Advanced Visualization and Interaction in
GLSP-based Web Modeling: Realizing
Semantic Zoom and Off-Screen Elements

Giuliano De Carlo
TU Wien, Business Informatics Group
Vienna, Austria
€1526998@student.tuwien.ac.at

ABSTRACT

Conceptual modeling is widely adopted in industrial practices, e.g.,
process, software, and systems modeling. Providing adequate and
usable modeling tools is essential for the efficient adoption of mod-
eling. Metamodeling platforms provide a rich set of functionalities
and maturely realize state-of-the-art modeling tools. However, de-
spite their maturity and stability, most of these platforms only
slowly - if at all - leverage the full extent of functionalities and the
ease of exploitation and integration enabled by web technologies.
With the Graphical Language Server Protocol (GLSP), it is now
possible to realize much richer, advanced opportunities for visualiz-
ing and interacting with conceptual models. This paper presents a
concept and a prototypical implementation of two advanced model
visualization and interaction functionalities with the Eclipse GLSP
platform: Semantic Zoom and Off-Screen Elements. We believe such
advanced functionalities pave the way for a prosperous modeling
future and spark innovation in modeling tool development.

CCS CONCEPTS

. Software and its engineering — System description lan-
guages; - Human-centered computing — Interactive systems
and tools.

KEYWORDS

Modeling tools, Web Modeling, Language Server Protocol, Visual-
ization

ACM Reference Format:

Giuliano De Carlo, Philip Langer, and Dominik Bork. 2022. Advanced Visu-
alization and Interaction in GLSP-based Web Modeling: Realizing Semantic
Zoom and Off-Screen Elements. In ACM/IEEE 25th International Conference
on Model Driven Engineering Languages and Systems (MODELS °22), October

23-28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3550355.3552412

1 INTRODUCTION

Technology usage forms an essential part of our private and pro-
fessional lives. Accessing the right tools and knowing how to use
them correctly can save time and effort. The connection between

This work is licensed under a Creative Commons Attribution International 4.0 License.

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9466-6/22/10.
https://doi.org/10.1145/3550355.3552412

Philip Langer
Eclipsesource
Vienna, Austria
planger@eclipsesource.com

Dominik Bork
TU Wien, Business Informatics Group
Vienna, Austria
dominik . bork@tuwien.ac.at

the user of a tool and the tool itself is usually its user interface and
the supported interactions that come with it. While the functionali-
ties of a tool also play a significant role, without a graphical user
interface that offers good visualization of its information, tools are
often labeled as not very useful [17, 31]. This is especially important
in conceptual modeling, where information visualization makes up
a central aspect that directly influences the comprehensiveness of
models and the usability and ease of use of modeling tools [11, 35].
Tool development is therefore denoted as an essential part of enter-
prise and business information systems modeling [11, 35] research.
However, past research primarily focused on the development of
new and the evaluation [4, 34] and improvement of existing model-
ing languages [5].

Today, model engineering has many different tools at its dis-
posal. Most of these tools are mature applications that have been
actively worked on over a relatively long period but have barely
evolved in recent years [16, 17]. Their functionalities are often
built on older technology stacks, i.e., they are not compatible with
state-of-the-art web technologies. Adding advanced visualization
and interaction functionality to them is often impossible without
changing the software’s underlying foundation, resulting in con-
siderable development overhead. Although the results produced
with such tools are still unsurpassed, the functionality, especially
concerning information visualization and interaction, often lacks
advanced techniques. A recent study yielded one of the fundamen-
tal challenges of modelers engaged with model-driven engineering
is "remembering contextual information" [31, p. 233].

Advanced techniques like semantic zooming and off-screen ele-
ments could speed up the model development process. It could also
improve usability and ease of use of the tools and comprehension of
conceptual models by humans. Web technologies have been heavily
used and improved over the previous years and offer a wide range of
great functionalities, which is why they are the perfect fit to develop
such advanced techniques. Compared to platforms used in most
traditional modeling tools, web technologies provide a future-proof,
feature-rich, robust, and efficient foundation for state-of-the-art
visualization and interaction techniques. This work takes the first
steps toward realizing semantic zoom and off-screen elements as
concrete advanced visualization and interaction techniques with
the Eclipse Graphical Language Server Protocol (GLSP) platform?,
thereby contributing concepts and prototypical solutions to the
identified research challenges [31].

! The resulting artefacts are open source. The latest version via: https://github.com/glsp-
extensions, this paper’s version permanently via: https://doi.org/10.5281/zenodo.70079
21

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://orcid.org/0000-0001-8259-2297
https://doi.org/10.1145/3550355.3552412
https://doi.org/10.1145/3550355.3552412
https://github.com/glsp-extensions
https://github.com/glsp-extensions
https://doi.org/10.5281/zenodo.7007921
https://doi.org/10.5281/zenodo.7007921
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

In the remainder of this paper, Section 2 briefly introduces the
foundations and reports on related works. The concepts for realizing
semantic zoom and off-screen elements are introduced in Section 3.
The implementation of these concepts is reported in Section 4 and
evaluated in Section 5. Eventually, Section 6 concludes the paper
and provides directions for future research.

2 FOUNDATIONS AND RELATED WORK

In this section, we briefly introduce the foundations of the Eclipse
Graphical Language Server Platform (Eclipse GLSP) and advanced
model visualization & interaction before reporting on related works.

2.1 Eclipse GLSP

Even though the traditional client-server architecture started to
gain acceptance in the late 1980’s [36] and has since been applied to
many significant developments such as the web, only recently has it
reached the world of software development in the form of language
servers. The language server protocol (LSP), recently introduced
by Microsoft, RedHat, and Codeenvy in 2016 [6], is gaining inter-
est in the scientific community. LSP splits today’s heavy-weight
monolithic IDE approaches into a client and a server. LSP stan-
dardizes the communication between these two components to
synchronize client and server. Currently, version 3.17 of the pro-
tocol describes 40 different messages between client and server
and has an implementation for over 100 different programming
languages/technologies [25, 26].

Initially, LSP has only been defined and used for text-based lan-
guages. Still, it was quickly discovered that this concept could
also be applied to other areas, one of them being graphical lan-
guages [33]. The Eclipse Graphical Language Server Platform (Eclipse
GLSP) [10] is an open-source framework that uses an LSP-like pro-
tocol to enable diagram editing via a client/server architecture.
The server is responsible for model management, the model logic,
validation, and applying changes to the model(s). It supports the
Eclipse Modeling Framework (EMF), based on which many model-
ing languages and their language-specific logic are already imple-
mented. The server is written in the programming languages Java
or TypeScript, exposing an inter-process communication interface
via WebSocket or TCP socket connection.

The client is mainly responsible for rendering the graphical
representation of a model and handling user interactions. Graphical
elements are rendered as an SVG element inside a browser with
the help of Eclipse Sprotty?. User interactions with the client may
result in actions, which are, depending on their type, either handled
locally on the client, e.g., for panning, zooming, or visual feedback,
or they are transferred to the server, e.g., to perform a manipulation
of the underlying model(s). If an action on the server results in a
model change that affects the diagram, the server processes the
change. It sends a new version of the diagram to be rendered with
an UpdateModelAction back to the client to refresh the diagram
view.

The client/server communication utilizes a protocol similar to
Microsoft’s LSP. As mentioned above, the communication between
both entities is based on actions (see Figure 1). While many actions
are reused from Sprotty, e.g., for model transfer and client-local

Zhttps://github.com/eclipse/sprotty (Accessed: 16.05.2022)

De Carlo et al.

Client DI Module Palette Item
Node Provider
Validator —

Action Handler

Action Action
Dispatcher Dispatcher

Action Handler

Set Marker Update Model

Set Palette Actions -

Server DI Module

Figure 1: Eclipse Action Life-cycle, adapted from*

actions, many new ones are also added. They include model-specific
actions, such as CreateNodeOperation which adds a node to the cur-
rent model, editor-specific actions, such as SetClipboardDataAction,
which copies data to the clipboard, and Undo-/RedoOperation. A full
list of operations can be found in the GLSP protocol specification.

2.2 Advanced Model Visualization & Interaction

Under advanced visualization and interaction features, we under-
stand original means that go beyond the traditional methods seen in
almost all user interfaces of today, e.g., dynamic, context-sensitive,
and interactive representation. While current modeling tools mostly
lack such features (cf. [7] for a recent survey), as users, we are used
to working with such tools (e.g., zooming in Google Maps or com-
puter games [20]). The Level of Detail (LoD) forms an integral part
of such advanced functionality and will be the main topic in this
work. LoD enables the differentiated representation of model ele-
ments depending on various contextual factors such as, e.g., the
current zoom level, the distance (to other elements), or the impor-
tance of an element. The motivation behind these approaches is that
they can help reduce the complexity of the displayed information
in certain situations and foster efficient human processing.

Using multiple LoDs goes back to works like Donelson’s [8]
which describes an information management system with multiple
displays, one showing specific information and the other showing
a shrunken version to help with navigation. Another influential
work is the interface model "Pad" [30] from 1993. Pad is an interface
shared among users, showing information in multiple LoD. It uses
different views- or portals- to show more details about specific parts
of an information source. Based on these concepts, many other
ideas were proposed, among them are fisheye views [1, 14, 32],
semantic zooming [13, 23, 24, 29, 30], lenses [38], and off-screen
elements [40].

2.3 Related Work

In this section, we report on findings related to our notion of ad-
vanced visualization and interaction. We are thus interested in
methods that, unlike, e.g., basic zooming or scrolling, were devel-
oped more recently and ideally added a noticeable benefit to the
usage of a tool. Because of the wide range of tools that exist nowa-
days, many exciting and advanced features can be found in all kinds

3https://github.com/eclipse- glsp/glsp/blob/master/PROTOCOL.md (Accessed:
06.05.2022)
“https://www.eclipse.org/glsp/documentation/actionhandler/ (Accessed: 06.05.2022)

https://github.com/eclipse/sprotty
https://github.com/eclipse-glsp/glsp/blob/master/PROTOCOL.md
https://www.eclipse.org/glsp/documentation/actionhandler/

Semantic Zoom and Off-Screen Elements in GLSP-based Web Modeling

of domains. To name an example outside of the model engineering
field: Many code/text editors expanded the scroll bar and, instead of
simply showing the typical blanc bar, displayed a miniature version
of the file that is currently opened to increase spatial awareness of
the workspace. Others use the scroll bar to show indicators for, e.g.,
contextual information about off-screen elements or search results.

Narrowing the scope to diagramming tools, we have tools like
yEdS, MS Visio®, or Visual Paradigm7, which offer features such as
creating groups of diagram elements, expanding/collapsing model
elements, model decomposition, and first realizations of zooming.

Not many of such advanced features are provided by (meta-
)modeling platforms yet [7]. While some of them do offer advanced
features, such as model decomposition in MetaEdit+® or Enterprise
Architect®, or a minimap of the current workspace in the Eclipse
Modeling Tools'® or MetaModelAgent!!, they do not provide any
recent state-of-the-art functionalities like semantic zooming.

Because of this gap, we looked at recent literature to find po-
tential features that can be added to (meta-)modeling platforms.
Our findings included various exciting features in different cate-
gories, such as speed-dependent automatic zooming [21] or onion-
graphs [22]. We considered the most promising categories: semantic
zooming and off-screen elements. Visualizing off-screen elements
improves spatial awareness and may even provide quick means of
navigating the workspace. Different variations of this concept can
be found throughout the literature [2, 12, 18, 19, 38, 40]. Semantic
zooming provides the ability to keep the workspace clean by only
showing the most relevant information for the current zoom level
(i.e., LoD). It has been applied to tools in different fields, among
them software development [37, 39], parallel computing [23], video
editing [24] or text documents [9, 29], and UML diagrams [13].
We believe semantic zoom and off-screen elements are good first
candidates to mitigate the "remembering contextual information”
problem [31, p. 233].

3 CONCEPT

This section introduces the concepts we developed to realize seman-
tic zoom and off-screen elements on a GLSP-based environment.

3.1 Semantic Zoom

Semantic zooming allows a user to change the graphical represen-
tation of a model by zooming in or out. Depending on the current
zoom level, an object can either show more or fewer details but
always remains visible in one form or another. At the lowest zoom
level, this could, e.g., only be their title or outlines. The further
the user zooms in, the more details are seamlessly added until all
details are shown at the highest level. An example can be seen in
Figure 3, which shows the same model element in four different
levels of detail.

Shttps://www.yworks.com/products/yed (Accessed 06.05.2022)
Shttps://www.microsoft.com/en-us/microsoft-365/visio (Accessed: 06.05.2022)
"https://www.visual-paradigm.com/ (Accessed: 06.05.2022)
Shttps://www.metacase.com/mep/ (Accessed 06.05.2022)
“https://sparxsystems.com/products/ea/index.html (Accessed: 06.05.2022)
Ohttps://www.eclipse.org/downloads/packages/release/2022-03/t/eclipse-modeling-
tools (Accessed: 06.05.2022)

Hhttps://www.metamodelagent.com/ (Accessed: 06.05.2022)

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

3.1.1 Level of Detail. The idea behind this concept is to allow
language server developers to define an arbitrary number of discrete
LoDs on the server. These levels can then be used throughout the
server and the client. They consist of a name and a zoom level
range (from and to) defined as [from,to[. This range is used to
determine when a discrete LoD is active. If from is omitted, it is
treated as —oo, if to is omitted, it is treated as co. Developers can
use their interpretation of a zoom level and these values. However,
because the zoom level is exchanged between client and server, both
must have the same interpretation. In the implementation of this
prototype, the zoom level is a number x > 0 where 1 is considered
the default zoom level. Everything above 1 is zoomed out, and
everything below 1 is zoomed in. This is done because Sprotty
uses the natural exponential function on the deltaY value of the
standardized Ul DOM events to calculate the current zoom level of
the viewport. The four defined discrete LoD (as seen in Figure 3 left
to right) are as follows: overview [1.25, co], intermediate [0.5, 1.25),
intermediate detail [0.25,0.5), and detail [0, 0.25). Developers are
responsible for the correct and complete range coverage; gaps or
overlapping levels may lead to undefined behavior in the current
implementation.

All defined discrete LoDs can be requested by the client with the
RequestDiscreteLevelOfDetail action. Because they are needed to
render the model, this action is usually one of the first dispatched
to the server. The server responds with a SetDiscreteLevelOfDetail
action, which includes all discrete LODs in the JSON format. This
information only has to be requested once and can be cached by
the client because it is not subject to change.

3.1.2 Rules. LoD rules are used to trigger specific behavior on
certain LoD levels. These rules describe how certain graphical rep-
resentations should be adjusted when the client enters a specific
LoD. All rules consist of at least a type and information about when
it is supposed to be applied. Furthermore, depending on the type of
the rule, they can include additional rule-specific parameters.

Rule types. Currently, three types of rules exist which define the
rule behavior and which are transferred in the type field:

o CssStyleRule: This rule is mighty and can accomplish most
of the graphical adjustments alone by applying certain CSS
styles to objects (e.g., to increase the font size of text when a
user zooms out, change the background color, or add trans-
parency to elements). An example can be seen when compar-
ing Figure 3a to 3b, which shows the same information about
an object but with dynamically adjusted font size. Addition-
ally, the value of a given CSS-style can include the keyword
’$clevel’. On the client, all occurrences of this keyword are
automatically replaced with the current zoom level. This
allows making values dynamically dependent on the current
continuous zoom level, e.g., to increase the font size with
every zoom-in event.

o VisibilityRule: It allows hiding specific objects with the addi-
tional boolean parameter setVisibility. This rule is important
and used often to completely remove/add specific elements
(e.g., properties) of an object when the user zooms out/in (cf.
Figure 3b and 3d).

https://www.yworks.com/products/yed
https://www.microsoft.com/en-us/microsoft-365/visio
https://www.visual-paradigm.com/
https://www.metacase.com/mep/
https://sparxsystems.com/products/ea/index.html
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-modeling-tools
https://www.metamodelagent.com/

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

e LayoutRule: It allows modifying an element’s layout (e.g.,
padding, horizontal/vertical gap, or a minimal width/height),
which is usually defined by the server. It can, for example,
be used to increase the padding of certain elements at zoom
levels that offer a lot of space (cf. Figure 3a to 3b).

Rule trigger. The information about when a rule is supposed
to be applied is stored inside the trigger field. It can hold either
a triggerDiscreteLevel, or a triggerContinuousLevel, depending on
whether it should be triggered on a discrete LoD, or a continuous
zoom level. Discrete LoDs are references to the LoDs which were
transferred initially with the SetDiscreteLevelOfDetail action, and
continuous levels are two double values that specify a range in
which the rule is supposed to be applied. Most of the time, rules
reference a discrete LoD. This keeps all rules grouped under the
label of a discrete LoD, making it easy to change the range in which
all rules are applied by simply adjusting it once in the discrete LoD.

Rule application. Additionally to the information about the type
of a rule and its trigger, a reference to elements that it is applied to
has to be supplied. This can be done on the server by instantiating
rules and assigning them to elements by their GModel element type.
Two types of rules exist those that are applied to the model at the
client and those that are applied to the model at the server.

Client rules. Most rules are executed on the client because the
client has the information about the current zoom level, and it is the
client’s responsibility to render objects accordingly. Nevertheless,
the assignment of rules is language-specific information, which
is why they are defined and stored on the server. Since the client
only has information about how to apply specific rules but not
their assignments, these assignments must be transferred to the
client, along with the model itself. This is done with a new Re-
questLevelOfDetailRules action to which the server responds with a
SetLevelOfDetailRules action. Similarly to requesting the discrete
LoDs, the client requests all LoD rules and assignments once and
caches the response.

Client rules are applied during the rendering process on the
client. The logic of a client rule is part of the client itself; the server
merely provides information about what rule to apply and when.
Language server developers can change this logic at will, and new
rules can easily be added to the client. The client also has access
to the current continuous zoom level during the rendering process.
This means that a rule can integrate the current zoom level into its
logic and continuously adjust certain elements.

Server rules. Server rules are used in cases where a rule has to
be applied on the GModel before it is sent to the client. Usually,
these are fundamental changes to the layout that the client cannot
make. The disadvantages of server rules are that the server does
not have information about the current zoom level of the client.
By default, the server assumes a zoom level of 1. Additionally, the
client can provide the current zoom level as an optional field in the
requestModel action, which makes the server apply all rules for that
zoom level in the resulting setModel action. Not only does the client
have to provide the current zoom level, but it also has to notify the
server whenever a server rule is supposed to be applied. For this
reason, all server rules are also transferred to the client, along with
all client rules. Whenever the client encounters a server rule, it has

De Carlo et al.

to request the model again to make the server apply the server rule.
Because of this additional server round trip, server rules should be
avoided when possible.

An example where a server rule would be required is the adjust-
ment of the layout option resizeContainer. It tells the client whether
to resize the parent of an element if the element becomes too large.
If this were switched from false to true via a client rule, the client
would not have correct bounds for this element because these are
calculated on the server.

3.2 Off-Screen Elements

The off-screen elements feature allows users to see elements, even
when not positioned inside the current viewport. This is especially
useful when working with large models or models that show many
details about their elements, as users tend to zoom in further. Zoom-
ing in narrows the view that a user has on a model, which effectively
pushes elements off-screen. As soon as an element becomes com-
pletely invisible they are replaced by smaller indicator elements
which are pinned to the border of the viewport to keep contextual
information (cf. [12]). This increases the sense of orientation of
users, even with large models or while zoomed in.

Nodes. All nodes that are moved off-screen are replaced by smaller
indicators pinned to the viewport’s border. As soon as the original
elements become visible, their indicator is replaced by the original
element. Each GModel element type can have its indicator. This
can be used to encode additional information into the indicators by,
e.g., changing their form or color accordingly. A visual example of
three off-screen indicators is given in Figure 5b. The color of each
indicator is used to encode the information about whether it is an
automated or manual task.

Overlapping indicators at the same place of the border are merged
to prevent cluttering. The visual representation of merged indi-
cators differs from the others (see Figure 5d). They use a white
background color and include the number of merged indicators.

Edges. Nodes in diagrams are identified not only by their name
but also by their position and relationships. For this reason, edges
between elements play an important role in combination with off-
screen element visualization. They are vital to identifying certain
elements and keeping the mental map of a workspace intact. Al-
though edges are also considered elements of a model, they do not
possess off-screen indicators. When an element disappears from
the viewport, its indicator element serves as the new port for all
incoming and outgoing edges. In combination with their position,
this helps the user quickly identify an off-screen element, even
without visualizing their name. An example is given in Figure 5c,
which shows two edges connected to off-screen indicators.

Proxies. All indicators also act as proxies for the elements they
represent. All actions that can be performed on the original ele-
ments should also be able to be performed on their proxies. For
example, connecting an edge from an on-screen element to a proxy
of an off-screen element should create an edge from the on-screen
element to the off-screen element represented by the proxy. In many
cases, this decreases the number of actions that must be performed
to achieve a specific goal, i.e., a user won’t need to zoom out first
to make both elements visible to connect them.

Semantic Zoom and Off-Screen Elements in GLSP-based Web Modeling

Navigation. All indicators also help navigate the model. Clicking
on an indicator will automatically move the viewport to center the
represented element, and select it. This lets the user immediately
identify the element after zooming/panning and start working with
it. When the user clicks on a merged indicator, all elements are
selected. The client automatically calculates and sets the zoom level
of the viewport to a value in which all selected elements are visible.
This makes traversing a model easy and fast because the user does
not have to zoom and pan to the viewport manually.

4 PROTOTYPICAL IMPLEMENTATION

In the following, we report on our efforts to realize prototypical
implementations of the two concepts for semantic zoom and off-
screen elements we introduced in Section 3 using the Eclipse GLSP
platform. Consequently, this section also serves as a technical fea-
sibility evaluation of the proposed concepts using one concrete
LSP-based tool development environment.

4.1 Semantic Zoom

The semantic zoom feature required adjustments on the client, the
server, and additions of new actions to the LSP protocol. Figure 2
shows a sequence diagram of the most critical operations to realize
Semantic Zoom in GLSP modeling tools. It shows the client’s ini-
tialization process, which requests all required information from
the server, followed by operations performed during the rendering
process of a model.

4.1.1 Server. The server is built exclusively in Java. The following
section will give an overview of the prototype’s architecture and
its functionalities.

Discrete Levels of Detail. All discrete LoDs are defined inside an
enumeration file on the server. Each enumeration entry consists of
an LoD name and two double values from and to, which define the
zoom level interval in which the rule is active.

Actions. The semantic zoom feature required two new actions
that are handled by their respective handler class on the server:
RequestDiscreteLevelOfDetail, and RequestLevelOfDetailRules.

o RequestDiscreteLevelOfDetailActionHandler: It fetches all dis-
crete LoDs that were defined and converts them into a JSON
object. This object is then sent to the client in an SetDis-
creteLevelOfDetail action.

o RequestLevelOfDetailRulesActionHandler: It fetches all reg-
istered rules, along with the ids or selectors of the model
elements assigned, and converts them into a JSON object.
This object is then sent to the client in an SetLevelOfDetail-
Rules action.

Rule Registry. An example of a rule registration can be seen in
Listing 1 which changes the bottom and top border size. Rules
are registered for certain model element types via a selector, sim-
ilarly to CSS selectors, e.g., for all automated and manual tasks
in the example below. Furthermore, a trigger is added to the rule,
which activates it when the client enters the discrete level of detail
"Overview". All rules registered in the rule registry are transferred
from the server to the client, which then registers the triggers
according to the rule specifications.

[B NS N I

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

Client Client s
Main Module LevelOfDetailModule erver
- | -
request discrete LoD
E request LoD rule assignments
set discrete LoD
RN tghgeotnp NN
le. set LoD rule assignments

fetch model

]

apply LoD server rules

request model

request bounds

set bounds

check if server request
request render status is required

render status
Pt A)

request model

render loop J

fetch model

opt)

[server request
is required]

apply LoD server rules

request bounds

set bounds

loop)

[for each model
element]

model element F apply LoD client rules

model element

render model element

Figure 2: Essential GLSP operations for Semantic Zoom.

LayoutRule rule = new LayoutRule(new GLayoutOptions()
.paddingBottom(3D)
.paddingTop (3D)

)

rule.addLevelOfDetailRuleTrigger (
new LevelOfDetailRuleTriggerDiscrete()
.addDiscretelLevelOfDetail (
DiscreteLevelOfDetailEnum.OVERVIEW
)
)

registerRule(
ModelTypes.AUTOMATED_TASK +
ModelTypes.MANUAL_TASK,
rule

non
s +

)

Listing 1: Java code that shows the registration of a new rule.

Rules. As already explained in Section 3.1, three concrete rules
currently exist: CssStyleRule, VisiblityRule, and LayoutRule. Depend-
ing on whether a rule is a server- or client rule, they inherit from
different interfaces/abstract classes. On the server, client rules only
require a simple structure because their logic is implemented and
applied to the client. The respective action handler understands

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

their structure, and, once registered in the registry, they are sent to
the client if requested. On the other hand, server rules are handled
slightly differently. Not only does the server require additional logic
to apply them, but they also have to be transferred to the client in a
different form than the client rules. Unlike client rules, all the client
needs to know about a server rule is that it is a server rule and when
to activate it. No additional rule-specific parameters are needed
because the client does not have to execute any rule-specific logic.
This is realized with multiple different interfaces for server rules.
Each server rule requires a rule-specific implementation of its logic
on the server. Before it is transferred to the client, it is stripped
from this logic and all other information that is only relevant to
the server.

The server applies server rules inside the ModelSubmissionHan-
dler. This handler is responsible for sending actions to the client
that update or set the current model. Before such a message is sent
to the client, all server rules are applied to the model. This is done
by traversing the entire GModel tree and checking each element
for referenced rules. If rules exist for an element, it is checked
whether the rule is currently triggered. In case it is triggered, the
rule-specific logic is applied to the model element.

Information about when a rule is supposed to be applied is stored
in separate classes. Both ways of triggering a rule, by discrete
and continuous zoom levels, are represented by different concrete
classes that inherit from the same abstract class. The main difference
between them is that the continuous rule trigger requires two
parameters from and to, while the discrete rule trigger only requires
a reference to a discrete LoD.

4.1.2 Client. The architecture of the client is very similar to that
of the server. Most classes and interfaces defined on the server can
also be found on the client.

Discrete Levels of Detail. Discrete levels of detail are fetched via
an action and then stored on the client for the entire remaining ses-
sion. Each discrete LoD is stored inside an instantiated DiscreteLevel-
OfDetail class and consists of, similarly to the server, three variables:
from, to, and name.

Actions. Two new actions were added that are handled by the
client: SetDiscreteLevelOfDetail and SetLevelOfDetailRules. Both ac-
tions are handled by their respective handler classes:

o SetDiscreteLevelOfDetail ActionHandler: It takes the received
JSON object and converts all discrete LoDs into DiscreteLevel-
OfDetail TypeScript class objects. These objects are then
stored and used throughout the remaining session. Further-
more, when this action is received, the current discrete level
of detail is determined and stored by fetching the current
continuous level of detail of the stage and converting it into
a discrete one.

o SetLevelOfDetailRulesActionHandler: It takes the received
JSON list of all rules defined on the server and converts them
into their respective TypeScript classes. Like the discrete
LoDs, they are stored and accessed throughout the remaining
session.

De Carlo et al.

Rules. For the client to understand all rules that were received
during the SetLevelOfDetailRules action, they have to have an im-
plementation on the client. All rules inherit from a set of inter-
faces/abstract classes. These interfaces/classes expose the basic
fields required in all rules. Namely type, which holds the unique
type of the rule; isServerRule, which is used to tell whether a rule is
a server rule; and trigger, which holds information about when this
rule is supposed to be applied. The information in the field trigger is
stored in one of two concrete class implementations inherited from
the same abstract class. It can either be triggered on a continuous
or discrete zoom level. All in all, the concept and implementation
of trigger information are very similar to that of the server. Further-
more, each rule also has a set of common functions, for example, a
handle() function, which holds the logic that applies a rule to the
model elements. It takes a graphical element about to be rendered
on stage as an argument. Rule-specific logic can then be applied to
this element inside the function before it is returned and rendered.
Currently, the following logic is applied to existing rules:

o CssStyleRule: It appends all CSS styles of the rule to the
received graphical element.

o VisibilityRule: Depending on whether the rule-specific pa-
rameter setVisibility is true or false, this rule adds or removes
the CSS class hidden to the graphical element. This CSS class
sets the CSS display property to none, which removes the
element from the stage.

e LayoutRule: It appends all layout options of a rule to the
received graphical element.

Each type of rule or rule trigger must be registered for the client
to understand and use. Unlike the rule registry on the server, reg-
istering a rule on the client only makes the client aware that a
rule exists by creating a connection between a unique type and its
concrete class. It does not create connections between rules and
model elements. This is done only on the server and then fetched
by the client. Once a rule or rule trigger is registered on the client,
the client can initialize instances of it when necessary.

All rules and their assignments are stored in the central Level-
OfDetail class, which can get injected into and used by many other
classes throughout the client. It is a singleton instance that is instan-
tiated during the client’s initialization. Among its responsibilities
are converting rule JSON objects to TypeScript objects, conversion
of continuous levels of detail to discrete levels, storing rules and
their assignments, and looking up and returning all assigned rules
for an object id which involves the evaluation of selectors.

Zoom Listener. The zoom listener is another new addition to this
prototype. It inherits from the already existing MouseListener and
is an event-listener that listens to the standard "wheel” DOM event.
Every time a wheel event is triggered, the listener fetches the current
zoom level of the viewport. In the current implementation, the zoom
level is calculated with the event’s deltaY value, representing the
vertical scroll amount of the performed event. The zoom listener
keeps a copy of the last zoom level in memory. This copy always
represents the current zoom level of the viewport and can be fetched
by other modules in case they need it. Currently, only the mouse
wheel can be used to increase or decrease the zoom level.

Semantic Zoom and Off-Screen Elements in GLSP-based Web Modeling

Rendering. Once the client has all information about LoDs, rules,
and their assignments, it can start the rendering process in the
class LevelOfDetailModelRenderer, which inherits from the default
class ModelRenderer. Furthermore, the class LevelOfDetailRenderer
is used to apply rules.

o ModelRenderer: 1t is the default implementation that is used
to render model elements. Among others, it consists of the

two important functions renderChildren() and renderElementy().

The renderChildren() function calls renderElement() on all
children of an element. The renderElement() function then
renders the individual view-element.

o LevelOfDetailModelRenderer: It overwrites the default ren-
derElement() function and adds additional functionality. In
the function, when the root element is about to be rendered,
it is checked if a new server round trip has to be made. This
can occur on two occasions: (i) the client encountered a
server rule which has to be applied, and (ii) the client en-
countered a rule which requires the server to re-create the
model layout. (ii) occurs when the server is responsible for
the sizes of objects, and the client tries to apply a rule which
changes this size. In both cases, the client sends a new Re-
questModel action to the server. The server applies all server
rules, recalculates the general sizes and positions, and sends
the model back to the client. Currently, a switch between
discrete levels of detail always triggers a new server round
trip to recalculate sizes. Another new functionality added by
the LevelOfDetailModelRenderer is a call to the class Level-
OfDetailRenderer, which applies all relevant rules to model
elements.

o LevelOfDetailRenderer: This renderer consists of two func-
tions checkForRerender(), and prepareNode(). The function
checkForRerender() is used to check if a new server round trip
is required. It does this by checking if any rule has become
active in the last zoom event, and no server round trip has
been made because of it yet. The prepareNode() function is
used to apply all relevant rules on a model element by calling
the specific rule’s implementation of its handle() function.

Figure 3 shows several screenshots of the Semantic Zoom pro-
totype. Each screenshot shows the LoD-specific rendering of the
model content from a very high level representation (Figure 3a)
until a very detailed representation (Figure 3d). The representation
is automatically adjusted based on the current LoD.

M) o
Duration: 0

(2) (b) © (d)

Figure 3: Screenshots of the Semantic Zoom prototype, show-
ing the model at four different zoom levels.!?

-

4.2 Off-Screen Elements

The realization of the Off-Screen elements feature only consists of
client-side functionalities. Except for small additions in HTML and

12Semantic Zoom prototype video: https://www.youtube.com/watch?v=iBs-fGwq15Y

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

Client Client
Main Module OffScreenElementRenderer

Client
OffScreenElementModule

createOffScreenElements() N

) create indicator element

position indicator element

find overlapping indicators

reposition overlapping indicators

signal

M renderChildren()

[element is
off screen] indicator

fetch created indicator

render original element

Figure 4: Essential GLSP operations for Off-Screen Elements.

CSS, the prototype is built entirely in TypeScript. The following
section will overview the most relevant algorithms, interfaces, and
implementation classes. Figure 4 shows a sequence diagram of the
most critical operations we used to realize Off-Screen Elements
with GLSP.

Indicators. Each original model element, which is supposed to
have off-screen indicators, must have a defined model and view.
The model acts as the SModel element, which will be displayed,
and the view is used to render the SModel element. Each model
must be registered for the client to be aware of it. This registration
connects the original SModel type, the SModel indicator element,
and the indicator view definition. Each registration tells the client
to replace all elements of that type with the specified off-screen
indicator once they are moved off-screen.

Positioning Indicators. Indicators are always positioned at the
border of the viewport closest to the element it represents. We
developed an algorithm that calculates the position by checking
which side of the viewport the invisible element is (i.e., left/right,
top/bottom). If the element is at the left or the right, the y-coordinate
of the indicator is set to the same value as the y-coordinate of the
element. Otherwise, the x-coordinate is set — the respective other
coordinate remains unchanged. Furthermore, they will be restricted
from going below or above the bounds of the viewport to prevent
the indicator from disappearing off-screen.

Overlapping Indicators. We developed an algorithm that iden-
tifies and combines a group of overlapping indicators. If a group
is identified, the average position of all represented elements is
calculated, which will be the position of the new merged indicator
element. During manual tests of the overlapping implementation,
we realized that, while moving the viewport around, elements were

https://www.youtube.com/watch?v=iBs-fGwq15Y

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

popping in and out because the indicator elements’ calculated po-
sition is constantly adjusted during panning events. In situations
where many indicators are close together, this adjustment causes
them to merge and separate often. To mitigate this behavior, a con-
figuration variable OVERLAP_SIZE_MULTIPLIER was added, which
can be used to increase or decrease the size of an indicator element
only during the calculation of existing overlaps. For example, a
value of 2 would cause all indicators to appear twice as large to the
algorithm during the calculation, which causes indicators to form
larger groups and be merged more quickly. A value of 4 seemed to
be a good compromise between having fewer elements pop in/out
and not having indicators merge too quickly.

Proxies. Each registered off-screen indicator acts as a proxy for
the original element it represents and enables most interactions
that can be carried out on the original elements, such as connecting
edges, context menus, or tooltips. This behavior is implemented by
only changing the appearance of the original element instead of
implementing a new element. Consequently, most original interac-
tions remain intact for the indicator and work out of the box.

Click Listener. Additionally to all existing interactions, one new
interaction was added as well. Clicking on an indicator moves the
viewport to the original element. This is done by implementing a
new mouse listener, which inherits from the existing MouseListener
class and listens to the mouseUp event on SModel elements. When
it is triggered, it is checked whether the element is an off-screen in-
dicator element or not. Next, the number of overlapping indicators
is counted. In the case of only one element, the action CenterAction
is applied, which moves the viewport to center one element (the
original SModel element) on the stage. In case of multiple over-
laps, the action FitToScreenAction is applied, which changes the
zoom level and position of the viewport to a point in which all
SModel elements that the overlapping indicator represents are visi-
ble. Furthermore, it applies a Select action, which selects all original
elements represented by the indicators.

Edges. Edges are usually represented by arrows pointing from a
source to a target element. In the developed prototype, we realized
that the arrow is still visible even if the source or target element is
off-screen. We automatically point to or from an off-screen element
and adjust the exact position and size calculation. These adjust-
ments were necessary as indicators retain their size independently
of the zoom level, whereas the model content within the current
viewport is scaled.

Rendering. Before all indicators can be rendered, they have to be
prepared. This preparation consists of (i) instantiating indicators
for each off-screen element, (ii) calculating their position around
the viewport’s border, (iii) identifying overlapping indicators, and
(iv) calculating the new position of merged indicators. All these
tasks are triggered every time the model is rendered.

Figure 5 shows the workflow model in our Off-Screen Element
prototype. Figure 5a first shows a completely zoomed-out version
of the model as a reference, showing three automated tasks and
two manual tasks without any off-screen elements. Figure 5b shows
a model with three off-screen tasks in the form of off-screen indi-
cators. The color of the indicators gives information about their
type (2x automated, 1x manual). Figure 5¢ shows the same model

De Carlo et al.

A Task1
M Task2

(c) (d)

Figure 5: Screenshots of the Off-Screen Elements prototype.!3

and how edges can connect off-screen elements with on-screen
elements. Figure 5d shows how multiple off-screen elements were
merged into one indicator to reduce cluttering. The number repre-
sents the amount of combined off-screen element indicators.

5 DISCUSSION AND PERFORMANCE
EVALUATION

Both prototypes have been successfully integrated into the Eclipse
Graphical Language Server Platform and are fully functional and
usable with the current version of the workflow language. The first
prototype effectively condenses visible information concerning the
current zoom level based on rule definitions (client- and server
rules), rule assignment, and rule application. The prototype demon-
strates how to integrate a semantic zooming functionality into a
GLSP-based client-server architecture by providing a clear separa-
tion of concerns. We realized an extendable architecture, e.g., in the
form of interfaces to define new rules, which developers can use to
add new functionalities easily. During the conceptualization, care
was taken to keep the current version of the graphical language
server protocol intact and the additions/changes minimal. This was
accomplished by adding two new optional actions and their respec-
tive responses and one change in the form of an additional optional
parameter to the requestModel action.

The second prototype adds the visualization of off-screen ele-
ments to the client. It extends the already existing functionality of
the client implementation to demonstrate how to add cues about
off-screen elements at the border of the viewport to maintain a
solid mental image of the workspace. Furthermore, it provides new
ways of navigating the workspace, decreasing the time required to
reach off-screen elements. It also eliminates the need for scrolling
and panning actions for other actions, e.g., connecting edges from
on-screen to off-screen elements, by making each indicator act as a
proxy. Unlike the semantic zoom prototype, the realization operates

B3Off-Screen elements prototype video: https://www.youtube.com/watch?v=HRq7_o
1Q008

https://www.youtube.com/watch?v=HRq7_olQo08
https://www.youtube.com/watch?v=HRq7_olQo08

Semantic Zoom and Off-Screen Elements in GLSP-based Web Modeling

entirely on the client and does not require any new server func-
tionalities. Its functionality is kept generic to enable its efficient
utilization for other modeling languages.

5.1 Critical Reflection

While both prototypes are fully functional and usable, they still
have some limitations that ideally should be addressed before they
can be used on a larger scale. The following sections will go into
further details about limitations, potential solutions to them, and
other improvements that can be made to both prototypes.

5.1.1 Semantic Zooming. The first prototype was not only more
sophisticated to conceptualize and develop. It required a slight
adjustment of the existing protocol (addition of a zoom level param-
eter in the requestModel action) and two new server-side actions.
All these changes are optional and do not have to be called or used,
which means that the server can still be used, even with clients that
do not actively use semantic zooming.

Animations. Each time the discrete LoD is changed, an anima-
tion is played that transitions elements from one state to the next.
A challenge in the current implementation is that no new user
interaction events are processed during this animation. During the
animation, the zoom event is not recognized. This is related to an
issue requiring adjustments of Sprotty itself'4, as a workaround, we
changed the interval in which animations are played to a smaller
amount (~200ms). This caused the animation to be played long
enough to be still visible but fast enough to not noticeably disrupt
zooming events.

Server Round Trips. Another limitation is the additional server
round trips required during every change in discrete LoD. Because
the server is responsible for calculating some values during the
rendering process, such as the elements to be shown, the client
must request the server before it can re-render the diagram. While
this is usually not a problem with discrete LoDs, working with
continuously triggered rules would require an extra server round
trip every time the user performs a zoom action. Reducing required
server round trips, for instance, with preloading detail levels from
the server, would further increase the client’s responsiveness.

Dynamic Size Adjustments. The current implementation auto-
matically adjusts each diagram element’s size to its content size.
This means that, e.g., whenever a property is made visible by a rule,
the parent’s size is adjusted to fit the new property. While this is in-
tended behavior, in sporadic cases, it can cause a structural change
that destroys the workspace’s mental map. A potential solution to
this problem would be only to show further elements once there is
enough space for them instead of at a fixed zoom level. E.g., when
the user zooms in, the newly created space inside model elements is
calculated, and new properties are added if they fit into this space.
The problem here is that, in the current GLSP implementation, the
client cannot calculate the correct sizes for each element because
part of that responsibility is also on the server-side. Furthermore,
dynamic adjustments could cause two tasks of the same type to
add a property at different zoom levels because of differences in
the value to render.

4https://github.com/eclipse/sprotty/issues/1

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

5.1.2 Visualizing Off-screen Elements. The second prototype is only
implemented on the client, which raises the question of whether the
server is supposed to be involved in visualizing off-screen indicators.
On the one hand, indicators are not directly part of the model, do
not have to be persisted, and are directly dependent on information
only the client has (e.g., position and bounds of the viewport). All
of these reasons speak for implementation on the client-side. On
the other hand, being able to control the visualization of off-screen
elements from the server speaks in favor of the goal of LSP, which
is to prevent having to implement the same functionality multiple
times for different clients.

With the current workflow of GLSP, it is hard to shift the entire
feature to the server-side for primarily two reasons: (i) the server
does not have the necessary information to determine the position
of indicators; (ii) the positions of all indicators have to be adjusted
during all zooming or panning events. If the server is responsible
for positioning indicators, this would require a server round trip
during and after every event.

We believe, ideally, off-screen element functionality should be
distributed among the server and the client in GLSP. The logic
determining the position and size of indicators should be kept on
the client while the server should be in charge of multiple con-
figurational matters. Examples are: which elements should have
indicators, CSS classes of different indicators, and logic about when
to merge which indicators. All clients can then be implemented to
understand the configuration, which is supplied by the server.

Additional Configuration Parameter. Another improvement can
be made by adding configuration parameters to the client. Currently,
the only parameter is the value of OVERLAP_SIZE_MULTIPLIER,
which determines how close elements have to be to get merged.
Another important parameter that is not implemented currently is
the maximum distance to the center of the viewport that elements
can have before their indicators are not rendered anymore (cf. area
of influence [12]). Elements that are too far away or have no rela-
tionship with the currently visible elements are often not relevant,
only decrease the performance, clutter the workspace, and could
be omitted.

Identification of Indicators. Knowing which indicator represents
which model element can often be complex but is required to utilize
this prototype efficiently. Currently, there exist three parameters
of an indicator that give information about the model it represents:
(i) its position, (ii) its color, and (iii) its edges. This is often not
enough and can be further improved, e.g., with ideas given in [12]
like a stacking effect for multiple indicators at the exact location or
adding specialized interactions for indicators like tooltips, which
show the full name of all represented elements.

5.2 Performance

For both prototypes, we conducted experiments to evaluate how
the performance changes with an increasing number of model ele-
ments and indicators. The experiments involved simple zooming
and panning interactions on a diagram that consisted of a pre-
defined number of tasks, edges, and indicators. We then measured
at what point we recognized a noticeable delay in these interactions.
As a reference point, the original implementation of the original

https://github.com/eclipse/sprotty/issues/1

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

Table 1: Performance evaluation results

Elements Render Time
Tasks Edges Indicators Zooming Panning
= 10 10 - ~0.4ms ~0.4ms
ED 100 100 - ~3ms ~3ms
S 500 500 - ~18ms ~18ms
§ 10 10 - ~0.8ms ~0.8ms
§ 100 100 - ~9ms ~7ms
§ 500 500 - ~44ms ~41ms
10 10 0 ~0.5ms ~0.5ms
§ 100 100 0 ~4ms ~4ms
=
3 100 100 99 ~12ms ~10ms
E‘ol:" 500 500 0 ~27ms ~26ms
500 500 499 ~76ms ~50ms

workflow language server has been taken. Furthermore, the ren-
dering time has been measured for each iteration. The results of
the experiments are summarized in Table 1. It has been conducted
on the following environment: Firefox 103.0 on Windows 10 with
AMD Ryzen 5 5600X and 16GB RAM.

The zooming and panning events showed similar rendering times
throughout the experiments. Furthermore, the measured times of
both prototypes were very similar and roughly twice as high as
those of the original implementation. This can be attributed to the
additional logic executed during each iteration of the rendering
function in both prototypes. It is to say, while the performance
aspect was not wholly neglected during the development of the
prototypes, good performance was not a primary focus. For this
reason, the performance can probably be improved in many parts
of the prototypes, especially by caching calculations and reusing
them.

For the subjective evaluation, slight unresponsiveness could be
felt during the test execution with 100 Tasks. This delay was barely
noticeable and could only be felt when a direct comparison to a
diagram with fewer tasks was given. During the test execution with
500 Tasks, the delay became noticeable. This could be felt even more
during the execution of prototype-specific functionality. For the
semantic zoom prototype during the switch between discrete LoDs
and for the Off-Screen Elements prototype while displaying many
indicators. Especially the switch between discrete LoDs added a
noticeably long delay to the interaction, which is not reflected in
the rendering times. It can probably be attributed to the additional
server round trip that has to be made in the semantic zoom proto-
type. Besides, the additional prototype-specific logic also plays a
significant role in the responsiveness differences.

We intend both prototypes to be used in combination with mod-
els created by humans (see definition of conceptual modeling by
Mylopoulos [28]). With many entities, a model often becomes too
complex, unmanageable, and difficult to understand [27] - calling
for modularization [3, 15]. For this reason, we do not expect the

De Carlo et al.

number of model elements to go as high as 500 or even 100. The
performance experiments were still beneficial in learning about the
current scalability of the prototypes.

6 CONCLUDING REMARKS

This paper provided concepts and prototypical implementations
to realize advanced visualization and interaction features with the
Eclipse Graphical Language Server Platform. While conceptualizing
a semantic zoom and an off-screen elements prototype, a focus was
placed on keeping it generic and extensible.

The main logic of the prototype implementations can be reused in
other language servers based on Eclipse GLSP without much effort.
What cannot be avoided is the inherently required language-specific
configuration and adaptation to new graphical elements that may be
needed in other languages. We believe the given concepts provide
a good description for integrating the chosen features into GLSP-
based modeling tools. Furthermore, the implementations of both
concepts prove their validity and provide a solid foundation for
further additions or improvements in future works.

Our performance evaluation shows that for conceptual models
of realistic size, i.e., models created and used by humans, semantic
zoom and off-screen elements work smoothly. The implementations
we developed in this research are open source'®, and we aim to
contribute them to future releases of GLSP to make them applicable
for any modeling tools developed on the GLSP platform. Moreover,
we aim to conduct empirical research to learn more about the
perceived usefulness and the ease of use of semantic zoom and
off-screen elements for modelers.

ACKNOWLEDGMENTS

This research has been partly funded by the Austrian Research
Promotion Agency (FFG) via the Austrian Competence Center for
Digital Production (CDP) under the contract number 854187.

REFERENCES

[1] Lyn Bartram, Albert Ho, John Dill, and Frank Henigman. 1995. The continuous
zoom: A constrained fisheye technique for viewing and navigating large infor-
mation spaces. In Proceedings of the 8th annual ACM symposium on User interface
and software technology. 207-215.

[2] Patrick Baudisch and Ruth Rosenholtz. 2003. Halo: a technique for visualizing
off-screen objects. In Proceedings of the SIGCHI conference on Human factors in
computing systems. 481-488.

[3] Dominik Bork, Antonio Garmendia, and Manuel Wimmer. 2020. Towards a

Multi-Objective Modularization Approach for Entity-Relationship Models. In

ER Forum, Demo and Posters 2020 co-located with 39th International Conference

on Conceptual Modeling (ER 2020), Vienna, Austria, November 3-6, 2020 (CEUR

Workshop Proceedings, Vol. 2716), Judith Michael and Victoria Torres (Eds.). CEUR-

WS.org, 45-58.

Dominik Bork, Dimitris Karagiannis, and Benedikt Pittl. 2018. Systematic analysis

and evaluation of visual conceptual modeling language notations. In 2018 12th

International Conference on Research Challenges in Information Science (RCIS).

IEEE, 1-11.

[5] Dominik Bork and Ben Roelens. 2021. A technique for evaluating and improving
the semantic transparency of modeling language notations. Softw. Syst. Model.
20, 4 (2021), 939-963.

[6] Hendrik Biinder. 2019. Decoupling Language and Editor-The Impact of the Lan-

guage Server Protocol on Textual Domain-Specific Languages.. In MODELSWARD.

129-140.

Giuliano De Carlo, Philip Langer, and Dominik Bork. 2022. Rethinking Model Rep-

resentation - A Taxonomy of Advanced Information Visualization in Conceptual

Modeling. In International Conference on Conceptual Modeling (ER’22).

4

—_
st

latest version: https://github.com/glsp-extensions this paper’s version permanently
via: https://doi.org/10.5281/zenodo.7007921

https://github.com/glsp-extensions
https://doi.org/10.5281/zenodo.7007921

Semantic Zoom and Off-Screen Elements in GLSP-based Web Modeling

&

[10]

[11

[12]

=
&

[14]

[15

[16]

(17]

(18]

[19]

[20]

[21]

[22

~
&

[24

[25]

[26

[27

[28]

[29]

[30]

[31]

[32]

[33

[34]

William C Donelson. 1978. Spatial management of information. In Proceedings
of the 5th annual conference on Computer graphics and interactive techniques.
203-209.

Dustin Dunsmuir. 2009. Selective Semantic Zoom of a Document Collection.
Available at,(Oct. 30, 2009) (2009), 1-9.

Eclipse Foundation. [n. d.]. Eclipse Graphical Language Server Platform. https:
//github.com/eclipse-glsp/glsp. Accessed: 10.05.2022.

Ulrich Frank, Stefan Strecker, Peter Fettke, Jan Vom Brocke, Jérg Becker, and
Elmar Sinz. 2014. The research field modeling business information systems. Bus.
Inf. Syst. Eng. 6, 1 (2014), 39-43.

Mathias Frisch and Raimund Dachselt. 2013. Visualizing offscreen elements of
node-link diagrams. Information Visualization 12, 2 (2013), 133-162.

Mathias Frisch, Raimund Dachselt, and Tobias Briickmann. 2008. Towards seam-
less semantic zooming techniques for UML diagrams. In 4th ACM Symposium on
Software Visualization. 207-208.

George W Furnas. 1986. Generalized fisheye views. Acm Sigchi Bulletin 17, 4
(1986), 16-23.

Giancarlo Guizzardi, Tiago Prince Sales, Jodo Paulo A. Almeida, and Geert Poels.
2021. Automated conceptual model clustering: a relator-centric approach. Soft-
ware and Systems Modeling (2021). https://doi.org/10.1007/s10270-021-00919-5
Jens Gulden. 2016. Recommendations for Data Visualizations Based on Gestalt
Patterns. In International Conference on Enterprise Systems, Gang Li and Yale Yu
(Eds.). 168-177.

Jens Gulden, Hajo A Reijers, J Grabis, and K Sandkuhl. 2015. Toward Advanced
Visualization Techniques for Conceptual Modeling.. In CAiSE Forum. Citeseer,
33-40.

Sean Gustafson, Patrick Baudisch, Carl Gutwin, and Pourang Irani. 2008. Wedge:
clutter-free visualization of off-screen locations. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 787-796.

Sean G Gustafson and Pourang P Irani. 2007. Comparing visualizations for
tracking off-screen moving targets. In Extended Abstracts on Human Factors in
Computing Systems. 2399-2404.

Tan Kim Heok and Daut Daman. 2004. A review on level of detail. In Proceedings.
International Conference on Computer Graphics, Imaging and Visualization, 2004.
CGIV 2004. IEEE, 70-75.

Takeo Igarashi and Ken Hinckley. 2000. Speed-dependent automatic zooming
for browsing large documents. In ACM symposium on User interface software and
technology. 139-148.

Huzefa Kagdi and Jonathan I Maletic. 2007. Onion graphs for focus+ context views
of UML class diagrams. In Int. Workshop on Visualizing Software for Understanding
and Analysis. 80-87.

Banda KalyanaChakravarthy. 2008. Visualizing the MPI Programs: Using Contin-
uous Semantic Zooming. (2008).

A Chris Long, Brad Myers, Juan Casares, Scott Stevens, and Albert Corbett. 2004.
Video Editing Using Lenses and Semantic Zooming. (2004).

microsoftlspimpl [n. d.]. Microsoft language server protocol implementations.
https://microsoft.github.io/language-server-protocol/implementors/servers/.
Accessed: 23.04.2021.

microsoftlspspec [n. d.]. Microsoft language server protocol specification. https:
//microsoft.github.io/language- server-protocol/specifications/specification-
current/. Accessed: 23.04.2021.

Daniel Moody. 1997. A multi-level architecture for representing enterprise data
models. In International Conference on Conceptual Modeling. Springer, 184-197.
John Mylopoulos. 1992. Conceptual modelling and Telos. Conceptual modelling,
databases, and CASE: An integrated view of information system development (1992),
49-68.

Tom Owen, George Buchanan, Parisa Eslambochilar, and Fernando Loizides. 2010.
Supporting early document navigation with semantic zooming. In International
Conference on Asian Digital Libraries. Springer, 168—178.

Ken Perlin and David Fox. 1993. Pad: an alternative approach to the computer
interface. In Proceedings of the 20th annual conference on Computer graphics and
interactive techniques. 57-64.

Parsa Pourali and Joanne M. Atlee. 2018. An Empirical Investigation to Un-
derstand the Difficulties and Challenges of Software Modellers When Using
Modelling Tools. In Proceedings of the 21th ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS 2018, An-
drzej Wasowski, Richard F. Paige, and @ystein Haugen (Eds.). ACM, 224-234.
https://doi.org/10.1145/3239372.3239400

Tobias Reinhard, Silvio Meier, and Martin Glinz. 2007. An improved fisheye zoom
algorithm for visualizing and editing hierarchical models. In Second International
Workshop on Requirements Engineering Visualization (REV 2007). IEEE, 9-9.
Roberto Rodriguez-Echeverria, Javier Luis Canovas Izquierdo, Manuel Wimmer,
and Jordi Cabot. 2018. Towards a language server protocol infrastructure for
graphical modeling. In Proceedings of the 21th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems. 370-380.

Ben Roelens and Dominik Bork. 2020. An evaluation of the intuitiveness of the
PGA modeling language notation. In Enterprise, Business-Process and Information
Systems Modeling. Springer, 395-410.

[35

[36

[37

[39

[40

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

Kurt Sandkuhl, Hans-Georg Fill, Stijn Hoppenbrouwers, John Krogstie, Florian
Matthes, Andreas Opdahl, Gerhard Schwabe, Omer Uludag, and Robert Winter.
2018. From Expert Discipline to Common Practice: A Vision and Research Agenda
for Extending the Reach of Enterprise Modeling. Bus. Inf. Syst. Eng. 60, 1 (2018),
69-80.

George Schussel. 1995. Client/server past, present, and future. Formerly Available
URL: http://news.dci.com/geos/dbsejava.htm (1995).

Michael Stengel, Mathias Frisch, Sven Apel, Janet Feigenspan, Christian Kastner,
and Raimund Dachselt. 2011. View infinity: a zoomable interface for feature-
oriented software development. In Proceedings of the 33rd International Conference
on Software Engineering. 1031-1033.

Christian Tominski, James Abello, Frank Van Ham, and Heidrun Schumann.
2006. Fisheye tree views and lenses for graph visualization. In Tenth International
Conference on Information Visualisation (IV°06). IEEE, 17-24.

YoungSeok Yoon and Brad A Myers. 2015. Semantic zooming of code change his-
tory. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 95-99.

Polle T Zellweger, Jock D Mackinlay, Lance Good, Mark Stefik, and Patrick
Baudisch. 2003. City lights: contextual views in minimal space. In CHI'03 extended
abstracts on Human factors in computing systems. 838-839.

https://github.com/eclipse-glsp/glsp
https://github.com/eclipse-glsp/glsp
https://doi.org/10.1007/s10270-021-00919-5
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://doi.org/10.1145/3239372.3239400

	Abstract
	1 Introduction
	2 Foundations and Related Work
	2.1 Eclipse GLSP
	2.2 Advanced Model Visualization & Interaction
	2.3 Related Work

	3 Concept
	3.1 Semantic Zoom
	3.2 Off-Screen Elements

	4 Prototypical Implementation
	4.1 Semantic Zoom
	4.2 Off-Screen Elements

	5 Discussion and Performance Evaluation
	5.1 Critical Reflection
	5.2 Performance

	6 Concluding Remarks
	Acknowledgments
	References

