 84

5.4 Chapter Summary . 89

6 Case Study Setup 91

6.1 Problem Statement . 91

6.1.1 Hardware Constraints 91

6.1.2 Software Constraints . 92

6.1.3 Real-Time Constraints 92

6.2 Development Environment . 93

6.2.1 Target System . 93

6.2.2 Programming Language 93

6.2.3 Compiler . 94

6.2.4 Programming Tools . 94

6.3 System Architecture . 95

6.4 Demonstrator Hardware . 97

6.4.1 Electrical and Electromechanical Hardware 97

6.4.2 TTP/A Nodes . 101

6.5 Demonstrator Software . 104

6.5.1 Infrared Sensor Filter . 104

6.5.2 Servo Control . 105

6.5.3 Grid Generation . 105

6.5.4 Navigation and Path Planning 106

6.5.5 Fusion of Ultrasonic Observations 109

6.5.6 Intelligent Motion Control 110

6.6 Chapter Summary . 111

ix

7 Experiments and Evaluation 113

7.1 Analysis of Sensor Behavior . 113

7.1.1 Raw Sensor Data . 113

7.1.2 Sensor Filtering . 119

7.1.3 Fused Sensor Data . 121

7.1.4 Comparison of Results 125

7.2 Evaluation of Certainty Grid . 128

7.2.1 Free Space Detection . 128

7.2.2 Dead End Detection . 130

7.2.3 Typical Situation with Three Obstacles 130

7.3 Discussion and Chapter Summary 133

8 Conclusion 135

8.1 Time-Triggered Architecture for Sensor Fusion 135

8.2 Sensor Fusion Algorithms . 136

8.3 Outlook . 137

Bibliography 139

List of Publications 155

Curriculum Vitae 157

x

List of Figures

2.1 Block diagram of sensor fusion and multisensor integration . . . 10

2.2 Alternative fusion characterizations based on input/output . . . 14

2.3 Competitive, complementary, and cooperative fusion 16

2.4 Parts of a real-time system . 18

2.5 Dependability tree . 23

3.1 JDL fusion model . 34

3.2 The waterfall fusion process model 36

3.3 The Boyd (or OODA) loop . 37

3.4 LAAS Architecture . 38

3.5 The omnibus model . 39

3.6 Smoothing, filtering, and prediction 41

4.1 Data flow in the time-triggered sensor fusion model 54

4.2 The three interfaces to a smart transducer node 58

4.3 Nested configuration with intelligent control interface 61

4.4 Interface file system as temporal firewall 63

4.5 Physical network topology . 64

4.6 Logical network structure . 65

4.7 Communication in TTP/A . 66

4.8 Recommended TTP/A Schedule 67

5.1 Sensor fusion layer converting redundant sensor information into
dependable data . 73

5.2 Structure of fusion operator . 74

5.3 Structure of sensor fusion layer 75

5.4 Example for sensor behavior regarding accuracy and failure . . . 76

5.5 Conversion function for confidence/variance values 77

5.6 Discrepancy between sensor A and sensor B due to object shape 85

xi

5.7 Pseudocode of the AddToGrid algorithm 86

6.1 System architecture of smart car 96

6.2 Hardware parts of smart car . 98

6.3 Infrared sensor signal vs. distance to reflective object 99

6.4 Timing diagram for the GP2D02 sensor 99

6.5 Connection diagram for the GP2D02 infrared sensor 100

6.6 Timing diagram for the ultrasonic sensor 101

6.7 Employed TTP/A node types 102

6.8 Network schematic of smart car 103

6.9 Line of sight for each position and sensor 106

6.10 Path planning . 108

6.11 Risk distribution scheme . 108

6.12 Example scenario for navigation decision-making 109

7.1 Setup for individual sensor testing 114

7.2 Sensor signal variations for a detected object and free space . . 115

7.3 Error of calibrated infrared sensor data 117

7.4 Probability density functions of the error for the ultrasonic sensors118

7.5 Error of filtered infrared sensor data 120

7.6 Setup for sensor fusion testing 122

7.7 Fusion result using data from sensors US 1 and US 2 122

7.8 Fusion result using unfiltered data from sensors IR 1, IR 2, and
IR 3 . 123

7.9 Fusion result using filtered data from sensors IR 1, IR 2, and IR 3 123

7.10 Fusion result using data from sensors US 1 and US 2 and unfil-
tered data from sensors IR 1, IR 2, and IR 3 124

7.11 Fusion result using data from sensors US 1 and US 2 and filtered
data from sensors IR 1, IR 2, and IR 3 124

7.12 Free space detection . 129

7.13 Dead end situation . 131

7.14 Parcour setup with three obstacles 132

xii

List of Tables

2.1 Comparison between C3I and embedded fusion applications . . . 13

4.1 Properties of transducer, fusion/dissemination, and control level 55

4.2 Elements of a RODL entry . 67

5.1 Conversion table for 16 different levels of confidence 78

5.2 Examples for grid cell updates 87

6.1 Relation between measurement range and confidence for the ul-
trasonic sensors . 110

7.1 Sensor constants determined during calibration 115

7.2 Quality of calibrated infrared sensor data 116

7.3 Quality of calibrated ultrasonic sensor data 118

7.4 Filtered sensor data . 119

7.5 Performance of the fault-tolerant sensor averaging algorithm for
the examined sensor configurations 125

7.6 Performance of the confidence-weighted average algorithm for
the examined sensor configurations 126

7.7 Comparison of sensor data processing methods using confidence-
weighted averaging as fusion method 127

xiii

xiv

Chapter 1

Introduction

“Where shall I begin, please your Majesty?” he asked.
“Begin at the beginning,” the King said, gravely,
“and go on till you come to the end: then stop.”

Alice’s Adventures in Wonderland, Lewis Carroll

More and more important applications, such as manufacturing, medical, mil-
itary, safety, and transportation systems, depend on embedded computer sys-
tems that interact with the real world. The many fields of application come
with different requirements on such embedded systems. Especially, dependable
reactive systems that have to provide a critical real-time service need care-
fully design and implementation. Primarily, the following aspects have to be
considered:

Sensor impairments: Due to limited resolution, cross-sensitivity, measure-
ment noise, and possible sensor deprivation, an application may never
depend on particular sensor information.

Real-time requirements: In many embedded systems, operations have to be
carried out with respect to real time. Timing failures in such applications
may endanger man and machine. For example, delivering the spark at
a wrong instant in an ignition control system can lead to irreversible
damage of the motor of an automobile.

Dependability requirements: Since embedded systems are often integrated
into larger systems that depend on embedded subsystems, the embedded
systems have to be designed and implemented in a way that they provide
a robust service. An embedded system might have to provide a particular
service even in case of failure of some of its components. Such fault-
tolerant behavior requires a proper design of a system with regard to the
possible failure modes of its components.

1

1 Introduction

Complexity management requirements: There is often need to split a
complex system, such as the software of a robot with distributed sen-
sors and actuators, into small comprehensible subsystems in order to
ease implementation and testing.

The problem of sensor impairments is addressed by sensor fusion. As the
name implies, sensor fusion is a technique by which data from several sen-
sors are combined in order to provide comprehensive and accurate informa-
tion. Applications of sensor fusion span a wide range from robotics, automated
manufacturing, and remote sensing to military applications such as battlefield
surveillance, tactical situation assessment, and threat assessment. Sensor fu-
sion technology is still a field of intensive research. Studies in sensor fusion for
computer vision and mobile robots often cite models of biological fusion such
as the ones found in pigeons [Kre81] and bats [Sim95]. The apparent success
of these living creatures in sensing and navigation using multisensory input
indicates the great potential of the field of sensor fusion.

Applications with certain real-time requirements can be built using vari-
ous approaches. Due to its highly deterministic behavior, the time-triggered
approach is increasingly being recognized as a well-suited basis for building
distributed real-time systems. A time-triggered system consists of a set of
time-aware nodes. The clocks of all nodes are synchronized in order to es-
tablish a global notion of time. Thus, the execution of communication and
application tasks takes place at predetermined points in time. Except for the
timing, all nodes are independent of each other. This simplifies the replication
of services and maintenance tasks.

Therefore, time-triggered architectures also fulfill the dependability require-
ments for the implementation of fault-tolerant systems using independent re-
dundant components. Additionally, sensor fusion of redundant sensors makes
an application more robust to external and internal errors. In case of failures,
many sensor fusion algorithms are able to provide a degraded level of service so
that the application is able to continue its operation and to provide its service.

Complexity management is supported by sensor fusion as well as by time-
triggered distributed systems. Sensor fusion introduces an internal represen-
tation of the environmental properties that are observed by sensors. Hence,
the control application can be decoupled from the physical sensors, thus im-
proving maintainability and reusability of the code. Moreover, time-triggered
architectures support a composable design of real-time applications by breaking
up complex systems into small comprehensible components. A system designer
introduces interfaces that are well-defined in the value and time domain to
each component. Then, all components can be implemented and tested sep-
arately. The composability principle takes care of preserving the separately

2

1 Introduction 1.1 Related Work

tested functionality of components in the overall application.

1.1 Related Work

When regarding the fields of sensor fusion and time-triggered systems sep-
arately, both are well treated in the scientific literature. The related work
on sensor fusion can be structured into architectures, algorithms, and appli-
cations. Sensor fusion has many applications, which are quite different in
their requirements, design, and methods. The most common architectures,
like the JDL fusion model [Wal90], or the waterfall model [Mar97b] have sev-
eral shortcomings that make them less applicable for particular applications.
Therefore, there exists no common unique model for sensor fusion until to-
day. The number of sensor fusion algorithms or methods is also numerous
– the literature distinguishes filter algorithms (e. g., Kalman Filters [Sas00]),
sensor agreement (e. g., voting, sensor selection [Gir95], fault-tolerant abstract
sensors [Mar90]), world-modelling (e. g., occupancy grids [Elf89]), and deci-
sion methods (e. g., Bayes inference, Dempster-Shafer reasoning, Fuzzy logic
inference [Rus94]). Related work on time-triggered systems can be found
for system architectures and development (e. g., Maintainable Real-Time Sys-
tem [Kop93b], Time-Triggered Architecture [Sch97]), communication protocols
(e. g., TTP/C [Kop99], TTP/A [Kop00], LIN [Aud99]) and many sub-aspects
of distributed fault-tolerant real-time systems.

However, up to date there is little related work on the combined subject
of time-triggered architectures for sensor fusion. In [Lie01], Liebman and Ma
tried to combine design philosophies from embedded systems design and syn-
chronous embedded control. They proposed a hierarchical design that consists
of a synchronous control application based on the time-triggered middleware
language Giotto and sensor-specific code with different timing. They evaluated
their design using a hardware-in-the-loop simulation of an autonomous aerial
vehicle.

Kostiadis and Hu proposed the design of time-triggered mobile robots that
act as robotic agents for the RoboCup competition [Kos00]. Their application
covers the fields of multi-agent collaboration, strategy acquisition, real-time
planning and reasoning, sensor fusion, strategic decision making, intelligent
robot control, and machine learning.

Another research project related to sensor fusion and time-triggered sys-
tems is carried out jointly by the Department of Artificial Intelligence, the
Department of Computer Architecture and Communication, and the Depart-
ment of Image Processing and Pattern Recognition at the Humboldt University

3

1.2 Motivation and Objectives 1 Introduction

in Berlin.1 The objective of their project is to develop a time-triggered control
architecture for instrumenting a four-legged soccer robot.

1.2 Motivation and Objectives

The main goal of this thesis is to develop a framework for sensor fusion appli-
cations in time-triggered systems. The framework will integrate sensor fusion
tasks into a time-triggered architecture in order to provide a platform for de-
pendable reactive systems.

From the integration of sensor fusion tasks with a time-triggered system a
synergetic effect can be expected. For instance, in system design sensor fusion
will support a decomposition of tasks in thus reducing complexity. On the
other hand, due to the regular timing patterns in time-triggered systems, the
implementation of sensor fusion algorithms will be facilitated.

As a further goal of this thesis, we will elaborate concepts for dependable
sensor applications. Dependability will be achieved by using redundant sensor
configurations. We will examine two approaches for implementing dependable
data acquisition.

Primarily, a systematic approach extends a simple application by prepro-
cessing its inputs while the control application itself remains unchanged. The
preprocessing is based on agreement protocols that rely on regularity assump-
tions. The expected benefits of this approach are the support for modular
implementation and easy verification of the system design.

Alternatively, an application-specific approach that integrates dependability
operations with the application will be elaborated. The application-specific ap-
proach promises lower hardware expenses and therefore leads to reduced costs,
weight, and power consumption. However, application-specific approaches usu-
ally come with increased design effort and application complexity. Our goal is
to attack this complexity by taking advantage of the composable design in our
framework. As an example, we will present an application-specific implemen-
tation of fault tolerance for robotic vision.

As a proof of concept, we will evaluate the presented architecture and meth-
ods by means of an autonomous mobile robot. The robot shall be able to per-
ceive its environment by means of low-cost commercial distance sensors. The
robot will use this perception to create a map of the environment containing
obstacles and free space. By using a path planning algorithm, the robot shall
detour obstacles by choosing the most promising direction. The major chal-
lenge in this case study is the task of building an adequate map of the robot’s

1http://www.informatik.hu-berlin.de/∼mwerner/res/robocup/index.en.html

4

1 Introduction 1.3 Structure of the Thesis

environment from inaccurate or incomplete sensor data, where the adequacy of
the model is judged by its suitability for its given task, which in our case is a
navigation algorithm.

1.3 Structure of the Thesis

This thesis is structured as follows:

Chapter 2 introduces the basic terms and concepts that are used through-
out this thesis. Section 2.1 gives a brief introduction on sensor fusion while
section 2.2 is devoted to real-time systems. Thereafter, section 2.3 explains
attributes, means, and impairments of dependability, whereas distributed fault-
tolerant systems and smart transducer networks are described in section 2.4
and 2.5.

Chapter 3 provides a survey on sensor fusion architectures, methods, and
applications. The first part of the survey introduces architectures and models
that have been used for sensor fusion, while the second part covers sensor fusion
methods and applications that are related to embedded real-time applications.

In chapter 4, we describe an architectural model for sensor fusion applica-
tions in distributed time-triggered systems. Section 4.1 states the design prin-
ciples that guided the design of the architectural model. Section 4.2 describes
an overall model, which incorporates a smart transducer network, sensor fusion
processing, and a sensor-independent environment image interface. Section 4.3
explains the interfaces and section 4.4 describes the communication within this
model in detail.

Chapter 5 is devoted to the introduction of two sensor fusion approaches for
achieving dependability. Section 5.1 discusses two alternative approaches in or-
der to accomplish this task. The first approach described in section 5.2 is based
on a framework that systematically extends an application with a transparent
sensor fusion layer. In contrast to this, section 5.3 uses an application-specific
method that enables a robust version of the certainty grid algorithm for robotic
perception.

Chapter 6 outlines the design and implementation of a case study, the
“smart car”. The smart car is an autonomous mobile robot that orientates
itself by using measurements from various distance sensors. Sensor fusion and
communication model are implemented according to the architecture presented
in chapter 4.

The evaluation of the proposed methods and the case study performance
is summarized in chapter 7. Section 7.1 examines the sensor behavior and

5

1.3 Structure of the Thesis 1 Introduction

compares various fusion and filter configurations. Section 7.2 evaluates the
certainty grid that has been generated from the sensor data.

Finally, the thesis ends with a conclusion in chapter 8 summarizing the key
results of the presented work and giving an outlook on what can be expected
from future research in this area.

6

Chapter 2

Basic Terms and Concepts

“Be wary of proposals for synergistic systems.
Most of the time when you try to make 2 + 2 = 5,

you end up with 3 . . . and sometimes 1.9.”

Charles A. Fowler

The principles used throughout this thesis span over several fields of research.
It is the purpose of this chapter to introduce the concepts on which the work
in this thesis is based.

2.1 Principles of Sensor Fusion

There is some confusion in the terminology for fusion systems. The terms “sen-
sor fusion”, “data fusion”, “information fusion”, “multi-sensor data fusion”,
and “multi-sensor integration” have been widely used in the technical litera-
ture to refer to a variety of techniques, technologies, systems, and applications
that use data derived from multiple information sources. Fusion applications
range from real-time sensor fusion for the navigation of mobile robots to the
off-line fusion of human or technical strategic intelligence data [Rot91].

Several attempts have been made to define and categorize fusion terms and
techniques. In [Wal98], Wald proposes the term “data fusion” to be used as
the overall term for fusion. However, while the concept of data fusion is easy to
understand, its exact meaning varies from one scientist to another. Wald uses
“data fusion” for a formal framework that comprises means and tools for the
alliance of data originating from different sources. It aims at obtaining informa-
tion of superior quality; the exact definition of superior quality depends on the
application. The term “data fusion” is used in this meaning by the Geoscience
and Remote Sensing Society1, by the U. S.Department of Defense [DoD91], and

1http://www.dfc-grss.org

7

2.1 Principles of Sensor Fusion 2 Basic Terms and Concepts

in many papers regarding motion tracking, remote sensing, and mobile robots.
Unfortunately, the term has not always been used in the same meaning during
the last years [Sme01]. In some fusion models, “data fusion” is used to denote
fusion of raw data [Das97].

There are classic books on fusion like “Multisensor Data Fusion” [Wal90]
by Waltz and Llinas and Hall’s “Mathematical Techniques in Multisensor Data
Fusion” [Hal92] that propose an extended term, “multisensor data fusion”. It
is defined there as the technology concerned with the combination of how to
combine data from multiple (and possible diverse) sensors in order to make in-
ferences about a physical event, activity, or situation [Hal92, page ix]. However,
in both books, also the term “data fusion” is mentioned as being equal with
“multisensor data fusion” [Hal92].

To avoid confusion on the meaning, Dasarathy decided to use the term “in-
formation fusion” as the overall term for fusion of any kind of data [Das01].
The term “information fusion” had not been used extensively before and thus
had no baggage of being associated with any single aspect of the fusion do-
main. The fact that “information fusion” is also applicable in the context of
data mining and data base integration is not necessarily a negative one as the
effective meaning is unaltered: information fusion is an all-encompassing term
covering all aspects of the fusion field (except nuclear fusion or fusion in the
music world).

A literal definition of information fusion can be found at the homepage of
the International Society of Information Fusion2:

Information Fusion encompasses theory, techniques and tools conceived and
employed for exploiting the synergy in the information acquired from mul-
tiple sources (sensor, databases, information gathered by human, etc.)
such that the resulting decision or action is in some sense better (qual-
itatively or quantitatively, in terms of accuracy, robustness, etc.) than
would be possible if any of these sources were used individually without
such synergy exploitation.

By defining a subset of information fusion, the term sensor fusion is intro-
duced as:

Sensor Fusion is the combining of sensory data or data derived from sensory
data such that the resulting information is in some sense better than
would be possible when these sources were used individually.

2http://www.inforfusion.org/mission.htm

8

2 Basic Terms and Concepts 2.1 Principles of Sensor Fusion

The data sources for a fusion process are not specified to originate from
identical sensors. McKee distinguishes direct fusion, indirect fusion and fusion
of the outputs of the former two [McK93]. Direct fusion means the fusion of
sensor data from a set of heterogeneous or homogeneous sensors, soft sensors,
and history values of sensor data, while indirect fusion uses information sources
like a priori knowledge about the environment and human input. Therefore,
sensor fusion describes direct fusion systems, while information fusion also
encompasses indirect fusion processes.

In this thesis we use the terms “sensor fusion” and “information fusion” ac-
cording to the definitions stated before. The term “data fusion” will be avoided
due to its ambiguous meaning. Since “data fusion” still is a standard term in
the scientific community for earth image data processing, it is recommended
not to use the stand-alone term “data fusion” in the meaning of “low-level data
fusion”. Thus, unless “data fusion” is meant as proposed by the earth science
community, a prefix like “low-level” or “raw” would be adequate.

The sensor fusion definition above does not require that inputs are pro-
duced by multiple sensors, it only says that sensor data or data derived from
sensor data have to be combined. For example, the definition also encompasses
sensor fusion systems with a single sensor that take multiple measurements
subsequently at different instants which are then combined.

Another frequently used term is multisensor integration. Multisensor in-
tegration means the synergistic use of sensor data for the accomplishment of
a task by a system. Sensor fusion is different to multisensor integration in
the sense that it includes the actual combination of sensory information into
one representational format [Sin97, Luo89]. The difference between sensor fu-
sion and multisensor integration is outlined in figure 2.1. The circles S1, S2,
and S3 depict physical sensors that provide an interface to the process envi-
ronment. Block diagram 2.1(a) shows that the sensor data is converted by
a sensor fusion block into a respective representation of the variables of the
process environment. These data is then used by a control application. In
contrast, figure 2.1(b) illustrates the meaning of multisensor integration, where
the different sensor data are directly processed by the control application.

2.1.1 Motivation for Sensor Fusion

Systems that employ sensor fusion methods expect a number of benefits over
single sensor systems. A physical sensor measurement generally suffers from
the following problems:

Sensor Deprivation: The breakdown of a sensor element causes a loss of
perception on the desired object.

9

2.1 Principles of Sensor Fusion 2 Basic Terms and Concepts

Environment

S
1
 S
3
S
2

Sensor Fusion

e
.g., Voting,
Averaging

Internal Representation

of Environment

Control Application

(a) Sensor fusion

Environment

S
1
 S
3
S
2

Control Application

(b) Multisensor integration

Figure 2.1: Block diagram of sensor fusion and multisensor integration

Limited spatial coverage: Usually an individual sensor only covers a re-
stricted region. For example a reading from a boiler thermometer just
provides an estimation of the temperature near the thermometer and may
fail to correctly render the average water temperature in the boiler.

Limited temporal coverage: Some sensors need a particular set-up time to
perform and to transmit a measurement, thus limiting the maximum
frequency of measurements.

Imprecision: Measurements from individual sensors are limited to the preci-
sion of the employed sensing element.

Uncertainty: Uncertainty, in contrast to imprecision, depends on the object
being observed rather than the observing device. Uncertainty arises when
features are missing (e. g., occlusions), when the sensor cannot measure
all relevant attributes of the percept, or when the observation is ambigu-
ous [Mur96]. A single sensor system is unable to reduce uncertainty in
its perception because of its limited view of the object [Foo95].

As an example, consider a distance sensor mounted at the rear of a car
in order to assist backing the car into a parking space. The sensor can only

10

2 Basic Terms and Concepts 2.1 Principles of Sensor Fusion

provide information about objects in front of the sensor but not beside, thus the
spatial coverage is limited. We assume that the sensor has an update time of
one second. This is a limited temporal coverage that is significant for a human
driver. Finally, the sensor does not provide unlimited precision, for example its
measurements could be two centimeters off the actual distance to the object.
Uncertainty arises, if the object behind the rear of the car is a small motorcycle
and the driver cannot be sure, if the sensor beam hits the object and delivers a
correct measurement with the specified precision or if the sensor beam misses
the object, delivering a value suggesting a much different distance.

One solution to the listed problems is to use sensor fusion. The standard
approach to compensate for sensor deprivation is to build a fault-tolerant unit
of at least three identical units with a voter [vN56] or at least two units showing
fail-silent behavior [Kop90]. Fail-silent means that a component produces either
correct results or, in case of failure, no results at all. In a sensor fusion system
robust behavior against sensor deprivation can be achieved by using sensors
with overlapping views of the desired object. This works with a set of sensors
of the same type as well as with a suite of heterogeneous sensors.

The following advantages can be expected from the fusion of sensor data
from a set of heterogeneous or homogeneous sensors [Bos96, Gro98]:

Robustness and reliability: Multiple sensor suites have an inherent redun-
dancy which enables the system to provide information even in case of
partial failure.

Extended spatial and temporal coverage: One sensor can look where
others cannot respectively can perform a measurement while others can-
not.

Increased confidence: A measurement of one sensor is confirmed by mea-
surements of other sensors covering the same domain.

Reduced ambiguity and uncertainty: Joint information reduces the set of
ambiguous interpretations of the measured value.

Robustness against interference: By increasing the dimensionality of the
measurement space (e. g., measuring the desired quantity with optical
sensors and ultrasonic sensors) the system becomes less vulnerable against
interference.

Improved resolution: When multiple independent measurements of the
same property are fused, the resolution of the resulting value is better
than a single sensor’s measurement.

11

2.1 Principles of Sensor Fusion 2 Basic Terms and Concepts

In [Rao98], the performance of sensor measurements obtained from an ap-
propriate fusing process is compared to the measurements of the single sensor.
According to this work, an optimal fusing process can be designed, if the dis-
tribution function describing measurement errors of one particular sensor is
precisely known. This optimal fusing process performs at least as well as the
best single sensor.

A further advantage of sensor fusion is the possibility to reduce system
complexity. In a traditionally designed system the sensor measurements are
fed into the application, which has to cope with a big number of imprecise,
ambiguous and incomplete data streams. In a system where sensor data is
preprocessed by fusion methods, the input to the controlling application can
be standardized independently of the employed sensor types, thus facilitating
application implementation and providing the possibility of modifications in
the sensor system regarding number and type of employed sensors without
modifications of the application software [Elm01c].

2.1.2 Limitations of Sensor Fusion

Evolution has developed the ability to fuse multi-sensory data into a reliable
and feature-rich recognition. Nevertheless, sensor fusion is not an omnipotent
method. Fowler stated a harsh criticism in 1979:

One of the grabbiest concepts around is synergism. Conceptual application
of synergism is spread throughout military systems but is most prevalent in the
“multisensor” concept. This is a great idea provided the input data are a (sic!)
good quality. Massaging a lot of crummy data doesn’t produce good data; it just
requires a lot of extra equipment and may even reduce the quality of the output
by introducing time delays and/or unwarranted confidence. [. . .] It takes more
than correlation and fusion to turn sows’ ears into silk purses. [Fow79, page 5]

Since this has been published, many people tried to prove the opposite.
Nahin and Pokoski [Nah80] presented a theoretical proof that the addition of
sensors improves the performance in the specific cases for majority vote and
maximum likelihood theory in decision fusion. Performance was defined as
probability of taking the right decision without regarding the effort on process-
ing power and communication.

In contrast, Tenney and Sandell considered communication bandwidth for
distributed fusion architectures. In their work they showed that a distributed
system is suboptimal in comparison to a completely centralized processing
scheme with regard to the communication effort [Ten81].

An essential criterium for the possible benefit of sensor fusion is a com-
prehensive set of performance measures. Theil, Kester, and Bossé presented

12

2 Basic Terms and Concepts 2.1 Principles of Sensor Fusion

measures of performance for the fields of detection, tracking, and classification.
Their work suggests measuring the quality of the output data and the reaction
time [The00].

Dasarathy investigated the benefits on increasing the number of inputs to
a sensor fusion process in [Das00]. Although the analysis is limited on the
augmentation of two-sensor systems by an extra sensor, the work shows that
increasing the number of sensors may lead to a performance gain or loss de-
pending on the sensor fusion algorithm.

It can be concluded from the existing knowledge on sensor fusion perfor-
mance that in spite of the great potentials of sensor fusion slight skepticism on
“perfect” or “optimal” fusion methods is appropriate.

2.1.3 Types of Sensor Fusion

The following paragraphs present common categorizations for sensor fusion
applications by different aspects.

C3I versus embedded real-time applications

There exists an important dichotomy in research on sensor fusion for C3I (com-
mand, control, communications, and intelligence) oriented applications and
sensor fusion which is targeted at real-time embedded systems. The C3I ori-
ented research focuses primarily on intermediate and high level sensor fusion
issues while onboard applications concentrate on low-level fusion. Table 2.1
compares some central issues between C3I and embedded fusion applications
(cf. [Rot91]).

Onboard fusion C3I fusion

Time scale milliseconds seconds. . .minutes
Data type sensor data also linguistic or

symbolic data
Man-machine interaction optional frequently
Database size small to moderate large to very large
Level of abstraction low high

Table 2.1: Comparison between C3I and embedded fusion applications

13

2.1 Principles of Sensor Fusion 2 Basic Terms and Concepts

Three-Level Categorization

Fusion processes are often categorized in a three-level model distinguishing low,
intermediate, and high level fusion.

Low-level fusion or raw data fusion (confer to section 2.1 on the double
meaning of “data fusion”) combines several sources of raw data to pro-
duce new data that is expected to be more informative than the inputs.

Intermediate-level fusion or feature level fusion combines various features
such as edges, corners, lines, textures, or positions into a feature map
that may then be used for segmentation and detection.

High-level fusion, also called decision fusion combines decisions from sev-
eral experts. Methods of decision fusion include voting, fuzzy-logic, and
statistical methods.

Categorization Based on Input/Output

Dasarathy proposed a refined categorization based on the three-level model
in [Das97]. It categorizes fusion processes derived from the abstraction level of
the processes’ input and output data.

Data In -

Data Out

Fusion

Data In -

Feature Out

Fusion

Feature In -

Feature Out

Fusion

Feature In -

Decision Out

Fusion

Decision In -

Decision Out

Fusion

Feature Input

Decision Input

Raw Data Input
 Raw Data Output

Feature Output

Decision Output

Decision Output

Feature Output

 DAI-DAO
 DAI-FEO
 FEI-FEO
 FEI-DEO
 DEI-DEO

Classification by
Dasarathy

D
ec

isi
on

 L
ev

el

Ra
w

 D
at

a L
ev

el

Fe
at

ur
e L

ev
el

Th
re

e-
Le

ve
l C

la
ss

ifi
ca

tio
n

Figure 2.2: Alternative fusion characterizations based on input/output

14

2 Basic Terms and Concepts 2.1 Principles of Sensor Fusion

The reason for the Dasarathy model was the existence of fusion paradigms
where the input and output of the fusion process belong to different levels.
Examples are feature selection and extraction, since the processed data comes
from the raw data level and the results belong to the feature level. For example,
pattern recognition and pattern processing operates between feature and deci-
sion level. These ambiguous fusion paradigms sometimes have been assigned
according to the level of their input data and sometimes according to the level
of their output data.

To avoid these categorization problems, Dasarathy extended the three-level
view to five fusion categories defined by their input/output characteristics.
Figure 2.2 depicts the relation between the three-level categorization and the
Dasarathy model.

Categorization Based on Sensor Configuration

Sensor fusion networks can also be categorized according to the type of sen-
sor configuration. Durrant-Whyte [DW88] distinguishes three types of sensor
configuration:

Complementary: A sensor configuration is called complementary if the sen-
sors do not directly depend on each other, but can be combined in order to
give a more complete image of the phenomenon under observation. This
resolves the incompleteness of sensor data. An example for a complemen-
tary configuration is the employment of multiple cameras each observing
disjunct parts of a room as applied in [Hoo00]. Generally, fusing com-
plementary data is easy, since the data from independent sensors can be
appended to each other [Bro98].

Sensor S2 and S3 in figure 2.3 represent a complementary configuration,
since each sensor observes a different part of the environment space.

Competitive: Sensors are configured competitive if each sensor delivers inde-
pendent measurements of the same property. Visser and Groen [Vis99]
distinguish two possible competitive configurations – the fusion of data
from different sensors or the fusion of measurements from a single sensor
taken at different instants. Competitive sensor configuration is also called
a redundant configuration [Luo89].

A special case of competitive sensor fusion is fault tolerance which is
explained in detail in section 2.4. Fault tolerance requires an exact spec-
ification of the service and the failure modes of the system. In case of
a fault covered by the fault hypothesis, the system still has to provide

15

2.1 Principles of Sensor Fusion 2 Basic Terms and Concepts

Environment

A

S
1
 S
3
 S
4
 S
5
S
2

B
 C

Competitive

Fusion

e
.g., Voting

Cooperative

Fusion

e
.g., Triangulation

Complementary

Fusion

Sensors

Fusion

Object A
Resulting data
 Object A + B
 Object
 C

Achievements
 Reliability,

Accuracy
 Completeness
 Emerging Views

Figure 2.3: Competitive, complementary, and cooperative fusion

its specified service. Examples for fault-tolerant configurations are N-
modular redundancy [Nel90] and other schemes where a certain number
of faulty components are tolerated [Pea80, Mar90].

In contrast to fault tolerance, competitive configurations can also provide
robustness to a system. Robust systems provide a degraded level of ser-
vice in the presence of faults. While this graceful degradation is weaker
than the achievement of fault tolerance, the respective algorithms per-
form better in terms of resource needs and work well with heterogeneous
data sources [Bak01]. An example for architectures that supports hetero-
geneous competitive sensors can be found in [Par91a] and [Elm02c] where
confidence tags are used to indicate the dependability of an observation.

Sensor S1 and S2 in figure 2.3 represent a competitive configuration, where
both sensors redundantly observe the same property of an object in the
environment space.

16

2 Basic Terms and Concepts 2.2 Real-Time Systems

Cooperative: A cooperative sensor network uses the information provided by
two independent sensors to derive information that would not be available
from the single sensors. An example for a cooperative sensor configuration
is stereoscopic vision – by combining two-dimensional images from two
cameras at slightly different viewpoints a three-dimensional image of the
observed scene is derived. According to Brooks and Iyengar, cooperative
sensor fusion is the most difficult to design, because the resulting data
are sensitive to inaccuracies in all individual participating sensors [Bro98].
Thus, in contrast to competitive fusion, cooperative sensor fusion gener-
ally decreases accuracy and reliability.

Sensor S4 and S5 in figure 2.3 represent a cooperative configuration. Both
sensors observe the same object, but the measurements are used to form
an emerging view on object C that could not have been derived from the
measurements of S4 or S5 alone.

These three categories of sensor configuration are not mutually exclusive.
Many applications implement aspects of more than one of the three types. An
example for such a hybrid architecture is the application of multiple cameras
that monitor a given area. In regions covered by two or more cameras the
sensor configuration can be competitive or cooperative. For regions observed
by only one camera the sensor configuration is complementary.

2.2 Real-Time Systems

A real-time system consists of a real-time computer system, a controlled object
and an operator. A real-time computer system is a computer system in which
the correctness of the system behavior depends not only on the logical results
of the computations, but also on the physical instant at which these results
are produced [Kop97a, page 2]. Figure 2.4 depicts the parts of a real-time
system. The man-machine interface consists of input devices (like keyboards,
joysticks, mouse) and output devices (like displays, alarm lights, loudspeakers)
that interface to a human operator. The instrumentation interface consists of
the sensors and actuators that transform the physical signals of the controlled
object into a processable form and vice versa.

The real-time computer system must react to stimuli from the controlled
object (or the operator) within a time interval specified by a deadline. If a
result has utility even after its deadline has passed, the deadline is called soft,
otherwise it is firm. When missing a firm deadline can have catastrophic con-
sequences, the deadline is called hard [Kop97a]. The concept of deadlines must
not be confused with fast computing. Real-time computing is not equivalent to

17

2.2 Real-Time Systems 2 Basic Terms and Concepts

fast computing since the objective of fast computing is to minimize the aver-
age response time of a task, while real-time computing is concerned about the
maximum response time and the difference between minimum and maximum
response time, the so-called jitter [Sta88a].

An important aspect of real-time computing is a concise analysis of the
real-time system. Katara and Luoma examined methods for determining the
collective behavior of embedded real-time systems [Kat01]. They suggest that
for a concise analysis it is necessary not only to regard the real-time computer
system but also the properties of the environment and the operator.

Real-Time

Computer System

Operator
 Controlled Object

Actuators

Sensors

Man-Machine

Interface

Instrumentation

Interface

Continuous

Phenomenon

Nondeterministic

Behavior

Deterministic

Behavior in Value

and Time Domain

Real-Time System

Figure 2.4: Parts of a real-time system

2.2.1 Classification of Real-Time Systems

Kopetz presented a set of classifications for real-time systems in [Kop97a].
The distinction is based on the characteristics of the application (e. g., by the
consequences of missing a timing requirement or the systems behavior upon
failures) and on factors depending on the design and implementation of the real-
time computer system (e. g., the method of system activation or assumptions
regarding system response times).

18

2 Basic Terms and Concepts 2.2 Real-Time Systems

Hard versus Soft Real-Time Systems

Depending on the possible consequences of a missed deadline, hard and soft
real-time systems can be distinguished.

Hard real-time systems are characterized by the fact that severe conse-
quences will result if logical or timing correctness properties are not sat-
isfied [Sta88b]. Hard real-time systems have at least one hard deadline.

Soft real-time systems are expected to deliver correct results within spec-
ified time intervals, but in contrast to hard real-time systems no severe
consequences or catastrophic failures arise from missing those timing re-
quirements.

This thesis focuses on hard real-time systems. As an example for a hard
real-time system, imagine a fly-by-wire or an anti-lock breaking system that in-
teracts between a pilot or driver and a physical phenomenon. The requirement
on that real-time system is that each user activity is converted to the intended
change of the controlled object in the physical environment within a certain
time interval. In this scenario an unexpected delay can lead to catastrophic
consequences.

Fail-Safe versus Fail-Operational

The reaction of a system upon a critical failure is determined by application
requirements.

Fail-safe paradigm: This model depends on the existence of a safe state that
the system can enter upon occurrence of a failure. The existence of such
a fail-safe state depends on the application. In fail-safe applications, the
real-time computer system must provide a high error-detection coverage.

Fail-operational paradigm: If a safe state cannot be identified for a given
application, the system has to be fail-operational. Fail-operational real-
time systems are forced to provide at least a specified minimum level of
service for the whole duration of a mission.

An example for a fail-operational real-time system is a flight control system
aboard an aeroplane. In contrast, a mobile robot operating on the ground
usually will be able to quickly enter its safe state by stopping its propulsion,
thus representing a fail-safe real-time system.

19

2.2 Real-Time Systems 2 Basic Terms and Concepts

Event-Triggered versus Time-Triggered

A trigger is an event that initiates some action like the execution of a task or
the transmission of a message [Kop93a]. The services delivered by a real-time
computer system can be triggered in two distinct ways:

Event-triggered systems: In an event-triggered system all activities are ini-
tiated by the occurrence of events either in the environment or in the
real-time computer itself.

Time-triggered systems: A time-triggered system derives all the activation
points from the progression of physical time.

In [Kop93a], Kopetz compares the time-triggered and the event-triggered
approach with respect to the temporal properties and issues of predictability,
testability, resource utilization, extensibility, and assumption coverage. Time-
triggered systems require an increased effort in the design phase of the system,
but provide an easier verification of the temporal correctness. In event-triggered
systems, it is generally difficult to make predictions about the system behavior
in peak load scenarios.

In this thesis, we have chosen to use an architecture that follows the time-
triggered paradigm. Chapter 4 presents a time-triggered architecture for sensor
fusion applications.

Guaranteed Response versus Best Effort

In a hard real-time system, each real-time task must be completed within a
prespecified period of time after being requested. If any task fails to complete
in time, the entire system fails. In order to validate a hard-real time system,
it is required to ensure that all response times will always be met. Depending
on the fact if such a promise can be made, systems can be distinguished into:

Systems with guaranteed response are validated to hold their specified
timing even in case of peak load and fault scenarios. Guaranteed response
systems require careful planning and extensive analysis during the design
phase [Kop97a].

Systems with best-effort design do not require a rigorous specification of
load and fault scenarios. It is though very difficult to establish that such
a system operates correctly in rare event scenarios [Kop97a].

In contrast to the distinction between hard and soft real-time systems, the
difference between guaranteed response and best-effort systems is a property
of the real-time computer system and not the real-time application.

20

2 Basic Terms and Concepts 2.2 Real-Time Systems

2.2.2 Model of Time

For most real time applications it is sufficient to model time according to Newto-
nian physics [Kop02]. Hence, time progresses along a dense timeline, consisting
of an infinite set of instants from past to future. An event is the observation
of a state made at a particular instant. The difference between two instants is
considered as a duration or an interval.

Clock synchronization is concerned with bringing the time of clocks in a
distributed network into close relation with respect to each other. A measure
for the quality of clock synchronization are precision and accuracy. Precision is
defined as the maximum offset between any two clocks in the network during
an interval of interest. Accuracy is defined as the maximum offset between any
clock and an absolute reference time.

The finite precision of the global time and the digitalization error make
it impossible to guarantee that two observations of the same event will yield
the same timestamp. Kopetz [Kop92] provided a solution to this problem by
introducing the concept of a sparse timebase. In this model the timeline is
partitioned into an infinite sequence of alternating intervals of activity and si-
lence. The architecture must ensure that significant events, such as the sending
of a message or the observation of an event, occur only during an interval of
activity. Events occurring during the same segment of activity are considered
to have happened at the same time. If certain assumptions about the clock
synchronization hold, events that are separated by at least one segment of si-
lence can be consistently assigned to different timestamps for all clocks in the
system.

While it is possible to restrict all event occurrences within the sphere of
control of the real-time computer system to these activity intervals, this is not
possible for events happening in the environment, as for example, perceived by
a sensor. Such events always happen on a dense timebase and must be assigned
to an interval of activity by an agreement protocol in order to get a system-wide
consistent perception of when an event happened in the environment [Kop02].

2.2.3 Real-Time Entities and Real-Time Images

The dynamics of a real-time application are modelled by a set of relevant state
variables, the real-time entities that change their state as time progresses. Ex-
amples of real-time entities are the flow of a liquid in a pipe, the setpoint of
a control loop or the intended position of a control valve. A real-time entity
has static attributes that do not change during the lifetime of the real-time
entity, and dynamic attributes that change with time. Examples of static at-
tributes are the name, the type, the value domain, and the maximum rate of

21

2.3 Dependability 2 Basic Terms and Concepts

change. The value set at a particular instant is the most important dynamic
attribute. Another example of a dynamic attribute is the rate of change at
a chosen instant. The information about the state of a real-time entity at a
particular instant is captured by the notion of an observation. An observation
is an atomic data structure

Observation = < Name, tobs,Value >

consisting of the name of the real-time entity, the instant when the observation
was made (tobs), and the observed value of the real-time entity. A real-time
image is a temporally accurate picture of a real-time entity at instant t, if the
duration between the time of observation and the instant t is less than the
accuracy interval dacc, which is an application specific parameter associated
with the given real-time entity. A real-time image is thus valid at a given
instant if it is an accurate representation of the corresponding real-time entity,
both in the value and the time domain. While an observation records a fact
that remains valid forever (a statement about a real-time entity that has been
observed at an instant), the validity of a real-time image is time-dependent and
is invalidated by the progression of real-time.

2.3 Dependability

Dependability of a computer system is defined as the trustworthiness and conti-
nuity of computer system service such that reliance can justifiably be placed on
this service [Car82, page 41]. The service delivered by a system is its behavior
as it is perceived by another system (human or physical) that interacts with
the former [Lap92].

According to Laprie, dependability can be seen from different viewpoints:
attributes, means, and impairments. Figure 2.5 depicts this dependability tree,
which is described by the following sections.

2.3.1 Attributes of Dependability

Dependability can be described by the following five attributes:

Availability is dependability with respect to the readiness for usage. The
availability A(t) of a system is defined by the probability that the system
is operational at a given point in time t.

Reliability is dependability with respect to the continuity of service. The re-
liability R(t) of a system is the probability that the system is operational
during a given interval of time [0, t).

22

2 Basic Terms and Concepts 2.3 Dependability

Dependability

Impairments

Faults

Errors

Failures

Means

Procurement
Fault Prevention

Fault Tolerance

Validation
Fault Removal

Fault Forecasting

Attributes

Availability

Reliability

Safety

Maintainability

Security

Figure 2.5: Dependability tree

Safety is dependability with respect to the avoidance of catastrophic conse-
quences. The safety S(t) of a system is the probability that no critical
failure occurs in a given interval of time [0, t).

Maintainability is a measure of the time required to repair a system after
the occurrence of a benign failure. Kopetz [Kop97a] quantifies maintain-
ability with the probability M(d) that the system is restored within the
duration d after failure. There is a fundamental design conflict between
reliability and maintainability, since a maintainable design would imply
a system composed of small replaceable units connected by serviceable
interfaces. In contrast, serviceable interfaces, for example plug connec-
tions, have a significantly higher physical failure rate than non-serviceable
interfaces [Kop97a].

Security encompasses the attributes confidentiality and integrity. Confiden-
tiality is dependability with respect to the prevention of unauthorized
disclosure of information. Integrity is dependability with respect to the
prevention of unauthorized modifications of information. Security differs
from the other four attributes in the way that it is usually not possible
to quantify security.

23

2.3 Dependability 2 Basic Terms and Concepts

2.3.2 Means of Dependability

The means of dependability are subdivided into two groups:

Procurement are means for dependability aimed at the ability of a system
to provide a service complying to the system specification. There are two
means for dependability procurement, fault prevention and fault toler-
ance. Fault prevention aims at preventing the occurrence or introduction
of faults. Fault tolerance encompasses methods and techniques that en-
able the system to fulfill its specification despite the presence of faults.

Validation describes means for dependability for gaining confidence that the
system is able to deliver a service complying to the system specification.
These means include fault removal and fault forecasting. Fault removal
aims at reducing the presence, number, and seriousness of faults, while
fault forecasting is a mean to estimate the present number, the future
incidence, and the consequence of faults [Pal00].

2.3.3 Impairments of Dependability

In this context, impairments are undesired circumstances that affect the sys-
tem’s dependability. Laprie distinguishes three types of impairments: faults,
errors, and failures.

Faults are the causes of an error. A fault might also be the consequence
of the failure of another system interacting with the considered system.
Faults can be classified by fault nature (chance and intentional faults),
by perception (physical and design faults), by fault boundaries (internal
and external faults), by origin (origin in the development or faults related
to system operation), and the fault persistence (transient and permanent
faults).

Errors are unintended states of a computer system caused by a fault.
Kopetz [Kop97a] distinguishes transient errors that exist only for a short
interval of time and permanent errors, that remain in the system until the
system state is fixed by an explicit repair action. Thus, it depends on the
system properties like self-stabilization or automatic repair capabilities
whether an error is considered transient or permanent.

Failures denote the deviation between the actual and the specified behavior of
a system. The ways a system can behave in case of a failure are its failure
modes which can be characterized according to three viewpoints [Lap92]:

24

2 Basic Terms and Concepts 2.4 Distributed Fault-Tolerant Systems

Failure Domain: Laprie distinguishes value domain failures and time
domain failures [Lap92].

Failure Perception: When a system has several users, according to La-
prie [Lap92], one distinguishes between consistent failures, where all
system users have the same perception of a failure, and inconsis-
tent failures, where the system users have a different perception of
a failure. Inconsistent failures are also known as Byzantine failures.

Failure Severities: The failure severities regard the consequences of
failures (ranging from benign to catastrophic failures).

2.4 Distributed Fault-Tolerant Systems

Attiya and Welch define a distributed system as a collection of individual com-
puting devices that can communicate with each other [Att98, page 3]. The
fundamental properties of a distributed system are fault tolerance and the pos-
sibility of parallelism [Mul89]. In this thesis, we focus on the subject of fault
tolerance.

For most distributed systems it is unacceptable that a failure of a single node
implies the failure of the whole system. Therefore, fault tolerance and graceful
degradation are often desirable features of distributed systems [Ler96]. Fault
tolerance introduced by redundancy can be seen as a method of competitive
sensor fusion (see section 2.1.3).

The definition of a distributed system by Attiya and Welch also includes
centralized computer systems consisting of a mainboard with several com-
puter chips (processor, memory, I/O driver, ...) that are connected with each
other via circuit paths on the printed circuit board. However, in the context
of distributed fault-tolerant systems, we restrict the definition according to
Poledna [Pol94b], who states the following requirements for a system to be
called distributed:

Independent failures: If one of the nodes fails, the other nodes must remain
operational. Failures that are covered by the fault hypothesis must not
impact the system’s ability to provide its specified service [Pol94b].

Non-negligible message transmission delays: The message transmission
delay for communication among the nodes is not negligible in comparison
to the time between events happening at a single node [Lam78].

Unreliable communication: The connections between the individual nodes
are unreliable in comparison to communication between tasks within a
node [Pol94b].

25

2.4 Distributed Fault-Tolerant Systems 2 Basic Terms and Concepts

In the following, the terms and methods of fault tolerance that are relevant
for this thesis are introduced. The selection of a fault tolerance method depends
mainly on the specified type and likelihood of faults. Therefore, we list a
taxonomy of failure modes and present methods for fault tolerance based on
redundancy.

2.4.1 Fault Modelling

The assumptions taken on the failure modes and likelihood of faults for a system
are expressed in the fault hypothesis.

The components of a distributed system can fail in different failure modes.
A failure mode is the behavior in response to a fault or error, as perceived by
the user. Poledna lists some common failure modes ordered by their severe-
ness [Pol94b]:

Byzantine or arbitrary failures: There is no restriction on the effects of
failures in case of Byzantine [Lam82b] or arbitrary failures. This failure
mode is also referred to as malicious or fail-uncontrolled. This failure
mode includes “two-faced” behavior, i. e., the output of a failed node
may be perceived inconsistently by other nodes, even if they are operating
correctly.

Authentification detectable byzantine failures: A node may show by-
zantine behavior, but is not able to forge messages of other components.
That means, a component cannot lie about facts sent to it by another
node [Dol83]. The output of a failed node may be perceived inconsistently
by other non-failed systems.

Performance failures: Nodes always deliver correct results in the value do-
main, but regarding the time domain, they may deliver results late or
early [Pow92].

Omission failures: A special case of performance failures are omission fail-
ures, where no service is delivered. In [Ezh86], an omission is defined
either as a message being infinitely late or as a “null-value” sent at the
right time. However, if communication bandwidth can also be used by
other partners in case of an omission, only the definition of infinitely late
timing would be appropriate [Pow92].

Crash failures: A crash failure is a persistent omission failure. Thus, no out-
put is produced at any time after a failure [Bra96]. A system whose com-
ponents have crash failure semantics is considered fail-silent [Lam82a].

26

2 Basic Terms and Concepts 2.4 Distributed Fault-Tolerant Systems

Fail-stop failures: A node shows fail-stop behavior, if it does not produce
any further results at any time after a failure. The other nodes in the
network are able to detect consistently that the respective system has
stopped [Sch84]. A system is considered a fail-stop system, if its failures
can only be stopping failures.

Additionally, failure modes can be characterized by the viewpoint of the
failure domain [Lap92]:

Value Failure: The value of a delivered service does not comply with its spec-
ification.

Timing Failure: The timing of a delivered service does not comply with its
specification.

The combination of value and timing failure leads to a so-called babbling
idiot failures – where nodes send arbitrary messages at arbitrary points in
time [Tem98].

The above classifications are used to classify the failure behavior of systems,
the so-called failure semantics. A system exhibits a given failure semantic if
the probability of failure modes, which are not covered by the failure semantics,
is sufficiently low [Pol94b].

The assumption coverage defines the probability that the possible failure
modes defined by the failure semantics prove to be true in practise conditions,
given the fact the system has failed [Pow92]. The assumption coverage is a
critical parameter for the design of a fault-tolerant system, since a too restric-
tive fault model might lead to bad assumption coverage and, thus, a failure
outside the failure semantics probably might lead to a total system breakdown.
On the other hand, if the assumptions about failure modes are too relaxed, the
system design becomes complicated, since severe failures have to be considered.
Thus, an application specific compromise between complexity and assumption
coverage has to be made [Pol94b].

2.4.2 Fault Tolerance through Redundancy

As a matter of fact, every single computer system will eventually fail. Require-
ments for highly dependable systems can only be met, if faults are taken into
account. In order to tolerate faults in a distributed system, the following two
design approaches can be identified [Bau01]:

27

2.4 Distributed Fault-Tolerant Systems 2 Basic Terms and Concepts

Hardware redundancy: The system contains redundant hardware compo-
nents. For example, the system could provide several hardware units
that offer the same service, thus allowing the provision of a service de-
spite faults.

Software recovery: The program is designed to be able to detect and re-
cover from faults. Compared to the hardware redundancy approach this
approach does not need extra hardware, but the time for recovery has to
be taken into account.

Thus, all techniques for achieving fault tolerance depend upon the applica-
tion of some kind of redundancy either in space, i. e., extra hardware units are
present that are not necessary to fulfill the specified service in the non-error-
case, or in time, i. e., a computation is performed several times [Bau01].

In [Lee90], Lee and Anderson further describe a distinction of static (or
masking) redundancy and dynamic redundancy. For static redundancy, redun-
dant components are used within a system so that the effects of a component
failure are not perceived by the user. Thus, static redundancy does not need
explicit failure detection. Dynamic redundancy affords failure detection and a
reconfiguration of the system in order to remove the failed components and re-
place them with redundant error-free ones. Examples for static redundancy are
N-modular redundancy [Nel90] or forward error correcting codes. In contrast,
a parity bit or the spare tire of a car relate to dynamic redundancy.

However, these two types of redundancy are not always distinguishable in
redundant sensor fusion systems. Many applications do not completely mask
a component’s failure, but continue to provide some kind of degraded ser-
vice. For example, consider a sensor system with two sensors, each with a
non-negligible setup time. Both sensors are configured to measure the same
property, but they will be synchronized to alternately measure the property in
order to improve temporal coverage. If one sensor fails and stops to deliver
further output, the system still provides a service, however only at half speed.
This behavior, also known as graceful degradation, is often intrinsic to sensor
fusion systems [Cha93].

2.4.3 Transparency, Layering, and Abstraction

Transparency aims at the concealment of the separation of components in a
distributed system from its user. Hence, the user perceives the system as a
whole, rather than as a collection of independent components.

In fault-tolerant systems, transparency can be a very useful concept. For
example, consider a set of identical nodes, providing redundant services. If

28

2 Basic Terms and Concepts 2.5 Smart Transducer Networks

one of the nodes fails, one of the correctly operating nodes can take over,
thus providing a continuous service. An system based on this service could
be designed following two approaches: either in providing all redundant values
to the control application, or in applying an intermediate layer that filters one
correct result out of the redundant values and provides this value to the control
application. Thus, in the second approach, node failures or changes in the node
configuration are transparent to the control application.

Thus, in our context, transparency is closely related to layering. Layering is
the organization of a system into separate functional components that interact
in some sequential and hierarchical way, with each layer usually having an
interface only to the layer above it and the layer below it.

However, true transparency is not always desirable in a distributed system
and should be replaced by respective abstractions [Bau01, Lea99]. Whereas
with transparency, one does not deal with details, with abstraction, one does not
need to deal with details.3 Thus, abstraction still allows a view on the subjacent
structures of a system, e. g., for diagnostic and maintenance purposes.

2.5 Smart Transducer Networks

With the advent of cheap and small embedded microcontrollers, it became pos-
sible to build a distributed system out of a set of sensors, actuators, and control
nodes, each equipped with a microcontroller unit and a network interface.

2.5.1 Sensors and Actuators

A sensor is a device that perceives a physical property (such as heat, light,
sound, pressure, magnetism, or motion) and transmits the result into a mea-
surement that can be interpreted by the computer system. Thus, a sensor
maps the value of some environmental attribute to a quantitative measure-
ment [Bro98]. An actuator is a device for moving or controlling some environ-
mental attribute. Since sensors and actuators are both located at the same
level of abstraction (at the instrumentation interface, see figure 2.4), they are
often subsumed by the term transducer.

In 1982, Ko and Fung introduced the term “intelligent transducer” [Ko82].
An intelligent or smart transducer is the integration of an analog or digital
sensor or actuator element, a processing unit, and a communication interface.
In case of a sensor, the smart transducer transforms the raw sensor signal to a

3Pun by Doug Lea, found in [Gue02].

29

2.5 Smart Transducer Networks 2 Basic Terms and Concepts

standardized digital representation, checks and calibrates the signal, and trans-
mits this digital signal to its users via a standardized communication proto-
col [Kop01b]. In case of an actuator, the smart transducer accepts standardized
commands and transforms these into control signals. In many cases, the smart
transducer is able to locally verify the control action and provide a feedback at
the transducer interface.

Smart transducer technology supports the development of transducer net-
works, that allow monitoring, plug-and-play configuration, and the commu-
nication of digitized transducer data over the same bus line. Such a smart
transducer network provides a framework that helps to reduce the complexity
and cost of large distributed real-time systems.

2.5.2 Microcontrollers for Embedded Systems

An embedded system is a computer system that is designed to perform a ded-
icated or narrow range of functions as part of a larger system, usually with
minimal end-user or operator intervention [Mar97a].

Typically, an embedded system consists of a single microprocessor board
with the programs stored in the ROM. Since the limiting factors of embedded
systems are often size, cost, and power consumption, many vendors offer em-
bedded microcontrollers which contain a processor, I/O circuitry, RAM and
flashable ROM memory, and a network controller in a single unit.

Embedded programmable microcontrollers range from 8-bit microcon-
trollers to 32-bit digital signal processors (DSPs) and 64-bit processors with
RISC (Reduced Instruction Set Computer) architecture. They are used
for consumer-electronics devices, kitchen appliances, automobiles, networking
equipment, and industrial control systems [Mar97a]. Generally, embedded mi-
crocontrollers provide very little resources. Algorithms, e. g., for sensor fusion,
often have to be tailored to the available resources of an embedded microcon-
troller. Especially low-cost microcontrollers featuring small amounts of pro-
gram and working memory have been programmed in Assembler and C rather
than in C++ or Java. Since embedded systems encompass a wide range of
requirements for each problem, there exists no single language for embedded
systems programming [Edw00].

2.5.3 Smart Transducer Interfaces

The design of the network interface for a smart transducer is of great impor-
tance. Transducers come in a great variety with different capabilities from
different vendors. Thus, a smart transducer interface must be very generic to

30

2 Basic Terms and Concepts 2.5 Smart Transducer Networks

support all present and future types of transducers. However, it must provide
some standard functionalities to transmit data in a temporally deterministic
manner, support a standard data format, encompass means for fault tolerance,
and provide means for smooth integration into a transducer network and its
application.

A smart transducer interface should conform to a world-wide standard.
Such a standard for a real-time communication network has been sought for
a long time, but efforts to find a single agreed standard have been hampered
by vendors, which were reluctant to support such a single common standard
in fear of losing some of their competitive advantages [Pin95]. Hence, sev-
eral different fieldbus solutions have been developed and promoted. Some of
these existing solutions have been combined and standardized. In 1994, the
two large fieldbus groups ISP (Interoperable Systems Project supported by
Fisher-Rosemount, Siemens, Yokogawa, and others) and the WorldFIP (Flux
Information Processus or Factory Instrumentation Protocol, supported by Hon-
eywell, Bailey, and others) joined to form the Fieldbus Foundation (FF). It is
the stated objective of the FF to develop a single interoperable fieldbus stan-
dard in cooperation with the International Electrotechnical Commission (IEC)
and the Instrumentation Society of America (ISA).

The IEC worked out the IEC 61158 standard. It is based on eight existing
fieldbus solutions. However, the IEC fieldbus draft standard was not ratified at
the final approval vote, following a set of controversies [Nou99]. The IEC 61158
has the great disadvantage that it still keeps a diversity of eight different so-
lutions. The ISA, which developed the SP50 standard, and IEC committees
jointly met to make the development of an international standard possible. ISA
SP50 was the same committee that introduced the 4-20 mA standard back in
the 1970s. Meanwhile, other standards for smart transducers were developed.
The IEEE 1451.2 standard [Con00] deals with the specification of interfaces for
smart transducers. An idea proposed by this standard is the specification of
electronic data sheets to describe the hardware interface and communication
protocols of the smart transducer interface model [Ecc98].

In December 2000 the Object Management Group (OMG) called for a pro-
posal of a smart transducer interface (STI) [OMG00]. In response, a new
standard has been proposed that comprises a time-triggered transport service
within the distributed smart transducer subsystem and a well-defined interface
to a CORBA (Common Object Request Broker Architecture) environment.
The key feature of the STI is the concept of an Interface File System (IFS)
that contains all relevant transducer data. This IFS allows different views of a
system, namely a real-time service view, a diagnostic and management view,
and a configuration and planning view. The interface concept encompasses a
communication model for transparent time-triggered communication. This STI

31

2.6 Chapter Summary 2 Basic Terms and Concepts

standard [OMG02] has been adopted by the OMG in January 2002.

2.6 Chapter Summary

Sensor fusion is the combination of sensory data or data derived from sensory
data in order to produce enhanced data in form of an internal representation
of the process environment. The advantages of sensor fusion are robustness,
extended spatial and temporal coverage, increased confidence, reduced ambigu-
ity and uncertainty, robustness against interference, and improved resolution.
Generally, sensor fusion can be classified into low-level, intermediate-level, and
high-level fusion. Depending on the sensor configuration, sensor fusion can
be performed complementary, competitive, or cooperative. Complementary
fusion provides a spatially or temporally extended view of the environment.
Competitive fusion provides robustness to a system by combining redundant
information. Cooperative fusion provides an emerging view of the environment
by combining non-redundant information, however the result generally is sensi-
tive to inaccuracies in all participating sensors. This thesis focuses on real-time
embedded fusion systems which are usually covered by low-level sensor fusion.

A real-time system contains a real-time computer system, a process environ-
ment, and an operator. The real-time computer system must react to stimuli
from the controlled object or the operator before given deadlines. This thesis
focuses on hard real-time systems, which are characterized by the fact that se-
vere consequences can result if a deadline is missed. Another desired property
of a system is dependability, i. e., the property of a computer system such that
reliance can justifiably be placed on the service it delivers. Dependability is an
overall term that includes availability, reliability, safety, maintainability, and
security. A way for achieving dependability is the design of a fault-tolerant
distributed system containing redundant processing components. The design
of distributed sensor systems is supported by the concept of a smart trans-
ducer. A smart transducer allows uniform access to the transducer data via a
standardized interface.

32

Chapter 3

Sensor Fusion Architectures and
Applications

“When you use information from one source, it’s plagiarism;
When you use information from many, it’s information fusion.”

Belur V. Dasarathy

This chapter provides a survey of sensor fusion architectures, methods, and
applications related to the subject of this thesis. The section on architectures
presents various models that have been used for designing fusion systems. The
section on methods and applications focuses on filtering, Bayesian reasoning,
map building for mobile robots, and abstract sensors.

3.1 Architectures for Sensor Fusion

Due to the fact that sensor fusion models heavily depend on the application, no
generally accepted model of sensor fusion exists until today [Bed99]. According
to Kam, Zhu, and Kalata, it is unlikely that one technique or one architecture
will provide a uniformly superior solution [Kam97]. In this survey, we focus on
architectures which have been known for a relatively long period of time.

3.1.1 The JDL Fusion Architecture

A frequently referred fusion model originates from the US Joint Directors of
Laboratories (JDL). It was proposed in 1985 under the guidance of the Depart-
ment of Defense (DoD). The JDL model [Wal90] comprises five levels of data
processing and a database, which are all interconnected by a bus. The five

33

3.1 Architectures for Sensor Fusion 3 Architectures and Applications

Data Fusion Domain

Sources
 Man-Machine

Interaction

Database Management System

Level 4

Process

Refinement

Level 1

Object

Refinement

Level 2

Situation

Refinement

Level 3

Threat

Refinement

Level
 0

Source

Pre-Processing

Figure 3.1: JDL fusion model (from [Lli98])

levels are not meant to be processed in a strict order and can also be executed
concurrently. Figure 3.1 depicts the top level of the JDL data fusion process
model. The elements of the model are described in the following:

Sources: The sources provide information from a variety of data sources, like
sensors, a priori information, databases, human input.

Source preprocessing (Level 0): The task of this element is to reduce the
processing load of the fusion processes by prescreening and allocating data
to appropriate processes. Source preprocessing has later been labelled
level 0 [Bed99].

Object refinement (Level 1): This level performs data alignment (transfor-
mation of data to a consistent reference frame and units), association (us-
ing correlation methods), tracking actual and future positions of objects,
and identification using classification methods.

Situation refinement (Level 2): The situation refinement attempts to find
a contextual description of the relationship between objects and observed
events.

Threat refinement (Level 3): Based on a priori knowledge and predictions
about the future situation this processing level tries to draw inferences
about vulnerabilities and opportunities for operation.

Process refinement (Level 4): Level 4 is a meta process that monitors sys-
tem performance (e. g., real-time constraints) and reallocates sensor and
sources to achieve particular mission goals.

34

3 Architectures and Applications 3.1 Architectures for Sensor Fusion

Database management system: The task of the database management sys-
tem is to monitor, evaluate, add, update, and provide information for the
fusion processes.

Man-machine interaction: This part provides an interface for human input
and communication of fusion results to operators and users.

The JDL model has been very popular for fusion systems. Despite its origin
in the military domain it can be applied to both military and commercial
applications. The JDL model also has categorized processes related to a fusion
system. However, the model suffers from the following drawbacks:

• It is a data-centered or information-centered model, which makes it dif-
ficult to extend or reuse applications built with this model.

• The model is very abstract, which makes it difficult to properly interpret
its parts and to appropriately apply it to specific problems.

• The model is helpful for common understanding, but does not guide a
developer in identifying the methods that should be used [Lli98] – thus,
the model does not help in developing an architecture for a real system.

The basic JDL model has also been improved and extended for various
applications. Waltz showed, that the model does not address multi-image fu-
sion problems and presented an extension that includes the fusion of image
data [Wal95]. Steinberg, Bowman, and White proposed revisions and expan-
sions of the JDL model involving broadening the functional model, relating
the taxonomy to fields beyond the original military focus, and integrating a
data fusion tree architecture model for system description, design, and devel-
opment [Ste99].

3.1.2 Waterfall Fusion Process Model

The waterfall model, proposed in [Mar97b], emphasizes on the processing func-
tions on the lower levels. Figure 3.2 depicts the processing stages of the wa-
terfall model. The stages relate to the levels 0, 1, 2, and 3 of the JDL model
as follows: Sensing and signal processing correspond to source preprocessing
(level 0), feature extraction and pattern processing match object refinement
(level 1), situation assessment is similar to situation refinement (level 2), and
decision making corresponds to threat refinement (level 3).

Being thus very similar to the JDL model, the waterfall model suffers from
the same drawbacks. While being more exact in analyzing the fusion process

35

3.1 Architectures for Sensor Fusion 3 Architectures and Applications

 Signal Processing

Sensing

 Feature Extraction

 Pattern Processing

 Situation Assessment

Decision Making

Figure 3.2: The waterfall fusion process model (from [Mar97b])

than other models, the major limitation of the waterfall model is the omission
of any feedback data flow. The waterfall model has been used in the defense
data fusion community in Great Britain, but has not been significantly adopted
elsewhere [Bed99].

3.1.3 Boyd Model

Boyd has proposed a cycle containing four stages [Boy87]. This Boyd control cy-
cle or OODA loop (depicted in figure 3.3) represents the classic decision-support
mechanism in military information operations. Because decision-support sys-
tems for situational awareness are tightly coupled with fusion systems [Bas00],
the Boyd loop has also been used for sensor fusion.

Bedworth and O’Brien compared the stages of the Boyd loop to the
JDL [Bed99]:

Observe: This stage is broadly comparable to source preprocessing in the JDL
model.

Orientate: This stage corresponds to functions of the levels 1, 2, and 3 of the
JDL model.

Decide: This stage is comparable to level 4 of the JDL model (Process refine-
ment).

36

3 Architectures and Applications 3.1 Architectures for Sensor Fusion

Decide

Orientate

Observe

Act

Figure 3.3: The Boyd (or OODA) loop

Act: Since the JDL model does not close the loop by taking the actuating
part of the interaction into account, this stage has no direct counterpart
in the JDL model.

The Boyd model represents the stages of a closed control system and gives an
overview on the overall task of a system, but the model lacks of an appropriate
structure for identifying and separating different sensor fusion tasks.

3.1.4 The LAAS Architecture

The LAAS (Laboratoire d’Analyse et d’Architecture des Systèmes) architec-
ture [Ala98] was developed as an integrated architecture for the design and
implementation of mobile robots with respect to real-time and code reuse. Due
to the fact that mobile robot systems often employ sensor fusion methods, we
briefly discuss the elements of the LAAS architecture (depicted in figure 3.4).

The architecture consists of the following levels [Ala98]:

Logical robot level: The task of the logical robot level is to establish a hard-
ware independent interface between the physical sensors and actuators
and the functional level.

Functional level: The functional level includes all the basic built-in robot
action and perception capabilities. The processing functions, such as
image processing, obstacle avoidance, and control loops, are encapsulated
into separate controllable communicating modules.

37

3.1 Architectures for Sensor Fusion 3 Architectures and Applications

Figure 3.4: LAAS Architecture (from [Ala98])

Execution control level: The execution control level controls and coordi-
nates the execution of the functions provided by the modules according
to the task requirements.

Decision level: The decision level includes the capabilities of producing the
task plan and supervising its execution while being at the same time
reactive to other events from the execution control level. Depending on
the application, the decision level can be composed of several layers that
provide different representation abstractions and have different temporal
properties.

The LAAS architecture maps low-level and intermediate-level sensor fusion
to modules at the functional level. High-level sensor fusion is represented in
the decision level. The timing requirements are different at the decision level

38

3 Architectures and Applications 3.1 Architectures for Sensor Fusion

and the functional level (confer to section 2.1.3 on the difference between C3I
and real-time applications). While the architecture provides a good means for
the partitioning of large systems into modules, it does not provide an appropri-
ate real-time communication and representation of the fused data at the levels
above the functional level. In contrast to the JDL model, the LAAS archi-
tecture guides a designer well in implementing reusable modules as part of a
real-time application.

3.1.5 The Omnibus Model

The omnibus model [Bed99] has been presented in 1999 by Bedworth and
O’Brien. Figure 3.5 depicts the architecture of the omnibus model. Unlike the
JDL model, the omnibus model defines the ordering of processes and makes
the cyclic nature explicit. It uses a general terminology that does not assume
that the applications are defense-oriented. The model shows a cyclic structure
comparable to the Boyd loop, but provides a much more fine-grained structur-
ing of the processing levels. The model is intended to be used multiple times
in the same application recursively at two different levels of abstraction. First,
the model is used to characterize and structure the overall system. Second, the
same structures are used to model the single subtasks of the system.

Although the hierarchical separation of the sensor fusion tasks is very so-

Decision making

Context processing

Control

Resource tasking

Signal processing

Sensing

Pattern processing

Feature extraction

Soft decision

fusion

Hard decision

fusion

Sensor

management

Sensor data

fusion

Decide

Observe

O
rie

nt
at

e

A
ct

Figure 3.5: The omnibus model (from [Bed99])

39

3.2 Methods and Applications 3 Architectures and Applications

phisticated in the omnibus model, it does not support a horizontal partitioning
into tasks that reflect distributed sensing and data processing. Thus, the model
does not support a decomposition into modules that can be separately imple-
mented, separately tested, and reused for different applications.

3.2 Methods and Applications

This section investigates on sensor fusion methods and applications that are
related to this thesis.

3.2.1 Smoothing, Filtering, and Prediction

Generally, the task of a sensor is to provide information about a process variable
in the environment by taking measurements. Since these measurements can be
noisy and are – at least in digital systems – taken at discrete points in time,
it is necessary to fuse multiple measurements to reconstruct the parameter of
interest.

Given an observation vector ~yk corresponding to time k, we want to esti-
mate a process state vector ~xk+m. Depending on the time k + m, Åström and
Wittenmark distinguish the following three cases [Åst84]:

Smoothing (m < 0): The change of a process entity shall be reconstructed
after a series of measurements has been performed. For each instant
of interest, several measurements from previous, actual, and following
instants are used in order to estimate the value of the process variable.
While the measurements have to be recorded in real time, the smoothing
algorithm can be performed offline.

Filtering (m = 0): The actual state of a process entity shall be estimated
by using an actual measurement and information gained from previous
measurements. Usually, filtering is performed in real time.

Prediction (m > 0): The actual state of a process entity shall be estimated
by using a history of previous measurements. The prediction problem
requires an adequate system model in order to produce a meaningful
estimation. Typically, prediction is performed in real time.

Figure 3.6 illustrates the different cases. Many filtering algorithms cover all
three aspects. Filtering and prediction are fundamental elements of any track-
ing system. They are used to estimate present and future kinematic quantities
such as position, velocity, and acceleration [Sar91].

40

3 Architectures and Applications 3.2 Methods and Applications

k

k
-1

Signal

Estimate

t

t

(a)

k

Signal

Estimate

k

t

t

(b)

Signal

Estimate

k

k
+1

t

t

(c)

Figure 3.6: Smoothing (a), filtering (b), and prediction (c)

3.2.2 Kalman Filtering

The stochastic Kalman Filter uses a mathematical model for filtering signals
using measurements with a respectable amount of statistical and systematical
errors. The method was developed by Kalman and Bucy in 1960 [Kal60, Kal61].

Generally, a Kalman Filter fuses data measured in successive time intervals
providing a maximum likelihood estimate of a parameter. It is also possible to
relate inputs from multiple sensors to a vector of internal states containing the
parameters of interest as long as there are only linear dependencies between
inputs and system states [Tar99].

The filter uses a discrete-time algorithm to remove noise from sensor signals
in order to produce fused data that, for example, estimate the smoothed values
of position, velocity, and acceleration at a series of points in a trajectory.

The standard Kalman Filter model is described by two linear equations.
The first equation describes the dynamics of the system:

~xk+1 = A · ~xk + B · ~uk + w (3.1)

where ~xk is a vector that contains the system state at time k, A is the non-
singular state transition matrix. Vector ~uk describes the input to the system at
time k. The relation between the input vector ~uk and the system state vector
~xk+1 is defined by matrix B. w is a random variable that stands for the system
noise, modelled as white noise ∼ N(0, Q), where Q is the covariance matrix.

41

3.2 Methods and Applications 3 Architectures and Applications

The second linear equation describes the noisy observations of the system:

~yk = C · ~xk + v (3.2)

where each element of vector ~yk contains a sensor observation at time k, the
matrix C relates the measurements to the internal state, and v is the mea-
surement noise, also modelled as white noise ∼ N(0, R) with the covariance
matrix R.

The model described by equations 3.1 and 3.2 represents a very general
model. For example, if one uses the identity matrix as state transition matrix
(A ≡ I) and sets the input to zero (~u ≡ ~0), the model describes the standard
sensor fusion case, where some internal state of a system can be reconstructed
using subsequent more or less distorted measurements [Hyö97]. Another spe-
cial case is given if the desired states can be measured directly. Hence, C is
equivalent to the identity matrix or a permutation matrix.

The Kalman Filter is applied by doing the following steps: First an a priori
estimator ~̂xk+1|k of the system state ~x for time k+1 is computed using the best
system estimation at time k (equation 3.1):

~̂xk+1|k = A · ~̂xk|k + B · ~uk (3.3)

Then we compute the predicted error covariance matrix P for instant k +1:

Pk+1|k = A · Pk|k · AT + Q (3.4)

and the Kalman gain matrix K:

Kk+1 =
Pk+1|k · CT

C · Pk+1|k · CT + R
(3.5)

Now the estimator ~̂x can be updated by a new process observation ~yk+1:

~̂xk+1|k+1 = ~̂xk+1|k + Kk+1 · (~yk+1 − C · ~̂xk+1|k) (3.6)

and the new error covariance matrix Pk+1|k+1 is derived by

Pk+1|k+1 = (I−Kk+1 · C)Pk+1|k(I−Kk+1 · C)T + Kk+1 · R ·KT
k+1 (3.7)

where I is the identity matrix. After calculation of equation 3.7 the iteration
restarts with equation 3.3 and k := k + 1.

42

3 Architectures and Applications 3.2 Methods and Applications

For start-up initialization of the Kalman Filter, one has to provide an es-
timate ~̂x0 and an estimate of its covariance P0|0. P0|0 can be initialized with
an estimated inaccurate start value, since the subsequent application of the
Kalman Filter will let P approach its exact value.

Since each iteration has approximately the same effort, the Kalman Fil-
ter is well-suited for real-time applications. The first field of application was
aerospace engineering. It was used, for example, in the Ranger, Mariner, and
Apollo missions of the 1960s. Today, Honeywell’s fault-tolerant gyro system
on the Boeing 777 uses a Kalman Filter [Cip93]. Kalman Filters have often
been used in the field of robotics. For instance, Wen and Durrant-Whyte ap-
plied a Kalman Filter for a robot arm that uses sonar and infrared sensors
to locate a specific object [Wen92]. In mobile robotics, Kalman Filters are
used for correction of localizations based on two or more different types of in-
put [Chu01, Tar99, Fab00]. Furthermore, the Kalman Filter has been applied
in control theory and image processing.

Although the above described standard Kalman Filter performs well for
many applications, the standard Kalman Filter approach had to be extended
for several applications in order to achieve satisfying results [Wen00]. Following,
some extensions to the Kalman Filter are listed:

Non-linear systems: Linear modelling of the system is not always feasible.
Although in many cases, linear behavior around some operating point can
be assumed, there are still problems that cannot be described accurately
by a linear model. Therefore, the Extended Kalman Filter (EKF) has
been derived that uses non-linear stochastic difference equations for the
system model [Wel01]. However, while the standard Kalman Filter is op-
timal for linear systems, the solution provided by the EKF is only approx-
imate. A major shortcoming of the EKF is that the distributions of the
random variables are no longer normal after undergoing their nonlinear
transformations. Attacking this problem, Julier et al. published a vari-
ant of EKF that uses a different parametrization of mean and covariance
values that provides more accurate results than the original EKF [Jul95].

Estimating system parameters: The statistical parameters are not always
known a priori or constant over time. Hence, in this case a sophisticated
version of the Kalman Filter also has to estimate the statistical param-
eters. Åström and Wittenmark describe an approach with time-varying
matrices in [Åst84].

Alternatives to least mean square optimization: The Kalman Filter ap-
proach minimizes the error using a least mean square approach. De-
pending on the application, other criteria, such as the H∞ norm [Sha92],
perform better.

43

3.2 Methods and Applications 3 Architectures and Applications

Reducing computational load: With respect to an implementation in em-
bedded microcontrollers, the computational effort is of great interest.
Kalman filtering requires matrix multiplication and matrix inversion. If
there are no dedicated vector processing units available on the micropro-
cessor, it is important to find efficient implementations in order to achieve
adequate performance and timely results. Gan and Harris showed that
in a multi-sensor environment with identical measurement matrices the
measurements can be handled separately in order to get computations
of lower complexity [Gan01]. In case of differing measurement matrices,
using a merged input vector containing the information of all sensors is
preferable. Generally, large systems can be modelled with the informa-
tion form of the Kalman Filter. This variant is functionally identical, but
has computational advantages for high-dimensional data [Gan01].

3.2.3 Inference Methods

Merriam Webster’s college dictionary defines inference as the act of passing
from one proposition, statement, or judgment considered as true to another
whose truth is believed to follow from that of the former. Inference methods are
used for decision fusion, i. e., to take a decision based on given knowledge. A
possible application could be the decision if the road in front of a car is blocked
or free, given measurements of multiple sensors.

Classical inference methods perform tests on an assumed hypothesis versus
an alternative hypothesis. As a test of significance, it yields the probability that
the actually observed data would be present, if the chosen hypothesis were true.
However, classical inference does not support the usage of a priori information
about the likelihood of a proposed hypothesis [Hal92]. This a priori probability
is taken into account when using Bayesian inference, which is named after the
English clergyman Thomas Bayes. In a paper published after his death in the
Philosophical Transactions of the Royal Society of London [Bay63] Bayes stated
the rule known today as Bayes’ theorem:

P(H|E) =
P(E|H) P (H)

P(E)
(3.8)

Bayes’ theorem quantifies the probability of hypothesis H, given that an
event E has occurred. P(H) is the a priori probability of hypothesis H, P(H|E)
states the a posteriori probability of hypothesis H. P(E|H) is the probability
that event E is observed given that H is true.

Given multiple hypotheses, Bayesian inference can be used for classification
problems. Then, Bayes’ rule produces a probability for each hypotheses Hi.

44

3 Architectures and Applications 3.2 Methods and Applications

Each Hi corresponds to a particular class:

P(Hi|E) =
P(E|Hi) P (Hi)

Σi P (E|Hi) P (Hi)
(3.9)

Examples for applications based on Bayesian inference can be found
in [DW90] for merging multiple sensor readings, in automatic classification
of sensor inputs (e. g., the computer program AUTOCLASS [Che96] developed
by the NASA), or in map building for mobile robots [Elf86].

However, when Bayesian inference is used for sensor fusion, certain draw-
backs can emerge [Bro98]: One problem is the required knowledge of the a pri-
ori probabilities P(E|Hi) and P(E), which may not always be available [Bla88].
Thus, it is often necessary to make subjective judgements on some of the proba-
bilities. Although it is possible to use subjective probabilities [Hal92], Bayesian
inference requires that all probabilities are at the same level of abstraction. An-
other problem arrives when different sensors return conflicting data about the
environment [Bog87].

Therefore, Dempster developed the mathematical foundations for a gen-
eralization of Bayesian theory of subjective probability [Dem67]. The result
was Dempster’s rule of combination, which operates on belief or mass func-
tions like Bayes’ rule does on probabilities. Shafer, a student of Dempster,
extended Dempster’s work and developed a Mathematical Theory of Evi-
dence [Sha76]. This theory can be applied for representation of incomplete
knowledge, belief updating, and for combination of evidence [Pro92]. The
choice between Bayesian and Dempster-Shafer inference methods for decision
algorithms is non-trivial and has been subject to heated debates over the last
several years [Bue88, Dau01].

3.2.4 Occupancy Maps

An occupancy map is a usually two-dimensional raster image uniformly dis-
tributed over the robot’s working space. Each map pixel contains a binary value
indicating whether the according space is free or occupied by an obstacle. There
are two main perceptual paradigms for occupancy map algorithms [Hoo00]:

Image → objects: In the image → objects perceptual paradigm, a predefined
empty area is assumed in which the observation of objects by the sensors
populate the occupancy map [And92]. Object tracking algorithms, for
example triangulation [Rao93], are used to obtain the positions of the
objects.

45

3.2 Methods and Applications 3 Architectures and Applications

Image → free space: In the image → free space perceptual paradigm, one
assumes a predefined occupied area in which the observation of sensors
creates free space in the occupancy map. Hoover and Olsen presented
an application where a set of video cameras are used to detect free space
in the vicinity of a robot [Hoo00]. They use multiple viewing angles to
overcome the problem of occlusion and to increase performance. However,
their application depends on correct measurements from all sensors.

Although the first paradigm of object tracking is the more common ap-
proach, the image → free space approach has some advantages over the image
→ objects approach. Hoover lists reduced complexity, (no tracking is neces-
sary to create the map), robustness, and safety (a sensor breakdown causes a
loss of perception of the free space, not on the objects) as advantages [Hoo00].
However, the occupancy map approach, as described here, suffers from a ma-
jor problem regardless of the used perception paradigm: map pixels, for which
either none or multiple contradicting measurements are given, can be misinter-
preted since the pixels of an occupancy map cannot reflect uncertainty. This
problem can be overcome by extending an occupancy map with additional
information about the reliance of a pixel value – this approach is known as
certainty grid.

3.2.5 Certainty Grid

A certainty grid is a special form of an occupancy map. Likewise, it is a
multidimensional (typically two- or three-dimensional) representation of the
robot’s environment. The observed space is subdivided into square or cube
cells like in the occupancy map, but each cell now contains a value reflecting a
measure of probability that an object exists within the related cell [Yen98].

The information of a cell can be “free” if the corresponding space appears
to be void; or “occupied” if an object has been detected at that place. Cells
not reached by sensors are in an “uncertain” state. All values of the grid are
initially set to this uncertain state. Each sensor measurement creates either
free space or objects in the grid. Thus, the certainty grid approach is a hybrid
approach between the image → objects and the image → free space perceptual
paradigms of the occupancy grid. Basically, it is assumed that the certainty
grid application has no a priori knowledge on the geometry of its environment
and that objects in this environment are mostly static. The effect of occa-
sional sensor errors can be neglected, because they have little effect on the
grid [Mar96].

In general, sensor information is imperfect with respect to restricted tem-
poral and spatial coverage, limited precision, and possible sensor malfunctions

46

3 Architectures and Applications 3.2 Methods and Applications

or ambiguous measurements. To maximize the capabilities and performance
it is often necessary to use a variety of sensor devices that complement each
other. Mapping such sensor measurements into the grid is an estimation prob-
lem [Elf89].

Matthies and Elfes [Mat88] propose a uniform method for integrating vari-
ous sensor types. Each sensor is assigned a spatial interpretation model, which
is developed for each kind of sensor, that maps the sensor measurement into
corresponding cells. When sensor uncertainties are taken into account, we ar-
rive at a probabilistic sensor model.

The calculation of new grid values is usually done by Bayesian inference.
Suppose that two sensors S1 and S2 give two occupancy probability values for
a particular grid element cell. Using Bayes’ rule, the updated probability of
the cell being occupied by an obstacle can be calculated as:

P(cell.occ|S1, S2) =

P(S1|cell.occ, S2) P (cell.occ|S2)

P(S1|cell.occ, S2) P (cell.occ|S2) + P(S1|cell.emp, S2) P (cell.emp|S2)
(3.10)

where cell.occ and cell.emp are the probabilities of the cell being occupied or
empty, respectively. Conditional independence for the two sensors is defined in
the following relation:

P(S1|cell.occ, S2) = P(S1|cell.occ) (3.11)

Furthermore, we assume P(cell.occ) = 1−P(cell.emp). Assuming, that the
prior probability had been equal to 0.5 (maximum entropy assumption [Mos02]),
the fusion formula can be expressed by:

P(cell.occ|S1, S2) =

P(cell.occ|S1) P (cell.occ|S2)

P(cell.occ|S1) P (cell.occ|S2) + (1− P(cell.occ|S1))(1− P(cell.occ|S2))
(3.12)

Equation 3.12 can be extended to the case of several sensors S1, S2, . . . , Sn

by induction. Hence, the fusion formula for n sensors can be expressed as
follows:

1

P(cell.occ|S1, . . . , Sn)
− 1 =

n∏
i=1

(
1

P(cell.occ|Si)
− 1

)
(3.13)

47

3.2 Methods and Applications 3 Architectures and Applications

Equations 3.12 and 3.13 show fully associative and commutative behavior.
Thus, the order of processing does not influence the result.

3.2.6 Reliable Abstract Sensors

The term “reliable abstract sensors” has been coined by Marzullo [Mar90], who
has elaborated a method for fault tolerance in multisensor environments. The
main idea in Marzullo’s work is a geometric derivation for fault masking. He
defines sensors as piecewise continuous functions characterized by two param-
eters: shape and accuracy range. Shape defines the form taken by the uncer-
tainty around the measurement value returned by the sensor. Since Marzullo
addresses only the one-dimensional case, thus assuming that all shapes are lin-
ear. The accuracy range defines the interval that contains the true value of the
measured entity. By combining measurements from single sensors, an improved
abstract sensor can be built. The range of this abstract sensor is derived by
finding the intersections of the ranges of the single sensors.

Fault-tolerant sensor averaging [Mar90] is introduced by regarding at most t
sensors to be faulty.1 Faulty sensors deliver an improper interval that may not
contain the true value. Therefore, a fault-tolerant sensor averaging algorithm
returns an interval that contains the true value for sure, even if arbitrary t out
of 2t + 1 readings are faulty. Marzullo presents an algorithm for such a reliable
abstract sensor in [Mar90, page 290]:

Let I be a set of values taken from n abstract sensors, and sup-
pose the abstract sensors are of the same physical state variable
where their values were read at the same instant. Assuming that at
most t of these sensors are incorrect, calculate

⋂
t,n(I) which is the

smallest interval that is guaranteed to contain the correct physical
value.
Implementation: Let l be the smallest value contained in at least
n− t of the intervals in I and h be the largest value contained in at
least n−t of the intervals in I then

⋂
t,n(I) will be the interval [l...h].

Marzullo’s original work has been extended to sensors working with any
number of dimensions by Chew [Che91]. While in the linear or single-
dimensional case the abstract sensor will always deliver correct results for at
most t faulty sensors out of 2t + 1 sensors, in the multi-dimensional case there
must be at least 2tD + 1 sensors in order to tolerate t faulty sensors, where D
is the number of dimensions.

1“t” is the preferred letter in the literature for the number of faults to be tolerated. It
derives from the concept of a traitor in the Byzantine Generals scenario.

48

3 Architectures and Applications 3.3 Chapter Summary

Jayasimha [Jay94] has extended Marzullo’s work with a better detection of
faulty sensors for the linear case. Both, Marzullo’s and Jayasimha’s algorithm
have a run time complexity of O(n log n).

3.3 Chapter Summary

This chapter provided a survey on sensor fusion architectures, methods, and
applications. There is no common model for sensor fusion applications until
today, however there are a host of models that propose similar partitioning
into source preprocessing, feature extraction and pattern processing, situation
assessment, and decision making.

All of the examined architectures have some strengths and weaknesses for
the modelling of sensor fusion applications. Besides the JDL model, the water-
fall model is an interesting alternative for embedded real-time fusion systems
since it emphasizes on low-level fusion processing. However, like the JDL model,
the waterfall model has its drawbacks, i. e., it does not guide the developer in
selecting the appropriate methods for concretely designing an implementation.
Moreover, many typical fusion applications have a closed control loop, thus the
expression of a cyclic data processing as provided by the Boyd loop and the
Omnibus model is advantageous. Only the LAAS architecture, which is orig-
inally aimed at the design of mobile robots, provides means for partitioning
large systems into small reusable subsystems.

The section on fusion algorithms contains some of the many existing sensor
fusions methods. However, currently the Kalman Filter and Bayesian reason-
ing are the most frequently used tools in sensor fusion. The certainty grid for
robotic vision is a nice example for a combination of complementary and com-
petitive fusion based on Bayes’ rule. As a method for sensor agreement the
fault-tolerant sensor averaging algorithm has been described.

49

3.3 Chapter Summary 3 Architectures and Applications

50

Chapter 4

Architectural Model

“Architektur ist die externe Äußerung von dem wie wir denken,
organisieren und unseren Verstand verwenden.”

Unknown

This chapter describes an architectural model for sensor fusion applications in
distributed time-triggered systems. This model is used in the design of the case
study in chapter 6.

4.1 Design Principles

Besides the primary goal of representing the processes of a sensor fusion ap-
plication for real-time systems, our objective was to find means for complexity
management. A typical sensor application with local intelligence contains a
network of distributed sensors, intelligence to process the sensor data (for ex-
ample by sensor fusion algorithms), a control program that takes decisions
based on these sensor data, and actuators that execute the decided actions.
Such an application is a complex system, which is difficult to build, to verify,
to repair, and to modify.

Therefore, we were looking for a framework that supports the construction
of such a system. We have identified the following principles to be useful in
achieving our goals:

Complexity management: A good method for reducing the complexity of a
system is the “divide and conquer” 1 principle, i. e., the system is parti-

1 This proposition is derived from the concept divide et impera that described the political
strategy of the Roman Empire when conquering new territory – the defeated clans had been
granted different negotiations and contracts. The original quotation cannot be assigned to a
single person in the antique, however was frequently used by Trajano Boccalini in [Boc78].

51

4.1 Design Principles 4 Architectural Model

tioned into interacting subsystems. Partitioning can be applied to hard-
and software [Wol94]. To put these subsystems to work, they must be
able to communicate with each other. The design of the communication
interfaces is a critical task since the borderlines between subsystems have
to be well-defined interfaces to enable composability, i. e., if each subsys-
tem implements well-defined interfaces in the temporal and value domain,
it can be guaranteed a priori that the subsystem provides its specified
service also in the composite system.

However, a subsystem can also be provided in form of a legacy system,
i. e., an autonomous system that has been developed according to its
own rules and conventions [Kop01c]. If a legacy system does not provide
an appropriate interface, the introduction of an extra component, an
interface system, may resolve this mismatch. The interface system will
then negotiate between the legacy subsystem and the other system parts.

Maintenance support: Whenever a critical component of a system fails, it
is necessary to detect the faulty component, repair it, reintegrate it and
ensure that the system works well again according to its specification.
Hence, there is an urgent need for monitoring, diagnostics, runtime con-
figuration, and maintenance. Monitoring and debugging of distributed
embedded real-time systems differ significantly from debugging and test-
ing programs for desktop computers, because only few interfaces to the
outside world are present [Tha00]. In addition, a distributed system con-
tains multiple locations of control, and therefore conventional break-point
techniques result in an undesired modification of the timing behavior.
This indeterministic effect is called the “Probe Effect” [Gai86, McD89]
or the “Heisenberg Uncertainty” [Led85] applied to software. Therefore,
our architecture requires a deterministic monitoring environment without
intrusions on the system behavior.

Generic sensor fusion methods: The survey on common sensor fusion al-
gorithms in section 3.2 revealed that many fusion methods can be imple-
mented in a generic way. Depending on the number and types of sensors
and the data desired by the application, the generic sensor fusion meth-
ods have to be configured in order to provide the intended function. In
order to accommodate that fact, we separate these generic sensor fusion
tasks from sensor-dependent and application-dependent issues in our ar-
chitecture.

Transparent fault tolerance layer: The reliability requirements of safety-
critical applications can only be met, if fault tolerance is introduced.
Introduction of fault tolerance increases the complexity of the system.

52

4 Architectural Model 4.2 Time-Triggered Sensor Fusion Model

This complexity can be handled by introducing a transparent fault tol-
erance layer that hides the presence of node replicas from the control
application [Bau01].

Sensor abstraction layer: Since fault tolerance and sensor fusion are closely
related, the principle of a fault tolerance layer can be extended to a sensor
fusion layer at the same level of abstraction. Because sensor fusion, in
contrast to sensor integration, also provides an enhanced representation
of the environment data by world modelling, it allows us to abstract from
the measuring instruments.

Control application design: Unlike the JDL model described in sec-
tion 3.1.1, we expect a model that reflects the cyclic structure that is
inherent to every control system. Most control algorithms need periodi-
cal updates of control values where the update times must have low jitter.
As a further requirement, the duration from performing a measurement
until the execution of the control decision is usually limited to a maximum
dead time and jitter by the control algorithm.

4.2 Time-Triggered Sensor Fusion Model

Most existing fusion models, as found in the literature (see section 3.1), have
been very abstract when it comes to timing and communication properties.
Since we aim at modelling a complex real-time system with data acquisition,
fusion processing, and control decisions, we have to extend the existing ap-
proaches in order to obtain a meaningful framework.

Therefore, we introduce a time-triggered sensor fusion model [Elm01b]. The
model incorporates properties like cyclic processing, composable design, and in-
troduces well-defined interfaces between its subsystems. Figure 4.1 depicts a
control loop modelled by the time-triggered sensor fusion model. Interfaces are
illustrated by a disc with arrows indicating the possible data flow directions
across the interface. Physical sensors and actuators are located on the bor-
derline to the process environment and are represented by circles. All other
components of the system are outlined as boxes. The model distinguishes three
levels of data processing with well-defined interfaces between them. The trans-
ducer level contains the sensors and actuators that interact directly with the
controlled object. A smart transducer interface provides a consistent border-
line to the above fusion/dissemination level. This level contains fault tolerance
and sensor fusion tasks. The control level is the highest level of data processing
within the control loop. The control level is fed by a dedicated view of the en-
vironment (established by transducer and fusion/dissemination level) and out-

53

4.2 Time-Triggered Sensor Fusion Model 4 Architectural Model

Actuators
Sensors

Environment

Controlled Object

Transducer Level

Fusion/Dissemination

Level

Control
 Level

Control Application

Sensor Abstraction Layer

Fault Tolerance Layer
 Fault Tolerance Layer

Operator

Fault-Tolerant

Image of the

Environment

Man-Machine

Interface

Fault-Tolerant

Actuator

Interface

Smart

Transducers

Interface

Smart

Transducers

Interface

Figure 4.1: Data flow in the time-triggered sensor fusion model

puts control decisions to a fault-tolerant actuator interface. User commands
from an operator interact with the control application via the man-machine
interface.

The breakdown into these three levels is justified by the different tasks the
three levels have to fulfill and the different knowledge necessary for designing
the corresponding hard- and software. Table 4.1 describes the task and the
attributes of the different levels. The following sections describe the three
levels in detail.

4.2.1 Transducer Level

The sensors and actuators that physically interact with the environment estab-
lish the transducer level of the system. To support maximum modularity, the

54

4 Architectural Model 4.2 Time-Triggered Sensor Fusion Model

Level Task Implementer Knowledge
Transducer level Deliver sensor

measurements,
instrument actua-
tors

Transducer manu-
facturer

Internals of sen-
sor/actuator

Fusion/Dissemina-
tion level

Gather, process,
and represent
sensor informa-
tion; disseminate
control decisions
to actuators

System integrator Sensor fusion
algorithms, fault
tolerance con-
cepts

Control level Find a control de-
cision, navigation
and planning

Application pro-
grammer

Mission goals,
control theory,
decision finding

Operator Definition of goals — Conceptual model
of system

Table 4.1: Properties of transducer, fusion/dissemination, and control level

nodes are built as smart transducers. The smart transducer technology offers
a number of advantages from the point of view of technology, cost, and com-
plexity management. The task of a transducer is either to provide observations
about properties of the controlled object or, in case of an actuator, execute a
control value. An observation subsumes the information assigned to a measure-
ment such as measurement value, measurement instant, and meta-information
about the measurement.

We have identified the following possible features of a smart transducer:

Signal amplifying and conditioning: Electrically weak non-linear sensor
signals can be amplified, conditioned, and transformed into digital form
locally at the transducer node without any noise pickup from long exter-
nal signal transmission lines [Die98].

Local fusion of measurements: Either a local transducer node has access
to two or more sensor signals or the transducer is capable of using multiple
measurements taken by a single sensor at different instants.

Self-validation: The transducer can also provide information about the cor-
rectness and/or quality of its measurements by running self-diagnostics.
If an assumption of the maximum gradient of the measured signal can
be made, the sensor can monitor changes of measurements and detect
abnormal behavior.

55

4.2 Time-Triggered Sensor Fusion Model 4 Architectural Model

Conversion to standard representation: The measurement can be locally
converted to standard measurement units and data types that allow a
uniform representation of observations throughout the system regardless
of the transducer type.

Timestamping: Each measurement can be augmented by information about
the instant when it has been performed. If local clock of the microcon-
troller is synchronized to a global time, the measurement can be assigned
a timestamp of global validity. A timestamp can provide information
about the ordering and the interval time between subsequent measure-
ments.

Meta-information: The transducer can also assign meta information, such
as data type or confidence of measurement, to its observations.

Typically, smart transducers are mass products, sold in quantities in the
tens of millions. Therefore, a smart transducer must be flexible enough to
be used for different applications. The implementation of a smart transducer
usually supports only generic or sensor/actuator-specific tasks and comes with
a host of configuration parameters. An important feature of a smart transducer
is its capability of providing machine-readable self-description. Tools operating
on these descriptions support system architects in the consistent configuration
of smart transducers within a network. For example, a tool may access the
description of a newly connected node for an easy plug-and-play-like integration
of the node into the system.

4.2.2 Fusion/Dissemination Level

While each single sensor only provides a small view of the environment, it is
the task of the fusion/dissemination level to integrate the measurements into a
description of the environment that enables the control program to assess the
situation more comprehensively.

The fusion/dissemination level contains the hardware and software that act
as a glue between the transducers and the control program. It creates a unified
view using sensor data which is named the environment image. If required,
this image is made robust to incomplete, erroneous or missing measurements
by implementing a fault tolerance layer. Typical methods for the fault tolerance
layer are voting or averaging. While on the sensor side of the control loop, data
from multiple sensors are fused to reliable data, the task of the fault tolerance
layer on the actuator side of the control loop is to create multiple instances of
a control message for the redundant actuators.

56

4 Architectural Model 4.2 Time-Triggered Sensor Fusion Model

Furthermore, the fusion/dissemination level can make use of all types of
sensor fusion algorithms. Competitive fusion methods increase the robustness
of the perception, while cooperative and complementary fusion provide ex-
tended and more complete views. Which algorithms are particularly used in
the fusion/dissemination level depends on the available resources like process-
ing power, working memory, and on application-specific needs at the control
level.

4.2.3 Control Level

The control level contains the control intelligence to make decisions based on
the world image. The control program initiates actions in order to achieve a
given goal.

If the fusion/dissemination level additionally provides information about
the condition of the system, the control program also has to adapt its goal
according to the circumstances. For example, consider an onboard automatic
flight control system of an aircraft that is programmed with the target “airport”
as goal. However, if the system detects that N − 1 out of a set of N redun-
dant mission-critical sensors have already failed, it might select the nearest
airport for maintenance. On the other hand, if the fusion/dissemination level
is implemented in a way that hides all sensor or actuator problems from the
control program, the complexity at the control level can be reduced, however
at the cost of system features. Our model resolves this problem by introducing
different interfaces for the real-time service and maintenance (see section 4.3.1).

4.2.4 Operator

The operator defines the goals, which the control application tries to reach.
For this purpose the operator does not need a detailed understanding of the
technical operation of the system. Instead, the operator follows a conceptual
model of the system that allows him or her to understand the important aspects
of the application and hence give the respective correct inputs to the system.

For example, when driving a car, we usually do not imagine the operation of
the carburetor, sparks, and cylinders in the motor when we press the accelerator
pedal. However, we have a different conceptual model on accelerating and
breaking, since even with the fastest cars it makes a big difference between the
time (or distance) a car takes to accelerate to a particular speed and the time
(or distance) the car needs to stop. Perhaps in future times, speed of a car will
be controlled by a single joystick that can be pushed forward or backward, and
we will switch to a conceptual model where accelerating or braking makes less
difference.

57

4.3 Interfaces 4 Architectural Model

4.3 Interfaces

An interface is a common boundary between two subsystems [Kop97a, page 77].
A correctly designed interface should provide an understandable abstraction
to the interfacing partners. Such an interface provides essential properties and
hides irrelevant details. Thereby, it eases the understanding of the component
interactions and helps to control the system complexity. It only offers informa-
tion of the specific services that is required by the user. Even though, a prop-
erly designed interface has to provide completeness by making all information,
which is required for using a component’s service, accessible. The distinction
between relevant and irrelevant properties mainly depends on the purposes of
the interactions at the interface [Ran97]. Therefore, different interfaces should
be provided for different purposes [Kop01a].

4.3.1 Interface Separation

This section describes services for real-time smart transducer networks. In
addition to the support for the timely exchange of real-time data, diagnostic
services offer insights into the system for a maintenance engineer. The system
integration out of autonomously developed components requires configuration
services. For the provision of these services, three different interfaces can be ap-
plied. The properties of these interface types differ in the accessible information
and in the temporal behavior of the data access [Kop01b].

Local Sensor

Application

Sensor or

Actuator

Read and Write Access

Interface File

System

Real-Time Service

Interface

Configuration and

Planning Interface

Diagnostics and

Management Interface

Figure 4.2: The three interfaces to a smart transducer node

58

4 Architectural Model 4.3 Interfaces

Figure 4.2 illustrates a smart transducer node containing a physical trans-
ducer element, a local application, and an interface system that can be accessed
via three different interfaces:

RS interface: The real-time service (RS) interface provides periodic commu-
nication with predictable timing and low jitter. This information is nor-
mally used for control purposes (e. g., periodic execution of a control
loop), where the quality of control is degraded by jitter [Kop97a]. Usu-
ally, the RS interface is implemented as a time-triggered service with
a priori known communication patterns.

CP interface: The configuration and planning (CP) interface allows the inte-
gration and setup of newly connected nodes. It is used to generate the
“glue” in the network that enables the components of the network to in-
teract in the indented way. Usually, the CP interface is not time-critical
and can be implemented as a sporadic service.

DM interface: This is a diagnostic and management (DM) interface. It estab-
lishes a point-to-point connection to a particular node and allows reading
or modifying data at the node. Most sensors need parametrization and
calibration at start-up and continuously collect diagnostic information to
support the maintenance activities. For instance, a remote maintenance
console can request diagnostic information from a particular sensor. The
DM interface, when used for calibration or diagnosis, usually is not time-
critical. However, for monitoring purposes, the DM interface is required
to provide specified update rates in order to get a useful perception of
dynamic processes within nodes. In any case, traffic over the DM inter-
face must not interfere the timing of the RS interface in order to avoid a
probe effect during monitoring.

All these interfaces are accessible via a unified addressing scheme for all
relevant data of a node, which is further described in section 4.3.3. In order
to preserve the specified timing requirements, a proper message scheduling is
necessary. An adequate communication protocol is presented in section 4.4.
The next section describes the properties of the interfaces in the time-triggered
sensor fusion model.

4.3.2 Interfaces in the Time-Triggered Sensor Fusion
Model

The time-triggered sensor fusion model specifies a smart transducer interface
that enables access to the transducer level, an environment image and control

59

4.3 Interfaces 4 Architectural Model

interface that negotiates between fusion/dissemination level and control level,
and an optional man-machine interface to a human operator.

Smart Transducer Interface

The smart transducer interface connects the transducer level with the fu-
sion/dissemination level. We have identified the following requirements for a
smart transducer interface to be used in the time-triggered sensor fusion model:

Real-time support: For the purpose of command-and-control-like architec-
tures the real-time service data of a smart transducer node must be ac-
cessible and delivered in an efficient manner with bounded delay and
minimal jitter.

Support for start-up and dynamic configuration: Maintenance support
was a primary design goal for our system model. Hence, the smart trans-
ducer interface must provide information about the transducer nodes that
can be exploited by configuration tools to provide computer-aided setup
or re-configuration.

Online diagnostic capability: A maintenance interface must provide access
to internal error logs and maintenance data of a transducer node while
the node is performing its real-time service.

Naming: A uniform naming and addressing scheme for all relevant data is
necessary to access the smart transducer data.

Implementation flexibility: In order to support low-cost implementations
of smart transducers, the interface must support maximum implementa-
tion flexibility.

In section 2.5.3 we discussed some of the most promising smart transducer
interface standards. Generally, every smart transducer interface that sup-
ports these requirements can be used with our time-triggered system model.
We have selected the smart transducer interface standard proposed by the
OMG [OMG02] for the case study of this thesis, since it completely fulfills all
the above-mentioned requirements. Section 4.3.1 and section 4.4 introduce the
basic principles of interface design and the communication protocol as proposed
by the standard.

60

4 Architectural Model 4.3 Interfaces

Environment Image and Control Interface

The environment image is an abstract description of the properties the con-
trolled object that are of interest to the control application. The design of this
image is governed by the requirements of the control level. The environment
image can consist of symbols, images, or scalar quantities. The interface consti-
tuted by the environment image has to meet qualities on accuracy, resolution,
update timing, and behavior in the presence of faulty data. In general, the
image will be more complete, more exact, and less sensitive to sensor inac-
curacies than data from single sensors. Due to the fault tolerance layer, the
environment image can also act as a firewall against sensor malfunctions. On
the other hand, the environment image can also provide useful information on
sensor problems or current system performance.

The control interface supports the control program in executing its control
decisions. A control decision on the control interface can range from a simple

Control Application

Sensor Abstraction Layer

Fault Tolerance Layer

Sensors
 Actuators
Sensors

Sub-Control Application

Fusion
 Dissemination

Environment

Operator

N
es

te
d

Fu
si

on
 A

pp
lic

at
io

n

O
ut

er
 F

us
io

n
A

pp
lic

at
io

n

Figure 4.3: Nested configuration with intelligent control interface

61

4.3 Interfaces 4 Architectural Model

instruction like “open the pressure control valve” to abstract commands like
“move vehicle to 10 Downing Street”. In case of the latter, the control system
will recursively host a subsystem containing sensors and control intelligence as
depicted in figure 4.3.

Man-Machine Interface

The man-machine interface represents an optional interface to a user or opera-
tor. If a system has a man-machine interface, it must be specifically designed
for the stated purpose and must be easy to operate. Ideally, the interface should
be self-explanatory and not require training or an operating manual [Kop97a].
The interface must not mix up information for different purposes, for example
providing the user with an unwanted debugging view. A good interface hides all
unnecessary details from the user and provides a customized view for different
user groups.

A further requirement for the man-machine interface is robustness. In the
context of interface design, robustness means the ability to tolerate or prohibit
improper inputs [Mur00].

4.3.3 Interface File System

The information transfer between a node and its client is achieved by shar-
ing information that is contained in an interface file system (IFS), which is
encapsulated in each node.

For the RS service, the IFS provides a temporal firewall that decouples
the communication flow control of sender and receiver. Furthermore, the IFS
provides a unique addressing scheme for transducer data, configuration data,
self-describing information, and internal state reports [Kop01b] that is used
consistently for RS, CP, and DM interface.

Communication via Temporal Firewalls

A time-triggered sensor bus performs a periodical time-triggered communica-
tion to copy data from the IFS to the fieldbus and to write received data into
the IFS. Thus, the IFS is the source and sink for all communication activities.
Furthermore, the IFS provides temporal firewalls that decouple the local ap-
plication from the communication activities. A temporal firewall [Kop97b] is
a fully specified interface for the unidirectional exchange of state information
between a sender/receiver over a time-triggered communication system. The
basic data and control transfer using a temporal firewall interface is depicted

62

4 Architectural Model 4.3 Interfaces

������
���	

���

����

� ����
���

	

�
�

� �

�������

����

	
�

����

��
���	���������
���	
�
���������

��������
���	

��� �������

����

	
�

����

��������������
��������	�����������

��
���	�������

���	
�
�����������

Figure 4.4: Interface file system as temporal firewall

in Figure 4.4. The interface enables different control flow directions between
sender and receiver. The IFS at the sender forms the output firewall of the
sender, while the IFS of the receiver forms the input firewall of the receiver.
The sender deposits its output information into its local IFS according to the
information push paradigm, while the receiver must pull the input information
out of its local IFS (non-consumable read) [Elm01a]. In the information push
model, the sender presses information on the receiver. It is ideal for the sender,
because the sender can determine the instant for passing outgoing information
to the communication system. Respectively, the information pull model is ideal
for the receiver, since tasks of the receiver will not be interrupted by incom-
ing messages. The transport of the information is realized by a time-triggered
communication system that derives its control signals autonomously from the
progression of time. The instant when data are fetched from the sender’s IFS
and the instant when these data are delivered to the receiver’s IFS are com-
mon knowledge to the sender and the receiver. A predefined communication
schedule defines time, origin, and destination of each data exchange within the
protocol communication. Thus, the IFS acts as a temporally specified interface
that decouples the local transducer application from the communication task.

Naming and Addressing

The IFS provides a uniform naming and addressing scheme for all relevant
data in the network. The IFS in each node can be addressed by up to 64 file
numbers. Each file is an index sequential array of up to 256 records. A record
has a fixed length of four bytes (32 bits).

Every record of an IFS file has a unique hierarchical address (which also
serves as the global name of the record) consisting of the concatenation of the
cluster name, the logical name, the file name, and the record name. The IFS
of each node can be accessed via the RS interface, the DM interface, and the

63

4.3 Interfaces 4 Architectural Model

CP interface for different purposes. All three interface types are serviced by a
fieldbus communication protocol, but with different semantics regarding timing
and data protection. An IFS record is the smallest unit within a node that can
be addressed by the CP or DM interface. The RS interface operates on byte
granularity.

Thus, the address space of the IFS is organized hierarchically representing
a static structure:

Cluster name: The cluster name is an 8-bit integer value that selects a clus-
ter, which is a network of fully interconnected nodes. Native communi-
cation (without routing) among nodes is only possible within the same
cluster.

Node alias: The node alias or logical name selects a particular node. Aliases
can have values from 0...255, but some values have a special meaning,
e. g., alias 0 addresses all nodes of a cluster in a broadcast manner.

File name: The file name addresses a certain file within a node. A file name
consists of a 6-bit identifier. Some file names have a consistent meaning
in all nodes. Each file has a statically assigned number of records. Files
can be located in ROM or RAM memory or generated at runtime. The
first record of each file is called the header record and contains the file
length and a read-only flag.

Record number: The record number is an 8-bit identifier that addresses the
record within the selected file. Addressing a non-existing record of a file
yields an error.

Figure 4.5 depicts the physical topology of the network. Since the local
node applications operate on the IFS as a data source and sink, the program-
mer’s view of the network can be simplified by abstracting over the protocol

Actuator

Network

Interface

Interface File

System

Local

Application

(e.g. Control)

Network

Interface

Interface File

System

Local

Application

Communication Backbone

Sensor

Network

Interface

Interface File

System

Local

Application

Figure 4.5: Physical network topology

64

4 Architectural Model 4.4 Communication Protocol

communication. A precondition for this requirement is the provision of an
automatic periodic communication, that copies data from the IFS to the field-
bus and writes received data into the IFS according to a predefined schedule.
Hence, applications can be designed to operate on a global temporally consis-
tent shared memory according to figure 4.6.

Actuator

Local Sensor

Application

Local Sensor

Application

e.g., Control

Sensor

Distributed Interface File System

Local Sensor

Application

Distributed

Application

Figure 4.6: Logical network structure

4.4 Communication Protocol

Generally, a sensor fusion application can be implemented using any possi-
ble communication and computation schedule. Nevertheless, there are several
reasons, that drove us towards a Time-Triggered Architecture [Sch97] with
predictable communication and computation patterns. The main motives are
real-time communication, synchronized timing, and support for deterministic
non-intrusive monitoring.

Because of that, we use the TTP/A fieldbus protocol throughout this thesis.
TTP stands for time-triggered protocol, since it is based on a time division
multiple access (TDMA) scheduling. The “A” in TTP/A stands for the satis-
faction of class A multiplexing networks defined by the Society of Automotive
Engineers [SAE95]. The protocol specification is part of a standard “Smart
Transducers Interface Specification” [OMG02] issued by the Object Manage-
ment Group.

4.4.1 Bus Scheduling

In TTP/A, all communication activities are encapsuled in rounds. Each round
is initiated by a fireworks message from the master node of the network. The
fireworks message contains a number that identifies the round and is a reference
signal for clock synchronization. The protocol supports eight different fireworks

65

4.4 Communication Protocol 4 Architectural Model

TTP/A Rounds

time

IRG

13 bit 13 bit 13 bit 13 bit13 bit

Slot 0 Slot 1 Slot 2 Slot (n−1) Slot n

Slot (n−1)Slot 0

11 bit 11 bit2
bi

t

2
bi

t

od
d

ev
en

T

1/f

Fireworks Byte Data Byte

Mark (1)

Space (0)

St
ar

t
L

SB

M
SB

Pa
ri

ty
St

op

Mark (1)

Space (0)
St

ar
t

L
SB

M
SB

Pa
ri

ty
St

op

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Round
(n+1)*13 bit

IBG IBG

baud

bit

Slots

No. 1 No. No. No.3 12

Inter Round GapIRG...... MSB......

LSB......Least Significant BitInter Byte GapIBG..........

Most Significant Bit

Figure 4.7: Communication in TTP/A

messages encoded in one byte using a redundant bit code [Hai00] for the purpose
of error detection.

Figure 4.7 depicts a TTP/A communication scenario in which the master
selects rounds 1, 3, 2, and 1 consecutively. Each round consists of a number of
TDMA slots. A slot is the unit for transmission of one byte of data. The data
encoding within each slot follows a standard UART (Universal Asynchronous
Receiver/Transmitter) format with one start bit, eight data bits, one parity
bit, and one stop bit. Between each two UART frames there is an inter frame
gap of bus silence that prevents collisions between messages originating from
nodes with slightly deviating clocks [Elm02a].

The protocol supports the following types of rounds:

Multipartner round: This round consists of a configuration dependent num-
ber of slots and a configurable assignment for the sending and receiving
nodes of each slot. The communication during the multipartner rounds
establishes links between distributed IFS values in order to establish ac-
cess transparency for the local applications. A task can thus access data
that were transmitted over the bus in the same way as data that have
been created locally.

Master/slave round: A master/slave (MS) round is a special round with a
fixed layout that exchanges data between the master and a particular

66

4 Architectural Model 4.4 Communication Protocol

slave. The master/slave round consists of two parts: First, the address of
a particular IFS record and the operation are broadcasted by the master
in a so-called master/slave address round. Afterwards, the data of the
addressed record are transmitted over the bus in a master/slave data
round. Depending on the operation (read, write, or execute), the data
bytes are either sent by the master or the addressed slave.

Broadcast round: A broadcast round is a master/slave round with the node
alias 0 in its address. It addresses all nodes in a cluster. This kind of
round is used for global write operations or for executing global commands
synchronously within all nodes of the cluster.

Element name Description Data type

Slot number specifies the beginning
slot of a communication
or execute action

integer number ∈ 0...64

Message length in data bytes integer number ∈ 1...16
Operation code specifies bus access type ∈ {read from bus, read from

bus and synchronize clock,
write to bus, execute task }

IFS Address specifies source or tar-
get address (depending
on specified operation)

IFS address

Table 4.2: Elements of a RODL entry

It is imperative that all nodes in a TTP/A cluster share a mutual under-
standing of the operation in the network during a multipartner (MP) round.
The configuration of a multipartner round is defined in a data structure called
“RODL” (ROund Descriptor List). The RODL defines which node transmits
in a certain slot, the operation in each individual slot, and the receiving nodes
of a slot. RODLs must be configured in the slave nodes prior to the execution
of the corresponding multipartner round. Table 4.2 lists the data elements that
have to be stored for each RODL entry. RODLs are stored distributed on the
TTP/A nodes, where each node stores the part of the RODL that is relevant
for the node’s communication and execute actions.

Time

MP
round
 MP
round
 MP
round
MS
round
 MS
round

Figure 4.8: Recommended TTP/A Schedule

67

4.5 Discussion 4 Architectural Model

The master/slave rounds establish the DM and the CP interface to each
node. The RS interface is provided by periodical multipartner rounds. Mas-
ter/slave rounds are periodically scheduled between multipartner rounds as
depicted in figure 4.8 in order to enable maintenance and monitoring activities
during system operation without a probe effect [Gai86].

4.4.2 Clock Synchronization

It is a principle of our architecture to provide a global notion of time to every
node of the distributed system. Therefore, the protocol supports an inherent
clock synchronization that assures that the clocks of all nodes are synchronized
to an approximate global time base. All nodes only communicate by message
exchange. Each node has its own real-time clock. TTP/A synchronizes the
clocks of the nodes by means of a central master synchronization. It is assumed
that the master node has a precise oscillator (maximum clock drift rate is less
than 10−4 s

s
). The other nodes can have a less costly imprecise on-chip oscillator

since the clocks of the slaves are periodically synchronized to the master’s clock.

The protocol uses two ways of synchronization. The start-up synchroniza-
tion is necessary for non time-aware nodes. The clock drift makes it impractical
for these nodes to participate in a UART communication. Hence, they have to
synchronize to a synchronize pattern, which is a regular bit pattern that enables
them to adjust their baud rate. The synchronize pattern is encapsulated in the
fireworks byte for master-slave rounds.

Nodes that are already participating in the communication rounds in the
TTP/A network get a clock synchronization event with every fireworks message
from the master. Furthermore, the nodes’ clocks are calibrated with every
regular message from the master. The clock synchronization is able to to keep
synchronization for initial clock drift rates of 10−3 s

s
and drift rate change rates

as high as 0.1 s
s2 [Elm02a].

4.5 Discussion

In this section, we discuss the achievements of our architecture on the trans-
ducer level, fusion/dissemination level, and control level subsequently.

4.5.1 Benefits at Transducer Level

The TTP/A protocol is well suited to connect smart transducers to a real-time
system. It provides communication with deterministic timing behavior and

68

4 Architectural Model 4.5 Discussion

low jitter. TTP/A supports a two-level design approach [Pol00], which allows
an independent implementation of the local node application. Communication
is only performed via a specified interface, thus liberating sensor manufactur-
ers from interoperability issues between sensors, naming inconsistencies, and
considerations on network topology and network properties.

The local sensor intelligence facilitates further processing at the fu-
sion/dissemination level by providing measurements in a standardized format.
Moreover, in order to support the needs of different applications, a smart trans-
ducer is capable of operating in different modes. For example, a smart sensor
can provide a signal smoothing that may be bypassed, if the dynamical behavior
of the signal is of greater concern than the reduction of noise.

4.5.2 Benefits at Fusion/Dissemination Level

Sensor fusion processing and fault tolerance place requirements on the under-
lying sensor framework concerning timing behavior and structure of the sensor
data delivered by the transducer level.

When two or more real-time values are fused to an agreed value, the instant
of each measurement is equally important as the measured value. Moreover,
the instant when a measurement or the execution of a set value is performed
underlies strict timing constraints in many control applications.

In our architecture, all nodes have access to a global time. Clock synchro-
nization is inherent to TTP/A, thus generating precise time-stamps and acquir-
ing transmission times of data is straightforward without the introduction of
additional mechanisms. All communication and measurement actions are syn-
chronized to an a priori known schedule. By taking advantage of the global time
it is possible to synchronize measurements with a given precision. The instant,
when a measurement was performed can thus be made common knowledge to
all consumers of that measurement. Tasks, e. g., for executing a set value, can
be configured to meet a given deadline specified on the global timescale. Hence,
our architecture supports deterministic timing behavior, which is a key feature
for replica determinism and therefore supports the construction of redundant
fault-tolerant systems [Pol94a].

4.5.3 Benefits at Control Level

The presented architecture allows the implementation of the control program
independent from the employed sensors and actuators. In case of modification
or redesign of sensor hardware or topology, the necessary adaption is restricted

69

4.6 Chapter Summary 4 Architectural Model

to the fusion/dissemination level that is responsible for providing the speci-
fied real-world image. Therefore, the control program can easily be reused or
migrated to different architectures. However, the data structure of the real
world image has to be chosen in a way that the sensor fusion layer is capable of
mapping all possible sensor data into this structure. A problem can arise when
the data structure of the real world image is too extensive to communicate it
efficiently over the network.

4.6 Chapter Summary

We have proposed an architecture that incorporates a smart transducer net-
work, sensor fusion processing, and an environment image interface, which is
sensor-independent. Using this architecture, complex applications can be de-
composed into small manageable subsystems.

The time-triggered sensor fusion model decomposes a real-time computer
system into three levels: First, a transducer level, containing the sensors and
the actuators, second, a fusion/dissemination level that gathers measurements,
performs sensor fusion respectively distributes control information to the actua-
tors, and third, a control level where a control program makes control decisions
based on environmental information provided by the fusion level.

The presented model features many advantages in the context of real-time
sensor fusion and control systems. The time-triggered architecture supports
the typical timing requirements of control systems like guaranteed maximum
dead time and low jitter. Because the control code is independent of the em-
ployed sensors, the system is open to sensor reconfigurations and reuse of the
application control program.

Furthermore, the system architecture provides different views of the sys-
tem, each with a different kind of abstraction: A view on the control process
is provided to the system operator, whereas the transducers are transparent
to him or her. For monitoring and debugging purposes each node can be in-
spected using a diagnostic and maintenance interface that provides access to
node internal information, revealing the employed sensors and actuators. A
configuration and planning interface allows the set-up or modification of the
network with respect to temporal composability.

70

Chapter 5

Achieving Dependability by
Sensor Fusion

“Denn um dem Denken eine Grenze zu ziehen,
müßten wir beide Seiten dieser Grenze denken können.”

Tractatus logico-philosophicus, Ludwig Wittgenstein

A frequent requirement for real-time computer systems is dependability.
Generally, dependability needs a redundant sensor configuration for the purpose
of competitive sensor fusion. In this chapter, we examine two approaches for
achieving dependability in the context of a distributed time-triggered sensor
fusion application. The elaborated methods are used in the case study in
chapter 6.

5.1 Systematic versus Application-Specific

Approach

There are two approaches to achieve dependability from the view of system
design, the application-specific and the systematic approach.

The systematic approach is based on agreement protocols that implement
regularity assumptions. Such an agreement protocol works like a filter that uses
redundant observations as its input. The output is dependable data that are
used by an application. This approach is well known as application-transparent
fault tolerance [Bau01]. Since dependability operations and regular function-
ality are strictly separated, this approach allows modular implementation and
supports an easy verification of the system design.

In contrast, the application-specific approach uses reasonableness checks
that use application knowledge to judge whether a value is correct or not.

71

5.2 Systematic Dependability Framework 5 Dependability by Sensor Fusion

Since the dependability operations are integrated with (parts of) the applica-
tion, this approach leads to increased design effort and application complexity.
However, this approach can be more efficient, since dependable behavior could
be achieved with less hardware expenses [Pol95]. Although hardware costs have
dropped dramatically over the past decades, there are still applications where
extra hardware can be critical because of constraints on weight or power con-
sumption [Elm02c]. Due to the fact that there are no marginal costs for pure
software, reduced hardware costs are an important factor for mass products.

Thus, both approaches have their field of application. In the first section of
this chapter we present a sensor fusion framework that follows the systematic
approach. Thereafter, we present an application-specific approach of sensor
fusion for robotic vision. Since we have separated the sensor fusion tasks from
the control application by taking advantage of the time-triggered sensor fusion
model, the example can be considered as a mixture of a systematic and an
application-specific approach. Hence, we show that dependable behavior can
be achieved with minimal hardware requirements while keeping complexity
moderate.

5.2 Systematic Dependability Framework

5.2.1 Problem Statement

Given is a set of sensors, providing partially redundant information. A control
application requires a set of dependable observations of real-time entities for the
purpose of controlling the system. Our objective is the provision of a generic
framework that allows an easy configuration of a black box sensor fusion layer
that takes the sensor readings as its input and provides the required information
to the control application as depicted in figure 5.1.

5.2.2 Modelling of Observations

A sensor can be seen as a small window providing a view of a property of a
technical process. When modelling this view, often only the measured value is
considered. We require a more comprehensive view of a sensor measurement
that takes the following properties into account:

Value: Value denotes the result of a measurement. Generally, such a value
can be discrete or continuous. We assume that all values are given in a
digital representation.

72

5 Dependability by Sensor Fusion 5.2 Systematic Dependability Framework

Sensors

Control Application

Sensor Fusion

Raw Sensor

Data

Dependable

Data

Figure 5.1: Sensor fusion layer converting redundant sensor information into
dependable data

Description: Which property of the process has been measured? Which units
are used? Which sensor has provided the measurement? In many systems
the description of a sensor is not stored explicitly but defined implicitly
in the way the system processes the sensor value. Usually, a description
is static. Description properties can be multifaceted and therefore are
difficult to model. There exist approaches using self-describing XML
(Extensible Markup Language) data to provide efficient modelling and
tool support for transducer networks [Pit02].

Instant: When was the value observed? In a real-time system, the instant of
a measurement is of equal importance as the value itself.

Dependability: The trustworthiness and continuity of a computer system
such that reliance can justifiably be placed on this service [Car82]. De-
pendability is a dynamic property that annotates the quality of a value
and instant. Quality, in this context, can denote uncertainty, precision,
or jitter.

Dependability values can be created from self-validating sensors or be
derived by comparing multiple measurements of the same property. Ba-
sically, parameters like the impreciseness of a sensor are statically defined
in the data sheet of the sensor. However, there are some scenarios that
cause dynamic impreciseness: switching of metering ranges, sensor depri-
vation in a multi-sensor system, aging effects, etc. In real-time systems,
impreciseness can affect the timing behavior as well as the measured
value.

73

5.2 Systematic Dependability Framework 5 Dependability by Sensor Fusion

Input

Observations

Sensor

Fusion

Output

Observation

Gate

Gate

Gate

Gate

Feedback for Gate Confidence Values

Figure 5.2: Structure of fusion operator

We use the term observation to describe the information from a sensor at a
particular point in time. By extending the definition given by Kopetz [Kop97a],
we introduce an observation as a compound of:

<entity name, instant t, value x, confidence c >

The entity name is a key to the description, the instant t defines the point
in time when the respective measurement was made, x represents the measured
value, and c is a confidence value that expresses the estimated dependability of
instant and value. Since each observation has assigned a measurement instant,
an observation is valid regardless of the time when it is processed.

When a new measurement is performed, the confidence value is introduced
by the smart sensor. A self-validating sensor derives this confidence value as a
result of a self-diagnosis function. If a sensor does not support self-validation,
the confidence value is set to a standard value according to the a priori esti-
mated average reliability of the sensor.

A fusion operator (depicted in figure 5.2) processes at least one observation
as input and produces an observation as output. Several fusion operators can
be clustered in an abstract network. Such fusion networks can be hosted on
one or several physical fieldbus nodes. Besides the confidence value in the
input observations, each input is assigned a gate confidence value. While the
assignment of the observation confidence value is in the sphere of control of
the data producer, the gate confidence value is in the sphere of control of the
fusion operator for the purpose of feedback provision. Both, the gate confidence
values and the observation confidence values, are combined in a gate to form a

74

5 Dependability by Sensor Fusion 5.2 Systematic Dependability Framework

Sensors

Control Application

F
 F
F

F
F
F

Fusion

Operator

Figure 5.3: Structure of sensor fusion layer

new confidence measurement for each observation. The resulting observations
are then combined by sensor fusion algorithms.

These algorithms can either produce an enhanced observation of the prop-
erties observed by the individual sensors or produce a derived property, e. g.,
an acceleration value from speed measurements or the slippage by comparing
rotation speed measurements of different wheels of a car. Generally, the out-
put observation of a fusion operator can differ in value, instant, and confidence
from the input observations. The output observation is always assigned to a
virtual sensor, which has an entity name that is different from the entities of the
input observation. Fusion operators can be cascaded in a network as depicted
in figure 5.3.

Since we assume an underlying digital network communication system, it
is possible to copy the information of one observation and use the same sensor
observation several times in different fusion operators. The control application
uses at least one observation as input. It depends on the implementation of
the control application if it uses the assigned confidence value when making
control decisions.

5.2.3 Sensor Representation Model

A basic requirement for an appropriate framework is to find an adequate math-
ematical description for sensor behavior. Marzullo suggested a model [Mar90]

75

5.2 Systematic Dependability Framework 5 Dependability by Sensor Fusion

that specifies accuracy bounds in order to describe a sensor’s measurement.
Thus, if a sensor is operating correctly, the real value is expected to be within
a specified interval around the measured value.

This thesis proposes a refined version of the sensor model by introducing
a probability distribution function for the sensor’s error. Often, sensor errors
are not statistically uniformly distributed but have a Gaussian-like distribu-
tion as shown in figure 5.4(a). This kind of measurement error usually is the
consequence of several factors, such as process/measurement noise or cross-
sensitivity.

-4 -2 0 2 4
Error

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

D
en

si
ty

(a) Sensor accuracy

-4 -2 0 2 4
Error

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

D
en

si
ty

(b) Inaccurate readings
caused by sensor failure

-4 -2 0 2 4
Error

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

D
en

si
ty

(c) Combined probabil-
ity distribution function

Figure 5.4: Example for sensor behavior regarding accuracy and failure

In addition to the limited accuracy of a sensor, a sensor may fail with a
particular possibility and hence provide erroneous readings. Such behavior can
be caused by bit flips in the measurement value or incorrect instrumentation
in the time or value domain. In contrast to sensor inaccuracies, sensor failures
are usually very infrequent. We assume that sensor failures can yield arbitrary
results, thus, the respective probability density function is similar to a uni-
form distribution as depicted in figure 5.4(b). Hence, when combining these
two sensor behavior models with respect to the frequency of behavior 5.4(a)
and 5.4(b), we get an overall measurement error distribution as depicted in
figure 5.4(c).

The above example shows that even simple sensor models can lead to non-
standard statistical error functions. Therefore, we have derived a representation
of sensor confidence that covers different probability distribution functions in
order to be able to model various types of sensors.

76

5 Dependability by Sensor Fusion 5.2 Systematic Dependability Framework

C
on

fid
en

ce
 V

al
ue

Variance of Measurement

conf
max

0

0

Figure 5.5: Conversion function for confidence/variance values (based on a
logarithmic scale)

5.2.4 Representation of Confidence Values

The confidence measure will be introduced as an integer value between 0 and
conf max, where 0 is defined to be the lowest confidence and conf max is the
highest confidence.

The confidence marker is interpreted as an estimator of the statistical vari-
ance V[S] of the measurement error.1 The variance is the second moment of
an arbitrary probability density function.

In order to enable operations based on the confidence of observations from
different sources, the confidence has to be standardized. We assume, that in
the best case, variance will be close to 0, thus corresponding to the maximum
confidence. In the worst case, a sensor will deliver a random value within its
measurement range for the measurement. The worst-case variance can thus be
calculated as the variance of a uniformly distributed random function between
the limits a and b:

V[S] =
(b− a)2

12
(5.1)

where a and b are the minimum and maximum values of the expected uniformly
distributed random function. It is possible to find a probability distribution

1The Guide to the Expression of Uncertainty in Measurement [ISO93] suggested statistical
variance as a measure for uncertainty.

77

5.2 Systematic Dependability Framework 5 Dependability by Sensor Fusion

function that produces even greater variances, however we assume that all
measurement with variances of Vmax or greater are nearly useless and therefore
are mapped into the same class of minimum confidence. The TTP/A protocol,
which has been proposed for the communication architecture in chapter 4, offers
a standard message format with values between 0 and 200. Thus, a worst-
case variance can be calculated according to equation 5.1. The worst-case V[S]
equals 2002

12
or 3333.33. Using a linear transformation between confidence values

and variance is be feasible, since the variances that indicate exact measurements
are of greater interest than measurements with large variance. Therefore, we
use a logarithmic scale to define the confidence values between minconf and
maxconf (see figure 5.5). Due to the expected computational load when doing
logarithmic and exponential operations on embedded systems, we suggest the
implementation of look-up tables for the conversion from confidence value to
variance. Table 5.1 depicts such a conversion table for 16 different levels of
confidence.

Confidence value Interval for uniformly
distributed error

Statistical Variance

0 [-100.0,100.0] 3333.33
1 [-70.2,70.2] 1644.65
2 [-49.3,49.3] 811.47
3 [-34.7,34.7] 400.37
4 [-24.3,24.3] 197.54
5 [-17.1,17.1] 97.47
6 [-12.0,12.0] 48.09
7 [-8.4,8.4] 23.73
8 [-5.9,5.9] 11.71
9 [-4.2,4.2] 5.78
10 [-2.9,2.9] 2.85
11 [-2.1,2.1] 1.41
12 [-1.4,1.4] 0.69
13 [-1.0,1.0] 0.34
14 [-0.7,0.7] 0.17
15 [-0.5,0.5] 0.08

Table 5.1: Conversion table for 16 different levels of confidence

5.2.5 Fusion Algorithms

This section presents a set of fusion algorithms that can be used in a fusion
operator. Because our architecture is open to custom implementations of fu-

78

5 Dependability by Sensor Fusion 5.2 Systematic Dependability Framework

sion operators, this sections deals only with few methods of low complexity
that support an implementation in embedded real-time environments instead
of providing an exhaustive overview of existing methods.

Confidence-Weighted Averaging

Averaging is one of the simplest forms of fusion. It comes with the advantages of
noise reduction and simple implementation. We propose an averaging algorithm
that makes use of the confidence values provided with each observation.

We assume the incoming observations to be taken from the same entity.
The value domain of the entity is assumed to be continuous. All observations
under consideration must be made at approximately the same instant. The
error functions of the incoming sensors are considered to be independent. The
measurement values are fused by using a weighted average with the reciprocal
variance values as weights:

x̄ =

n∑
i=1

xi · 1
V[Si]

n∑
i=1

1
V[Si]

(5.2)

where n is the number of input observations, xi represents the measurement
values and V[Si] is the estimated variance for that measurement. The values for
the variance are derived from the confidence values using table 5.1. Note that
there is no variance V[S] = 0 in order to avoid a division-by-zero singularity.
The generation of the confidence value for the fused value is straightforward
according to equation 5.2 yielding the statistical variance of the output obser-
vation:

V[SO] =
1

n∑
i=1

1
V[Si]

(5.3)

The confidence marker of the output observation is then approximated us-
ing the look-up table 5.1 a second time. The variance of the output values is
always lower or equal than the variance of the best input observation. If the
error independence condition is not true, the fused value is still correct, but its
assigned confidence is overestimated. The error independence condition is diffi-
cult to fulfill when identical sensors or sensors of the same type of construction
are fused. Thus, usually the best performance is achieved, when all input obser-
vations have the same confidence value, but stem from heterogeneous sensors
with independent error functions.

79

5.2 Systematic Dependability Framework 5 Dependability by Sensor Fusion

The worst-case runtime complexity of the confidence-weighted averaging
algorithm is Ω(n) where n is the number of input observations. In contrast,
the method of finding intersecting regions of sensor reading intervals as pro-
posed by Marzullo [Mar90] (described in section 3.2.6) has a worst-case runtime
complexity of Ω(n log n).

A possible extension to confidence-weighted averaging is the application of
a fault-tolerant averaging algorithm. This algorithm removes the t largest and
the t smallest data values and then performs the weighted average as described
above. Thus, at least t faulty measurements can be tolerated. The input set
must consist of at least 2t + 1 observations.

Finding the most distorting values among the variance-weighted values af-
fords the following steps: First, the weighted average value x̄ over all input
observations has to be calculated according to equation 5.2. The values to be
removed can be determined by finding the observations with the t largest and
the t smallest values for x̄−xi

V[Si]
. After removing 2t observations, the weighted

average value and its corresponding confidence value can be derived.

The complexity of such an algorithm is Ω(n log n) or, when regarding
the number of faults, Ω(nt). This complexity still allows fast and efficient
implementations even for great n and t, but the fault-tolerant averaging has a
disadvantage in our application context. Our sensor fusion algorithm performs
better with an increasing number of inputs. Thus, removing t input values
affects the gain of the fusion operation, so that there is a tradeoff between
the number of faults to be tolerated and the performance of the sensor fusion
algorithm.

Selection

Some applications (e. g., classification) need to select one input out of a set of
input observations. Usually, voting algorithms [Par91b] are a good means to
choose an appropriate output with improved dependability compared to the
input observations.

We describe a simple algorithm for exact voting in the following. First,
the reciprocal variance values of observations with identical values are added
together in order to form a single variation value for each alternative. Then we
select the first alternative (i. e., the one corresponding to the lowest value) with
minimum variation. The confidence value of the output observation is derived
from the winner’s variation using table 5.1. This selection method fulfills the
following fairness criteria [Cor97] for voting methods and has the property of
replica determinism [Pol94b]:

80

5 Dependability by Sensor Fusion 5.2 Systematic Dependability Framework

Condorcet criterion: 2 If there exists an alternative A that wins in pairwise
votes against each other alternative, then A should be the winner of the
election [Cor97, page 1].

Sketch of proof: An alternative A will only win against a different alter-
native B, if its variation is smaller than the variation of B or its variation is
equal to the variation of B and the value of alternative A is smaller than the
value of B. Since two alternatives will always differ at least in their values
and “smaller than” is a transitive proposition, the Condorcet criterion will be
fulfilled for all winning alternatives A.

Monotonicity criterion: If alternative A is declared the winner under a vot-
ing method, and one or more voters change their preferences in a way to
favor A (making no other changes), then A should still win [Cor97, page
1].

Sketch of proof: If an input that initially proposes an alternative B switches
to the winner alternative A, then the variation of A will decrease, while B’s vari-
ation will either increase or B will drop out of the set of proposed alternatives.
Thus, A will still win over B. Since the variations of all the other alternatives
remain unchanged, alternative A will also win over all other alternatives.

Replica determinism criterion: Every pair of two voters that get the same
input data will elect the same winner consistently.

Sketch of proof: Provided that all voters are using the same look-up table
and arithmetics, all voters will calculate identical variations for every alterna-
tive in all voters. Since the algorithm itself is deterministic, it is thus guaranteed
that replica determinism is maintained among multiple voters.

All three criteria are fulfilled by the proposed selection algorithm with the
ancillary condition that all voters are provided with exactly the same input
data. Hence, the fulfillment of the above criteria relies on a digital communi-
cation system that has to provide a reliable broadcast mechanism.

Fusing Observations from Different Instants

Synchronizing measurements and performing measurements at periodically
a priori defined instants is an inherent capability of the time-triggered archi-
tecture proposed in chapter 4. Thus, the k-th observation on an entity is guar-
anteed to be taken at the instant tk = t0 +k ·∆t+ ε where t0 is the first instant

2Marquis de Condorcet, French mathematician of the eighteenth century

81

5.2 Systematic Dependability Framework 5 Dependability by Sensor Fusion

of measurement, ∆t is the interval between two consecutive measurements and
ε is the time jitter. The jitter is comparatively small in time-triggered systems
(|ε| < ∆t/100). Therefore, we can ensure that a set of observations delivered by
different sensor nodes are taken at the same instant. However, in case of omis-
sion faults, we have to deal with a set of observations with differing instants:
some observations may have been updated to instant tk and some observations
which failed to be transmitted are only available as an older version tk−1.

If the redundancy in the system is high enough, a convenient method to solve
this problem is to keep only the most recent observations and discard the others.
The fusion algorithms are then performed as described before with a reduced
set of observations. This method is principally applicable if the periodical
measurements happen on a sparse time set. Otherwise, if observations can
take place at any instant of a fine-grained time line it is likely that all but one
observations are discarded.

As an alternative to dropping old observations, a history of observations can
be used to extrapolate the state of the real-time entity for the desired instant.
Thus, all missing observations can be compensated with respective estimated
values. The confidence of an extrapolated value should be respectively low
due to the high expected deviation between real value and estimated value.
Moreover, such practise can be critical if the output observation is used in
feedback loops.

Estimation of Observations Using Kalman Filtering

A powerful method for smoothing and extrapolating values is the Kalman Fil-
ter, which has been explained in section 3.2.2. The following paragraphs present
the configuration of a Kalman Filter for estimating a missing value xk given a
history of measurements xk−3, xk−2, xk−1.

Suppose the real-time entity under consideration is continuous and can be
approximated by a polynomial function of third degree. Observations are made
at periodical discrete points in time. Thus, the observation value at time k can
be described using equation 5.4:

xk = a2 · k2 + a1 · k + a0 (5.4)

After solving for the parameters a2, a1, and a0 using xk−1, xk−2, and xk−3,
we get an estimation for xk:

x̂k = 3 · xk−1 − 3 · xk−2 + xk−3 (5.5)

82

5 Dependability by Sensor Fusion 5.3 Robust Certainty Grid

The state vector of the Kalman Filter shall contain the last three values.
The state transition from step k to step k + 1 can be described by:

x1,k+1 = 3 · x1,k − 3 · x2,k + x3,k (5.6)

x2,k+1 = x1,k (5.7)

x3,k+1 = x2,k (5.8)

Thus, the state transition matrix A equals:

A =

 3 −3 1
1 0 0
0 1 0

 (5.9)

The input observation yk directly corresponds to x1,k+1. Therefore, matrix
C equals (1 0 0). While the system noise covariance matrix Q depends on
the modelled process, the value of the 1 x 1 matrix R can be derived from the
confidence value using look-up table 5.1.

The approximation via Kalman Filter has the advantage of operating step-
wise in real-time. It thus cooperates well with a time-triggered architecture.
Furthermore, it is well suited for processing input data with varying uncertainty
degrees. However, the state of the Kalman Filter stored in vector ~̂x and the
predicted error matrix P depend on the whole set of input values y1, y2, . . . , yk.
Restarting the filter only with the last m values (m < k) may produce deviating
filter results. Therefore, in a scenario with replicated nodes running a Kalman
Filter, all replica have to keep consistency among their state vectors in order to
produce identical filter results. A minor shortcoming is that the Kalman Filter
needs certain information about the modelled process, which makes it difficult
to use the method as a generic tool. Particular parameters about the modelled
real-time entity have to be known when the filter is configured. Nevertheless,
the Kalman Filter is a powerful tool for filtering or predicting observations in
real-time.

5.3 Robust Certainty Grid

5.3.1 Problem Statement

The problem handled by the robust certainty grid algorithm is a special case
of the world mapping problem for mobile robots as presented in section 3.2.4.

83

5.3 Robust Certainty Grid 5 Dependability by Sensor Fusion

The goal is to get a map of the robot’s environment containing obstacles and
free space.

We assume a set of sensors that measure the distance to the next obstacle
at particular angles from the robot. These angles are periodically changed by
a motor for each sensor in order to cover a segment of the robot’s surroundings
over time. The segments partially overlap, hence providing some redundancy in
the coverage of the environment. However, although our architecture is capable
of synchronizing all sensors and motors, it is not feasible to turn any two sensors
into the same or even approximately same direction because of interference
problems. Thus, it is impossible to directly compare sensor readings made at
the same time.

Furthermore, from the view of hardware architecture it is almost impossible
to mount sensors in a way that the viewpoint angle from a sensor to an object
is identical to the angle of the replicated sensor. A replicated sensor will thus
always be located slightly offside, thus viewing objects from different angles.

The assumed fault hypothesis is that one sensor may deliver permanently
faulty measurements. For example, one distance sensor could refuse to detect
any object and always reports “no object nearby”.

Note, that the existing certainty grid methods can only handle the effects
of occasional sensor faults on the grid [Mar96]. Permanent faults – as assumed
in our fault hypothesis – would result in a significant deviation of the represen-
tation in the grid from the actual environment.

5.3.2 Robust Certainty Grid Algorithm

For the purpose of handling sensor failures where a sensor permanently submits
measurements with incorrect values, we have derived a robust certainty grid
algorithm [Elm02d]. The problem is solved by analyzing the redundant parts of
the certainty grid. Furthermore, we assume that we have no a priori knowledge
about the redundant and non-redundant parts. Because of that, we devise an
automatic sensor validation that does not need a priori information about
redundant parts.

Validation of sensors by comparing their readings is a nontrivial problem,
since measurements cannot be synchronized in time (due to the inference prob-
lem) and differing sensor readings can result either from a particular object
shape or can indicate that at least one of the sensors is faulty. Figure 5.6 de-
picts an example for an object that yields ambiguous sensor readings. Although
both sensors are working according to their specification, sensor B detects an
object for the given region while sensor A does not.

84

5 Dependability by Sensor Fusion 5.3 Robust Certainty Grid

In order to overcome this problem, we propose an approval method for
maintaining a dynamic confidence measurement for each sensor. The confidence
value is a measurement for the correctness of a sensor as perceived by the fusion
algorithm. The confidence measurement conf may be a real value ranging from
0 to 1:

conf =


0 sensor appears to be wrong
...
1 sensor appears to be correct

If we have a priori knowledge about the dependability of a sensor, an initial
confidence value that reflects the sensor’s dependability can be chosen at start-
up. If we do not have knowledge about the behavior of a sensor, the respective
confidence values are initialized with 1.

As in the original certainty grid algorithms, each grid cell contains a prob-
abilistic value occ ranging from 0 to 1 corresponding to the believe that this
cell is occupied by an object:

cell.occ =



0 free
...

0.5 uncertain
...
1 occupied

Sensor A
 Sensor B

Region with

ambiguous

detection
 � �

� �
Object to

detect

Figure 5.6: Discrepancy between sensor A and sensor B due to object shape

85

5.3 Robust Certainty Grid 5 Dependability by Sensor Fusion

Additionally, we store the main contributor (e. g., the sensor that updated
this cell most recently) of the occ value with the cell. This property of each
cell is named the current owner of the cell:

cell.owner =


0 unknown
1 sensor 1
...
nsensors sensor n

All grid cells are initialized with cell.occ = 0.5 and cell.owner = unknown.
When a new measurement has to be added to the grid, the following AddToGrid
algorithm is executed (Figure 5.7 lists the algorithm in pseudocode):

• If the particular grid cell has no contributor listed in its owner field or
the cell owner is identical with the contributing sensor, the measurement

procedure AddToGrid(sensor, cell)
begin

if (cell.owner = unknown) or (cell.owner = sensor) then
cell.occ := sensor.measurement;
cell.owner := sensor;

else
comparison := 4∗(cell.occ-0.5)∗(sensor.measurement-0.5);
weight1 := abs(cell.occ-0.5)∗cell.owner.conf;
weight2 := abs(sensor.measurement-0.5)∗sensor.conf;
if weight1 = weight2 then

cell.occ := (cell.occ+sensor.measurement) / 2;
else

cell.occ := (cell.occ∗weight1+sensor.measurement∗weight2)
/ (weight1 + weight2);

if comparison > CONFIRMATIONTHRESHOLD then
inc(cell.owner.conf);
inc(sensor.conf);

if comparison < CONTRADICTIONTHRESHOLD then
dec(cell.owner.conf);
dec(sensor.conf);

contribution := 4∗(cell.occ-0.5)∗(sensor.measurement-0.5);
if contribution > CONTRIBUTIONTHRESHOLD then

cell.owner := sensor;
else

cell.owner := unknown;
end

Figure 5.7: Pseudocode of the AddToGrid algorithm

86

5 Dependability by Sensor Fusion 5.3 Robust Certainty Grid

Before update Intermediate results and state after update
ce

ll
.o

cc

ce
ll
.o

w
n
er

.c
on

f

se
n
so

r.
m

ea
su

re
m

en
t

se
n
so

r.
co

n
f

co
m

p
ar

is
on

n
ew

ce
ll
.o

cc

co
n
fi
d
en

ce
s

co
n
tr

ib
u
ti

on

ce
ll
.o

w
n
er

0.8 1 1 1 0.6 0.925 increased 0.85 sensori

0.925 1 0 1 −0.85 0.425 decreased 0.15 unknown
0.425 1 1 0.8 −0.15 0.909 unchanged 0.818 sensori

0.909 0.8 1 0.8 0.818 0.959 increased 0.918 sensori

Table 5.2: Examples for grid cell updates

of the sensor is taken as is and the cell stores the index of the sensor as
new owner.

• If there is a different contributor, the measurement is first compared
to the cell value cell.occ by calculating a value named comparison. If
comparison is above a particular confirmation threshold, we speak of a
confirmation of cell value and new measurement. If comparison is below
a particular contradiction threshold, we speak of a contradiction of cell
value and new measurement. In case of a confirmation, the confidence
values of the new sensor and the owner are both increased. In case of a
contradiction, the confidence values of the new sensor and the owner are
both decreased. If comparison is not significant, it does neither yield a
confirmation nor a contradiction.

• The new occupancy value of the cell is calculated as a weighted average
between old value and measurement. The weights are derived from the
respective confidence values and the significance of the measurement. A
measurement is more significant if it has a greater absolute distance to
the uncertain state (0.5).

• Thereafter, a new owner is selected. Therefore, a value contribution is
derived. This value is calculated the same way as the comparison value,
but it uses the new cell.occ value.

• The contribution is a measurement of the consistency of the sensor mea-
surement with the new cell.occ value. If the contribution is above a

87

5.3 Robust Certainty Grid 5 Dependability by Sensor Fusion

certain threshold, the contributing sensor becomes the new owner of the
cell. Otherwise the cell.owner value is reset to unknown.

Table 5.2 gives four examples for updating grid cell values by sensor mea-
surements. The threshold values have been set to 1

2
and −1

2
, respectively. In the

first case, the sensor measurement and the grid cell value confirm each other.
The result is an increased confidence for the sensor that originally contributed
to this cell (the owner) and the sensor that produced the new measurement. In
this example the sensor becomes also the new owner of the entry. In the second
example, the measurement of the sensor does contradict the grid value – the
sensor reports free space while the grid cell value is sure about an object. Thus,
the confidences of the involved sensors are decreased. Example 3 shows a less
severe contradiction, because the grid cell is not quite certain about its content.
Hence, mainly the new measurement influences the updated grid value. Exam-
ple 4 shows again a measurement that confirms the grid value and leads to a
rise of the confidences of the sensors. Thus, the confidence values of the sensors
are dynamically updated according to the comparison of their measurements
to the grid. A badly performing sensor will subsequently loose confidence and
eventually drop out of the set of contributing sensors. However, if the sensor
recovers, it will regain confidence by repeated confirming measurements.

The presented approach works with at least three sensors where one sensor
might be faulty at one time. In comparison to a configuration with replicated
sensors the discussed approach gains extra sensor space, because the sensor
views must overlap only partially, i. e., there must be at least one grid cell,
which is served by all three sensors.

The extra amount of memory for the grid representation is the storage for
the owner values, thus

dlog2(nsensors + 1)e
8

· gridheight · gridwidth, (5.10)

more bytes of memory, where nsensors is the number of sensors contributing to
the grid. The memory requirements for the confidence values can usually be
neglected, if the number of sensors is remarkably lower than the total number
of cells in the grid. Thus, the memory requirements of the robust certainty
grid algorithm are considerable lower than the memory consumption of the
fault-tolerant approach at grid level.

In contrast to Bayes’ formula, the AddToGrid procedure is not commutative.
Thus, when a grid cell is updated by subsequent measurements, the order of
updates makes a difference in the result. This can be explained by the change
of the a priori probabilities for the sensors with each update.

88

5 Dependability by Sensor Fusion 5.4 Chapter Summary

This sensitivity to the ordering of measurements affords a communication
system with predictable, consistent ordering of messages and tasks. The time-
triggered communication architecture proposed in chapter 4 fulfills this require-
ment.

5.4 Chapter Summary

This chapter introduced a framework for processing sensor measurements with
respect to their dependability. Each measurement is represented as an observa-
tion, i. e., a compound of a name, a measurement instant, the measured value,
and a confidence marker indicating the dependability of value and instant. Sen-
sor observations are processed by a network of fusion nodes in order to get data
with higher confidence. The confidence of each measurement is attached to the
transmitted data in form of the confidence marker. The sensor fusion algo-
rithms use a probability model for sensor readings where the expected variance
of a measurement corresponds directly to its confidence. Besides fusing values
from different sensors, we also considered the fusion of observations taken at
different instants.

Dependability can also be implemented application-specifically. This ap-
proach comes with lower hardware expenses, but with increased design effort
and application complexity. Therefore, application-specific approaches have to
be carefully designed.

This chapter further presented a robust certainty grid algorithm that rep-
resents an application-specific dependability approach. The original certainty
grid algorithms can tolerate occasional transient sensor errors and crash failures
but fail for permanent sensor faults. We developed a method for sensor vali-
dation that detects abnormal sensor measurements and adjusts a weight value
of the corresponding sensor. Recovered sensors are automatically reintegrated.
This robust certainty grid approach also supports sensor maintenance, since it
provides a measurement for the operability of a sensor.

89

5.4 Chapter Summary 5 Dependability by Sensor Fusion

90

Chapter 6

Case Study Setup

“Soll das Werk den Meister loben
doch der Segen kommt von oben.”

Das Lied von der Glocke, Friedrich von Schiller

This chapter describes the design and implementation of an autonomous mo-
bile robot that serves as a case study for the presented concepts on sensor
fusion and time-triggered architectures. The robot is named smart car since
the robot consists of a four-wheeled model car that is instrumented by a smart
transducer network. The demonstrator has not been exclusively implemented
for this thesis, but used in the DSoS project1 as a demonstrator for composable
development [Elm02b]. The demonstrator’s components have been developed
during the last two years through the effort of several people.

6.1 Problem Statement

The robot’s task is to navigate through a static obstacle course by perceiving
its immediate environment with the help of a combination of infrared and
ultrasonic distance sensors. Sensor fusion algorithms are used to integrate the
sensor measurements into a certainty grid, i. e., a description of the environment
of the robot. Based on this information, a path planning algorithm shall detect
the most promising direction in order to detour obstacles in front of the robot.

6.1.1 Hardware Constraints

The robot consists of an off-the-shelf four-wheeled model car equipped with
a fieldbus network containing sensors, actuators, and control intelligence that

1Dependable Systems of Systems, European Research Project IST-1999-11585

91

6.1 Problem Statement 6 Case Study Setup

enable an autonomous operation of the car.

All employed sensors and actuators are commercial available components.
In order to resolve interface mismatches, each sensor and actuator is imple-
mented as a smart transducer, thus being equipped with a small 8-bit mi-
crocontroller and a standardized network interface. Furthermore, the network
contains a control node and a master gateway node. The control node hosts
sensor fusion and control tasks. The gateway node enables the connection of
monitoring hardware that supports the configuration of the network communi-
cation and exports diagnostic data during operation. All transducer nodes are
mounted on an area of approximately 30 cm times 40 cm.

6.1.2 Software Constraints

The software of the smart transducers shall be independent of the application.
Each smart transducer contains the necessary software to instrument the lo-
cal sensor or actuator and the protocol interface software. The sensor fusion
software is aware of the connected sensors and the input requirements of the
control application. The control application is decoupled from the sensors,
since it only uses data provided by the sensor fusion software and does not
depend on a particular sensor configuration.

6.1.3 Real-Time Constraints

The car is considered a hard real-time system. In case of a deadline miss, the
car could crash into an object damaging either the object or the car.

We have identified several real-time constraints in the overall operation:
The sensor data has to be registered in the context of the actual position of the
car and the actual aiming angle of the sensor. The speed control has to react on
time on odometer information in order to enable an accurate navigation around
objects. Further real-time requirements arise from sensor and servo interfaces.
Some sensors provide their measurements as a pulse width modulated (PWM)
signal, thus using time-encoded data. Moreover, the instrumentation interface
of servos usually specifies PWM signals, since PWM encoded information is
much less sensitive to varying voltage levels. Since we are not using dedicated
hardware, the PWM signals have to be decoded and generated by software,
which must be executed in real time.

92

6 Case Study Setup 6.2 Development Environment

6.2 Development Environment

The software development environment contains the computer hardware and
software required to develop the embedded software for the demonstrator. It
includes programming language, compiler, operating system, download tools,
and organizational tools.

6.2.1 Target System

All network nodes are implemented using Atmel AVR controllers. This micro-
controller family is a widespread general purpose 8-bit RISC computer that
features various timers and I/O functions for UART communication and A/D
conversion. All slave nodes run the same TTP/A protocol implementation for
Atmel microcontrollers. TTP/A also supports heterogeneous networks as long
as all nodes implement the standard network interface, as specified in the stan-
dard [OMG02], and adhere to compatible bus media. The physical network is
an ISO 9141 k-line serial bus running at a baud rate of 9600 kBit/sec. This sin-
gle wire bus is widely used in the automotive industry for car body electronics
applications.

6.2.2 Programming Language

The choice of the programming language for embedded systems is a subject of
on-going discussion. Languages like C, C++, Ada, Java, or Assembler are used
in many cases. In [Gla80], Glass arguments against Assembler for the sake of
convenient development and debugging. However, with state-of-the-art micro-
controllers it is often inevitable to write some functions in Assembler in order
to achieve the required temporal behavior using the given resources [Trö02a].
Therefore, we use Assembler for the time-critical parts of the embedded proto-
col code.

The application code is written in a high level language for the purpose of
clarity and the possibility of code reuse. We have chosen C, since it offers con-
structions for system level programming and produces smaller code than C++.
As a further advantage, by using the C-derivative WCET-C, C programs can be
extended by annotations describing the program control flow. Such WCET-C
programs allow for a tool-supported analysis of the worst-case execution time
of tasks, thus enabling an automated verification of the application’s timing
behavior [Kir01].

93

6.2 Development Environment 6 Case Study Setup

6.2.3 Compiler

Basically, we use the AVR-GCC compiler v3.02. This is an open source cross-
compiler that supports the Atmel AVR series. The compiler package is freely
available for Windows and Linux systems. Since it is a widely-used tool, the
software is well-tested and supported by the open source community.

Besides these arguments, open source software has the advantage of provid-
ing a priori information on the exact implementation of functions like interrupts
or register usage in the compiled programs. While this information might be
undocumented in commercial compiler products, with open source software it
is possible to directly verify or modify the compiler’s code.

In [Trö02b], Trödhandl describes in detail changes for a beta version of
GCC v3.3 that improve the temporal behavior of the generated code. The
main achievements are reduced interrupt latency when using interruptible in-
terrupt handlers and a reduction of the required stack memory by implementing
a detection of used registers. These features are necessary in order to achieve
maximum transmission rates and minimum memory footprints for TTP/A im-
plementations. However, due to the rather slow communication rate used in
the case study, the TTP/A implementation also works with the non-optimized
version of the AVR-GCC compiler v3.0.

6.2.4 Programming Tools

A cross-compiler compiles the program source code and locally generates a file
that contains the object code for the embedded system. In order to program the
embedded microcontroller with this code, a programming tool that establishes
communication to the chip is necessary. All Atmel AVR microcontrollers can
be in-system-programmed with the same basic programming algorithms. Due
to this standardization, there are many available commercial and open source
systems that enable AVR programming. We have evaluated the following three
tools:

UISP: The Micro In-System Programmer for Atmel microcontrollers is a util-
ity that is freely available for Windows and Linux systems in slightly dif-
ferent versions. It supports in-system programming, Atmel’s prototype
board/programmer, and an extremely low-cost parallel port programmer.
However, the programming speed of the tool is tedious and the current
version UISP 1.0b does not support the new ATmega128 chip that is used
for making navigation decisions in the smart car. The host system must
provide a free parallel port and run a Linux or Windows 9.X system.

2Distribution from AVR Freaks (2001-07-01), http://www.avrfreaks.net/

94

6 Case Study Setup 6.3 System Architecture

AVR STK500: The STK500 starter kit is a commercial tool available via
Atmel’s distributors and provides slots for all 8-, 20-, 28-, and 40-pin
AVR devices as well as an interface to an external target system. It is
supported by Atmel’s AVR studio, a tool with a graphical user interface.
The STK 500 system runs on any Windows computer system and needs
a free serial port on the development system, i. e., a PC.

ZEUS Programmer: When programming smart transducer networks, it is
often necessary to program multiple nodes subsequently with different
programs. Since the before mentioned programming systems only provide
a single target interface, frequent switching of the programming cable
from chip to chip is a common practise.

The ZEUS programmer system developed at our institute by Haidinger
overcomes this problem by providing eight target interfaces that can be
accessed via multiplexing. Thus, a system containing up to eight differ-
ent AVR microcontrollers can be programmed in one go. The software is
speed-optimized for the different controller types and provides the same
speed as the commercial AVR STK500 system [Hai02]. The ZEUS pro-
grammer runs on any Linux or Windows computer system and needs a
single free serial port.

6.3 System Architecture

This section describes the execution and test environment for the smart car
demonstrator. The robot is build from commercial components, all provided
with an appropriate interface that allows a composition of separately devel-
oped and tested components. The demonstrator’s architecture implements a
three-level design approach according to the time-triggered sensor fusion model
introduced in chapter 4. The first level is the transducer level containing the
sensors and actuators equipped with a TTP/A smart transducer interface. The
second level is the fusion/dissemination level that integrates the transducer
data into a network, performs sensor fusion and provides the results to the
control application. The third level contains the control application that takes
navigation decisions based on the data provided by the fusion level. The fusion
level implements the methods that have been introduced in chapter 5. The
sensors provide redundant information that is used to generate a robust per-
ception. Therefore, we speak of a competitive sensor configuration. Figure 6.1
depicts the system architecture of the main parts of the smart car. All trans-
ducers are illustrated as circles, boxes represent control units, and rounded
rectangles depict elements like fusion algorithms or filters that process data in
order to enhance the data quality.

95

6.3 System Architecture 6 Case Study Setup

Local

Filter

IR1

Local

Filter

IR2

Local

Filter

IR3

Serv1
 Serv2
 Serv3

Navigation and Path Planning

G

at
e

G
at

e

G
at

e

Servo Control

US1
 US2

Grid

generation

Intelligent Motion Control

Pos
 Steer
 Speed

Tr
an

sd
uc

er
 L

ev
el

Fu

si
on

/D
is

se
m

in
at

io
n

Le
ve

l

C

on
tro

l L
ev

el

Sensor

Fusion

IR1Middle infrared sensor US1Right ultrasonic sensor
IR2 Right forward infrared sensor US2 Left ultrasonic sensor
IR3 Left forward infrared sensor Pos Position encoder sensor
Serv1 . Servo for IR1 Speed Speed control actuator
Serv2 . Servo for IR2 Steer Steering control actuator
Serv3 . Servo for IR3

Figure 6.1: System architecture of smart car

The transducer level contains six sensors and five actuators. Each of the
three infrared sensors is equipped with a filtering mechanism that removes
faulty sensor measurements and smoothes the result. This filtering mechanism
is locally implemented on the smart transducer, therefore belongs to the trans-
ducer level. The transducer level further contains a position encoder node, a
speed control node, a steering control node, and three servo nodes, which are
used to swivel around the infrared sensor nodes. At the fusion/dissemination
level, a servo control unit drives the servo nodes. The information of the current
servo positions and the measurements from the infrared sensors are fused by the
robust certainty grid algorithm in order to create a description of the environ-
ment. Note that the robust certainty grid algorithm provides a feedback value

96

6 Case Study Setup 6.4 Demonstrator Hardware

for each sensor that describes the current dependability of that sensor. The
result from the robust certainty grid algorithm is used by a navigation and path
planning unit at the control level. The measurements from the ultrasonic sen-
sors are fused to a unique observation using the confidence-weighted averaging
algorithm. Based on the available information the navigation and path plan-
ning unit decides about a navigation path. This path is defined by turn angle
and travel distance. A motion control unit hosted at the fusion/dissemination
level takes over the navigation path and generates the appropriate values for the
steering and speed control node while paying attention to the covered distance
provided by the position sensor.

6.4 Demonstrator Hardware

This section describes the relevant hardware components that form the demon-
strator. Figure 6.2 depicts a categorization into three fields - mechanical hard-
ware, electrical and electromechanical hardware, and TTP/A transducer hard-
ware. The mechanical layer consists of the main chassis of the smart car, which
is an off-the-shelf four-wheeled model car fitted with a wooden mounting board.
The electrical and electromechanical hardware refers to the physical sensors,
power supplies, servos, LED indicators, and other components such as addi-
tional power supply busses. The smart transducer hardware layer consists of
the fieldbus network with TTP/A nodes and the TTP/A communication bus.
Within the scope of this thesis, the distance sensors and the navigation node
that perform sensor fusion and navigation are of special interest.

6.4.1 Electrical and Electromechanical Hardware

This section provides detailed descriptions of the infrared and ultrasonic sensors
that are used in the mobile robot for scanning the environment. Furthermore,
the electrical/electromechanical hardware comprises four servo units, a speed
controller, and a position shaft encoder. The properties and the instrumenta-
tion of these components are not within the scope of this thesis, but can be
found in [Dia02].

Infrared Sensors

The Sharp GP2D02 infrared distance sensor is a low-cost distance sensor for
the purpose of measuring distances to objects within the range of 10–80 cm. It
is designed for usage in combination with small microcontrollers and is capable
of taking measurements in varying light conditions and against a wide variety

97

6.4 Demonstrator Hardware 6 Case Study Setup

Figure 6.2: Hardware parts of smart car (from [Dia02])

of surfaces. The distance measuring technique employed by the GP2D02 is tri-
angulation. For this purpose, the GP2D02 emits light and detects rays reflected
by an object. By measuring the angle of the incoming rays and the knowledge
of the distance between the light source and drain, the distance from the sensor
to a reflecting object can be calculated. The output signal of the GP2D02 is
proportional to the angle and not the distance, thus the actual distance must
be calculated by the host microcontroller. Figure 6.3 depicts the conversion
function from the sensor signal to the distance of the reflective object. Objects
closer than 10 cm are not recognized correctly. Due to the static environment
of the smart car, we can ensure that objects are recognized and avoided at
distances greater than 10 cm. The conversion function can be approximated by
a hyperbolic function,

dist =
KG

xSENSOR −K0

(6.1)

where KG and K0 are sensor-dependent constants, xSENSOR is the sensor signal
and dist is the actual distance to the detected object in centimeters.

The GP2D02 needs a supply voltage within the limits of 4.4V to 7V and a
suitable clock signal for proper operation. A 4-pin connector is used to connect
the four wires required by the GP2D02: power, ground, clock in (VIn) and signal

98

6 Case Study Setup 6.4 Demonstrator Hardware

output (VOut). Figure 6.4 shows a timing diagram of the process of initiating a
measurement cycle and reading the data using serial communication. To place
the sensor in idle mode, VIn must be set to high. If VIn is high for more than
1.5ms, the sensor will reset and go into idle mode. As shown in the timing
diagram, setting VIn to low initiates the measurement cycle. After the delay
needed by the sensor to take the reading, the sensor raises VOut, signaling that
it is ready to provide the data. VIn will then be toggled between high and low.
The output data is transmitted using a serial communication scheme, the most
significant bit is transmitted first. Each bit is valid shortly after the falling
clock edge. After this cycle is finished, VIn should be held high at least for the
duration of the minimal inter-measurement delay.

The case of the sensor is a conductive plastic material. To insure reliable,

Distance to reflective object L (cm)

220

210

200

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50
0 20 40 60 80 100 120

Gray paper

White paper

O
ut

pu
t v

al
ue

 o
f

th
e

G
P2

D
02

Figure 6.3: Infrared sensor signal vs. distance to reflective object

In

VOut

V

0.1ms

MSB LSB

70ms 1.6ms 2ms

0.1ms

Figure 6.4: Timing diagram for the GP2D02 sensor

99

6.4 Demonstrator Hardware 6 Case Study Setup

Ω
Ω

3k

TTP/A Controller

3k

V
cc

 3
V

 2

G
N

D
 1

InO
ut

V

 4
Figure 6.5: Connection diagram for the GP2D02 infrared sensor

noise-free measurements, the case is connected to ground. Otherwise the sen-
sor sometimes reports an object even if none is present. Since the VIn signal
must remain within the range -0.3V to +3.0V while the output level of the
microcontroller is around +5V, two resistors are used to achieve an appropri-
ate signal level. Figure 6.5 depicts the circuit that interconnects sensor and
microcontroller.

Ultrasonic Sensors

For detection of objects at distances greater than 80 cm we use two Polaroid
6500 series ultrasonic sensors. The sensing is performed by a sonic ping at a
specific frequency that travels from the transducer to the object and back. In
the case of the Polaroid ultrasonic module, 16 pings generated by transitions
between +200V and –200V with a frequency of around 50 kHz are used. The
chirp moves radially from the source through the air at the speed of sound,
approximately 340 m

sec
. When the chirp reaches an object, it is reflected in

varying degrees depending on the shape, orientation, and surface properties
of the reflecting surface. This reflected chirp then travels back towards the
transducer. As the reflected signal hits the transducer, a voltage is created,
which is fed to a stepped-gain amplifier. To avoid wrong measurements, the
module only reports objects that have provided an echo to subsequent pings.

Figure 6.6 describes the timing diagram for the ultrasonic sensor. A transi-
tion from low to high at the INIT pin causes the generation of a chirp. When the
sensor receives the reflected signal, it raises the ECHO pin. Thus, the transducer
node is able to measure the duration required by the sound to pass twice the
distance chirp source to obstacle. Consequently, the distance can be calculated

100

6 Case Study Setup 6.4 Demonstrator Hardware

Vcc

INIT

measurement

ECHO

start of
measurement

echo
received

end of

Figure 6.6: Timing diagram for the ultrasonic sensor

by the following equation:

dist =
tECHO [sec]− tINIT [sec]

2
· 333[

m

sec
] (6.2)

The measured duration tECHO has to be corrected by the initialization time
tINIT . For the employed modules, the value tINIT is 0.55msec. The sonic speed
of 333 m

sec
is valid for sonic wave propagation in air of average humidity at 20

degree Celsius at sea-level pressure.

6.4.2 TTP/A Nodes

The network comprises of 13 TTP/A fieldbus nodes. Some of them were de-
signed especially for this project while others have been adopted from existing
applications (see [Pet00]). Each TTP/A node is equipped with a Motorola
MC33290 ISO K Line Serial Link interface in order to establish a communica-
tion at a bus speed of 9600 baud.3 All TTP/A nodes are implemented in accor-
dance with the standardized smart transducers interface specification [OMG02].

Figure 6.7 shows the three node types that have been used with the smart
car. Except for transducer-specific circuitry, all nodes are implemented on
commercial-off-the-shelf microcontrollers on a printed circuit board of about
4 cm x 4 cm. The node hardware has been designed and programmed at the
Institut für Technische Informatik at the University of Technology in Vienna.
Figure 6.8 depicts the network schematic and placement of the 13 nodes on
the smart car. The following paragraphs describe the hardware of the nodes
employed in the smart car:

3The performance of the particular nodes also allows higher transmission rates up to
38400 baud, however we have chosen 9600 baud in order to show the capability of TTP/A
to provide a high net bandwidth due to its high data efficiency.

101

6.4 Demonstrator Hardware 6 Case Study Setup

Figure 6.7: Employed TTP/A node types (from left to right: master node with
monitoring interface, slave node based on AT90S4433 MCU, slave node based
on ATMega128 MCU with external RAM; scale in centimeters)

Master node: The master node consists of an Atmel AT90S8515 microcon-
troller and is clocked by a 7.3728MHz quartz that allows standard baud
rates for the hardware UART. The Atmel AT90S8515 microcontroller is
a low-power CMOS 8-bit microcontroller based on the AVR RISC ar-
chitecture. It features 8KB of in-system programmable flash, 512 bytes
of SRAM and 512 bytes of in-system programmable EEPROM. It also
has one 8-bit and one 16-bit timer/counter with separate prescaler and a
programmable serial UART.

The master has full access to the file system of all nodes in the network,
and is also used as a gateway to other networks. The gateway provides
a monitoring interface for accessing the IFS contents of any node in the
network. Thus, a monitoring tool on a PC can access the cluster via an
RS232 serial link. Besides monitoring, the master’s task is to provide a
periodical synchronization event to all nodes via the TTP/A bus, thus
enabling conflict-free TDMA communication.

Infrared nodes: The three infrared nodes use an Atmel AT90S4433 micro-
controller clocked by a 7.3728MHz quartz. This microcontroller fea-
tures 4KB of in-system programmable flash, 128 bytes of SRAM and
128 bytes of in-system programmable EEPROM. Besides the interface to
the TTP/A bus, each infrared node contains the circuitry for interfacing
one Sharp GP2D02 distance sensor.

Servo control nodes: Each of the three infrared sensors is mounted on a
servo in order to detect objects at different angles in front of the car. Each
servo is instrumented by an Atmel AT90S4433 microcontroller clocked by
a 7.3728MHz quartz.

102

6 Case Study Setup 6.4 Demonstrator Hardware

IR3

Serv3
 IR
3

Serv1

Serv2
 IR
2

S
�

erv

3

�

IR1

S
�

erv

1

IR2

S
�

erv

2

�

S
�

teer

U
S

 2

U
S

 1

US1

US1
Speed

Pos

T
T

P

/A

M

as
te

r

S
p

ee
d

co

n
tr

o
l

P
o

w
er

 s
u

p
p

ly

Steering Servo

(underneath)

Position encoder

(underneath)

T
�

TP
/
�
A Bus

IR
1

Nav

Nav .Navigation node IR1 Middle infrared sensor node
Pos Position encoder node IR2 . Right forward infrared sensor node
Speed Speed control node IR3 . . . Left forward infrared sensor node
Steer Steering control node Serv1 Servo control node for IR1
US1 Right ultrasonic sensor node Serv2 Servo control node for IR2
US2 Left ultrasonic sensor node Serv3 Servo control node for IR3

Figure 6.8: Network schematic of smart car

Steering control node: The steering of the car is performed by an extra
servo that allows turning of the two front wheels. Likewise, this servo is
also instrumented by an Atmel AT90S4433 microcontroller clocked by a
7.3728MHz quartz.

Ultrasonic nodes: Each of the two ultrasonic sensors is controlled by an At-
mel AT90S4433 microcontroller clocked by a 7.3728MHz quartz and an
integrated circuit featuring a stepped-gain amplifier that creates the chirp
signal levels for the ultrasonic sensors.

Position encoder node: The position encoder node controls the travelled
distance of the smart car by use of a shaft encoding sensor that counts the
number of revolutions of a measuring wheel. The position node utilizes
an Atmel AT90S4433 microcontroller clocked by a 7.3728MHz quartz.

Speed control node: The speed control node instruments a digital speed

103

6.5 Demonstrator Software 6 Case Study Setup

control unit that sets the motor speed and direction. The speed node
utilizes an Atmel AT90S4433 microprocessor clocked by a 7.3728MHz
quartz.

Navigation node: The navigation node is a pure computation node without
associated transducer. The navigation node is implemented with an At-
mel ATMega128 microcontroller, which is a high performance, low-power
8-bit RISC microcontroller with 128KB of in-system reprogrammable
flash memory, 4KB of EEPROM and 4KB of RAM. The microprocessor
has been equipped with an 14.7456MHz quartz and 32KB of external
memory. A key advantage of the ATMega128 is that, while providing
greater performance, it is fully backward compatible with the ATMega103
microcontroller (in ATMega103 compatibility mode supported on fuse
M103C), which is well supported by the AVR-GCC compiler and current
TTP/A implementations.

6.5 Demonstrator Software

This section describes the tasks of the smart car software parts. As depicted in
the system architecture, the system can be split up into local infrared sensor fil-
tering, servo control, grid generation, navigation/path planning, and intelligent
motion control.

6.5.1 Infrared Sensor Filter

The GP2D02 shows problematic behavior, when there are no objects within the
sensor’s detection range (about 110 cm). In this case, the sensor returns jitter-
ing measurements that, depending on the sensor constants KG and K0, can also
correspond to measurements within the 80 cm range specified in the sensor’s
data sheet. Since it was not feasible to operate the sensor only when objects
are present within its defined range, we developed a simple filter algorithm that
compares subsequent measurements and detects the so-called infinity case. The
main difference between a sensor reading corresponding to a detected object
and a sensor reading corresponding to infinity is the variation of the sensor
readings. The filter uses a linear first-in-first-out (FIFO) queue that caches the
last four infrared sensor readings in order to estimate the variance of the sensor
signal. If the variance is above a particular threshold, the observation is con-
sidered to be an infinity measurement, i. e., no objects are present at a distance
of about 100 cm. Otherwise, the median of the history values is determined
and used in equation 6.1 for calculating a distance measurement.

104

6 Case Study Setup 6.5 Demonstrator Software

6.5.2 Servo Control

The servo control unit instruments the three servo motors for infrared sensor
IR 1, IR 2, and IR 3 in order to perform a sweep over a sector of 72 degrees for
each sensor. The sectors overlap each other partially so that all three sensors
cover an overall view of 120 degrees.

Each servo is instrumented to rack up 13 distinct positions that create the
same number of viewing angles for the infrared sensors. The necessary time
for switching from one position to the next is a critical parameter and depends
on the employed servo, the angle difference to go, and the supply voltage level.
For the smart car we have determined a minimum value of 200msec that is
necessary to move from one servo position to the next. However, since the
filter algorithm for the infrared sensors needs multiple measurements at every
position, we increased this time to 500msec to be on the safe side. The servos
are instrumented like a windshield wiper [Sch01]. This approach visits every
second position in its forward wipe and the other positions in its backward
wipe. Besides setting the servos, the servo control unit reports the current
position of the servos to the grid generation unit.

6.5.3 Grid Generation

The task of the grid generation unit is to integrate the sensor measurements
from the three infrared distance sensors into a grid of 17 x 11 cells. Each cell
corresponds to an area of 10 cm x 10 cm in the car’s environment.

For each of the 13 viewing angles created by the servo control unit, the
sensor’s line of sight has been generated in the grid for each of the three sensors.
Figure 6.9 depicts the lines in the grid. The numbers refer to the respective
servo positions. The dark box on the lower center of each grid represents the
smart car. Sensor 3 is located on the left corner, sensor 1 in the middle, and
sensor 2 on the right corner. In order to save memory, the lines are stored only
by their endpoints in the grid. Each new distance measurement is added to the
grid by proceeding along the line using the Bresenham line algorithm [Hea86].
All line points that are within the measured distance are fused as free with
the respective grid cell value. At the cell that corresponds with the measured
distance, the value for occupied is fused with the respective grid cell value.
The fusion of a free or occupied measurement with the cell occupancy value is
performed by the robust certainty grid algorithm, which has been introduced
in section 5.3. Alternatively, we implemented Bayesian fusion, as described in
section 3.2.5.

105

6.5 Demonstrator Software 6 Case Study Setup

Figure 6.9: Line of sight for each position and sensor (from [Dia02])

6.5.4 Navigation and Path Planning

In order to achieve fast advancement, two different modes of operation have
been defined. As long as no obstacles are detected, the car operates in “rabbit
mode”. In this mode the car drives straight forward at full speed using only
the ultrasonic sensors to percept the environment. The ultrasonic sensors are

106

6 Case Study Setup 6.5 Demonstrator Software

capable of reporting obstacles straight ahead of the car within a range of about
150 cm.

In case an obstacle is detected, the car switches to “turtle mode”. In this
mode the car stops, performs a sensor sweep, and builds a map of the obstacles
ahead by using the robust certainty grid algorithm. Then the navigation and
path planning algorithm is executed doing the following steps:

Path planning: The first step in navigational decision-making is to plan the
paths that the car can take, given a fixed set of steering constants. The
steering slave node can currently handle up to 85 distinct constants. How-
ever, since most of them do not make a significant directional difference
for the short distances that apply in our application, we reduced the num-
ber of possible directions to 13 evenly-spaced directional paths. Each path
contains the grid cells the car is crossing when choosing the respective
direction. Figure 6.10 depicts the 13 paths in relation to the certainty
grid.

Path assessment: A key factor in sensible navigation decision-making lies in
being able to understand the relative risk of different obstacles in one’s
path. Naturally, closer obstacles pose greater risks than further away
obstacles. The smart car uses a simple risk distribution scheme wherein
the visible region around the smart car is divided into concentric rings
of 20 cm width. Each of these rings is then given a unique risk weight
for all the grid cells in that ring, starting with the least risk for the
ring containing the farthest visible point. Figure 6.11 depicts the risk
distribution scheme in relation to the certainty grid.

Using the information about the occupancy value of a cell cell .occ and
the risk of a cell cell .risk , a risk assessment for each path can be derived
using the following equation:

riskpath =
∑

cell∈path

cell .risk · cell .occ (6.3)

Decision making: Once the expected risk for each of the 13 paths is evalu-
ated, all paths with assessed risks above a particular threshold value are
discarded. From the remaining set of paths the one with the highest pref-
erence is chosen. Figure 6.12 depicts an example scenario for navigation
decision-making. Out of five possible paths, the directions 00, 01, 02, 06,
and 07 remain as feasible paths. Higher numerical values for PREFERENCE
indicate higher priority for that direction. If more than one feasible path
with highest PREFERENCE is available, the path with the lowest risk and
.......

107

6.5 Demonstrator Software 6 Case Study Setup

Figure 6.10: Path planning (from [Dia02])

Figure 6.11: Risk distribution scheme (from [Dia02])

108

6 Case Study Setup 6.5 Demonstrator Software

Figure 6.12: Example scenario for navigation decision-making (from [Dia02])

highest PREFERENCE is chosen. If this criterium is still ambiguous, the
path with the lower direction index is chosen. In the current implemen-
tation, the preference values have been chosen in order that the path
closest to driving straight ahead is given preference. If the set of feasible
paths is empty, i. e., no path with a risk below the threshold value is
available, the car aborts further action and stops.

In the next stage of extension, the car will retrace its path in case of a dead
end until a decision to go forward can be made, which does not repeat
the path it just retraced. Furthermore, the car will be equipped with
self-localization and the preference values will be modified with respect
to the location of a goal in relation to the position of the smart car.

6.5.5 Fusion of Ultrasonic Observations

Due to the wide detection field of the ultrasonic sensors, it is not feasible
to integrate the observations from the ultrasonic sensors into the sensor grid.
Therefore, the information from the sensors is processed separately using the
confidence-weighted averaging algorithm introduced in section 5.2.5.

Each ultrasonic sensor transmits a measurement and confidence value at
predetermined points in time. The confidence value is chosen by the ultrasonic
transducer based on the measurement range. The conversion function of the
ultrasonic smart transducers has been optimized for ranges farther than 100 cm,
therefore, the accuracy is worse for short distances. Table 6.1 depicts the
relation between measurement range and confidence for the ultrasonic smart
transducers.

The combination of the two measurement values x1 and x2 is straight for-
ward. First, the respective variance values V[S1] and V[S2] for the transmitted

109

6.5 Demonstrator Software 6 Case Study Setup

Measurement range Confidence
(cm)

[0,12) 2
[12,18) 3
[18,24) 4
[24,30) 5
[30,38) 6
[38,150] 11

Table 6.1: Relation between measurement range and confidence for the ultra-
sonic sensors

confidence level are determined using table 5.1. Since there are only two mea-
surements to be fused, the fusion algorithm can be simplified to the following
two equations:

x̄ =
x1 · V[S2] + x2 · V[S1]

V[S1] + V[S2]
(6.4)

V[SO] =
V[S1] · V[S2]

V[S1] + V[S2]
(6.5)

The resulting value is x̄ with an expected variance V[SO]. By using table 5.1
as reference, the confidence of the fused value can be generated. The resulting
confidence is always at least as high as the highest confidence among the input
observations.

6.5.6 Intelligent Motion Control

The purpose of the intelligent motion control unit is to liberate the navigation
and path planning unit from actuator control issues. Navigation and path plan-
ning issues a path, described by direction and length, to the intelligent motion
control unit. In turtle mode, length is constant in the current implementation,
i. e., the car advances in steps of 20 cm in turtle mode. In rabbit mode, the car
advances straight forward until the ultrasonic sensors detect an object. Thus,
the intelligent motion control unit sets an appropriate forward speed until the
given distance is covered in turtle mode or the ultrasonic sensors report an
obstacle in rabbit mode.

110

6 Case Study Setup 6.6 Chapter Summary

6.6 Chapter Summary

This chapter described the design and implementation of a sensor fusion case
study in form of an autonomous mobile robot, the smart car. The robot’s
task is to navigate through a static obstacle course by perceiving its immediate
environment with help of a combination of infrared and ultrasonic distance
sensors.

The hardware of the smart car mainly consists of commercial components,
which are interfaced by TTP/A smart transducer nodes designed at the Institut
für Technische Informatik at the University of Technology in Vienna. The
robot’s architecture implements a three-level design approach according to the
time-triggered sensor fusion model. The transducer level contains the sensors
and actuators and hosts a sensor filter algorithm for the infrared sensors. The
sensor filter is expected to enhance the data quality of the distance sensors and
to overcome a problem with free space detection. The fusion/dissemination
level contains units for grid generation, servo control, ultrasonic sensor fusion,
and intelligent motion control. At the control level, a navigation and path
planning unit makes control decisions about the movements of the car.

111

6.6 Chapter Summary 6 Case Study Setup

112

Chapter 7

Experiments and Evaluation

“Si non è vero, è molto ben trovato.”

Giordano Bruno

This chapter describes the results of the experiments that have been conducted
in order to verify the proposed methods and approaches of this thesis. The
first section analyzes the behavior of the sensors that are employed in the
demonstrator and evaluates a local filtering method and two fusion algorithms.
Section 7.2 investigates on the certainty grid by comparing the performance of
the original certainty grid using Bayes’ rule for fusion to our proposed robust
certainty grid algorithm. Section 7.3 discusses the presented results.

7.1 Analysis of Sensor Behavior

The performance of the sensors is crucial for every application that interacts
with the environment. This section evaluates the sensor behavior of the ultra-
sonic and infrared distance sensors.

7.1.1 Raw Sensor Data

Experiment Setup

In order to get information about the sensor’s behavior, we evaluate each of
the three distance sensors and each of the two ultrasonic sensors separately.
Each single sensor is included in a minimal TTP/A network containing the
smart transducer that is instrumenting the distance sensor, and a TTP/A mas-
ter node that also acts as monitoring node transmitting the observations via

113

7.1 Analysis of Sensor Behavior 7 Experiments and Evaluation

TTP
/A Bus

TTP
/A

Master

TTP
/A

Transducer
 Test

Obstacle

RS232

Sensor

under Test

Recorder

Figure 7.1: Setup for individual sensor testing

RS232 to a PC (see figure 7.1). The test obstacle has a white surface providing
good reflection for the infrared sensors. All sensor measurements are made
periodically while the RS232 speed (115200 Bit/sec) is chosen fast enough in
order not to loose measurements. At the PC, a conventional terminal program
is used to record the incoming data. The evaluation of the measured data is
performed off-line. Due to the risk of sensor interference, there are no other
active sensors during a measurement series.

Infrared Sensor Data

The behavior of the three infrared sensors IR 1, IR 2, and IR 3 is critical for
the grid generation. In a first run, we place the obstacle at a distance of 10
centimeters to the sensor and performed a set of 70 measurements while not
moving the object. Then we move the object 5 centimeters away and repeat the
measurement until we reach a distance where the sensor is not able to recognize
the object anymore. This distance has been around 110 centimeters for all three
sensors although the sensor’s datasheet specifies a maximum metering range of
80 centimeters.

Using least mean square optimization, we derive the sensor constants KO

and KG as depicted in table 7.1 for each of the three infrared sensors mounted
on the robot.

For a distance between 10 and 110 centimeters the sensors deliver rather
clear signals. However, when a sensor does not detect an object within a range

114

7 Experiments and Evaluation 7.1 Analysis of Sensor Behavior

of about 110 centimeters, the sensor delivers arbitrary signals within a wide
range. Since a major part of the returned values corresponds to distances
within the sensor’s measurement range, it is problematic to use the sensors
when no object is within range.

Sensor KO KG

IR 1 64 1918
IR 2 74 2211
IR 3 41 1742

Table 7.1: Sensor constants determined during calibration

60 70 80 90 100 110 120
Sensor output

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(a) IR 1: Sensor signal
for d=80 cm

60 70 80 90 100 110 120
Sensor output

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(b) IR 2: Sensor signal
for d=80 cm

60 70 80 90 100 110 120
Sensor output

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(c) IR 3: Sensor signal
for d=80 cm

60 70 80 90 100 110 120
Sensor output

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(d) IR 1: Sensor signal
for d > 110 cm

60 70 80 90 100 110 120
Sensor output

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(e) IR 2: Sensor signal
for d> 110 cm

60 70 80 90 100 110 120
Sensor output

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(f) IR 3: Sensor signal for
d> 110 cm

Figure 7.2: Sensor signal variations for a detected object and free space

115

7.1 Analysis of Sensor Behavior 7 Experiments and Evaluation

Figure 7.2 depicts the large variation of the sensor signal of the three in-
frared sensors when no object lies within the sensor’s range. We have examined
10 different Sharp GP2D2 distance sensors which all show similar behavior.
However, the sensors differ in their calibration constants, which are used to
convert the sensor’s signal to a distance measurement. In the following we
evaluate the three infrared sensors (IR1, IR2, and IR3) that are placed on the
robot. Figure 7.3(a) depicts the error histogram of the converted sensor signal
for measurements with objects in range. Since the autonomous mobile robot is
supposed to operate in environments where not always an obstacle is present
within the sensors measuring range, this free space case also is of interest. Fig-
ure 7.3(c) depicts the error histogram of the converted sensor signal of sensor 1
when no objects are within range. Figure 7.3(b) evaluates a hybrid situation,
where half of the sensor’s measurements apply to an object and the other half
of the sensor’s measurements detect only free space. Due to the sensor behavior
for free space, the error variation is large in the latter two situations. The same
scenario is applied to sensor 2 and sensor 3 in figures 7.3(d-f) and figure 7.3(g-i)
yielding a similar result.

Sensor Mean squar-
ed error

Mean abso-
lute error

Estimated
variance

Respective
confidence

(cm2) (cm) (cm2)

IR 1 (d ≤ 80 cm) 228.38 5.97 212.98 4
IR 1 (hybrid) 860.87 14.35 686.08 2
IR 1 (d > 110 cm) 1880.50 28.27 1078.30 2
IR 2 (d ≤ 80 cm) 242.04 7.25 233.15 4
IR 2 (hybrid) 226.04 7.15 206.56 4
IR 2 (d > 110 cm) 162.13 6.24 127.92 5
IR 3 (d ≤ 80 cm) 108.45 7.35 104.82 5
IR 3 (hybrid) 795.57 18.59 538.91 3
IR 3 (d > 110 cm) 1945.08 37.65 505.68 3

Table 7.2: Quality of calibrated infrared sensor data

Table 7.2 lists the measured average squared error and the average absolute
error of the three infrared sensors. From the estimated variance, a basic con-
fidence value for each sensor can be derived. When the infrared sensors also
have to detect free space situations, the behavior of the sensors worsens, except
for sensor 2. This is due to the large values of the conversion function for KG

and K0 for sensor 2. In case of sensor 2, all measurements on free space are
converted to distances of greater than 80 cm which is a correct value.

116

7 Experiments and Evaluation 7.1 Analysis of Sensor Behavior

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(a) IR 1: All obstacles
within 80 cm

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(b) IR 1: Hybrid situa-
tion

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(c) IR 1: All obstacles
farther than 110 cm

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(d) IR 2: All obstacles
within 80 cm

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(e) IR 2: Hybrid situa-
tion

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(f) IR 2: All obstacles
farther than 110 cm

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(g) IR 3: All obstacles
within 80 cm

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(h) IR 3: Hybrid situa-
tion

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(i) IR 3: All obstacles
farther than 110 cm

Figure 7.3: Error (in cm) of calibrated infrared sensor data

117

7.1 Analysis of Sensor Behavior 7 Experiments and Evaluation

Ultrasonic Sensor Data

The ultrasonic sensors US 1 and US 2 provide a measuring range of up to 6
meter. We evaluate the range from 10 to 150 centimeter that is relevant for the
operation of the robot. Figure 7.4 depicts the distribution of the error between
the measured and actual distance.

-60 -40 -20 0 20 40 60
Error in cm

0.1

0.2

0.3

0.4

0.5

0.6

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(a) Ultrasonic Sensor 1

-60 -40 -20 0 20 40 60
Error in cm

0.1

0.2

0.3

0.4

0.5

0.6

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(b) Ultrasonic Sensor 2

Figure 7.4: Probability density functions of the error (in cm) for the ultrasonic
sensors

Sensor Mean squar-
ed error

Mean abso-
lute error

Estimated
variance

Respective
confidence

(cm2) (cm) (cm2)

US 1 (overall) 9.9 1.88 9.12 8
US 1 (10< d ≤25) 115.86 10.74 116.69 5
US 1 (25< d ≤35) 28.29 5.23 28.00 7
US 1 (35< d ≤100) 1.01 1.00 1.02 12
US 2 (overall) 9.52 1.86 8.68 9
US 2 (10< d ≤25) 110.14 10.74 116.69 5
US 2 (25< d ≤35) 27.71 5.17 28.00 7
US 2 (35< d ≤100) 1.03 1.01 1.03 12

Table 7.3: Quality of calibrated ultrasonic sensor data

118

7 Experiments and Evaluation 7.1 Analysis of Sensor Behavior

Table 7.3 lists the measured average squared error and the average abso-
lute error of the ultrasonic sensors. The measured confidences approximately
agree with the expected confidence values that have been used in the smart
transducer implementation (see table 6.1). Compared to the values obtained
for the infrared sensors (see table 7.2), for distances farther than 30 cm, the
overall accuracy of the ultrasonic sensors is significantly better than the overall
accuracy of the distance sensors.

7.1.2 Sensor Filtering

In order to improve the accuracy of a single sensor and to overcome the free
space detection problem, we employed the filter algorithm that is described
in section 6.5.1. The filter uses a history of four values to derive a smoothed
value. Furthermore, the estimated variance of the four samples is used to decide
between the object and the free space case.

Table 7.4 lists the measured average squared error and the average absolute
error of the three infrared sensors with filtering and is directly comparable to
table 7.2. Error and variance are improved for every examined situation in
comparison to the unfiltered case.

Sensor Mean squar-
ed error

Mean abso-
lute error

Estimated
variance

Respective
confidence

(cm2) (cm) (cm2)

IR 1 (d ≤ 80 cm) 65.99 2.92 66.05 6
IR 1 (hybrid) 249.67 8.28 298.17 4
IR 1 (d > 110 cm) 573.89 17.32 881.79 2
IR 2 (d ≤ 80 cm) 133.10 5.18 133.91 5
IR 2 (hybrid) 161.40 5.53 161.96 4
IR 2 (d > 110 cm) 53.08 3.44 65.48 6
IR 3 (d ≤ 80 cm) 45.39 5.34 62.50 6
IR 3 (hybrid) 66.96 4.10 78.21 5
IR 3 (d > 110 cm) 98.91 1.88 103.34 5

Table 7.4: Filtered sensor data

Figure 7.5 depicts the error histograms of the filtered sensor signal mea-
surements and is directly comparable to figure 7.3. While the behavior for
measurements of obstacles within range (see figure 7.5(a,d,g)) is nearly un-
changed, the situation for the free space detection case (see figure 7.5(c,f,i))
significantly improves for all three sensors, which also influences the hybrid
situation (see figure 7.5(b,e,h)).

119

7.1 Analysis of Sensor Behavior 7 Experiments and Evaluation

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(a) IR 1: All obstacles
within 80 cm

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(b) IR 1: Hybrid situa-
tion

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(c) IR 1: All obstacles
farther than 110 cm

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(d) IR 2: All obstacles
within 80 cm

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(e) IR 2: Hybrid situa-
tion

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(f) IR 2: All obstacles
farther than 110 cm

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(g) IR 3: All obstacles
within 80 cm

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(h) IR 3: Hybrid situa-
tion

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(i) IR 3: All obstacles
farther than 110 cm

Figure 7.5: Error (in cm) of filtered infrared sensor data

120

7 Experiments and Evaluation 7.1 Analysis of Sensor Behavior

7.1.3 Fused Sensor Data

This section investigates on the performance of the competitive multi-sensor
data fusion methods proposed in this thesis. The fusion of data from two ul-
trasonic distance sensors is evaluated for the smart car case study. Although
not directly applied in the case study, we also examine on fusion of infrared
and heterogeneous sensor data in order to acquire data about the performance
of the confidence-weighted algorithm presented in section 5.2.5. As a bench-
mark we process the same sensor data with the fault-tolerant sensor averaging
algorithm published by Marzullo [Mar90] as well. The fault-tolerant sensor
averaging algorithm assumes each sensor to deliver an interval containing the
correct value. By intersecting the intervals from multiple sensors, a smaller
interval containing the correct value can be derived. We derive the interval
for each sensor by using the sensor’s value and its assigned confidence. The
limits for the interval are derived by assuming a uniform probability distri-
bution using the worst-case variance for a given confidence value depicted in
equation 5.1. Likewise, the resulting interval can be converted to value and
confidence value. The fault-tolerant sensor averaging algorithm is described in
detail in section 3.2.6.

Experiment Setup

In order to get information about the fusion performance, we use the three
distance sensors and the two ultrasonic sensors concurrently. The sensors are
included in a TTP/A network containing smart transducers for instrumenting
the distance sensors, a fusion node that fuses the data and broadcasts the fused
data, and a TTP/A master node that acts also as monitoring node transmitting
the observations via RS232 to a PC (see figure 7.6). The test obstacle, the PC
recorder setup and the measurement evaluation are identical to the experiment
setup for the individual sensor evaluation (see section 7.1.1). The evaluation
of the fused data is performed off-line.

Two Ultrasonic Sensors

Figure 7.7 depicts the error histogram of the results from fusion of the two
ultrasonic sensor data sources. Figure 7.7(a) corresponds to the results ob-
tained with the fault-tolerant sensor averaging algorithm with t = 0, while
figure 7.7(b) lines out the results from fusion with the confidence-weighted
average algorithm.

121

7.1 Analysis of Sensor Behavior 7 Experiments and Evaluation

TTP
/A Bus

TTP
/A

Master

Test

Obstacle

RS232

Sensors

under Test

Recorder

Fusion

Node

IR1

IR2

IR3

US1

US2

TTP
 /A Smart

Transducers

Figure 7.6: Setup for sensor fusion testing

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(a) Fault-tolerant sensor averaging

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(b) Confidence-weighted average

Figure 7.7: Fusion result using data from sensors US 1 and US 2

Three Infrared Sensors

Figure 7.8 depicts the error histogram of the results from fusion of the three
unfiltered infrared sensor data sources. Figure 7.8(a) corresponds to the results
obtained with the fault-tolerant sensor averaging algorithm with t = 1, while
figure 7.8(b) lines out the results from fusion with the confidence-weighted av-
erage algorithm. For the fault-tolerant sensor averaging algorithm, the number
of tolerated sensors failures t has been set to 1.

122

7 Experiments and Evaluation 7.1 Analysis of Sensor Behavior

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(a) Fault-tolerant sensor averaging

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(b) Confidence-weighted average

Figure 7.8: Fusion result using unfiltered data from sensors IR 1, IR 2, and IR 3

Three Infrared Sensors with Filtering

The filter algorithm used for the infrared sensors fuses subsequent measure-
ments in order to detect the case when no obstacles are within the sensor’s
range. Figure 7.9 depicts the error histogram of the results from fusion of the
three filtered infrared sensor data sources. Figure 7.9(a) corresponds to the
results obtained with the reliable abstract sensor algorithm, while figure 7.9(b)
lines out the results from fusion with the confidence-weighted average algo-
rithm. As with the unfiltered sensor data, a value of t = 1 produces the best
results for the reliable abstract sensor algorithm.

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(a) Fault-tolerant sensor averaging

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(b) Confidence-weighted average

Figure 7.9: Fusion result using filtered data from sensors IR 1, IR 2, and IR 3

Three Infrared Sensors and Two Ultrasonic Sensors

For this experiment a heterogeneous sensor configuration is used. Since both
fusion algorithms support data sources with different uncertainty levels, the

123

7.1 Analysis of Sensor Behavior 7 Experiments and Evaluation

integration of various sensor types is straightforward. In contrast to the homo-
geneous configurations evaluated before, only a heterogeneous sensor configu-
ration is able to compensate errors that are correlated in homogeneous sensors,
like the inaccuracies of the ultrasonic sensors for distances below 35 cm or the
problems of the infrared sensors in free space detection. Figure 7.10 depicts
the error histograms for the result of fusing the unfiltered infrared sensor data
with the ultrasonic sensor data. The fault-tolerant sensor averaging algorithm
performs best for a value of t = 2. Figure 7.11 depicts the error histograms
for the result of fusing the unfiltered infrared sensor data with the ultrasonic
sensor data. Likewise, the fault-tolerant sensor averaging algorithm performs
best for a value of t = 2.

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(a) Fault-tolerant sensor averaging

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(b) Confidence-weighted average
algorithm

Figure 7.10: Fusion result using data from sensors US 1 and US 2 and unfiltered
data from sensors IR 1, IR 2, and IR 3

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(a) Fault-tolerant sensor averaging

-60 -40 -20 0 20 40 60
Error in cm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
re

qu
en

cy
of

O
cc

ur
re

nc
e

(b) Confidence-weighted average
algorithm

Figure 7.11: Fusion result using data from sensors US 1 and US 2 and filtered
data from sensors IR 1, IR 2, and IR 3

124

7 Experiments and Evaluation 7.1 Analysis of Sensor Behavior

7.1.4 Comparison of Results

The fault-tolerant sensor averaging algorithm proposed by Marzullo [Mar90]
needs the number of faulty sensors to be tolerated t as a configuration param-
eter. It is difficult to derive such a parameter from the real sensor data that
have been used. Therefore, we perform multiple runs of the fault-tolerant sen-
sor averaging algorithm for each possible t. Note that it is possible to assume
up to n − 1 faulty sensors out of a set of n sensors with this algorithm. Ta-
ble 7.5 lists the results obtained from the different runs using various sensor
configurations. The bold rows show the best configuration of t for the given set
of sensor sources. The selection of the best value for t depends on the number

Fusion sources t Mean squar-
ed error

Mean abso-
lute error

Estimated
variance

Respective
confidence

(cm2) (cm) (cm2)

US1 + US2 0 10.02 1.99 9.57 8
1 10.99 2.08 10.65 8

IR 1+IR 2+IR3 0 477.09 10.60 430.41 3
(unfiltered) 1 130.63 7.39 113.77 5

2 190.63 10.51 180.11 4
IR 1+IR 2+IR3 0 2061.90 26.25 1492.08 1
(filtered) 1 82.95 6.72 76.87 5

2 100.67 7.33 90.49 5
US1 + IR 1 0 1129.60 14.32 986.78 2
(unfiltered) 1 212.35 10.87 173.71 4
US1 + IR 1 0 1300.40 16.74 1092.96 2
(filtered) 1 212.08 11.18 181.74 4
US1 + US2 + 0 1646.96 18.84 1376.00 1
+IR 1+IR2+IR 3 1 260.00 3.96 257.69 4
(unfiltered) 2 48.25 4.57 45.55 6

3 117.55 7.21 101.87 5
4 190.63 10.51 180.11 4

US1 + US2 + 0 2387.56 28.88 1680.39 1
+IR 1+IR2+IR 3 1 139.74 3.45 138.99 5
(filtered) 2 12.21 2.49 11.86 8

3 70.08 6.44 63.15 6
4 100.67 7.33 90.49 5

Table 7.5: Performance of fault-tolerant sensor averaging algorithm for the
examined sensor configurations. t represents the number of faulty sensors to
be tolerated

125

7.1 Analysis of Sensor Behavior 7 Experiments and Evaluation

Fusion sources Mean squar-
ed error

Mean abso-
lute error

Estimated
variance

Respective
confidence

(cm2) (cm) (cm2)

US1 + US2 9.29 1.52 8.54 8

IR 1 + IR2 + IR 3 129.00 7.29 119.52 5
(unfiltered)
US1 + IR 1 7.41 1.66 6.96 9
(unfiltered)
US1 + IR 1 6.98 1.63 6.56 9
(filtered)
IR 3 + IR2 + IR 3 55.97 4.88 49.83 6
(filtered)
US1+US2+IR 1+IR 2+ 6.65 1.37 6.14 9
+ IR3 (unfiltered)
US1+US2+IR 1+IR 2+ 5.32 1.31 4.87 9
+ IR3 (filtered)

Table 7.6: Performance of the confidence-weighted average algorithm for the
examined sensor configurations

and quality of sensors. If t is not selected appropriately, the performance of the
algorithm drops significantly, which is a shortcoming if the fault-tolerant sen-
sor averaging algorithm is employed in sensor configurations where the sensor
quality is not known a priori.

Table 7.6 shows the respective values for fusion with the confidence-weighted
average algorithm that has been proposed in this thesis. The algorithm only
uses the information from the confidence values and the sensor data to create a
fused value, and thus is simpler to apply. In comparison to the results from the
fault-tolerant sensor averaging algorithm, the performance of the confidence-
weighted average algorithm is similar for homogeneous sensor configurations
and superior for heterogeneous sensor configurations.

Table 7.7 compares the average results on measurement time, power con-
sumption, and data quality (expressed by mean squared error and estimated
confidence) of the examined sensor data processing methods. Filtering and the
fusion of multiple measurements improve the data quality by a factor of four
for a single infrared sensor and a factor of two for the fused value from three
infrared sensors. However, filtering requires a measurement duration of almost
300 milliseconds due to the four subsequent measurements. We consider also
the power consumption, which is not effected by filtering software but by extra

126

7 Experiments and Evaluation 7.1 Analysis of Sensor Behavior

Sensor configuration
and processing

Duration per
Measurement

Power Con-
sumption

Mean squar-
ed error

Achieved
confidence

(msec) (mAat 5V) (cm2)

Single unfiltered in-
frared sensor

74 31.9 627.49 2

Single filtered infrared
sensor

295 31.9 159.34 4

Single ultrasonic sen-
sor

3. . . 34 75 9.71 8

Fusion of data from
three unfiltered in-
frared sensors

74 160.6 129.00 5

Fusion of data from
three filtered infrared
sensors

295 160.6 55.97 6

Fusion of data from
one unfiltered infrared
sensor and one ultra-
sonic sensor

74 179 7.41 9

Fusion of data from
one filtered infrared
sensor and one ultra-
sonic sensor

295 179 6.98 9

Fusion of data from
two ultrasonic sensors

3. . . 34 220 9.29 8

Fusion of data from
two ultrasonic sensors
and three unfiltered
infrared sensors

74 301 6.65 9

Fusion of data from
two ultrasonic sensors
and three filtered in-
frared sensors

295 301 5.32 9

Table 7.7: Comparison of sensor data processing methods using confidence-
weighted averaging as fusion method

hardware for further sensor and fusion nodes. The best data quality is achieved
with heterogeneous sensor fusion, whereof the infrared sensors have been fil-
tered. Note that the fusion of data from a single infrared sensor with data

127

7.2 Evaluation of Certainty Grid 7 Experiments and Evaluation

from a ultrasonic sensor produces even slightly better results than fusion of all
five sensors. This is due to correlation of error functions in sensors of the same
type. In this case the weight of the three infrared sensors is overestimated, thus
biasing the result.

An important aspect is the tradeoff between the measurement dynamics,
power consumption, and data quality. Using multiple sensors comes with
greater costs and increased power consumption. On the other hand, filtering
subsequent measurements from the same sensor comes with increased overall
measurement time.

In the smart car, filtered measurements from the infrared sensors are sepa-
rately fused and added to the robust certainty grid. For distance measurements,
a fused value from the two ultrasonic sensors is used.

7.2 Evaluation of Certainty Grid

In order to evaluate the robust certainty grid, which was introduced in sec-
tion 5.3, we test the grid generation for three situations using the real hardware
of the smart car. Each of the three infrared distance sensors is used as an input
to the robust certainty grid algorithm. The evaluation of the sensor’s behavior
in section 7.1 has shown that the sensors show a markable amount of inaccu-
racies and failures, which must be compensated by the robust certainty grid
algorithm. Since the main problem of the infrared sensors is the detection of
free space, the first situation to be tested does not contain any obstacles within
a distance of 120 cm to the car. The second parcour evaluates the opposite
situation with all directions in front of the car being blocked. The third par-
cour contains a typical situation with three obstacles. During the experiment,
neither the car nor the obstacles are moving.

As a benchmark, we also generate the grid with Bayesian fusion as described
in section 3.2.5 while using the same input data.

7.2.1 Free Space Detection

Figure 7.12(a) depicts the parcour setup that has been used for the grid genera-
tion. This setup does not contain any single obstacle within the sensors’ range.
The smart car is located at the bottom center of the picture. After performing
a full sensor sweep, the system is stopped and the grid is read out via the
monitoring interfaces of the smart car. A sweep consists of setting each sensor
subsequently to the prespecified 13 viewing angles. Figure 7.12(b) depicts the
grid generated by Bayesian fusion while figure 7.12(c) shows the grid generated

128

7 Experiments and Evaluation 7.2 Evaluation of Certainty Grid

(a) Parcour setup (no obstacles)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

(b) Certainty grid generated with Bayesian fusion

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

(c) Result of robust certainty grid method

Figure 7.12: Free space detection

129

7.2 Evaluation of Certainty Grid 7 Experiments and Evaluation

by the robust certainty grid algorithm. Each of the values depicted in the
grid corresponds to the occupancy value of a grid cell. The gray tone also
illustrates the occupancy value: a dark gray means high probabilities and a
light gray indicates low probabilities. Since the sensor values are all filtered,
both grids are generated without errors except for some cells that had not been
updated by a corresponding sensor beam. The occupancy values for these cells
are 0.5, reflecting an uncertain state.

7.2.2 Dead End Detection

Figure 7.13(a) depicts the parcour setup with a dead-end situation. All di-
rections in front of the car, located at the bottom center of the picture, are
blocked. After performing a full sensor sweep, the system is stopped and the
grid is read out via the monitoring interfaces of the smart car. Figure 7.13(b)
depicts the grid generated by Bayesian fusion while figure 7.13(c) shows the
grid generated by the robust certainty grid algorithm. In some cases, sensor 1
did not detect an object correctly and reported an erroneous value. This hap-
pens due to the mechanical movement of the servo motors where the sensors are
fitted on. When the servos are moving, the vibrations cause subsequent sensor
measurements to deviate from each other, which upsets the filtering algorithm.
Using the given hardware, this problem cannot be overcome since the sensor
performance is worse without filtering. As depicted in figures 7.13(b,c), both
grids are affected by these failures, however the robust certainty grid algorithm
compensated some of the wrong measurements using multiple sensor sources
for validation. Therefore the resulting grid in figure 7.13(c) better reflects the
given situation than the grid in figure 7.13(b) that was generated by Bayesian
fusion.

7.2.3 Typical Situation with Three Obstacles

Figure 7.14(a) depicts a parcour setup with three obstacles. This is considered
a typical situation for the operation of the smart car because some directions
are blocked by obstacles within the sensors’ range, while other directions con-
tain just free space. After performing a full sensor sweep the system is stopped
and the grid is read out via the monitoring interfaces of the smart car. Fig-
ure 7.14(b) depicts the grid generated by Bayesian fusion while figure 7.14(c)
shows the grid generated by the robust certainty grid algorithm. As it was
the case in the dead-end situation, some sensor measurements have reported
erroneously the value for infinity. Therefore, the obstacle in front of the car
is not correctly mapped in the grid generated by Bayesian fusion which is a
critical error since the car could hit that obstacle when navigating accord-

130

7 Experiments and Evaluation 7.2 Evaluation of Certainty Grid

(a) Parcour setup (dead end)

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 0.0 0.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

(b) Certainty grid generated with Bayesian fusion

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

(c) Result of robust certainty grid method

Figure 7.13: Dead end situation

131

7.2 Evaluation of Certainty Grid 7 Experiments and Evaluation

(a) Parcour setup with three obstacles

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5

0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5

0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5

0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5

0.0 0.5 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.5 0.0

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

(b) Certainty grid generated with Bayesian fusion

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5

0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.5

0.5 0.5 0.5 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5

0.0 0.5 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.5 0.0

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5

0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

(c) Result of robust certainty grid method

Figure 7.14: Parcour setup with three obstacles

132

7 Experiments and Evaluation 7.3 Discussion and Chapter Summary

ing to the grid contents. Similar to the case in figure 7.13, the robust cer-
tainty grid algorithm is also affected by the sensor failure, but the algorithm
compensated most of the wrong measurements using multiple sensor sources
for validation. Therefore the grid given in figure 7.14(c) can be safely used for
navigation.

7.3 Discussion and Chapter Summary

The measurements have shown that especially the single infrared sensors pro-
vide data that is too unreliable to be of use in a complex application like robot
navigation. We have evaluated several methods that attack this problem at
different levels.

At the transducer level, local filtering of sensor data has significantly im-
proved the quality of measurements. However, this approach comes with the
cost of increased measuring delays, since each output requires several subse-
quent measurements. If the sensors are fast with respect to the controlled
process, this problem can be neglected. In our case, the sensor delay is non-
negligible and limits the performance of the overall system. For the demon-
strator it was necessary to employ sensor filtering for the infrared sensors in
order to achieve an appropriate data quality.

Another approach to improve sensor data is the combination of data from
multiple sensors at fusion/dissemination level. In comparison to the filtering
approach, employing extra hardware preserves the timing behavior. On the
other hand, this approach comes with increased hardware costs, weight, and
power consumption. If signals from sensors of the same type of construction are
combined, it is likely, that some measurement errors will be correlated. Such
errors cannot be compensated by fusion and lead to an overestimation of the
confidence assigned to the fused value. This is a drawback, when the fused
value is used as input in further fusion operators. Measurements from identical
sensors operating simultaneously may also suffer from mutual interferences.
Combining heterogeneous sensors provides a more robust solution, but is also
more complicated, since the fusion operator might have to deal with differing
measuring delays, resolutions, accuracy, and measuring ranges. Due to the
encapsulation of sensor-specific properties within a smart transducer and the
well-disposed timing, integrating heterogeneous sensor signals is well-supported
when using the proposed time-triggered sensor fusion architecture.

Using the single sensor data, we have evaluated the robust certainty grid
against the original certainty grid algorithm using Bayesian fusion. The ro-
bust certainty grid proved to be much more applicable than the certainty grid

133

7.3 Discussion and Chapter Summary 7 Experiments and Evaluation

generated with Bayesian fusion because the employed sensors show a markable
amount of errors in their measurements.

At the control level, the navigation algorithm of the smart car is able to
average out sporadic errors. Moreover, the navigation algorithm uses the con-
fidence information provided by the fusion/dissemination level instead of op-
erating only on a black-and-white image. Thus, even uncertain measurements
can be handled accordingly.

Altogether, none of the evaluated methods is able to solve the problems on
erroneous and incomplete data on its own. However, the smart car case study
shows, how the combination of filtering, fusion, and robust navigation methods
form a useful system.

134

Chapter 8

Conclusion

“Omnis res est iam in vado.”

Andria, Terenz

The main contribution of this thesis is the design and implementation of a time-
triggered architectural model for real-time sensor fusion. During this thesis, a
general time-triggered sensor fusion model and two different approaches for
achieving dependability by sensor fusion have been introduced and evaluated
in a case study. The results of the case study provide a valuable basis for future
implementations of real-time sensor fusion applications.

8.1 Time-Triggered Architecture for Sensor

Fusion

The proposed time-triggered architecture for sensor fusion has been described
as a time-triggered sensor fusion model. For the reduction of system complexity,
the model decomposes a real-time computer system into three levels: The trans-
ducer level encapsulates the sensors and actuators. The fusion/dissemination
level gathers measurements, performs sensor fusion respectively distributes con-
trol information to the actuators. The control level hosts the control program
that makes control decisions based on environmental information provided by
the fusion/dissemination level. Optionally, the control application provides a
man-machine-interface to a human operator. All levels are separated from each
other by well-defined interfaces.

Interface design is a critical part for the proposed architecture, since on
the one hand, system components should be well-separated in order to allow
independent implementation and testing, on the other hand, application parts

135

8.2 Sensor Fusion Algorithms 8 Conclusion

should be able to share information on the uncertainty of the measurements.
Thus, we derived a way to represent the uncertainty of a measurement in
a uniform way across each interface by introducing a confidence value that
corresponds to the variance of the measurement.

Dependability, as a frequent requirement for real-time computer systems,
is achievable at different levels in our architecture. From the view of system
design, we have identified two approaches for achieving dependability, the sys-
tematic and the application-specific approach. We have evaluated a systematic
approach at transducer and fusion level and an application-specific approach
at fusion and control level.

At the transducer level, local sensor filtering reduces the measurement error
but increases the latency of a measurement. At the fusion level, the combina-
tion of multiple sensor sources has improved dependability while preserving the
timing behavior. The implementation of a robust certainty grid for robotic vi-
sion relates to an application-specific approach. The certainty grid is processed
at the control level by a robust navigation algorithm that tolerates a particular
amount of sensor errors.

The proposed sensor fusion architecture supports the separate implemen-
tation and evaluation of these methods. By integrating filtering, fusion, and
robust navigation methods into an overall system, the achievements of each
module can be composed in order to form an effective and practicable system.

8.2 Sensor Fusion Algorithms

Another contribution of this thesis is the proposition of algorithms for the com-
bination of sensor measurements. The first method, the confidence-weighted
averaging, has been evaluated and compared to the approach of fault-tolerant
sensor averaging, published by Marzullo [Mar90].

The confidence-weighted averaging algorithm proposed in this thesis is well
suited for building fusion networks for sensor data. It supports homogeneous
as well as heterogeneous sensor configurations assuming two assumptions: The
error probability density function has to be approximately a normal distribution
and independent of the error behavior of the other sensors. When employing
sensors of the same type of construction, there is often a correlation of the
error functions which leads to an overestimation of the confidence of the fused
results. Therefore, the confidence-weighted averaging algorithm achieves its
best performance with heterogeneous sensor configurations.

The second improved fusion method in this thesis is the robust certainty
grid for robotic map building. While the original certainty grid only overcomes

136

8 Conclusion 8.3 Outlook

sporadic errors, the robust certainty grid algorithm supports a weaker failure
mode assumption that also allows permanent sensor faults. The robust cer-
tainty grid algorithm provides a sensor validation that detects abnormal sensor
measurements and adjusts a weight value to the corresponding sensor.

The robust certainty grid has been evaluated in the case study against the
original certainty grid that uses Bayesian fusion. Especially for sensor data
with a respectable amount of faulty measurements, the robust certainty grid
has proved to be more applicable than a certainty grid generated with Bayesian
fusion. As a drawback, the robust certainty grid is sensitive to the ordering
of measurements (unlike Bayes’ rule). However, this problem has been side-
stepped by the used time-triggered communication model that provides full
determinism with respect to message ordering.

8.3 Outlook

An important factor for building large fusion applications is the support for
design and configuration. The TTP/A fieldbus network already supports de-
scription mechanisms as part of a general high-level configuration and manage-
ment framework [Pit02]. This framework allows the organization of transducer-
related data, like communication parameters and transducer-specific documen-
tation and configuration data, in machine-readable documents in XML format.

By taking advantage of this framework, it is possible to store sensor-fusion-
specific information with the smart transducer description. Examples for
sensor-specific information are basic confidence values or sensor cross-sensitivity
to other variables. This information can be accessed by an appropriate con-
figuration tool in order to support the plug-and-play-like integration of new
sensors into a sensor fusion network. Moreover, the set up of sensor fusion
algorithms can be supported by the same framework. The advantages of such
a computer-aided design and configuration approach lie in the reduction of sys-
tem complexity as perceived by users, thus leading to a potential reduction of
human error and shorter system design and maintenance effort.

The fusion architecture provided in this thesis is open to the integration of
various other fusion algorithms. With respect to embedded real-time systems,
an in-depth analysis of real-time behavior, resource requirements, composabil-
ity, and performance of existing sensor fusion algorithms will be beneficial for
further projects.

137

8.3 Outlook 8 Conclusion

138

Bibliography

[Ala98] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An
Architecture for Autonomy. International Journal of Robotics Re-
search, 17(4):315–337, Apr. 1998.

[And92] C. S. Andersen, C. B. Madsen, J. J. Sørensen, N. O. S. Kirkeby,
J. P. Jones, and H. I. Christensen. Navigation Using Range Images
on a Mobile Robot. Robotics and Autonomous Systems, 10:147–160,
1992.

[Åst84] K. J. Åström and B. Wittenmark. Computer Controlled Systems:
Theory and Design. Prentice-Hall International Editions, Englewood
Cliffs, NJ, USA, 1984.

[Att98] H. Attiya and J. L. Welch. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. McGraw-Hill, 1998.

[Aud99] Audi AG, BMW AG, DaimlerChrysler AG, Motorola Inc. Volcano
Communication Technologies AB, Volkswagen AG, and Volvo Car
Corporation. LIN Specification and LIN Press Announcement. SAE
World Congress Detroit, http://www.lin-subbus.org, 1999.

[Bak01] D. E. Bakken, Z. Zhan, C. C. Jones, and D. A. Karr. Middleware
Support for Voting and Data Fusion. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks, pages
453–462, Gothenburg, Sweden, 2001.

[Bas00] T. Bass. Intrusion Detection Systems and Multisensor Data Fusion:
Creating Cyberspace Situational Awareness. Communications of the
ACM, 43(4):99–105, May 2000.

[Bau01] G. Bauer. Transparent Fault Tolerance in a Time-Triggered Archi-
tecture. PhD Thesis, Technische Universität Wien, Institut für Tech-
nische Informatik, Vienna, Austria, 2001.

139

BIBLIOGRAPHY

[Bay63] T. Bayes. Essay Towards Solving a Problem in the Doctrine of
Chances. Philosophical Transactions of the Royal Society of Lon-
don, 53:370–418, 1763. Reprinted in Biometrika, 45:293–315, 1958.

[Bed99] M. D. Bedworth and J. O’Brien. The Omnibus Model: A New
Architecture for Data Fusion? In Proceedings of the 2nd Interna-
tional Conference on Information Fusion (FUSION’99), Helsinki,
Finnland, July 1999.

[Bla88] S. S. Blackman. Introduction to Sensor Systems, Chapter Multiple
Sensor Tracking and Data Fusion. Artech House, Norwood, Mas-
sachusetts, 1988.

[Boc78] T. Boccalini. La bilancia politica di tutte le opere di Trajano Boc-
calini. Wiederhold, 1678.

[Bog87] P. L. Bogler. Shafer-Dempster Reasoning with Applications to Mul-
tisensor Target Identification Systems. IEEE Transactions on Sys-
tems, Man and Cybernetics, 17(6):968–977, Nov.–Dec. 1987.

[Bos96] E. Bosse, J. Roy, and D. Grenier. Data Fusion Concepts Applied
to a Suite of Dissimilar Sensors. Canadian Conference on Electrical
and Computer Engineering, 1996, 2:692–695, May 1996.

[Boy87] J. R. Boyd. A Discourse on Winning and Losing. Unpublished set
of briefing slides, Air University Library, Maxwell AFB, AL, USA,
May 1987.

[Bra96] F. V. Brasileiro, P. D. Ezhilchelvan, S. K. Shrivastava, N. A. Speirs,
and S. Tao. Implementing Fail-Silent Nodes for Distributed Systems.
IEEE Transactions on Computers, 45(11):1226–1238, Nov. 1996.

[Bro98] R. R. Brooks and S. S. Iyengar. Multi-Sensor Fusion: Fundamentals
and Applications. Prentice Hall, New Jersey, 1998.

[Bue88] D. M. Buede. Shafer-Dempster and Bayesian Reasoning: A Re-
sponse to ’Shafer-Dempster Reasoning with Applications to Multi-
sensor Target Identification Systems’. IEEE Transactions on Sys-
tems, Man and Cybernetics, 18(6):1009 –1011, Nov.–Dec. 1988.

[Car82] W. C. Carter. A Time for Reflection. In Proceedings of the 12th IEEE
Int. Symposium on Fault-Tolerant Computing (FTCS-12), page 41,
Santa Monica, CA, USA, June 1982.

140

BIBLIOGRAPHY

[Cha93] G. T. Chavez and R. R. Murphy. Exception Handling for Sensor
Fusion. In SPIE Sensor Fusion VI, pages 142–153, Boston, MA,
USA, Sep. 1993.

[Che91] P. Chew and K. Marzullo. Masking Failures of Multidimensional Sen-
sors. In Proceedings of the 10th Symposium on Reliable Distributed
Systems, pages 32–41, Pisa, Italy, Oct. 1991.

[Che96] P. Cheeseman and J. Stutz. Bayesian Classification (AutoClass):
Theory and Results. In U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, Editors, Advances in Knowledge Dis-
covery and Data Mining. AAAI Press/MIT Press, 1996.

[Chu01] H. Chung, L. Ojeda, and J. Borenstein. Sensor Fusion for Mobile
Robot Dead-reckoning with a Precision-calibrated Fiber Optic Gy-
roscope. In Proceedings of the IEEE International Conference on
Robotics and Automation, volume 4, pages 3588–3593, Seoul, Korea,
May 2001.

[Cip93] B. Cipra. Engineers Look to Kalman Filtering for Guidance. SIAM
News, 26(5), Aug. 1993.

[Con00] P. Conway, D. Heffernan, B. O’Mara, P. Burton, and T. Miao. IEEE
1451.2: An Interpretation and Example Interpretation. Proceed-
ings of the Instrumentation and Measurement Technology Confer-
ence, pages 535–540, 2000.

[Cor97] M. Corks. Evaluating Voting Methods. Survey paper, University of
Waterloo, 1997.

[Das97] B. V. Dasarathy. Sensor Fusion Potential Exploitation-Innovative
Architectures and Illustrative Applications. Proceedings of the IEEE,
85:24–38, Jan. 1997.

[Das00] B. V. Dasarathy. More the Merrier ... or is it? - Sensor Suite Aug-
mentation Benefits Assessment. In Proceedings of the 3rd Interna-
tional Conference on Information Fusion, volume 2, pages 20–25,
Paris, France, July 2000.

[Das01] B. V. Dasarathy. Information Fusion - what, where, why, when, and
how? Information Fusion, 2(2):75–76, 2001. Editorial.

[Dau01] F. Daum. Book Review on: Handbook of Multisensor Data Fu-
sion. IEEE Aerospace and Electronic Systems Magazine, 16(10):15–
16, Oct. 2001.

141

BIBLIOGRAPHY

[Dem67] A. P. Dempster. Upper and Lower Propabilities Induced by a Multi-
Valued Mapping. Annual Mathematical Statistics, 38:325–339, 1967.

[Dia02] A. Dias. Documentation of the Smart Car Demonstrator. Research
Report 45/2002, Technische Universität Wien, Institut für Techni-
sche Informatik, Vienna, Austria, 2002.

[Die98] P. Dierauer and B. Woolever. Understanding Smart Devices. Indus-
trial Computing, pages 47–50, 1998.

[DoD91] U. S. Department of Defense (DoD), Data Fusion Subpanel of the
Joint Directors of Laboratories, Technical Panel for C3. Data Fusion
Lexicon, 1991.

[Dol83] D. Dolev and H. R. Strong. Authenticated Algorithms for Byzantine
Agreement. SIAM (Society for Industrial and Applied Mathematics)
Journal on Computing, 12(4):656–666, 1983.

[DW88] H. F. Durrant-Whyte. Sensor Models and Multisensor Integration.
International Journal of Robotics Research, 7(6):97–113, Dec. 1988.

[DW90] H. F. Durrant-Whyte. Toward a Fully Decentralized Architecture
for Multi-Sensor Data Fusion. In IEEE International Conference on
Robotics and Automation, volume 2, pages 1331–1336, Cincinnati,
OH, USA, 1990.

[Ecc98] L. H. Eccles. A Brief Description of IEEE P1451.2. Sensors Expo,
May 1998.

[Edw00] S. A. Edwards. Languages for Digital Embedded Systems. Kluwer
Academic Publishers, Boston, Dordrecht, London, 2000.

[Elf86] A. Elfes. A Sonar-Based Mapping and Navigation System. In Pro-
ceedings of the IEEE International Conference on Robotics and Au-
tomation, San Francisco, CA, USA, 1986.

[Elf89] A. Elfes. Using Occupancy Grids for Mobile Robot Perception and
Navigation. IEEE Computer, 22(6):46–57, 1989.

[Elm01a] W. Elmenreich, W. Haidinger, and H. Kopetz. Interface Design
for Smart Transducers. In IEEE Instrumentation and Measurement
Technology Conference, volume 3, pages 1642–1647, Budapest, Hun-
gary, May 2001.

142

BIBLIOGRAPHY

[Elm01b] W. Elmenreich and S. Pitzek. The Time-Triggered Sensor Fu-
sion Model. In Proceedings of the 5th IEEE International Confer-
ence on Intelligent Engineering Systems, pages 297–300, Helsinki–
Stockholm–Helsinki, Finland, Sep. 2001.

[Elm01c] W. Elmenreich and S. Pitzek. Using Sensor Fusion in a Time-
Triggered Network. In Proceedings of the 27th Annual Conference of
the IEEE Industrial Electronics Society, volume 1, pages 369–374,
Denver, CO, USA, Nov.–Dec. 2001.

[Elm02a] W. Elmenreich and M. Delvai. Time-Triggered Communication with
UARTs. In Proceedings of the 4th IEEE International Workshop on
Factory Communication Systems, Väster̊as, Sweden, Aug. 2002.

[Elm02b] W. Elmenreich, W. Haidinger, H. Kopetz, T. Losert, R. Obermaisser,
M. Paulitsch, and C. Trödhandl. A Smart Sensor LIF Case Study:
Autonomous Mobile Robot. DSoS Project (IST-1999-11585) Deliv-
erable PCE3, Apr. 2002.

[Elm02c] W. Elmenreich and P. Peti. Achieving Dependability in a Time-
Triggered Network by Sensor Fusion. In Proceedings of the 6th
IEEE International Conference on Intelligent Engineering Systems
(INES), pages 167–172, Opatija, Croatia, May 2002.

[Elm02d] W. Elmenreich, L. Schneider, and R. Kirner. A Robust Certainty
Grid Algorithm for Robotic Vision. In Proceedings of the 6th
IEEE International Conference on Intelligent Engineering Systems
(INES), pages 25–30, Opatija, Croatia, May 2002.

[Ezh86] P. D. Ezhilchelvan and S. K. Shrivastava. A Characterisation of
Faults in Systems. In Proceedings of the 5th Symposium on Reliability
in Distributed Software and Database Systems, pages 215–222, Los
Angeles, CA, USA, January 1986.

[Fab00] E. Fabrizi, G. Oriolo, S. Panzieri, and G. Ulivi. Mobile Robot Lo-
calization via Fusion of Ultrasonic and Inertial Sensor Data. In Pro-
ceedings of the 8th International Symposium on Robotics with Appli-
cations, Maui, USA, 2000.

[Foo95] K. E. Foote and D. J. Huebner. Error, Accuracy, and Precision.
Technical report, The Geographer’s Craft Project, Department of
Geography, University of Texas at Austin, 1995.

[Fow79] C. A. Fowler. Comments on the Cost and Performance of Military
Systems. IEEE Transactions on Aerospace and Electronic Systems,
15:2–10, Jan. 1979.

143

BIBLIOGRAPHY

[Gai86] J. Gait. A Probe Effect in Concurrent Programs. Software Practice
and Experience, 16(3):225–233, Mar. 1986.

[Gan01] Q. Gan and C. J. Harris. Comparison of Two Measurement Fu-
sion Methods for Kalman-Filter-Based Multisensor Data Fusion.
IEEE Transactions on Aerospace and Electronics, 37(1):273–279,
Jan. 2001.

[Gir95] C. Giraud and B. Jouvencel. Sensor Selection: A Geometrical Ap-
proach. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, volume 2, pages 555–560, Pitts-
burgh, PA, USA, Aug. 1995.

[Gla80] R. L. Glass. The “Lost World” of Software Debugging and Testing.
Communications of the ACM, 23(5):264–271, 1980.

[Gro98] P. Grossmann. Multisensor Data Fusion. The GEC journal of Tech-
nology, 15:27–37, 1998.

[Gue02] R. Guerraoui. Liveness and Safety Abstractions for Indulgent Dis-
tributed Computing. In Proceedings of the International Workshop
on Future Directions in Distributed Computing, Bertinoro, Italy,
2002.

[Hai00] W. Haidinger and R. Huber. Generation and Analysis of the Codes
for TTP/A Fireworks Bytes. Research Report 5/2000, Technische
Universität Wien, Institut für Technische Informatik, Vienna, Aus-
tria, 2000.

[Hai02] W. Haidinger. A Tool for Programming AVR Microcontroller Net-
works – the ZEUS Programmer. Research Report 51/2002, Techni-
sche Universität Wien, Institut für Technische Informatik, Vienna,
Austria, 2002.

[Hal92] D. L. Hall. Mathematical Techniques in Multi-Sensor Data Fusion.
Artech House, Norwood, Massachusetts, 1992.

[Hea86] D. Hearn and M. P. Baker. Computer Graphics. Prentice Hall, 1986.

[Hoo00] A. Hoover and B. D. Olsen. Sensor Network Perception for Mobile
Robotics. In Proceedings of the IEEE International Conference on
Robotics and Automation, San Francisco, CA, pages 342–347, Apr.
2000.

144

BIBLIOGRAPHY

[Hyö97] H. Hyötyniemi. Multimedia Applications in Industrial Automation
– Collected Papers of the Spring 1997 Postgraduate Seminar, Chap-
ter Modeling of High-Dimensional Data, pages 114–138. Helsinki
University of Technology, Control Engineering Laboratory, 1997.

[ISO93] International Organization for Standardization (ISO), Genève,
Switzerland. Guide to the Expression of Uncertainty in Measure-
ment, 1st edition, 1993.

[Jay94] D. N. Jayasimha. Fault Tolerance in a Multisensor Environment.
Proceedings of the 13th Symposium on Reliable Distributed Systems,
pages 2–11, 1994.

[Jul95] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte. A New
Approach for Filtering Nonlinear Systems. In Proceedings of the
1995 American Control Conference, pages 1628–1632, Seattle, WA,
USA, 1995.

[Kal60] R. E. Kalman. A New Approach to Linear Filtering and Prediction
Problems. Transaction of the ASME, Series D, Journal of Basic
Engineering, 82:35–45, Mar. 1960.

[Kal61] R. E. Kalman and R. S. Bucy. New Results in Linear Filtering and
Prediction Theory. Transaction of the ASME, Series D, Journal of
Basic Engineering, 83:95–108, Mar. 1961.

[Kam97] M. Kam, X. Zhu, and P. Kalata. Sensor Fusion for Mobile Robot
Navigation. Proceedings of the IEEE, 85(1):108–119, Jan. 1997.

[Kat01] M. Katara and A. Luoma. Environment Modelling in Closed Spec-
ifications of Embedded Systems. In B. Kleinjohann, Editor, Ar-
chitecture and Design of Distributed Embedded Systems, Proceedings
of the IFIP WG10.3/WG10.4/WG10.5 International Workshop on
Distributed and Parallel Embedded Systems, pages 141–150. Kluwer
Academic Publishers, 2001.

[Kir01] R. Kirner and P. Puschner. Transformation of Path Information
for WCET Analysis during Compilation. In Proceedings of the 13th
Euromicro Conference on Real-Time Systems, pages 29–36, Delft,
The Netherlands, June 2001.

[Ko82] W. H. Ko and C. D. Fung. VLSI and Intelligent Transducers. Sensors
and Actuators, (2):239–250, 1982.

145

BIBLIOGRAPHY

[Kop90] H. Kopetz, H. Kantz, G. Grünsteidl, P. Puschner, and J. Reisinger.
Tolerating Transient Faults in MARS. In Proccedings of the 20th.
Symposium on Fault Tolerant Computing, Newcastle upon Tyne, UK,
June 1990.

[Kop92] H. Kopetz. Sparse Time versus Dense Time in Distributed Real-
Time Systems. In Proceedings of the 12th International Conference
on Distributed Computing Systems, Yokohama, Japan, June 1992.

[Kop93a] H. Kopetz. Should Responsive Systems be Event-Triggered or Time-
Triggered? Institute of Electronics, Information, and Communica-
tions Engineers (IEICE) Transactions on Information and Systems,
E76-D(11):1325–1332, 1993.

[Kop93b] H. Kopetz, G. Fohler, G. Grünsteidl, H. Kantz, G. Pospischil,
P. Puschner, J. Reisinger, R. Schlatterbeck, W. Schütz, A. Vr-
choticky, and R. Zainlinger. Real-Time System Development: The
Programming Model of MARS. In Proceedings of the IEEE Inter-
national Symposium on Autonomous Decentralized Systems, pages
190–199, Kawasaki, Japan, Apr. 1993.

[Kop97a] H. Kopetz. Real-Time Systems, Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, Boston, Dor-
drecht, London, 1997.

[Kop97b] H. Kopetz and R. Nossal. Temporal Firewalls in Large Distributed
Real-Time Systems. Proceedings of the 6th IEEE Workshop on Fu-
ture Trends of Distributed Computing Systems (FTDCS ’97), pages
310–315, 1997.

[Kop99] H. Kopetz. Specification of the TTP/C Protocol. TTTech,
Schönbrunner Straße 7, A-1040 Vienna, Austria, July 1999. Avail-
able at http://www.ttpforum.org.

[Kop00] H. Kopetz et al. Specification of the TTP/A Protocol. Tech-
nical report, Technische Universität Wien, Institut für Tech-
nische Informatik, Vienna, Austria, Mar. 2000. Available at
http://www.ttpforum.org.

[Kop01a] H. Kopetz. The Three Interfaces of a Smart Transducer. In Proceed-
ings of the FeT‘2001 4th IFAC International Conference on Fieldbus
Systems and their Applications, Nancy, France, Nov. 2001.

[Kop01b] H. Kopetz, M. Holzmann, and W. Elmenreich. A Universal Smart
Transducer Interface: TTP/A. International Journal of Computer
System Science & Engineering, 16(2), Mar. 2001.

146

BIBLIOGRAPHY

[Kop01c] H. Kopetz, M. Paulitsch, C. Jones, M.-O. Killijian, E. Marsden,
N. Moffat, D. Powell, B. Randell, A. Romanovsky, and R. Stroud.
Revised Version of DSoS Conceptual Model. DSoS Project (IST-
1999-11585) Deliverable IC1, Oct. 2001.

[Kop02] H. Kopetz and N. Suri. Compositional Design of RT Systems: A
Conceptual Basis for Specification of Linking Interfaces. Research
Report 37/2002, Technische Universität Wien, Institut für Techni-
sche Informatik, Vienna, Austria, 2002.

[Kos00] K. Kostiadis and H. Hu. A Multi-threaded Approach to Simulated
Soccer Agents for the RoboCup Competition. In M. Veloso, E. Pag-
ello, and H. Kitano, Editors, RoboCup-99: Robot Soccer World Cup
III. Springer Verlag, Berlin, 2000.

[Kre81] M. L. Kreithen. New sensory cues for bird navigation. In Proceedings
of the XVII International Ornithological Congress, pages 582–587,
Berlin, Germany, 1981.

[Lam78] L. Lamport. Time, Clocks, and the Ordering of Events in a Dis-
tributed System. Communications of the ACM, 21(7):558–565, July
1978.

[Lam82a] L. Lamport and M. J. Fischer. Byzantine Generals and Transaction
Commit Protocols. SRI Technical Report OP. 62, 1982.

[Lam82b] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Sys-
tems, 4(3):382–401, July 1982.

[Lap92] J. C. Laprie. Dependability: Basic Concepts and Terminology. In
Dependable Computing and Fault Tolerant Systems, volume 5, pages
257–282. Springer Verlag, Vienna, 1992.

[Lea99] D. Lea. Complex Components Create New Challenges. In Workshop
on Institutionalizing Software Reuse, Austin, TX, USA, Jan. 1999.
Position Paper.

[Led85] C. H. Ledoux and D. Stott Parker. Saving Traces for Ada Debugging.
In Ada in Use (1985 International Ada Conference), pages 97–108,
Cambridge, England, May 1985. Cambridge University Press.

[Lee90] P. A. Lee and T. Anderson, Editors. Fault Tolerance, Principles and
Practice. Springer Verlag, Wien, New York, second edition, 1990.

147

BIBLIOGRAPHY

[Ler96] L. Lercher. A Structured Net Language for the Modeling of Dis-
tributed Systems. PhD Thesis, Technische Universität Wien, Institut
für Technische Informatik, Vienna, Austria, 1996.

[Lie01] J. Liebman and C. Ma. Platform Based Design of Unmanned Aerial
Vehicles. Technical report, Berkeley University of California, 2001.
Project EE249.

[Lli98] J. Llinas and D. L. Hall. An Introduction to Multi-Sensor Data
Fusion. Proceedings of the 1998 IEEE International Symposium on
Circuits and Systems, 6:537–540, May–June 1998.

[Luo89] R. C. Luo and M. Kay. Multisensor Integration and Fusion in In-
telligent Systems. IEEE Transactions on Systems, Man, and Cyber-
netics, 19(5):901–930, Sep.–Oct. 1989.

[Mar90] K. Marzullo. Tolerating Failures of Continuous-Valued Sensors.
ACM Transactions on Computer Systems, 8(4):284–304, Nov. 1990.

[Mar96] M. C. Martin and H. P. Moravec. Robot Evidence Grids. Tech-
nical Report CMU-RI-TR-96-06, The Robotics Institute, Carneghie
Mellon University, Pittsburgh, PA, USA, 1996.

[Mar97a] R. Margolin. Smarter Stuff. Byte Magazine, June 1997.

[Mar97b] M. Markin, C. Harris, M. Bernhardt, J. Austin, M. Bedworth,
P. Greenway, R. Johnston, A. Little, and D. Lowe. Technology Fore-
sight on Data Fusion and Data Processing. Publication, The Royal
Aeronautical Society, 1997.

[Mat88] L. Matthies and A. Elfes. Integration of Sonar and Stereo Range
Data using a Grid-Based Representation. In Proceedings of the IEEE
International Conference on Robotics and Automation, volume 2,
pages 727–733, Philadelphia, PA, USA, 1988.

[McD89] C. E. McDowell and D. P. Helmbold. Debugging Concurrent Pro-
grams. ACM Computing Surveys, 21(4):593–622, Dec. 1989.

[McK93] G. T. McKee. What can be fused? Multisensor Fusion for Computer
Vision, Nato Advanced Studies Institute Series F, 99:71–84, 1993.

[Mos02] B. Moshiri, M. R. Asharif, and R. Hosein Nezhad. Pseudo Informa-
tion Measure: A New Concept for extension of Bayesian Fusion in
Robotic Map Building. Information Fusion, 3(1):51–68, 2002.

148

BIBLIOGRAPHY

[Mul89] S. J. Mullender. Distributed Systems. Addison-Wesley Publishing
Company, 1989.

[Mur96] R. R. Murphy. Biological and Cognitive Foundations of Intelligent
Sensor Fusion. IEEE Transactions on Systems, Man and Cybernet-
ics, 26(1):42–51, Jan. 1996.

[Mur00] N. Murphy. Principles Of User Interface Design. Embedded Systems
Programming, Dec. 2000.

[Nah80] P. J. Nahin and J. L. Pokoski. NCTR Plus Sensor Fusion Equals
IFFN or Can Two Plus Two Equal Five? IEEE Transactions on
Aerospace and Electronic Systems, 16(3):320–337, May 1980.

[Nel90] V. P. Nelson. Fault-Tolerant Computing: Fundamental Concepts.
IEEE Computer, 23(7):19–25, July 1990.

[Nou99] P. Noury. WorldFIP, IEC 61158 and the Inter-
net: A New Look at Fieldbuses, 1999. Available at
http://www.worldfip.org/noury02.html.

[OMG00] Object Management Group (OMG). Smart Transducers Interface
Request for Proposal, Dec. 2000. Available at http://www.omg.org
as document orbos/2000-12-13.

[OMG02] Object Management Group (OMG). Smart Transducers In-
terface Final Adopted Specification, Aug. 2002. Available at
http://www.omg.org as document ptc/2002-10-02.

[Pal00] R. Pallierer. Validation of Distributed Algorithms in Time-Triggered
Systems by Simulation. PhD Thesis, Technische Universität Wien,
Institut für Technische Informatik, Vienna, Austria, 2000.

[Par91a] B. Parhami. A Data-Driven Dependability Assurance Scheme with
Applications to Data and Design Diversity. In A. Avizienis and
J. C. Laprie, Editors, Dependable Computing for Critical Applica-
tions, volume 4, pages 257–282. Springer Verlag, Vienna, 1991.

[Par91b] B. Parhami. Voting Networks. IEEE Transactions on Reliability,
40:380–394, Aug. 1991.

[Pea80] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the
Presence of Faults. Journal of the ACM, 27(2), 1980.

149

BIBLIOGRAPHY

[Pet00] P. Peti and L. Schneider. Implementation of the TTP/A Slave Pro-
tocol on the Atmel ATmega103 MCU. Technical Report 28/2000,
Technische Universität Wien, Institut für Technische Informatik, Vi-
enna, Austria, Aug. 2000.

[Pin95] J. J. Pinto. A Neutral Instrumentation Vendor’s Perspective. ISA
Proceedings ’94 and Intech July ’95, July 1995.

[Pit02] S. Pitzek. Description Mechanisms Supporting the Configuration
and Management of TTP/A Fieldbus Systems. Master’s Thesis,
Technische Universität Wien, Institut für Technische Informatik, Vi-
enna, Austria, 2002.

[Pol94a] S. Poledna. Replica Determinism in Distributed Real-Time Systems:
A Brief Survey. Real-Time Systems, 6:289–316, 1994.

[Pol94b] S. Poledna. Replica Determinism in Fault-Tolerant Real-Time Sys-
tems. PhD Thesis, Technische Universität Wien, Institut für Tech-
nische Informatik, Vienna, Austria, 1994.

[Pol95] S. Poledna. Fault Tolerance in Safety Critical Automotive Applica-
tions: Cost of Agreement as a Limiting Factor. In Proceedings of the
25th IEEE International Symposium on Fault-Tolerant Computing,
pages 73–82, Pasadena, California, USA, June 1995.

[Pol00] S. Poledna, H. Angelow, M. Glück, M. Pisecky, I. Smaili, G. Stöger,
C. Tanzer, and G. Kroiss. TTP Two Level Design Approach: Tool
Support for Composable Fault-Tolerant Real-Time Systems. SAE
World Congress 2000, Detroit, Michigan, USA, Mar. 2000.

[Pow92] D. Powell. Failure Mode Assumptions and Assumption Coverage.
In Proceedings of the 22nd IEEE International Symposium on Fault-
Tolerant Computing (FTCS-22), Boston, MA, USA, pages 386–395,
1992.

[Pro92] G. M. Provan. The Validity of Dempster-Shafer Belief Functions.
International Journal of Approximate Reasoning, 6:389–399, 1992.

[Ran97] A. Ran and J. Xu. Architecting software with interface objects. In
Proceedings of the 8th Israeli Conference on Computer-Based Sys-
tems and Software Engineering, pages 30–37, 1997.

[Rao93] B. Y. S. Rao, H. F. Durrant-Whyte, and J. A. Sheen. A Fully
Decentralized Multi-Sensor System for Tracking and Surveillance.
International Journal of Robotics Research, 12(1):20–44, 1993.

150

BIBLIOGRAPHY

[Rao98] N. S. V. Rao. A Fusion Method That Performs Better Than
Best Sensor. Proceedings of the First International Conference
on Multisource-Multisensor Information Fusion, pages 19–26, July
1998.

[Rot91] P. L. Rothman and R. V. Denton. Fusion or Confusion: Knowl-
edge or Nonsense? SPIE Data Structures and Target Classification,
1470:2–12, 1991.

[Rus94] F. Russo and G. Ramponi. Fuzzy Methods for Multisensor Data
Fusion. IEEE Transactions on Instrumentation and Measurement,
43(2):288–294, Apr. 1994.

[SAE95] Class A Application/Definition (SAE J2057/1 Jun91). In 1995 SAE
Handbook, volume 2, pages 23.478–23.484. Society of Automotive
Engineers, Inc., 1995. Report of the SAE Vehicle Network for Multi-
plex and Data Communication Standards Committee approved June
1991.

[Sar91] V. V. S. Sarma and S. Raju. Multisensor Data Fusion and Decision
Support for Airborne Target Identification. IEEE Transactions on
Systems, Man, and Cybernetics, 21(5):1224–1230, Sep.–Oct. 1991.

[Sas00] J. Z. Sasiadek and P. Hartana. Sensor data fusion using Kalman
filter. In Proceedings of the Third International Conference on In-
formation Fusion, volume 2, pages 19–25, 2000.

[Sch84] F. B. Schneider. Byzantine Generals in Action: Implementing
Fail-Stop Processors. ACM Transactions on Computer Systems,
2(2):145–154, May 1984.

[Sch97] C. Scheidler, G. Heiner, R. Sasse, E. Fuchs, H. Kopetz, and C. Tem-
ple. Time-Triggered Architecture (TTA). Advances in Information
Technologies: The Business Challenge, IOS Press, 1997.

[Sch01] L. Schneider. Real Time Robot Navigation with a Smart Transducer
Network. Master’s Thesis, Technische Universität Wien, Institut für
Technische Informatik, Vienna, Austria, 2001.

[Sha76] G. Shafer. A Mathematical Theory of Evidence. Princeton University
Press, Princeton, 1976.

[Sha92] U. Shaked and Y. Theodor. H∞-Optimal Estimation: A Tutorial. In
Proceedings of the 31st IEEE Conference on Decision and Control,
volume 2, pages 2278–2286, Tucson, Arizona, USA, 1992.

151

BIBLIOGRAPHY

[Sim95] J. A. Simmons, P. A. Saillant, J. M. Wotton, T. Haresign, M. Fer-
ragamo, and C. F. Moss. Composition of biosonar images for target
recognition by echolocating bats. Neural Networks, pages 1239–1261,
1995.

[Sin97] A. Singhal. Issues in Autonomous Mobile Robot Navigation. Survey
paper towards partial fulfillment of MS degree requirements, Com-
puter Science Department, University of Rochester, Rochester, NY
14627-0226, May 1997.

[Sme01] T. Smestad. Data Fusion – for Humans, Computers or Both? Trans-
lated article from Mikroskopet, Norwegian Defence Research Estab-
lishment, Feb. 2001.

[Sta88a] J. A. Stankovic. Misconceptions About Real-Time Computing - A
Serious Problem for Next-Generation Systems. IEEE Computer,
21(10):10–19, Oct. 1988.

[Sta88b] J. A. Stankovic and K. Ramamrithan, Editors. Hard Real-Time
Systems. IEEE Computer Society Press, Massachusetts, Washington
D.C., 1988.

[Ste99] A. N. Steinberg, C. L. Bowman, and F. E. White. Revisions to the
JDL Data Fusion Model. In Proceedings of the 1999 IRIS Unclas-
sified National Sensor and Data Fusion Conference (NSSDF), May
1999.

[Tar99] C. Taŕın, H. Brugger, R. Moscardó, B. Tibken, and E. P. Hofer.
Low Level Sensor Fusion for Autonomous Mobile Robot Naviga-
tion. In Proceedings of the 16th IEEE Instrumentation and Mea-
surement Technology Conference (IMTC’99), volume 3, pages 1377–
1382, 1999.

[Tem98] C. Temple. Avoiding the Babbling-Idiot Failure in a Time-Triggered
Communication System. In Proceedings of the 28th International
Symposium on FTCS, München, Germany, June 1998.

[Ten81] R. R. Tenney and N. R. Sandell jr. Detection With Distributed
Sensors. IEEE Transactions on Aerospace and Electronic Systems,
17(4):501–510, July 1981.

[Tha00] H. Thane. Monitoring, Testing and Debugging of Distributed Real-
Time Systems. PhD Thesis, Mechatronics Laboratory, Royal Insti-
tute of Technology, Stockholm, Sweden, May 2000.

152

BIBLIOGRAPHY

[The00] A. Theil, L. J. H. M. Kester, and É. Bossé. On Measures of Perfor-
mance to Assess Sensor Fusion Effectiveness. In Proceedings of the
3rd International Conference on Information Fusion, Paris, France,
July 2000.

[Trö02a] C. Trödhandl. Architectural Requirements for TTP/A Nodes. Mas-
ter’s Thesis, Technische Universität Wien, Institut für Technische
Informatik, Vienna, Austria, 2002.

[Trö02b] C. Trödhandl. Improving the Temporal Behavior of a Compiler for
Embedded Real-Time Systems. Research Report 50/2002, Techni-
sche Universität Wien, Institut für Technische Informatik, Vienna,
Austria, 2002.

[Vis99] A. Visser and F. C. A. Groen. Organisation and Design of Au-
tonomous Systems. Textbook, Faculty of Mathematics, Computer
Science, Physics and Astronomy, University of Amsterdam, Kruis-
laan 403, NL-1098 SJ Amsterdam, August 1999.

[vN56] J. von Neumann. Probabilistic Logics and the Synthesis of Reli-
able Organisms from Unreliable Components. In C. E. Shannon
and J. McCarthy, Editors, Automata Studies, pages 43–98. Prince-
ton University Press, 1956.

[Wal90] E. Waltz and J. Llinas. Multisensor Data Fusion. Artech House,
Norwood, Massachusetts, 1990.

[Wal95] E. Waltz. The Principles And Practice Of Image And Spatial Data
Fusion. In Proceedings of the 8th National Data Fusion Conference,
Dallas, 1995.

[Wal98] L. Wald. A European Proposal for Terms of Reference in Data Fu-
sion. International Archives of Photogrammetry and Remote Sens-
ing, XXXII, Part 7:651–654, 1998.

[Wel01] G. Welch and G. Bishop. An Introduction to the Kalman Filter. In
SIGGRAPH 2001 Conference Proceedings, 2001. Tutorial 8.

[Wen92] W. Wen and H. F. Durrant-Whyte. Model-Based Multi-Sensor Data
Fusion. In Proceedings of the IEEE International Conference on
Robotics and Automation, volume 2, pages 1720–1726, Nice, France,
1992.

[Wen00] L. Wenzel. Kalman-Filter. Elektronik, (6,8,11,13), 2000.

153

BIBLIOGRAPHY

[Wol94] W. H. Wolf. Hardware-Software Co-Design of Embedded Systems.
Proceedings of the IEEE, 82(7):967–989, July 1994.

[Yen98] L. Yenilmez and H. Temeltas. Real Time Multi-Sensor Fusion and
Navigation for Mobile Robots. 9th Mediterranean Electrotechnical
Conference, 1:221–225, May 1998.

154

List of Publications

[1] W. Elmenreich and M. Delvai. Time-Triggered Communication with
UARTs. In Proceedings of the 4th IEEE International Workshop on Fac-
tory Communication Systems, Väster̊as, Sweden, Aug. 2002.

[2] W. Elmenreich and R. Obermaisser. A Standardized Smart Transducer In-
terface. In Proceedings of the IEEE International Symposium on Industrial
Electronics (ISIE’02), L’Aquila, Italy, July 2002.

[3] S. Pitzek and W. Elmenreich. Managing Fieldbus Systems. In Proceed-
ings of the Work-in-Progress Session of the 14th Euromicro International
Conference, June 2002.

[4] S. Bruckner, R. Seemann, and W. Elmenreich. Applying a Real-Time
Interface to an Optical Tracking System. In Proceedings of the Work-in-
Progress Session of the 14th Euromicro International Conference, June
2002.

[5] P. Peti, R. Obermaisser, W. Elmenreich, and T. Losert. An Architecture
supporting Monitoring and Configuration in Real-Time Smart Transducer
Networks. In Proccedings of the 1st IEEE International Conference on
Sensors (IEEE SENSORS 2002), Orlando, Florida, USA, June 2002.

[6] W. Elmenreich, L. Schneider, and R. Kirner. A Robust Certainty Grid
Algorithm for Robotic Vision. In Proceedings of the 6th IEEE Interna-
tional Conference on Intelligent Engineering Systems (INES), pages 25–
30, Opatija, Croatia, May 2002.

[7] W. Elmenreich and P. Peti. Achieving Dependability in a Time-Triggered
Network by Sensor Fusion. In Proceedings of the 6th IEEE International
Conference on Intelligent Engineering Systems (INES), pages 167–172,
Opatija, Croatia, May 2002.

[8] W. Elmenreich, W. Haidinger, P. Peti, and L. Schneider. New Node
Integration for Master-Slave Fieldbus Networks. In Proceedings of the

155

LIST OF PUBLICATIONS

20th IASTED International Conference on Applied Informatics (AI 2002),
pages 173–178, Feb. 2002.

[9] W. Elmenreich and S. Pitzek. Using Sensor Fusion in a Time-Triggered
Network. In Proceedings of the 27th Annual Conference of the IEEE In-
dustrial Electronics Society, volume 1, pages 369–374, Denver, Colorado,
USA, Nov.–Dec. 2001.

[10] R. Obermaisser, P. Peti, W. Elmenreich, and T. Losert. Monitoring and
Configuration in a Smart Transducer Network. In Proceedings of the IEEE
Workshop on Real-Time Embedded Systems, London, United Kingdom,
Dec. 2001.

[11] W. Elmenreich and S. Pitzek. The Time-Triggered Sensor Fusion Model.
In Proceedings of the 5th IEEE International Conference on Intelligent En-
gineering Systems,, pages 297–300, Helsinki–Stockholm–Helsinki, Finland,
Sep. 2001.

[12] W. Elmenreich, W. Haidinger, and H. Kopetz. Interface Design for Smart
Transducers. In IEEE Instrumentation and Measurement Technology Con-
ference, Budapest, Hungary, volume 3, pages 1642–1647, May 2001.

[13] H. Kopetz, M. Holzmann, and W. Elmenreich. A Universal Smart Trans-
ducer Interface: TTP/A. International Journal of Computer System Sci-
ence & Engineering, 16(2), Mar. 2001.

[14] R. Schlatterbeck and W. Elmenreich. TTP/A: A Low Cost Highly Effi-
cient Time-Triggered Fieldbus Architecture. SAE World Congress 2001,
Detroit, Michigan, USA, Mar. 2001.

[15] H. Kopetz, W. Elmenreich, and C. Mack. A Comparison of LIN and
TTP/A. In Proceedings of the 3rd IEEE International Workshop on Fac-
tory Communication Systems, Porto, Portugal, pages 99–107, September
2000.

[16] H. Kopetz, M. Holzmann, and W. Elmenreich. A Universal Smart Trans-
ducer Interface: TTP/A. Proceedings of the 3rd International Sym-
posium on Object-Oriented Real-Time Distributed Computing (ISORC),
Mar. 2000.

156

Curriculum Vitae

Wilfried Elmenreich

August 17th 1973 Born in Fürstenfeld, Styria (Austria)

September 1979 – Elementary School in
June 1983 Fürstenfeld

September 1983 – Secondary School in
June 1987 Fürstenfeld

September 1987 – Engineering School for
June 1992 Electrotechnics and Control in Weiz

October 1992 – Studies of Computer Science at the
January 1998 Vienna University of Technology

February 1998 – Civil Service in
January 1999 Fürstenfeld

May 1998 Master’s Degree in Computer Science

since April 1999 PhD Studies and Research/Teaching Assistant
at the Vienna University of Technology

157

	Introduction
	Related Work
	Motivation and Objectives
	Structure of the Thesis

	Basic Terms and Concepts
	Principles of Sensor Fusion
	Motivation for Sensor Fusion
	Limitations of Sensor Fusion
	Types of Sensor Fusion

	Real-Time Systems
	Classification of Real-Time Systems
	Model of Time
	Real-Time Entities and Real-Time Images

	Dependability
	Attributes of Dependability
	Means of Dependability
	Impairments of Dependability

	Distributed Fault-Tolerant Systems
	Fault Modelling
	Fault Tolerance through Redundancy
	Transparency, Layering, and Abstraction

	Smart Transducer Networks
	Sensors and Actuators
	Microcontrollers for Embedded Systems
	Smart Transducer Interfaces

	Chapter Summary

	Sensor Fusion Architectures and Applications
	Architectures for Sensor Fusion
	The JDL Fusion Architecture
	Waterfall Fusion Process Model
	Boyd Model
	The LAAS Architecture
	The Omnibus Model

	Methods and Applications
	Smoothing, Filtering, and Prediction
	Kalman Filtering
	Inference Methods
	Occupancy Maps
	Certainty Grid
	Reliable Abstract Sensors

	Chapter Summary

	Architectural Model
	Design Principles
	Time-Triggered Sensor Fusion Model
	Transducer Level
	Fusion/Dissemination Level
	Control Level
	Operator

	Interfaces
	Interface Separation
	Interfaces in the Time-Triggered Sensor Fusion Model
	Interface File System

	Communication Protocol
	Bus Scheduling
	Clock Synchronization

	Discussion
	Benefits at Transducer Level
	Benefits at Fusion/Dissemination Level
	Benefits at Control Level

	Chapter Summary

	Achieving Dependability by Sensor Fusion
	Systematic versus Application-Specific Approach
	Systematic Dependability Framework
	Problem Statement
	Modelling of Observations
	Sensor Representation Model
	Representation of Confidence Values
	Fusion Algorithms

	Robust Certainty Grid
	Problem Statement
	Robust Certainty Grid Algorithm

	Chapter Summary

	Case Study Setup
	Problem Statement
	Hardware Constraints
	Software Constraints
	Real-Time Constraints

	Development Environment
	Target System
	Programming Language
	Compiler
	Programming Tools

	System Architecture
	Demonstrator Hardware
	Electrical and Electromechanical Hardware
	TTP/A Nodes

	Demonstrator Software
	Infrared Sensor Filter
	Servo Control
	Grid Generation
	Navigation and Path Planning
	Fusion of Ultrasonic Observations
	Intelligent Motion Control

	Chapter Summary

	Experiments and Evaluation
	Analysis of Sensor Behavior
	Raw Sensor Data
	Sensor Filtering
	Fused Sensor Data
	Comparison of Results

	Evaluation of Certainty Grid
	Free Space Detection
	Dead End Detection
	Typical Situation with Three Obstacles

	Discussion and Chapter Summary

	Conclusion
	Time-Triggered Architecture for Sensor Fusion
	Sensor Fusion Algorithms
	Outlook

	Bibliography
	List of Publications
	Curriculum Vitae

