
TECHNISCHE UNIVERSITÄT WIEN

FAKULTÄT FÜR INFORMATIK

D I S S E R T A T I O N

The Eccentricity Transform of n-Dimensional
Shapes with and without Boundary

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften unter der Leitung von

o. Univ. Prof. Dipl.-Ing. Dr. techn. Walter G. Kropatsch

183/2

Institut für rechnergestützte Automation

Arbeitsgruppe Mustererkennung und Bildverarbeitung

eingereicht an der Technischen Universität Wien

Fakultät für Informatik

von

Dipl.-Ing. Adrian Ion

Matrikelnummer 0527952

1060 Wien, Damböckgasse 10/6

Wien, am 23.03.2009 ———————————————
Adrian Ion

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Acknowledgments

I can no other answer make but thanks, and thanks.

∼ William Shakespeare

I would like to thank my adviser, Prof. Walter G. Kropatsch, for welcoming me into his

research group and for his continuous guidance. He has taught me how to work scientifically,

always pushing me to improve myself and everything I do. Thank you for believing in me and

giving me the opportunity to push my limits!

I would also like to thank Prof. Eric Andres for the nice collaboration on one of the papers

that became part of this thesis, and for serving on my thesis committee. Thank you!

My colleagues, Yll Haxhimusa, Samuel Peltier, and Nicole M. Artner, I would like to thank

for the nice collaboration, the hard work, and all the funny moments – at the beginning, the

middle, and the end of my study. Yll, thank you for being like a big brother! Nicole, thank you

for the German version of the abstract!

My parents, Michael and Iudit, have continuously emphasised the importance of education.

If it wasn’t for them I would have probably never considered this step. Together with my sister,

Ileana, they have given me their unconditional love and support, and the freedom to pursue my

dreams. Thank You!

My deepest gratitude goes to my wife Adriana for her endless support and patience, standing

by me troughout the whole “journey”, always finding a way to boost my self-confidence whenever

I needed it. Thank you for everything!

Kurzfassung

Form (engl. shape) ist eine Eigenschaft von Objekten. Sie charakterisiert die räumliche Aus-

dehnung des Objektes und identifiziert die Punkte die Teil des Objektes sind. Form ist sowohl

komplex als auch strukturiert und ermöglicht es Objekte zu identifizieren (erkennen). Die Form

eines Objektes kann als binäres Bild repräsentiert werden, z.B. ein Bild in dem jedes Element

(Pixel, Voxel) entweder Teil des Objektes ist oder nicht. Bildtransformationen extrahieren aus

einem Eingabebild Informationen einer höheren Abstraktionsebene (z.B. die Anzahl der verbun-

denen Komponenten, das Skeleton einer Form, etc.).

Die Exzentrizitätstransformation (engl. eccentricity transform) assoziiert zu jedem Punkt

einer Form die geodätische Distanz zu dem am weitesten entfernten Punkt. Das heißt sie as-

soziiert zu jedem Punkt die Länge des längsten, kürzesten Pfades der innerhalb der Form liegt

und den berücksichtigten Punkt mit einem der anderen Punkte der Form verbindet. Die Exzen-

trizitätstransformation gehört zu einer Klasse von Bildtransformationen die jedem Punkt einer

Form eine Funktion der Distanz zu den anderen Punkten der Form zuweisen.

Diese Arbeit präsentiert die Exzentrizitätstransformation, ihre Eigenschaften und ihre Berech-

nung, und zeigt zwei Anwendungsbeispiele aus dem Bereich Computer Vision. Die Definition der

Transformation wird in einem metrischen Raum formuliert und vereint die Konzepte von Exzen-

trizität (engl. eccentricity) aus der Graphentheorie, vom weitest entfernten Punkt (engl. fur-

thest point) in “Computational Geometry” und von der Ausbreitungsfunktion (engl. propaga-

tion function) in der mathematischen Morphologie. Die Exzentrizitätstransformation ist robust

gegenüber Rauschen (z.B.: Salz- und Pfefferrauschen – zufällig fehlende Punkte in der Form,

und kleine Segmentierungsfehler). Sie ist außerdem quasi-invariant gegenüber den Artikulatio-

nen einer Form. Die exzentrischen Punkte einer Form (Punkte die am weitesten entfernt zu

einem anderen Punkt der Form sind) werden immer an ihrem Rand gefunden, wenn die Form

planar ist und nicht mehr als zwei Löcher hat. Bei planaren, einfach verbundenen Formen liegen

diese Punkte auf den konvexen Teilen des Randes. Das geodätische Zentrum (der Punkt mit

der kleinsten Exzentrizität) einer planaren, einfach verbundenen Form ist ein einzelner Punkt.

Bei Formen mit Löchern oder einer nicht planaren 2D Mannigfaltigkeit, kann das Zentrum eine

nicht verbundene Menge sein.

Die Exzentrizitätstransformation wird an einem Satz von Grundformen mit steigender Kom-

plexität studiert (z.B.: Linien, konvexe, planare Formen, nicht konvexe, einfach verbundene For-

men, planare Formen mit einem Loch, etc.). Eigenschaften, wie die Position des geodätischen

Zentrums, die exzentrischen Punkte und die Möglichkeiten eine Form zu zerlegen, um eine ef-

fizientere Berechnung zu ermöglichen, werden analysiert. Diese Eigenschaften motivierten die

präsentierten Berechnungsalgorithmen und -aspekte. Methoden zur genauen Berechnung der

Exzentrizitätstransformation und effiziente Approximationen werden vorgestellt und evaluiert.

i

Zusätzlich werden weitere Verbesserungen dieser Methoden und mögliche Parallelisierungen der

Berechnungen diskutiert.

Zwei Anwendungsbeispiele für die Exzentrizitätstransformation werden vorgestellt. Ein

Beispiel ist der Einsatz zum Beschreiben und Vergleichen von Formen. Dazu werden His-

togramme der Exzentrizitätstransformation von 2D und 3D Formen erzeugt und als Deskrip-

toren verwendet. Die Anwendbarkeit der Exzentrizitätstransformation auf diesem Gebiet wird

durch experimentelle Resultate und eine detaillierte Studie analysiert. Das zweite Anwendungs-

beispiel ist die Verwendung von Exzentrizitätstransformation als Basis für ein formabhängiges

Koordinatensystem für einfach verbundene, planare Formen. Der Zweck ist die Adressierung ko-

rrespondierender oder nahe beieinander liegender Punkte in unterschiedlich artikulierten Posen

derselben Form.

ii

Abstract

Shape is a property of an object. It characterizes an objects’ spatial form and identifies the

points that are part of the object. It is both complex and structured, and allows an object to

be identified. A shape can be represented as a binary image i.e. an image where each picture

element (pixel, voxel) is either part of the shape or not. Image transforms take as input an image

and extract higher abstraction level information from it (e.g. count the number of connected

components, compute the skeleton of a shape in the image, etc.).

The eccentricity transform associates to each point of a shape the geodesic distance to the

point which is furthest away from it i.e. it associates to each point the length of the longest of

the shortest paths that are contained in the shape and that connect the considered point with

any other point of the shape. The eccentricity transform is part of a class of image transforms

that associate to each point a function of the distance to other points of the shape.

This thesis presents the eccentricity transform, important properties, considers its computa-

tion, and gives two example applications in the context of computer vision. The definition unifies

the concepts of eccentricity from graph theory, furthest point from computational geometry, and

propagation function from mathematical morphology. The transform is robust with respect to

noise (Salt and Pepper i.e. random missing points in the shape, and minor segmentation errors).

It is quasi invariant with respect to articulation of the shape. For planar shapes with less than

two holes, eccentric points (points which are furthest away for at least one other point of the

shape) are always located on the boundary of the shape. For planar simply-connected shapes

they lie on convex parts of the boundary. The geodesic center (points with minimum eccentric-

ity) of a planar simply connected shape is a single point. For shapes with holes, or non planar

2D manifolds, it can be a disconnected set.

A study of the eccentricity transform of a set of basic shapes of increasing complexity (e.g.

line, convex planar shapes, non-convex simply-connected shapes, planar shapes with a hole) is

presented. Properties like the position of the geodesic center and eccentric points, as well as the

possibility to decompose the shapes for a more efficient computing are studied. These properties

have motivated the presented algorithms and aspects. Precise computation and efficient approx-

imation methods are given and evaluated. Further improvement and parallelisation possibilities

are discussed.

Two example applications of the eccentricity transform are presented. First, histograms of

the eccentricity transform of 2D and 3D shapes are used as shape descriptors in a shape matching

scenario. Experimental results and a detailed study are given. Following is the application of the

eccentricity transform as a basis for a shape centered coordinate system for simply-connected

planar shapes. The purpose is to address corresponding or nearby points in different articulated

poses of the same shape.

iii

Contents

Kurzfassung i

Abstract iii

Notation ix

1 Introduction 1

1.1 Summary of Original Contributions . 2

1.2 Thesis Organization . 3

2 Shapes and Distances 5

2.1 Recall of Basic Notions and Properties . 5

2.1.1 Object and Shape . 5

2.1.2 Metric and Metric Space . 6

2.1.3 Neighborhood . 7

2.1.4 Path . 8

2.1.5 Connectivity . 9

2.1.6 Geodesic distance . 9

2.1.7 Graph . 10

2.1.8 Image . 11

2.1.9 Shapes in this thesis . 13

2.1.10 Graph pyramids . 13

2.2 The Geodesic Distance Function . 15

2.2.1 Computing the geodesic distance function 17

2.2.2 Discrete circle propagation (DCP) . 20

2.2.3 The distance transform (DT) . 22

2.3 Geodesic convexity . 24

2.4 Chapter Summary . 26

3 The Eccentricity Transform 27

3.1 Related Work . 27

3.2 Definition of Eccentricity and Eccentricity Transform 28

3.3 Points with Special ECC Meaning, ECC Derived Features 29

3.3.1 Shape decomposition based on eccentric or reference points 30

3.4 Properties Related to the Eccentricity . 32

3.4.1 Eccentric and Maximal Points . 32

v

CONTENTS

3.4.2 Center - eccentric points and paths . 35

3.4.3 Single center (minimum) point . 36

3.4.4 Properties Contradicting Early Intuition 41

3.4.5 Relation to the Hausdorff Distance . 43

3.5 Eccentricity of Simple Shapes . 43

3.5.1 1D eccentricity - open curve . 44

3.5.2 1D eccentricity - closed curve . 45

3.5.3 Triangular region . 45

3.5.4 Circular region (disk) . 47

3.5.5 Elliptic region . 47

3.5.6 Rectangle . 52

3.5.7 Elongated - straight (rounded rectangle) 53

3.5.8 Elongated - bent . 55

3.5.9 Elongated - general (n rounded rectangles) 58

3.5.10 1 hole - disk with circular hole in the middle 60

3.6 Robustness Experiments . 63

3.6.1 Robustness against Salt and Pepper noise 63

3.6.2 Minor segmentation errors . 65

3.6.3 Articulation . 66

3.7 Chapter Summary . 67

4 Computation of The Eccentricity Transform 69

4.1 The Basic Algorithm - Implementing The Formula 69

4.2 Progressive Refinement Eccentricity Transform 71

4.2.1 ECC06 - center to periphery . 71

4.2.2 ECC06’ - center to periphery and grow clusters 72

4.2.3 ECC08 - sample candidates and grow clusters 73

4.3 Experiments . 74

4.4 Discussion . 77

4.4.1 Full DS not always needed. 78

4.5 A Different Approach: Divide and Conquer . 80

4.5.1 open curve (1D eccentricity) . 81

4.5.2 A tree . 82

4.5.3 Convex 2D shape . 83

4.5.4 Non-convex 2D shape (simply connected) 84

4.5.5 2D shape with holes . 85

vi

CONTENTS

4.6 Chapter Summary . 86

5 Example Applications of the Eccentricity Transform 87

5.1 Matching 2D and 3D Articulated Shapes using Eccentricity 87

5.1.1 Eccentricity transform - considerations . 89

5.1.2 Eccentricity histogram matching . 90

5.1.3 Characteristics of ECC histograms. 92

5.1.4 Matching experiments in 2D and 3D . 95

5.1.5 Parameters and improvements . 105

5.1.6 Conclusion . 107

5.2 A Non-rigid Object Centered Coordinate System 107

5.2.1 ECC isoheight lines - decomposition . 108

5.2.2 The non-rigid coordinate system . 108

5.2.3 Experiments . 110

5.2.4 Conclusion . 112

5.3 Chapter Summary . 112

6 Epilogue 113

6.1 Conclusion . 113

6.2 Outlook . 114

Index 117

List of Figures 119

List of Tables 123

Bibliography 125

Curriculum Vitae 139

vii

Notation

Bellow is an alphabetically sorted list of the symbols with consistent meaning, used in this

document. Formatting differs depending on the type: set (e.g. S,Q), function (e.g. f, d), mul-

tidimensional value (point, vector) (e.g. p,v), and scalar (e.g. r, s, h). The following labels are

placed as helpers: s - set(s), f - function, p - point/vector. Some symbols have different meaning

depending on the context, case in which all are mentioned.

label symbol description

s A (discrete) arc

s B part of a shape boundary, (discrete) arc

p c center point, cut point

s C (discrete) circle, cut

s C geodesic center of a shape

f d distance, superscript dS means geodesic distance bounded to S, sub-

script dα means using α connectivity (α can be 4,6,8,26), and dε means

Euclidean distance for pairwise visible points

f D distances computed by discrete circle propagation

f DS(Y) geodesic distance function, bounded to S, with marker/source points Y

f DT distance transform

s D definition domain for an image

p e edge of a graph, eccentric point

s E edge set of a graph, ellipse halves

s E set of eccentric points of a shape

f ECC eccentricity transform/function

f F speed function of the contour for Fast Marching

f f function in general

s F value domain of an image element

s G graph

f g function in general

s h histogram

s H hyperplane

f I image

s K set of “known” points/time values in Fast Marching

p l a point

s L separation line, a line

ix

label symbol description

f L label of object/shape (shape matching)

f λ length of a path or line segment

p m any point

s M domain for geodesic distance, local maximas in DS

s ν geodesic

s Nα(p) the smallest neighborhood of p in Zn, (α ∈ {4, 8, 6, 26})

p o circle center

p p a point

s π path

s P shape part, poly line, vertices to be processed (Dijkstra)

s Π(p,q) set of paths between two points p,q (see π and ν also)

p q a point

s Q set of shapes with the same label Q(l) (used for shape matching)

p r arc center, reference point

f r radial coordinate (coordinate mapping)

s R set of real numbers

s R rectangle

p s end points of a discrete arc

s S shape

s ∂S boundary of shape S

f T time function of the contour for Fast Marching

p u a point, a vertex

s Uε(p) (open) ε-neighborhood of p

p v vertex of a graph, a point

s V vertex set of a graph

f w weight of edges of a graph

s W wave front, isoline

p x maximal point for a given S and d i.e. point that is a local maximum

s X set of “maximal” points i.e. local maximum in a geodesic distance func-

tion

p y marker/source points for geodesic distance function

s Y set of markers/source points for the geodesic distance function

s Z set of integer numbers

(x, y) notation for point of coordinates x and y

pq notation for line segment joining p and q

x

1
Introduction

Like color, size, and weight, shape is a property of an object. It characterizes its spatial form,

and identifies the points that are part of the object. “An object’s shape is a unique perceptual

property of the object in the sense that it is the only perceptual property that has sufficient

complexity to allow an object to be identified” [Pizlo 08].

A major task in image analysis is to extract information at high levels of abstraction (e.g.

skeleton, connected components) from the information at low levels of abstraction (pixels and

color measurements), contained in an image. Image transforms have been widely used to move

from the low abstraction levels of the input data to higher abstraction levels that form the

output data. The purpose is to have a reduced amount of (significant) information at the higher

abstraction levels.

One class of image transforms that is applied to shapes, associates to each point of the shape

a value that characterizes in some way its relation to the rest of the shape. This value can be the

distance to other points of the shape (e.g. landmarks). Examples of such transforms include:

• the distance transform [Rosenfeld 83] which associates to each point the length of the

shortest path to the closest boundary point,

• the Poisson equation [Gorelick 04] which associates to each point the average time to

reach the boundary by a random path (average length of the random paths from the point

to the boundary),

• the global geodesic function [Aouada 08] which associates to each point the mean of

the length of the shortest paths to all points of the shape, and

• the eccentricity transform [Kropatsch 06] which associates to each point the length of

the longest of the shortest paths to any other point of the shape.

Using the transformed images one tries to come up with an abstracted representation, like the

skeleton [Ogniewicz 95] or the shock graph [Siddiqi 99], build on the distance transform, which

1

CHAPTER 1. INTRODUCTION

can be used in e.g. shape classification or retrieval. Minimal path computation [Paragios 06] as

well as the distance transform [Soille 02] are commonly used in 2D and 3D image segmentation.

The eccentricity transform (ECC) has its origins in the graph based eccentricity [Buckley 90,

Diestel 97]. It has been defined in the context of digital images in [Kropatsch 06, Klette 04,

Soille 02]1. It was applied in the context of shape matching in [Ion 07b, Ion 08a], and used as a

basis for a shape centered coordinate system for 2D planar shapes of articulated objects [Ion 08b].

The transform is robust with respect to noise (Salt and Pepper i.e. random missing points in

the shape, and minor segmentation errors). Due to the fact that it is defined using geodesic

distances, it is also quasi invariant with respect to articulation of the shape [Ling 07].

The eccentricity transform is defined for continuous objects of any dimension (e.g. 3D

ellipsoid or the 2D surface of the 3D ellipsoid) and for discrete objects of any dimension (e.g.

2D binary shape, or the 3D mesh of the surface of an ellipsoid), represented using regular grids

or graphs. It does not require a priori knowledge of the boundary of the object and is defined

also for objects without a boundary (e.g. the 2D surface of an ellipsoid).

This thesis focuses on the eccentricity transform. It gives a common definition for both

continuous and discrete shapes, defines derived notions and important properties, considers

computation and efficient approximation algorithms, and presents its application in the context

of computer vision using two examples: shape matching and mapping a coordinate system to

an articulated shape.

The following sections give a summary of the original contributions, and present the organ-

isation of the thesis – a brief overview of each chapter is given.

1.1 Summary of Original Contributions

The work presented in this thesis constitutes novel results, to which the author has significantly

contributed. The most important original contributions by the author are:

(1.) the formulation of the eccentricity transform over a metric space, unifying the concepts of

eccentricity from graph theory, furthest point from computational geometry, and propaga-

tion function from mathematical morphology (Chapter 3);

(2.) the properties regarding the existence of eccentric points only on the shape boundary or

also inside the shape (Section 3.4.1);

(3.) the existence of a unique geodesic center for simply connected planar 2D shapes (Sec-

tion 3.4.3);

1In [Soille 02] it appears under the name propagation function.

2

1.2. THESIS ORGANIZATION

(4.) properties of the eccentricity transform in the presence of holes in the shape (non-simply

connected shapes) (Chapter 3);

(5.) the eccentricity transform of the majority of the simple shapes in Section 3.5;

(6.) the robustness and articulation experiments (Section 3.6);

(7.) the algorithms computing the eccentricity transform and the improvements (sequential

and divide et impera) in Chapter 4, except algorithm ECC06 (Section 4.2.1), and the

decomposition of a tree along a junction (Section 4.5.2);

(8.) the presented applications: shape matching, and mapping a coordinate system to an artic-

ulated 2D shape (Chapter 5).

Parts of this thesis have been previously published in [Kropatsch 06, Ion 07a, Ion 07b,

Kropatsch 07, Ion 08a, Ion 08b, Ion 08c, Ion 08d].

1.2 Thesis Organization

The thesis is organized as follows:

Chapter 1 introduces the main problem area that the thesis addresses, summarizes the main

contributions and gives a detailed chapter plan.

Chapter 2 recalls the main notions and properties required in the following chapters (e.g.

object, shape, metric, neighborhood, path, geodesic distance, graph, image, and geodesic

convexity). It also defines the geodesic distance function and considers its properties and

computation. The distance transform, a widely used “special case” of the geodesic distance

function, is also recalled.

Chapter 3 defines the eccentricity transform, introduces terms related to it (e.g. eccentric

point, eccentric path), and presents properties related to the eccentricity transform and

the related terms. It gives a detailed study for variations of ten basic shapes, progressively

emphasizing different properties. The chapter concludes with comparative experiments

regarding the robustness of the eccentricity transform, with respect to Salt and Pepper

noise, minor segmentation errors, and articulation.

Chapter 4 presents algorithms for computation and efficient approximation of the eccentricity

transform of discrete shapes. The “in action” behavior of these algorithms is shown using

experimental results. Possible improvements and ways to approach them are discussed in

detail.

3

CHAPTER 1. INTRODUCTION

Chapter 5 presents two example applications: 2D and 3D shape matching, and mapping a

shape centered coordinate system to the 2D shape of an articulated object. Both applica-

tions are presented to further motivate the relevance of the eccentricity transform in the

context of computer vision. The research related to the former one (shape matching), is

more mature and thus the application and results are presented more thoroughly. In the

case of the latter one (coordinate system) mainly proof of concept steps have been made

and much more open questions exist.

Chapter 6 concludes the thesis and lists important open questions.

4

2
Shapes and Distances

This chapter introduces the notions of object, shape and distance, which are required to define

the eccentricity transform. Used shape representations, properties, and distance functions are

given. The concepts of metric and metric space are recalled, with special attention given to the

geodesic distance and its computation. Other relevant notions like the distance transform and

geodesic convexity are recalled at the end of the chapter.

2.1 Recall of Basic Notions and Properties

The used notation and definitions follow [Klette 04] and [Soille 02]. This section defines the

concepts of object, shape, metric, path, geodesic distance, graph, graph pyramid, and image.

2.1.1 Object and Shape

Definition 1. (Object) An object is a collection of atomic parts taken to be one. It refers

usually to something material that may be perceived by the senses, something toward which

thought, feeling, or action is directed [Mer 03].

Objects can have properties like color, size, weight, shape, etc.

“An object’s shape is a unique perceptual property of the object in the sense that it is the only

perceptual property that has sufficient complexity to allow an object to be identified” [Pizlo 08].

As noted by [Newman 00] there are not many mathematical definitions of the term shape.

Socrates defined shape as “the limit of a solid” [Day 94]. The English dictionary [Mer 03] defines

shape as the “spatial form” of an object. We consider the following definition:

Definition 2. (Shape) The Shape of an object is the (connected) part of space occupied by the

object, as determined by its boundary.

5

CHAPTER 2. SHAPES AND DISTANCES

Defining an object/shape usually includes the definition domain of the atomic parts, e.g.

points in R2, vertices of a graph, etc. and a neighborhood or adjacency relation specifying how

the parts are put together.

Objects and shapes are continuous if the definition domain of the parts is a nonempty subset

of a continuous domain (e.g. a disk in R2, a sphere in R3, the points on the unit circle in R2)

and discrete if the definition domain is a discrete one (e.g. objects made out of points in Z2, or

the vertices of a graph).

This thesis deals with continuous objects and shapes in Rn, and discrete objects and shapes

represented either as points in Zn or as graphs (Section 2.1.7).

In [Ling 07] a model of articulated objects is presented. It is defined as a union of (rigid) parts

Oi and joints (named “junctions” by the authors). An articulation is defined as a transformation

that is rigid when limited to any part Oi, but can be non-rigid on the junctions. An articulated

instance of an object is an articulated object itself (actually the same object) that can be

articulated back to the original one. The term articulated shape refers to the shape of an

articulated object in a certain pose.

Definition 3. (Shape Boundary) For a shape S, continuous or discrete, ∂S denotes its boundary

(border). The boundary is made out of the elements of S separating the inside of S (elements

of S) from the background (elements of the space, not part of S).

The boundary ∂S can be explicitly given (e.g. for graphs), or implicit (e.g. for objects

in Zn the boundary pixels/voxels can be determined using the associated neighborhood (Sec-

tion 2.1.3)).

Shapes are usually associated with “real life objects”. Thus, when doing matching or clas-

sification, differences resulting from changes in pose (e.g. rotation, translation, scaling, part

articulation) are ignored. Nevertheless, when computing features (e.g. image transforms) the

given pose is usually considered for computation, e.g. no normalization is required for computing

the distance transform (Section 2.2.3).

2.1.2 Metric and Metric Space

Definition 4. (Metric) Let S be an arbitrary nonempty set. A function d : S ×S → G, G ⊆ R,

is a metric on S iff it has the following properties:

(1.) for all p,q ∈ S, we have d(p,q) > 0, and d(p,q) = 0 iff p = q (positive definiteness),

(2.) for all p,q ∈ S, we have d(p,q) = d(q,p) (symmetry),

(3.) for all p,q, r ∈ S, we have d(p, r) 6 d(p,q) + d(q, r) (the triangle inequality).

6

2.1. RECALL OF BASIC NOTIONS AND PROPERTIES

If d is a metric on S, the pair [S, d] defines a metric space. If G ⊆ Z the metric is said to be

integer-valued, otherwise it is called real-valued.

The most well known real-valued metric is the Euclidean metric. Let p = (x1, x2, ..., xn) and

q = (y1, y2, ..., yn), p,q ∈ Rn, the Euclidean metric is defined as:

dε(p,q) =
√

(x1 − y1)2 + ... + (xn − yn)2 (2.1)

The n-dimensional Euclidean space En = [Rn, dε] is defined on a Cartesian coordinate system

on Rn and using the Euclidean metric dε.

Integer-valued metrics for Z2 include the city-block metric (also called Minkowski metric,

L1), defined for p,q ∈ Z2, p = (x1, y1),q = (x2, y2) as:

d4(p,q) = |x1 − x2|+ |y1 − y2|

and the chessboard metric:

d8(p,q) = max{|x1 − x2|, |y1 − y2|}.

Let p,q ∈ Z3, p = (x1, y1, z1) and q = (x2, y2, z2). Well known integer-valued metrics in Z3

are:

d6(p,q) = |x1 − x2|+ |y1 − y2|+ |z1 − z2|

and

d26(p,q) = max{|x1 − x2|, |y1 − y2|, |z1 − z2|}.

Example metric spaces defined using the integer-valued metrics above include: [Z2, d4],

[Z2, d8], [Z3, d6], and [Z2, d26]. Note that the subscript of the (distance) function d identifies

the type of neighborhood corresponding to the metric (Section 2.1.3).

2.1.3 Neighborhood

Definition 5. For any metric space [S, d], any p ∈ S, and any ε ∈ R, ε > 0, the (open)

ε-neighborhood of p in S is defined as:

Uε(p) = {q | d(p,q) < ε}

For any discrete point p, the smallest neighborhood of p in [Z2, dα] (α ∈ {4, 8}) or in [Z3, dα]

(α ∈ {6, 26}) is:

Nα(p) = {q | d(p,q) 6 1}

7

CHAPTER 2. SHAPES AND DISTANCES

d4 d8
d6 d26

• point ◦ neighbor

Figure 2.1: The smallest neighborhood for integer-valued metrics in Z2: d4, d8, and Z3: d6, d26.

Note that Nα(p)− {p} has cardinality α. If q ∈ Nα(p), q is said to be α-adjacent to p.

2.1.4 Path

Continuous domains S: a continuous path1 π between two points p,q ∈ S is a continuous

mapping from the interval [0, 1] to S and will be denoted by π(p,q).

The length λ(π) of a continuous path π is:

λ(π) =

∫ 1

0
|π̇(t)|dt

where π(t) is a parametrization of the continuous path from p = π(0) to q = π(1), and π̇(t) is

the differential of the arc length.

Discrete domains Zn, n ∈ {2, 3}: the concept of (discrete) path is defined using the concept

of smallest neighborhood Nα as follows: an α-connected discrete path (α-path) between points

p,q ∈ Zn is denoted by π(p,q) and is defined as the sequence π(p,q) = (u0,u1, . . . ,ul) with

uk ∈ Zn, 0 6 k 6 l s.t. u0 = p, ul = q, and ui+1 is α-adjacent to ui, 0 6 i < l. α ∈ {2, 4} for

n = 2 and α ∈ {6, 26} for n = 3.

The length λ(π) of a discrete path π = (u0,u1, . . . ,ul) is:

λ(π) =
i<l∑

i=0

dα(ui,ui+1)

The labels continuous- and discrete- are used to emphasize the nature of the definition

domain, and will be replaced with the shorter path when the nature of the domain is implicit

1When considering continuous domains, the term curve is probably more spread. We use path to obtain a
uniform naming in both continuous and discrete domains.

8

2.1. RECALL OF BASIC NOTIONS AND PROPERTIES

or does not play an important role. In both discrete and continuous domains, we will denote by

Π(p,q) the set of all paths connecting p and q.

2.1.5 Connectivity

The following definition is used for continuous domains.

Definition 6. (Connected) A set S is said to be (path) connected if ∀p,q ∈ S there exists a

path π(p,q).

The following definition is used for discrete domains Zn.

Definition 7. (α-Connected) A discrete set S ∈ Zn (in our case a shape) is said to be alpha−

connected if ∀p,q ∈ S there exists an α-connected path π(p,q) in S.

2.1.6 Geodesic distance

The term “geodesic” comes from geodesy, the science of measuring the size and shape of the

Earth; in the original sense, a geodesic was the shortest route between two points on the Earth’s

surface, namely, a segment of a great circle.

In mathematics the term geodesic (path/curve/line) has many meanings and can depend on

the particular structure of the metric space [Hazewinkel 89, Bronshtein 97]. In the geometry

of spaces where the metric is specified in advance, it is defined as the (locally) shortest path

between points in a space. In spaces with an affine connection2, it is defined as the curve for

which the tangent vector field is parallel along this curve. In Riemannian geometries, geodesics

are defined as extremals of the (path-) length function. In this document we use the latter one,

which is the more common in the fields of discrete and computational geometry [Goodman 04].

Let M ⊇ S be a set with a given metric, and let ΠM(p,q) denote the set of all paths

connecting two points p,q ∈ M, that are contained in M i.e. u ∈ π ∈ ΠM(p,q) =⇒ u ∈ M.

The set M is referred to as the geodesic mask and will be in most cases equal to S, the shape

itself.

Definition 8. (Geodesic path) A geodesic path, or simply geodesic, between two points p,q ∈

S ⊆M is the shortest path (with minimal length) connecting p and q in M. It will be denoted

by ν(p,q) or simply ν. More formally, ν ∈ ΠM(p,q) is a geodesic in M iff its length λ(ν) is

minimal.

The notion above is identical to the concept of “inner distance” in [Ling 07].

2In differential geometry, an affine connection is a geometrical object on a smooth manifold which connects
nearby tangent spaces.

9

CHAPTER 2. SHAPES AND DISTANCES

Property 1. (Many geodesics) More than one path linking p and q can have the minimal length

i.e. there can be more than one geodesic between two points3.

Definition 9. (Geodesic distance) The geodesic distance dM(p,q) between two points p,q ∈

S ⊆M is defined as the length of the geodesic(s) from p to q, in M.

Property 2. (Geodesic distance = metric) The function dM : S×S → R is a metric [Soille 02].

Property 3. (Geodesic distances – articulation) Geodesic distances are bounded under articu-

lation of the shape. Proof due to [Ling 07].

The proof of the property above shows that the variation of the length of a geodesic path

going over a joint is smaller than the width of the joint. Assuming joints have small width

compared to the rigid parts, makes the length of most geodesic paths stable (constant if the

joints have close to zero width).

Euclidean distance vs. Euclidean based geodesic distance: to differentiate between the

two options we will use:

• Euclidean distance or ℓ2-norm: to denote distances computed in the space in which S is

embedded (ℓ2-norm, Equation 2.1);

• and the term Euclidean based geodesic distance: to denote geodesic distances computed in

S.

2.1.7 Graph

A graph is the tuple G = (V, E), where the elements of V 6= ∅ are called vertices and the elements

of E are called edges [Diestel 97, Thulasiraman 92]. Each edge e = (vi,vj) ∈ E is said to be

incident to two vertices vi,vj ∈ V. If vi = vj than e is said to be a self-loop. Vertices and

edges can be attributed (or weighted). The edges can be weighted using a function w : E → D

with values in some domain D. The weights can be used to encode a certain kind of distance or

difference between the elements represented by the vertices (D = R). Graphs can be visualized

as points (one for each vertex) connected by lines (one for each edge).

Neighborhood: in the case of graphs, the neighborhood of a vertex is explicitly given by the

existing edges incident to it. More formal, given a graph G = (V, E), the neighborhood NG(vi)

of a vertex vi ∈ V is:

NG(vi) = {vj ∈ V | ∃e = (vi,vj) ∈ E}

3E.g. two opposing points on a sphere can be connected by many shortest paths, all having the length of half
the circumference.

10

2.1. RECALL OF BASIC NOTIONS AND PROPERTIES

Path: a path in a graph G = (V, E) is a sequence of vertices π = (v0,v1, . . . ,vn) such that for

all 0 6 i < n, vi+1 ∈ NG(vi). The vertices v0 and vn are called the start vertex, respectively

the end vertex of the path. If v0 = vn the path is called a cycle.

For the case of the edges weighted with their length, the length λ(π) of a path of a weighted

graph G, is the sum of the weights of the edges traversed i.e.

λ(π) =

n−1∑

i=0

w(ei)

where ei = (vi,vi+1) are the edges of the path π = (v0,v1, . . . ,vn). One could also consider

that all edges have a fixed length l, case in which λ(π) = nl.

Connectivity: the concept of connectivity in graph theory is defined as follows: a graph

G = (V, E) is said to be connected if ∀vi,vj ∈ V there exists a path π = (vi, . . . ,vj) in G.

Distance: If the lengths of all edges are greater than zero i.e. ∀e ∈ E =⇒ w(e) > 0, the

distance dG(vi,vj) between two vertices is defined as the length of the shortest path connecting

them:

dG(vi,vj) = min{λ(π) | π = (vi, . . . ,vj)}

The distance dG(vi,vj) is also known as the graph geodesic distance [Bouttier 03].

Property 4. Given a graph G(V, E), with edges weighted with their lengths, w(e) > 0,∀e ∈ E,

the vertex set and the distance function form a metric space [V, dG].

2.1.8 Image

The dictionary definition of an image, is as follows [Mer 03]: “an image is the optical counterpart

of an object, produced by an optical device (as a lens or mirror) or an electronic device; a visual

representation of something as: a likeness of an object produced on a photographic material, or

a picture produced on an electronic display (as a television or computer screen)”.

A digital image, or digital representation of an image, is a function I : D → F mapping the

discrete domain D ⊂ Zn to the set of values F . For n = 2, I is a two dimensional image and the

elements of D are called pixels, for n = 3, I is a three dimensional image and the elements of D

are called voxels. The values in F can be for example gray values or colors, and depending on F

images can be binary , |F| = 2 (usually F = {0, 1}), grayscale if F is a one dimensional domain

representing the gray value of the pixel/voxel, color if F is a representation of the color of a

pixel/voxel (e.g. RGB, HSV value, or index in a color palette, etc.). Digital images are usually

11

CHAPTER 2. SHAPES AND DISTANCES

the result of an imaging process, which maps the continuous real world domain to a discrete

one.

This thesis considers 2D and 3D digital images represented by attributed points on the

regular grid Z2 respectively Z3. 2D images have the shape of a rectangle and 3D images the

shape of a cuboid4. They can be represented as matrices or as graphs.

Identifying the image elements that belong to a certain object can be implicit (e.g. in a

binary image, 1 usually means object and 0 background) or explicit (e.g. in addition to the

gray value/color information, to each element an additional label is associated and all ele-

ments with the same label belong to the same object). An (automatic) mean to try to esti-

mate image elements that belong to the same object, given a digital image, is segmentation

(e.g. [Haxhimusa 03, Shi 00]).

Representing images as graphs: Neighborhood graphs represent images by associating a

vertex to each pixel/voxel, and connecting them through an edge if the respective image elements

are neighbors (e.g. they share a common boundary). If the image elements are grouped into

regions, one can associate a vertex to each region and connect two vertices if the respective

regions are neighbors. Such a graph is called a region adjacency graph (RAG).

If the image is well composed [Latecki 97] (see Jordan curve Theorem5 in [Klette 04]) and the

embedding plays an important role then inclusion relations can be additionally encoded by using

a pair of dual graphs [Kropatsch 95]. One of the two graphs is an extended region adjacency

graph that encodes 2D adjacency and inclusion relations and the other one, sometimes called

boundary graph, encodes the region boundaries (there is a one-to-one association between the

edges of the two graphs). To handle dimensions higher than 2, other graph based representations

like combinatorial maps [Brun 06, Damiand 05] or generalized maps [Lienhardt 94] can also be

used.

Embeddable graph based representations are usually used in conjunction with the 4-adjacency

in 2D and the 6-adjacency in 3D. One can also use a higher adjacency, which would be locally

adapted to ensure the validity of the Jordan curve theorem [Klette 04].

Using a planar graph is not always possible. For example, consider a set of more than five

2D points with no three points located on a straight line. To encode the Euclidean distance

between the points (represented as vertices), by weighting edges with their length and using the

distance function in Section 2.1.7, one would have to use a non planar, fully connected graph.

4The used models for 2D and 3D digital images are the most spread ones, but still only a special case of the
high variety of possible representations for digital images.

5The Jordan curve theorem states that every non-self-intersecting closed curve in the plane divides the plane
into two disconnected regions: an “inside” and an “outside”. In other words, every path that connects one point
from the inside with one from the outside has to intersect the close curve.

12

2.1. RECALL OF BASIC NOTIONS AND PROPERTIES

image showing a leopard
2D binary shape of the leop-
ard in the image to the left

image showing a re-
cipient

2D binary shape of
the recipient in the
image to the left

Figure 2.2: Example images, objects and 2D shapes. (Images from [Martin 01])

2.1.9 Shapes in this thesis

The methods presented in this thesis use as one of their input arguments a binary shape (defined

in Section 2.1.1). To represent binary shapes we use binary images and associate one of the two

values of each element with the shape and the other one with the background.

Table 2.1 gives an overview of the shape representations and associated metrics, considered

in this thesis. If not otherwise stated, the theoretical part in Chapter 3 refers to continuous

shapes in Rn using dε. Image 2.2 shows example images (containing objects), and the binary

shape of the object in each image. The columns of Table 2.1 give:

• a short description;

• the notation used to identify the type of representation;

• the domain of the image elements that are used to represent the shape;

• the neighborhood;

• the metric;

• how the shape is actually represented.

2.1.10 Graph pyramids

This section gives a brief recall of (irregular) graph pyramids [Meer 89, Jolion 94]. A graph

pyramid is a hierarchical representation for image partitions at multiple levels of detail. As

opposed to their regular counterparts, graph pyramids are shift invariant and their structure

13

CHAPTER 2. SHAPES AND DISTANCES

Table 2.1: Shape representations that appear in this document.

description id. domain nb. metric represented as
a continuous 2D shape with
holes, with polygonal lines as
boundaries

P(R2), dε S ⊂ R2 Uε dε formula,
or corner points
for boundary poly-
gons (including
holes)

4-connected 2D shape using Eu-
clidean distance

Z2, dε S ⊂ Z2 4 dε in support
squares for S

binary 2D image

4-connected 2D shape using
city-block distance

Z2, d4 S ⊂ Z2 4 d4 binary 2D image

8-connected 2D shape using
chess-board distance

Z2, d8 S ⊂ Z2 8 d8 binary 2D image

6-connected 3D shape using Eu-
clidean distance

Z3, dε S ⊂ Z3 6 dε in support
cubes for S

binary 3D image

triangle mesh of surface of 3D
shape, using Euclidean distance
on the surface

Z2/Z3, dε S ⊂ Z2 x dε in
triangles of S

triangle mesh in 3D

image represented by a graph
with explicit distance encoding

G = (V , E) V E E graph

All distances are geodesic distances i.e. dε, de, d8 is actually dS
ε
, dS4 , dS8 . The given (non geodesic)

metric is used only if two points are directly visible.

adapts to the input data. A graph pyramid will be employed in Section 5.2 to represent the

decomposition of a shape based on its eccentricity transform.

A graph pyramid P = {G0, . . . , Gt} is a stack of successively reduced graphs. Each level

Gk = (Vk, Ek), 1 6 k 6 t, is obtained by contracting and removing edges in the level Gk−1

below. Successive levels reduce the size of the data by γ > 1. The edges and vertices of Gk

can be attributed. The reduction window relates a vertex at a level Gk with a set of vertices in

the level directly below (Gk−1). Higher level descriptions are related to the original input data.

The receptive field (RF) of a given vertex v ∈ Gk aggregates all vertices in G0 of which v is an

ancestor.

Each level represents a partition of the base level into connected subgraphs i.e. connected

subsets of pixels, if the pyramid is build in the context of an image. The construction of an

irregular pyramid is iteratively local [Meer 89]. In the base level G0 of an irregular pyramid the

vertices represent single pixels and the neighborhood of the cells is defined by the 4-connectivity

of the pixels (higher connectivity can be used locally, but planarity should be kept). The union

of neighboring vertices on level k − 1 (children) to a vertex on level k (parent), is controlled by

trees called contraction kernels (CK) [Kropatsch 95] chosen by the algorithm (e.g. segmentation,

14

2.2. THE GEODESIC DISTANCE FUNCTION

a)

•

b)

•

Figure 2.3: Geodesic distance functions. Gray values are distance values modulo a constant.
The marker set Y (source point) is the bottom-left corner. b) the separation line is shown (red).

connected component labeling, etc.). Every vertex computes its values independently of other

vertices on the same level. Thus local independent (and parallel) processes propagate information

up and down and laterally in the pyramid [Kropatsch 05].

In [Haxhimusa 02, Kropatsch 05], methods for optimally building irregular pyramids are

presented. Methods like MIS and MIES ensure logarithmic height of the pyramid by choosing

efficient contraction kernels i.e. contraction kernels achieving high reduction factors.

2.2 The Geodesic Distance Function

Definition 10. (Geodesic distance function) The geodesic distance function DS : {ℜ(S)\{∅}}×

S → R, where ℜ(S) is the powerset of S, is calculated from a set of points Y ⊆ S and assigns

min{dS(p,y) | y ∈ Y} to all points p ∈ S i.e.:

DS(Y,p) = min{dS(p,y) | y ∈ Y}.

The set Y is also called marker set [Soille 02], source points, or starting points. If Y is consid-

ered fixed, the function can be formulated as DS(Y) : S → R. This notation will be used to refer

to the geodesic distance function in general, or to the function [DS(Y)](p) which has the point

p as the single argument and is obtained after fixing Y. As in the case of the geodesic distance

dS (Definition 9), the subscript specifying the neighborhood and the superscript specifying the

domain, can be left out if it is clear from the context.

If the set Y is a single point, like in our case, the function is also known as the shape-bounded

single source distance transform (SBDT) [Ion 08d]. The term Euclidean based geodesic distance

function and symbol Dε will be used to denote the geodesic distance function defined using

dε (Euclidean based geodesic distance, Section 2.1.6). Figure 2.3 shows examples of geodesic

distance functions.

Definition 11. (Separation set) A separation set of the geodesic distance function DS(y) is the

15

CHAPTER 2. SHAPES AND DISTANCES

•
p

Figure 2.4: Shape and point p, with complex separation lines in DS
ε (p). (Gray values are

distances to p modulo a constant.)

set formed by points p ∈ S s.t. ∃π1, π2 ∈ ΠS(p,y), π1 6= π2, with λ(π1) = λ(π2) = dS(p,y).

Separation sets are piecewise connected. For 2D shapes, the connected components of the

separation set are 1D manifolds, and are called separation lines. In the case of 3D shapes, they

are called separation surfaces. Separation sets appear when the shape has holes of any dimension

i.e. cavities, tunnels, etc. Figure 2.3.b shows a separation line produced by the geodesic distance

function for a shape with one hole.

In higher dimensions (n > 3) separation sets can also appear due to concavities in the shape.

An example could be a room with a tall box in the middle, and distance computed by “air

distance” (length of shortest path not going through the box). Even though the space defined

by the air in the room does not have a hole in the topological sense, some points behind the box

can be much easier reached by going around the box, on the left or right side, than climbing over

it. When the distances computed going on the left and right sides are equal, the point belongs

to a separation set.

Less formal, a separation set is the set of points that can be reached in a shortest distance

over more than one path. For 2D shapes, it is the border between regions for which the geodesics

to the source point y go on one or the other side of a hole. It characterizes the fact that a certain

part of the shape can be reached in a shortest distance from more than one direction (on both

sides of the hole). If the shape has many holes, these lines can intersect producing more complex

structures formed of a union of lines/surfaces (e.g. a tree). An example is given in Figure 2.4.

Adding a hole (obstacle) to a shape results in some of the remaining points having a higher

distance to the source point y than without the hole.

Definition 12. (Shadow of a hole) The shadow of a hole, when considering the source point y

is the (connected) set of pixels p ∈ S, for which d(y,p) changes when the shape is considered

with and without the hole.

16

2.2. THE GEODESIC DISTANCE FUNCTION

•

Figure 2.5: Shadow of the hole in Figure 2.3.b, considering the same source point (bottom-left).

These are the points that are occluded by the hole and can now be reached only by going

around it. Figure 2.5 shows the shadow of the hole in Figure 2.3.b when considering the same

source point.

Property 5. Separation sets lie in the shadow of holes i.e. shadows are supersets of the sepa-

ration sets.

Proof. The property above rises from the definition of the shadow and the separation set. Con-

sider the point y ∈ S as the point for which we compute DS(y). Now assume ∃p ∈ S, p not in

any shadow, such that p is in the separation set of DS(y). But, p not in any shadow implies

that the geodesic(s) ν(p,y) is/are the same when computing on S with and without hole. As

geodesics on a simply connected shape are unique, ν(p,y) is unique, and p could not be in the

separation set of DS(y).

2.2.1 Computing the geodesic distance function

Depending on the representation of the shape and the type of metric, different algorithms can

be used. Table 2.2 gives an overview of the presented methods.

Other methods, like the Chamfer distance computation [Rosenfeld 66, Borgefors 86] use

properties of the metric to approximate the distance corresponding to a pixel, based on the

distances corresponding to the neighbors. Even though they are very efficient in the case of

the Distance Transform (DT) (Section 2.2.3), which is a special case of the geodesic distance

function, in general much more iterations may be required.

Graphs and discrete shapes using dα:

For S represented as a graph G = (V, E) and y ∈ V a vertex, and for using the 4, 8, 6, or

26 connectivity, which can be easily transformed into graphs, Dijkstra’s algorithm [Atallah 98]

solves the shortest path problem for a single-source (geodesic distance function with a single

marker) in O(|V|2) in a simpler implementation, and O(|E| + |V| log |V|) if using more efficient

17

CHAPTER 2. SHAPES AND DISTANCES

Table 2.2: Overview of the presented methods for computing the geodesic distance function.

Name compute on complexity exact notes
Dijkstra’s alg. graph G = (V , E) O(|E| + |V| log |V|) exact discrete (given) neighborhood
FM discrete shape S O(|S| log |S|) approx. Dε, easy to extend to Rn

DCP discrete shape S O((k + 1)|S| log |S|) exact Dε, harder to extend to Rn

(FM = Fast Marching, DCP = Discrete Circle Propagation, k = number of holes of S ⊂ R2)

Algorithm 1 Dijkstra(G,y) - Compute SBDT using Dijkstra’s algorithm.

Input: Discrete shape S represented as weighted graph G(V, E) and starting vertex y ∈ V.

1: for all v ∈ V do D(v)←∞ /*initialize distance vector*/
2: D(y)← 0
3: P = V /*all vertices are to be processed*/
4:

5: while P 6= ∅ do
6: v 8 arg min{D(v) | v ∈ P} /*select and remove vertex with smallest estimated distance*/
7:

8: for all u ∈ V | e = (v,u) ∈ E do
9: d← D(v) + w(e) /*dist. to u over v = dist. to v plus the weight of e = (v,u).*/

10: if d < D(u) then
11: D(u)← d
12: end if
13: end for
14:

15: end while

Output: Distances D.

structures (e.g. a Fibonacci heap [Atallah 98]). Algorithm 1 gives the pseudo-code for Dijkstra’s

algorithm.

Discrete shape with Euclidean distance

For discrete shapes using dε, creating a graph as mentioned above, and applying Dijkstra’s

algorithm is in most cases not the most efficient solution. To obtain a correct result, the

corresponding vertices of all pairwise visible points in S have to be connected by an edge,

weighted with the Euclidean distance between the two points. Depending on the shape, the

obtained graph can have a very high degree of connectivity (fully connected for convex shapes).

Two algorithms are proposed for this case: the first one, called Fast Marching (FM) [Sethian 99],

relies on the local approximation of DS using a formulation of a wave propagation as a partial

18

2.2. THE GEODESIC DISTANCE FUNCTION

differential equation, the second one, Discrete Circle Propagation (DCP) [Ion 08d], relies on

the simulation of the distance propagation using discrete analytical circles [Andres 94]. The

approaches are different. FM computes an approximation6, is easy to implement and extends to

any dimension. DCP tries to give the exact result, with an algorithm for 2D given below, but

the extension to 3D not straightforward (instead of working with angle intervals, like in 2D, the

algorithm has to handle connected regions on a sphere). The complexities of the algorithms are

comparable. A description of FM and DCP follows.

Fast marching (FM)

Related to Dijkstra’s algorithm, Fast Marching [Sethian 99] is a method to solve boundary value

problems of the form:

|∇T |F = 1 (2.2)

The formula above describes the evolution of a closed curve as a function of time T and speed

F . T (p) is the time at which the curve reaches the point p, F (p) is the speed in the normal

direction at a point p on the curve, and Y = {p | T (p) = 0} is the starting/source position

of the curve. FM was designed for problems in which the speed never changes sign (direction),

so that the front is always moving forward or backward and passing through each point only

once. This allows to consider the problem as a stationary problem i.e. for each grid point p the

value of T (p) is “recorded”. In the following paragraph, the case of S ⊂ Z2 is discussed in more

detail. Similar formulations exist for S ⊂ Z3 and S a 2D manifold in 3D (e.g. a triangle mesh

in R3).

For p ∈ S ⊂ Z2, Equation 2.2 can be approximated by [Rouy 92, Sethian 99]:

√
max(∆−x(p)T,∆+x(p)T, 0)2 + max(∆−y(p)T,∆+y(p)T, 0)2 =

1

F (p)
(2.3)

where ∆−x(p), ∆+x(p), ∆−y(p), ∆+y(p) are the forward (+x and +y) and backward (−x and

−y) difference operators of T at p. The solution of Equation 2.3 is the value t = T (p). Note

that when implementing, for a point p = (x, y) with discrete coordinates x and y, ∆−x(p)T

is approximated by T ((x, y)) − T ((x − 1, y)), ∆+x(p)T by T ((x + 1, y)) − T ((x, y)), and so on.

T (p) is the unknown value t, and T ((x− 1, y)), T ((x + 1, y)),. . . , are already known values.

The idea behind FM is to construct the solution T by using only upwind values, as it is

permitted by the formulation above. A list K of known values for T is initialized with Y and

maintained. In each step, one grid point q not in K, with the smallest estimated T (q) is

considered computed and added to K 7. The point q has to be 4-connected to a point in K. If

6[Sethian 99] contains an in depth study of the approximation errors of first and second order schemes.
7This way of approaching the problem is similar to Dijkstra’s algorithm.

19

CHAPTER 2. SHAPES AND DISTANCES

efficient structures (e.g. a Fibonacci heap) are used to represent the set of points in S −K, that

are neighbors with points from K and have estimated values for T (candidates to be moved to

K), the complexity of FM is O(n log n) in the number of grid points n = |S|.

Considering that when moving with constant speed F = 1, the time a moving object needs

to reach a certain point is equal to the distance covered, the following applies:

Property 6. If the set of computed points is the shape S, if F = 1 for all points, and if Y = {y}

with y a point in S, the solution T is an approximation of the SBDT, DS(y).

2.2.2 Discrete circle propagation (DCP)

Another possibility to compute the SBDT (geodesic distance function with one source point) is

to simulate the propagation of distances inside the shape, similar to the propagation of a wave

starting at the source point y and traveling with constant speed [Ion 08d]. At any time t > 0

the wave front is a set of discrete arcs. Each arc A is centered at the point r where the geodesic

from p ∈ A to y first touches the boundary of S. For each point of an arc, the geodesic distance

to y satisfies t 6 dS(p,y) < t + 1. The arc centers r are called reference points.

Discrete analytical circles

The used discrete circle definition has to satisfy the property that circles centered on a point

must fill, preferably pave, the discrete space. Points must not be missed during the propagation

phase.

There exists several different discrete circle definitions. The best known circle is an algo-

rithmic definition proposed by Bresenham [Bresenham 77] but this does not correspond to the

requirements of our problem. The center coordinates and radius have to be integer, and circles

with increasing integer radii do not pave the space. The discrete analytical circle proposed

in [Andres 94] fits the requirements:

Definition 13. A discrete analytical circle C(r,o) is defined by the double inequality:

p ∈ C(r,o)⇐⇒ r 6 d(p,o) < r + 1

with p ∈ Z2,o ∈ R2, and r ∈ R+ the radius using Euclidean distance.

This circle has arithmetical thickness 1. The circle definition is similar to the discrete ana-

lytical line definition proposed by Reveillès [Reveillès 91].

The fact that this circle definition is analytical, and not just algorithmic like Bresenham’s

circle, has many advantages. Point localization i.e. knowing if a point is inside, outside or on

20

2.2. THE GEODESIC DISTANCE FUNCTION

a) b)

A

A

B c)

A

A

B

C

Figure 2.6: The three steps used during wave front propagation (white: shape, black: back-
ground). a) radius 1: circle with radius 1 and center o is bounded to an arc. b) radius 2: the
front is split in two arcs A, B. c) radius 3: arc B, touching the hole at radius 2 (the next arc
pixel would fall in the hole) but not at radius 3, creates arc C with the center at the current
point of B.

the circle, is trivial. The center coordinates and the radius do not have to be integers. The

circle definition can easily be extended to any dimension (see [Andres 97]). Circles with the

same center pave the space:
∞⊎

r=0

C (r,o) = Z2

Each integer coordinate point in space belongs to one and only one circle8. As shown

in [Andres 97] a discrete circle of arithmetical thickness equal to 1 (this is the case with the

given definition) is at least 8-connected. The discrete points of the circle can be ordered and

there exists a generation algorithm with linear complexity [Andres 94, Andres 97]. Discrete

circles have been used before to simulate discrete wave propagation [Mora 03].

Simulating the wave propagation to compute the distances

The wave-front propagating from a point o will have the form of a circle centered at o. If the

wave front is blocked by obstacles, the circle is “interrupted” and disjoint arcs of the same circle

continue propagating in the unblocked directions. For a start point o, the wave front at time t

is the set of points p ∈ S at distance t 6 d(o,p) < t + 1. The wave front at any time t consists

of a set of arcs W(t) ⊂ S. Each arc A ∈ W(t) lies on a circle centered at the point where the

path from p ∈ A to o first touches ∂S (the boundary pixels of S).

The computation starts with a circle of radius 1 centered at the source point o, W(1) =

{C(1,o)}. It propagates and clusters as presented above (Figure 2.6), with the addition that

pixels with already computed distance smaller than the current wave front also block the prop-

8When drawing Bresenham circles with the same center and increasing radii, there are discrete points that do
not belong to any of the concentric circles.

21

CHAPTER 2. SHAPES AND DISTANCES

agation. An arc A ∈ W(t) of the wave front W(t), not touching ∂S at time t, but touching at

t − 1, diffracts new circles centered at the endpoints s ∈ A. The added arcs start with radius

one and handicap d(p, s). The handicap of an arc accumulates the length of the shortest path

to the center of the arc such that the distance of the wave front from the initial point o is always

the sum of the handicap and the radius of the arc. No special computation is required for the

initial angles of arcs with centers on the boundary pixels of S. They will be corrected by the

clustering and bounding steps when drawing with radius 1. See Figure 2.6 and Algorithm 2.

The complexity of Algorithm 2 is determined by the number of pixels in S, denoted |S|, and

the number of arcs of the wave front. Arcs are drawn in O(n) where n is the number of pixels of

the arc. Pixels in the shadow of a hole, where different parts of the wave front meet (i.e. pixels

on the separation lines), are drawn by each part. All other pixels are drawn only once. Adding

and extracting arcs to/from the wave front (W in Algorithm 2) can be done in log(|W|). For

convex shapes, the size of W is 1 all the time, so the algorithm executes in O(|S|). For simply

connected shapes, each pixel is drawn only once. Considering the upper bound |W| = |S| and

each arc only draws one pixel, the complexity for simply connected shapes is O(|S| log |S|).

Each hole creates an additional direction to reach a point, e.g. no hole: 1 direction; 1 hole: 2

directions - one on each side of the hole; 2 holes: maximum 3 directions - one side, between holes,

other side, etc.9 For a non-simply connected 2D shape with k holes, a pixel is set a maximum

of k + 1 times (worst case). The worst case running time complexity for non-simply connected

2D shapes with k holes is O((k + 1)|S| log |S|).

2.2.3 The distance transform (DT)

The distance transform (DT) [Rosenfeld 66, Rosenfeld 68, Rosenfeld 83] is probably the most

known distance related transform in the image processing community. The DT is studied in

depth in the discrete geometry and in the morphological image analysis communities (known

also under the name distance function [Soille 02]). The DT can be formulated as a special case

of the geodesic distance function presented in Section 2.1.6.

A feature that can be derived from the DT is the skeleton [Ogniewicz 95, Borgefors 99].

The skeleton is made out of the centers of maximally inscribed disks, and can then be used to

describe shapes and their topology in a compact way (skeletons lead to even more robust shape

descriptors, like the shock-graphs [Siddiqi 99, Sebastian 04]). Another feature is the “local

width” of the shape, which is given by the DT values of points that have at least two boundary

points which are closest (skeleton points).

Given a binary shape, the DT associates to each point of the shape (e.g. foreground pixel

9Note that we do not count the number of possible paths, but the number of directions from which connected
wave fronts can reach a point at the shortest geodesic distance.

22

2.2. THE GEODESIC DISTANCE FUNCTION

Algorithm 2 DCP (S,y) - Compute SBDT using discrete circles.

Input: Discrete shape S and pixel y ∈ S.

1: for all q ∈ S do D(q)←∞ /*initialize distance matrix*/
2: D(y)← 0
3: W ← Arc(y, 1, [0; 2π], 0, ∅) /*Arc(center, radius, angles, handicap, parent)*/
4:

5: while W 6= ∅ do
6: A 8 arg min{A.r + A.h | A ∈ W} /*select and remove arc with smallest ra-

dius+handicap*/
7:

8: /*draw arc points with lower distance than known before, use Euclidean distance*/
9: D(m)← min{D(m),A.h + d(A.c,m) |m ∈ A ∩ S}

10:

11: P1, . . . ,Pk ←actually drawn (sub)arcs/parts of A /*split and bound*/
12: W ←W+Arc(A.c,A.r + 1,Pi.a,A.h,A),∀i = 1 . . . k /*propagate*/
13:

14: /*diffract if necessary*/
15: if A.p touches ∂S on either side then
16: s← last point of A, on side where A.p was touching ∂S
17: W ←W+Arc(s, 1, [0; 2π],D(s),A)
18: end if
19: end while

Output: Distances D.

of a binary digital image) the distance to the closest boundary point. Figure 2.7 shows example

binary shapes and their associated DT. More formally,

Definition 14. (Distance Transform) Let S be a shape and d the used metric. The distance

transform of S and point p ∈ S is:

DT (S,p) = {min(d(p,q)) | q ∈ ∂S}. (2.4)

For nD shapes embedded in nD, the geodesic path to the closest boundary point is a straight

line. In this case, it does not make any difference whether d is a geodesic distance defined with

the geodesic mask S, like in the case of the geodesic distance function (Section 2.1.6), or it

is computed in the nD space in which S is embedded (e.g. ℓ2-norm). This fact is important

for computation, as it simplifies the problem (for example, instead of using Euclidean based

geodesic distance, which depends on the two end points and the shape, one can consider the

Euclidean distance itself, which depends only on the two end points). The used metrics span

from the classical d4, d8, to so called chamfer metrics [Borgefors 86, Verwer 91, Fouard 05],

which approximate the Euclidean distance using only integer numbers, to the “real” dε.

23

CHAPTER 2. SHAPES AND DISTANCES

dε d4 d8

Figure 2.7: Distance transform for two shapes, using dε, d4, and d8. (Gray values are distances
modulo a constant.)

The existing computation algorithms for the distance transform of a discrete shape can be

divided into three categories:

(1.) chamfer based: [Rosenfeld 66, Rosenfeld 68, Borgefors 86];

(2.) Euclidean based:

• considering the steepest descent vector [Danielsson 80, Mullikin 92, Cuisenaire 99];

• computing the square of Euclidean distance [Saito 94, Hirata 96, Meijster 00];

See [Fabbri 08] for a survey of 2D Euclidean distance transform algorithms.

(3.) Voronöı [Voronöı 1907, Aurenhammer 96] based: [Breu 95, Guan 98, Coeurjolly 02],

[Maurer Jr. 03].

To use the additional information available in grayscale images (shapes), paths/edges are

weighted by a function of the gray value of their pixels/voxels [Rutovitz 68, Rutovitz 78, Piper 87,

Shih 92, Huang 94, Toivanen 96, Qian 97].

2.3 Geodesic convexity

This section recalls the concept of geodesically convex sets (in our case shapes) and gives proper-

ties related to their intersection (see [Papadopoulos 03, Aleksandrov 04] for more details). They

24

2.3. GEODESIC CONVEXITY

p

q

P ′ S

p

q

P S

Figure 2.8: Example geodesically convex set P ⊂ S (left) and not geodesically convex set P ′ ⊂ S
(right). The geodesic in S between points p,q (dotted line) is contained in P but not in P ′.

are required for the proof of Property 23 in Section 3.4.3 (simply-connected, planar 2D shapes

have a unique geodesic center).

The two properties below extend the concepts of convex and strictly convex sets to geodesics

and geodesic distances. Instead of considering shortest paths in the space in which the shape P

is embedded (e.g. the 2D Euclidean plane), geodesics computed using the geodesic mask S ⊇ P

are considered. See Figure 2.8 examples.

Definition 15. (Geodesically Convex) Let S be a connected set with a geodesic distance dS , the

connected set P ⊆ S is said to be (geodesically) convex iff for any two points p,q ∈ P a geodesic

ν ∈ ΠS(p,q) is contained in P i.e. ν ⊆ P.

Definition 16. (Strictly geodesically convex) A set P ⊆ S is said to be strictly geodesically

convex, if it is geodesically convex and for any two points p,q ∈ ∂P, the geodesic ν ∈ ΠS(p,q),

ν ⊆ P touches ∂P only at p and q.

In other words, no interior point of any geodesic touches the boundary of P.

The following properties consider the intersection of geodesically convex sets and the division

of the space in which they are defined.

Theorem 1. (Intersection of geodesically convex sets) The intersection of any collection of

(strictly) geodesically convex sets defined over the same domain is itself (strictly) geodesically

convex [Aleksandrov 04].

Definition 17. (Supporting Hyperplane) Suppose P is a geodesically convex set and q ∈ ∂P

is a point of the boundary. A supporting hyperplane is a hyperplane H with q ∈ H such that P

is entirely contained in one of the two regions that H divides the space into. For P ⊆ S a two

dimensional and geodesically convex shape, H is a geodesic dividing S in two parts (H is a cut

of S).

For S ∈ R2 the supporting hyperplane is a line, which at points where ∂S is smooth is equal

to the tangent to S.

25

CHAPTER 2. SHAPES AND DISTANCES

Theorem 2. (Supporting Hyperplane Theorem) A geodesically convex set has at least one

supporting hyperplane at each point of its boundary [Aleksandrov 04]. (Can be related to the

Hahn-Banach Separation Theorem [Narici 97]).

A supporting hyperplane exists also when ∂S is not differentiable, and thus can be used also

when ∂S is not smooth.

2.4 Chapter Summary

This chapter introduced the notions of object, shape and distance, which are required to define

the eccentricity transform. Shapes characterize the form (space occupied) by objects, and can

be continuous or discrete. Discrete shapes are represented as discrete points in Zn or as graphs.

Geodesic distances are lengths of shortest paths included in the shape. Given a set of source

points, the geodesic distance function gives the geodesic distance of all points of a shape to

the closest source point. Three methods to compute the geodesic distance function have been

given. A known distance related image transform, is the distance transform. The distance

transform takes a shape as an input and associates to each point of the shape the distance to

the closest boundary point. The concept of geodesic convexity and important properties are

given, as prerequisites for the properties in the following chapter.

26

3
The Eccentricity Transform

This chapter gives the formal definition of the eccentricity transform and related terms. For a

list of basic shapes, their eccentricity transform and related properties are given. These shapes

were chosen to illustrate the behavior of the eccentricity transform with increasing complexity

of the shapes (dimension, convexity, holes, etc.) and to demonstrate properties that have lead to

the eccentricity transform algorithms in Chapter 4. Experiments regarding robustness conclude

the chapter.

3.1 Related Work

The concept of distance to the point furthest away has been approached independently in dif-

ferent communities and is known under different names.

In graph theory [Buckley 90, Berge 91, Diestel 97], the length of the shortest path connecting

a vertex to a vertex furthest away is called eccentricity [Buckley 90]. It is used to define the

radius (smallest eccentricity) and diameter (largest eccentricity) of a graph, but computing the

value for all vertices at once (transform) is not approached.

In the computational geometry community, the concept is known under the term fur-

thest neighbor/furthest point . Computation is approached for the corners of simple polygons

in [Suri 87], where an algorithm with a running time of O(n log n) in the number of polygon

corners is given. Asano and Toussaint [Asano 87] have studied the problem of computing the

geodesic center of a simple polygon, which is a point that minimizes the maximum geodesic

distance to any point in the polygon (distance to point furthest away). A faster algorithm than

the one by Asano et al. (O(n4 log n)), with the worst-case running time O(n log2 n) has been

proposed by Pollack et al. [Pollack 89].

In the morphological image analysis community, the function associating to each point

of a shape the geodesic distance to the point furthest away is called the propagation func-

tion [Soille 02]. Maisonneuve and Schmitt [Maisonneuve 89, Schmitt 93] have looked at the

27

CHAPTER 3. THE ECCENTRICITY TRANSFORM

computation for simply connected compact polygons using digital metrics1. Soille [Soille 94] has

considered the propagation function using generalized geodesic distances that are less sensitive

to bending. The discussion considered measuring the length (diameter) of a simply connected

shape.

This thesis brings together the similar concepts from the three communities into a general

formulation. It studies further properties and explicitly considers shapes that are not simply

connected, which was not considered before.

3.2 Definition of Eccentricity and Eccentricity Transform

This section defines the eccentricity of a point and the eccentricity transform of a shape. Features

and properties are presented in the following sections.

The definitions and properties follow [Kropatsch 06] (the eccentricity transform of a graph

and of 4 and 8 connected planar shapes), [Ion 07a] (ECC of an ellipse, using dε), [Ion 07b]

(4 connected planar shapes using dε), [Kropatsch 07] (polygonal shapes using dε), [Ion 08a] (6

connected 3D shapes using dε), and [Ion 08d] (efficient approximation and related properties).

Definition 18. (Eccentricity) Let S be a shape and dS the used geodesic distance. The eccen-

tricity of a point p ∈ S is:

ECC(S,p) = {max(dS(p,q)) | q ∈ S}. (3.1)

The eccentricity of a point p is the length of the longest geodesic that has p as one of its

end points. This is the same as the length of the longest of the shortest paths connecting p to

any other point q ∈ S.

Note that the definition does not depend on the existence or a priori knowledge of ∂S.

Definition 19. (Eccentricity Transform) The eccentricity transform (ECC) of a shape S, using

the geodesic distance dS , assigns the eccentricity ECC(S,p) to each point p of S:

[ECC(S)](p) = ECC(S,p) = {max(dS(p,q)) | q ∈ S}.

Figure 3.1 shows an example 2D shape and its eccentricity transform using different metrics.

The eccentricity transform is also known by the name propagation function [Soille 02] in the

morphological image processing community.

1Digital metrics are continuous non-Euclidean distances that depend on a regular polygon inscribed in the
circle of radius 1.

28

3.3. POINTS WITH SPECIAL ECC MEANING, ECC DERIVED FEATURES

dε d4 d8

Figure 3.1: Eccentricity transform of a shape, using dε, d4, and d8. (Gray values are distances
modulo a constant.)

DS(p) ECC(S) • point p ∈ S

•

•

p

• E(p) •

•

•

•

• maximal point of S, for DS(p)
• eccentric point of p, E(p)

eccentric path of p
• eccentric points of S, E(S)
• geodesic center C(S)

paths defining geodesic radius
path defining geodesic diameter

Figure 3.2: Examples for eccentricity related terms. (Gray values are distances modulo a con-
stant.)

Note that, when computing the eccentricity transform, the distance d and the distance

function D are always the geodesic distance dS , respectively the geodesic distance

function DS , even though to help reading, the superscript S might be left out.

3.3 Points with Special ECC Meaning, ECC Derived Features

The terms and properties in this section are defined from and for the ECC of a shape. In addition

to the references mentioned before, for Definitions 24, 25 and 26, and Property 8, [Soille 02] was

also considered. Figure 3.2 shows examples of the terms defined below.

Definition 20. (Maximal Point) Given a shape S and a geodesic distance dS , a point x ∈ S

is called maximal iff dS(p,x) is a local maximum for some p ∈ S i.e. x is a local maximum

in DS(p), the geodesic distance function associated to dS . X (S) denotes the set of all maximal

points of shape S.

Definition 21. (Eccentric Point) An eccentric point of a shape S is a point q ∈ S that is

farthest away in S from at least one other point p ∈ S i.e. ∃p ∈ S s.t. ECC(S,p) = dS(p,q).

29

CHAPTER 3. THE ECCENTRICITY TRANSFORM

E(S) denotes the set of eccentric points of the shape S, and E(S,p) the set of eccentric

points of a point p in S.

Definition 22. (Eccentric Path) An eccentric path of a point p ∈ S is a geodesic connecting p

with one of its eccentric points.

Property 7. The set of eccentric points E(S) is a subset of the set of maximal points X (S).

Eccentric points are global maxima in DS(y), for some y, while maximal points are local

maxima.

Definition 23. (Eccentric point cluster) An eccentric point cluster is a maximal connected set

of eccentric points i.e. a connected set that is not a strict subset of any other connected set of

eccentric points.

Definition 24. (Geodesic ends of a shape) Given a shape S, a point q ∈ S is called a geodesic

end of S if q is a local maximum of the eccentricity transform ECC(S) of the shape.

Property 8. The geodesic ends of a shape S are located on its boundary ∂S [Soille 02].

Definition 25. (Geodesic radius and geodesic center) The geodesic radius of a shape is the

smallest eccentricity of a shape. The geodesic center or simply center of a shape S is the set of

points of S having the eccentricity value equal to the radius:

C(S) = {p ∈ S | ECC(S,p) = min{ECC(S)}}

By definition C(S) belongs to S, also if S is not convex or contains holes (as opposed to the

centroid of a shape which can lie outside of it). The elements of C(S) are called geodesic center

points or simply center points.

Definition 26. (Geodesic length/diameter) The geodesic length, or diameter, of a shape S is

the length of the longest geodesic of S, which coincides with the highest value of ECC(S).

3.3.1 Shape decomposition based on eccentric or reference points

Each point of a shape has at least one eccentric point. When the used geodesic distance function

is continuous or a discrete approximation of a continuous function (e.g. dα) the set of eccentric

points of neighboring shape points has the “tendency” to be piece-wise constant i.e. ∃Pi ⊂ S

s.t. all p ∈ Pi have the same set of eccentric points.

The decomposition of a shape based on its eccentric points (ECC decomposition) is done by

grouping together neighboring points that have the same eccentric points. Figure 3.3 shows an

30

3.3. POINTS WITH SPECIAL ECC MEANING, ECC DERIVED FEATURES

a b

c

A

C

Figure 3.3: Decomposition based on eccentric points: A, C regions corresponding to point a,
respectively c.

1 2

3 4

5 6

78

A

B C D

←E

F

←G

H

I

patch reference point eccentric point

A 7 7
B 3 7
C 4 8
D 8 8
E 4 1
F 3 1
G 1 1
H 6 6
I 4 6

Figure 3.4: Eccentricity transform of a polygonal shape and its decomposition based on the
ECC reference points. Some region borders (e.g. between regions H and F) are noticeable also
on the eccentricity transform image.

example shape decomposition based on the eccentric points (Section 3.5.3 treats the eccentricity

transform of a triangle in detail).

If the used distance and the shape S are continuous then the boundaries of the obtained

regions are made out of points that have the union of the eccentric points of all the regions they

are incident to (e.g. the points on the line separating regions A and C in Figure 3.3 have both

a and c as eccentric points). If the set of eccentric points is finite then the decomposition has a

finite number of regions, otherwise it can have any number of regions (e.g. the continuous 2D

disk with dε has an infinite number of eccentric points and regions - Section 3.5.4).

For convex shapes, the geodesics are straight lines and only touch the boundary if one of the

end points is a boundary point. For non convex shapes, geodesics ν(y,p) are polygonal lines of

31

CHAPTER 3. THE ECCENTRICITY TRANSFORM

the form (y, l1, . . . , ln,p). Where li, 1 6 i 6 n, are n > 0 points of ∂S. For smooth shapes, n

can be infinitely large. If n = 0 in the previous relation, the reference point for a point p is the

point y, otherwise it is ln. In other words, reference points are the points r where the geodesic

ν(y,p) last touches the shape boundary i.e. {r ∈ ν(y, r) | r ∈ ∂S and d(r,p) = min}. If ν(y,p)

does not touch ∂S, the reference point of p is the starting point y itself. (Section 2.2.2 shows

the usage of reference points as discrete circle centers.)

The decomposition of a shape based on its ECC reference points is done by grouping together

neighboring points that have the same reference point(s) for their corresponding eccentric paths

and have the same eccentric point(s). Figure 3.4 shows an example shape decomposition based

on the reference points. In [Kropatsch 07] a method to compute the decomposition is given and

discussed. The method decomposes a polygonal shape, in parallel, for each candidate eccentric

point. Then it combines the patches to produce the final decomposition. This decomposition

also gives a way to represent the eccentricity transform of a continuous polygonal shape with or

without holes (without the need for discretization or approximation).

3.4 Properties Related to the Eccentricity

The properties given in this section refer to the case of using Euclidean distance i.e. d = dSε .

Nevertheless, Properties 9-12, 15, 19

3.4.1 Eccentric and Maximal Points

Property 9. All eccentric points of a simply connected planar shape S are located on its bound-

ary ∂S.

Proof. Any geodesic ν ∈ Π(p,q) with q /∈ ∂S can be prolongated by a line segment starting at

q in the direction pointed by the tangent to ν at q. If q ∈ ∂S the direction of the tangent to

ν at q can point outside S (e.g. when ν is normal to S at q) - in this case ν can no longer be

prolongated and from all points of ν, q is the point farthest away from p.

For S strictly convex at q and d = dε, any line segment partially contained in S, passing

through q, will “exit” S at q.

Property 10. All eccentric points of a planar shape with one hole are located on its boundary.

Proof. A single hole in S produces a separation line L in DS(p). One can consider cutting S

along L, producing a simply connected shape S ′. From the definition of the separation set, a

path passing over L cannot be a geodesic, which implies that no geodesics in DS(p) go over L

and DS(p) = DS′

(p). Property 10 is then equivalent to using Property 9 for S ′.

32

3.4. PROPERTIES RELATED TO THE ECCENTRICITY

•
p

•

Figure 3.5: Shape and point p, with an eccentric point E(p) inside the shape. (Gray values are
distances to p modulo a constant.)

Property 11. If the shape has more than one hole, eccentric points could exist inside the shape

i.e. E(S) * ∂S

Figure 3.5 shows an example shape. The distance from p to the three triangle corners is

equal, and the triangle is equilateral. For the point p, DS(p) contains a more complex separation

set L which is the result of the two or three ways that some points can be reached in a shortest

distance. Each part of L is the result of a combination of two ways that distances can be

propagated from. The intersection point of the three lines has the highest distance. Not for all

shapes with two holes, the separation lines intersect. Having an eccentric point in the inside of

the shape happens only if such very special configurations exist, in addition to no other part of

the shape being further away.

Property 12. (Eccentric points on ∂S) For planar shapes with less than two holes, all eccentric

points are located on ∂S (immediate result of Properties 9, 10 and 11).

Property 13. No eccentric points E(S) of a simply connected shape lie on a concave or straight

part of the boundary of S i.e. ∄e ∈ E(S) s.t. ∂S is concave or straight at e.

Proof. In a 2D plane, all points at the same distance to a point p lie on a circle C(p, r). If the

circle is contained in S then there are points further away from p. If l ∈ ∂S is on a straight

or concave part of ∂S then any circle C tangent to ∂S at l is partly inside the shape around l.

Thus there exists a point q ∈ S with q 6∈ C s.t. d(p,q) > r. The previous is valid for higher

dimensional spaces (Rn) if considering hyperspheres instead of circles.

If S has a hole and l is located on the separation set of DS(p), the additional constraint of

paths not crossing the separation set L applies. In this case, eccentric points can be found also

on straight and concave parts of the boundary of S (Figure 3.6). Property 13 is only valid for

S with no holes.

33

CHAPTER 3. THE ECCENTRICITY TRANSFORM

•
↑ p

•
↓ E(p)

Figure 3.6: Case where an eccentric point lies on a straight part of the boundary. (Gray values
are distances modulo a constant.)

.

Property 14. (reformulation of Property 13) All eccentric points E(S) of a simply connected

shape lie on convex parts of the boundary of S i.e ∀e ∈ E(S)⇒ ∂S is convex at e.

Properties 12, 13 and 14 also apply to maximal points.

Property 15. (Being an eccentric point is not a local property) For any shape S and for any

point p ∈ S, ∃ a shape Ŝ = S ∪ S ′, S ′ simply connected and S ∩ S ′ = ∅, such that p is not an

eccentric point of Ŝ and E(Ŝ) ⊂ S ′.

S

B ⊂ ∂S S ′

lV

Figure 3.7: Adding part S ′ to S s.t. no eccentric point lies in S (see Property 15).

Proof. Let l be the length of ∂S, and let B ⊂ ∂S, B 6= ∅, λ(B) ≪ l, a boundary part of S. We

construct S ′ with the shape of a capital “V” glued at its endpoints with the endpoints of B, and

the length of the two branches lV > 2l > 2max(ECC(S)) (Figure 3.7). The obtained shape

Ŝ = S ∪ S ′ will have two eccentric points at the top of the two branches of the “V”, a diameter

max(ECC(Ŝ)) = 2lV , and no eccentric point will lie on S. If S has holes, B is taken from the

34

3.4. PROPERTIES RELATED TO THE ECCENTRICITY

part of ∂S separating S from the infinite space (not from the enclosed holes), and l is the sum

of the length of all parts of ∂S.

Property 16. Every shape S, |S| > 1 (S is made out of more than one point), has at least two

points with the highest eccentricity (global maxima).

Proof. Let p ∈ S with ECC(S,p) = max{ECC(S)} be a point with the highest eccentricity

i.e. ∀u ∈ S, ECC(S,u) 6 ECC(S,p). From the definition of eccentricity, ∃q ∈ S, q 6= p

s.t. d(p,q) = ECC(S,p) =⇒ ECC(S,q) > d(p,q) = ECC(S,p). As p has maximum

eccentricity, ECC(S,q) 6 ECC(S,p) =⇒ ECC(S,q) = ECC(S,p).

The following property is a general property for symmetric (having one axis of symmetry),

simply connected, convex shapes.

Property 17. (decomposition of symmetric shapes) Let S be a symmetric, simply connected

and convex shape, with A its axis of symmetry. Let S1 and S2 denote the two symmetric parts

of S separated by A. Any point p ∈ S1 has its eccentric point e in S2, and vice versa.

Proof. Let p ∈ S1 and e ∈ S1 its eccentric point. Point e ∈ S1 has the symmetric point e′ ∈ S2.

S is convex, thus geodesics are straight lines. The straight line connecting p and e′ intersects

A in point q ∈ A having the same distance to e and e′ (q is on the axis of symmetry and e, e′

are symmetric). Then d(p, e′) = d(p,q) + d(q, e′) = d(p,q) + d(q, e). Due to the triangular

inequality d(p,q) + d(q, e) > d(p, e) and thus e cannot be the eccentric point of p.

3.4.2 Center - eccentric points and paths

Property 18. A center point c ∈ C(S) of a simply connected planar shape S has at least two

eccentric points.

Proof. DS(p) defines for each point q ∈ S a unique direction of steepest descent and a neighbor

closer to p in that direction. If a center point c would have a single eccentric point e = E(S, c)

then the neighbor c′ of c in the direction of steepest descent of DS(e) would have d(c′, e) < d(c, e)

making ECC(S, c′) < ECC(S, c) which contradicts the assumption that c is a center point.

If the shape S has a hole or the shape is not planar, there exist points (e.g. the points

on the separation set) that do not have a unique direction of steepest descent, and have two

geodesics connecting them to the same source point p. In this case, a center point can have a

single eccentric point (Figure 3.33 shows an example shape).

Property 19. Any center point c of any shape S has at least two eccentric paths.

35

CHAPTER 3. THE ECCENTRICITY TRANSFORM

Proof. Any geodesic ν(q,p) in S defines for each point q ∈ S, a neighbor q′ closer to p, and a

direction
−→
qq′. If a center point c would have a single eccentric path ν(c, e) then the neighbor

c′ ∈ ν of c, in the direction
−→
cc′ (direction of tangent to ν at c) would have d(c′, e) < d(c, e)

making ECC(S, c′) < ECC(S, c) which contradicts the assumption that c is a center point.

3.4.3 Single center (minimum) point

This section focuses on showing that planar simply connected continuous shapes S using the

Euclidean based geodesic distance dSε have a geodesic center made out of a single point (Prop-

erty 23). The proof of the property has been divided in smaller properties and their proofs,

which are first given.

Overall concept

Equation 3.1 (definition of the eccentricity transform) can be rewritten using functions instead

of points as:

ECC(S) = max{DS(y) | y ∈ S} (3.2)

Note that DS(y) is a function defined for all points p ∈ S i.e. we can compute [DS(y)](p) to

get the distance value associated to a point p. The ’max’ above operates on functions defined

over S and not on single scalar values. As the ’max’ operator is distributive and commutative,

the previous is equal to:

ECC(S) = max{DS(y1),max{DS(y2),max{DS(y3), . . . }}}, ∪{yi} = S

In the following we will show that a function fm : S → R of the form fm = max(f1, f2) has

common properties with the two functions f1 and f2, if f1, f2 share the same (five) properties

discussed in the following (Page 38).

The remaining part of this subsection considers functions f : S → R, continuous, with a

single minimum m. Any cut divides S in two disjoint parts S ′ and S ′′, S ′ is considered the part

containing the minimum m.

Prerequisites

Definition 27. (Level set) The level set [Weisstein 02] of a function f : Rn → R, corresponding

to a value h, is the set of points p ∈ Rn s.t. f(p) = h i.e.

{p ∈ S | f(p) = h} = f−1(h)

36

3.4. PROPERTIES RELATED TO THE ECCENTRICITY

p

p

p p

a) rectangle and DS
ε (p) b) one hole and DS

ε (p) c)
section of sphere and

DS
ε (p) on surface

Figure 3.8: Example (a) iso-convex and (b,c) non iso-convex functions. Isolines in red.

If n = 2 and f : R2 → R, the connected components of the level sets of f form one dimensional

manifolds called isolines. If n = 3 and f : R3 → R, they are called isosurfaces.

Definition 28. (Isoline-cut) A function f : S → R, with S ⊂ R2, is called isoline-cut iff ∀W ⊂

S an isoline of f i.e. W is a connected component of the level set f−1(h), h ∈ (min{f},max{f}],

W cuts S in two disjoint parts S ′ and S ′′, S ′ ∪ S ′′ ∪ f−1(h) = S. S ′ is the part containing m.

Definition 29. (Iso-convex) A function f : S → R, with S ⊂ R2, is called iso-convex iff f is

isoline-cut, and for any W corresponding to a level h ∈ (min{f},max{f}] we have: ∀p,q ∈ W,

p 6= q, W ∩ ν(p,q) = {p,q} and {u ∈ ν(p,q) | u 6= p ∧ u 6= q} ⊆ S ′ i.e. the isolines W are

strictly convex when considering the part S ′ with the minimum m (see Definition 16).

An example iso-convex function is the Euclidean based geodesic distance function DS
ε (y) :

S → R (Section 2.2) for S ⊂ R2, planar and simply connected (Figure 3.8.a). A counter example

is S ⊂ R2 not simply connected (Figure 3.8.b) or S a slice of the surface of a sphere (e.g. between

meridian 0◦ and 5◦, Figure 3.8.c) - in both cases there are points where the isoline is straight or

not convex. The D4 and D8 geodesic distance functions on a rectangle are also not iso-convex,

as their isolines can contain straight lines.

The following two properties consider the values of f in S ′′ when cutting S along an isoline

W.

Property 20. (Monotonic path always exists) For all points p ∈ S, p 6= m, ∃π ∈ Π(p,m)

s.t. g : π → R, g(q) = f(q), is strictly monotonic with g(p) its maximum and g(m) its

minimum.

The property above is a direct result of the fact that every point, except m has at least one

neighbor with a smaller value.

37

CHAPTER 3. THE ECCENTRICITY TRANSFORM

Property 21. (All points in S ′′ have values larger than the points of the cut W) For f con-

tinuous, with a single minimum m, and isoline-cut: for all isolines W corresponding to a level

h ∈ (min{f},max{f}], all p ∈ S ′′ have f(p) > h.

Proof. Assume ∃q ∈ S′′ s.t. f(q) 6 h. Property 20 implies ∃π(q,m) strictly monotonic. From

Definition 28, any path from q ∈ S ′′ to m ∈ S ′ has to contain at least a point l ∈ W of the cut.

But f(l) = h > f(q), which contradicts the assumption.

The five properties

The following five properties, that are satisfied by DS
ε (y) for S continuous, planar and simply

connected and y ∈ S, are required for Property 23. They concern functions of the form f : S →

R.

i. (simply connected domain) S is simply connected;

ii. (continuous) f is continuous over the whole domain S;

iii. (single min) f has a single local minimum m, which is also the global minimum of f ;

iv. (isoline-cut) f is isoline-cut (Definition 28);

v. (iso-convex) f is iso-convex (Definition 29).

These properties are referred to using the roman numbers on the left (i.–v.).

The following lemmas and properties consider functions fm, f1, f2 : S → R , where fm is

defined as fm(p) = max(f1(p), f2(p)), ∀p ∈ S, and S ⊂ R2. The domain S is simply connected,

and the functions f1 and f2 are (Properties i.–v. on Page 38): continuous, have a single

minimum m1 respectively m2, are isoline-cut (Definition 28) and iso-convex (Definition 29).

The purpose is to show that the function fm = max{f1, f2} also possesses the same 5

properties. Figure 3.9 illustrates the used notation.

Properties i. and ii.:

From fm defined on the same simply connected domain as f1 and f2, the definition domain of fm

is simply connected (Property i.). Also the maximum of two continuous functions is continuous

(Property ii.).

Property iii.:

For Property iii., the following two options exist for a point p ∈ S: f1(p) 6= f2(p) (Lemma 1)

and f1(p) = f2(p) (Lemma 2).

38

3.4. PROPERTIES RELATED TO THE ECCENTRICITY

m1

W1

S ′′1

pS ′1

m2

S ′2

S ′′2 p

W2

Figure 3.9: Notation used for proof of Properties i.–v. (Page 38) and Property 22. Level set in
red.

p

p

m pm

a) P = (S ′1 ∩ S
′
2) = ∅ b) P 6= ∅ c) P 6= ∅

Figure 3.10: Example configurations of two convex isolines (see Lemma 2).

Lemma 1. For f1(p) 6= f2(p), f1, f2 as defined above, p is the single minimum of fm iff p is

the single minimum of the function f1 or f2 that has the highest value at p.

Proof. Assume f1(p) > f2(p), without constraining the result. The following options exist:

(1.) p = m1 (p is the point that reaches the minimum of f1)

=⇒ ∀q ∈ S,q 6= p, fm(q) > f1(q) > f1(m) = fm(p) =⇒ fm(q) > fm(p) and p is the

single minimum of fm;

(2.) p 6= m1 (p is not the point that reaches the minimum of f1)

=⇒ ∃u ∈ Uε(p) (u neighbor of p) s.t. f2(u) < fm(u) = f1(u) < f1(p) = fm(p)

=⇒ fm(u) < fm(p) and p is not a local thus also not a global minimum of fm.

Lemma 2. For f1(p) = f2(p), f1, f2 as defined above; either p is not a local minimum or it is

the single minimum of fm.

Proof. Let h = f1(p) = f2(p). Considering whether p is the point where one of the two functions

f1, f2 has its minimum, we have:

39

CHAPTER 3. THE ECCENTRICITY TRANSFORM

(1.) p = m1 or p = m2 (f1 or f2 have their minimum at p)

assume p = m1 =⇒ ∀q ∈ S, q 6= p, fm(q) > f1(q) > f1(m1) = fm(p) > f2(m2)

=⇒ fm(q) > fm(p) and p is the single minimum of fm. The same reasoning is valid for

p = m2;

(2.) p 6= m1 and p 6= m2 (none of f1, f2 has the minimum at p)

in other words {q ∈ S | f1(q) < h} 6= ∅ and {q ∈ S | f2(q) < h} 6= ∅. Let W1,W2 ⊆ S be

the isolines (connected components of the level sets) of f1 and f2, containing p (Figure 3.9

illustrates the used notation). As f1, f2 are isoline-cut (Definition 28), each ofW1 andW2,

cuts S in two disjoint parts S ′1,S
′′
1 and S ′2,S

′′
2 , with S ′1 and S ′2 containing m1, respectively

m2. From Property 21 we have ∀u1 ∈ S
′′
1 , f1(u1) > h and ∀u2 ∈ S

′′
2 , f2(u2) > h =⇒ for

S ′′1 ∪ S
′′
2 , fm contains only values larger than h, and all values of fm smaller than h are in

S ′1 ∩ S
′
2. For P = (S ′1 ∩ S

′
2) we have:

(2.a) P = ∅ (Figure 3.10.a)

As f1, f2 are iso-convex (Definition 29), the above implies that W1 ∩W2 = {p} (W1

and W2 lie on different sides of a supporting line at p) =⇒ S ′′1 ∪ S
′′
2 ∪ {p} = S and

p is the single local/global minimum of fm.

(2.b) P 6= ∅ (Figures 3.10.b and 3.10.c)

As f1, f2 are iso-convex, P ∩ Uε(p) 6= ∅ (see Theorem 1, strictly convex implies

connected). As f1, f2 are continuous and {m1,m2} ⊆ P, ∃q ∈ P ∩Uε(p) s.t. f1(q) <

f1(p) and f2(q) < f2(p), thus p cannot be a local (global) minimum of f .

Properties iv. and v.:

For Properties iv. (isoline-cut) and v. (iso-convex), consider an isolineW of fm corresponding

to a value h. We can distinguish the following two cases:

(1.) W consists entirely of an isoline W1 of f1 or W2 of f2

Assume W = W1 =⇒ W has the same properties as W1 i.e. isoline-cut (Definition 28)

and iso-convex (Definition 29).

(2.) W consists of parts of two isolines W1 of f1 or W2 of f2

As both W1 and W2 are convex (f1, f2 are iso-convex), W is also convex (Theorem 1),

thus fm is iso-convex too.

Consider a path π(q,q′) with q ∈ S ′′1 ∪S
′′
2 and q′ ∈ S ′1∩S

′
2 thus fm(q) > h and fm(q′) < h.

Assuming that W is not a cut ∃π(q,q′) ⊂ S s.t. π does not contain any point of W i.e.

40

3.4. PROPERTIES RELATED TO THE ECCENTRICITY

π ∩ W = ∅. As W is connected and fm is continuous, ∃p ∈ π s.t. fm(p) = h. As both

f1, f2 are isoline-cut, we have p ∈ W1 if fm(p) = f1(p) or p ∈ W2 if fm(p) = f2(p), but

this implies that p ∈ W which contradicts the assumption that π ∩ W = ∅ =⇒ fm is

isoline-cut.

Putting it all together:

In the previous we have shown that:

Property 22. If f1, f2 : S → R possess Properties i.–v. (Page 38) i.e. continuous on the simply

connected domain S, they have a single minimum, they are isoline-cut and iso-convex, then the

function fm : S → R, fm = max{f1, f2} has the same properties.

Now we can formulate the property we were aiming at:

Property 23. The geodesic center of a planar, simply connected, continuous shape S, using

dSε , is a single point i.e. C(S) = {c}, c ∈ S i.e. ECC(S) has a unique global minimum.

Proof. At the beginning of the subsection we have rewritten Equation 3.1 (definition of the

eccentricity transform) using functions instead of points as:

ECC(S) = max{DS(y1),max{DS(y2),max{DS(y3), . . . }}}, ∪{yi} = S

The geodesic distance function DS
ε (y) for a simply connected planar shape S is continuous,

and has a single minimum [DS
ε (y)](p) = 0 at p = y. The isolines are either closed or a set of

disconnected lines, a case in which both endpoints of the isolines are located on the boundary of

S. As S is simply connected two points on different sides of an isoline W cannot be connected

by a path not intersecting W and thus DS
ε is also isoline cut (Definition 28). The isolines W are

connected arcs of decreasing radii, with the centers of the arcs on the geodesic from the isoline

points to the source point (marker) y =⇒ DS
ε (y) is iso-convex (Definition 29).

As DS
ε (y) possesses Properties i.–v. (Page 38), applying Property 22 in the ECC definition

above, shows that ECC(S) possesses the same properties, specifically Property iii. i.e. having

a single minimum.

3.4.4 Properties Contradicting Early Intuition

Property 24. The longest geodesics of a shape (path defining the diameter) do not necessarily

pass through any center point.

Figure 3.16 presents the eccentricity transform of a triangle, an example that illustrates the

above.

41

CHAPTER 3. THE ECCENTRICITY TRANSFORM

Property 25. Eccentric paths with different orientation and different length can pass through

a single point.

The points on the small diameter of an ellipse are a good example for this (Section 3.5.5).

Eccentric paths going from one side to the other pass through the small diameter. Another

example is the center of a 2D disk. Eccentric paths in all directions pass through it. This

property helps understand why we cannot, like in the case of the distance transform, compute

the eccentricity transform in a single pass by associating a single value to each processed point.

Property 26. The set of eccentric points E(S) of a shape is not necessarily equal to its set of

geodesic ends i.e. not all eccentric points are local maxima of the eccentricity transform.

Property 8 states that all geodesic ends are located on ∂S, which is not always the case for

eccentric points (Property 11). An example of a simply connected shape where not all eccentric

points are geodesic ends is the ellipse (Figure 3.18).

Property 27. Not all eccentric point clusters will have at least one local maxima in any DS(y),

y ∈ S. In other words, there exists a point y ∈ S and an eccentric point cluster P ⊂ E(S) of S

s.t. no p ∈ P is a local maxima of DS(y).

a s

s

l

p3

p1

p2 p4

Figure 3.11: Eccentric point p2 is not a local maximum in DS(p1).

Proof. An example for this is a rhombus (diamond) with the short diagonal longer than a side

(s > a, in Figure 3.11). Points p2 and p4 are eccentric points for each other, as s > a. The

isolines of the geodesic distance function DS(y) of a convex shape are circles centered at the

point y, limited to the points of the shape. As s < l, the angle at p2 is greater than π/2, and

42

3.5. ECCENTRICITY OF SIMPLE SHAPES

the normal to the supporting line of the side p2p3 passing through p1 is outside the rhombus.

All points of p2p3 are outside the circle centered at p1 with radius a. Also the distances of the

points of p2p3 to p1 are increasing in the direction from p2 to p3. Similarly p4 is not a local

maximum in DS(p1).

Property 27 is relevant for the eccentricity transform algorithms in Section 4.2. Some eccen-

tric points e ∈ E(S) (e.g. p1 in Figure 3.11) are local maxima in any DS(y), y 6= e. This makes

them very easy to detect. This is partially a local property, as one could pinch the rhombus at

point p2 and make the corner much sharper (non linear deformation) s.t. p2 is a local maxima

in every DS(y).

3.4.5 Relation to the Hausdorff Distance

The Hausdorff distance [Hausdorff 05], named after Felix Hausdorff, measures how far two com-

pact non-empty subsets of a metric space are from each other. (A subset of Rn is called compact

if it is closed and bounded.) Let X ,Y be two compact subsets of a metric space [M, d], the

Hausdorff distance dH between X and Y is:

dH(X ,Y) = max{sup
x∈X

inf
y∈Y

d(x,y), sup
y∈Y

inf
x∈X

d(x,y)}.

ConsideringM = S, we can write the eccentricity of p ∈ S (Equation 3.1):

ECC(S,p) = sup
q∈S

d(p,q) = max{ inf
q∈S

d(p,q), sup
q∈S

d(p,q)} = dH({p},S).

3.5 Eccentricity of Simple Shapes

This section gives the eccentricity transform of basic one and two dimensional shapes, using dε

(Table 3.1 shows an overview). These examples visualize and help to understand the properties

enumerated before. Aspects regarding decomposing the shape are considered because they could

lead to even more efficient, divide-et-impera based algorithms for the eccentricity transform

(Section 4.5). For each shape, the position of the center and eccentric points are presented and

decomposition of the shape is considered.

43

CHAPTER 3. THE ECCENTRICITY TRANSFORM

Table 3.1: Simple shapes presented in Section 3.5

shape dimension comments

open curve 1D simply connected
closed curve 1D not simply connected
triangular region 2D convex, finite number of eccentric points
circular region (disk) 2D convex
elliptic region 2D convex, 2 eccentric point clusters
rectangle 2D convex, no 1-to-1 association to eccentric point
elongated 2D convex, more complex
elongated - bent 2D not convex, symmetric and not symmetric
elongated general 2D not convex, not symmetric
circular with hole 2D not simply connected, symmetric and not symmetric

1D shape S

•
S(0)

•
S(1)

0 l t

arc length parametrization

t0 lC(S)

l

l
2

ECC(S)

Figure 3.12: 1D eccentricity: open curve

3.5.1 1D eccentricity - open curve

Let S be a non self-intersecting one dimensional manifold in Rn, and let S(t) be the arc length

parametrization2 of S with t ∈ [0, l], l = λ(S), s.t. S(0) and S(l) are the two end points i.e.

the only two points having a single neighbor in S. Figure 3.12 shows an example.

The shape has two eccentric points E(S) = {S(0),S(l)} and its center is the middle of the

curve C(S) = {S(l/2)}. The points 0 6 t 6 l/2 have S(l) as their eccentric point. The points

2For the arc length parametrization, the value of the parameter t coincides with the length of the path from
S(0) to S(t), in S .

44

3.5. ECCENTRICITY OF SIMPLE SHAPES

1D shape S

S(0)

0 l

S

t

arc length parametrization

t0 l

l

l
2

ECC(S)

Figure 3.13: 1D eccentricity: closed curve

l/2 6 t 6 l have S(0) as their eccentric point. The eccentricity transform of S is:

ECC(S,p) =





d(p,S(l)) = l − t if t 6 l/2

d(p,S(0)) = t otherwise

where t ∈ [0, l] s.t. p = S(t) and l is the length of S.

3.5.2 1D eccentricity - closed curve

Let S be a closed one dimensional manifold in Rn, and let S(t) be the arc length parametrization

of S with t ∈ [0, l], l is the length of S, s.t. S(0) and S(l) is the same point of S and S(t) is a

continuous and linear mapping from the interval [0, l] to S. A simple example of such a shape

is the circle with t = φr where φ is the angle in radians for the classical parametric definition

using sinus and cosine, and r is the radius. Figure 3.13 shows a more general example.

All points of S are eccentric points, E(S) = S, and the center coincides with S, C(S) = S.

There are two different paths connecting every point with its eccentric point, which is located

on the “opposite” side of the curve. The eccentricity transform of S is:

ECC(S,p) =
l

2

where l is the length of S and p ∈ S.

3.5.3 Triangular region

Let S be a triangular region with corners a, b and c. The 3 perpendicular bisectors divide the

triangle into 6 or 4 regions (see Figure 3.14) depending on whether the triangle is obtuse or

45

CHAPTER 3. THE ECCENTRICITY TRANSFORM

acute triangle

a b

c

A1

A2

B1

B2

C1 C2

obtuse triangle

a b

c

A1

A2

C1C2

Figure 3.14: Regions delineated by the perpendicular bisectors: regions labeled A,B, C have a,b
respectively c as their eccentric point.

fixed edge

circum-circle

diameters

e.g. triangles
3

2

2
2

Figure 3.15: Fixing two corners and moving one: how many eccentric points are there?

not i.e the circum-center lies outside or within the triangle (Figure 3.15). All points inside the

same region have the same single eccentric point, and the eccentricity value is the distance to

that point. The points on the perpendicular bisectors incident to regions with different eccentric

points, have both points as eccentric (e.g. points on the common boundary between a region

marked C and one marked A have both a and c as their eccentric points). If inside the triangle,

the circum-center has all three corners as eccentric points. The ECC decomposition contains 3

or 2 regions, depending on whether the triangle is acute or obtuse. The regions are bounded by

the perpendicular bisectors incident to regions having different eccentric points. The eccentricity

transform of S is:

ECC(S,p) =





dε(p,a) if p ∈ A1 ∪ A2

dε(p,b) if p ∈ B1 ∪ B2

dε(p, c) if p ∈ C1 ∪ C2

or more general

ECC(S,p) = max{dε(p,a), dε(p,b), dε(p, c)}

The isolines of the eccentricity transform of a triangle are: a single closed curve made of 3 arcs,

or a maximum of 3 disconnected circle arcs. Figure 3.16 shows the isolines of the two triangles

in Figure 3.14.

46

3.5. ECCENTRICITY OF SIMPLE SHAPES

Figure 3.16: Eccentricity transform for the triangles in Figure 3.14. (Gray values are distances
modulo a constant.)

Figure 3.17: Eccentricity transform of disk. (Gray values are distances modulo a constant.)

3.5.4 Circular region (disk)

Let S be a 2D disk with radius r and center c i.e p ∈ S ⇐⇒ dε(p, c) 6 r. The eccentric points

of S are the points on the circle i.e. E(S) = C(r, c) ⊂ S. Each point e ∈ C(r, c) of the circle is

an eccentric point for the points on the line segment cp where p is the point where the diameter

containing e intersects the circle the second time. The eccentric points of the center c are all

points of the circle C(r, c), E(c) = E(S), and all eccentric paths are normal to the circle at the

respective eccentric point. The isolines of the eccentricity of S are circles centered at c and the

eccentricity transform of S is (Figure 3.17):

ECC(S,p) = r + dε(p, c)

For the disk, the eccentricity transform and the distance transform (Section 2.2.3) are linearly

dependent:

ECC(S,p) = 2r −DT (S,p)

3.5.5 Elliptic region

In this subsection we will use the following notation: the set of points (x, y) ∈ S such that x > 0,

is denoted Sr and called the right part of S, whereas the set of points (x, y) ∈ S such that x < 0,

47

CHAPTER 3. THE ECCENTRICITY TRANSFORM

Figure 3.18: Eccentricity transform of an ellipse. (Gray values are distances modulo a constant.)

X

Y
b

−b

a−a 0

(x0, y0)

(x0,−y0)

(−x0, y0)

(−x0,−y0)

Figure 3.19: Eccentric point clusters of the ellipse (shown with thick line).

is denoted Sl and called the left part of S.

Ellipse recalls

The elliptical curve of points (x, y) around the origin, axes parallel to the coordinate system

axes, and with parameters a > 0 and b > 0 is defined by:

x2

a2
+

y2

b2
= 1. (3.3)

In point (x, y) it has a tangent direction (ẋ, ẏ) satisfying

xẋ

a2
+

yẏ

b2
= 0. (3.4)

Figure 3.18 shows the eccentricity transform of an ellipse.

Bounding extremal points

We consider an elliptical region S centered the origin, defined by x2

a2 + y2

b2
6 1. In the following,

we assume that a > b, thus the small axis of S is the segment [−b, b], and the long axis of S is

the segment [−a, a].

48

3.5. ECCENTRICITY OF SIMPLE SHAPES

The eccentric point(s) of any point (x, y) ∈ S, are on the boundary of S (Property 12). We

now provide two additional properties regarding eccentric points on an elliptical region.

Property 28. (Eccentric paths orthogonal to the tangent) Let (xe, ye) be an eccentric point for

(x, y) ∈ S, S simply connected with smooth ∂S. Then, the tangent to S at the point (xe, ye) is

orthogonal to the geodesic ν, from (x, y) to (xe, ye)

Proof. Suppose that the tangent is not orthogonal to the geodesic ν. Let Lt be the tangent

at (xe, ye) to ν, and let L be the line passing through (xe, ye) that is orthogonal Lt. As ∂S is

smooth, and L is not the tangent to ∂S at (xe, ye), L will be partially contained in S. Then

there exists a point (x′
e, y

′
e) ∈ L ∩ S, (x′

e, y
′
e) 6= (x, y) in the neighborhood of (xe, ye), which is

farther away from (x, y) than (xe, ye). This would contradict the fact that (xe, ye) is an eccentric

point for (x, y).

The ellipse is a simply connected convex shape and the smaller axis is an axis of symmetry.

For the ellipse S in this section, we can choose S1 = Sl and S2 = Sr and thus, due to Property 17

all points of Sl have their eccentric points int Sr and vice versa.

We compute the eccentric points of (0, b) and (0,−b). This allows to partition the ellipse

into 4 subsegments alternating the property of being eccentric or not (see Figure 3.19). Let us

consider the line L that goes through the point (0,−b) and crosses the ellipse with orthogonal

tangent at point (x0, y0), such that x0 > 0 and y0 > 0. This line L(t) is defined by:





x = tẏ0

y = −b− tẋ0

(3.5)

As (x0, y0) ∈ L, we can deduce from Equation 3.5 that:





t0 = x0

ẏ0

y0 = −b− ẋ0

ẏ0
x0

From Equation 3.4, we obtain − ẋ0

ẏ0
= y0a2

x0b2
. Using Equation 3.5, we obtain y0 = −b+x0

y0a2

x0b2
=

−b + y0a2

b2
, so

y0 =
b3

a2 − b2

The x-coordinate is then determined using the ellipse formula (Equation 3.3):

x2
0 = a2

(
1−

b4

(a2 − b2)2

)

49

CHAPTER 3. THE ECCENTRICITY TRANSFORM

Symmetry considerations deliver the eccentric point for (0,−b) with x0 < 0 and y0 > 0, and

the two eccentric points for the point (0, b).

One can directly deduce that any point (xc, yc) of the ellipse, s.t. x2
c < x2

0 has normals that

do not intersect the segment [−b, b]. Thus, according to Property 17, all these points cannot be

eccentric points for any point inside the ellipse. Hence the points (x0, y0), (x0,−y0), (−x0,−y0),

(−x0, y0) partition the ellipse into 4 subsegments alternating the property of being extremal or

not.

Eccentric lines through the smaller axis

We show how to efficiently compute the eccentricity transform of an elliptical region S, by con-

sidering separately Sl and Sr. Using Property 28, we first show how to compute the eccentricity

of all the points of the small axis.

Let p = (0, µb), −1 6 µ 6 1 be a point on the small axis, and let e = (xe, ye) be its eccentric

point in Sr. Using Property 28, the points (x, y) of the line L(t) defined by pe satisfy:





x = tẏe

y = µb + tẋe.

In particular, e ∈ L, so we have xe = teẏe and ye = µb + teẋe. Thus we deduce that te = xe

ẏe

and ye = µb + ẋe

ẏe
xe = µb3

b2−a2 .

The x-coordinate is then determined using the ellipse Equation 3.3

x2
e = a2(1−

b4µ2

(b2 − a2)2
).

The eccentricity of any point (0, µb),−1 6 µ 6 1 of the small axis, can directly be computed

by the above formula using a, b and µ. The direction to their eccentric point is also known and

can be stored in each point.

Note that, for any p on the smaller axis, the segments connecting it to (0, b) and to (0,−b)

are also orthogonal to the tangent of the ellipse at the respective points, but are shorter than

the ones considered above and thus not relevant for the eccentricity. When the ellipse is a circle,

the points (x0, y0) and (−x0, y0), respectively (x0,−y0) and (−x0,−y0) coincide.

As the ellipse is a convex shape, the eccentric path from any point of an elliptic region to its

eccentric point is a straight line. Moreover, from Property 17, we know that the eccentric point

e of any point pl ∈ Sl is in Sr. Thus, for computing the eccentricity of the point pl, we have

to find the point p of the small axis, such that the direction −−→plp is the same as the direction

50

3.5. ECCENTRICITY OF SIMPLE SHAPES

e

p
pl

X

Y
b

−b

Figure 3.20: Efficient eccentricity transform based on decomposition.

X

Y

q

p

q′

p′

pd

a−a

Figure 3.21: Ellipse decomposition along the bigger axis: more than one line orthogonal to the
ellipse tangent at the point of intersection can go through one point.

stored in p (Figure 3.20).

Eccentric lines through the bigger axis

We have shown that it is possible to decompose an ellipse S along its smaller axis, to efficiently

compute the eccentricity ECC(S). This is not the case when decomposing S into Su (up) and

Sd (down) along the bigger axis [−a, a] because (Figure 3.21 shows the used notation):

• the eccentric points e of any point p = (µa, 0), −1 6 µ 6 1 are either (−a, 0) or (a, 0),

which is not helpful for deducing ECC(S) based on the ECC of the parts;

• even if we associate to each point p = (µa, 0), −1 6 µ 6 1, the point q ∈ ∂Su \ [−a, a] s.t.

the segment pq is orthogonal to the tangent at q, ∃pd ∈ Sd \ [−a, a], with at least two

points q and q′ in ∂Su s.t. pdq and pdq
′ are orthogonal to the tangent at q respectively

q′. A one to one mapping between points pd ∈ Sd and points p on the bigger axis cannot

be made just based on the angle of the segments pdp, pdp
′. The distances d(p,q) and

d(p′,q′) have also to be considered.

51

CHAPTER 3. THE ECCENTRICITY TRANSFORM

Figure 3.22: Eccentricity transform of a rectangle. (Gray values are distances modulo a con-
stant.)

v1

v2 h

Y

−h v3

v4

w X−w

p

q

c1

c2

C

Figure 3.23: Eccentric paths inside a rectangle - cutting along a medial line

3.5.6 Rectangle

Let S be a rectangle with sides parallel to the coordinate system axes and lengths 2w and 2h

(see Figure 3.23). It is centered at the origin. The four corners of the rectangle v1 = (−w,−h),

v2 = (−w, h), v3 = (w,−h), v4 = (w, h) make up the set of eccentric points of S. The

eccentricity transform of S is (Figure 3.22):

ECC(S,p) = max{dε(p,vi)}, i = 1 . . . 4.

In each quadrant Vi the isolines are made out of arcs of circles centered at the eccentric point

vi. Let r = min{d((−w, h), (0,−h)), d((−w, h), (w, 0))} and R = max{d((−w, h), (0,−h)),

d((−w, h), (w, 0))}. The isolines can be:

• if d(p, E(p)) 6 r, a closed curve made out of four arcs;

• if r < d(p, E(p)) 6 R, two disconnected lines each made out of two arcs;

• if d(p, E(p)) > R, four disconnected arcs.

52

3.5. ECCENTRICITY OF SIMPLE SHAPES

v1

v2

v3

v4

V3

V2V4

V1

2 24

1 1

1 1

Figure 3.24: ECC of rectangle. V1, V2, V3, V4 regions associated to v1,v2,v3 respectively v4.
Number of circle arcs in each isoline (blue).

The rectangle S can be decomposed in two subparts Sl and Sr, along the cut (segment) C

from (0,−h) to (0, h). The corners v1, v2 respectively v3,v4 are the eccentric points of all the

points p ∈ C. Compared to decomposing an ellipse along the smaller axis, in the case of the

rectangle we cannot associate to each point of C a single pair made of a direction and distance,

because eccentric paths with more than one orientation can pass through the same point of

the cut3 (e.g. c2 in Figure 3.23). In this case, to each point c ∈ C we associate two pairs of

distances and directions, connecting c to the corners v1, v2 respectively v3,v4. Thus, for any

p ∈ Sl, ∃c1, c2 ∈ C s.t. c1 ∈ pv4 and c2 ∈ pv3, similarly for p ∈ Sr ∃c1, c2 ∈ C s.t. c1 ∈ pv2

and c2 ∈ pv1. Then we can rewrite the eccentricity transform of S as:

ECC(S,p) = max{d(p, c1) + ECC(S, c1), d(p, c2) + ECC(S, c2)}.

A one to one association between points on the cut and eccentric paths cannot be made. For

each point on the line segment cut, two candidates for eccentric points exist.

Because the number of eccentric points is finite, like in the case of the triangle (Section 3.5.3),

the rectangle can be divided by the perpendicular bisectors of the sides in a finite number of

regions (ECC decomposition, Section 3.3.1) s.t. all points in a region have the same eccentric

point (Figure 3.24).

3.5.7 Elongated - straight (rounded rectangle)

Let S be an elongated shape obtained by gluing two opposite sides of a rectangle R with two

halves of ellipses El and Er. Let us assume that: the width of the rectangle is 2w > 0, and its

3This is similar to decomposing the ellipse along the bigger axis (Section 3.5.5).

53

CHAPTER 3. THE ECCENTRICITY TRANSFORM

REl Er

Figure 3.25: Elongated shape formed of two half ellipses El, Er and a rectangle R, and its
eccentricity transform. (Gray values are distances modulo a constant.)

a) a < h b) a = h c) a < h

wa

2h
c

c′

e

e′

wa

2h
c

c′

e

e′

wa

2h c

q1

q2

Figure 3.26: Elongated, ellipse cut along: a) smaller axis, b) is circle, c) bigger axis.

height is 2h > 0, with w > h; El is the left half ellipse, defined by the parameters al and h; Er

is the right half ellipse, defined by the parameters ar and h (Figure 3.25).

Shape S symmetric along the vertical axis:

Let us assume that al = ar = a and decompose S along the cut C = (0,−µh), 1 6 µ 6 1. For

any point p ∈ Sl, its eccentric point e is in Sr (Property 17), and the segment pe is orthogonal

to the ellipse tangent at e (Property 28).

A first formulation of the eccentricity of S is:

ECC(S,p) = max{d(p,q)}, q ∈ ∂S s.t. pq ⊥ tangent to ∂S at q

Depending on the relation of a and h (Figure 3.26) we can have the following cases:

54

3.5. ECCENTRICITY OF SIMPLE SHAPES

a > h : The ellipses where cut along the shorter diameter. As w > 0, for every point c ∈ C there

are two points el ∈ ∂S ∩ El and er ∈ ∂S ∩ Er s.t. cel respectively cer are normal to the

tangent to ∂S at el respectively er (Figure 3.26.a). Both el and er are eccentric points for

c and can be found through a reasoning similar to the one in Section 3.5.5 (ECC of ellipse).

Like in in the case of the ellipse, we can compute the eccentricity and the eccentric path

orientation for all points of C separately in Sl and Sr i.e. d(c, el) and d(c, er) (which are

actually equal, as al = ar) and the orientations of cel and cer. The eccentricity transform

can then be computed as:

ECC(S,p) = d(p, c) +





ECC(Sr, c) if p ∈ Sl

ECC(Sl, c) otherwise

a = h : El and Er are two circle halves and all eccentric paths go through one of the two circle

centers (Figure 3.26.b).

a < h : The ellipses El and Er correspond to ellipses that have been cut along their bigger

axis (see Section 3.5.5). In this case, there exist points p ∈ Sl which have two points

q1,q2 ∈ ∂S ∩ Er, such that pqi, i ∈ {1, 2}, is normal to the ellipse tangent at qi. As such

points can exist also on the cut C, we cannot associate each point with a single direction

and distance based only on the orthogonality with the ellipse tangent. Like in the case

of the ellipse decomposed along the bigger axis, and the case of the rectangle, we need to

take the maximum of the two distances (Figure 3.26.c).

Shape S not symmetric along the vertical axis:

If al 6= ar, S is no longer symmetric along the shorter, vertical axis. The shape cannot be

decomposed by a line segment s.t. for any point p ∈ S all its eccentric points are contained in

the part not containing p. To overcome this problem we can decompose as above, along a line

segment, and take for each point the maximum between the eccentricity computed separately on

the part containing the point and the one obtained by using the decomposition.

3.5.8 Elongated - bent

Let S be an elongated shape obtained by gluing two rectangles, each with a half of a circle El

and Er glued on one side (Figure 3.27). The rectangle edges opposite to the circle halves are

joint by a circular arc. The width of the two rectangles is wl > 0, wr > 0 and their height is

2h > 0; El is the left circle half, defined by the parameter h (radius of circle); Er is the right

55

CHAPTER 3. THE ECCENTRICITY TRANSFORM

2h

wl
wr

ql
El

qr

Er

2h

Figure 3.27: Elongated-bent shape: two half circles El, Er, two rectangles, and a circle arc.

ql

qr

Cl C

Cr

S ′l

Sl

S ′r

Sr

l

Figure 3.28: Symmetric bent shape (left) and its eccentricity transform (right). (Gray values
are distances modulo a constant.)

(bottom) circle half, defined by the same parameter h. For the shape to be an elongated one,

we need wl > 2h and wr > 2h (Figure 3.27).

All eccentric points lie on the two circle halves El and Er, and all eccentric paths are orthog-

onal to ∂S at the respective eccentric points. As El and Er are circle parts, all eccentric paths

go through the circle centers ql or qr (Section 3.5.4 gives the eccentricity transform of a circle,

which illustrates the previous). We consider the following two cases:

Symmetric shape S (wl = wr):

Assume that wl = wr and decompose S along the cut C (blue in Figure 3.28). C is an axis of

symmetry for S, going 45 degrees up-right from l, across the “articulation”. C divides S in Sl

(the left side) and Sr (the right/bottom side). All points in Sl will have their eccentric point

56

3.5. ECCENTRICITY OF SIMPLE SHAPES

ql

qr

Cl Cu

Cd
Cr

l
u

Figure 3.29: Non-symmetrically bent elongated shape (left): two half circles, two rectangles and
a circle arc. Its eccentricity transform (right). (Gray values are distances modulo a constant.)

in Er and vice versa. Cl is the segment connecting l with the upper horizontal line of the left

rectangle and is obtained by prolongating the segment qrl until it leaves the shape. In the same

way, Cr is obtained for prolongating the line segment qll. Lets denote with S ′l and S ′r the part

of S between Cl and C respectively Cr and C. The eccentricity of S is then:

ECC(S,p) = h +





d(p, l) + d(l,qr) if p ∈ Sl − S
′
l

d(p,qr) if p ∈ S ′l

d(p,ql) if p ∈ S ′r

d(p, l) + d(l,ql) if p ∈ Sr − S ′r

The geodesic center of S is C = {l} and all points of the cut C have two eccentric points. If

the angle between the two rectangles is decreased, the angle between Cl and Cr increases until

Sl = S ′l and Sr = S ′r i.e. all points of S are directly visible from their corresponding eccentric

points. When Cl and Cr fall over ∂S, S is a non-convex shape with all eccentric paths being

straight lines.

Non-symmetric shape S (wl 6= wr):

For the case of the non symmetrical bent shape S (wl > wr in Figure 3.27) we define the

following (Figure 3.29). Like in the previous case, Cl and Cr (blue in Figure 3.29) are the line

segments from l to ∂S obtained by prolongating the line segments qrl and qll. The point u is

located in the middle of the line segment qlqr i.e. (u = (ql + qr)/2). The segment Cu (blue in

57

CHAPTER 3. THE ECCENTRICITY TRANSFORM

ql

q′
l

qr

q′
r

C

l1

l2

l3

polyline P

shape S
longest geodesic

cut C

Figure 3.30: Elongated shape obtained by dilating a polyline.

Figure 3.29) is defined by the intersection of Cl with the perpendicular bisector4 of the segment

qlqr. Cd (blue in Figure 3.29) is part of the hyperbola5 defined by ql and l, and the difference

d(l,qr). We can decompose S along C = Cd∪Cu in Sl (left of C) and Sr (right/bottom of C). All

points in Sl will have their corresponding eccentric point in Er and vice versa. The eccentricity

of S is:

ECC(S,p) = h +





d(p, l) + d(l,qr) if p on the left side of Cd and Cl

d(p,qr) if p between Cl and Cu

d(p,ql) if p between C = Cd ∪ Cu and Cr

d(p, l) + d(l,ql) if p below Cr

The geodesic center of S is the point where C and qll intersect6, and all points of the cut

C have two eccentric points. If the angle between the two rectangles is decreased, the angle

between Cl and Cr increases until all points of S are directly visible from their eccentric points.

3.5.9 Elongated - general (n rounded rectangles)

Let S be an elongated shape obtained by dilating a polyline P with a circle of radius h > 0

(Figure 3.30). We consider a simply connected shape S (no holes), with the longest geodesic

of S passing through the endpoints of P, ql and qr. Let li denote the concave points of

4The perpendicular bisector of a line segment is the straight line perpendicular to the segment and passing
through its midpoint.

5A hyperbola is the locus of points where the difference in the distance to two fixed points (called the foci) is
constant.

6Intersection of Cd and qll for the shape in Figure 3.29.

58

3.5. ECCENTRICITY OF SIMPLE SHAPES

Figure 3.31: Eccentricity transform of elongated shape in Figure 3.30. (Gray values are distances
modulo a constant.)

the boundary of S (l1, l2, l3 in Figure 3.30). They are induced by corner points of P, on the

side where the angle of P is less than 180 degrees. Geodesics in S are polylines of the form

ν(p1,p2) = (p1, lk1
, . . . , lkn

,p2), where (lk1
, . . . , lkn

) is an ordered subset of the set of concave

points of the boundary.

The longest geodesic of S is the polyline P ′ = (q′
l, lj1 , . . . , ljn

,q′
r). The points q′

l,q
′
r are on

the boundary of S (Property 12) and the polyline P ′ is orthogonal to the tangent to ∂S at q′
l

and q′
r
7. The first and last segments of P ′ contain the endpoints of P i.e. ql ∈ (q′

l, lj1) and

qr ∈ (ljn
,q′

r). The longest geodesic of the shape in Figure 3.30 is (q′
l, l1, l2,q

′
r).

The eccentric points of S are located on ∂S (Property 12), on the two half-circles that have

ql or qr as the closest points of P. All eccentric paths pass through either ql or qr. We can

decompose S along a cut C s.t. ∀p ∈ C, d(p,ql) = d(p,qr). The cut C is formed of one or more

hyperbolas. All points on one side of the cut C will have their eccentric points on the other side.

The eccentricity transform of S is:

ECC(S,p) = h +





d(p,qr) if p is on the side of C that contains ql

d(p,ql) if p is on the side of C that contains qr

The geodesic center of S is the point in the middle of P ′ and is the intersection of the cut C

with P ′, i.e. {c} = P ′ ∩ C.

7A straight line passing through the center of a circle is orthogonal to the tangents to the circle at the
intersection points.

59

CHAPTER 3. THE ECCENTRICITY TRANSFORM

R

r

o

Figure 3.32: Disk with one circular hole in the middle (left) and its eccentricity transform (right).
(Gray values are distances modulo a constant.)

p

q lu

e
o

Figure 3.33: Eccentric paths in a disk with one circular hole in the middle.

3.5.10 1 hole - disk with circular hole in the middle

Let S be a disk of radius R with a circular hole of radius r 6 R in the middle (Figure 3.32).

The set of eccentric points of S is the outer circle C(R,o) and the geodesic center is the inner

circle C(r,o).

Any point p ∈ S has a single eccentric point e ∈ C(R,o) and two eccentric paths ν1, ν2 ∈

Π(p, e) going on each side of the hole (Figure 3.33). Each eccentric path is made out of three

parts: the line segment pq, with λ(pq) > 0 and pq ⊥ qo, the arc ql, and the line segment le

with λ(le) > 0 and le ⊥ lo. The points p, o and e are collinear. The following relations exist

for the straight parts:

λ(pq) =
√

d(p,o)2 − r2

λ(le) =
√

R2 − r2

60

3.5. ECCENTRICITY OF SIMPLE SHAPES

For the circle arc we have:

p̂oq = arctan(
λ(pq)

r
)

êol = arctan(
λ(le)

r
)

λ(ql) = r(π − (p̂oq + êol))

The eccentricity transform of S is:

ECC(S,p) = λ(pq) + λ(ql) + λ(le) (3.6)

The geodesic center

Consider the point u ∈ C(r,o) s.t. uo ⊥ pe (remember that o ∈ pe). The length of (ql) can

be rewritten as λ(ql) = λ(qu) + λ(ul), with λ(qu) depending only on p and r, and λ(ul) on r

and R (fixed for S):

ECC(S,p) = λ(pq) + λ(qu) + λ(ul) + λ(le) (3.7)

Property 29. The geodesic center of S is C(r,o) ⊂ ∂S i.e. the eccentricity ECC(S,p) of a

point p is minimum iff p ∈ C(r,o).

Proof. We show that the function in Equation 3.7 has its minimum when p = q.

The length λ(qu) = r(π/2− p̂oq) and Equation 3.7 can be rewritten as:

ECC(S,p) = g(l) = l + r(
π

2
− arctan

l

r
) + k,

where l = λ(pq) = d(p,q) and k = λ(ul) + λ(le) does not depend on p respectively on l. For

g : R+ → R we have:

g′(l) = 1− r(
1

1 + (l
r
)2

)
1

r
= 1−

r2

r2 + l2
=

l2

r2 + l2
,

where arctan′(l) = 1/(1 + l2) and we have applied the chain rule8. g′(l) > 0,∀l > 0 =⇒ g has

a single minimum at l = 0 ⇐⇒ λ(pq) = d(p,q) = 0. As d is a metric, d(p,q) = 0 ⇐⇒ p = q

=⇒ p ∈ C(r,o).

This example shows that the geodesic center can be more complex than a single point. Also,

because each point p defines a separation line behind the obstacle C(r,o) a decomposition of S

8(f ◦ g)′(x) = f ′(g(x))g′(x) [Marsden 86].

61

CHAPTER 3. THE ECCENTRICITY TRANSFORM

ce o
o′

r

R

Figure 3.34: Geodesic center c for disk with one circular hole (0 < d(o,o′) < min(r,R − r))
(left). Its eccentricity transform (right). (Gray values are distances modulo a constant.)

c

c′

e e′o

Figure 3.35: Geodesic center {c, c′} for ellipse with one circular hole in the middle (left) and its
eccentricity transform (right). (Gray values are distances modulo a constant.)

in two parts by associating an angle and a distance to each point on the cut is no longer enough

to compute the eccentricity of the parts (like it was in the case of the simply connected shapes).

Eccentric paths with the same direction (angle) go through the same point on the cut and lead

to different eccentric points. For example, there are many points p for which the eccentric paths

go over u and are tangent to C(r,o), but end in different eccentric points e.

Changing the form of the shape S

To see how stable the geodesic center configuration (circle) above is, we look at the following

deformations for the shape S:

S ′: moving the hole s.t. the two circles C(R,o) and C(r,o′) no longer have the same center

(0 < d(o,o′) < min(r,R − r)) (Figure 3.34). S ′ has one single center point C(S ′) = {c}

which is the point of C(r,o′) closest9 to o. The single eccentric point corresponding to c

9Euclidean distance in the plane in which S
′ is embedded.

62

3.6. ROBUSTNESS EXPERIMENTS

is located on the circle C(R,o) s.t. o′ ∈ ec, and c has two eccentric paths.

S ′′: stretching C(R,o) s.t. it becomes an ellipse E(Ra, Rb,o), Ra > Rb (Figure 3.35). S ′′ has

two center points c, c′ located on C(r,o) at the intersection with the shorter axis (length

2Rb; vertical axis in Figure 3.35). Both center points have the same two eccentric points

E(c) = E(c′) = {e, e′}.

When considering the two deformations above, the configuration for the geodesic center as a

circle is just a transition between the configurations with one and two center points - one center

point (dis)appears.

Conclusion

This section gave the eccentricity transform of basic one and two dimensional shapes, using dε

(Table 3.1 shows an overview). For each shape, the position of the center and eccentric points

haven been given and decomposition of the shape was considered. Aspects regarding decom-

posing could lead to even more efficient, divide-et-impera based algorithms for the eccentricity

transform (Section 4.5). The topology of the shapes plays an important role.

3.6 Robustness Experiments

Robustness is the capability to “perform without failure under a wide range of conditions” [Mer 03].

In the case of an image transform it is said to be robust if the changes in the output are minimal

for typical changes in the input. This section presents experiments considering the robust-

ness of the eccentricity transform with respect to acquisition (Salt and Pepper noise and minor

segmentation errors), and deformation of the shape through articulation.

3.6.1 Robustness against Salt and Pepper noise

Some metrics (e.g. d4, d8) have the property that even for convex shapes without holes, more

than one geodesic exists between two points (cases exist where they only share the end points).

When using these metrics, one noisy pixel is not enough to change the geodesic distance between

two points. One pixel could “block” only one of the geodesics, making it longer, but other

shortest paths will keep their original length.

Valid for all metrics is the fact that geodesic distance between points far away is perturbed

less than for points nearby (the additional length introduced by the need to “go around” the

noisy pixel is a smaller fraction of the longer path than of the shorter). For comparison, this

section considers the distance transform (DT) (Section 2.2.3) as it is the most spread image

63

CHAPTER 3. THE ECCENTRICITY TRANSFORM

dε d4 d8

DT

ECC

Figure 3.36: Example distance (DT) and eccentricity (ECC) transforms for a shape, using dε,
d4, and d8. (Gray values are distances modulo a constant.)

transform for binary shapes. Figure 3.36 shows the isolines for the eccentricity and distance

transforms of the shape of a hand using dε, d4, d8.

To test the robustness against Salt and Pepper noise (random missing pixels in the shape),

we have calculated the eccentricity and distance transforms of the 99 shapes from [Sebastian 04]

using dε, d4, and d8 (for some example shapes see the top row of Table 3.2). We have applied

5% Salt and Pepper like noise to the binary shapes i.e. we have randomly removed pixels from

the shape boundary as well as their interior, and calculated the two transforms again.

For each image, neighborhood, and transform, the root mean square error (RMSE) between

the values obtained for the original and noisy images are calculated (calculation was done using

the values of the pixels part of the shape in both images i.e. noisy pixels are excluded). The

produced error measure is the inverse of the mean ratio between the RMSE of the ECC and the

DT:

Error =
1

1
n

∑n
i=1

RMSE(ECC(Si))
RMSE(DT (Si))

where n = 99, the number of images. The error is 4.16 for dε, 10.22 for d4, and 16.85 for d8,

meaning that the average change in value of the DT was that many times higher than for ECC.

Figure 3.37 shows the histogram of the eccentricity and distance transforms for one of the

images, the hand (original and noisy) using d4. Also shown is the RMSE between the values

64

3.6. ROBUSTNESS EXPERIMENTS

Histograms for the hand image

10 20 30 40
0

500

1000

1500

Distance

C
o
u
n
t

75 100 150
0

50

100

150

Distance

C
o
u
n
t

a) Distance transform (DT) with d4 b) Eccentricity transform (ECC) with d4

RMSE 8.50 1.16
Max. diff. 26.00 4.00

Figure 3.37: Distance and eccentricity transform histograms, RMSE and Max. Diff. Solid line
- original image, dotted line - noisy image.

of the transforms for the original and noisy images, and the maximum difference value for each

transform. One can see that the error and maximum deviation of the eccentricity transform is

much smaller than that of the distance transform. Note that in the case of the noisy image,

a valid transform value has been calculated for less pixels. This makes the histogram of the

eccentricity transform of the noisy image lie below the histogram of the original one.

3.6.2 Minor segmentation errors

For a few shapes (10) we have simulated segmentation errors and partial occlusion by removing

some parts (simulated noise on the boundary of the shape). We have calculated the correlation

between the local maxima of the eccentricity transforms of the original and the images with

partial occlusion i.e. for each image, original and partially occluded, we have created a matrix

where the positions of the eccentricity transform regional maxima were marked with 1, and the

rest with 0, and calculated the correlation between the 2 matrices - only maxima that where

located inside the partially occluded shape were taken into consideration. Table 3.2 shows

these shapes and the obtained correlation values. The lower values obtained for dε on the more

compact and rounded shapes (e.g. car) are due to the more uniform distribution of eccentric

points on the boundary of compact shapes (e.g. the circular region in Section 3.5.4) and eccentric

paths being normal to the tangent to the boundary (planar shapes with no holes). The latter

property makes the position of the eccentric points depend also on the direction of the source

point (e.g. the ellipse in Section 3.5.4). These changes in position happen usually only in a small

neighborhood, but still do, and thus the same pixel might not be a local maxima, but another

65

CHAPTER 3. THE ECCENTRICITY TRANSFORM

Table 3.2: Correlation results for local maxima in the eccentricity transform of original (top
row) and partially occluded shapes (middle and bottom rows).

Original Shapes

Partially occluded set 1

dε 0.55 0.87 1.00 0.73 0.96 0.82 0.61 1.00 0.87 0.95
d4 0.73 1.00 1.00 0.96 0.96 1.00 0.77 1.00 1.00 0.95
d8 0.93 1.00 0.72 0.97 1.00 0.82 1.00 1.00 1.00 0.98

Partially occluded set 2

dε 0.32 0.66 0.89 0.88 0.65 0.64 0.41 0.89 0.71 0.95
d4 0.71 0.79 0.97 0.96 0.89 0.97 0.71 0.98 0.87 0.92
d8 0.48 0.45 0.90 0.96 0.72 0.65 0.98 0.97 0.73 0.98

joint �
�
�7

ϕ = 90◦, j = 90%, d8 ϕ = 135◦, j = 52%, d4 ϕ = 155◦, j = 14%, dε

Figure 3.38: Example images used for testing the variation under articulated motion.

one located nearby.

3.6.3 Articulation

The length variation of a geodesic path going through an articulation is bounded by the thickness

of the shape around the articulation points i.e. the width of the joints [Ling 07] (Figure 3.38

shows example articulated shapes with different joint widths). To test how this works in practice

we have done the following experiment.

For a given angle ϕ and a given joint width j the shape S(ϕ, j) is created by gluing two

identical elongated parts at angle ϕ and making the joint width j (Figure 3.38).

66

3.7. CHAPTER SUMMARY

Table 3.3: Mean and standard deviation of the eccentricity values for the simulated joint.

Min Max Average
j metric mean std mean std mean std

dε 70.75 0.42 141.04 0.82 108.66 0.69
14% d4 82.21 4.39 164.00 8.64 126.89 6.36

d8 66.84 2.79 133.47 5.67 101.82 4.19

dε 69.52 0.99 138.54 2.10 105.34 1.89
52% d4 82.21 4.39 164.00 8.64 124.79 6.45

d8 65.58 3.04 130.95 6.18 98.83 4.73

dε 68.50 1.73 136.50 3.61 102.39 3.04
90% d4 82.21 4.39 164.00 8.64 122.79 6.45

d8 64.47 3.72 128.63 7.52 95.94 5.80

For angles ϕ = 90◦ + 5◦k, 0 6 k 6 18 and joint width j ∈ {14%, 52%, 90%} of the width of

the part, we have applied the eccentricity transform and calculated the minimum, maximum,

and average eccentricity over all angles. Table 3.3 shows the mean and standard deviation of the

3 values over all widths tested. Note that the values are stable under all joint widths (std < 5%

of the corresponding mean) and get close to constant as the width of the joint decreases (dε, d8).

In the case of d4, the high error even for the smallest joint width is due to the large variation of

distances under Euclidean rotation (e.g. for ϕ = 135◦ the geodesic center is no longer located

on the joint, but lower down the part that is oriented 45◦ from the horizontal axis). Consider a

rectangle with sides aligned with the coordinate axis. Two opposite points will have the same

d4 whether considering the diagonal or just a path on the rectangle (boundary).

3.7 Chapter Summary

This chapter gave the formal definition of eccentricity and of the eccentricity transform. Con-

cepts like the geodesic center, diameter, and eccentric points have been introduced. Properties

related to these concepts have been given and exemplified on a set of basic shapes. These basic

shapes emphasize aspects that have motivated the algorithms and considerations in the follow-

ing chapter (Computation of the eccentricity transform). Experiments verifying the robustness

with respect to noise and articulation of the shape have been considered.

67

4
Computation of The Eccentricity Transform

This chapter considers computation aspects for the eccentricity transform of discrete shapes.

First, error free computation is presented (Section 4.1), followed by efficient approximation

algorithms (Sections 4.2, 4.3, and 4.4). A computation using the Divide and Conquer principle

(see for example [Atallah 98]) is discussed in Section 4.5.

Algorithms 4-8, and the experiments in Section 4.3 have been previously published in

[Kropatsch 06, Ion 08d].

The running time complexity of the algorithms in Sections 4.1 and 4.2 has been computed

assuming an O(n log n) complexity for the geodesic distance function (SBDT), independent of

the used algorithm (Dijkstra, Fast Marching, and Discrete Circle Propagation in Section 2.2).

The term error free considers the possible approximation introduced by the ECC algorithms

and not by the algorithm employed to compute the geodesic distance function.

Section 3.1 has given a recall of the existing work related to the eccentricity transform, and

has mentioned the contexts in which computation has been previously approached.

4.1 The Basic Algorithm - Implementing The Formula

The most intuitive algorithm for computing the eccentricity transform is to strictly follow the

formal definition as described in Equation 3.1

ECC(S,p) = {max(dS(p,q)) | q ∈ S}

i.e. to take each point p of S at a time, using the geodesic distance function DS , compute the

geodesic distance to all other points (q) and keep the maximum (Algorithm 3).

Instead of first iterating over p, one could also consider first iterating over q (see Algorithm 4).

Line 3 in Algorithm 3 has to also go over all points of S, and the two algorithms (Algorithm 3

and 4) have the same complexity O(n2 log n), where n is the number of points (pixels, voxels,

69

CHAPTER 4. COMPUTATION OF THE ECCENTRICITY TRANSFORM

Algorithm 3 ECC(S) : Compute ECC of S - basic.

Input: Discrete shape S.

1: for all p ∈ S do
2: D ← DS(p) /*compute SBDT for p*/
3: ECC(p)← max{D} /*the maximum of D is the value for ECC(S,p)*/
4: end for

Output: Distances ECC.

Algorithm 4 ECC(S) : Compute ECC of S - basic, inverse.

Input: Discrete shape S.

1: for all p ∈ S do ECC(p)← 0 /*initialize*/
2: for all q ∈ S do
3: D ← DS(q) /*compute SBDT for q*/
4: for all p ∈ S do ECC(p)← max(ECC(p),D(q)) /*further away than we had before?*/
5: end for

Output: Distances ECC.

vertices, etc.) in S and O(n log n) is the complexity for computing the geodesic distance function

DS .

The nice part about the formulation in Algorithm 4 is that it poses the problem in the

opposite way: not “who is farthest away from me?” but “for whom am i farther(st) away?”.

As for each point we are interested only in the eccentricity i.e. distance to the point farthest

away, points which are not farthest away for any point in S (points which are not eccentric)

do not even need to be considered. Algorithm 5 incorporates the above - Line 2 has changed

compared to Algorithm 4. It can be used when a priory information about the shape exists: e.g.

if the shape has less than two holes we can consider the eccentric point candidates as P = ∂S

(Properties 9, 10). Less points in P gives a faster computation.

The smallest P for which Algorithm 5 produces an error free result is the set of eccentric

points of S i.e. P = E(S). Unfortunately this is a “chicken-egg” problem as in most of the

Algorithm 5 ECC(S) : Compute ECC of S - inverse, bounded.

Input: Discrete shape S, eccentric point candidates P ⊆ S.

1: for all p ∈ S do ECC(p)← 0 /*initialize*/
2: for all q ∈ P do
3: D ← DS(q) /*compute SBDT for q*/
4: for all p ∈ S do ECC(p)← max(ECC(p),D(q)) /*further away than we had before?*/
5: end for

Output: Distances ECC.

70

4.2. PROGRESSIVE REFINEMENT ECCENTRICITY TRANSFORM

cases the set of eccentric points E(S) is only known after the eccentricity transform has been

computed.

4.2 Progressive Refinement Eccentricity Transform

This section presents three approximation algorithms following the philosophy of Algorithm 5.

They approach the problem of knowing the eccentric point candidates before computing the

eccentricity transform (“chicken-egg” problem at the end of Section 4.1) by sequentially refining

an estimate for the eccentricity transform and the candidate eccentric points - one at a time.

All three algorithms try to find E(S) and compute DS(e) for all e ∈ E(S). As E(S) is actually

known only after ECC(S) is computed, the algorithms incrementally refine an initial approx-

imation of ECC(S) by computing DS(q) for candidate eccentric points q that are identified

during the progress of the approximation. Different heuristics based on different properties and

observations have lead to the different algorithms. They all share the fact that DS is not com-

puted twice for any point, so the complexity is below the one of the algorithms in the previous

section. Every computation of DS is accumulated like in Line 4 of Algorithm 5. For ECC06’

(Section 4.2.2) and ECC08 (Section 4.2.3), discovering one eccentric point per eccentric point

cluster is sufficient to produce the correct result. Experiments comparing the three methods

follow in Section 4.3.

4.2.1 ECC06 - center to periphery

Algorithm 6 (ECC06) [Kropatsch 06] tries to identify points of the geodesic center (minimum

ECC) and use those to find eccentric point candidates. Computing DS(c) for a center point c ∈

C(S) is expected to create local maxima where eccentric points lie. In a first phase, the algorithm

identifies at least two diameter ends by repeatedly “jumping” (computing DS(p)) to the point

that had the highest distance value in the previous estimation (Phase 1 in Algorithm 6). In the

second phase, the center points ci are estimated as the points with the minimum eccentricity and

all local maxima in DS(c) are marked as eccentric points candidates, for which DS is computed

and accumulated. When no new (uncomputed) local maxima exist, the algorithm is stopped.

Algorithm ECC06 is faster than the naive ones (Section 4.1) and the fastest of the approx-

imation algorithms presented in this section. It produces the 100% correct results only for a

class of simply connected shapes. In general it also gives the highest error (see Section 4.3 for

a feeling of how big this highest error actually is). Properties 26 and 27 explain why: ECC06

just considers local maxima as eccentric points candidates.

71

CHAPTER 4. COMPUTATION OF THE ECCENTRICITY TRANSFORM

Algorithm 6 ECC06(S) : Eccentricity transform by progressive refinement - use center.

Input: Discrete shape S.

1: for all q ∈ S, ECC(q)← 0 /*initialize distance matrix*/
2: p← random point of S /*find a starting point*/
3:

4: /*Phase 1: find a diameter*/
5: while p not computed do
6: ECC ← max{ECC,DS(p)} /*accumulate and mark p as computed*/
7: p← arg max{ECC(p) | p ∈ S} /*highest current ECC (farthest away)*/
8: end while
9:

10: /*Phase 2: find center points and local maxima*/
11: pECC ← 0 /*make sure we enter the loop*/
12: while pECC 6= ECC do
13: pECC ← ECC
14: C ← arg min{ECC(p) | p ∈ S} /*find all points with minimum ECC*/
15: for all c ∈ C, c not computed do
16: D ← DS(c) /*compute distances from the center*/
17: ECC ← max{ECC,D} /*accumulate and mark c as computed*/
18:

19: M← {q ∈ S | D(q) local maximum in S and q not computed}
20: for all m ∈M, m not computed do
21: ECC ← max{ECC,DS(m)} /*accumulate and mark m as computed*/
22: end for
23: end for
24: end while

Output: Distances ECC.

4.2.2 ECC06’ - center to periphery and grow clusters

Algorithm 7 (ECC06’) [Ion 08d] extends ECC06 with a third phase similar to region growing,

initiated at each eccentric point estimated by phases 1-2 in ECC06. The third phase has the

purpose to explore the limits of the identified eccentric point clusters. Growing is continued

while new points (neighbors of previously known eccentric points) are also eccentric. The type

of region that is “grown” is decided based on the properties of the shape (e.g. if S is a 2D shape

with less than 2 holes, growing on the boundary of S is enough. For S in 3D, the option between

growing on the surface of S or in the volume exists, etc.). In most cases P = ∂S will be enough

in Algorithm 7 – bigger P = slower but could produce smaller errors.

For non-simply connected shapes the center can become very complex, it can contain many

points and it can be disconnected (e.g. the shape in Section 3.5.10). This makes identifying all

center points harder, as not all eccentric points are farthest away from all center points. Missing

72

4.2. PROGRESSIVE REFINEMENT ECCENTRICITY TRANSFORM

Algorithm 7 ECC06′(S) : ECC by progressive refinement - use center & grow clusters.

Input: Discrete shape S, eccentric points domain P ⊆ S.

1: ECC ← ECC06(S) /*call ECC06 for first two phases*/
2:

3: /*Phase 3: find limits of clusters of eccentric points */
4: ToDo← all neighbours in P of all eccentric points in ECC
5: while ToDo 6= ∅ do
6: p 8 arg max{ECC(p) | p ∈ ToDo} /*remove point with highest current ECC*/
7: ECC ← max{ECC,DS(p)} /*accumulate and mark p as computed*/
8:

9: /*do we need to continue in this direction?*/
10: if ECC changed previously i.e. p is an eccentric point then
11: ToDo← ToDo ∪ {q ∈ P | q is a neighbour of p in S and q not computed}
12: end if
13: end while

Output: Distances ECC.

center points can lead to missing eccentric point clusters, which leads to approximation errors.

4.2.3 ECC08 - sample candidates and grow clusters

Algorithm 8 (ECC08) [Ion 08d] first attempts to identify at least one point from each cluster of

eccentric points. Like in ECC06’, growing is then used to find the limits of each cluster.

Similar to phase 1 in Algorithms ECC06 and ECC06’, inspecting the shape S is done by

repeatedly computing and accumulating DS(p) for the highest uncomputed local maximum in

the current and past approximations of ECC(S) (Phase 1 in Algorithm 8). While in ECC06

and ECC06’ this “jumping” around has the purpose to quickly find a diameter, in ECC08 it is

the search for eccentric point clusters. Each point p that was in some iteration a local maximum

in the approximation of ECC, is inserted into a ToDo list and DS(p) will be computed for it.

Without the “only compute once” condition this process could enter an infinite loop when

all reachable points have been already visited. Such a configuration is called an oscillating

configuration and the visited points are called oscillating points [Schmitt 93]. If DS(p) with

p ∈ S is considered an approximation for ECC(S), the error is expected to be higher around p

and smaller around the points farther away from p i.e. the points with highest values in DS(p).

Whenever an oscillating configuration is reached all points of P ⊆ S which are local minima

in the current ECC approximation are selected for distance computation. If the last operation

does not produce any unvisited points as ECC local maxima, the search is terminated. Phase 2

in ECC08 is equivalent to phase 3 in ECC06’ and “grows” eccentric point clusters based on at

least one representative point found before.

73

CHAPTER 4. COMPUTATION OF THE ECCENTRICITY TRANSFORM

Algorithm 8 ECC08(S) : ECC by progressive refinement - use P minima & grow clusters.

Input: Discrete shape S, eccentric points domain P ⊆ S.

1: for all q ∈ S, ECC(q)← 0 /*initialize distance matrix*/
2: ToDo← random point of S /*find a starting point*/
3:

4: /*Phase 1: inspect shape*/
5: while ToDo 6= ∅ do
6: p 8 arg max{ECC(p) | p ∈ ToDo} /*remove point with highest current ECC*/
7: ECC ← max{ECC,DS(p)} /*accumulate and mark p as computed*/
8:

9: /*add not computed local maxima to ToDo*/
10: ToDo← ToDo ∪ {q ∈ S | ECC(q) local maximum in S and q not computed}
11:

12: /*test if an oscillating configuration was found*/
13: if ToDo = ∅ then
14: ToDo← ToDo ∪ {q ∈ P | ECC(q) local minimum in P and q not computed}
15: end if
16: end while
17:

18: /*Phase 2: find limits of clusters of eccentric points (identical to Phase 3 in ECC06’) */
19: ToDo← all neighbors in P of all eccentric points in ECC
20: while ToDo 6= ∅ do
21: p 8 arg max{ECC(p) | p ∈ ToDo} /*remove point with highest current ECC*/
22: ECC ← max{ECC,DS(p)} /*accumulate and mark p as computed*/
23:

24: /*do we need to continue in this direction?*/
25: if ECC changed previously i.e. p is an eccentric point then
26: ToDo← ToDo ∪ {q ∈ P | q is a neighbor of p in S and q not computed}
27: end if
28: end while

Output: Distances ECC.

4.3 Experiments

We have compared the three algorithms, ECC06, ECC06’, and ECC08, on 70 shapes from the

MPEG7 CE-Shape1 database [Latecki 00], 6 from [Flanitzer 06], and one additional new shape

(see Table 4.5).

The MPEG7 database contains 1400 shapes from 70 object classes. One shape from each

class was taken (the first one) and reduced to about 36,000 pixels (aspect ratio and connectivity

preserved, e.g. 192x192 for square images). Table 4.1 summarizes the main characteristics of

the 70 shapes, their sizes and the range of smallest and largest eccentricity values. The smallest

74

4.3. EXPERIMENTS

Table 4.1: Characteristics of shapes from the MPEG7 database.

measure ranges from to

sizes in pixel 683 28821

smallest eccentricity in pixel (ECCmin) 28 235

maximum eccentricity in pixel (ECCmax) 55 469

Table 4.2: Results of 70 images from the MPEG7 database.

measure ECC06 ECC06’ ECC08

max.pixel error 4.45 / 221.4 4.27 / 221.4 6.57 / 266.6

max.pixel error (%) 2% 2% 2.46%

max.error size 4923 / 19701 2790 / 19701 2359 / 19701

#DT(ECC) / #DT(RECC) 8% 10% 15%

100% correct 44 / 70 60 / 70 56 / 70

Table 4.3: “worst” results from the MPEG7 database.

shape characteristics max.ECC.diff. size of ECC.diff.
no name ECCmin ECCmax size ECC06 ECC06’ ECC08 ECC06 ECC06’ ECC08

58 pocket 170.7 266.6 13815 3.750 0.000 6.568 2241 0 1318
48 hat 126.5 221.4 19701 4.454 4.274 4.274 4923 2790 2359
5 Heart 108.1 213.4 24123 2.784 0.731 0.731 2378 482 482
4 HCircle 127.0 250.2 28821 0.000 0.000 1.454 0 0 404

18 cattle 99.6 198.2 9764 1.223 1.223 1.223 2154 258 258
11 bird 116.0 230.1 14396 1.209 0.000 0.000 3963 0 0

eccentricity appears at the geodesic center of the shape, and the largest eccentricity corresponds

to its diameter.

Reference ECC values are computed by the naive algorithm (Algorithm 5) denoted by RECC,

as the maximum of the distance transforms of all boundary points ∂S.

Table 4.2 compares the performance of the 3 algorithms:

max.pixel error: maximum difference between RECC and ECC per pixel / max.eccentricity

for this shape;

max.error size: maximum number of pixels that differ between RECC and ECC / size of this

shape;

#DT(ECC) / #DT(RECC): average number of times the geodesic distance function DS is

computed w.r.t. RECC (in percent);

75

CHAPTER 4. COMPUTATION OF THE ECCENTRICITY TRANSFORM

a)RECC b)ECC06

c)ECC06’ d)ECC08

Figure 4.1: Results of example shape hat

100% correct: the number of shapes for which the error was 0 for all pixels / the total number

of shapes.

All three algorithms produce a good ECC approximation in about 8% to 15% of the time

of RECC. There are only a few shapes for which the estimation (computation) is not 100%

correct and the highest difference in eccentricity was about 7 (pixel units) in an image where

the eccentricities varied from 170 to 266.6.

Table 4.3 lists the 6 worst results with the three algorithms. Each shape is characterized

by its number, its name, the range of eccentricities of RECC, and the number of pixels (size).

The next columns list the largest difference in eccentricity value and the number of pixels that

were different. To judge the quality of the results we selected the example hat which had

errors in all three algorithms (Figure 4.1 shows the results by a contour line plot with the same

levels). Algorithms ECC06’ and ECC08 compute the correct eccentricity transform for all of the

“problem” shapes showing the improvement with respect to ECC06 with 4- and 8-connectivity

used in [Flanitzer 06] (see Table 4.4).

Table 4.5 shows the results of the three algorithms on a more complex 2D shape (3 holes).

On this example ECC06 and ECC06’ produce better results than ECC08.

Overall ECC06’ produces the best results with a computation speed between ECC06 and

ECC08. ECC06 is the fastest in this experiment.

76

4.4. DISCUSSION

Table 4.4: Results on the 6 “problem” shapes from [Flanitzer 06].

measure in % ECC06 ECC06’ ECC08

max.pixel error 1.521 / 74.7 0.00 / 74.7 0.00 / 74.7

max.error size 675 / 1784 0 / 1784 0 / 1784
#DT(ECC)

#DT(RECC)
27% 50% 48%

100% correct 1 /6 6/6 6/6

Table 4.5: Results for image “3holes” (|S| = 19919 pixels).

measure ECC06 ECC06’ ECC08

max.pixel error 1.913 /409.2 1.100 / 409.2 12.773 / 409.2

max.error size 360 / 19919 119 / 19919 698 / 19919
#DT(ECC)

#DT(RECC)
7% 8% 9%

4.4 Discussion

All presented algorithms rely on the computation of the geodesic distance function DS . If

considering the eccentricity transform in any dimension, one has to look at DS first. Fast

Marching (FM) (Section 2.2.1) works in a similar manner in higher dimensions (3D, 4D), and the

Discrete Circle Propagation (DCP) (Section 2.2.2) was not studied yet in dimensions higher than

2. On the other side, DCP computes exact distances while FM produces only an approximation.

For regular grids, or structures with fixed neighborhoods (e.g. 4, 8, 6, 26, graphs) efficient

classical algorithms exist (e.g. Dijkstra, Section 2.2).

One advantage of the algorithms presented in this chapter is that they can be easily ex-

tended/applied for discrete shapes of any dimension. For Algorithms 3, 4, and 6 (ECC06) once

the geodesic distance function DS is given, nothing has to be changed (Section 5.1 uses ECC06

for the computation of the eccentricity transform of 3D shapes - in the volume and on the 2D

manifold defined by the boundary of the 3D shapes). As the parameter P for Algorithms 5, 7,

77

CHAPTER 4. COMPUTATION OF THE ECCENTRICITY TRANSFORM

•

• •

a) DS(p1) b) DS(p2) c) cut

Figure 4.2: Example where DS does not have to be fully computed.

and 8 will probably depend on the shape (∂S is one dimensional if S is two dimensional, and

two dimensional if S is three dimensional) some considerations have to be made e.g. one could

use the 6 connected boundary of a 3D shape, or the whole shape, etc. Other than that, these

algorithms can also be directly applied.

In algorithms 3, 4, and 5, computing the geodesic distance can be done in parallel (each

computation of DS can be done separately) with a final step to compute the maximum (ECC).

In Algorithm 6, Line 21 can be executed in parallel for all local maxima. The eccentric point

cluster growing (last phase in Algorithms 7 and 8) can also be done in parallel for each cluster,

and inside each cluster (all points of the grown region boundary at a certain time step).

4.4.1 Full DS not always needed.

If running the algorithms sequentially, one can notice that in many cases the computation of

DS(p) for some p ∈ S does not have to be completed, as it is clear that no higher value will be

obtained through this. Figure 4.2 shows an example: a) first DS , b) second DS , and c) cut at

which we could abandon the computation of b). This is mainly possible because the distance

function creates an ordering and a dependency of points s.t. if a state is weaker by some criteria

than a previous one, all dependent points will also be weaker (e.g. same as saying: everybody

needs the same time from A to B, so if someone was in A before me, I cannot get to B before

them).

For a shape represented by a graph G = (V, E) such a cut C ⊆ E , where we could abandon

the computation, has to have the following properties:

• C has to be a cut by the definition from graph theory [Diestel 97] i.e. for V1,V2 s.t. V1 ∪

V2 = V and V1 ∩ V2 = ∅, C is the set of edges {(v1,v2) | v1 ∈ V1,v2 ∈ V2}.

78

4.4. DISCUSSION

6 3

3

4

4

2

37

5

a) e.g. edge lengths (integers)

b) DS(v1) c) DS(v2)

v1

5 7

6 9

10

5

v2 2

3 6

5

Figure 4.3: Detecting when to abort DS in a graph.

• for both distance functions D1 = DS(v1) and D2 = DS(v2), v1,v2 ∈ V, all edges of C

should have been passed in the same direction i.e. ∀(vi,vj) ∈ C, the ordering of d(v1,vi)

and d(v2,vi) has to be a strict one, and the same as the ordering of d(v1,vj) and d(v2,vj).

In words, it means that for comparing two distance functions (distance propagations) at a cut,

we need a cut that divides S in at least two parts and that is being crossed by both functions in

the same direction. None of the functions crosses the cut in both directions and both functions

go from the same side to the other. Figure 4.3 shows an example for a graph. The edges in red

show a cut where DS(v2) could be aborted if DS(v1) has been computed before. All edges of

the cut share the same ordering (vertices on the left are closer - propagation from left to right)

and all have smaller distances in D2 than in D1, so no higher distance will be produced on the

right side of the cut.

For the more general, continuous case with S ∈ Rn, C ⊂ S is an n− 1 dimensional manifold

i.e. for n = 2, C is one dimensional (line), for n = 3, C is two dimensional (surface). C divides

S in S ′ and S ′′. Consider two geodesic distance functions D1 = DS(x1) and D2 = DS(x2),

x1,x2 ∈ S. For C to be a proper cut for comparing D1,D2, we need that for all c ∈ C the

direction of propagation of both D1 and D2 at c has to be from S ′ − C to S ′′ − C (this assumes

that x1,x2 ∈ S
′). Figure 4.4 shows an example: C (in red) is a proper cut for a) and b) as all

the normals to the wavefront at points on the cut are oriented toward the same side. If ∀c ∈ C,

d(x1, c) > d(x2, c) then DS(x2) can be stopped at C. Figure 4.5 shows an example improper

cut: the normals change the side to which they point to.

Checking a cut for stopping can be done with low additional cost, if the cut is the wavefront.

79

CHAPTER 4. COMPUTATION OF THE ECCENTRICITY TRANSFORM

a) DS(x1) b) DS(x2)

Figure 4.4: Example proper cut (red) and normals (blue, green) for a continuous shape.

Figure 4.5: Improper cut (red): normals (magenta) do not point to the same side of the cut.

For example, in Dijkstra’s algorithm (Section 2.2) just keep the number of “good” edges in the

cut, and update every time a new vertex is computed. Unfortunately the wavefront is not a

very good option for a cut, as in many cases, after the wavefront is split, one should continue

propagating on one side, but stop on another (e.g. continue with only one finger of the hand).

This is a more complex and still open problem, as it is not just connected to the properties of

the front, but to the structure of the shape itself - one can stop propagating in tree structures,

but has to probably continue around holes.

4.5 A Different Approach: Divide and Conquer

The ellipse (Section 3.5.5) is a shape for which it is possible to compute the eccentricity transform

by decomposing it along the short diameter, computing the eccentricity transform of the parts

and then obtaining the eccentricity transform of the whole from the eccentricity transform of

the parts. Consider the more general case of a shape S with |S| = n points (pixels, voxels).

The worst time complexity for computing ECC(S) is O(n2 log n) (Algorithm 3). Decompose S

in two parts Sl and Sr with |Sl| = nl and |Sr| = nr. If putting together the eccentricity of the

whole (S), from the parts (Sl,Sr) can be done, an estimated complexity would be O(n2
l log nl)+

80

4.5. A DIFFERENT APPROACH: DIVIDE AND CONQUER

point on S

ECC

0
u

ECC(Sl)
ECC(Sr)

ECC(Sl,u) + d(u,p)

ECC(Sr,u) + d(u,p)

Figure 4.6: Divide and Conquer for the 1D curve.

O(n2
r log nr) + O(k) where nl, nr are the number of pixels of the parts, and k is the complexity

for “putting the parts together”. The problem has two important aspects:

• What is a good (preferably best) decomposition?

• How to do the reconstruction from the decomposition?

4.5.1 open curve (1D eccentricity)

Let S be a non self intersecting one dimensional manifold in Rn (Section 3.5.1 gives the eccen-

tricity transform of such a shape). We subdivide S at point u ∈ S and compute the eccentricity

of Sl and Sr (Figure 4.6). The eccentricity of S is:

ECC(S,p) =





max{ECC(Sl,p), ECC(Sr,u) + d(u,p)} if p ∈ Sl

max{ECC(Sr,p), ECC(Sl,u) + d(u,p)} if p ∈ Sr

Compared to the ellipse, for the points on the cut, there is no need for additional information

besides the eccentricity of the points (like the angle in the case of the ellipse). The association

between p and the point on the cut is clear, as the cut has only one point. If u is the middle

of S (line), ECC(Sl) and ECC(Sr) do not have to be fully computed, only ECC(Sl,u) and

81

CHAPTER 4. COMPUTATION OF THE ECCENTRICITY TRANSFORM

l

x0

x1
x2

x3

Figure 4.7: Example tree St with a single junction and n = 4 end vertices.

ECC(Sr,u). Because, like in the case of the ellipse, all points in one part (Sl,Sr) will have their

eccentric points in the other part (Sr,Sl).

4.5.2 A tree

Let S be a tree like structure made out of 1D curves (edges) and junction points (vertices) in

Rn, no cycles. We consider two cases:

• decomposing on the curves (edges);

• decomposing at a junction point.

The basic building blocks will be the eccentricity transform of the 1D curve (section above) and

the eccentricity transform of a tree St with a single junction vertex l, and end vertices (leaves)

xi, 0 6 i < n (in decreasing order of their length) (Figure 4.7 shows an example):

ECC(St,p) =





d(l,x0) if p = l

d(p, l) + d(l,x0) if p /∈ branch with x0

d(p, l) + d(l,x1) if p ∈ branch with x0

Decomposing S along an edge

This case is very similar to the open curve (1D), as eccentric paths of the whole, either stay

inside the respective part, or cross the single point of decomposition (cut). Using the same

notation as in Section 4.5.1 (u decomposition point and Sl, Sr, the two parts):

ECC(S,p) =





max{ECC(Sl,p), ECC(Sr,u) + d(u,p)} if p ∈ Sl

max{ECC(Sr,p), ECC(Sl,u) + d(u,p)} if p ∈ Sr

82

4.5. A DIFFERENT APPROACH: DIVIDE AND CONQUER

Decomposing S at a junction

The shape S is decomposed at u into n parts Si, 0 6 i < n. We get, for all p ∈ S:

ECC(S,p) = max{ECC(Si,p), d(p,u) + max
06k<n,k 6=i

{ECC(Sk,u)}},

where Si ⊂ S is the part containing the point p i.e. p ∈ Si. Except for one case, the “inner”

maximum (max{ECC(Sk,u)}) always returns the same value ECC(Sm,u), 0 6 m < n. If

i = m, the second highest value ECC(Sm′ ,p) will be taken:

ECC(S,p) =





max{ECC(Si,p), d(p,u) + ECC(Sm,u)} if i 6= m

max{ECC(Si,p), d(p,u) + ECC(Sm′ ,u)} if i = m

for p ∈ Si, 0 6 i < n, and Sm,Sm′ the parts with the highest respectively second highest

eccentricity for u. In the case of this decomposition, eccentric paths in more than one direction

can pass over the decomposition point.

4.5.3 Convex 2D shape

This case is similar to the ellipse (Section 3.5.5). Eccentric paths have to be orthogonal to ∂S or

end in corner points. The shape can be decomposed along a straight line segment C and pairs of

distances and angles can be associated to the points of C. To each point, zero or more distance-

direction pairs (i.e. a pair of two values, a distance and a direction/angle) are associated, one

for each direction in which the point is on a normal to ∂S, or ∂S is a corner point (Figure 4.8.a

shows example distance-direction pairs). The eccentricity of the whole is found by choosing the

point on C which maximizes the sum of the two distances (to the point and from the point to

the boundary), and the angles match (the eccentric path is straight over C).

Given a point p ∈ S (Figure 4.8.b), consider u ∈ C and x ∈ ∂S s.t. u is a point of the line

segment px, and x is a corner point or the segment ux ⊥ ∂S at x. The eccentricity transform

of S using the decomposition into parts Sl and Sr is (Figure 4.8 illustrates the used notation):

ECC(S,p) =





max{ECC(Sl,p),max
x∈Sr

{d(p,u) + d(u,x)}} if p ∈ Sl

max{ECC(Sr,p),max
x∈Sl

{d(p,u) + d(u,x)}} if p ∈ Sr

with u ∈ C and x ∈ ∂S as defined above.

The eccentricity transform of the parts is no longer enough to compute the eccentricity of the

whole. A curved cut C makes it impossible to compute the distance-direction pairs independently

on each part, as geodesic distances between two points of the same part could be different if

83

CHAPTER 4. COMPUTATION OF THE ECCENTRICITY TRANSFORM

Sl
Sr Sl Sr

u

p′

p

x

x′

a) distance-direction pair examples b) paths through the same point

Figure 4.8: Convex 2D shape: cut C, dashed: distance-angle pair, eccentric path.

Sl

Sr

u
q

x2
x1

Figure 4.9: Non-convex 2D shape: cut C, dashed: distance-angle pair.

computed in the part or if computed in the whole. These considerations can be applied to any

n dimensional convex shape, using the Euclidean distance dε.

4.5.4 Non-convex 2D shape (simply connected)

The non-convex 2D shape can be considered as an extension of the convex one (Section 4.5.3).

In addition to directions that would intersect ∂S normal to the tangent at the intersection

point, and directions leading to corner points, points on the cut have to consider the additional

direction eccentric paths could go to: the tangent to concave parts of the boundary. Paths still

end at convex parts of the boundary, whether smooth or corner points. Due to concave parts,

from a single point u ∈ C and a single direction, geodesics to more than one boundary point can

go. In this case only the longest one has to be considered. Figure 4.9 shows an example: only

ux1 has to be considered, as λ(ux2) < λ(ux1).

Figure 4.10 illustrates the notation for the following. Consider a cut C, a point p ∈ Sl, and

84

4.5. A DIFFERENT APPROACH: DIVIDE AND CONQUER

Sl
Sr

u′

u

p

x

Figure 4.10: Lower bound for distances on the cut: cut C.

a) connected cut b) cut “through” hole

Figure 4.11: Decomposition of 2D shape with holes: cut C.

points x ∈ ∂Sr ∩ ∂S, u ∈ C, and u′ = C ∩ ν(p,x) (u’ is the point where the geodesic from p

to x cuts C). From the triangle inequality we have d(u′,x) + d(u,u′) > d(u,x) ⇐⇒ d(u′,x) >

d(u,x) − d(u,u′), which basically states that given d(u,x) we have a lower bound for d(u′,x)

as d(u,u′) is bounded by the length of the cut C.

From the previous we get that, for a given cut C with end points c1, c2 ∈ C, and u ∈ C the

point with the largest associated distance m, we can ignore all distance-direction pairs associated

to points u′ ∈ C for which the associated distance is smaller than m−max(d(u, c1), d(u, c2)).

4.5.5 2D shape with holes

Two cases can be considered here (Figure 4.11 shows examples):

• a single connected straight line cut (not always possible),

• the cut goes “through” a hole (disconnected cut).

The first case (single line) is similar to the one in Section 4.5.4 (non-convex shape), as only

one geodesic path can go in one direction through one point of the cut. In the second case

(disconnected cut) (e.g. the disk with one circular hole in Section 3.5.10) more than one eccentric

85

CHAPTER 4. COMPUTATION OF THE ECCENTRICITY TRANSFORM

path with the same direction can go through a single point of the cut, and the fact that paths do

not change direction when crossing the cut is not enough to make sure they are geodesic paths

i.e. shortest. Also, because separation lines can intersect the boundary at any point, not just

normal or corner, and eccentric points can even lie inside the shape (Property 12 illustrated in

Figure 3.5), the number of distance-direction pairs that should be stored could be as high as the

number of points of the part.

For shapes where all eccentric points lie on convex parts or at corner points of the boundary,

or where knowledge about the presence of eccentric points only in a small subset of S exists,

the problem of multiple paths going to the same point could be solved also by associating the

end-point to the distance-direction information. Then the shortest path from all paths ending

at the same point has to be maximized.

4.6 Chapter Summary

This chapter considered the computation of the eccentricity transform. First, general computa-

tion and efficient approximation have been approached, supported by experiments. A discussion

about possible improvements followed. A different approach, divide and conquer, covered the

second part of the chapter. Decomposing the shape to reduce computation complexity has been

discussed.

86

5
Example Applications of the Eccentricity Transform

This chapter presents two example applications to motivate the more theoretical part in Chap-

ters 3 and 4. The first one deals with the problem of binary shape matching (Section 5.1) and the

second one with shape centered coordinate systems (Section 5.2). The applications themselves

are not the central part of this work and thus possible further improvements are proposed as

future work.

5.1 Matching 2D and 3D Articulated Shapes using Eccentricity

Parts of this section (Sections 5.1.1, 5.1.2 and 5.1.4) have been previously published in [Ion 07b]

(2D shape matching) and [Ion 08a] (3D shape matching).

The recent increase in available 3D models and acquisition systems has seen the need for

efficient retrieval of stored models, making 3D shape matching gain attention also outside the

computer vision community. Together with its 2D counterpart, 3D shape matching is useful for

identification and retrieval in classical vision tasks, but can also be found in Computer Aided

Design/Computer Aided Manufacturing (CAD/CAM), virtual reality (VR), medicine, molecular

biology, security, and entertainment [Bustos 05].

Shape matching requires to set up a signature that characterizes the properties of interest

for the recognition [Veltkamp 06]. The invariance of this signature to local deformations such

as articulation is important for the identification of 2D and 3D shapes. Matching can then be

carried out over this reduced space of signatures. Most shape descriptors are computed over

a transformed domain that amplifies the important features of the shape while throwing away

ambiguities such as translation, rotation or local deformations.

For 2D shapes, the Fourier transform of the boundary curve [Zahn 72] is an example of such

a transformed domain descriptor adapted to smooth shapes. Shape transformations computed

with geodesic distances [Bronstein 06] lead to signatures invariant to isometric deformations

such as bending or articulation. To capture salient features of 2D shapes, local quantities such

87

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

as curvature [Mokhtarian 92] or shape contexts [Belongie 02] can be computed. They can be

extended to bending invariant signatures using geodesic distances [Ling 07]. More global features

include the Laplace spectra [Reuter 05] and the skeleton [Siddiqi 99]. Some transformations

involve the computation of a function defined on the shape, for instance the solution to a linear

partial differential equation [Gorelick 04] or geometric quantities [Osada 02]. Geodesic distance

information such as the mean-geodesic transform [Hamza 03] could also be used.

Among approaches matching 3D shapes, existing methods can be divided into [Bustos 05]:

Statistical descriptors, like for example geometric 3D moments employed by [Elad 01, Paquet 00],

and the shape distribution [Osada 02, Ip 03]. Extension-based descriptors, which are calculated

from features sampled along certain directions from a position within the shape [Vranic 02,

Vranic 01a]. Volume-based descriptors use the volumetric representation of a 3D shape to ex-

tract features (examples are Shape histograms [Ankerst 99], Model Voxelization [Vranic 01b], and

point set methods [Tangelder 03]). Descriptors using the surface geometry compute curvature

measures and/or the distribution of surface normal vectors [Paquet 99, Zaharia 01]. Image-based

descriptors reduce the problem of 3D shape matching to an image similarity problem by com-

paring 2D projections of the 3D shapes [Ansary 04, Cyr 04, Chen 03]. Methods matching the

topology of two shapes (for example Reeb graphs, where the topology of the 3D shape is described

by a graph structure [Hilaga 01, Shinagawa 91]). Skeletons are intuitive shape descriptions and

can be obtained from a 3D shape by applying a thinning algorithm on the voxelization of a

solid object like in [Sundar 03]. Descriptors using spin images work with a set of 2D histograms

of the shape geometry and a search for point-to-point correspondences is done to match 3D

objects [Johnson 99].

The majority of shape descriptors is quite complex and not invariant to the deformation or

articulation of object parts. They require extraction of salient features and local signatures that

need to be aligned or registered.

In the context of shape matching the concept of articulated shape means that shapes that

belong to articulations of the same object, belong to the same class. Assuming that the size of

the junctions is very small compared to the size of the parts Oi, it is shown that the variation of

the geodesic distance1 during articulation is small and that geodesic distances are articulation

insensitive (Property 3).

Normalized histograms of the eccentricity transform are invariant to changes in orientation,

scale, and articulation. We propose eccentricity histograms as descriptors for 2D [Ion 07b] and

3D shape matching [Ion 08a]. They require only a simple representation and can be efficiently

matched. A common framework is presented with a study of the properties of the approach,

supported by experimental results and detailed discussion. Four variants of the descriptor are

1Called “inner-distance” in [Ling 07].

88

5.1. MATCHING 2D AND 3D ARTICULATED SHAPES USING ECCENTRICITY

Table 5.1: Types of manifolds used for matching.

Name input computing on S (dε is used)

ECCobj2D 2D 2D: whole shape 4-connected binary 2D shape

ECCobj 3D 3D: whole shape 6-connected 3D voxel shape

ECCborder 3D 3D: border voxels
6 connected voxel surface in 3D, made out of voxels of the
shape that are 26 connected to a background voxel

ECCmesh 3D 2D: triangular mesh connected triangular mesh of the surface of the 3D shape

used, one for 2D shapes and three for 3D shapes (volume, border voxels, mesh) and compared

to state of the art methods. To the best of our knowledge, this is the first approach applying

eccentricity (furthest point distance) to the problem of shape matching. The presented ap-

proach could be fitted to either of the categories extension-based or volume-based, and it is a

transformation computed with geodesic distances.

Like the method in [Ling 07], our method does not involve any part models. The artic-

ulation model is only for the analysis of the properties of the geodesic distance. Finding the

correspondences between all the parts of two shapes is an NP -complete problem in graph theory

[Atallah 98] (known also as the “matching” of two graphs) and requires the correct decompo-

sition of the unknown object into parts. A one-to-one mapping is not always possible as some

parts might be missing due to, for example, segmentation errors. Decomposition of the shapes

into parts is not required by our approach.

This part is organized as follows: Section 5.1.1 discusses used variants of the eccentricity

transform. Section 5.1.2 gives the proposed matching method and discusses pros and cons of

the descriptor (Section 5.1.3). Section 5.1.4 presents details and discusses the results of the

experiments, followed by parameters and improvements in Section 5.1.5.

5.1.1 Eccentricity transform - considerations

The class of 2n-connected (Definition 7) discrete shapes S defined by points on a square grid Zn,

n ∈ {2, 3}, as well as connected triangular meshes representing the surface of the 6-connected 3D

shapes are considered. Table 5.1 shows the types of manifolds used, for which ECC is computed.

For ECCobj2D, ECCobj, and ECCborder, paths need to be contained in the area of Rn defined

by the union of the support squares/cubes for the pixels/voxels of S. For ECCmesh, paths need

to be contained in the 2D manifold defined by the union of the triangles of the mesh (including

the interior of the triangles). The used (approximated) metric is in all cases dε. If increasing

the resolution of the shapes, ECCborder and ECCmesh converge to the same value.

Figures 5.1 and 5.2 show the eccentricity transform of a 2D, respectively 3D, shape. For

the 3D shape, the eccentricity transform is presented for the whole shape (ECCobj), for the

89

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

Figure 5.1: ECC of example binary shape (point with smallest ECC marked).

3D model:

ECCobj ECCborder ECCmesh

ECC

volume rendering volume rendering surface rendering

Figure 5.2: Top: 3D model of an ant. Bottom: ECCobj, ECCborder, ECCmesh (darker =
higher ECC value).

border/boundary voxels (ECCborder), and the surface mesh (ECCmesh). Figure 5.3 shows the

difference between ECCobj and ECCborder, both using distances computed in the 3D volume.

5.1.2 Eccentricity histogram matching

To match two shapes we first create a shape descriptor for each of them and then match these

descriptors to obtain a similarity measure.

ECC histogram descriptor. The basic building block for our shape descriptor is the his-

togram h of the eccentricity transform ECC of the shape S. We use k bins for the histogram.

90

5.1. MATCHING 2D AND 3D ARTICULATED SHAPES USING ECCENTRICITY

ECCobj ECCborder

cut: x=const.

cut: z=const.

Figure 5.3: Comparison between the two volume computations of ECC: ECCobj and ECCbor-
der.

Figure 5.4: Top: ECCobj2D for some 2D shapes. Bottom: corresponding histograms.

The histogram descriptor is the vector h ∈ Rk defined by: ∀i = 1, . . . , k

h(S, i) =
1

|S|
#

{
p ∈ S |

i− 1

k
6

ECC(S,p)−m

M −m
<

i

k

}
,

where |S| is the number of pixels/voxels in S, and m and M are the smallest, respectively largest

eccentricity values taken over S. A discussion about choosing the number of bins k follows.

The obtained histogram contains only bins for the values actually existing in the eccentricity

transform i.e. from minimum to maximum eccentricity, and the sum of all bins is 1. Figures 5.4

and 5.5 show examples of histograms for 2D and 3D shapes with different geometric features. We

note that the histogram h is invariant under Euclidean transformations, scaling and isometric

bending of S (Figure 5.6 shows examples).

Comparison of histograms. To match the descriptors of the two shapes S and S̃, it is

necessary to compute the distance between histograms. Let h, h̃ ∈ Rk be the two histograms of

S and S̃ computed as above. We propose to use the simple ℓ2-norm defined by

δ(h, h̃)
def.

=

√√√√
k∑

i=1

(h(S, i) − h̃(S, i))2. (5.1)

91

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

Figure 5.5: Top: example 3D shapes. Bottom: corresponding ECCobj histograms.

One could use more elaborate metrics such as the χ2 statistic [Belongie 02, Pearson 1900]

or those defined in [Osada 02], but we found in numerical experiments that all these metrics

give results similar to δ, which is the easiest and fastest to compute (discussion follows in

Section 5.1.5).

The dissimilarity ∆(S, S̃) is computed between two shapes S and S̃ as the distance of their

histogram descriptors:

∆(S, S̃)
def.

= δ(h, h̃). (5.2)

5.1.3 Characteristics of ECC histograms.

The histogram of the ECC characterizes the compactness of the shape (e.g. a flat histogram

characterizes a very elongated shape, a histogram with monotonically decreasing values charac-

terizes a rather compact shape). Figure 5.6 shows examples of eccentricity histograms for basic

shapes, with and without holes and articulation.

The histogram of the ECC of a simple open curve2 Sa with length l = d(e1, e2) (Fig-

ure 5.7(a)), is flat with a possibly smaller value in the first bin. The continuous formula is:

h(Sa, i) =





1
l

if i = min(ECC(Sa))

2
l

if i > min(ECC(Sa))
,

where min(ECC(Sa)) = d(e1, c) = d(e2, c).

Consider Sb obtained by adding to Sa a simple open curve of length d(q1,q
′
3) < l/2 connected

at the point q1 (Figure 5.7(b)). Let q3 ∈ Sb s.t. d(q1,q3) = d(q1,q
′
3) and d(q3, e1) = d(q′

3, e1).

For the points with eccentricity between d(e1,q1) and d(e1,q3), the eccentricity histogram of

Sb has increased by 50% (there is one additional point having each of the values in the domain).

A shape without cycles (e.g. Sa, Sb, Sc) has only one center point (ECC minimum) and the

2The term curve is used to denote a one dimensional and continuous manifold, and includes both straight and
non-straight lines.

92

5.1. MATCHING 2D AND 3D ARTICULATED SHAPES USING ECCENTRICITY

S ECCobj2D h(S)

(a) line

(b) disk

(c) many short eccentric
paths

(d) many long eccentric
paths

(e) many long + cut

(f) many long + articula-
tion

(g) with holes

(h) with holes and articula-
tion

Figure 5.6: Basic shapes and their eccentricity histograms.

histogram value for the center is always one. All other histogram values can be changed by

adding branches as above.

A possibility to change the histogram value for the center is to introduce cycles. Consider

Sd obtained by adding a simple open curve q1c
′q2 of length λ(q1,q2) to Sa (Figure 5.7(d)).

The length d(e1, e2) is kept the same and q1q2 has the same length if going over c or c′. Also

93

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

S ECC(S) h(S)

(a) Sa

e1 e2c

ECC

Sc e2

h

i

(b) Sb

e1 e2c q1 q3

q′
3

ECC

Sc q1

h

i

d(e1,q1) d(e1,q3)

(c) Sc

e1 e2c q1 q2 q3

q′
2 q′

3

ECC

Sc q1 q2

h

i

d(e1,q1) d(e1,q3)

(d) Sd

e1 e2c

c′

q1 q2

ECC

Sc, c′q1 q2

h

i

d(e1,q2)

Figure 5.7: Behavior of ECC histogram for basic changes in the shape. Column S: where
possible, straight lines where used for illustration, but only the length of the curves is relevant,
not whether they are straight or not.

d(e1, c) = d(e1, c
′) = d(e1, e2)/2. Two center points exist (c and c′), and for the eccentricity

values [d(c, e1), d(q2, e1)) there are two additional points. If q1 → c, q1 6= c (implies q2 → c,

q2 6= c), only one additional point will exist for the eccentricity values [d(c, e1), d(q2, e1)).

For a given histogram, the steps used to create Sb and Sd, can be iterated to grow the

continuous shape (for geodesics computed along thin lines). For discrete shapes, the number

of points is finite3, which limits the number of curves that can be put close to each other and

3Depends on the discretization and maximum shape size.

94

5.1. MATCHING 2D AND 3D ARTICULATED SHAPES USING ECCENTRICITY

not intersect. With the maximum shape size (number of pixels/voxels) and the number of bins

k fixed, not all (real valued) histograms can result as ECC histograms (it can also be seen as

a discretization problem, the lower the resolution/maximum size, the higher the dependence

between neighboring histogram bins).

A histogram has a smaller dimension (1D) than the shape and a whole class of shapes is

projected into the same histogram. Two shapes S and S̃ with the same eccentricity histograms

satisfy ∆(S, S̃) = 0, and are thus considered to be the same according to our recognition algo-

rithm. Consider Sc in Figure 5.7(c) obtained from Sa, similar to Sb, but with two curves s.t.

d(q1,q
′
2) = d(q1,q2), d(q2,q

′
3) = d(q2,q3), and d(q1,q3) is equal in both Sb and Sc. The two

shapes Sb and Sc have the same eccentricity histogram and cannot be differentiated using only

that. One could say that eccentricity histograms are influenced by the structure of shapes (as

new branches change the histogram), but they do not uniquely characterize it.

On the other side, the descriptor is highly compact, which is an advantage for real time

retrieving and low memory devices, it is invariant under many natural deformations, it can

handle shapes without as well as with holes (Figure 5.6 (g) and (h)), and gives good results

comparable to many state of the art methods (experiments follow).

5.1.4 Matching experiments in 2D and 3D

This section shows results on popular benchmarks and comparison with state of the art methods.

When comparing the results, keep in mind that the proposed method is simple and matching

is fast. An approximation of the ECC can be computed for many shapes with as few as 50

distance propagations (e.g. the average number for the ECCmesh on the McGill database is

54), and determining δ between two computed descriptors (ℓ2-norm) has practically no CPU

time consumption. A single, fixed-length vector as a descriptor can be a very efficient indexing

method. The approaches compared with, are more complicated requiring decomposition of

shapes, alignment/correspondences of features, etc.

2D shape matching

For the experiments with 2D shapes we have used three shape databases: Kimia 25 [Sharvit 98],

Kimia 99 [Sebastian 04] and MPEG7 CE-Shape-1 [Latecki 00].

A shape database is composed of q shapes {Si}
q
i=1 and each shape Si has a label L(i) ∈

{1, . . . , lmax}. Each label value 1 6 l 6 lmax defines a class of shapes Q(l) = {Si | L(i) = l}.

The first columns of the three blocks of Figure 5.8 show the shapes from the Kimia 25 database,

ordered by classes (such as fish, planes, rabbits, etc.). Any shape matching algorithm α assigns

to each shape Si a vector of best matches Φi, where Φi(1) is the shape the most similar to

95

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

Si, Φi(2) is the second hit, and so on. Depending on the benchmark, Φi contains all shapes

including the query shape Si (all 2D benchmarks presented), or leaves Si out, i.e. the shape Si

is not matched to itself and Φi has q − 1 elements (all 3D benchmarks presented).

For the Kimia 25 database lmax = 6 and q = 25, and for the Kimia 99 database, lmax = 9

and q = 99. The efficiency of various matching algorithms on Kimia databases is measured by

the number of correct matches for each ranking position k:

Matchk(Φ)
def.

=

q∑

i=1

sgn(|L(Φi(k))− L(i)|), (5.3)

where sgn(x) is the sign function. Tables 5.2 and 5.3 give the value of Matchk for various shape

matching algorithms.

In the case of the MPEG7 database, which contains lmax = 70 classes with 20 images each

(q = 70 × 20 = 1400), the efficiency of matching algorithms is computed using the standard

Bullseye test:

Bullseye(Φ)
def.

=
1

20q

40∑

k=1

q∑

i=1

sgn(|L(Φi(k))− L(i)|)

=
1

20q

40∑

k=1

Matchk(Φ). (5.4)

This test counts the number of correct hits (same class) in the first 40 hits. For each image there

can be at most 20 correct hits and a maximum of 20 × 1400 hits can be obtained during the

benchmark and thus Bullseye(Φ) 6 1. Table 5.4 gives the value of Bullseye for various shape

matching algorithms.

The results of the presented approach over both Kimia 25 and Kimia 99, and over MPEG

7 are slightly below the state of the art (Inner Distance Shape Context [Ling 07], Shape Con-

text [Belongie 02], Shock Graphs [Siddiqi 99]).

Case study - Kimia 25: Figure 5.8 shows the retrieval results for Kimia 25. The first column

shows the 25 shapes Si. The following set of shapes forms an array, where the shape at row i

and column k is Φi(k), the rank-k shape associated to Si.

The class with the best results are rabbits, followed by tools, hands, fishes, airplanes and

greebles (shapes numbered 5-8 in Figure 5.8). Two questions immediately arise when looking

at these results:

(1.) Why are the greebles considered to be more similar to the hands than to other greebles?

96

5.1. MATCHING 2D AND 3D ARTICULATED SHAPES USING ECCENTRICITY

Table 5.2: The value of Matchk(Φ) (Equation 5.3) for various algorithms on the Kimia 25
database.

Algorithm α k=1 2 3

Sharvit et. al [Sharvit 98] 23 21 20

ECCobj2D 25 20 16

Gdalyahu and Weinshall [Gdalyahu 99] 25 21 19

Shape Context [Belongie 02] 25 24 22

ID-Shape Context [Ling 07] 25 24 25

Table 5.3: The value of Matchk(Φ) (Equation 5.3) for various algorithms on the Kimia 99
database.

Algorithm α k=1 2 3 4 5 6 7 8 9 10

Shape Context [Belongie 02] 97 91 88 85 84 77 75 66 56 37

ECCobj2D 99 87 74 67 64 49 52 45 38 33

Gen. Model [Tu 04] 99 97 99 98 96 96 94 83 75 48

Shock Edit [Sebastian 04] 99 99 99 98 98 97 96 95 93 82

ID-Shape Context [Ling 07] 99 99 99 98 98 97 97 98 94 79

Table 5.4: The value of Bullseye(Φ) (Equation 5.4) for various algorithms on the MPEG 7
database.

Algorithm α Bullseye(Φ)

random 2.86%

ECCobj2D 44.28%

Shape Context [Belongie 02] 64.59%

ID-Shape Context [Ling 07] 68.83%

(2.) Why does a rabbit appear in so many cases when the matching has failed?

For the first question, consider the histograms of the greebles and the unoccluded hands

(Figure 5.9). The histograms are similar even though the shapes are of different classes, e.g.

the histogram of the first greeble (Figure 5.9 top-left) looks more similar to the hands, than

the second and third greeble. This is due to the abstraction of a 2D shape to a 1D histogram,

which, in our case, disregards certain structural properties of distances/paths (studied in detail

in Section 5.1.3).

For the second question, consider the shapes in Figure 5.10 (a rabbit - S19, and two tools -

97

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

Figure 5.8: Retrieval results for the single scale descriptor on the Kimia 25 database.

Figure 5.9: Histograms for: top: greebles, bottom: unoccluded hands.

S19 S25 S22

Figure 5.10: Three shapes from the Kimia 25 database and their eccentricity histograms.

S25 and S22), and the results, Φ25, in row 25 of Figure 5.8. When matching S25, the rabbit has

a better score than S22, even though one might say that the histograms of S25 and S22 reveal

more similar distance characteristics than the histogram of S19 (see Figure 5.10). Both S25 and

S22 have more long distances than medium, and short, while S19 has a peak in the medium.

This is due to typical histogram matching methods, which are inherently low level and fail to

capture the high level context of the task. Discussion follows in Section 5.1.5.

Geometrical properties of the shapes are well captured by our low-dimensional descriptors.

For instance, elongated shapes are well separated from more compact shapes. However, more

98

5.1. MATCHING 2D AND 3D ARTICULATED SHAPES USING ECCENTRICITY

advanced geometrical features, such as intricate structural properties are thrown away by our

signature extraction. This is for instance why the class “greebles” is not separated enough from

the class “hands”.

3D articulated shape matching

One widely used 3D object retrieval databases is the Princeton Shape Benchmark [Shilane 04]. It

contains 1,814 3D object models organized by class and is effective for comparing the performance

of a variety of methods. However, the majority of the models corresponds to rigid, man-made

objects. Only a limited number of shapes in the database have articulated parts. As one

of the main advantages of using eccentricity is its robustness with respect to articulation, we

have turned to the McGill Shape Benchmark [Zhang 05]. It contains several models from the

Princeton repository and others added by the authors. The main advantage of this benchmark

is that from its 455 3D shapes, 255 have significant part articulation. We show the results on the

q = 255 shapes grouped into the lmax = 10 classes of articulated shapes (Figure 5.11). Shapes

are not matched to themselves and so Φi contains q − 1 shapes.

Three ECC based descriptors were used (Figure 5.2):

(1.) ECCobj - eccentricity of the whole shape (all object voxels);

(2.) ECCborder - eccentricity of the border/boundary voxels;

(3.) ECCmesh - eccentricity of the triangular mesh of the surface of the shape.

ECCborder is obtained by computing the eccentricity transform ECC(∂6S), where ∂6S is

the 6 connected voxel boundary of S. ECCmesh is computed on the 2D manifold defined on the

boundary of the 3D shapes. ECCborder uses distance computation in the 3D volume, ECCmesh

in the 2D surface. If the resolution of the shapes is increased, ECCborder and ECCmesh converge

to the same value. For a similar resolution, ECCmesh needs less memory, as cells not part of

the boundary do not have to be stored (e.g. interior of the shape), and it can be more accurate

when approximating the eccentricity of the surface, as the computation is done on the surface

itself, not on an approximation volume.

Experimental results: In the following, results of the three variants on shapes of the 10

articulated classes of the McGill Shape Benchmark are given. The notation from Section 5.1.4

is used. The following measures are considered.

Recall(Φi, t) =
1

|Q(L(i))| − 1

t∑

k=1

sgn(|L(Φi(k))− L(i)|).

99

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

Ants (ant) Crabs (cra)

Spectacles (spe) Hands (han)

Humans (hum) Octopuses (oct)

Pliers (pli) Snakes (sna)

Spiders (spi) Teddy (ted)

Figure 5.11: The object classes from the McGill 3D shape database having significant part
articulation.

The recall computes the ratio of models in the database in the same category as the query, with

indexing rank 6 t, to the total number of shapes in the same category (never including the query

itself). The average results and standard deviation for several rank thresholds (t = 10, 20, . . .),

over all classes, are given in Figure 5.12.

AvgRank(Φi) =
1

|Q(L(i))| − 1

q−1∑

k=1

k sgn(|L(Φi(k)) − L(i)|).

For all queries in a class, the average of the ranks of all other shapes in that class are computed.

Figure 5.13 shows the average and the standard deviation of the ranks for each class (lower

average is better).

Table 5.5 shows the average score for all pairs of classes. Each shape in the database is

matched against all other shapes and each cell shows the average of the score (Equation 5.2)

100

5.1. MATCHING 2D AND 3D ARTICULATED SHAPES USING ECCENTRICITY

10 60 110 160 210
0

0.2

0.4

0.6

0.8

1

10 60 110 160 210
0

0.2

0.4

0.6

0.8

1

10 60 110 160 210
0

0.2

0.4

0.6

0.8

1

ECCobj ECCborder ECCmesh

Figure 5.12: Recall for several rank thresholds

ant cra han hum oct pli sna spe spi ted
0

20

40

60

80

100

120

140

160

180

ant cra han hum oct pli sna spe spi ted
0

20

40

60

80

100

120

140

160

180

ant cra han hum oct pli sna spe spi ted
0

20

40

60

80

100

120

140

160

180

ECCobj ECCborder ECCmesh

Figure 5.13: Average ranks for each class. The first three letters of each class name are printed.

between all combinations of shapes of the two classes defined by the row and column.

Precision(Φi, t) =
1

t

t∑

k=1

sgn(|L(Φi(k)) − L(i)|).

Precision refers to the ratio of the relevant shapes retrieved, to the total number retrieved.

Figure 5.14 shows the precision-recall curves for each of the 10 classes. Precision-recall curves

are produced by varying the parameter t. Better results are characterized by curves closer to the

top, i.e. recall = 1 for all values of precision. Precision and recall are common in information

retrieval for evaluating retrieval performance. They are usually used where static document

sets can be assumed. However, they are also used in dynamic environments such as web page

retrieval [Fawcett 06].

As can be seen in Figures 5.12, 5.13, and 5.14, and Table 5.5, ECCobj does in most cases

a better job than ECCborder and ECCmesh. The recall of the three methods is comparable,

with slightly better results from ECCobj. With respect to the average ranks, ECCobj does

better with the hands, octopus, pliers, snakes, spiders, teddy, is worse then one of ECCborder

and ECCmesh with the ants, crabs, humans, and slightly worse than both other methods with

101

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

Table 5.5: Average matching results multiplied by 100 (smaller means more similar). For each
row, the first and second smallest value are printed in bold.

ECCobj ants crabs hands humans octopus pliers snakes spectacles spiders teddy

ants 1.75 5.33 3.72 3.53 7.20 2.95 2.91 7.25 5.43 3.72

crabs 5.33 1.55 3.73 3.50 3.67 3.02 4.36 3.99 3.43 2.53

hands 3.72 3.73 2.30 3.04 5.60 2.71 3.76 6.19 4.53 2.51

humans 3.53 3.50 3.04 2.19 5.03 2.13 3.15 5.04 3.52 2.62

octopus 7.20 3.67 5.60 5.03 3.90 5.02 6.22 4.04 4.06 4.58

pliers 2.95 3.02 2.71 2.13 5.02 0.55 1.82 4.97 3.64 2.11

snakes 2.91 4.36 3.76 3.15 6.22 1.82 0.80 5.73 4.83 3.55

spectacles 7.25 3.99 6.19 5.04 4.04 4.97 5.73 2.24 3.97 5.13

spiders 5.43 3.43 4.53 3.52 4.06 3.64 4.83 3.97 2.25 3.50

teddy 3.72 2.53 2.51 2.62 4.58 2.11 3.55 5.13 3.50 1.46

ECCborder ants crabs hands humans octopus pliers snakes spectacles spiders teddy

ants 1.00 2.45 2.16 1.60 3.09 1.61 2.42 5.62 2.47 1.66

crabs 2.45 1.41 2.30 3.01 3.42 2.88 3.64 6.92 3.08 2.38

hands 2.16 2.30 1.94 2.65 2.98 2.48 3.49 6.05 2.78 2.29

humans 1.60 3.01 2.65 1.57 3.19 1.54 2.16 5.12 2.54 1.93

octopus 3.09 3.42 2.98 3.19 2.97 2.72 3.82 4.80 2.69 2.80

pliers 1.61 2.88 2.48 1.54 2.72 0.65 1.75 4.51 2.00 1.47

snakes 2.42 3.64 3.49 2.16 3.82 1.75 0.85 4.86 3.21 2.44

spectacles 5.62 6.92 6.05 5.12 4.80 4.51 4.86 1.67 4.69 5.26

spiders 2.47 3.08 2.78 2.54 2.69 2.00 3.21 4.69 1.76 2.07

teddy 1.66 2.38 2.29 1.93 2.80 1.47 2.44 5.26 2.07 1.45

ECCmesh ants crabs hands humans octopus pliers snakes spectacles spiders teddy

ants 0.97 2.34 1.94 1.66 2.46 1.40 2.36 4.78 1.93 1.47

crabs 2.34 1.47 2.52 3.05 3.09 2.88 3.67 6.41 2.75 2.34

hands 1.94 2.52 1.98 2.69 2.62 2.34 3.40 5.30 2.40 2.17

humans 1.66 3.05 2.69 1.48 3.03 1.60 1.91 4.56 2.48 2.07

octopus 2.46 3.09 2.62 3.03 2.61 2.39 3.54 4.65 2.33 2.34

pliers 1.40 2.88 2.34 1.60 2.39 0.70 1.78 3.92 1.71 1.44

snakes 2.36 3.67 3.40 1.91 3.54 1.78 0.98 4.00 2.95 2.56

spectacles 4.78 6.41 5.30 4.56 4.65 3.92 4.00 1.66 4.49 4.71

spiders 1.93 2.75 2.40 2.48 2.33 1.71 2.95 4.49 1.50 1.68

teddy 1.47 2.34 2.17 2.07 2.34 1.44 2.56 4.71 1.68 1.37

the spectacles. None of the three variants produces an average class rank higher than 50%. All

three methods have the smallest average class distance (highest similarity) correct for 8 out of

10 classes, with ECCobj having the correct class as the second smallest one for the other two,

the humans and octopus (see Table 5.5). A discussion considering the differences between the

three ECC variants follows at the end of this section.

Figure 5.14 shows comparative precision-recall results of ECCobj, ECCborder and ECCmesh,

102

5.1. MATCHING 2D AND 3D ARTICULATED SHAPES USING ECCENTRICITY

ECCobj ECCborder ECCmesh MS SD HS

Figure 5.14: Precision-recall for the ten classes. Left two columns: ECCobj, ECCborder, EC-
Cmesh. Right two columns (image taken from [Siddiqi 07], with kind permission of Springer
Science and Business Media): results of three other methods on the same database: me-
dial surfaces (MS) [Siddiqi 07], harmonic spheres (HS) [Kazhdan 03], and shape distributions
(SD) [Osada 02]. Precision: horizontal axis, recall: vertical axis. (Best visualized in color.)

103

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

and three other methods:

• medial surfaces (MS) [Siddiqi 07];

• harmonic spheres (HS) [Kazhdan 03];

• shape distributions (SD) [Osada 02].

ECCobj, ECCborder, and ECCmesh are comparable, except for the teddy bears, where

ECCobj is superior to the other two. The best results (higher precision vs. recall) are reached

by the ECC variants for the snakes, by MS for the ants, and HS and SD for teddy. For these

best results the MS has the best precision-recall followed by the ECC based methods, followed

by HS and SD. The worst results are achieved by ECCobj, ECCborder, and ECCmesh for the

octopus, MS for the pliers, and HS and SD for the hands. The results of MS for the pliers are

superior to ECCobj, ECCborder and ECCmesh for the octopus, which are in turn superior to

the HS and SD for the hands. In comparison to all other three methods (MS, HS, SD), the

eccentricity based methods score better on the pliers, spectacles and snakes.

The differences in the results of ECCobj vs. ECCborder and ECCmesh, can be linked

to the compactness of the shapes and the width of the joints. The variation of the geodesic

distances is larger when computed on the “skin” (boundary) compared to computed inside a

joint (smaller). In the case of 2D shapes the eccentricity of the boundary is a constant. In 3D

it manages to capture some of the properties of the shape, but it looks more unstable. The

eccentricity transform of a simply connected volume has in most of the cases a single stable

center (minimum), while the eccentricity transform of its boundary will have a disconnected

center or at least one with a more complex structure.

Discussion: 2D and 3D

The computed shape similarities are robust with respect to scaling, rotation, and part articula-

tion. The matching results are good, especially when considering the straightforward approach.

In contrast, the most efficient shape matching algorithms [Ling 07, Siddiqi 07] are more compli-

cated and require extraction of salient features and local signatures that need to be aligned or

registered.

The major current limitations of our approach include: (1) Eccentricity histograms do not

capture the topology of the shape and thus histograms of different shapes can be very similar. (2)

Histogram “matching” (whether using the ℓ2-norm or more sophisticated methods) is inherently

low level and does not consider the higher level context in which it is applied.

Connectivity of the isoheight lines/surfaces of the eccentricity transform does capture the

104

5.1. MATCHING 2D AND 3D ARTICULATED SHAPES USING ECCENTRICITY

oct spe pli hum

Figure 5.15: Similar ECCobj histograms corresponding to 3D shapes (objects) of different
classes.

part structure of a shape [Ion 08e], but the histograms “throw away” this information. (Fig-

ure 5.15 shows two pairs of similar histograms belonging to 3D objects of different classes.)

Compared to other approaches (e.g. [Siddiqi 07]), one can identify the aspects discussed above

(see Figure 5.14 and Table 5.5). For classes with simple topology (e.g. snakes and spectacles),

the results are very good. For classes where part decomposition and structure play an important

role (e.g. octopus v.s. spiders and crabs), the discrimination capabilities are reduced.

5.1.5 Parameters and improvements

The number of bins for the histogram: The approach has only one parameter, the number

of bins k, of the histograms h. In experiments, we used k = 200, which was chosen based on a

few initial trials on a smaller set of shapes.

As the shapes are discrete, the number of distance values of the ECC is finite. Let hc be

the ordered set of eccentricity values computed for a shape S, i.e. each distinct value that exists

in the ECC of the discrete shape S. We have min(hc) equal to the ECC value of the center

(minimum ECC) and greater or equal to half the diameter of the shape (max(hc) = max(ECC)).

The largest distance between two neighboring (grid) points is equal to one (shapes are required

to be 4 respectively 6 connected). For the ECC histogram of a shape not to contain any empty

bins, the number of bins k has to satisfy:

k 6 max(ECC(S))−min(ECC(S)).

Depending on the shape, k could be much higher and still have no empty bins in h, e.g. for

S a disk with radius r in Z2 and the Euclidean distance, there are more distinct values than

r (consider the discrete approximation of the Euclidean circle). An absolute upper bound is

k = |S|. If this number is exceeded, there will be empty bins in h.

As k decreases, the description capability of the histogram also decreases. In the extreme

case, a single bin would just contain |S|, and for the normalized histogram it would contain

the value 1. Two bins can give the equivalent of a simple compactness measure (similar to

the circularity ratio, which relates the area of the shape to the area of the circle with the

105

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

same diameter). Three bins could be considered as a relative measure for short/long/medium

distances and can characterize more than the simple compactness measure. A higher number

of bins increases the dimension of the space in which distances are computed and gives more

flexibility in the relations, e.g. in 2D there can be maximum 3 points s.t. they are pairwise at the

same distance (equilateral triangle), and this number increases to 4 in 3D (regular tetrahedron).

Assuming that shapes from the same class have similar histograms, given the number of

classes (vertices) and the required relations (weighted edges), a lower bound for the number of

bins is equal to the smallest dimension in which the classes can be embedded s.t. the weights

of the edges corresponding to the distance between the vertices. If the variation inside classes

increases, the number of classes that can be discriminated will decrease.

Describing topology: One of the problems identified in Section 5.1.3 and during the exper-

iments (Sections 5.1.4 and 5.1.4) is that the histograms do not capture the exact structure of

the shape. Classical methods to describe the topology of a shape (e.g. Reeb graphs, [Reeb 64],

and homology generators, [Munkres 93]) fail to capture the geometrical aspects. An approach

to deal with this problem is presented in [Aouada 08]. To describe a shape, two descriptors are

used: a geometric one, based on the Global Geodesic Function (GCF), which is defined for a

point as the sum of the geodesic distances to all points of the shape multiplied by a factor, and

a topological one, the Reeb graph of the shape using the GCF as the Morse function.

Initial steps in combining the eccentricity transform with Reeb graphs have been presented

in [Ion 08e].

A better histogram matching: The problem of having a matching function that is aware of

the context in which it is applied can be approached in two ways: use expert knowledge about

the context to create an algorithm that considers the proper features, or learn the important

features by giving a set of representative examples. In [Yang 06a, Yang 06b], a survey of current

distance metric learning methods is given. The purpose of distance metric learning is to learn

a distance metric for a space, from a given collection of pairs of similar/dissimilar points. The

learned distance is supposed to preserve the distance relation among the training data. Example

training data would be: S1 is more similar to S2 than to S3. The result is a distance function

that would replace the ℓ2-norm in Equation 5.1 with a new measure which is adapted to the

task of computing the distance of eccentricity histograms as given by the training examples.

Higher dimensional data: 4D data has started to be available in the medical image process-

ing community (e.g. 3D scans of a beating heart, over time). The presented method is general

and should work in any metric space. This includes 4D, but also gray scale images (e.g. gray

106

5.2. A NON-RIGID OBJECT CENTERED COORDINATE SYSTEM

values can determine the distance propagation speed in the respective cells).

5.1.6 Conclusion

We have presented a method for matching 2D and 3D shapes using the eccentricity transform.

Descriptors are normalized histograms of the eccentricity transform, compact, and easy to match.

The method is straight-forward but still efficient, with experimental results comparable to more

complex state of the art methods. Experimental results on popular 2D and 3D shape matching

benchmarks are given, with computation on binary 2D images, binary 3D voxel shapes, and

3D triangular meshes. The experiments are preceded by a detailed analysis of the properties

of the descriptor and followed by in depth discussion of results, parameters, and improvement

possibilities.

5.2 A Non-rigid Object Centered Coordinate System

This section presents a second application. It uses the eccentricity transform to map a coordinate

system to an articulated shape, with the purpose of addressing the corresponding point (or a

close one) in other instances of the same shape. It is mainly motivated by observations like:

“one might change his aspect, alter his pose, but the wristwatch is still located in the same place

on the hand”. The results in this section have been previously published in [Ion 08b, Ion 08c].

Most shape matching methods output a similarity value (e.g. [Felzenszwalb 03, Ozcanli 07]

[Ion 07b, Felzenszwalb 07]), some also give correspondences of the used signature, usually border

points/parts [Ling 07, Belongie 02, Siddiqi 99], but finding all point correspondences based on

the obtained information is in most of the cases not straightforward.

For correspondences of all points of the shape, the task is similar to the non-rigid registration

problem used in the medical image processing community [Crum 04]. Differences include the

usage of gray scale information to compute the deformation vs. the usage of a binary shape and,

the registration of a whole image (in most cases) vs. the registration of a (in this approach)

connected 2D shape. In [Felzenszwalb 03], a triangulation of the shape is used as a model, which

could be used to find corresponding points, but an a priori known model is still needed. In the

surface parametrization community a coordinate system for shapes is defined [Brechbühler 95],

but articulation is not considered. In [Kambhamettu 94], for small variations, correspondences

between points of 3D articulated shapes are found. Recently shape matching has also moved

toward decomposition and part matching, e.g. [Ozcanli 07], mainly due to occlusions, imperfect

segmentation or feature detection.

We use the eccentricity transform (Chapter 3) as a basis for a 2D polar like coordinate

system. To support the coordinate mapping, shapes are decomposed into connected parts. The

107

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

following sections describe the proposed methods, with experiments given, and finish with a

short discussion.

5.2.1 ECC isoheight lines - decomposition

The level set (Section 3.4.3) of a function f : Rn → R, corresponding to a value h, is the set of

points p ∈ Rn s.t. f(p) = h. If n = 2 and f : R2 → R, the connected components of the level

sets of f form one dimensional manifolds called isolines. If n = 3 and f : R3 → R, they are

called isosurfaces.

A level set of the ECC of S is the set LS(e) = {q ∈ S | ECC(S,q) = e}, with e ∈

[min{ECC(S,p)},max{ECC(S,p)}]. For S ∈ R2, LS(e) can be a closed curve or a set of

disconnected open curves. The connected components of LS(e) are called isoheight lines, IL ⊆

LS(e), IL connected.

HD(S) = {R1, . . . , Rn} is a a decomposition of S based on the connectivity of the ECC

isoheight lines (Figure 5.17) if: HD is a partition of S into simply connected regions; ∀Ri and

∀e ∈ [min{ECC(S,p)},max{ECC(S,p)}] ⇒ Ri ∩LS(e) is connected; the number n of regions

is minimal. HD(S) exists for any connected shape S.

The top level Gt of the graph pyramid (Section 2.1.10) created by Algorithm 9 is a region

adjacency graph describing the topology of the decomposition HD(S). Edges of Gt are oriented

from regions with lower eccentricity to regions with higher eccentricity. Each vertex contains

the length of the longest isoheight line in its receptive field.

If S is simply connected, the obtained region adjacency graph (top level of the pyramid)

is a tree (Theorem 7.9 in [Klette 04]), with the receptive field of the root vertex contain-

ing the (unique) center pixel. Such a decomposition can be done for other transforms also

(e.g. the DT (S,p)). The eccentricity transform is used because its center is a robust starting

point [Kropatsch 06].

5.2.2 The non-rigid coordinate system

A system of curvilinear coordinates [Weisstein 02] is a system composed of intersecting surfaces.

If all intersections are at angle π/2, then the coordinate system is called orthogonal (e.g. polar

coordinate system). If not, a skew coordinate system is formed. To define a planar system of

curvilinear coordinates, two classes of curves need to be defined - one for each coordinate. Any

defined coordinates identify one curve of each class which intersect at a unique point.

The proposed coordinate system is intuitively similar to the polar coordinate system, but

forms a skew coordinate system. We focus on simply connected shapes and their properties.

The decomposition of non simply connected shapes is much more complex (general graph with

108

5.2. A NON-RIGID OBJECT CENTERED COORDINATE SYSTEM

Algorithm 9 HD - Decompose S based on the ECC isolines
Input: Discrete shape S.

1: iECC = ⌊ECC(S)⌋ /*at least 8 connected isolines*/
2: G0 ← oriented neighborhood graph of iECC /* pixels with same iECC connected, G0 planar, orient

from small to high iECC*/
3: k ← 0
4: ∀v ∈ V0 do

v.maxlength← 1, v.ecc← [ECC(v), ECC(v)] /* init max length of isolines and ecc. interval*/
5: repeat
6: A← {e = (v, w) ∈ Ek | v.ecc = w.ecc} /* merge isoheight line parts*/
7: A← A ∪ {e = (v, w) | out-deg(v) = in-deg(w) = 1 and closed(v)=closed(w)}

/* closed(v)=true iff receptive field of v contains only closed isolines*/
8: if |A| > 0 then
9: K ← CK as subset of A

/*choose optimal subset of A with e.g. MIS [Kropatsch 05] */
10: Gk+1 ← contract(Gk, K) /* contract and simplify*/
11: ∀v ∈ Vk+1 compute v.maxlength, v.ecc from Gk /* use reduction window*/
12: k ← k + 1
13: end if
14: until |A| = 0
15: t← k

Output: Graph Pyramid P = {G0, . . . , Gt}.

cycles, etc.) and more complex algorithms are required. Note that θ is not really an angle, just

denoted intuitively so. The radial coordinate

r(p) = ECC(S,p)−min{ECC(S,p)} (5.5)

is a linear mapping from the eccentricity value and the angular coordinate θ is mapped to the

isoheight lines of the ECC, based on the structure of the shape.

The figure above shows three adjacent isoheight lines (A,B,G) of different regions. A has

eccentricity e, and B,G have e + k. If k → 0 then d → 0, and maximum smoothness of θ is

achieved when each point of B has the same θ as his projection on A. This assumption puts the

values θ for A and B into relation. An approximation is to project the endpoints of B onto A,

to find their θ values, and interpolate along B:

θ′1 = θ1 +
(θ2 − θ1)

∫ p

s
dl∫ e

s
dl

(5.6)

109

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

Algorithm 10 CtoP - Assign θ to ∀v ∈ G

Input: G = (V, E) from Algorithm 9, vertex v, interval [θ1, θ2].

1: v.θ1 ← θ1, v.θ2 ← θ2

2: A← isoheight line of v with highest ECC.
3: for all e = (v, vo) ∈ E /*all edges oriented away*/ do
4: B ← isoheight line of vo with lowest ECC.
5: [θ′1, θ

′
2]← project B to A and compute from [θ1, θ2] (Equation 5.6)

6: call CtoP (G, vo, [θ
′
1, θ

′
2])

7: end for

Output: G, with θ intervals [v.θ1, v.θ2] for each region

The obtained relation can be used to control the smoothness of θ along region boundaries

(having θ for the “last” isoline of a region, determine θ for the first isoline of the adjacent region).

The root vertex of Gt from Section 5.2.1, contains only closed isoheight lines and is the only

such vertex. Its associated θ interval is 2π. Other vertices have an “input interval” and 0 or

more “output intervals” (edge orientation in G). Smoothness along region boundaries is assumed

as above, and intervals of θ inside each region are kept constant. Algorithm 10 assigns the θ

intervals to each vertex. The parameters are the top level of the pyramid from Algorithm 9, the

root vertex of Gt, and [0, 2π]. This approach works only with real valued θ, as two isoheight

segments of the same region can contain a different number of pixels and still get the same

interval assigned.

For the origin of θ, a path connecting the center (minimum eccentricity) with a point having

the maximum eccentricity can be used. This path is called the zero path. (the zero path does

not have to be a part of the diameter, as the diameter does not always pass through the center).

It is used in the inner most region (root vertex of Gt) to set the 0 for the θ of each isoheight line.

Outside this region, linear interpolation is used (Equation 5.6). The point with maximum ECC

can be selected using any shape orientation method (e.g. [Zunic 06]) - taking into consideration

the possible deformations would be optimal.

5.2.3 Experiments

Figure 5.17 shows the results of Algorithm 9 and 10, and Equation 5.5 and 5.6 for the two hands.

The jagged isoheight lines of θ are due to the smoothness/roughness of the shape boundary i.e.

curvature of the shape boundary at the endpoints of isoheight lines, and partly due to the simple

implementation (point projection by closest point search and integral along line estimation by

sum of line segment lengths for Equation 5.6, etc.).

To get a feeling of the “stability” of the mapping w.r.t. articulation we have applied the

algorithms on the shapes in Figure 5.16. A pattern was laid on each hand - the source, and

copied to the other one - the destination, by finding for each pixel pd(rd, θd) of the destination

110

5.2. A NON-RIGID OBJECT CENTERED COORDINATE SYSTEM

Figure 5.16: Shapes used in experiments and their eccentricity transform.

decomposition used zero path radial: r angular: θ pattern on source on destination

Figure 5.17: Results for the shapes in Figure 5.16.

the “closest” pixel ps(rs, θs) in the source.

The local variation of θ is not constant over the whole shape, making the ℓ2-norm between

point coordinates not the best option for finding the closest pixel to a given point pd(rd, θd). To

avoid compensating for this variation, a two step approach is used. First, normalize r in both

shapes to [0, 1]. This makes finding eccd → r → eccs a linear scaling problem. L ← (eccs ≤

ECC(source) < eccs + 1) gives at least 8 connected isoheight lines of r. Second, the pixel of L

which minimizes |θd−θs| is chosen. The results are promising (see Figure 5.17) with the texture

of the “articulated” finger being nicely copied from one shape to the other i.e. points are copied

to their corresponding region in the articulated version of the shape.

The noise like errors on the pattern are due to the approximations mentioned above and to

using “nearest point” for finding the color of each pixel when copying the pattern (instead of

interpolating gray values). Errors on the boundaries of fingers are due to certain coordinates

not existing in both shapes. The more global perturbation (palm of the hands in Figure 5.17) is

111

CHAPTER 5. EXAMPLE APPLICATIONS OF THE ECCENTRICITY TRANSFORM

mainly due to the slightly different position of the centers and isoheight line shape. Improvements

can be made by considering both shapes when mapping the coordinates to them, or by a more

complex method for finding corresponding points. Finding a matching between the regions of

the decomposition of the two shapes is an important step and is planned in the future.

5.2.4 Conclusion

This section presented a framework for using the eccentricity transform to map a polar-like

coordinate system onto a non-rigid binary shape and find corresponding points between two

shapes. Promising initial results were shown. More global decisions will provide smoother

angular isoheight lines, and additional correspondences between part structures can help to

solve failed correspondences.

5.3 Chapter Summary

This chapter presented two example applications to motivate the study of the eccentricity trans-

form in Chapters 3 and 4. First, a shape descriptor is build from the histogram of the eccentricity

transform of the respective shapes. The obtained shape descriptors are used to match 2D and

3D shapes. A second application, a shape-centered coordinate system for shapes undergoing

articulation was given. The mapped coordinate system builds on the eccentricity transform

and allows addressing corresponding points in different poses of the same simply connected 2D

shape.

112

6
Epilogue

6.1 Conclusion

As a property of an object, shape characterizes the objects spatial form and identifies the points

that are part of the object. Shape is both complex and structured, and allows an object to be

identified [Pizlo 08]. Image transforms are used to extract high abstraction level information

from the low abstraction level information contained in an image. The purpose is to extract

significant information at higher abstraction levels, while also reducing the amount of data.

The eccentricity transform (ECC) is part of a class of image transforms that associate to

each point of the shape a function of the distance to other points of the shape. In the case

of the ECC, this function is the maximum over all points of the shape, and the distance is

a geodesic distance i.e. the length of the shortest path entirely contained in the shape. The

eccentricity transform bridges the concepts of eccentricity from graph theory, furthest point from

computational geometry, and propagation function from mathematical morphology. It is robust

with respect to noise (Salt and Pepper i.e. random missing points in the shape, and minor

segmentation errors), and it is quasi invariant with respect to articulation of the shape.

For planar shapes with less than two holes, eccentric points are always located on the bound-

ary of the shape. For planar simply-connected shapes they lie on convex parts of the boundary.

The geodesic center of a planar simply connected shape is a single point. For shapes with holes,

or non planar 2D manifolds, it can be a disconnected set of points.

A study of the eccentricity transform of several basic shapes has motivated the presented

computation approaches. Efficient approximation algorithms have been derived, and properties

showing the possibility to decompose a shape for parallel computing have been formulated.

Previous computations of the geodesic distance function over a shape, could provide a stopping

criteria for future computations over the same shape.

The histogram of the eccentricity transform is a simple yet powerful descriptor of 2D and

3D shapes and has shown good results in comparative experiments. The application of the

113

CHAPTER 6. EPILOGUE

eccentricity transform is also shown in the context of a shape centered coordinate system. This

coordinate system, once mapped to different poses of the same articulated 2D shape, allows

addressing by means of coordinates, the corresponding points in the different poses.

6.2 Outlook

The following is a list of open questions that have emerged during the research presented in this

thesis, and are proposed as future work:

The eccentricity transform:

• For non-planar 2D manifolds and 3D shapes, shadows and separation lines can exist also

if the shape is simply connected (has no holes). How do these cases affect the position of

eccentric points?

• Certain 2D manifolds (e.g. the surface of an ellipsoid) can be seen as the limit of a 3D

shape with a hole of increasing size. Can these two concepts be unified, the 2D manifold

and the 3D shape with a hole?

• How can the eccentricity transform of shapes with grayscale information be formulated?

What are its properties and how can it be applied?

• What can be obtained from the formulation as a Hausdorff distance? Which properties of

Hausdorff distances can be useful for the eccentricity transform?

• Is it possible to further relate the eccentricity transform and topology? Can topological

information (e.g. generators) help to efficiently overcome the complications introduced by

holes?

Computation of the eccentricity transform:

• The properties required for a cut to act as a stopping point for the computation of the

geodesic distance function was given. What is a good strategy to choose candidate cuts?

• The divide et impera approach is closely related to computation using a graph pyramid. If

for every point the direction of an eccentric path is known, can the eccentricity transform

be efficiently computed using a graph pyramid? Is there a good approximation of the ec-

centricity transform that can be computed using a graph pyramid, without any additional

knowledge?

114

6.2. OUTLOOK

The eccentricity transform and shape matching:

• Given a grayscale image and the histogram of the eccentricity transform of a shape known

to be present in the image, can the segmentation be guided to a better result?

• Instead of building a single descriptor (histogram) for the whole shape, can building de-

scriptors for parts of the shape help increase matching results in the presence of occlusion?

The eccentricity transform and the shape centered coordinate system:

• How can the coordinate system be extended for non-planar 2D shapes, and 3D shapes?

(In such cases the geodesic center can be a disconnected set, and isolines can disconnect

and connect back again in different configurations.)

• Given a 3D model of an (articulated) object and the color of its surface, can the coordinate

system be used to find the pose of the object in the image?

115

Index

∂S, 6

adjacency, 6

α-adjacency, 8

boundary (of a shape), 6

center point, 30

chessboard metric, 7

city-block metric, 7

connected, 9

α-connected, 8, 9

graph, 11

convex

geodesically, 25

strictly (geodesically), 25

curve, 8

diameter, 30

digital image, 11

distance, 11

transform, 22

DT, 22

ECC decomposition, 30

ECC06 (algorithm), 71

ECC06’ (algorithm), 72

ECC08 (algorithm), 73

eccentric

path, 30

point, 29

point based decomposition, 30

point cluster, 30

eccentricity, 27, 28

transform, 28

edge, 10

Euclidean based geodesic distance, 10

Euclidean based geodesic distance function, 15

Euclidean metric, 7

Euclidean space, 7

furthest

neighbor, 27

point, 27

geodesic, 9

center, 27, 30

distance, 10, 11

distance function, 15

end, 30

length, 30

mask, 9

radius, 30

graph, 10

image, 11

binary, 11

color, 11

grayscale, 11

iso-convex, 37

isoline, 37

isoline-cut, 37

isosurface, 37

level set, 36

marker set, 15

metric, 6

metric space, 7

neighborhood, 6, 7

object, 5

continuous, 6

discrete, 6

path, 11

continuous, 8

discrete, 8

length, 8, 11

117

INDEX

pixel, 11

propagation function, 27

radius, 27

reference point, 20, 32

reference point based decomposition, 32

robust, 63

SBDT, 15

separation

line, 16

set, 15

surface, 16

shadow of a hole, 16

Shape, 5

shape, 5

articulated, 6

continuous, 6

discrete, 6

shape-bounded single source distance transform,

15

source points, 15

starting points, 15

supporting hyperplane, 25

vertex, 10

voxel, 11

118

List of Figures

2.1 The smallest neighborhood for integer-valued metrics in Z2: d4, d8, and Z3: d6, d26. 8

2.2 Example images, objects and 2D shapes. (Images from [Martin 01]) 13

2.3 Geodesic distance functions. Gray values are distance values modulo a constant.

The marker set Y (source point) is the bottom-left corner. b) the separation line

is shown (red). 15

2.4 Shape and point p, with complex separation lines in DS
ε (p). (Gray values are

distances to p modulo a constant.) . 16

2.5 Shadow of the hole in Figure 2.3.b, considering the same source point (bottom-left). 17

2.6 The three steps used during wave front propagation (white: shape, black: back-

ground). a) radius 1: circle with radius 1 and center o is bounded to an arc. b)

radius 2: the front is split in two arcs A, B. c) radius 3: arc B, touching the hole

at radius 2 (the next arc pixel would fall in the hole) but not at radius 3, creates

arc C with the center at the current point of B. 21

2.7 Distance transform for two shapes, using dε, d4, and d8. (Gray values are distances

modulo a constant.) . 24

2.8 Example geodesically convex set P ⊂ S (left) and not geodesically convex set

P ′ ⊂ S (right). The geodesic in S between points p,q (dotted line) is contained

in P but not in P ′. 25

3.1 Eccentricity transform of a shape, using dε, d4, and d8. (Gray values are distances

modulo a constant.) . 29

3.2 Examples for eccentricity related terms. (Gray values are distances modulo a

constant.) . 29

3.3 Decomposition based on eccentric points: A, C regions corresponding to point a,

respectively c. 31

3.4 Eccentricity transform of a polygonal shape and its decomposition based on the

ECC reference points. Some region borders (e.g. between regions H and F) are

noticeable also on the eccentricity transform image. 31

3.5 Shape and point p, with an eccentric point E(p) inside the shape. (Gray values

are distances to p modulo a constant.) . 33

3.6 Case where an eccentric point lies on a straight part of the boundary. (Gray

values are distances modulo a constant.) . 34

3.7 Adding part S ′ to S s.t. no eccentric point lies in S (see Property 15). 34

3.8 Example (a) iso-convex and (b,c) non iso-convex functions. Isolines in red. 37

119

LIST OF FIGURES

3.9 Notation used for proof of Properties i.–v. (Page 38) and Property 22. Level set

in red. 39

3.10 Example configurations of two convex isolines (see Lemma 2). 39

3.11 Eccentric point p2 is not a local maximum in DS(p1). 42

3.12 1D eccentricity: open curve . 44

3.13 1D eccentricity: closed curve . 45

3.14 Regions delineated by the perpendicular bisectors: regions labeled A,B, C have

a,b respectively c as their eccentric point. 46

3.15 Fixing two corners and moving one: how many eccentric points are there? 46

3.16 Eccentricity transform for the triangles in Figure 3.14. (Gray values are distances

modulo a constant.) . 47

3.17 Eccentricity transform of disk. (Gray values are distances modulo a constant.) . 47

3.18 Eccentricity transform of an ellipse. (Gray values are distances modulo a constant.) 48

3.19 Eccentric point clusters of the ellipse (shown with thick line). 48

3.20 Efficient eccentricity transform based on decomposition. 51

3.21 Ellipse decomposition along the bigger axis: more than one line orthogonal to the

ellipse tangent at the point of intersection can go through one point. 51

3.22 Eccentricity transform of a rectangle. (Gray values are distances modulo a con-

stant.) . 52

3.23 Eccentric paths inside a rectangle - cutting along a medial line 52

3.24 ECC of rectangle. V1, V2, V3, V4 regions associated to v1,v2,v3 respectively v4.

Number of circle arcs in each isoline (blue). 53

3.25 Elongated shape formed of two half ellipses El, Er and a rectangle R, and its

eccentricity transform. (Gray values are distances modulo a constant.) 54

3.26 Elongated, ellipse cut along: a) smaller axis, b) is circle, c) bigger axis. 54

3.27 Elongated-bent shape: two half circles El, Er, two rectangles, and a circle arc. . . 56

3.28 Symmetric bent shape (left) and its eccentricity transform (right). (Gray values

are distances modulo a constant.) . 56

3.29 Non-symmetrically bent elongated shape (left): two half circles, two rectangles

and a circle arc. Its eccentricity transform (right). (Gray values are distances

modulo a constant.) . 57

3.30 Elongated shape obtained by dilating a polyline. 58

3.31 Eccentricity transform of elongated shape in Figure 3.30. (Gray values are dis-

tances modulo a constant.) . 59

3.32 Disk with one circular hole in the middle (left) and its eccentricity transform

(right). (Gray values are distances modulo a constant.) 60

120

LIST OF FIGURES

3.33 Eccentric paths in a disk with one circular hole in the middle. 60

3.34 Geodesic center c for disk with one circular hole (0 < d(o,o′) < min(r,R − r))

(left). Its eccentricity transform (right). (Gray values are distances modulo a

constant.) . 62

3.35 Geodesic center {c, c′} for ellipse with one circular hole in the middle (left) and

its eccentricity transform (right). (Gray values are distances modulo a constant.) 62

3.36 Example distance (DT) and eccentricity (ECC) transforms for a shape, using dε,

d4, and d8. (Gray values are distances modulo a constant.) 64

3.37 Distance and eccentricity transform histograms, RMSE and Max. Diff. Solid line

- original image, dotted line - noisy image. 65

3.38 Example images used for testing the variation under articulated motion. 66

4.1 Results of example shape hat . 76

4.2 Example where DS does not have to be fully computed. 78

4.3 Detecting when to abort DS in a graph. 79

4.4 Example proper cut (red) and normals (blue, green) for a continuous shape. . . . 80

4.5 Improper cut (red): normals (magenta) do not point to the same side of the cut. 80

4.6 Divide and Conquer for the 1D curve. 81

4.7 Example tree St with a single junction and n = 4 end vertices. 82

4.8 Convex 2D shape: cut C, dashed: distance-angle pair, eccentric path. 84

4.9 Non-convex 2D shape: cut C, dashed: distance-angle pair. 84

4.10 Lower bound for distances on the cut: cut C. 85

4.11 Decomposition of 2D shape with holes: cut C. 85

5.1 ECC of example binary shape (point with smallest ECC marked). 90

5.2 Top: 3D model of an ant. Bottom: ECCobj, ECCborder, ECCmesh (darker =

higher ECC value). 90

5.3 Comparison between the two volume computations of ECC: ECCobj and EC-

Cborder. 91

5.4 Top: ECCobj2D for some 2D shapes. Bottom: corresponding histograms. 91

5.5 Top: example 3D shapes. Bottom: corresponding ECCobj histograms. 92

5.6 Basic shapes and their eccentricity histograms. 93

5.7 Behavior of ECC histogram for basic changes in the shape. Column S: where

possible, straight lines where used for illustration, but only the length of the

curves is relevant, not whether they are straight or not. 94

5.8 Retrieval results for the single scale descriptor on the Kimia 25 database. 98

5.9 Histograms for: top: greebles, bottom: unoccluded hands. 98

121

LIST OF FIGURES

5.10 Three shapes from the Kimia 25 database and their eccentricity histograms. . . . 98

5.11 The object classes from the McGill 3D shape database having significant part

articulation. 100

5.12 Recall for several rank thresholds . 101

5.13 Average ranks for each class. The first three letters of each class name are printed.101

5.14 Precision-recall for the ten classes. Left two columns: ECCobj, ECCborder,

ECCmesh. Right two columns (image taken from [Siddiqi 07], with kind per-

mission of Springer Science and Business Media): results of three other meth-

ods on the same database: medial surfaces (MS) [Siddiqi 07], harmonic spheres

(HS) [Kazhdan 03], and shape distributions (SD) [Osada 02]. Precision: horizon-

tal axis, recall: vertical axis. (Best visualized in color.) 103

5.15 Similar ECCobj histograms corresponding to 3D shapes (objects) of different

classes. 105

5.16 Shapes used in experiments and their eccentricity transform. 111

5.17 Results for the shapes in Figure 5.16. 111

122

List of Tables

2.1 Shape representations that appear in this document. 14

2.2 Overview of the presented methods for computing the geodesic distance function. 18

3.1 Simple shapes presented in Section 3.5 . 44

3.2 Correlation results for local maxima in the eccentricity transform of original (top

row) and partially occluded shapes (middle and bottom rows). 66

3.3 Mean and standard deviation of the eccentricity values for the simulated joint. . 67

4.1 Characteristics of shapes from the MPEG7 database. 75

4.2 Results of 70 images from the MPEG7 database. 75

4.3 “worst” results from the MPEG7 database. 75

4.4 Results on the 6 “problem” shapes from [Flanitzer 06]. 77

4.5 Results for image “3holes” (|S| = 19919 pixels). 77

5.1 Types of manifolds used for matching. 89

5.2 The value of Matchk(Φ) (Equation 5.3) for various algorithms on the Kimia 25

database. 97

5.3 The value of Matchk(Φ) (Equation 5.3) for various algorithms on the Kimia 99

database. 97

5.4 The value of Bullseye(Φ) (Equation 5.4) for various algorithms on the MPEG 7

database. 97

5.5 Average matching results multiplied by 100 (smaller means more similar). For

each row, the first and second smallest value are printed in bold. 102

123

Bibliography

[Aleksandrov 04] Aleksandr Danilovich Aleksandrov. Selected works part ii: Intrinsic geometry

of convex surfaces. Chapman & Hall/CRC, 1st edition, May 2004.

[Andres 94] Eric Andres. Discrete circles, rings and spheres. Computers & Graphics,

vol. 18, no. 5, pages 695–706, 1994.

[Andres 97] Eric Andres & Marie-Andrée Jacob. The Discrete Analytical Hyperspheres.

IEEE Transactions on Visualization and Computer Graphics, vol. 3, no. 1,

pages 75–86, 1997.

[Ankerst 99] Mihael Ankerst, Gabi Kastenmller, Hans-Peter Kriegel & Thomas Seidl. 3D

shape histograms for similarity search and classification in spatial databases.

In 6th International Symposium on Advances in Spatial Databases, pages

201–226, London, UK, 1999. Springer.

[Ansary 04] Tarik Filali Ansary, Jean-Philippe Vandeborre, Said Mahmoudi & Mohamed

Daoudi. A Bayesian framework for 3D models retrieval based on character-

istic views. 2nd International Symposium on 3D Data Processing, Visualiza-

tion and Transmission, 2004. 3DPVT 2004, pages 139–146, 6-9 Sept. 2004.

[Aouada 08] Djamila Aouada, David W. Dreisigmeyer & Hamid Krim. Geometric mod-

eling of rigid and non-rigid 3D shapes using the global geodesic function. In

NORDIA workshop in conjunction with IEEE International Conference on

Computer Vision and Pattern Recognition (CVPR08), Anchorage, Alaska,

USA, June 2008. IEEE.

[Asano 87] Tetsuo Asano & Godfried T. Toussaint. Computing the Geodesic Center of

a Simple Polygon. In D.S. Johnson, A. Nozaki, T. Nishizeki & H. Willis,

editors, Perspectives in Computing: Discrete Algorithms and Complexity,

Proceedings of Japan-US Joint Seminar, pages 65–79, Boston, 1987. Aca-

demic Press.

[Atallah 98] Mikhail J. Atallah, editor. Algorithms and theory of computation handbook.

CRC-Press, 1st edition, 1998.

[Aurenhammer 96] Franz Aurenhammer & Rolf Klein. Voronoi Diagrams. Technical report,

Fern Universität Hagen, Department of Computer Science, Germany, 1996.

125

BIBLIOGRAPHY

[Belongie 02] Serge Belongie, Jitendra Malik & Jan Puzicha. Shape Matching and Object

Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 24, no. 4, pages 509–522, 2002.

[Berge 91] Claude Berge. Graphs, volume 6 (1) of North-Holland Mathematical Library.

North-Holland, 3rd revised edition, 1991.

[Borgefors 86] Gunilla Borgefors. Distance transformations in digital images. Computer

Vision, Graphics, and Image Processing, vol. 34, no. 3, pages 344–371, 1986.

[Borgefors 99] Gunilla Borgefors, Ingela Nyström & Gabriella Sanniti Di Baja. Computing

skeletons in three dimensions. Pattern Recognition, vol. 37, no. 7, pages

1225–1236, 1999.

[Bouttier 03] J. Bouttier, P. Di Francesco & E. Guitter. Geodesic Distance in Planar

Graphs. Nuclear Physics B, vol. 663, page 535, 2003.

[Brechbühler 95] Christian Brechbühler, Guido Gerig & Olaf Kübler. Parametrization of

Closed Surfaces for 3-D Shape-Description. Computer Vision and Image

Understanding, vol. 61, no. 2, pages 154–170, 1995.

[Bresenham 77] Jack Bresenham. A Linear Algorithm for Incremental Digital Display of

Circular Arcs. Commun. ACM, vol. 20, no. 2, pages 100–106, 1977.

[Breu 95] Heinz Breu, Joseph Gil, David Kirkpatrick & Michael Werman. Linear time

Euclidean distance transform algorithms. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 17, pages 529–533, 1995.

[Bronshtein 97] I.N. Bronshtein & K.A. Semendyayev. Handbook of mathematics. Springer,

3rd edition, May 1997.

[Bronstein 06] Alexander M. Bronstein, Michael M. Bronstein, Alfred M. Bruckstein &

Ron Kimmel. Matching two-dimensional articulated shapes using generalized

multidimensional scaling. In Proceedings of the Conference on Articulated

Motion and Deformable Objects, pages 48–57, 2006.

[Brun 06] Luc Brun & Walter G. Kropatsch. Contains and inside relationships within

combinatorial pyramids. Pattern Recognition, vol. 39, no. 4, pages 515–526,

2006.

[Buckley 90] Fred Buckley & Frank Harary. Distances in graphs. Addison-Wesley Pub-

lishing Company, 1990.

126

BIBLIOGRAPHY

[Bustos 05] Benjamin Bustos, Daniel A. Keim, Dietmar Saupe, Tobias Schreck & De-

jan V. Vranić. Feature-based similarity search in 3D object databases. ACM

Comput. Surv., vol. 37, no. 4, pages 345–387, 2005.

[Chen 03] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te She & Ming Ouhyoung. On visual sim-

ilarity based 3D model retrieval. In Eurographics, pages 223–232, Granada,

Spain, 2003.

[Coeurjolly 02] David Coeurjolly. Algorithmique et géométrie discrète pour la caractérisation

des courbes et des surfaces. PhD thesis, Université Lumière Lyon 2, Bron,

Laboratoire ERIC, December 2002.

[Crum 04] William R. Crum, Thomas Hartkens & Derek L. G. Hill. Non-rigid image

registration: theory and practice. The British Journal of Radiology, vol. 77

Spec No 2, 2004.

[Cuisenaire 99] Olivier Cuisenaire & Benoit M. Macq. Fast Euclidean distance transfor-

mation by propagation using multiple neighborhoods. Computer Vision and

Image Understanding, vol. 76, no. 2, pages 163–172, 1999.

[Cyr 04] Christopher M. Cyr & Benjamin B. Kimia. A Similarity-Based Aspect-Graph

Approach to 3D Object Recognition. International Journal of Computer Vi-

sion, vol. 57, no. 1, pages 5–22, 2004.

[Damiand 05] Guillaume Damiand, Martine Dexet-Guiard, Pascal Lienhardt & Eric An-

dres. Removal and contraction operations to define combinatorial pyramids:

application to the design of a spatial modeler. Image and Vision Computing,

vol. 23, no. 2, pages 259–269, 2005.

[Danielsson 80] Per-Erik Danielsson. Euclidean distance mapping. Computer Vision, Graph-

ics, and Image Processing, vol. 14, pages 227–248, 1980.

[Day 94] Jane M. Day. Plato’s meno in focus. Routledge, 1st edition, January 1994.

[Diestel 97] Reinhard Diestel. Graph theory. Number 173 in Graduate Texts in Mathe-

matics. Springer, 1997.

[Elad 01] Michael Elad, Ayellet Tal & Sigal Ar. Content based retrieval of VRML

objects: an iterative and interactive approach. In Eurographics Workshop on

Multimedia, pages 107–118, New York, 2001. Springer.

127

BIBLIOGRAPHY

[Fabbri 08] Ricardo Fabbri, Luciano Da F. Costa, Julio C. Torelli & Odemir M. Bruno.

2D Euclidean distance transform algorithms: A comparative survey. ACM

Computing Surveys, vol. 40, no. 1, pages 1–44, 2008.

[Fawcett 06] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,

vol. 27, no. 8, pages 861–874, 2006.

[Felzenszwalb 03] Pedro F. Felzenszwalb. Representation and Detection of Deformable Shapes.

In IEEE International Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2003.

[Felzenszwalb 07] Pedro F. Felzenszwalb & Joshua D. Schwartz. Hierarchical Matching of

Deformable Shapes. In CVPR, 2007.

[Flanitzer 06] Thomas Flanitzer. The eccentricity transform (computation). Technical Re-

port PRIP-TR-107, PRIP, TU Wien, 2006.

[Fouard 05] Celine Fouard & Gregoire Malandain. 3-D chamfer distances and norms in

anisotropic grids. Image and Vision Computing, vol. 23, no. 2, page 143158,

February 2005.

[Gdalyahu 99] Yoram Gdalyahu & Daphna Weinshall. Flexible Syntactic Matching of

Curves and Its Application to Automatic Hierarchical Classification of Sil-

houettes. IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 21, no. 12, pages 1312–1328, 1999.

[Goodman 04] Jacob E. Goodman & Joseph O’Rourke, editors. Handbook of discrete and

computational geometry. Chapman & Hall/CRC, 2nd edition, 2004.

[Gorelick 04] Lena Gorelick, Meirav Galun, Eitan Sharon, Ronen Basri & Achi Brandt.

Shape Representation and Classification Using the Poisson Equation. In

IEEE International Conference on Computer Vision and Pattern Recognition

(CVPR), pages 61–67, 2004.

[Guan 98] Weiguang Guan & Songde Ma. A List-Processing Approach to Compute

Voronoi Diagrams and the Euclidean Distance Transform. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 20, no. 7, pages

757–761, 1998.

[Hamza 03] A. Ben Hamza & Hamid Krim. Geodesic Object Representation and Recogni-

tion. In DGCI: International Conference on Discrete Geometry for Computer

Imagery, 2003.

128

BIBLIOGRAPHY

[Hausdorff 05] Felix Hausdorff & John R. Aumann. Set theory. American Mathematical

Society (Chelsea), 2005. (Translation from German).

[Haxhimusa 02] Yll Haxhimusa, Roland Glantz, Maamar Saib, Georg Langs & Walter G.

Kropatsch. Logarithmic Tapering Graph Pyramid. In Luc van Gool, editor,

Proceedings of 24th DAGM (German Association for Pattern Recognition)

Symposium, pages 117–124, Swiss, 2002. Springer Verlag LNCS 2449.

[Haxhimusa 03] Yll Haxhimusa & Walter G. Kropatsch. Hierarchy of Partitions with Dual

Graph Contraction. In Bernd Michaelis & Gerald Krell, editors, Pattern

Recognition, 25th DAGM (German Association for Pattern Recognition)

Symposium, volume 2781 of Lecture Notes in Computer Science, pages 338–

345, Magdeburg, Germany, September 2003. Springer.

[Hazewinkel 89] Michiel Hazewinkel, editor. Encyclopaedia of mathematics (4), volume 4.

Springer, 1st edition, August 1989.

[Hilaga 01] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura & Tosiyasu L. Kunii.

Topology matching for fully automatic similarity estimation of 3D shapes. In

SIGGRAPH ’01: Proc. of the 28th conf. on Computer graphics and interac-

tive techniques, pages 203–212, New York, USA, 2001. ACM.

[Hirata 96] Tomio Hirata. A unified linear-time algorithm for computing distance maps.

Information Processing Letters, vol. 58, no. 3, pages 129–133, 1996.

[Huang 94] C. Tony Huang & Owen Robert Mitchell. A Euclidean Distance Transform

Using Grayscale Morphology Decomposition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 16, no. 4, pages 443–448, 1994.

[Ion 07a] Adrian Ion, Samuel Peltier, Yll Haxhimusa & Walter G. Kropatsch. Decom-

position for Efficient Eccentricity Transform of Convex Shapes. In Walter G.

Kropatsch, Martin Kampel & Allan Hanbury, editors, The 12th International

Conference on Computer Analysis of Images and Patterns (CAIP), volume

4673 of Lecture Notes in Computer Science, pages 653–660, Vienna, Austria,

August 2007. Springer.

[Ion 07b] Adrian Ion, Gabriel Peyré, Yll Haxhimusa, Samuel Peltier, Walter G.

Kropatsch & Laurent Cohen. Shape Matching Using the Geodesic Eccen-

tricity Transform - A Study. In C. Beleznai W. Ponweiser M. Vincze, editor,

129

BIBLIOGRAPHY

The 31st annual workshop of the Austrian Association for Pattern Recogni-

tion (OAGM/AAPR), pages 97–104, Schloss Krumbach, Austria, May 2007.

OCG.

[Ion 08a] Adrian Ion, Nicole M. Artner, Gabriel Peyré, Salvador B. López Mármol,

Walter G. Kropatsch & Laurent Cohen. 3D Shape Matching by Geodesic

Eccentricity. In Workshop on Search in 3D (in conjunction with CVPR

2008), Anchorage, Alaska, June 2008. IEEE.

[Ion 08b] Adrian Ion, Yll Haxhimusa, Walter G. Kropatsch & Salvador B. López

Mármol. A Coordinate System for Articulated 2D Shape Point Correspon-

dences. In Proceedings of 19th International Conference on Pattern Recog-

nition (ICPR). IAPR, IEEE, 2008.

[Ion 08c] Adrian Ion & Walter G. Kropatsch. Mapping a Coordinate System to a

Non-rigid Shape. In Arjan Kuijper, Bettina Heise & Leila Muresan, editors,

The 32nd Workshop of the Austrian Association for Pattern Recognition

(OAGM/AAPR), volume 232 of books@ocg.at, pages 169–178, Linz, Austria,

May 2008. OCG.

[Ion 08d] Adrian Ion, Walter G. Kropatsch & Eric Andres. Euclidean Eccentricity

Transform by Discrete Arc Paving. In David Coeurjolly, Isabelle Sivignon,

Laure Tougne & Florent Dupont, editors, 14th IAPR International Confer-

ence on Discrete Geometry for Computer Imagery (DGCI), volume LNCS

4992 of Lecture Notes in Computer Science, pages 213–224, Lyon, France,

April 2008. Springer.

[Ion 08e] Adrian Ion, Samuel Peltier, Sylvie Alayrangues & Walter G. Kropatsch.

Eccentricity based Topological Feature Extraction. In Sylvie Alayrangues,

Guillaume Damiand, Laurent Fuchts & Pascal Lienhardt, editors, Workshop

on Computational Topology in Image Context, Poitiers, France, June 2008.

[Ip 03] Cheuk Yiu Ip, William C. Regli, Leonard Sieger & Ali Shokoufandeh. Au-

tomated learning of model classifications. In 8th ACM Symposium on Solid

Modeling and Applications, pages 322–327, New York, 2003. ACM Press.

[Johnson 99] Andrew E. Johnson & Martial Hebert. Using spin images for efficient object

recognition in cluttered 3D scenes. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, vol. 21, no. 5, pages 433–449, May 1999.

130

BIBLIOGRAPHY

[Jolion 94] Jean-Michel Jolion & Azriel Rosenfeld. A pyramid framework for early vision:

Multiresolution computer vision. Kluwer, 1994.

[Kambhamettu 94] Chandra Kambhamettu & Dmitry B. Goldgof. Curvature-Based Approach to

Point Correspondence Recovery in Conformal Nonrigid Motion. Computer

Vision, Graphics and Image Processing: Image Understanding, vol. 60, no. 1,

pages 26–43, 1994.

[Kazhdan 03] Michael Kazhdan, Thomas Funkhouser & Szymon Rusinkiewicz. Rotation

invariant spherical harmonic representation of 3D shape descriptors. In SGP

’03: Proc. of the 2003 Eurographics/ACM SIGGRAPH symposium on Ge-

ometry processing, pages 156–164. Eurographics Association, 2003.

[Klette 04] Reinhard Klette & Azriel Rosenfeld. Digital geometry. Morgan Kaufmann,

2004.

[Kropatsch 95] Walter G. Kropatsch. Building Irregular Pyramids by Dual Graph Contrac-

tion. IEE Proceedings - Vision, Image and Signal Processing, vol. 142, no. 6,

pages 366–374, December 1995.

[Kropatsch 05] Walter G. Kropatsch, Yll Haxhimusa, Zygmunt Pizlo & Georg Langs. Vision

pyramids that do not grow too high. Pattern Recognition Letters, vol. 26,

no. 3, pages 319–337, 2005.

[Kropatsch 06] Walter G. Kropatsch, Adrian Ion, Yll Haxhimusa & Thomas Flanitzer. The

Eccentricity Transform (of a Digital Shape). In 13th International Confer-

ence on Discrete Geometry for Computer Imagery (DGCI), pages 437–448,

Szeged, Hungary, 25–27, October 2006. Springer.

[Kropatsch 07] Walter G. Kropatsch, Adrian Ion & Samuel Peltier. Computing the Eccen-

tricity Transform of a Polygonal Shape. In Luis Rueda, Domingo Mery &

Josef Kittler, editors, 12th Iberoamerican Congress on Pattern Recognition

(CIARP 2007), volume LNCS 4756 of Lecture Notes in Computer Science,

pages 291–300, Viña del Mar / Valparaiso, Chile, November 2007. Springer.

[Latecki 97] Longin Jan Latecki. 3D Well-Composed Pictures. CVGIP: Graphical Model

and Image Processing, vol. 59, no. 3, pages 164–172, 1997.

[Latecki 00] Longin Jan Latecki, Rolf Lakämper & Ulrich Eckhardt. Shape Descriptors

for Non-Rigid Shapes with a Single Closed Contour. In IEEE International

131

BIBLIOGRAPHY

Conference on Computer Vision and Pattern Recognition (CVPR), pages

1424–1429. IEEE Computer Society, 2000.

[Lienhardt 94] Pascal Lienhardt. N-Dimensional Generalized Combinatorial Maps and Cel-

lular Quasi-Manifolds. International Journal of Computational Geometry

and Applications, vol. 4, no. 3, pages 275–324, 1994.

[Ling 07] Haibin Ling & David W. Jacobs. Shape Classification Using the Inner-

Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 29, no. 2, pages 286–299, 2007.

[Maisonneuve 89] Francis Maisonneuve & Michell Schmitt. An efficient algorithm to com-

pute the hexagonal and dodecagonal propagation function. Acta Stereologica,

vol. 8, no. 2, pages 515–520, September 1989.

[Marsden 86] Jerrold E. Marsden & Alan Weinstein. Calculus. Springer, 1986.

[Martin 01] David R. Martin, Charless Fowlkes, Doron Tal & Jitendra Malik. A Database

of Human Segmented Natural Images and its Application to Evaluating Seg-

mentation Algorithms and Measuring Ecological Statistics. In Proceedings of

the Eighth International Conference On Computer Vision (ICCV-01), vol-

ume 2, pages 416–425, July 2001.

[Maurer Jr. 03] Calvin R. Maurer Jr., Rensheng Qi & Vijay V. Raghavan. A Linear Time

Algorithm for Computing Exact Euclidean Distance Transforms of Binary

Images in Arbitrary Dimensions. IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 25, no. 2, pages 265–270, 2003.

[Meer 89] Peter Meer. Stochastic Image Pyramids. Computer Vision, Graphics, and

Image Processing, vol. 45, no. 3, pages 269–294, March 1989. Also as UM

CS TR-1871, June, 1987.

[Meijster 00] A. Meijster, J.B.T.M. Roerdink & W. H. Hesselink. Mathematical morphol-

ogy and its applications to image and signal processing, chapter A general

algorithm for computing distance transforms in linear time, pages 331–340.

Kluwer, 2000.

[Mer 03] Merriam-webster’s collegiate dictionary. Merriam-Webster, 11th edition,

2003.

132

BIBLIOGRAPHY

[Mokhtarian 92] Farzin Mokhtarian & Alan K. Mackworth. A Theory of Multiscale,

Curvature-Based Shape Representation for Planar Curves. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 14, no. 8, pages

789–805, August 1992.

[Mora 03] F. Mora, G. Ruillet, Eric Andres & R. Vauzelle. Pedagogic discrete visual-

ization of electromagnetic waves. In Eurographics, Granada, Spain, January

2003.

[Mullikin 92] James C. Mullikin. The vector distance transform in two and three dimen-

sions. CVGIP: Graphical Models and Image Processing, vol. 54, no. 6, pages

526–535, 1992.

[Munkres 93] James R. Munkres. Elements of algebraic topology. Addison-Wesley, 1993.

[Narici 97] Lawrence Narici & Edward Beckenstein. The Hahn-Banach theorem: the

life and times. Topology and its Applications, vol. 77, no. 2, pages 193–211,

June 1997.

[Newman 00] James R. Newman, editor. The world of mathematics, volume 3. Dover

Publications; Unabridged edition, 2000.

[Ogniewicz 95] Robert L. Ogniewicz & Olaf Kübler. Hierarchic Voronoi Skeletons. Pattern

Recognition, vol. 28, no. 3, pages 343–359, March 1995.

[Osada 02] Robert Osada, Thomas Funkhouser, Bernard Chazelle & David Dobkin.

Shape distributions. ACM Transactions on Graphics, vol. 21, no. 4, pages

807–832, 2002.

[Ozcanli 07] Ozge C. Ozcanli & Benjamin B. Kimia. Generic Object Recognition via Shock

Patch Fragments. In British Machine Vision Conference, pages 1030–1039.

Warwick Print, 2007.

[Papadopoulos 03] Athanase Papadopoulos. Metric spaces, convexity and nonpositive curvature.

European Mathematical Society, December 2003.

[Paquet 99] Eric Paquet & Marc Rioux. Nefertiti: A tool for 3-D shape databases man-

agement. SAE transactions, vol. 108, pages 387–393, 1999.

[Paquet 00] Eric Paquet, Anil Murching, Thumpudi Naveen, Ali Tabatabai & Marc Ri-

oux. Description of shape information for 2-D and 3-D objects. Signal Pro-

133

BIBLIOGRAPHY

cessing: Image Communication, vol. 16, no. 1–2, pages 103–122, September

2000.

[Paragios 06] Nikos Paragios, Yunmei Chen & Olivier Faurgeras. Handbook of mathemat-

ical models in computer vision., chapter 6, pages 97–111. Springer, 2006.

[Pearson 1900] Karl Pearson. Mathematical Contributions to the Theory of Evolution. VII.

On the Correlation of Characters not Quantitatively Measurable. Philosoph-

ical Transactions of the Royal Society of London, vol. 195, pages 1–47, 1900.

[Piper 87] Jim Piper & Erik Granum. Computing distance transformations in convex

and non-convex domains. Pattern Recognition, vol. 20, no. 6, pages 599–615,

1987.

[Pizlo 08] Zygmunt Pizlo. 3d shape: Its unique place in visual perception. The MIT

Press, first edition, April 2008.

[Pollack 89] Richard Pollack, Micha Sharir & Günter Rote. Computing the geodesic center

of a simple polygon. Discrete & Computational Geometry, vol. 4, no. 6, pages

611–626, 1989.

[Qian 97] Kai Qian, Siqi Cao & Prabir Bhattacharya. Skeletonization of gray-scale

images by gray weighted distance transform. In S. K. Park & R. D. Juday,

editors, Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-

ence Series, volume 3074 of Presented at the Society of Photo-Optical Instru-

mentation Engineers (SPIE) Conference, pages 224–228, July 1997.

[Reeb 64] Georges Reeb. Sur les points singuliers d’une forme de Pfaff complément

intégrable ou d’une fonction numérique. Annales de l’institut Fourier, 14 no.

1, vol. 14, no. 1, pages 37–42, 1964.

[Reuter 05] Martin Reuter, Franz-Erich Wolter & Niklas Peinecke. Laplace-spectra as

fingerprints for shape matching. In L. Kobbelt & V. Shapiro, editors, Symp.

on Solid and Physical Modeling, pages 101–106. ACM, 2005.

[Reveillès 91] Jean-Pierre Reveillès. Géométrie discrète, calcul en nombres entiers et algo-

rithmique (in french). University Louis Pasteur of Strasbourg, 1991.

[Rosenfeld 66] Azriel Rosenfeld & John L. Pfaltz. Sequential Operations in Digital Picture

Processing. Journal of the ACM, vol. 13, no. 4, pages 471–494, 1966.

134

BIBLIOGRAPHY

[Rosenfeld 68] Azriel Rosenfeld & John L. Pfaltz. Distance functions on digital pictures.

Pattern Recognition, vol. 1, no. 1, pages 33–61, 1968.

[Rosenfeld 83] A. Rosenfeld. A Note on ’Geometric Transforms’ of Digital Sets. Pattern

Recognition Letters, vol. 1, no. 4, pages 223–225, 1983.

[Rouy 92] Elisabeth Rouy & Agnès Tourin. A viscosity solutions approach to shape-

from-shading. SIAM Journal on Numerical Analysis, vol. 29, no. 3, pages

867–884, 1992.

[Rutovitz 68] D. Rutovitz. Data structures for operations on digital images. In G.C. Cheng,

R.S. Ledley, D.K. Pollok & A. Rosenfeld, editors, Pictorial Pattern Recog-

nition, pages 105–133. Thompson Book Company, 1968.

[Rutovitz 78] D. Rutovitz. Expanding picture components to natural density boundaries

by propagation methods, the notions of fall-set and fall-distance. In 4th Int.

Joint Conf. Pattern Recognition, pages 657–664, Kyoto, Japan, 1978.

[Saito 94] Toyofumi Saito & Jun-Ichiro Toriwaki. New algorithms for euclidean dis-

tance transformation of an n-dimensional digitized picture with applications.

Pattern Recognition, vol. 27, no. 11, pages 1551–1565, November 1994.

[Schmitt 93] Michell Schmitt. Propagation Function: Towards Constant Time Algorithms.

Acta Stereologica: Proceedings of the 6th European Congress for Stereology,

September 7-10, Prague, vol. 13, no. 2, December 1993.

[Sebastian 04] Thomas B. Sebastian, Philip N. Klein & Benjamin B. Kimia. Recognition

of Shapes by Editing Their Shock Graphs. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 26, no. 5, pages 550–571, 2004.

[Sethian 99] James A. Sethian. Level sets methods and fast marching methods. Cam-

bridge Univ. Press, 2nd edition, 1999.

[Sharvit 98] Daniel Sharvit, Jacky Chan, Hüseyin Tek & Benjamin B. Kimia. Symmetry-

based Indexing of Image Databases. In IEEE Workshop on Content-based

Access of Image and Video Libraries, pages 56–62, 1998.

[Shi 00] Jianbo Shi & Jitendra Malik. Normalized Cuts and Image Segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,

no. 8, pages 888–905, 2000.

135

BIBLIOGRAPHY

[Shih 92] Frank Y. Shih & Yi-Ta Wu. Optimization on Euclidean Distance Transfor-

mation Using Grayscale Morphology. Journal of Visual Communication and

Image Representation, vol. 3, pages 104–114, 1992.

[Shilane 04] Philip Shilane, Patrick Min, Michael M. Kazhdan & Thomas A. Funkhouser.

The Princeton Shape Benchmark. In Int. Conf. on Shape Modeling and

Applications (SMI), Genova, Italy, pages 167–178. IEEE Computer Society,

2004.

[Shinagawa 91] Y. Shinagawa, T.L. Kunii & Y.L. Kergosien. Surface coding based on Morse

theory. Computer Graphics and Applications, IEEE, vol. 11, no. 5, pages

66–78, September 1991.

[Siddiqi 99] Kaleem Siddiqi, Ali Shokoufandeh, Sven J. Dickinson & Steven W. Zucker.

Shock Graphs and Shape Matching. International Journal of Computer Vi-

sion, vol. 30, pages 1–24, 1999.

[Siddiqi 07] Kaleem Siddiqi, Juan Zhang, Diego Macrini, Ali Shokoufandeh, Sylvain

Bouix, R. Chen & Sven J. Dickinson. Retrieving Articulated 3-D Models

Using Medial Surfaces. Machine Vision and Applications, 2007.

[Soille 94] Pierre Soille. Generalized geodesic distances applied to interpolation and

shape description. In Jean Serra & Pierre Soille, editors, Mathematical Mor-

phology and Its Applications to Image Processing, Computational Imaging

and Vision, pages 193–200. Kluwer/Springer, 1994.

[Soille 02] Piere Soille. Morphological image analysis. Springer, 2nd edition, 2002.

[Sundar 03] H. Sundar, Deborah Silver, Nikhil Gagvani & Sven J. Dickinson. Skeleton

based shape matching and retrieval. Shape Modeling International, 2003,

pages 130–139, 12-15 May 2003.

[Suri 87] Subhash Suri. The All-Geodesic-Furthest Neighbor Problem for Simple Poly-

gons. In Symposium on Computational Geometry, pages 64–75, 1987.

[Tangelder 03] Johan W. H. Tangelder & Remco C. Veltkamp. Polyhedral model retrieval

using weighted point sets. In Shape Modeling International, pages 119–129,

Seoul, Korea, 2003. IEEE.

[Thulasiraman 92] K. Thulasiraman & M. N. S. Swamy. Graphs: Theory and algorithms. Wiley-

Interscience, 1992.

136

BIBLIOGRAPHY

[Toivanen 96] Pekka J. Toivanen. New geodesic distance transforms for gray-scale images.

Pattern Recognition Letters, vol. 17, no. 5, pages 437–450, 1996.

[Tu 04] Zhuowen Tu & Alan L. Yuille. Shape Matching and Recognition - Using

Generative Models and Informative Features. In Computer Vision - ECCV

2004, 8th European Conference on Computer Vision, Prague, Czech Repub-

lic, May 11-14, 2004. Proceedings, Part III, volume 3023 of Lecture Notes in

Computer Science, pages 195–209. Springer, 2004.

[Veltkamp 06] Remco C. Veltkamp & Longin Jan Latecki. Properties and Performance of

Shape Similarity Measures. In Proc. of IFCS 2006, 2006.

[Verwer 91] Ben J. H. Verwer. Local distances for distance transformations in two and

three dimensions. Pattern Recognition Letters, vol. 12, no. 11, pages 671–

682, 1991.

[Voronöı 1907] Georgy Feodosevich Voronöı. Nouvelles applications des paramètres conti-

nusàla théorie des formes quadratiques. Journal für die Reine und Ange-

wandte Mathematik, vol. 133, pages 97–178, 1907.

[Vranic 01a] Dejan V. Vranic & Dietmar Saupe. 3D model retrieval with spherical har-

monics and moments. In 23rd DAGM-Symposium (German Association for

Pattern Recognition), pages 392–397, London, UK, 2001. Springer.

[Vranic 01b] Dejan V. Vranic & Dietmar Saupe. 3D shape descriptor based on 3D fourier

transform. In EURASIP Conference on Digital Signal Processing for Multi-

media Communications and Services, pages 271–274. Comenius University,

2001.

[Vranic 02] Dejan V. Vranic & Dietmar Saupe. Description of 3D-shape using a complex

function on the sphere. In International conference on Multimedia and Expo,

pages 177–180. IEEE, 2002.

[Weisstein 02] Eric W. Weisstein. Crc concise encyclopedia of mathematics. Chapman &

Hall/CRC, 2nd edition, December 2002.

[Yang 06a] Liu Yang & Rong Jin. Distance Metric Learning: A Com-

prehensive Survey. Technical report, Department of Com-

puter Science and Engineering, Michigan State University, 2006.

http://www.cse.msu.edu/˜yangliu1/frame survey v2.pdf.

137

BIBLIOGRAPHY

[Yang 06b] Liu Yang, Rong Jin, Rahul Sukthankar & Yi Liu. An Efficient Algorithm

for Local Distance Metric Learning. In Proceedings, The Twenty-First Na-

tional Conference on Artificial Intelligence and the Eighteenth Innovative

Applications of Artificial Intelligence Conference (AAAI’06). AAAI Press,

2006.

[Zaharia 01] Titus Zaharia & Francoise Prêteux. 3D shape-based retrieval within the

MPEG-7 framework. In SPIE Conference on Nonlinear Image Processing

and Pattern Analysis XII, pages 133–145, 2001.

[Zahn 72] C. T. Zahn & R. Z. Roskies. Fourier Descriptors for Plane Closed Curves.

IEEE Trans. Computer, vol. 21, no. 3, pages 269–281, March 1972.

[Zhang 05] Juan Zhang, Kaleem Siddiqi, Diego Macrini, Ali Shokoufandeh & Sven J.

Dickinson. Retrieving Articulated 3-D Models Using Medial Surfaces and

Their Graph Spectra. In 5th Int. Workshop Energy Minimization Methods

in Computer Vision and Pattern Recognition, EMMCVPR 2005, volume

3757 of LNCS, pages 285–300. Springer, 2005.

[Zunic 06] Jovisa D. Zunic, Paul L. Rosin & Lazar Kopanja. On the Orientability of

Shapes. IEEE Transactions on Image Processing, vol. 15, no. 11, pages 3478–

3487, 2006.

138

Curriculum Vitae

Personal Data

Name Adrian Ion

Date of Birth 24.05.1978

Place of Birth Timisoara – Romania

Citizenship Romanian

Education

2004 – 2009 Doctoral study at the Pattern Recognition and Image Processing

Group, Faculty of Informatics, Vienna University of Technology.

1996 – 2001 Dipl.-Ing. in Computer Science at the “Politehnica” University

Timisoara, Computer Science Faculty.

1992 – 1996 Informatics High School “Grigore Moisil“ Timisoara.

Career History

2004 – Research assistant at the Pattern Recognition and Image Process-

ing Group, TU Vienna, working at the Austrian Cognitive Vision

project. Prof. Kropatsch.

2003 – 2004 C++ software developer at Innovative Systems SRL, Timisoara -

image processing, Web application development.

1999 – 2003 C++ software developer at CD Nelson Technology Group SRL,

Timisoara – CAD/CAM/CNC software development.

1998 – 1999 C++ software developer at Sedona Software SRL, Timisoara.

Awards

2006 Best Student Paper Award of the Austrian Association for Pattern

Recognition (ÖAGM) with paper:

Thomas Illetschko, Adrian Ion, Yll Haxhimusa & Walter G.

Kropatsch. Collapsing 3D Combinatorial Maps. Proceedings of

the 30th annual workshop of the Austrian Association for Pat-

tern Recognition (OAGM/AAPR), pages 85–93, Obergurgl, Aus-

tria, 2006. OCG.

139

Curriculum Vitae

2000, 1999, 1997 3rd, 5th, and 4th place at the “ACM International Collegiate Pro-

gramming Contest”, Southeastern European Stage.

1999, 1998, 1997 2nd, 3rd, and 2nd prize at The Annual Programming Contest of the

Computer Science Faculty, “Politehnica” University Timisoara.

1998 1st prize at Annual Communications Session on robotics organized

by the Mechanics Faculty, “Politehnica” University Timisoara.

1996 2nd prize at The National Informatics Communications Session, Ro-

mania.

1996, 1995 3rd and 2nd prize at The National Informatics Olympics, Romania.

1995 3rd prize at the International Informatics Contest held in Iakutsk

(Russian Federation).

1995 Member of the Romanian Extended National Informatics Team (14

high school pupils from the whole country).

Memberships AAPR, IAPR TC-15

Publications

33 refereed publications in scientific journals (3) and books (2), conferences (11), and work-

shops (17).

Research Interests

Graph based representations and methods, shape representation and recognition, visual ab-

straction, abstraction in the human language, human problem solving.

140

Nothing shocks me. I’m a scientist.

∼ Harrison Ford, as Indiana Jones

