
Theoretical Computer Science 920 (2022) 95–112
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Variants of derivation modes for which purely catalytic P

systems are computationally complete

Artiom Alhazov a, Rudolf Freund b,∗, Sergiu Ivanov c, Marion Oswald d

a Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Str. Academiei 5, Chişinău, MD 2028, Republic of Moldova
b TU Wien, A-1040 Wien, Austria
c IBISC, Univ. Évry, Paris-Saclay University, 23, boulevard de France, 91034 Évry, France
d Institute of Logic and Computation, Faculty of Informatics, TU Wien, Favoritenstraße 9–11, A-1040 Wien, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 August 2021
Received in revised form 15 February 2022
Accepted 8 March 2022
Available online 21 March 2022
Communicated by N. Jonoska

Keywords:
Catalysts
Computational completeness
Derivation modes
Purely catalytic P systems

Catalytic P systems and purely catalytic P systems are among the first variants of
membrane systems ever considered in this area. These variants of systems also feature
some prominent computational complexity questions, and in particular the problem if
only one catalyst in catalytic P systems and two catalysts in purely catalytic P systems
are enough to allow for generating all recursively enumerable sets of multisets. Several
additional ingredients have been shown to be sufficient for obtaining such results.
Previously, we could show that using the derivation mode maxobjects , where we only take
those multisets of rules which affect the maximal number of objects in the underlying
configuration, one catalyst is sufficient for obtaining computational completeness without
any other ingredients in catalytic P systems. In this paper we investigate the question
whether we can obtain a similar result for purely catalytic P systems, i.e., we show
that two catalysts in purely catalytic P systems are enough to allow for generating all
recursively enumerable sets of multisets when using specific variants of the maximally
parallel derivation mode: we take only those applicable multisets of rules which (i)
generate the maximal number of objects, or (ii) yield the maximal difference in the number
of objects between the newly generated configuration and the current configuration.
In addition, we also consider non-extendable multisets of rules which (i) generate the
minimal number of objects, or (ii) yield the minimal difference in the number of objects
between the newly generated configuration and the current configuration.
In all cases, we have also shown that register machines with n decrementable registers
can be simulated by simple purely catalytic P systems working in any of these derivation
modes using only n catalysts. Hence, simple purely catalytic P systems working in any of
these derivation modes are computationally complete.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Membrane systems were introduced more than two decades ago, see [29], as a multiset-rewriting model of computing
inspired by the structure and the functioning of the living cell. The development of this fascinating area of biologically
motivated computing models is documented in two textbooks, see [30] and [31]. For actual information see the P sys-

* Corresponding author.
E-mail addresses: artiom@math.md (A. Alhazov), rudi@emcc.at (R. Freund), sergiu.ivanov@ibisc.univ-evry.fr (S. Ivanov), marion@emcc.at (M. Oswald).
https://doi.org/10.1016/j.tcs.2022.03.007
0304-3975/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.tcs.2022.03.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.03.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:artiom@math.md
mailto:rudi@emcc.at
mailto:sergiu.ivanov@ibisc.univ-evry.fr
mailto:marion@emcc.at
https://doi.org/10.1016/j.tcs.2022.03.007
http://creativecommons.org/licenses/by/4.0/

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
tems webpage [33] and the issues of the Bulletin of the International Membrane Computing Society and of the Journal of
Membrane Computing.

One basic feature of P systems already presented in [29] is the maximally parallel derivation mode, i.e., using non-
extendable multisets of rules in every derivation step. The result of a computation can be extracted when the system halts,
i.e., when no rule is applicable any more. Catalysts are special objects which allow only one object to evolve in its context
(in contrast to promoters) and in their basic variant never evolve themselves, i.e., a catalytic rule is of the form ca → cv ,
where c is a catalyst, a is a single object and v is a multiset of objects. On the other hand, non-catalytic rules in catalytic
P systems are non-cooperative rules of the form a → v . In this paper, we focus on purely catalytic P systems, which use
catalytic rules only.

From the beginning (see [29] and [30]), the question how many catalysts are needed for obtaining computational com-
pleteness has been one of the most intriguing challenges regarding catalytic and purely catalytic P systems. In [19] it has
already been shown that for (purely) catalytic P systems two (three) catalysts are enough for generating any recursively
enumerable set of multisets, without any additional ingredients like a priority relation on the rules as used in the original
definition.

As already known from the beginning (see [30]), without catalysts only regular (semi-linear) sets can be generated when
using the standard maximal derivation mode and the standard halting mode, i.e., a result is extracted when the system
halts with no rule being applicable any more. As shown, for example, in [16,22–24], using various additional ingredients,
i.e., additional control mechanisms, one (two) catalyst(s) can be sufficient for (purely) catalytic P systems: In P systems with
label selection or controlled P systems (as introduced in [27]), only rules from one set of a finite number of sets of rules in
each computation step are used; in time-varying P systems, the available sets of rules change periodically with time.

For many other variants of P systems using specific control mechanism for the application of rules the interested reader
is referred to the list of references. For example, the concept of anti-matter, where an object is annihilated by the corre-
sponding anti-matter object, is investigated in [1,2,12]. Using sets of rules in variants of the maximally parallel derivation
mode usually yields similar results as when using multisets of rules, but when all rules in a membrane have to agree in the
same target for the results, even without catalysts computational completeness can be obtained, see [13]. An overview of
results obtained by using control mechanisms as mentioned above for P automata is given in [17].

The influence of using partial halting, i.e., of stopping a computation already when a part of the system cannot evolve
any more, is investigated in [11,21]. Descriptional complexity especially with respect to the number of rules in most cases
of P systems working in different variants of the maximally parallel derivation mode can be reduced by using the concept
of toxic objects, see [3], whose appearance immediately discards a computation. For an overview on specific results when
different derivation modes and halting conditions are used, the reader is referred to [18].

More recently, in a quite similar way as in graph-controlled systems, controlling the application of rules activating and
blocking rules for the next steps based on the rules applied in a derivation step has been investigated in [5]. Limiting
the number of specific objects obtained by the application of rules allows for reaching computational completeness even
without catalysts, see [7,8]. On the other hand, one catalyst is needed for catalytic P systems when giving catalytic rules
weak priority over non-cooperative rules, as shown in [6]. In [9], the additional computational completeness result for P
systems with only one catalyst working in the maximally parallel derivation mode and affecting the maximal number of
objects in the underlying configuration was elaborated.

Assigning energy values to objects or rules allows for controlling which rules have to be applied, see [4,15]. In a similar
way, in [9] computational completeness has been shown for catalytic P systems with one catalyst where we take those
non-extendable multisets whose application yields the maximal number of generated objects or else those non-extendable
multisets whose application yields the maximal difference in the number of objects between the newly generated configu-
ration and the current configuration.

In this paper we now continue the research started for catalytic P systems in [10] and continued in [9]: we investigate the
following variants of the maximally parallel derivation mode for purely catalytic P systems: we take only those applicable
multisets of rules which

1. generate the maximal number of objects, or
2. yield the maximal difference in the number of objects between the newly generated configuration and the current

configuration or
3. generate the minimal number of objects, or
4. yield the minimal difference in the number of objects between the newly generated configuration and the current

configuration.

For the variants with the maximal number of objects we can take those multisets of rules from the applicable multisets
of rules which are non-extendable, but we can also take those sets with the maximal number of generated or maximal
difference of objects without requesting the multisets of rules to fulfill the condition to be non-extendable.

For the variants with the minimal number of objects we only take the non-extendable applicable multisets of rules with
the minimal number of generated or minimal difference of objects.
96

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
2. Definitions

The set of natural numbers n ≥ 0 is denoted by N . For any two natural numbers m, n, m ≤ n, [m..n] denotes the set of
natural numbers {k | m ≤ k ≤ n}. Moreover, m ⊕n +1 is defined as m + 1 for 0 ≤ m < n and n ⊕n +1 = 1.

For an alphabet V , by V ∗ we denote the free monoid generated by V under the operation of concatenation, i.e., contain-
ing all possible strings over V . The empty string is denoted by λ. A multiset M with underlying set A is a pair (A, f) where
f : A →N is a mapping. If M = (A, f) is a multiset then its support is defined as supp(M) = {x ∈ A | f (x) > 0}. A multiset is
empty (respectively finite) if its support is the empty set (respectively a finite set). If M = (A, f) is a finite multiset over A

and supp(M) = {a1, . . . , ak}, then it can also be represented by the string a f (a1)
1 . . .a f (ak)

k over the alphabet {a1, . . . , ak}, and,
moreover, all permutations of this string precisely identify the same multiset M . The set of all multisets over V is denoted
by V ◦ . The cardinality of a set or multiset M is denoted by |M|. For further notions and results in formal language theory
we refer to textbooks like [14] and [32].

2.1. Register machines

Register machines are well-known universal devices for computing on (or generating or accepting) sets of vectors of
natural numbers.

The following definitions and propositions are given as in [9].

Definition 1.
A register machine is a construct

M = (m, B, l0, lh, P) where

• m is the number of registers,
• P is the set of instructions bijectively labeled by elements of B ,
• l0 ∈ B is the initial label, and
• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD (r) ,q, s), with p ∈ B \ {lh}, q, s ∈ B , 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to instruction q or s.

• p : (SUB (r) ,q, s), with p ∈ B \ {lh}, q, s ∈ B , 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one (decrement case) and jump to instruction
q, otherwise jump to instruction s (zero-test case).

• lh : H ALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each register and by the value of the current label,
which indicates the next instruction to be executed. M is called deterministic if the ADD-instructions all are of the form
p : (ADD (r) ,q).

Throughout the paper, BADD denotes the set of labels of ADD-instructions p : (AD D(r), q, s) of arbitrary registers r,
and BADD(r) denotes the set of labels of all ADD-instructions p : (AD D(r), q, s) of the specific register r. In the same way,
BSUB denotes the set of labels of all SUB-instructions p : (SU B(r), q, s) of arbitrary decrementable registers r, and BSUB(r)

denotes the set of labels of all SUB-instructions p : (SU B(r), q, s) of the specific decrementable register r. Moreover, for any
p ∈ B \ {lh}, Reg(p) denotes the register affected by the ADD- or SUB-instruction labeled by p.

In the computing case, a computation starts with the input of an l-vector of natural numbers in its first l registers and
by executing the first instruction of P (labeled with l0); it terminates with reaching the H ALT -instruction and the output
of a k-vector of natural numbers in its last k registers. Without loss of generality, we may assume all registers except the
last k output registers to be empty at the end of the computation.

In the generating case, a computation starts with all registers being empty and by executing the first instruction of P
(labeled with l0); it terminates with reaching the H ALT -instruction and the output of a k-vector of natural numbers in its
last k registers. Without loss of generality, we may assume all registers except the last k output registers to be empty at the
end of the computation.

In the computing case, a computation starts with the input of an l-vector of natural numbers in its first l registers and
by executing the first instruction of P (labeled with l0); it terminates with reaching the H ALT -instruction and the output
of a k-vector of natural numbers in its last k registers. Without loss of generality, we may assume all registers except the
last k output registers to be empty at the end of the computation.
97

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
For useful results on the computational power of register machines, we refer to [28]; for example, to prove our main
theorem, we need the following formulation of results for register machines generating or accepting recursively enumer-
able sets of vectors of natural numbers with k components or computing partial recursive relations on vectors of natural
numbers:

Proposition 1. Deterministic register machines can accept any recursively enumerable set of vectors of natural numbers with l compo-
nents using precisely l +2 registers. Without loss of generality, we may assume that at the end of an accepting computation all registers
are empty.

Proposition 2. Register machines can generate any recursively enumerable set of vectors of natural numbers with k components using
precisely k + 2 registers. Without loss of generality, we may assume that at the end of a generating computation the first two registers
are empty, and, moreover, on the output registers, i.e., the last k registers, no SUB-instruction is ever used.

Proposition 3. Register machines can compute any partial recursive relation on vectors of natural numbers with l components as input
and vectors of natural numbers with k components as output using precisely l + 2 + k registers, where without loss of generality, we
may assume that at the end of a successful computation the first l + 2 registers are empty, and, moreover, on the output registers, i.e.,
the last k registers, no SUB-instruction is ever used.

In all cases it is essential that the output registers never need to be decremented.

Remark 1. For any register machine, without loss of generality we may assume that the first instruction is an ADD-
instruction on register 1: in fact, given a register machine M = (m, B, l0, lh, P) with having a another instruction as its first
instruction, we can immediately construct an equivalent register machine M ′ which starts with an increment immediately
followed by a decrement of the first register:

M ′ = (
m, B ′, l′0, lh, P ′) ,

B ′ = B ∪ {l′0, l′′0},
P ′ = P ∪ {l′0 : (ADD(1), l′′0, l′′0), l′′0 : (SUB(1), l0, l0) }.

2.2. Simple purely catalytic P systems

Taking into account the well-known flattening process, which means that computations in a P system with an arbitrary
membrane structure can be simulated in a P system with only one membrane, e.g., see [20], in this paper we only consider
simple purely catalytic P systems, i.e., with the simplest membrane structure of only one membrane:

Definition 2. A simple purely catalytic P system is a construct

� = (V , C, T , w,R) where

• V is the alphabet of objects;
• C ⊂ V is the set of catalysts;
• T ⊆ (V \ C) is the alphabet of terminal objects;
• w ∈ V ◦ is the multiset of objects initially present in the membrane region;
• R is a finite set of evolution rules over V ; these evolution rules are catalytic rules of the forms ca → cv , where c ∈ C is

a catalyst, a is an object from V \ C , and v is a multiset over V \ C .

The multiset in the single membrane region of � constitutes a configuration of the P system. The initial configuration is
given by the initial multiset w; in case of accepting or computing P systems the input multiset w0 is assumed to be added
to w , i.e., the initial configuration then is w w0.

A transition between configurations is governed by the application of the evolution rules, which is done in a given
derivation mode. The application of a rule u → v to a multiset M results in subtracting from M the multiset identified by u,
and then in adding the multiset identified by v .

2.3. Variants of derivation modes

The definitions and the corresponding notions used in this subsection follow the definitions and notions elaborated in
[26] and extend them for the purposes of this paper.
98

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
Given a P system � = (V , C, T , w, R), the set of multisets of rules applicable to a configuration C is denoted by
Appl(�, C); this set also equals the set Appl(�, C, asyn) of multisets of rules applicable in the asynchronous derivation
mode (abbreviated asyn).

Given a multiset R of rules in Appl(�, C), we write C R−→ C ′ if C ′ is the result of applying R to C . The number of objects
affected by applying R to C is denoted by Aff(C, R). The number of objects generated in C ′ by the right-hand sides of the
rules applied to C with the multiset of rules R is denoted by Gen(C, R). The difference between the number of objects in
C ′ and C is denoted by �obj(C, R).

The set Appl(�, C, sequ) denotes the set of multisets of rules applicable in the sequential derivation mode (abbreviated
sequ), where in each derivation step exactly one rule is applied.

The standard parallel derivation mode used in P systems is the maximally parallel derivation mode (max for short). In the
maximally parallel derivation mode, in any computation step of � we choose a multiset of rules from R in such a way
that no further rule can be added to it so that the obtained multiset would still be applicable to the existing objects in
the configuration, i.e., in simple P systems we only take applicable multisets of rules which cannot be extended by further
(copies of) rules and are to be applied to the objects in the single membrane region:

Appl(�, C,max) ={R ∈ Appl(�, C) | there is no R ′ ∈ Appl(�, C)

such that R ′ ⊃ R}.
We first consider the derivation mode maxobjectsmax where from the multisets of rules in Appl(�, C, max) only those

are taken which affect the maximal number of objects. As with affecting the maximal number of objects, such multisets of
rules are non-extendable anyway, we will also use the notation maxobjects . Formally we may write:

Appl(�, C,maxobjectsmax) ={R ∈ Appl(�, C,max) |
there is no R ′ ∈ Appl(�, C,max)

such that Aff(C, R) < Aff(C, R ′)}
and

Appl(�, C,maxobjects) ={R ∈ Appl(�, C,asyn) |
there is no R ′ ∈ Appl(�, C,asyn)

such that Aff(C, R) < Aff(C, R ′)}.
As already mentioned, both definitions yield the same multiset of rules.

In addition to these well-known derivation modes, in this paper we also consider several new variants of derivation
modes as already introduced in [10], where instead of looking at the number of affected objects we take into account the
number of generated objects and the difference of objects between the derived configuration and the current configuration,
respectively.

maxG E Nobjectsmax a non-extendable multiset of rules R applicable to the current configuration C is only taken if the
number of objects generated by the application of the rules in R to the configuration C is maximal with respect
to the number of objects generated by the application of the rules in any other non-extendable multiset of rules
R ′ to the configuration C :

Appl(�, C,maxG E Nobjectsmax) ={R ∈ Appl(�, C,max) |
there is no R ′ ∈ Appl(�, C,max)

such that Gen(C, R) < Gen(C, R ′)}.
max�objectsmax a non-extendable multiset of rules R applicable to the current configuration C is only taken if the differ-

ence �C = |C ′| − |C | between the number of objects in the configuration C ′ obtained by the application of R and
the number of objects in the underlying configuration C is maximal with respect to the differences in the number
of objects obtained by applying any other non-extendable multiset of rules:

Appl(�, C,max�objectsmax) ={R ∈ Appl(�, C,max) |
there is no R ′ ∈ Appl(�, C,max)

such that �obj(C, R) < �obj(C, R ′)}.

99

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
As in purely catalytic P system we only have catalytic rules, which on the left-hand side of the rule have exactly two
objects, in both cases we only have to consider the right-hand sides of the rules when comparing rules.

We now also consider the new idea of the minimal number of generated objects and the minimal difference between
generated and consumed objects.

minG E Nobjectsmax a non-extendable multiset of rules R applicable to the current configuration C is only taken if the num-
ber of objects generated by the application of the rules in R to the configuration C is minimal:

Appl(�, C,minG E Nobjectsmax) ={R ∈ Appl(�, C,max) |
there is no R ′ ∈ Appl(�, C,max)

such that Gen(C, R) > Gen(C, R ′)}.
min�objectsmax a non-extendable multiset of rules R applicable to the current configuration C is only taken if the differ-

ence of |C ′| − |C | is minimal:

Appl(�, C,min�objectsmax) ={R ∈ Appl(�, C,max) |
there is no R ′ ∈ Appl(�, C,max)

such that �obj(C, R) > �obj(C, R ′)}.
As for the corresponding maximal variants, in both cases as defined above for the minimal numbers again we only have

to consider the right-hand sides of the rules when comparing rules, because in purely catalytic P system we only have
catalytic rules, which on the left-hand side of the rule have exactly two objects.

Like for maxobjectsmax in comparison with maxobjects we now can also consider the variants of the other maximal deriva-
tion modes where we do not start with imposing the restriction of being non-extendable on the applicable multisets:

maxG E Nobjects a multiset of rules R applicable to the current configuration C is only taken if the number of objects gener-
ated by the application of the rules in R to the configuration C is maximal with respect to the number of objects
generated by the application of the rules in any other multiset of rules R ′ to the configuration C :

Appl(�, C,maxG E Nobjects) ={R ∈ Appl(�, C,asyn) |
there is no R ′ ∈ Appl(�, C,asyn)

such that Gen(C, R) < Gen(C, R ′)}.
max�objects a multiset of rules R applicable to the current configuration C is only taken if the difference �C = |C ′| − |C |

between the number of objects in the configuration C ′ obtained by the application of R and the number of objects
in the underlying configuration C is maximal with respect to the differences in the number of objects obtained by
applying any other multisets of rules:

Appl(�, C,max�objects) ={R ∈ Appl(�, C,asyn) |
there is no R ′ ∈ Appl(�, C,asyn)

such that �obj(C, R) < �obj(C, R ′)}.
We illustrate the difference between these new derivation modes in the following example:

Example 1. Consider a simple purely catalytic P system with the initial configuration c1c2aa and the following rules:

1. c1a → c1
2. c2a → c2b
3. c2a → c2bb

We immediately observe the following:

1. Gen(c1c2aa, {c1a → c1})= 1,
2. Gen(c1c2aa, {c2a → c2b})= 2,
3. Gen(c1c2aa, {c2a → c2bb})= 3.
100

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
In case of the derivation mode maxG E Nobjectsmax, the multiset of rules {c1a → c1, c2a → c2bb} has to be applied. Hence,

the only possible derivation with the derivation mode maxG E Nobjectsmax is c1c2aa
{c1a→c1,c2a→c2bb}−−−−−−−−−−−−→ c1c2bb.

In this special case,

Appl(�, c1c2aa,maxG E Nobjectsmax) = Appl(�, c1c2aa,maxobjects).

If we do not start from non-extendable multisets of rules, we obtain the same results, i.e., in the derivation mode
maxG E Nobjects , the multiset of rules {c1a → c1, c2a → c2bb} has to be applied, and the only possible derivation with the

derivation mode maxG E Nobjects is c1c2aa
{c1a→c1,c2a→c2bb}−−−−−−−−−−−−→ c1c2bb.

In the same way, for the difference of generated and consumed objects we obtain:

1. �obj(c1c2aa, {c1a → c1})= −1,
2. �obj(c1c2aa, {c2a → c2b})= 0,
3. �obj(c1c2aa, {c2a → c2bb})= 1.

As for the derivation mode max�objectsmax, also for the derivation mode maxG E Nobjectsmax we obtain that the mul-
tiset of rules {c1a → c1, c2a → c2bb} has to be applied and that the only possible derivation with the derivation mode
max�objectsmax is c1c2aa

{c1a→c1,c2a→c2bb}−−−−−−−−−−−−→ c1c2bb.

On the other hand, if we do not start from non-extendable multisets of rules, now the rule c1a → c1 must not be
applied because it would decrease the number of objects, i.e., in the derivation mode max�objects we obtain that the – not
non-extendable – multiset of rules {c2a → c2bb} has to be applied, and the only possible derivation with the derivation
mode max�objects is c1c2aa

{c2a→c2bb}−−−−−−−→ c1c2abb.

In contrast, when taking the minimal derivation modes min�objectsmax and minG E Nobjectsmax, we only take non-
extendable multisets of rules, i.e., both catalysts have to be used in the computation step; yet now for catalyst c2 instead of
the rule c2a → c2bb we have to take the rule c2a → c2b. Hence, the only possible derivation with the minimal derivation
modes is:

• for minG E Nobjectsmax: c1c2aa
{c1a→c1,c2a→c2b}−−−−−−−−−−−→ c1c2b;

• for min�objectsmax: c1c2aa
{c1a→c1,c2a→c2b}−−−−−−−−−−−→ c1c2b.

Remark 2. Without requiring the non-extendability of the multisets to be applied, the conditions minG E Nobjects and
min�objects for themselves alone seem to be not very useful. In both cases, shrinking rules like ce → c have to be used
in an extensive way, probably together with unit rules like ca → cb in the case of min�objects . If only growing rules like
ca → cbd are applicable, both modes work like the sequential mode with only one rule having the chance to be applied.
Hence, these derivation modes are not considered further in this paper.

2.4. Computations in a P system

The P system continues with applying multisets of rules according to the derivation mode until there remain no applica-
ble rules in the single region of �, i.e., as usual, with all these variants of derivation modes as defined above, we consider
halting computations.

We may generate or accept or even compute functions or relations. The inputs/outputs may be multisets or strings,
defined in the well-known way. When the system halts, in case of computing with multisets we consider the number of
objects from T contained in the membrane region at the moment when the system halts as the result of the underlying
computation of �.

We would like to emphasize that as results we only take the objects from the terminal alphabet T , especially the catalysts
are not counted to the result of a computation. On the other hand, with all the proofs given in this paper, except for the
catalysts no other “garbage” remains in the membrane region at the end of a halting computation, i.e., we could even omit
T .

3. Simple purely catalytic P systems working in the derivation modes max�ob jectsmax, maxG E Nob jectsmax, max�ob jects , or
maxG E Nob jects

In this section we show how the new derivation modes allow for simulating register machines by purely catalytic P
systems with one catalyst less than in the original proofs given in [19], which are the first results obtained for purely
catalytic P systems of that kind when using specific variants of derivation modes themselves without in addition using
specific control mechanisms as, for example, in [23].
101

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
Theorem 4. For any register machine with two decrementable registers we can construct a simple purely catalytic P system with only
two catalysts, working in one of the derivation modes max�objectsmax, maxG E Nobjectsmax, max�objects , or maxG E Nobjects , which can
simulate any computation of the register machine.

Proof. As in purely catalytic P systems we only have a bounded number of rules – bounded by the number of catalysts –
which can be executed in one derivation step, we cannot apply the proof idea used in the proofs elaborated in [10], where
in some sense the weak priority of catalytic rules over non-catalytic rules taken from the set of applicable non-extendable
multisets of rules in simple catalytic P systems was mimicked when using the derivation mode maxobjects , see [9].

Instead, we have to go back to the original construction as elaborated in [19], yet we also take into consideration ideas
related to energy-controlled P systems as described in [4], using dummy objects like energy to control the correct application
of rules. Now having the new variants of derivation modes, we can avoid the trap rules and even more, instead of three
catalysts, we only need two catalysts to obtain the desired completeness result.

Given an arbitrary register machine M = (m, B, l0, lh, P) with two decrementable registers we will construct a corre-
sponding simple purely catalytic P system with two catalysts

� = (V , {c1, c2}, T , c1c2l0l′0,R)

simulating M . Without loss of generality, we may assume that, depending on its use as an accepting or generating or
computing device, the register machine M , as stated in Proposition 1, Proposition 2, and Proposition 3, fulfills the condition
that on the output registers we never apply any SUB-instruction. Moreover, according to Remark 1 we may assume that the
first instruction is an ADD-instruction on the first register. Finally, we assume the n decrementable registers to be the first
ones.

The following proof is elaborated for all the derivation modes max�objectsmax, maxG E Nobjectsmax, max�objects , and
maxG E Nobjects; only a few subtle technical details have to be mentioned additionally.

The main part of the proof is to show how to simulate the instructions of M in �; in all cases we have to take care that
both catalysts are kept busy to guarantee that the simulation is executed in a correct way. The extensive use of the dummy
object d guarantees that one of the rules using the catalysts c1 and c2 must be used if possible, i.e., a catalyst can only stay
idle if the underlying configuration does not contain any object which can evolve together with the catalyst. On the other
hand, the priority between different rules for a catalyst is guarded by the number of objects on the right-hand side of the
rules, which argument applies for all the derivation modes under consideration, as every rule in a purely catalytic P system
has exactly two objects on its left-hand side.

The only special detail which arises is that in the derivation mode max�objects , where, as in Example 1, the rules

c1d → c1 and c2d → c2

erasing the “energy” object d can only be used at the end of a computation when no other rules can be applied any more.

Before giving the whole construction of the simple purely catalytic P system, we mention that the main basis for choosing
the right number of the objects d on the right-hand side of the rules is based on the importance and role of the rules

c1a1 → c1â1dd and c2a2 → c2â2dd

which should only be applicable in the first step of the simulation of a decrement instruction on register 1 and register 2,
respectively. As usually done in corresponding proofs, the number of objects ar in a configuration represents the number
stored in register r at that moment of the computation. Objects ar for r > 2 are never changed again, as they represent
output registers.

V = {ar | 1 ≤ r ≤ m} ∪ {âr | 1 ≤ r ≤ 2}
∪ {p, p′ | p ∈ BADD ∪ {lh}}
∪ {p, p′, p̄, p̂ | p ∈ BSUB(r),1 ≤ r ≤ 2}
∪ {c1, c2,d},

T = {ar | 3 ≤ r ≤ m}.
BADD and BSUB(r) denote the set of labels of ADD- and SUB-instructions of the register machine M .

The set R of catalytic rules can be captured from the description of how the simulation of the register machine instruc-
tions works as described in the following:

• p : (ADD (r) ,q, s), with p ∈ BADD , q, s ∈ B , 1 ≤ r ≤ m.
102

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
Table 1
Simulation of SUB-instruction.

step |reg(r)| rule for cr rule for c3−r resulting objects

first > 0 crar → crârd2 c3−r p′ → c3−r p̄d10 p, p̄, âr

= 0 cr p → crd2 c3−r p′ → c3−r p̄d10 p̄

second > 0 cr p̄ → cr p̂d3 c3−r p → c3−rd9 âr , p̂
= 0 crd → cr (∗) c3−r p̄ → c3−r ss′d6 s, s′

third > 0 cr p̂ → c1qq′d2 c3−r âr → c3−rd4 q,q′

Table 2
Rules applicable in the first step.

(1) crar → crârd2,
(2) cr p → crd2,
(3) crd → cr ,
(4) c3−r p′ → c3−r p̄d10,
(5) c3−ra3−r → c3−r â3−rd2,
(6) c3−rd → c3−r ,
(7) c3−r p → c3−rd9.

An ADD-instruction can be simulated in one step by letting every catalyst make one evolution step:

c1 p → c1qq′ard or c1 p → c1ss′ard,

c2 p′ → c2d4.

The dummy objects d are used guarantee that the rules given above, with in sum 5 objects on their right-hand sides,
have priority over the rules c1a1 → c1â1d2 and c2a2 → c2â2d2, respectively, with in sum only 4 objects on their right-
hand sides.

• p : (SUB (r) ,q, s), with p ∈ B SU B , q, s ∈ B , 1 ≤ r ≤ 2.

decrement case:

If the value of register r (denoted by |reg(r)|) is not zero then the number of register objects ar is decreased by one
using the corresponding rule crar → crârd2 in the first step of the simulation. In sum three steps are needed for the
simulation, see table below.

zero-test case:

If the value of register r is zero, then the corresponding catalyst is already free for eliminating the label object p so
that already in the second step of the simulation the simulation of the next instruction s can be initiated. In sum only
two steps are needed for the simulation of this case, see Table 1.

The following table summarizes the rules to be used for the simulation of the SUB-instruction on register r, r ∈ {1, 2},
i.e., we use the following rules, resulting in different sets of objects depending on the value of |reg(r)|, thereby neglect-
ing the objects d; we emphasize that the simulation is deterministic.
The rule crd → cr marked with (∗) is only applied in the derivation modes max�objectsmax and maxG E Nobjectsmax as well
as maxG E Nobjects , whereas in the derivation mode max�objects it will not be applied as it would decrease the difference
between generated and consumed objects.

In the first step, the current configuration contains the program symbols p and p′ , hence, there are seven rules which
possibly can be applied, depending on the contents of registers r and 3 − r, see Table 2.
We now calculate the number of generated objects and the difference between the number of objects for each possible
combination of rules for the catalysts cr and c3−r . In most cases the difference between sum of generated objects and
difference of objects is 4, but when rule (3) and/or (6) is involved and the derivation mode is max�objects , then these
rules (3) and (6) are never executed at this stage of the derivation, which then yields the number between brackets
[,]. The combination of rules (2) and (7) is not taken into account, as both rules require the symbol p.
Which rule catalyst cr has to use depends on the contents of register r: in case register r is not empty, i.e., a copy of the
symbol ar is present in the current configuration, the rule (1) crar → crârd2 has to be used, as it generates 4 objects,
whereas the rule (2) cr p → crd2, to be used in case the register is empty, i.e., if no copy of the symbol ar is present
in the current configuration, only generates 3 objects. In both cases, these rules have to be applied together with rule
c3−r p′ → c3−r p̄d10, as already described in Table 1. Any other possible combination of rules in all cases would lead to
less objects being generated, see Table 3.
In the second step, in case the register has been empty, only the additional program symbol is present, and it has to
be used with the catalyst c3−r using the rule c3−r p̄ → c3−r ss′d6, because it generates 9 objects, whereas if the object
p̄ were used with the catalyst c3−r and the rule cr p̄ → cr p̂d3 together with the rule c3−ra3−r → c3−râ3−rd2, in sum
only 9 objects would be obtained. All possibly applicable rules as well as all possible combinations of rules and the
103

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
Table 3
Rule combinations applicable in the first step.

rules generated objects difference of objects

(1) and (4) 16 12
(1) and (5) 8 4
(1) and (6) 5[4] 3 [2]
(1) and (7) 14 10
(2) and (4) 15 11
(2) and (5) 7 3
(2) and (6) 4 2 [3]
(3) and (4) 13 9 [10]
(3) and (5) 5 1 [2]
(3) and (6) 2[0] -2[0]
(3) and (7) 11 7 [8]

Table 4
Rules applicable in the second
step, |reg(r)| = 0.

(3) crd → cr ,
(9) cr p̄ → cr p̂d3,
(5) c3−ra3−r → c3−r â3−rd2,
(6) c3−rd → c3−r ,
(8) c3−r p̄ → c3−r ss′d6.

Table 5
Rule combinations applicable in the second step, |reg(r)| = 0.

rules generated objects difference of objects

(3) and (5) 5 1 [2]
(3) and (6) 2 [0] -2 [0]
(3) and (8) 10 6 [7]
(9) and (5) 9 5
(9) and (6) 6 2 [3]

Table 6
Rules applicable in the second step,
|reg(r)| > 0.

(1) crar → crârd2,
(2) cr p → crd2,
(3) crd → cr ,
(9) cr p̄ → cr p̂d3,
(5) c3−ra3−r → c3−r â3−rd2,
(6) c3−rd → c3−r ,
(7) c3−r p → c3−rd9,
(8) c3−r p̄ → c3−r ss′d6,
(10) c3−r âr → c3−rd4.

corresponding numbers of generated objects and differences of objects are collected in Tables 4 and 5; observe that the
combination of rules (9) and (8) is not possible, as both need the symbol p̄.
Now we consider the case when register r has not been empty, i.e., the special symbols p, p̄, and âr are present in the
current configuration; hence, all the rules as indicated in Table 6 probably are applicable, which yields the possible rule
combinations exhibited in Table 7, where for the sake of conciseness, we omit all combinations with rules (3) and (6),
as now always rules generating more objects are available for both catalysts in every case.
In the third step, only necessary when the register r has not been empty, only the combination of the rules cr p̂ →
c1qq′d2 and c3−râr → c3−rd4 yields the maximal number of generated objects, as the application of one or both of the
other applicable rules crar → crârd2 and c3−ra3−r → c3−râ3−rd2 in any case would yield (at least) one object less.

• lh : H ALT .
When a computation of the register machine M ends with reaching the HALT-instruction, the simulating P system �
uses the following rules:

c1lh → c1dd and c2l′h → c2dd.

After the register machine has halted (with the first two registers being empty), which is simulated by the rules above,
finally all dummy objects generated during the simulation steps before are deleted by using the rules

c1d → c1 and c2d → c2.
104

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
Table 7
Rule combinations applicable in the second step, |reg(r)| > 0.

rules generated objects difference of objects

(1) and (5) 8 4
(1) and (7) 14 10
(1) and (8) 13 9
(1) and (10) 9 4
(2) and (5) 7 3
(2) and (8) 12 8
(2) and (10) 8 4
(9) and (5) 9 5
(9) and (7) 15 11
(9) and (8) 14 10
(9) and (10) 10 6

Whereas in the derivation modes max�objectsmax and maxG E Nobjectsmax as well as maxG E Nobjects some of these objects
d can already be erased during the simulation of SUB-instructions, see above, in the derivation mode max�objects , these
erasing rules are only executed at the end of the computation.

The construction has been chosen in such a way that it works for all these derivation modes. Yet for the derivation mode
max�objects it is essential that the right-hand side contains at least three objects to enforce the application of all rules except
the deletion rules c1d → c1 and c2d → c2. Otherwise the given construction of rules would not work correctly because of
the missing condition for the multisets to be applied of being non-extendable. On the other hand, for the other derivation
modes, i.e., max�objectsmax and maxG E Nobjectsmax as well as maxG E Nobjects , the construction would still work correctly if on
the right-hand side of all rules, obviously again except the deletion rules c1d → c1 and c2d → c2, one dummy object d less
is used.

These observations complete the proof. �
Corollary 5. Any recursively enumerable set of (vectors of) natural numbers can be generated by a simple purely catalytic P system
with only two catalysts working in one of the derivation modes max�objectsmax, maxG E Nobjectsmax, max�objects , or maxG E Nobjects .

The result from Theorem 4 can be generalized to the case of k ≥ 2 decrementable registers, following the ideas already
elaborated in [19] as well as in [23]:

Theorem 6. For any register machine with n ≥ 2 decrementable registers we can construct a simple purely catalytic P system with
only n catalysts, working in one of the derivation modes max�objectsmax, maxG E Nobjectsmax, max�objects , or maxG E Nobjects , which can
simulate any computation of the register machine.

Proof. We extend the proof of Theorem 4 using some technical ideas from [19] and [23].
Given an arbitrary register machine M = (m, B, l0, lh, P) with n decrementable registers we will construct a corresponding

simple purely catalytic P system with n catalysts

� = (V , {ck | 1 ≤ k ≤ n}, T , w0,R)

simulating M . Without loss of generality, we may assume that the register machine M , as stated in Proposition 2 fulfills
the condition that on the output registers we never apply any SUB-instruction. Moreover, according to Remark 1 we may
assume that the first instruction is an ADD-instruction on the first register. Finally, we assume the n decrementable registers
to be the first ones.

The following proof again is elaborated for all the derivation modes max�objectsmax, maxG E Nobjectsmax, max�objects , and
maxG E Nobjects , with only a few subtle technical details to be mentioned additionally.

The main part of the proof is to show how to simulate the instructions of M in �; in all cases we have to take care
that the n catalysts are kept busy – using corresponding dummy objects dr – in order to guarantee that the simulation is
executed in a correct way; especially we have to guarantee that one of the rules using the catalysts ck, 1 ≤ k ≤ n, must be
used if possible, i.e., a catalyst can only stay idle if the underlying configuration does not contain any object which can
evolve together with the catalyst. Again the priority between different rules for a catalyst is guarded by the number of
objects on the right-hand side of the rules, which argument applies for all the derivation modes under consideration, as
every rule in a purely catalytic P system has exactly two objects on its left-hand side.

As now we have an arbitrary number n ≥ 2 of catalysts and only two of them shall do the work during the simulation
of a SUB-instruction on register r in a similar way as elaborated in the proof of Theorem 4, we now use the corresponding
catalyst cr – which has to be left free for decrementing or for zero-checking in the first step of the simulation – and its
“coupled” catalyst cr⊕n1 throughout all the simulation steps. Here r⊕n1 for r < n simply is r + 1, whereas for r = n we
define n⊕n1 = 1. Moreover, the notation [1..n] is used for the set (interval) of natural numbers {1, . . . ,n}.
105

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
During the simulation of all instructions, we use the following multisets:

D ′
n,r = ∏

i∈[1..n]\{r,r⊕n1} di, 1 ≤ r ≤ n.

For every p ∈ B we define Reg(p) to be the register affected by the instruction labeled by p; in addition, we define
Reg(lh) = 1.

As the first instruction to be simulated is an ADD-instruction on the first register, we start with the initial multiset

l0l′0 D ′
n,1

∏

i∈[1..n]

ci .

As usual, the number of objects ar in a configuration represents the number stored in register r at that moment of the
computation. Objects ar for r > n are never changed again, as they represent output registers.

V = {ar | 1 ≤ r ≤ m} ∪ {âr | 1 ≤ r ≤ n}
∪ {p, p′ | p ∈ BADD ∪ {lh}}
∪ {p, p′, p̄, p̂ | p ∈ BSUB(r),1 ≤ r ≤ n}
∪ {ck,dk | 1 ≤ k ≤ n} ∪ {d},

T = {ar | n + 1 ≤ r ≤ m}.
The dummy objects di , 1 ≤ i ≤ n, are used to keep the corresponding catalyst ci busy whenever it is not needed during

the simulation of a SUB-instruction, which is accomplished by the following rule erasing di , but instead introducing the
necessary amount of objects d to keep the catalyst ci away from erasing a register object ar :

cidi → cid
4, 1 ≤ i ≤ n.

Moreover, for erasing d we use the rules

ckd → ck, 1 ≤ k ≤ n.

In the derivation mode max�objects these erasing rules can only be used at the end of a computation when no other rules
can be applied any more.

The remaining rules in the set R of catalytic rules can be captured from the description of how the simulation of the
register machine instructions works as described in the following:

• p : (ADD (r) ,q, s), with p ∈ BADD , q, s ∈ B , 1 ≤ r ≤ m.

An ADD-instruction can be simulated in one step by letting every catalyst make one evolution step:

cReg(p) p → cReg(p)qq′ardD ′
n,Reg(q) or cReg(p) p → cReg(p)ss′ardD ′

n,Reg(s),

cReg(p)⊕n1 p′ → c2d4.

We recall that all other catalysts ci with i ∈ [1..n] \ {Reg(p), Reg(p) ⊕n 1} are forced to apply the rule cidi → cid4. The
dummy objects d are used to guarantee that the rules given above, with in sum at least 5 objects on their right-hand
sides, have priority over the rules crar → crârd2, 1 ≤ r ≤ n, with in sum only 4 objects on their right-hand sides.

• p : (SUB (r) ,q, s), with p ∈ B SU B , q, s ∈ B , 1 ≤ r ≤ n.

decrement case:

If the value of register r (denoted by |reg(r)| is not zero then the number of register objects ar is decreased by one
using the corresponding rule crar → crârd2 in the first step of the simulation. In sum three steps are needed for the
simulation, see table below.

zero-test case:

If the value of register r is zero, then the corresponding catalyst is already free for eliminating the label object p so
that already in the second step of the simulation the simulation of the next instruction s can be initiated. In sum only
two steps are needed for the simulation of this case, see table below.

The following table summarizes the rules to be used for the simulation of the SUB-instruction on register r, 1 ≤ r ≤
n, i.e., we use the following rules, resulting in different sets of objects depending on the value of |reg(r)|, thereby
neglecting the objects di , 1 ≤ i ≤ n, and d; we emphasize that again the simulation is deterministic.
106

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
step |reg(r)| rule for cr rule for cr⊕n1 resulting
objects

first > 0 crar → crârd2 cr⊕n1 p′ → cr⊕n1 p̄d10 D ′
n,Reg(p) p, p̄, âr

= 0 cr p → crd2 cr⊕n1 p′ → cr⊕n1 p̄d10 D ′
n,Reg(p) p̄

second > 0 cr p̄ → cr p̂d3 cr⊕n1 p → cr⊕n1d9 D ′
n,Reg(p) âr, p̂

= 0 crd → cr (∗) cr⊕n1 p̄ → cr⊕n1ss′d6 D ′
n,Reg(s) s, s′

third > 0 cr p̂ → c1qq′d2 D ′
n,Reg(q)

cr⊕n1âr → cr⊕n1d4 q,q′

All arguments explained in the proof of Theorem 4 can be taken over to the general case, because the additional symbols
generated by D ′

n,Reg(l), l being the label of a register machine instruction, always introduce exactly n − 2 objects, i.e.,
in the case of n = 2 we regain the same table as in the proof of Theorem 4. Yet it is essential for the correctness of
the proof that D ′

n,Reg(l) is always generated from a program symbol and never to such combination of objects can be
generated twice in any step of the derivation.
Again the rule crd → cr marked with (∗) is only applied in the derivation modes max�objectsmax and maxG E Nobjectsmax
as well as maxG E Nobjects , whereas in the derivation mode max�objects it will not be applied as it would decrease the
difference between generated and consumed objects.

• lh : H ALT .
Taking into account that we have defined Reg(lh) = 1, we take

c1lh → c1dd and

c2l′h → c2dd.

After the register machine has halted (with the first n registers being empty), which is simulated by the rules above,
finally all dummy objects generated during the simulation steps before are deleted by using the rules

cid → ci, 1 ≤ i ≤ n.

Whereas in the derivation modes max�objectsmax and maxG E Nobjectsmax as well as maxG E Nobjects some of these objects
d can already be erased during the simulation of SUB-instructions, see above, in the derivation mode max�objects , these
erasing rules are only executed at the end of the computation.

Again we mention that in the derivation modes max�objectsmax and maxG E Nobjectsmax as well as maxG E Nobjects , the con-
struction would still work correctly if on the right-hand side of all rules except the deletion rules c1d → c1 and c2d → c2,
one dummy object d less is used. These observations complete the proof. �

In sum, we then obtain the following result:

Corollary 7. Purely catalytic P systems working in any of the derivation modes max�objectsmax, maxG E Nobjectsmax, max�objects , or
maxG E Nobjects are computationally complete, i.e., they can compute any partial recursive relation on natural numbers.

4. Simple purely catalytic P systems working in the derivation modes min�ob jectsmax or minG E Nob jectsmax

In this section we show that also the new derivation modes min�objectsmax and minG E Nobjectsmax allow for simulating
register machines by purely catalytic P systems with one catalyst less than in the original proofs given in [19].

Theorem 8. For any register machine with two decrementable registers we can construct a simple purely catalytic P system with only
two catalysts, working in one of the derivation modes min�objectsmax or minG E Nobjectsmax which can simulate any computation of
the register machine.

Proof. We follow the proof elaborated for Theorem 4, yet now have to choose the inverse order relation for the lengths of
the right-hand sides of the rules, as now the rules with the smallest right-hand sides have priority.

Given an arbitrary register machine M = (m, B, l0, lh, P) with two decrementable registers we will construct a corre-
sponding simple purely catalytic P system with two catalysts

� = (V , {c1, c2}, T , c1c2l0l′0,R)

simulating M . Without loss of generality, we may assume that the register machine M , as stated in Proposition 2 fulfills
the condition that on the output registers we never apply any SUB-instruction. Moreover, according to Remark 1 we may
assume that the first instruction is an ADD-instruction. Finally, we assume the two decrementable registers to be the first
ones.
107

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
The following proof is elaborated for both the derivation modes min�objectsmax and minG E Nobjectsmax.
The main part of the proof is to show how to simulate the instructions of M in �; in all cases we have to take care that

both catalysts are kept busy to guarantee that the simulation is executed in a correct way. As now we are only using non-
extendable multisets of rules, a catalyst can only stay idle if the underlying configuration does not contain any object which
can evolve together with the catalyst. On the other hand, the priority between different rules for a catalyst is guarded
by the number of objects on the right-hand side of the rules, which argument applies for both derivation modes under
consideration, as every rule in a purely catalytic P system has exactly two objects on its left-hand side.

Whenever possible, the dummy objects generated during the simulation steps have to be deleted immediately, as erasing
rules have highest priority:

c1d → c1, c2d → c2.

In order to keep both catalysts synchronized, the number of dummy objects throughout the computation has to be even.
In fact, the simulation of the next instruction can only start when all dummy objects have been erased by these two rules
c1d → c1 and c2d → c2.

The main basis for choosing the right number of the objects d on the right-hand side of the rules again is based on the
importance and role of the rules

c1a1 → c1â1d6 and

c2a2 → c2â2d6,

which should only be applicable in the first step of the simulation of a decrement instruction on register 1 and register
2, respectively. In addition to the previous proof construction, we now also have to guarantee that the number of dummy
objects generated in every step of the derivation is even – which means that they are eliminated in a synchronized way
immediately afterwards.

As usually done in corresponding proofs, the number of objects ar in a configuration represents the number stored
in register r at that moment of the computation. Objects ar for r > 2 are never changed again, as they represent output
registers.

V = {ar | 1 ≤ r ≤ m} ∪ {âr | 1 ≤ r ≤ 2}
∪ {p, p′ | p ∈ BADD ∪ {lh}}
∪ {p, p′, p̄, p̂ | p ∈ BSUB(r),1 ≤ r ≤ n}
∪ {c1, c2,d},

T = {ar | 3 ≤ r ≤ m}.
The set R of catalytic rules can be captured from the description of how the simulation of the register machine instruc-

tions works as described in the following:

• p : (ADD (r) ,q, s), with p ∈ BADD , q, s ∈ B , 1 ≤ r ≤ m.

An ADD-instruction can be simulated in one step by letting every catalyst make one evolution step:

c1 p → c1qq′ard2 or c1 p → c1ss′ard2,

c2 p′ → c2d4.

The smaller numbers of dummy objects d used in these rules above guarantee that they have priority over the rules
c1a1 → c1â1d6 and c2a2 → c2â2d6, respectively.

• p : (SUB (r) ,q, s), with p ∈ B SU B , q, s ∈ B , 1 ≤ r ≤ 2.

decrement case:

If the value of register r (denoted by |reg(r)|) is not zero then the number of register objects ar is decreased by one
using the corresponding rule crar → crârd6 in the first step of the simulation. In sum three steps are needed for the
simulation, see table below.

zero-test case:

If the value of register r is zero, then the corresponding catalyst is already free for eliminating the label object p so
that already in the second step of the simulation the simulation of the next instruction s can be initiated. In sum only
two steps are needed for the simulation of this case, see table below.

The following table summarizes the rules to be used for the simulation of the SUB-instruction on register r, r ∈ {1, 2},
i.e., we use the following rules, resulting in different sets of objects depending on the value of |reg(r)|, thereby neglect-
ing the objects d; we emphasize that the simulation is deterministic.
108

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
step |reg(r)| rule for c3−r rule for cr resulting objects

first > 0 c3−r p′ → c3−r p̄d0 crar → crârd6 p, p̄, âr

= 0 c3−r p′ → c3−r p̄d0 cr p → crd8 p̄

second > 0 c3−r p → c3−rd2 cr p̄ → cr p̂d4 âr, p̂
= 0 c3−r p̄ → c3−r ss′d2 s, s′

third > 0 c3−râr → c3−rd4 cr p̂ → c1qq′d2 q,q′

As in the zero-test case no register object ar is present and all dummy objects have been erased before the second step
of the simulation starts, the catalyst cr stays idle in this second step of the zero-test case.

• lh : H ALT .

c1lh → c1d2 and

c2l′h → c2

Due to the normal form of the register machine simulated by the P system, the two final labels lh and l′h can only appear
at the end of a computation, when no other objects than the catalyst c and the objects representing the contents of the
output registers are present any more in the configuration, i.e., these two rules are the last ones to be applied in a halting
computation before in the last step the last two objects d are erased. This observation concludes the proof. �
Corollary 9. Any recursively enumerable set of (vectors of) natural numbers can be generated by a simple purely catalytic P system
with only two catalysts working in one of the derivation modes min�objectsmax or minG E Nobjectsmax.

As for the maximal derivation modes, the result from Theorem 8 can be generalized to the case of n ≥ 2 decrementable
registers, following the proof ideas already elaborated in the proof of Theorem 6:

Theorem 10. For any register machine with n decrementable registers we can construct a simple purely catalytic P system with only
n catalysts, working in one of the derivation modes min�objectsmax or minG E Nobjectsmax, which can simulate any computation of the
register machine.

Proof. We follow the proof elaborated for Theorem 6, yet as in Theorem 8, have to choose the inverse order relation for
the lengths of the right-hand sides of the rules, as now the rules with the smallest right-hand sides have priority.

Given an arbitrary register machine M = (m, B, l0, lh, P) with n decrementable registers we will construct a corresponding
simple purely catalytic P system with two catalysts

� = (V , {c1, . . . , cn}, T , c1 . . . cnl0l′0,R)

simulating M . Without loss of generality, we may assume that the register machine M , as stated in Proposition 2 fulfills
the condition that on the output registers we never apply any SUB-instruction. Moreover, according to Remark 1 we may
assume that the first instruction is an ADD-instruction. Finally, we assume the n decrementable registers to be the first ones.

The following proof is elaborated for both the derivation modes min�objectsmax and minG E Nobjectsmax.
The main part of the proof is to show how to simulate the instructions of M in �; in all cases we have to take care that

all n catalysts are kept busy to guarantee that the simulation is executed in a correct way. As now we are only using non-
extendable multisets of rules, a catalyst can only stay idle if the underlying configuration does not contain any object which
can evolve together with the catalyst. On the other hand, the priority between different rules for a catalyst is guarded
by the number of objects on the right-hand side of the rules, which argument applies for both derivation modes under
consideration, as every rule in a purely catalytic P system has exactly two objects on its left-hand side.

Whenever possible, the dummy objects generated during the simulation steps have to be deleted immediately, as erasing
rules have highest priority:

ckd → ck,1 ≤ k ≤ n.

In order to keep both catalysts synchronized, the number of dummy objects throughout the computation has to be even.
In fact, the simulation of the next instruction can only start when all dummy objects have been erased by these n rules
ckd → ck , 1 ≤ k ≤ n, which also means that at any time of the computation in � the number of objects d must be a multiple
of n.

The main basis for choosing the right number of the objects d on the right-hand side of the rules again is based on the
importance and role of the rules
109

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
ckak → ckâkd3∗n, 1 ≤ k ≤ n,

which should only be applicable in the first step of the simulation of a decrement instruction on register k.

As usually done in corresponding proofs, the number of objects ar in a configuration represents the number stored
in register r at that moment of the computation. Objects ar for r > n are never changed again, as they represent output
registers.

V = {ar | 1 ≤ r ≤ m} ∪ {âr | 1 ≤ r ≤ n}
∪ {p, p′ | p ∈ BADD ∪ {lh}}
∪ {p, p′, p̄, p̂ | p ∈ BSUB(r),1 ≤ r ≤ n}
∪ {cr | 1 ≤ r ≤ n} ∪ {d},

T = {ar | n + 1 ≤ r ≤ m}.
The set R of catalytic rules can be captured from the description of how the simulation of the register machine instruc-

tions works as described in the following:

• p : (ADD (r) ,q, s), with p ∈ BADD , q, s ∈ B , 1 ≤ r ≤ m.

An ADD-instruction can be simulated in one step by letting every catalyst make one evolution step:

cReg(p) p → cReg(p)qq′ard1∗n D ′
n,Reg(q) or cReg(p) p → cReg(p)ss′ard1∗n D ′

n,Reg(s),

cReg(p)⊕n1 p′ → c2d2∗n.

All other catalysts ci with i ∈ [1..n] \ {Reg(p), Reg(p) ⊕n 1} are forced to apply the rule cidi → cid2∗n .
The smaller numbers of dummy objects d used in these rules above guarantee that they have priority over the rules
ckak → ckâkd3∗n .

• p : (SUB (r) ,q, s), with p ∈ B SU B , q, s ∈ B , 1 ≤ r ≤ n.

decrement case:

If the value of register r (denoted by |reg(r)|) is not zero then the number of register objects ar is decreased by one
using the corresponding rule crar → crârd3∗n in the first step of the simulation. In sum three steps are needed for the
simulation, see table below.

zero-test case:

If the value of register r is zero, then the corresponding catalyst is already free for eliminating the label object p so that
already in the second step of the simulation the simulation of the next instruction s can be initiated. In sum only two
steps are needed for the simulation of this case. The following table summarizes the rules to be used for the simulation
of the SUB-instruction on register r, r ∈ [1..n], i.e., we use the following rules, depending on the value of |reg(r)|; we
emphasize that the simulation is deterministic.

step |reg(r)| rule for cr⊕n+1 rule for cr

1 > 0 cr⊕n+1 p′ → cr⊕n+1 p̄d0∗n D ′
n,Reg(p) crar → crârd3∗n

= 0 cr⊕n+1 p′ → cr⊕n+1 p̄d0∗n D ′
n,Reg(p) cr p → crd4∗n

2 > 0 cr⊕n+1 p → cr⊕n+1d1∗n D ′
n,Reg(p) cr p̄ → cr p̂d2∗n

= 0 cr⊕n+1 p̄ → cr⊕n+1ss′d1∗n D ′
n,Reg(s)

3 > 0 cr⊕n+1âr → cr⊕n+1d2∗n cr p̂ → c1qq′d1∗n D ′
n,Reg(q)

As in the zero-test case no register object ar is present and all dummy objects have been erased before the second step
of the simulation starts, the catalyst cr stays idle in this second step of the zero-test case.

• lh : H ALT .

c1lh → c1dn and

c2l′h → c2

Due to the normal form of the register machine simulated by the P system, the two final labels lh and l′h can only appear
at the end of a computation, when no other objects than the catalyst c and the objects representing the contents of the
output registers are present any more in the configuration, i.e., these two rules are the last ones to be applied in a halting
computation before in the last step the last n objects d are erased. This observation concludes the proof. �
110

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
In sum, we then obtain the following result:

Corollary 11. Purely catalytic P systems working in any of the derivation modes min�objectsmax or minG E Nobjectsmax are computa-
tionally complete, i.e., they can compute any partial recursive relation on natural numbers.

5. Conclusion

In this paper we have continued our investigation of the new derivation modes maxG E Nobjectsmax, max�objectsmax,
maxG E Nobjects , and max�objects as introduced in [10], now applied in simple purely catalytic P systems. In contrast to the
proof technique used there for catalytic P systems, we here had to go back to the original construction as elaborated in [19],
yet also using ideas related to energy-controlled P systems as described in [4] in order to be able to show that two catalysts
are enough for generating all recursively enumerable sets of multisets.

Moreover, we could prove similar results for purely catalytic P systems working in the derivation modes minG E Nobjectsmax
and min�objectsmax. In sum, we have even shown that purely catalytic P systems working in any of the six derivation modes
mentioned above are computationally complete, i.e., they can compute any partial recursive relation on natural numbers.

The results obtained in this paper can also be extended to P systems dealing with strings, following the definitions and
notions as, for example, used in [25], thus showing computational completeness for computing with strings.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The authors gratefully thank the referees for their useful comments.
Artiom Alhazov acknowledges project 20.80009.5007.22 “Intelligent information systems for solving ill-structured prob-

lems, processing knowledge and big data” by the National Agency for Research and Development.
Rudolf Freund acknowledges the TU Wien Bibliothek for financial support through its Open Access Funding Programme.
Sergiu Ivanov is partially supported by the Paris region via the project DIM RFSI n◦2018-03 “Modèles informatiques pour

la reprogrammation cellulaire”.

References

[1] A. Alhazov, B. Aman, R. Freund, P systems with anti-matter, in: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, C. Zandron (Eds.), Membrane Com-
puting – 15th International Conference, CMC 2014, Prague, Czech Republic, August 20–22, 2014, in: Lecture Notes in Computer Science, vol. 8961,
Springer, 2014, Revised Selected Papers.

[2] A. Alhazov, B. Aman, R. Freund, Gh. Păun, Matter and anti-matter in membrane systems, in: H. Jürgensen, J. Karhumäki, A. Okhotin (Eds.), Descriptional
Complexity of Formal Systems – 16th International Workshop, DCFS 2014, Proceedings, Turku, Finland, August 5–8, 2014, in: Lecture Notes in Computer
Science, vol. 8614, Springer, 2014.

[3] A. Alhazov, R. Freund, P systems with toxic objects, in: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, C. Zandron (Eds.), Membrane Computing –
15th International Conference, CMC 2014, Prague, Czech Republic, August 20–22, 2014, in: Lecture Notes in Computer Science, vol. 8961, Springer,
2014, Revised Selected Papers.

[4] A. Alhazov, R. Freund, S. Ivanov, Variants of energy-controlled P systems, in: Proceedings of NIT 2016, 2016.
[5] A. Alhazov, R. Freund, S. Ivanov, Variants of P systems with activation and blocking of rules, Nat. Comput. 18 (3) (2019) 593–608.
[6] A. Alhazov, R. Freund, S. Ivanov, Catalytic P systems with weak priority of catalytic rules, in: R. Freund (Ed.), Proceedings ICMC 2020, September 14–18,

2020, TU Wien, 2020, pp. 67–82.
[7] A. Alhazov, R. Freund, S. Ivanov, P systems with limiting the number of objects in membranes, in: R. Freund (Ed.), Proceedings ICMC 2020, September

14–18, 2020, TU Wien, 2020, pp. 83–98.
[8] A. Alhazov, R. Freund, S. Ivanov, P systems with limited number of objects, J. Membr. Comput. 3 (2021) 1–9.
[9] A. Alhazov, R. Freund, S. Ivanov, When catalytic P systems with one catalyst can be computationally complete, J. Membr. Comput. 3 (3) (2021) 170–181.

[10] A. Alhazov, R. Freund, S. Ivanov, S. Verlan, Variants of simple P systems with one catalyst being computationally complete, in: Gy. Vaszil, C. Zandron,
G. Zhang (Eds.), International Conference on Membrane Computing ICMC 2021, Proceedings, 2021.

[11] A. Alhazov, R. Freund, M. Oswald, S. Verlan, Partial halting and minimal parallelism based on arbitrary rule partitions, Fundam. Inform. 91 (1) (2009)
17–34.

[12] A. Alhazov, R. Freund, P. Sosík, Small P systems with catalysts or anti-matter simulating generalized register machines and generalized counter au-
tomata, Comput. Sci. J. Mold. 23 (3) (2015) 304–328.

[13] A. Alhazov, R. Freund, S. Verlan, P systems working in maximal variants of the set derivation mode, in: A. Leporati, G. Rozenberg, A. Salomaa, C.
Zandron (Eds.), Membrane Computing – 17th International Conference, CMC 2016, Milan, Italy, July 25-29, 2016, in: Lecture Notes in Computer Science,
vol. 10105, Springer, 2017, Revised Selected Papers.

[14] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer, 1989.
[15] R. Freund, Energy-controlled P systems, in: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.), Membrane Computing, Springer, 2003, pp. 247–260.
[16] R. Freund, Purely catalytic P systems: two catalysts can be sufficient for computational completeness, in: A. Alhazov, S. Cojocaru, M. Gheorghe, Yu.

Rogozhin (Eds.), CMC14 Proceedings – The 14th International Conference on Membrane Computing, Chişinău, August 20–23, 2013, Institute of Mathe-
matics and Computer Science, Academy of Sciences of Moldova, 2013, pp. 153–166.
111

http://refhub.elsevier.com/S0304-3975(22)00149-9/bibE447F4070F7CDC42A9889D1B4E39744Bs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibE447F4070F7CDC42A9889D1B4E39744Bs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibE447F4070F7CDC42A9889D1B4E39744Bs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib8CB5D8D49F91FB1C3AB23CD8B4240EC2s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib8CB5D8D49F91FB1C3AB23CD8B4240EC2s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib8CB5D8D49F91FB1C3AB23CD8B4240EC2s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib6FFB4050F108BE67F0E689D43F80CE3Bs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib6FFB4050F108BE67F0E689D43F80CE3Bs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib6FFB4050F108BE67F0E689D43F80CE3Bs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib8F645669B70BD1ED6E65AD4907B808BDs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibC7F43665A0AFE04B2641794F50C1E0CFs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibB647D7D9022CBFEF9D5F392D78DA76B9s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibB647D7D9022CBFEF9D5F392D78DA76B9s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib9122C131670DF2926C9B3673A6B766CEs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib9122C131670DF2926C9B3673A6B766CEs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib48C1BDDB68BB768FCE837583A6A6DA41s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib2EFC3ADCCBC4A6C400B3795F6C0C2DF5s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibFF09712D36ADDFA98D881B6A70013900s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibFF09712D36ADDFA98D881B6A70013900s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib00ECAF68940A4F58CF966AE870B35D24s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib00ECAF68940A4F58CF966AE870B35D24s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib3594430C1B8B588EBBDDA59DA7371F4Es1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib3594430C1B8B588EBBDDA59DA7371F4Es1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib1CD9210AB9716A7ABD9DB1EC0C57B6B7s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib1CD9210AB9716A7ABD9DB1EC0C57B6B7s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib1CD9210AB9716A7ABD9DB1EC0C57B6B7s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib4931B6A6F48E33167B41550EFD67CEF1s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibBF1D75882761392C02310ED41479D47As1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib9465E78CCD4C1CC793397979FC04A1A4s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib9465E78CCD4C1CC793397979FC04A1A4s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib9465E78CCD4C1CC793397979FC04A1A4s1

A. Alhazov, R. Freund, S. Ivanov et al. Theoretical Computer Science 920 (2022) 95–112
[17] R. Freund, P automata: new ideas and results, in: H. Bordihn, R. Freund, B. Nagy, Gy. Vaszil (Eds.), Eighth Workshop on Non-Classical Models of
Automata and Applications, NCMA 2016, Debrecen, Hungary, August 29–30, 2016, Proceedings, in: books@ocg.at, vol. 321, Österreichische Computer
Gesellschaft, 2016.

[18] R. Freund, How derivation modes and halting conditions may influence the computational power of P systems, J. Membr. Comput. 2 (1) (2020) 14–25.
[19] R. Freund, L. Kari, M. Oswald, P. Sosík, Computationally universal P systems without priorities: two catalysts are sufficient, Theor. Comput. Sci. 330 (2)

(2005) 251–266.
[20] R. Freund, A. Leporati, G. Mauri, A.E. Porreca, S. Verlan, C. Zandron, Flattening in (tissue) P systems, in: A. Alhazov, S. Cojocaru, M. Gheorghe, Yu.

Rogozhin, G. Rozenberg, A. Salomaa (Eds.), Membrane Computing, in: Lecture Notes in Computer Science, vol. 8340, Springer, 2014, pp. 173–188.
[21] R. Freund, M. Oswald, Partial halting in P systems, Int. J. Found. Comput. Sci. 18 (6) (2007) 1215–1225.
[22] R. Freund, M. Oswald, Catalytic and purely catalytic P automata: control mechanisms for obtaining computational completeness, in: S. Bensch, F.

Drewes, R. Freund, F. Otto (Eds.), Fifth Workshop on Non-Classical Models for Automata and Applications, NCMA 2013, Umeå, Sweden, August 13 –
August 14, 2013, Proceedings, in: books@ocg.at, vol. 294, Österreichische Computer Gesellschaft, 2013.

[23] R. Freund, M. Oswald, Gh. Păun, Catalytic and purely catalytic P systems and P automata: control mechanisms for obtaining computational complete-
ness, Fundam. Inform. 136 (1–2) (2015) 59–84.

[24] R. Freund, Gh. Păun, How to obtain computational completeness in P systems with one catalyst, in: T. Neary, M. Cook (Eds.), Proceedings Machines,
Computations and Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11, 2013, in: EPTCS, vol. 128, 2013.

[25] R. Freund, P. Sosík, On the power of catalytic P systems with one catalyst, in: G. Rozenberg, A. Salomaa, J.M. Sempere, C. Zandron (Eds.), Membrane
Computing – 16th International Conference, CMC 2015, Valencia, Spain, August 17–21, 2015, in: Lecture Notes in Computer Science, vol. 9504, Springer,
2015, Revised Selected Papers.

[26] R. Freund, S. Verlan, A formal framework for static (tissue) P systems, in: G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Mem-
brane Computing, in: Lecture Notes in Computer Science, vol. 4860, Springer, 2007, pp. 271–284.

[27] K. Krithivasan, Gh. Păun, A. Ramanujan, On controlled P systems, Fundam. Inform. 131 (3–4) (2014) 451–464.
[28] M.L. Minsky, Computation. Finite and Infinite Machines, Prentice Hall, Englewood Cliffs, NJ, 1967.
[29] Gh. Păun, Computing with membranes, J. Comput. Syst. Sci. 61 (1) (2000) 108–143.
[30] Gh. Păun, Membrane Computing: An Introduction, Springer, 2002.
[31] Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), The Oxford Handbook of Membrane Computing, Oxford University Press, 2010.
[32] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer, 1997.
[33] The P Systems Website, http://ppage .psystems .eu/.
112

http://refhub.elsevier.com/S0304-3975(22)00149-9/bibE5AF9F8DD42B7C9EE93AF762BC0168F3s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibE5AF9F8DD42B7C9EE93AF762BC0168F3s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibE5AF9F8DD42B7C9EE93AF762BC0168F3s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib5FD8BD4565D04FF0EEC56557974AE7E9s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib9B431B89ED34C203DD98ED7EB86AAA39s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib9B431B89ED34C203DD98ED7EB86AAA39s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib45723D7A7828E0E6E4C80160983098D8s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib45723D7A7828E0E6E4C80160983098D8s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib8C1589057B7088AB460E26E64B25C7ABs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib54632F84F75F91AC6772DB9593348868s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib54632F84F75F91AC6772DB9593348868s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib54632F84F75F91AC6772DB9593348868s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib2480A7B50EAB4A127F05773396D19C77s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib2480A7B50EAB4A127F05773396D19C77s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibF62B3D6142AFCC4EB1A45FC6AB0FF2ECs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibF62B3D6142AFCC4EB1A45FC6AB0FF2ECs1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib2ECDC51D925F5F381578F194D9928490s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib2ECDC51D925F5F381578F194D9928490s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib2ECDC51D925F5F381578F194D9928490s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibB2F93D742FF92B5442682A2D61579382s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibB2F93D742FF92B5442682A2D61579382s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bibAD432A6FA2B6A280194350A70960237Ds1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib78BC230FC32FED2507F7860B59340A5Es1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib4A46F1B7A4FBD932399530948926DFC4s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib5B7EC066443F44E3B35466EB57FF02B4s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib5F40E4DF8F7C0593786A1C05FB860C48s1
http://refhub.elsevier.com/S0304-3975(22)00149-9/bib34643453EE5C480A11CAB40B2183E2C1s1
http://ppage.psystems.eu/

	Variants of derivation modes for which purely catalytic P systems are computationally complete
	1 Introduction
	2 Definitions
	2.1 Register machines
	2.2 Simple purely catalytic P systems
	2.3 Variants of derivation modes
	2.4 Computations in a P system

	3 Simple purely catalytic P systems working in the derivation modes max∆objectsmax, maxGENobjectsmax, max∆objects, or maxGE...
	4 Simple purely catalytic P systems working in the derivation modes min∆objectsmax or minGENobjectsmax
	5 Conclusion
	Declaration of competing interest
	Acknowledgements
	References

