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Abstract

We provide a treatment of the intuitionistic & modality in the style of jus-
tification logic. We introduce a new type of terms, called satisfiers, that justify
consistency, obtain justification analogs for the constructive modal logics CK,
CD, CT, and CS4, and prove the realization theorem for them.

1 Introduction

Justification logic is a family of modal logics generalizing the Logic of Proofs LP,
introduced by Artemov in [6]. The original motivation, which was inspired by works
of Kolmogorov and Godel in the 1930’s, was to give a classical provability semantics
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to intuitionistic propositional logic. Godel [20] made the first steps by translating in-
tuitionistic logic into the modal logic S4, which he rediscovered as a logic of abstract
provability. He noted that S4-provability is incompatible with arithmetical reason-
ing due to the former’s acceptance of the reflection principle and outlined, in an
unpublished lecture [21], a potential way of overcoming this obstacle by descending
to the level of proofs rather than provability. Artemov independently implemented
essentially the same idea in the Logic of Proofs by showing that it provides an
operational view of the same type of provability as S4 [6, 7].

The language of the Logic of Proofs can be seen as a modal language where
occurrences of the O modality are replaced with proof terms, also known as proof
polynomials, evidence terms, or justification terms, depending on the setting. The
intended meaning of the formula ‘¢ : A’ is ‘t is a proof of A’ or, more generally,
the reason for the validity of A. Thus, the justification language is viewed as a
refinement of the modal language, with one provability construct O replaced with
an infinite family of specific proofs.

It gradually became clear that the applicability of this result goes way beyond
the provability interpretation of the modality, and can be equally well considered
in other settings, including, notably, epistemic logic [9]. Indeed, the connection
between the Logic of Proofs and the modal logic S4 has been extended to other modal
logics (based on classical propositional reasoning), including normal modal sublogics
of S4 [13], the modal logic S5 [11], all 15 logics of the so-called modal cube between
the minimal normal modal logic K and S5 [22], the infinite family of Geach logics [18],
to a certain extent to public announcement logic [14], etc. For more information on
justification logic, the reader is referred to the entry [3] in the Stanford Encyclopedia
of Philosophy, as well as to two recent books [4, 24] on the subject.

The correspondence between a justification logic and a modal logic means that
erasing specific reasons in a valid statement about proofs leads to a valid statement
about provability and, vice versa, any valid statement about provability can be
viewed as a forgetful projection of a valid statement about proofs. Moreover, this
existential view of O as ‘there exists a proof’ leads to a first-order provability reading
of modal statements and suggests that they can be Skolemized. Such a Skolemization
makes negative occurrences of O into Skolem variables and positive occurrences
into Skolem functions, suggesting a further restriction on the way the O modalities
are filled in with proof terms—the process called realization—negative occurrences
should be filled in with distinct proof variables.

The Logic of Proofs was born out of an analysis of intuitionistic logic with the
goal of explaining it using classical reasoning about proofs. However, other rela-
tionships with intuitionistic logic have also been explored. Artemov introduced the
first intuitionistic version ILP of the Logic of Proofs in [8] to unify the semantics
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of modalities and lambda-calculus. Indeed, as simply typed lambda-calculus is in
correspondence with intuitionistic proofs, he needed to define an intuitionistic ax-
iomatization of the Logic of Proofs to relate modal logic S4 and A-calculus. His
axiomatization simply changes the propositional base to intuitionistic while keeping
the other axioms of Logic of Proofs unchanged. He shows that ILP is in correspon-
dence with the O-only fragment of the constructive logic CS4 as defined in [12].1
Recently, Marti and Studer [26] supplied ILP with possible worlds semantics akin to
the semantics developed by Fitting for the classical Logic of Proofs [17] and proved
internalized disjunction property in its extension [27].

However, this axiomatization is not enough to obtain a proper intuitionistic
arithmetical semantics, that is, to interpret ‘t: A’ as ‘t is a proof of A in Heyting
Arithmetic,” which is the motivation behind another line of work for considering
intuitionistic versions of the Logic of Proofs. In order to obtain an intuitionistic
Logic of Proofs complete for Heyting arithmetic, Artemov and Iemhoff [5] added
to ILP extra axioms that internalize admissible rules of intuitionistic propositional
logic. The arithmetical completeness was later shown by Dashkov [16]. Finally,
Steren and Bonelli [31] provide an alternative system of terms for ILP based on
natural deduction with hypothetical judgments.

What unifies all these versions of intuitionistic justification logics is the exclusive
attention to the provability modality. Be the focus on semantics, realization theorem,
or arithmetical completeness, the modal language is restricted to the O modality.
This restriction was quite natural in the classical setting, where < can simply be
viewed as the dual of O. However, with the freedom of De Morgan shackled comes
the responsibility to treat < as a fully independent modality—a responsibility that
we take upon ourselves in this paper. In this first exploration of the kind of terms
necessary to represent the operational side of the intuitionistic & modality, we con-
centrate on constructive versions of several modal logics.?

Building on Artemov’s treatment of the O-only fragment, we add a second type of
terms, which we call satisfier terms, or simply satisfiers, and denote by Greek letters.
Thus, a formula ©A is to be realized by ‘u: A The intuitive understanding of these
terms is based on the view of & modality as representing consistency (with O still
read as provability). A common way of proving consistency of a theory is to provide a
model for this theory. Similarly, to prove that a formula is consistent with the theory,
it is sufficient to present a model of the theory satisfying this formula. The satisfier u

! Artemov himself called the logic CS4 “the intuitionistic modal logic on the basis of S4” and
denoted it 1S4.

2The reason for this is pragmatic: we discuss here only fragments which can be expressed in
ordinary sequent calculus [35, 29, 12]. The more expressive intuitionistic modal logics require more
elaborate sequent structures [32, 30]. We come back to this in the conclusion of this paper.
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d: OADCA
t: (ADCA)A(OADA)
4: (CCADCA)A(OADDOOA)

ki: O(ADB)D>(0DADOB)
ko: O(ADB)D(CADOB)

Figure 1: Modal axioms used in this paper

justifying the consistency of a formula is, therefore, viewed as an abstract model sat-
isfying the formula. We keep these satisfying models abstract so as not to rely on any
specific semantics. All the operations on satisfiers that we employ to ensure the real-
ization theorem for CK, CD, CT, and CS4, as defined in [35, 29, 12], are akin to the op-
erations on proof terms. In particular, the operation + for proof concatenation finds
a counterpart in the operation LI for disjoint model union. Similarly, the application
operation -, which internalizes modus ponens reasoning by creating a new proof ¢ - s
for B from a given proof t of AD B and a given proof s of A, has a counterpart x that
creates a new satisfier t x u for B from a given proof ¢t for AD B and a given satisfier u
for A. The intuition behind this satisfier propagation operation x is that a proof
of A D B, when applied to a satisfier for A provides evidence that the same model
is also a satisfier for B. One could, perhaps, call it an internalized model ponens.

Outline of the paper: In Sect. 2, we introduce the syntax and proof theory of
some constructive modal logics and, in Sect. 3, we give our definition of a justification
logic for constructive modal logics. Then, in Sect. 4, we prove the main theorem
of this paper, the realization theorem linking the various constructive modal logics
to the corresponding justification logic. Finally, in Sect. 5, we point to further
questions left as future work, as this paper is only the beginning of the research
program consisting in giving justification logic for constructive and intuitionistic
versions of modal logics.

2 Constructive modal logic
Let a € A for a countable set of propositional variables A. We define
Au=1]a|(ANA)|(AVA) | (ADA)|OA|CA

to be formulas in the modal language and use standard conventions regarding paren-
theses. We denote formulas by A, B, C, ...and define the negation as -4 := AD 1.

In modal logic, the behavior of the O modality is determined by the k-axiom
O(AD B)D>UOADOB and by the necessitation rule saying that, if A is valid, then so

2316




JUSTIFICATION LOGIC FOR CONSTRUCTIVE MODAL LOGIC

is OA, be the logic classical or intuitionistic. In classical modal logic the behavior of
the & modality is then fully determined by the De Morgan duality, which is violated
in the intuitionistic case. This means that more axioms are needed to define the
behavior of the <.

However, there is no unique way of doing so, and consequently many different
variants of “intuitionistic modal logic” do exist. In this paper we consider the variant
that is now called constructive modal logic [35, 12, 29, 2] and that is defined by adding
to intuitionistic propositional logic the two axiom schemes shown in the left column
of Fig. 1 together with the necessitation rule mentioned above. We call this logic CK.
We also consider (i) the logic CD, which is CK extended with the d-axiom, (ii) the
logic CT which is CK extended with the t-axiom, and (iii) the logic CS4 which is
CT extended with the 4-axiom; all three axioms in the right column of Fig. 1.

Logics CK and CS4 are among those that have been studied most extensively.
They can be given a possible world semantics by combining the interpretation of
classical modal operators with that of intuitionistic implication. That is, a model
for CK [28] is a tuple (W, R, <, =) where W is a set of worlds, R is a binary relation
on W, < is a preorder on W, and | is a relation between elements of W and
formulas. In particular, in constructive modal logic, there can be fallible worlds
in W such that w = L. In a model for CS4 [1], R is additionaly reflexive and
transitive (similarly to the case of classical S4) and the interaction of R and < is
constrained by the following relationship: (R o <) C (< o R). To our knowledge,
contrary to the classical case, the correspondence theory of CD and CT has not been
investigated.

These logics have simple sequent calculi that can be obtained from any sequent
calculus of intuitionistic propositional logic (IPL) by adding the appropriate rules for
the modalities. In this paper, a sequent is an expression of the shape B1,..., B, = C
where B1,...,B,, and C are formulas and the antecedent to the left of = has to be
read as a multiset (i.e., the order of formulas is irrelevant, but it matters how often
each formula appears). Weuse I'; A, 3, ... to denote such multisets of formulas. For
a sequent By, ..., B, = C we define its corresponding formula fm(By,..., B, = C)
to be By A---A B, DC. Most sequents in this paper consist of modal formulas.
Thus, whenever we use the term “sequent” without any qualification, it is assumed
that all formulas in it are modal formulas.

We start from the standard sequent calculus G3ip [33] whose rules are shown
in Fig. 2. Then, the systems for the logics CK, CD, CT, and CS4, that we call
LCK, LCD, LCT, and LCS4 respectively, are obtained by adding the rules in Fig. 3
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id — 1y —
INa=a rl==<=C
NNA=C I''B=C =4 I'=2-h
Vi VR—————— VR———————

INAvB=C I'=AvVB I'=AvVB
A, B=C '=A I'=B
N~ AR
INAANB=C I'=AAB
NA>B=A I'B=C NA= 1B
oL ORL 5
INNA>B=C I'=ADB

Figure 2: Sequent calculus G3ip for intuitionistic propositional logic IPL

r=A4 . IB=A d = A
"OrA=04 CO0AOB= OA O, A = OA
or= A4 ar, B = <©A I''OA, A= B r=4

bg ——— 4 tg ———— to ————
o', A = 0A ar, A OB = OA I'N'oA=B '=2<>A

Figure 3: Additional rules for modalities

w

according to the following table.

LCK = G3ip + ko + ko

LCD = G3ip + ko + ko +d (1)
LCT = G3ip+ ko + ko +to+to

LCS4 = G3ip +4o0+40 +to+to

Observe that the axiom rule id is restricted to atomic formulas. We rely on that
in the proof of the realization theorem in Sect. 4. However, as expected, using the
standard argument by induction on the formula construction, the general form of
the axiom rule is derivable.

Lemma 2.1 (Generalized axioms). For every formula A, the rule idy ————
1s derivable in each of G3ip, LCK, LCD, LCT, and LCSA4. IA=A4

3For a survey of the classical variants of these systems, see, for example, [34].
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=4 AA=C
Finally, the rule cut is admissible.
ra=~<C

Theorem 2.2 (Cut Admissibility). Let LML € {LCK,LCD,LCT,LCS4}. If a sequent
is provable in LML + cut then it is also provable in LML.

Proof. For LCK, LCD, and LCT, the proof follows as a special case of [25], and for CS4
the result is stated in [12] as a “routine adaptation of Gentzen’s method.” O

Using Theorem 2.2, we can easily show the completeness of our system.

Theorem 2.3 (Completeness). Let ML € {CK,CD,CT,CS4} and LML be the cor-
responding sequent system. If by A, then FpyL= A.

Proof. The axioms of IPL can be proved using G3ip in Fig. 2; those in Fig. 1 can be
proved using the corresponding rules in Fig. 3. Finally, the necessitation rule can be
simulated with kg, and modus ponens can be simulated using cut. Now completeness
of the cut-free systems follows immediately from Theorem 2.2. O

Theorem 2.4 (Soundness). Let ML € {CK,CD,CT,CS4}. If By,...,B,=C isa
sequent provable in the corresponding sequent system LML, then By A--- AN B, D C
is a theorem of ML.

Proof. We proceed by induction on the proof 7 of By,..., B, = C in LML, making
a case analysis on the bottom-most rule instance in 7. For the rules in G3ip, this
01, cey Cn = A
ocy,...,0C,,D1,...,D,, = OA
By induction hypothesis, Fpy C1 A -+ A C,, D A, hence by intuitionistic reasoning,
Fve C1 D -+ D Cp, D A4 By necessitation, by O(Cp D --- D Cp, D A), and, using ki
and modus ponens, we get by OCy D ---D0OC, DUOA. Hence, by OC1 A --- A
aCp, AN Dy A --- AN D,, D OA follows by intuitionistic reasoning. Other cases are
similar. O

is straightforward. Now consider the rule kg

3 Justification logic

Justification logic adds proof terms directly inside its language using formulas ‘¢: A’
with the meaning ‘t is a proof of A’ In the constructive version that we propose in
this section, we will also add satisfiers into the language, using formulas ‘p: A’ with
the underlying intuition that ‘u is a model of A’

4Throughout the paper we consider O to be right-associative.
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Proof terms, intended to replace O, are denoted t, s, . . ., while satisfiers, intended
to replace <, are denoted p, v, . .. Proof terms are built from a set of proof variables,
denoted z,y, ..., and a set of (proof) constants, denoted ¢, d, ..., using the opera-
tions application -, sum 4+, and proof checker !. Satisfiers are built from a set of
satisfier variables, denoted a, f3, ..., using the operations disjoint union LI (binary
operation on satisfiers) and propagation x (combines a proof term with a satisfier).

) | () |

c | =z
a | (txp) | (pUp)

ti=
W=

While the intuitive meaning of the operations -, 4+, and ! on proof terms has
been well documented in justification logic literature and corresponds to rather well
known proof manipulations, it is worth explaining our intuition behind the new
operations * and LI involving satisfiers.

The operation * is a combination of global and local reasoning. For instance,
assume that —=—A is true; therefore, by classical propositional logic, A must be
true. Here ——A being true is a local, contingent fact, whereas the transition is
made based on the classical tautology =——A D A. The result is the contingent truth
of A in the same situation where ——A is true. We are working in a language
with explicit proofs for valid statements and explicit satisfiers representing specific
models satisfying a statement. Thus, given a satisfier 4 for A and a proof ¢ that
generally AD B, we can conclude B. While B is true whenever A is, the justification
used is different in that the former involves a valid transition from A to B justified
by t. Hence, instead of using the same satisfier u, we record our reasoning in the
new satisfier tx y. For instance, if satisfiers are in principle intended to range over
intuitionistic Kripke models, then x: (-—A D A) becomes a non-trivial assumption
on whether only classical models are considered. Hence, the truth of A depends not
only on the truth of =—A in a model represented by the satisfier ;1 but also on the
validity of the law of double negation.

The operation LI of disjoint model union is akin to that of disjoint set union.
For instance, for sets, one often defines X UY = (X x {0}) U (Y x {1}) in order
to avoid potential problems of X overlapping with Y and be able to state facts
such as | X UY| = |X|+|Y|. Intuitively, our disjoint model union works the same
way. Whatever the nature of models represented by satisfiers u and v, any overlaps
among them are resolved before the models are combined and no connection between
the p and v parts of the satisfier p LI v exists. For instance, the disjoint union
of intuitionistic Kripke models M; = (W7, <1, Vp) and My = (Ws, <9, V5) can be
defined as follows: M; LMy := (W, <,V) where W := (W7 x {0}) U (Wa x {1}),
(w,i) < (w',j) iff i = j and w <; W', and V ((w, 1)) := V;(w).
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taut: Complete finite set of axioms for IPL
jkg: t:(ADB)D(s:ADt-s:B)
jko: t:(ADB)D(u:ADtxu:B)
sum: s:AD(s+t):Aandt:AD(s+t): A
union: pu:AD(pUv):Aandv:AD (pUv): A
A>DB B A is an axiom instance

mp——— ian
B clr:...cp: A

Figure 4: Axiomatization of the constructive justification logic JCK

jdg: t:L DL jde: TOwp:T
jtg: t:ADA jto: ADu:A
jdg: t:ADlt:t: A jhe: piv:ADv:A

Figure 5: Additional justification axioms

The formulas of justification logic are obtained from the following grammar:
Ac=1|a|(ANA) | (AVA) |(ADA)|t:A|lp:A

We propose to extend the formulation of justification logics to realize constructive
modal logics. The axiomatization of the basic one is shown in Fig. 4. It is similar to
the standard justification counterpart of the classical modal logic K except for the ad-
ditional axiom jk, which corresponds to the modal axiom k. The other axioms taut,
jkg, and sum, as well as the rules of modus ponens mp and iterated axiom mecessi-
tation ian are standard, e.g., see [22]. We call this basic logic JCK, and as in the
classical setting, we can define extension of JCK using the axioms defined in Fig. 5.
The logic JCD is obtained from JCK by adding the axioms jdg and jd; the logic JCT
is obtained from JCK by adding the axioms jt; and jt; and the logic JCS4 is obtained
by adding the axioms j45 and j4, to JCT. Note that the O variant of each axiom
corresponds exactly to the one used in the classical setting. Our contribution is the
definition of the < variants operating on the satisfiers instead of the proof terms.

The intuitive reading of these new satisfier axioms is as follows. The axiom jd
states that T is satisfied in every model. The axiom jt, could be understood as the
insistence that the actual model must be part of any other model considered: if A is
true, then it is satisfied in every model. Perhaps, the least intuitive is the axiom j4.
One way of reading it is to say that truth in models is “context-free.” The fact of
A being satisfied in a model represented by v does not depend on v being considered
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within the context of another model represented by p. Put another way, any sub-
model v of p can also be considered in isolation and produces the same truth values.

The logics JCK, JCD, JCT, and JCS4 can be seen as the operational version of the
constructive modal logics CK, CD, CT, and CS4 respectively, defined in the previous
section. Indeed if one forgets about the proof term and satisfier annotations and
considers them as empty O and < respectively, the logics prove the same theorems.

Definition 3.1. We define the operation of forgetful projection (-)° that maps justifi-
cation formulas onto corresponding modal formulas recursively: 1°:= 1, a° := a for
all propositional variables a, (¢t : A)° := 0OA°, (u: A)° := OA° and for x € {A,V, D},
finally, (A * B)° := A° x B° .

We extend this definition to multisets of formulas: (Aq,...,A,)° = Af,..., AS.

It is easy to show by induction on the Hilbert derivation in JL that

Lemma 3.2 (Forgetful projection). Let JL € {JCK,JCD, JCT,JCS4} and ML be the
corresponding modal logic. If Fy F, then by F°.

The more difficult question however is: can we prove the converse? This result
is called realization, namely that every theorem of a certain modal logic can be
‘realized’ by a justification theorem. However, it is not such an easy result as it may
seem. It is not possible to directly transform a Hilbert proof of a modal theorem
into a Hilbert proof of its realization in justification logic as the rule mp in a Hilbert
system can create dependencies between modalities. The standard solution to this
issue is to consider a proof of the modal theorem in a cut-free sequent calculus as the
absence of cuts in the proof will prevent the creation of dependencies. The detailed
statement and proof of this result can only be presented in the next section, as we
have to introduce some basics first.

We state below two lemmas that are crucial for the realization proof: the Lift-
ing Lemma and the Substitution Property. They are extensions of standard results
from the justification logics literature to the constructive case. Repeating verba-
tim the proof from [7], we obtain the Lifting Lemma and its variant showing that
necessitation can be internalized within the language of these justification logics.

Lemma 3.3 (Lifting Lemma). Let JL € {JCK,JCD, JCT,JCS4}. If
A17"'7An l_JL Bv
then there exists a proof term t(x1,...,xy) such that for all proof terms si,..., sy

s1: A1, 8yt Ap B t(s1, ..., 8n) B
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Corollary 3.4. Let JL € {JCK,JCD,JCT,JCS4}. If Hy Ay A---NA, D B, then
there exists a proof term t(xi,...,xy) such that for all proof terms si,...,s, we
have Fy s1: A1 A+ Asp: Ay Dt(s1,...,8,): B.

In our constructive setting, we also need a < variant of this statement.

Corollary 3.5. Let JL € {JCK, JCD, JCT, JCS4}. If
Fit AiA---NA, ANC D B,

then there is a satisfier u(xy,...,xy, 3) such that for all proof terms s1,..., S, and
any satisfier v

Fisi: Ai A Asp: Ag Av:C D pu(st,...,sn,v): B. (2)

Proof. By intuitionistic reasoning and Cor. 3.4, we get a proof term t(x1,...,x,)
such that
Fo 31:Al/\~--/\8n:AnDt(sl,...,sn):(CDB).

Using the instance t(s1,...,s,): (C D B)Dv:C D (t(s1,...,5,) *v) : B of the ax-
iom jke, we can see that (2) holds for u(zy,...,zn, 8) == t(x1,...,z,) *S. O

Finally, we generalize the standard definition of substitution to our setting.

Definition 3.6. A substitution o maps proof variables to proof terms and satisfier
variables to satisfiers. The application of a substitution o to a proof term ¢ or
satisfier y, denoted to or uo respectively, is defined recursively as follows:

co=c xo = o(x)
(t-s)o:=to-so (t+ 8)o = to + so
(t)o :== (to) ao = o(a)
(t*p)o = to*po (pUv)o == poUvo

where c¢ is a proof constant, x is a proof variable, and « is a satisfier variable. The
application of ¢ to a justification formula A yields the formula Ao, where each proof
term ¢ (respectively satisfier i) appearing in A is replaced with to (respectively po).

The proof of the Substitution Property from [7] is easily adaptable to our case:

Lemma 3.7 (Substitution Property). Let JL € {JCK,JCD,JCT,JCS4}. If - A,
then Fy Ao for any substitution o.
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Remark 3.8. In our formulation, the Substitution Property holds because the
rule ian is formulated in its strongest form, with all proof constants being inter-
changeable. Combined with the schematic formulation of all axioms, this makes
derivations impervious to substitutions. A more nuanced formulation would be to
restrict ian to a specific set of instances collected in a constant specification (our
variant corresponds to the total constant specification). It is a standard fact in
justification logic that the substitution property only holds for schematic constant
specifications, i.e., those invariant with respect to substitutions. The only differ-
ence for our logics is that a schematic constant specification must additionally be
schematic with respect to substitutions of satisfiers for satisfier variables.

4 Realization theorem for constructive modal logic

Assume we have a justification formula F' and its forgetful projection F°. In that
case we call F' a realization of F°. Similarly, a justification sequent I' = C', that
is, a sequent consisting of justification formulas, can be the realization of a modal
sequent I'° = C°. In order to define the notion of normal realization we need the
notions of positive and negative occurrences of subformulas.

An occurrence of a subformula A of F' is called positive if the position of A in
the syntactic tree of F' is reached from the root by following the left branch of an
D branching an even number of times; otherwise it is called negative. For example,
the displayed subformula A is positive in the formula (A D B) D C' but negative
in the formula A D (B D (). The polarity of the occurrence of a subformula in a
sequent I' = C' is given by its polarity in the formula fm(T" = C).

Definition 4.1. A realization I' = C of I'° = C° is called normal if the following
condition is fulfilled: if ¢: A (respectively p: A) is a negative subformula occurrence
of I' = C, then t is a proof variable (respectively p is a satisfier variable) that occurs
in I' = C exactly once.

We can now state and prove the main theorem of this paper.

Theorem 4.2 (Realization). Let ML € {CK,CD, CT,CS4}, JL be the corresponding
justification logic, i.e., JCK, JCD, JCT, or JCS4 respectively, and LML be the cut-
free sequent calculus for ML. If by TV = C7 for a given modal sequents, then there
is a normal realization T = C of TV = C" such that by fm(T = C).

Corollary 4.3. Let ML € {CK,CD,CT,CS4} and JL be the corresponding justifica-
tion logic. If Fmu A, then by F for some justification formula F such that F° = A.
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Proof of Theorem 4.2. The proof goes largely along the lines of that for the O-only
classical fragment (see [7, 13]). The operation LI on satisfiers plays the same role
as the operation + on proof terms. Thus, we only show in detail cases for the new
rules. As a matter of a shorthand, we say that a justification sequent I' = C is
derivable in JL if its corresponding formula is, i.e., if -y fm(I' = C).

Let m be an LML proof of IV = C’. We assign a unique index i € {1,...,n} to
each of n occurrences of O and < in its endsequent IV = C’. We define the modal
flow graph of w, denoted G, as follows: its vertices are all occurrences of formulas
of the form OA and <A in w. Two such occurrences are connected with an edge iff
they are occurrences of the same formula within the same rule instance and

e cither one occurs within a side formula in a premise and the other is the same
occurrence within the same subformula in the conclusion

e or one occurs within an active formula in a premise and the other is the cor-
responding occurrence within the principal formula in the conclusion.

Each connected component of GG, has exactly one vertex in the endsequent of 7
and all vertices in the connected component are assigned the same index as this
representative in the endsequent. E.g., in the following instance of kg, modalities
connected by edges are vertically aligned and given the same index:

Osa V b cDd = $og D Ogh
(]
O2(0sa V &7b), Og(c D d), Ose, 019020 f = O15(Cog D Ogh)

(3)

In the absence of the cut rule, the resulting graph is a forest where each tree
has its root in the endsequent and is identified with a unique modality type © and
unique index i. We denote it a ©Q;-tree. Branching occurs in the branching rules,
as well as in the rules with embedded contraction, e.g., in tg each modality in A
within OA in the conclusion of the rule branches to the corresponding occurrence
in A and the corresponding occurrence in OA in the premise. Each leaf of a ©;-tree
is either in a side formula of an axiom id or 1, in which case it is called an initial
leaf, or in the conclusion of a modal rule from Fig. 3 that introduced ©;, in which
case it is called a modal leaf. For instance, if (3) is used in 7, then the Oy-, Og-,
Os-, Oj0-, $g0-, and Ojs-trees in G have modal leaves in the conclusion of (3).

We call the number of modal leaves of a ©;-tree occurring in the succedents of
modal rules the multiplicity of i, denoted by m;, which is a non-negative integer.

From the tree 7 of modal sequents, we construct another tree my of justification
sequents by replacing

each O; for m; > 0 with z; := y; 1 + - - + y; m, for proof variables y; 1, ..., Yim;;
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each O; for m; = 0 with z; := y; o for a proof variable y; o;
each ©; for m; > 0 with w; := B;1 U - - U B, for satisfier variables 3; 1, ..., B8im;;
each ©; for m; = 0 with w; := B¢ for a satisfier variable 3 .

All proof variables y; ; and all satisfier variables 3; ; must be pairwise distinct.

Let us call a rule justificational if it is one of kg, ke, d, or 4g. All other rules,
including the rules 4¢, to, and to, as well as the rules in Fig. 2 are simple. Let k be
the number of instances of justificational rules in . We will construct a sequence
of substitutions o1, ..., o0, that, when applied to my, produces a sequence 71, ..., 7Tk
of trees such that 7,11 = mpopy1. Note that for any justification sequent in the
tree 7y, its forgetful projection is the modal sequent from the corresponding node
of the tree m and that every occurrence of O; or <; in 7 is replaced in 7, with
Zi01 ...0p OF w;oq . ..oy respectfully. For 73, := op 0--- 00y let us call z;7, and w;7y,
the h-prerealizations of O;, and <; respectively.® For any sequent occurrence A = D
in 7, we call (A = D)7y, its h-prerealization and denote it Ay, = Dj,.

Let the k justificational rules be ordered linearly in a way consistent with the tree
order of m: for arbitrary k > j > ¢ > 1, the jth rule is not inside a subtree rooted at
the premise of the ith rule. By induction on ¢ =0, ...,k we will show that,

1. for any subtree of m; with no occurrences of modal rules ¢ + 1, ...,k the end-
sequent A; = D; of this subtree is derivable in JL, i.e., h-prerealizations of a
sequent occurrence A = D from m become derivable as soon as h overtakes
the numbers of all justificational rules used to derive the sequent in ;

2. y;0Th = Yi0 and B;omh, = Bip for all justificational rules above h =1,...,k,
i.e., terms prerealizing modalities not contributing to m; remain fixed points
for all substitutions.

In particular, after all justificational rules are processed in 7, the k-prerealization
'y = C} of the endsequent of 7 will be derivable in JL making it a realization. More-
over, since no negative occurrence of a modality from the endsequent can be traced
to a leaf in a succedent of a sequent from m, in this realization all such negative
modalities are realized by proof and satisfier variables. We prove it by a secondary
induction on the depth of the proof up to the first unprocessed justificational rule.

For a simple rule, the JL-derivability of the i-prerealization of its premise(s) im-
plies the JL-derivability of the i-prerealization of its conclusion. For the rules from
Fig. 2 the reasoning is propositional. For rules to and te (applicable only to LCT

5The term prerealization is used here in its layman’s meaning of an almost but not quite a
realization and is unrelated to the use in [22].
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and LCS4), it follows by axioms jt; and jte, of JCT and JCS4. For LCS4, assume that
Dlel, ey DkTGr, B = <>jA

Ok, GL, ..., 04.G", DY, ... ,DP, OB = O A

prerealization of the premise is derivable in JL, i.e.,

from 7 the i-

for a rule instance 4o

FaL 2k, :G}/\--'/\zkr:G;/\BtijTi:Ai.
By Cor. 3.5, there is a satisfier p(x1,...,x,, ) such that
ol P2yt 2 G NNz czg G ANwp By D (M2, ek, wp) twTi s Ay
It now follows by j45 and j4, of JCS4 and propositional reasoning that
FiL 2k :Gl-l/\-~-/\zkr:G;’/\Dil/\-~/\Df/\wl:BtijTi:Ai

making the i-prerealization of the conclusion of the rule derivable in JL.

This observation alone establishes the base of the main induction, i.e., that all
O-prerealizations of modal sequents derived without the use of justificational rules
are derivable in JL.

For the step of the main induction, consider the premise of the hth justificational
rule and assume its (h — 1)-prerealization is derivable by IH. For each of the jus-
tificational rules we will show how to apply an additional substitution to make its
conclusion derivable. By the Substitution Property (Lemma 3.7), this substitution
preserves the derivability of all h-prerealizations of modal sequents whose (h — 1)-
prerealizations are derivable by the IH, including the premise of the Ath justifica-
tional rule. Thus, the h-prerealization of its conclusion is also derivable and the argu-
ment about simple rules can be applied to extend this result down until the next jus-
tificational rule. The cases of the kg and 4g rules are treated the same way as in [13]
by means of Cor. 3.4. It remains to process the two remaining justificational rules.

We start with the case where the hth rule in 7 is the gth introduction of <©;

G',...,.G".B= A
Ok, GY, ..., 0. G, DY, ... DP OB = O A
Assume that the (h — 1)-prerealization of the premise is derivable in JL, i.e.,

by a justificational rule out of m;: ke

Fo G;lhl VANEERIAN szl ANBp_1DAp_q1 . (4)
By Cor. 3.5 there is a satisfier u(x1,...,z,,3) such that
FiL 2k G}L*l ARERIAW-7 szl Awp:Bp_1D /L(Zkl, .. .,zkr,wl) A1,
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We define o,: Bjq — p(2ky,- - -, 2k,,wy). Note that oy, affects exactly one satisfier
variable, which is neither ;o nor ;¢ and which corresponds to the justificational
rule being processed. In particular, 8 ,7h—1 = B4 and B; 47, = Bjq0on. Thus,

[ TI-7 G}ll_l NNz, Gy ANwp:Bp_1D Bj,th CAp_q.
Applying o, substitution, we obtain by the Substitution Property,
(=Th Zhy - (G}Lflo'h) JARERIAW-7 (szlah) Awp: (Bhflah) D 5]‘7th : (Ahflo'h)

because (a) op, does not affect the proof variables 2y, , ..., zk,, (b) op, does not affect
the satisfier variable w; # ;4 because j and [ are indices of diamonds of opposite
polarity, and (c) o5, does not affect the satisfier 5,7, = p(2k,, - - ., 2k, w;) because
the only variables occurring in it are z,, ..., 2x,, and w;. It follows by union that

FoL 2k tGEA - Az, GR ADE A ADY Awy: By DwiTy t Ap

where wj = 51 U---UBj4U---UpBjm,;. Thus, the h-realization of the conclusion is

also derivable in JL.
Gl,....G"= A
The case of the rule d T 1 for LCD
Dle ,...,DkrGT,D oo, DP = OJA

is similar. By the IH, (4) holds for B,_; = T. Repeating all the steps for ko
and using a fresh satisfier variable 5 in place of w; for &T, we obtain

|—_]|_Zk12G%L/\--~/\ZkTZG};/\D}ll/\---/\Di/\,B:TDw]‘Th:Ah .
It remains to note that - B : T by axiom jd of JCD. It follows that
l_JLZkl:G}.L/\“'/\ZkrZGZ/\D}L/\"'/\DZDWJ‘T}LZA}L. ]

The crucial difference between justificational and simple rules is that, unlike the
former, the latter require an additional substitution on top of all the previous ones.

5 Conclusion and future work

In this paper, we proposed justification counterparts for some constructive modal
logics, which, for the first time, employ the notion of satisfiers to realize the ¢-modal-
ity. This led us to define an operator combining proof terms and satisfiers, which is
crucial to the realization of the constructive modal axiom ky. However, surprisingly,
the only other operation needed on satisfiers is the disjoint union, an equivalent to the
sum for proof terms. In particular, while the O-version of the 4-axiom traditionally
requires the proof checker operator !, the <-version of axiom 4 does not seem to
necessitate any additional operation on satisfiers. In the following, we list a handful
of directions for future work:
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. or,I'= A4 wa ar,I',B= A " ar,I', B = ©A
“AO0 = 04 “A,O0, 0B = OA ©A,OT, 0B = OA

Figure 6: More rules for modalities

e Semantics of our proposed logics. Modular models from [10, 23] should
provide a good starting point, but require significant adjustments.

e We have chosen to work with the logics that have simple, known cut-free
sequent calculi, a property on which the realization proof strongly relies. The
same method can be further extended to CK4 and CD4 that are obtained
from CK and CD, respectively, by adding the 4-axiom. To our knowledge,
these logics have not been independently studied, but it is possible to
‘constructivize’ the classical rule k4g in the same way as for the rules in Fig. 3.
That is, corresponding sequent systems to CK4 and CD4 may be obtained via
the rules in Fig. 6:

LCK4 = G3ip + kdg + kdo + k4%
LCD4 = G3ip + kd4g + kdo + kd,, +d

We decided to forgo this extension for pragmatic reasons: without a cut-free
calculi for these constructive modal logics in the literature we would need to
provide a full cut-elimination proof. Even though it should be possible to
directly adapt for example the proof from [25], it would have changed the
focus of this paper.

e There exist other, more elaborate realization proofs, e.g., from [19], that pro-
vide realizations with additional properties and/or structure. Applying them
to modal logics with non-classical propositional basis remains future work.

e We believe that our way of justifying the & modality would similarly work
for the “intuitionistic variant” of modal logic [30], which is obtained from the
constructive variant by adding the three axioms k3: G(AV B) D (CAV OB)
and kg: (CA D OB) D O(A D B) and ks: &L D 1. There are no ordinary
sequent calculi for such logics, so the proof of realization provided here could
not be straightforwardly adapted. However, there are nested sequent calculi
for all logics in the intuitionistic S5-cube [32], even in a focused variant [15],
which means that we might still be able to prove a realization theorem by
extending the method used in [22].
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