
Expectation Complete Graph Embeddings
Using Graph Homomorphisms
Workshop: Hot Topics in Graph Neural Networks, GAIN Group, Uni Kassel

Maximilian Thiessen, Pascal Welke, and Thomas Gärtner
25.10.2022



Complete graph embeddings

Let G be the set of all (finite) graphs, V be a vector space (e.g., Rd)

A graph embedding ϕ ∶ G → V is permutation-invariant if

• For all isomorphic graphs G ≃ H: ϕ(G) = ϕ(H)

A permutation-invariant graph embedding ϕ is complete if

• for all non-isomorphic graphs G /≃ H ∶ ϕ(G) ≠ ϕ(H)

Maximilian Thiessen 1



Complete graph embeddings

Let G be the set of all (finite) graphs, V be a vector space (e.g., Rd)

A graph embedding ϕ ∶ G → V is permutation-invariant if

• For all isomorphic graphs G ≃ H: ϕ(G) = ϕ(H)

A permutation-invariant graph embedding ϕ is complete if

• for all non-isomorphic graphs G /≃ H ∶ ϕ(G) ≠ ϕ(H)

Maximilian Thiessen 1



Complete graph embeddings

Let G be the set of all (finite) graphs, V be a vector space (e.g., Rd)

A graph embedding ϕ ∶ G → V is permutation-invariant if

• For all isomorphic graphs G ≃ H: ϕ(G) = ϕ(H)

A permutation-invariant graph embedding ϕ is complete if

• for all non-isomorphic graphs G /≃ H ∶ ϕ(G) ≠ ϕ(H)

Maximilian Thiessen 1



Complete graph embeddings

Originated from complete graph kernels [Gärtner et al., COLT 2003]

• let H be a dot product space1

• graph kernel kϕ(G,H) = ⟨ϕ(G), ϕ(H)⟩H with ϕ ∶ G → H
• kϕ is complete if ϕ is complete

Maximilian Thiessen | 1formally a Hilbert space 2



Complete graph embeddings

Why do we care about complete graph embeddings?

Allow us to learn/approximate any permutation-invariant function!

Unfortunately computing any such embedding (or kernel) is as hard as deciding
graph isomorphism

• not known to be NP-hard and not known to be computable in
polynomial-time

Typical solution: drop completeness for efficiency

• most practical graph kernels, GNNs, Weisfeiler Leman test, …

Maximilian Thiessen 3



Complete graph embeddings

Why do we care about complete graph embeddings?

Allow us to learn/approximate any permutation-invariant function!

Unfortunately computing any such embedding (or kernel) is as hard as deciding
graph isomorphism

• not known to be NP-hard and not known to be computable in
polynomial-time

Typical solution: drop completeness for efficiency

• most practical graph kernels, GNNs, Weisfeiler Leman test, …

Maximilian Thiessen 3



Complete graph embeddings

Why do we care about complete graph embeddings?

Allow us to learn/approximate any permutation-invariant function!

Unfortunately computing any such embedding (or kernel) is as hard as deciding
graph isomorphism

• not known to be NP-hard and not known to be computable in
polynomial-time

Typical solution: drop completeness for efficiency

• most practical graph kernels, GNNs, Weisfeiler Leman test, …

Maximilian Thiessen 3



What if we keep completeness …

… but just in expectation

Maximilian Thiessen 4



Expectation complete graph embeddings

Let ϕX ∶ G → V depend on a random variable X drawn from a distr. D over a set X 1

We call ϕX complete in expectation if the expectation

E
X∼D

[ϕX(⋅)] = ∑
t∈X

Pr(X = t)ϕt(⋅)

is a complete graph embedding

What is the benefit?

Sampling X1, X2, X3, . . . will eventually make the
joint embedding (ϕX1(G), ϕX2(G), ϕX3(G), . . . ) arbitrarily expressive

Maximilian Thiessen | 1here assumed to be countable, but any set with a probability distribution would do 5



Expectation complete graph embeddings

Let ϕX ∶ G → V depend on a random variable X drawn from a distr. D over a set X 1

We call ϕX complete in expectation if the expectation

E
X∼D

[ϕX(⋅)] = ∑
t∈X

Pr(X = t)ϕt(⋅)

is a complete graph embedding

What is the benefit?

Sampling X1, X2, X3, . . . will eventually make the
joint embedding (ϕX1(G), ϕX2(G), ϕX3(G), . . . ) arbitrarily expressive

Maximilian Thiessen | 1here assumed to be countable, but any set with a probability distribution would do 5



Expectation complete graph embeddings

Let ϕX ∶ G → V depend on a random variable X drawn from a distr. D over a set X 1

We call ϕX complete in expectation if the expectation

E
X∼D

[ϕX(⋅)] = ∑
t∈X

Pr(X = t)ϕt(⋅)

is a complete graph embedding

What is the benefit?

Sampling X1, X2, X3, . . . will eventually make the
joint embedding (ϕX1(G), ϕX2(G), ϕX3(G), . . . ) arbitrarily expressive

Maximilian Thiessen | 1here assumed to be countable, but any set with a probability distribution would do 5



What if we keep completeness …
… but just in expectation

… in polynomial time

Maximilian Thiessen 6



Graph homomorphisms and Lovász’ theorem

Let F,G be graphs. A map ϕ ∶ V(F) → V(G) is a graph homomorphism if

• ϕ preserves edges: {v,w} ∈ E(F) implies {ϕ(v), ϕ(w)} ∈ E(G)

We denote by hom(F,G) the number of homomorphisms from F to G

Maximilian Thiessen 7



Graph homomorphisms and Lovász’ theorem

Let
ϕ∞(G) = hom(G,G) = ((hom(F,G))F∈G

denote the countable vector of homomorphism counts indexed by F ∈ G

Theorem [Lovász 1967]. Two graphs G and H are isomorphic iff ϕ∞(G) = ϕ∞(H)

⇒ ϕ∞(⋅) is complete!

Our goal: sample from ϕ∞ to devise an efficiently computable and expectation
complete embedding

Maximilian Thiessen 8



Graph homomorphisms and Lovász’ theorem

Let
ϕ∞(G) = hom(G,G) = ((hom(F,G))F∈G

denote the countable vector of homomorphism counts indexed by F ∈ G

Theorem [Lovász 1967]. Two graphs G and H are isomorphic iff ϕ∞(G) = ϕ∞(H)

⇒ ϕ∞(⋅) is complete!

Our goal: sample from ϕ∞ to devise an efficiently computable and expectation
complete embedding

Maximilian Thiessen 8



Graph homomorphisms and Lovász’ theorem

Let
ϕ∞(G) = hom(G,G) = ((hom(F,G))F∈G

denote the countable vector of homomorphism counts indexed by F ∈ G

Theorem [Lovász 1967]. Two graphs G and H are isomorphic iff ϕ∞(G) = ϕ∞(H)

⇒ ϕ∞(⋅) is complete!

Our goal: sample from ϕ∞ to devise an efficiently computable and expectation
complete embedding

Maximilian Thiessen 8



Graph homomorphisms and Lovász’ theorem

Let
ϕ∞(G) = hom(G,G) = ((hom(F,G))F∈G

denote the countable vector of homomorphism counts indexed by F ∈ G

Theorem [Lovász 1967]. Two graphs G and H are isomorphic iff ϕ∞(G) = ϕ∞(H)

⇒ ϕ∞(⋅) is complete!

Our goal: sample from ϕ∞ to devise an efficiently computable and expectation
complete embedding

Maximilian Thiessen 8



Why graph homomorphisms

They capture important graph properties:

Maximilian Thiessen 9



Why graph homomorphisms

They capture aspects important for learning:

Universality: Any permutation-invariant function f ∶ G → Rd can be approximated
arbitrarily well by a polynomial of {hom(F,G) ∣ F ∈ G} [NT and Maehara, 2020]

Maximilian Thiessen 10



Why graph homomorphisms

They capture aspects important for learning:

Universality: Any permutation-invariant function f ∶ G → Rd can be approximated
arbitrarily well by a polynomial of {hom(F,G) ∣ F ∈ G} [NT and Maehara, 2020]

Maximilian Thiessen 10



Why graph homomorphisms

They can be used for subgraph counting [Curticapean et al., STOC 2017]

Maximilian Thiessen 11



Expectation complete embeddings on Gn

Let

• Gn be the set of graphs with up to n vertices,
• D a distribution on Gn with full support,
• a random pattern F ∼ D, and
• ϕn(⋅) = hom(Gn, ⋅)

Define
ϕF(G) = (ϕn(G))F

which samples the ‘Fth’ entry of ϕn

Theorem. ϕF is complete in expectation (on Gn)

Maximilian Thiessen 12



Expectation complete embeddings on Gn

Let

• Gn be the set of graphs with up to n vertices,
• D a distribution on Gn with full support,
• a random pattern F ∼ D, and
• ϕn(⋅) = hom(Gn, ⋅)

Define
ϕF(G) = (ϕn(G))F

which samples the ‘Fth’ entry of ϕn

Theorem. ϕF is complete in expectation (on Gn)

Maximilian Thiessen 12



Expectation complete embeddings on Gn

Let

• Gn be the set of graphs with up to n vertices,
• D a distribution on Gn with full support,
• a random pattern F ∼ D, and
• ϕn(⋅) = hom(Gn, ⋅)

Define
ϕF(G) = (ϕn(G))F

which samples the ‘Fth’ entry of ϕn

Theorem. ϕF is complete in expectation (on Gn)

Maximilian Thiessen 12



Expectation complete embeddings on Gn

Let

• Gn be the set of graphs with up to n vertices,
• D a distribution on Gn with full support,
• a random pattern F ∼ D, and
• ϕn(⋅) = hom(Gn, ⋅)

Define
ϕF(G) = (ϕn(G))F

which samples the ‘Fth’ entry of ϕn

Theorem. ϕF is complete in expectation (on Gn)

Maximilian Thiessen 12



Expectation complete embeddings on G?

Can we generalise to all finite graphs G?

Problem: ϕ∞ does not yield a norm / dot product

• e.g., ∣ϕ∞(G)∣2 = ⟨ϕ∞(G), ϕ∞(G)⟩ = ∞ in most cases

Solution: only count patterns up to ∣V(G)∣:

ϕ∞(G) = (hom∣V(G)∣(F,G))F∈G where

hom∣V(G)∣(F,G) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

hom(F,G) if ∣V(F)∣ ≤ ∣V(G)∣ ,
0 if ∣V(F)∣ > ∣V(G)∣ .

Theorem. ϕ∞(⋅) is complete and kmin(G,H) = ⟨ϕ∞(G), ϕ∞(H)⟩ is a complete
graph kernel.

Maximilian Thiessen 13



Expectation complete embeddings on G?

Can we generalise to all finite graphs G?

Problem: ϕ∞ does not yield a norm / dot product

• e.g., ∣ϕ∞(G)∣2 = ⟨ϕ∞(G), ϕ∞(G)⟩ = ∞ in most cases

Solution: only count patterns up to ∣V(G)∣:

ϕ∞(G) = (hom∣V(G)∣(F,G))F∈G where

hom∣V(G)∣(F,G) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

hom(F,G) if ∣V(F)∣ ≤ ∣V(G)∣ ,
0 if ∣V(F)∣ > ∣V(G)∣ .

Theorem. ϕ∞(⋅) is complete and kmin(G,H) = ⟨ϕ∞(G), ϕ∞(H)⟩ is a complete
graph kernel.

Maximilian Thiessen 13



Expectation complete embeddings on G?

Can we generalise to all finite graphs G?

Problem: ϕ∞ does not yield a norm / dot product

• e.g., ∣ϕ∞(G)∣2 = ⟨ϕ∞(G), ϕ∞(G)⟩ = ∞ in most cases

Solution: only count patterns up to ∣V(G)∣:

ϕ∞(G) = (hom∣V(G)∣(F,G))F∈G where

hom∣V(G)∣(F,G) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

hom(F,G) if ∣V(F)∣ ≤ ∣V(G)∣ ,
0 if ∣V(F)∣ > ∣V(G)∣ .

Theorem. ϕ∞(⋅) is complete and kmin(G,H) = ⟨ϕ∞(G), ϕ∞(H)⟩ is a complete
graph kernel.

Maximilian Thiessen 13



Expectation complete embeddings on G?

Can we generalise to all finite graphs G?

Problem: ϕ∞ does not yield a norm / dot product

• e.g., ∣ϕ∞(G)∣2 = ⟨ϕ∞(G), ϕ∞(G)⟩ = ∞ in most cases

Solution: only count patterns up to ∣V(G)∣:

ϕ∞(G) = (hom∣V(G)∣(F,G))F∈G where

hom∣V(G)∣(F,G) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

hom(F,G) if ∣V(F)∣ ≤ ∣V(G)∣ ,
0 if ∣V(F)∣ > ∣V(G)∣ .

Theorem. ϕ∞(⋅) is complete and kmin(G,H) = ⟨ϕ∞(G), ϕ∞(H)⟩ is a complete
graph kernel.

Maximilian Thiessen 13



Computational complexity

Computing hom(F,G) is NP-hard in general.

If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]:

O (∣V(F)∣∣V(G)∣tw(F)+1)

Idea: define distribution D on Gn s.t. runtime is polynomial in expectation!

General recipe:

1. pick n as the maximum number of vertices in the training set
2. sample treewidth upper bound k
3. sample a maximal graph F′ with treewidth k
4. take a random subgraph F of F′

E.g., k ∼ Poisson(λ) with λ ≤
1+d log n

n guarantees runtime O (∣V(G)∣d+2)

Maximilian Thiessen 14



Computational complexity

Computing hom(F,G) is NP-hard in general.

If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]:

O (∣V(F)∣∣V(G)∣tw(F)+1)

Idea: define distribution D on Gn s.t. runtime is polynomial in expectation!

General recipe:

1. pick n as the maximum number of vertices in the training set
2. sample treewidth upper bound k
3. sample a maximal graph F′ with treewidth k
4. take a random subgraph F of F′

E.g., k ∼ Poisson(λ) with λ ≤
1+d log n

n guarantees runtime O (∣V(G)∣d+2)

Maximilian Thiessen 14



Computational complexity

Computing hom(F,G) is NP-hard in general.

If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]:

O (∣V(F)∣∣V(G)∣tw(F)+1)

Idea: define distribution D on Gn s.t. runtime is polynomial in expectation!

General recipe:

1. pick n as the maximum number of vertices in the training set
2. sample treewidth upper bound k
3. sample a maximal graph F′ with treewidth k
4. take a random subgraph F of F′

E.g., k ∼ Poisson(λ) with λ ≤
1+d log n

n guarantees runtime O (∣V(G)∣d+2)

Maximilian Thiessen 14



Computational complexity

Computing hom(F,G) is NP-hard in general.

If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]:

O (∣V(F)∣∣V(G)∣tw(F)+1)

Idea: define distribution D on Gn s.t. runtime is polynomial in expectation!

General recipe:

1. pick n as the maximum number of vertices in the training set
2. sample treewidth upper bound k
3. sample a maximal graph F′ with treewidth k
4. take a random subgraph F of F′

E.g., k ∼ Poisson(λ) with λ ≤
1+d log n

n guarantees runtime O (∣V(G)∣d+2)
Maximilian Thiessen 14



Practical embedding

Fix ` ∈ N, e.g., ` = 30

Sample F1, . . . , F` from D, which guarantees completeness and poly-time in
expectation

Construct

ϕ
`(G) =

⎛
⎜⎜⎜⎜
⎝

hom(F1,G)
⋮

hom(F`,G)

⎞
⎟⎟⎟⎟
⎠

Theorem. ϕ` is complete in expectation and can be computed in polynomial time
in expectation.

Maximilian Thiessen 15



Practical embedding

Fix ` ∈ N, e.g., ` = 30

Sample F1, . . . , F` from D, which guarantees completeness and poly-time in
expectation

Construct

ϕ
`(G) =

⎛
⎜⎜⎜⎜
⎝

hom(F1,G)
⋮

hom(F`,G)

⎞
⎟⎟⎟⎟
⎠

Theorem. ϕ` is complete in expectation and can be computed in polynomial time
in expectation.

Maximilian Thiessen 15



Practical embedding

Fix ` ∈ N, e.g., ` = 30

Sample F1, . . . , F` from D, which guarantees completeness and poly-time in
expectation

Construct

ϕ
`(G) =

⎛
⎜⎜⎜⎜
⎝

hom(F1,G)
⋮

hom(F`,G)

⎞
⎟⎟⎟⎟
⎠

Theorem. ϕ` is complete in expectation and can be computed in polynomial time
in expectation.

Maximilian Thiessen 15



Experiments

Deterministic embeddings as baseline [NT and Maehara, ICML 2020]

• GHC-tree(6): all tree patterns up to size 6
• GHC-cycle(8): all cycle patterns up to size 8

Additionally:

• graph neural tangent kernel (GNTK) [Du et al., NeurIPS 2019]
• GIN [Xu et al., ICLR 2019]

Maximilian Thiessen 16



Experiments

method MUTAG IMDB-BIN IMDB-MULTI PAULUS25 CSL

GHC-tree(6) 89.28 ± 8.26 72.10 ± 2.62 48.60 ± 4.40 7.14 ± 0.00 10.00 ± 0.00
GHC-cycle(8) 87.81 ± 7.46 70.93 ± 4.54 47.41 ± 3.67 7.14 ± 0.00 100.00 ± 0.00
GNTK 89.46 ± 7.03 75.61 ± 3.98 51.91 ± 3.56 7.14 ± 0.00 10.00 ± 0.00
GIN 89.40 ± 5.60 70.70 ± 1.10 43.20 ± 2.00 7.14 ± 0.00 10.00 ± 0.00

ours (SVM) 87.94 ± 0.01 70.37 ± 0.01 47.34 ± 0.01 100.00 ± 0.00 37.33 ± 0.1
ours (MLP) 88.55 ± 0.01 70.81 ± 0.01 48.29 ± 0.01 40.524 ± 0.00 13.27± 0.01

Maximilian Thiessen 17



Experiments

method MUTAG IMDB-BIN IMDB-MULTI PAULUS25 CSL

GHC-tree(6) 89.28 ± 8.26 72.10 ± 2.62 48.60 ± 4.40 7.14 ± 0.00 10.00 ± 0.00
GHC-cycle(8) 87.81 ± 7.46 70.93 ± 4.54 47.41 ± 3.67 7.14 ± 0.00 100.00 ± 0.00
GNTK 89.46 ± 7.03 75.61 ± 3.98 51.91 ± 3.56 7.14 ± 0.00 10.00 ± 0.00
GIN 89.40 ± 5.60 70.70 ± 1.10 43.20 ± 2.00 7.14 ± 0.00 10.00 ± 0.00

ours (SVM) 87.94 ± 0.01 70.37 ± 0.01 47.34 ± 0.01 100.00 ± 0.00 37.33 ± 0.1
ours (MLP) 88.55 ± 0.01 70.81 ± 0.01 48.29 ± 0.01 40.524 ± 0.00 13.27± 0.01

Maximilian Thiessen 17



Experiments

method MUTAG IMDB-BIN IMDB-MULTI PAULUS25 CSL

GHC-tree(6) 89.28 ± 8.26 72.10 ± 2.62 48.60 ± 4.40 7.14 ± 0.00 10.00 ± 0.00
GHC-cycle(8) 87.81 ± 7.46 70.93 ± 4.54 47.41 ± 3.67 7.14 ± 0.00 100.00 ± 0.00
GNTK 89.46 ± 7.03 75.61 ± 3.98 51.91 ± 3.56 7.14 ± 0.00 10.00 ± 0.00
GIN 89.40 ± 5.60 70.70 ± 1.10 43.20 ± 2.00 7.14 ± 0.00 10.00 ± 0.00

ours (SVM) 87.94 ± 0.01 70.37 ± 0.01 47.34 ± 0.01 100.00 ± 0.00 37.33 ± 0.1
ours (MLP) 88.55 ± 0.01 70.81 ± 0.01 48.29 ± 0.01 40.524 ± 0.00 13.27± 0.01

Maximilian Thiessen 17



Experiments

method MUTAG IMDB-BIN IMDB-MULTI PAULUS25 CSL

GHC-tree(6) 89.28 ± 8.26 72.10 ± 2.62 48.60 ± 4.40 7.14 ± 0.00 10.00 ± 0.00
GHC-cycle(8) 87.81 ± 7.46 70.93 ± 4.54 47.41 ± 3.67 7.14 ± 0.00 100.00 ± 0.00
GNTK 89.46 ± 7.03 75.61 ± 3.98 51.91 ± 3.56 7.14 ± 0.00 10.00 ± 0.00
GIN 89.40 ± 5.60 70.70 ± 1.10 43.20 ± 2.00 7.14 ± 0.00 10.00 ± 0.00

ours (SVM) 87.94 ± 0.01 70.37 ± 0.01 47.34 ± 0.01 100.00 ± 0.00 37.33 ± 0.1
ours (MLP) 88.55 ± 0.01 70.81 ± 0.01 48.29 ± 0.01 40.524 ± 0.00 13.27± 0.01

Maximilian Thiessen 17



Research direction

Choose number of patterns ` and distribution D adaptively:

• stop sampling when expressive enough
• pick D based on the task or a given dataset
• frequent / interesting patterns

Going beyond expressiveness: similarity!

• if G ≈ H then ϕ(G) ≈ ϕ(H)
• possible solution: cut distance (captures local and global properties)

Randomness for powerful graph embeddings

Maximilian Thiessen 18



Research direction

Choose number of patterns ` and distribution D adaptively:

• stop sampling when expressive enough
• pick D based on the task or a given dataset
• frequent / interesting patterns

Going beyond expressiveness: similarity!

• if G ≈ H then ϕ(G) ≈ ϕ(H)
• possible solution: cut distance (captures local and global properties)

Randomness for powerful graph embeddings

Maximilian Thiessen 18



Research direction

Choose number of patterns ` and distribution D adaptively:

• stop sampling when expressive enough
• pick D based on the task or a given dataset
• frequent / interesting patterns

Going beyond expressiveness: similarity!

• if G ≈ H then ϕ(G) ≈ ϕ(H)
• possible solution: cut distance (captures local and global properties)

Randomness for powerful graph embeddings
Maximilian Thiessen 18



Pointers

Talk mostly based on

• M.T.*, Pascal Welke*, and Thomas Gärtner [GLFrontiers@NeurIPS 2022]

Further related work

• Martin Grohe. “word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of
structured data.” [PoDS 2022]

• Pascal Kühner. Master Thesis: “Graph Embeddings Based on Homomorphism Counts.” [2021]

• Pablo Barceló, et al. “Graph Neural Networks with Local Graph Parameters.” [NeurIPS 2021]

• Paul Beaujean et al., “Graph Homomorphism Features: Why Not Sample?” [GEM@ECMLPKDD 2021]

• Hoang Nguyen and Takanori Maehara. ”Graph homomorphism convolution.” [ICML 2020]

• Lingfei Wu, et al. “Scalable Global Alignment Graph Kernel Using Random Features: From Node Embedding
to Graph Embedding.” [KDD 2019]

• Till Schulz, et al. “Mining Tree Patterns with Partially Injective Homomorphisms” [ECMLPKDD 2018]

Maximilian Thiessen | *equal contribution. 19


