
An Overhead Analysis of MPI Profiling and Tracing Tools
Sascha Hunold

hunold@par.tuwien.ac.at
Faculty of Informatics

Research Group for Parallel Computing
TU Wien

Vienna, Austria

Jordy I. Ajanohoun∗
ajanohoun@par.tuwien.ac.at

Faculty of Informatics
Research Group for Parallel Computing

TU Wien
Vienna, Austria

Ioannis Vardas†
vardas@par.tuwien.ac.at
Faculty of Informatics

Research Group for Parallel Computing
TU Wien

Vienna, Austria

Jesper Larsson Träff
traff@par.tuwien.ac.at
Faculty of Informatics

Research Group for Parallel Computing
TU Wien

Vienna, Austria

ABSTRACT
MPI performance analysis tools are important instruments for find-
ing performance bottlenecks in large-scale MPI applications. These
tools commonly support either the profiling or the tracing of par-
allel applications. Depending on the type of analysis, the use of
such a performance analysis tool may entail a significant runtime
overhead on the monitored parallel application. However, over-
heads can occur in different stages of the performance analysis
with varying severity, e.g., the overhead when initializing an MPI
context is typically less problematic than when monitoring a high
number of short-lived MPI function calls.

In this work, we precisely define the different types of overheads
that performance engineers may encounter when applying per-
formance analysis tools. In the context of performance tuning, it
is crucial to avoid delaying individual events (e.g., function calls)
when monitoring MPI applications, as otherwise performance bot-
tlenecks may not show up in the same spot as when running the
applications without applying a performance analysis tool. We em-
pirically examine the different types of overheads associated with
popular performance analysis tools for a set of well-known proxy
applications and categorize the tools according to our findings. Our
study shows that although the investigated MPI profiling and trac-
ing tools exhibit a rather unique overhead footprint, they hardly
influence the net time of an MPI application, which is the time
between the Init and Finalize calls. Performance engineers should
be aware of all types of overheads associated with each tool to
avoid very costly batch jobs.
∗This work was partially supported by the Austrian Science Fund (FWF):
project P 33884-N.
†This work was partially supported by the Austrian Science Fund (FWF):
project P 31763-N31.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PERMAVOST ’22, June 30, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9314-0/22/06. . . $15.00
https://doi.org/10.1145/3526063.3535353

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms.

KEYWORDS
MPI, performance analysis, profiling, tracing, overhead

ACM Reference Format:
Sascha Hunold, Jordy I. Ajanohoun, Ioannis Vardas, and Jesper Larsson
Träff. 2022. An Overhead Analysis of MPI Profiling and Tracing Tools. In
Proceedings of the 2nd Workshop on Performance EngineeRing, Modelling,
Analysis, and VisualizatiOn Strategy (PERMAVOST ’22), June 30, 2022, Min-
neapolis, MN, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3526063.3535353

1 INTRODUCTION
Mitigating performance bottlenecks in large-scale codes that run
on supercomputers is a challenging task, as one needs to detect
these bottlenecks first. Several performance analysis tools have
been developed for solving this task, which mainly fall into two
categories: (1) profiling and (2) tracing tools. Profiling tools provide
a short, condensed performance fingerprint of an application. The
output of profiling tools typically comprises the information of
how much time is spent in different parts of the code, usually at
function level. Tracing tools, in comparison, record the start and
the end timestamp of certain parts of the code (events), which will
eventually allow performance engineers to get an overview of the
entire application run. These overviews are usually presented as
Gantt charts. In addition to profiling and tracing tools, performance
engineers may also use tools for reading out Hardware Performance
Counters (HPCs), such as PAPI [20] or Likwid [21]. Such HPCs can
also be used in combination with profiling or tracing tools to reason
about the cause of performance penalties.

One of the biggest challenges for tool developers is to create
performance tools that incur a small overhead. The first reason is
that the behavior of the application under investigation should not
be impacted by the use of a performance tool. Otherwise, identified,
potential root causes of performance bottlenecks may simply turn
out to be a tool artifact instead of a real performance issue. The
second and also very important reason is that large-scale jobs on
thousands of cores are costly (in terms of compute-hours). Thus,

Paper Presentation PERMAVOST '22, June 30, 2022, Minneapolis, MN, USA

5

https://orcid.org/0000-0002-5280-3855
https://orcid.org/0000-0002-7035-9225
https://orcid.org/0000-0001-5461-556X
https://orcid.org/0000-0002-4864-9226
https://doi.org/10.1145/3526063.3535353
https://doi.org/10.1145/3526063.3535353
https://doi.org/10.1145/3526063.3535353

performance analysis tools that significantly increase the job dura-
tion will not be used in practice.

In the present work, we investigate the overheads associated
with various performance analysis tools in the context of the Mes-
sage Passing Interface (MPI). First, we distinguish the different
types of overheads that may occur during the execution of MPI
programs when performance analysis tools are used for monitoring
these applications. Second, we introduce our experimental setup.
In particular, we discuss the choices of both the investigated proxy
applications and the size of the input instances. Afterwards, we
examine which overheads the various performance tools entail
when monitoring applications in practice. In particular, we make
the following contributions:

(1) We define the different types of overheads that can typically
occur when applying performance analysis tool to large-
scale MPI codes.

(2) We present the results of an in-depth comparative experi-
mental study of the different overheads of performance anal-
ysis tools, which points out potential pitfalls when applying
certain performance tools.

In the remainder of the paper, we first give a deeper introduction
to the different performance analysis tools in Section 2. We define
the different types of overheads that we can associate with perfor-
mance tools in Section 3, where we also introduce the experimental
setup of our study. We present experimental results in Section 4
and discuss the findings in Section 5.

2 RELATEDWORK
Performance analysis tools allow us to associate hardware per-
formance counters (HPCs), e.g., the number of level 2 data cache
misses, with events (e.g., function calls) in order to pinpoint the root
causes of performance bottlenecks. For solving this task, we can uti-
lize tools that read out HPCs at different points time, e.g., PAPI [20]
and Likwid [21]. On top of these HPCs, there are numerous other
tools for analyzing the performance of parallel programs on parallel
architectures. We will discuss these tools and their methods in more
details in Section 3.

Chung et al. [7] analyzed the impact of performance tools on
MPI applications specifically for the Blue Gene/L supercomputer.
Their study included the tools IBMHPCT, Paraver, KOJAK, Tau, and
mpiP. The authors examined the overall execution time of applica-
tions with and without using the tools, as well as the volume of the
collected performance data. Chung et al. performed a weak scaling
analysis with four MPI applications (e.g., SWEEP3D), and examined
the overhead of each tool. They reported that profiling tools (like
mpiP) had a very small overhead of about 3%, but the overhead
of the tracing tools was super-linearly increasing with the num-
ber of processes, quickly reaching an overhead of 100% and more.
Chung et al. then proposed ideas for compressing traces, which are
similar to the ones used by ScalaTrace [16] and Pilgrim [24].

Since we analyze the impact of performance tools on proxy
applications, we built upon work done previously. Klenk and Frön-
ing [13] gave an in-depth analysis of typical MPI proxy applications,
in which they characterize the computational pattern used by each
of the MPI codes. They also provided statistics of the overall time

spent in MPI communication operation when running each applica-
tion with a different process count. The MPI profiles were obtained
with IPM [18].

Thework of Sultana et al. [19] is orthogonal to the paper by Klenk
and Fröning [13], as they provide a detailed analysis of the types
of MPI functions used in typical proxy applications, e.g., whether
non-blocking collectives are used or how much time is spent in
point-to-point communication. In the study of Sultana et al. [19], all
applications were executed with 256 processes, which were profiled
with an in-house MPI profiler that leveraged the PMPI interface.

Chunduri et al. [6] presented a study in which they characterize
typical MPI usage strategies across a large set of MPI applications
that were executed on two supercomputers at Argonne National
Laboratory. In order to characterize the usage profile of MPI appli-
cations, the authors created their own MPI profiler called Autoperf,
which also uses the PMPI infrastructure.

All previously mentioned approaches had in common that they
relied on the PMPI interface to intercept MPI calls for profiling or
tracing. When tools rely on the PMPI interface, they cannot easily
be chained, which would often be beneficial. The QMPI [8] layer
goes one step further by proposing a novel tools interface that
allows the simultaneous use of different monitoring tools. From a
software perspective, the approach follows a decorator pattern: At
the innermost level, the actual MPI function is called. This function
call is wrapped by a tool, which becomes the innermost tool. This
wrapped function call is wrapped again by another tool, and so on.
Thus, the runtime statistics of the outermost tool also include the
time (and possibly other metrics) of the calls to the inner tools.

Last, wemention two other tools, Caliper [3] and theMicroBench
Maker [10], that can be used for analyzing the MPI application per-
formance. Caliper is a library that lets developers mark specific
code regions of interest. These annotations can then be used to
create performance profiles or traces for application runs. This is
especially useful for the introspection of HPC libraries, as most
tools gather profiling data only until a certain level in the software
stack, e.g., the MPI layer. Thus, Caliper can be used to correlate per-
formance data of events in the application layer with events below
the MPI layer, which would not be possible with traditional tools.

MicroBench Maker [10] is an another approach to gain insights
into the performance of MPI applications. Although, the tool is
mostly targeted towards micro-benchmarking, e.g., collecting a
sequence of measurements of MPI_Allgather calls, it can also be
used for benchmarking certain code regions. The fundamental idea
is that a code region is marked, similar to Caliper, and then executed
a predefined number of times in order to obtain a statistical sample
of its execution time. With that approach, it is possible to tune the
performance of a given code region.

3 OVERHEAD ANALYSIS: THE SETUP
We start by defining the individual times that we can examine
when monitoring MPI applications with different performance anal-
ysis tools.

3.1 Definitions: MPI Performance Times
We decompose the time for analyzing the performance of an MPI
application into three different components, which are the net, the

Paper Presentation PERMAVOST '22, June 30, 2022, Minneapolis, MN, USA

6

MPI Init f() g() h() MPI Finalize

MPI Init f() g() h() MPI Finalize

MPI Init f() g() h() MPI Finalize

MPI Init f() g() h() MPI Finalize

baseline / no overhead

MPI hook overhead

MPI net overhead

MPI wrap overhead

total wall clock time

total MPI time = net MPI time + hook time

net MPI time

Figure 1: Types of overheads in an MPI application, e.g., an
application consisting of three parallel functions f(), g(),
and h(). ■ denotes the overhead caused by tools inside the
MPI application (net). ■ denotes the overhead incurred due
to tools inside MPI_Init and MPI_Finalize (hook). ■ denotes
the additional wrap overhead of tools (wrap).

hook, and the wrap time. We formally define these times below and
show an illustration of the individual times in Figure 1.

Definition 3.1 (MPI net time). The MPI net time 𝑡𝑖net of process 𝑝𝑖
denotes the time that process 𝑝𝑖 spends executing instructions right
after exiting MPI_Init and before entering MPI_Finalize.

Definition 3.2 (MPI hook time). The MPI hook time 𝑡𝑖hook of pro-
cess 𝑝𝑖 denotes the total time that process 𝑝𝑖 spends in the functions
MPI_Init and MPI_Finalize.

Definition 3.3 (MPI wrap time). The MPI wrap time 𝑡𝑖wrap of pro-
cess 𝑝𝑖 is defined as the commulative time that consists of (1) the
time from starting the monitoring tool for process 𝑝𝑖 until the pro-
cess enters MPI_Init and (2) the time after MPI_Finalize until the
monitoring tool finishes its execution.

Thus, the total time of monitoring an MPI application using a
performance analysis tool for process 𝑝𝑖 is defined as the sum of
its net, hook, and wrap times, i.e., 𝑡𝑖overall = 𝑡𝑖net + 𝑡𝑖hook + 𝑡𝑖wrap.

Figure 1 shows an example of the three types of overheads when
monitoring MPI applications. The most crucial overhead is the MPI
net overhead, which occurs if performance tools significantly delay
the execution of the function calls within the main application. In
scenarios where each MPI call is intercepted, the amount of time
spent for storing performance data can have a huge impact on
the overhead. It may also happen that buffers need to be flushed
from time to time, primarily if tracing tools run out of buffer space,
which can also increase the MPI net overhead. Another important
overhead to consider is the MPI hook overhead, which refers to the
additional time that is spent in MPI_Init to initialize the moni-
toring process and the time that is required to collect and write
the final performance data in MPI_Finalize. The hook overhead is

important for estimating the cost of a batch job in a queuing system,
as a significant delay of the wallclock time can quickly become very
costly, especially if only one core writes out the performance data
while possibly thousands of cores are idling. The third overhead
considered in our work is the MPI wrap overhead. This overhead
refers to the additional time that is required to start an MPI pro-
gram from a performance analysis tool. It specifically addresses
tools which take the MPI application as an argument and which
write the performance data after the monitored MPI application
has finished its execution. The HPCToolkit [2] is such a tool that
initializes itself before the MPI application starts and that writes the
performance data after the application has already been completed.

3.2 MPI Performance Analysis Tools
Our study covers a number of profiling and tracing tools, although
several tools are able to do both. We emphasize the fact that we
are primarily interested in monitoring MPI events. For that reason,
we compare the overheads introduced by performance tools while
tracking MPI events, and in particular, MPI communication events,
such as Send-Recv or Allreduce.

We note that we cannot cover the full feature set of all tools de-
scribed herein. Most tracing tools are very feature-rich and provide
a variety of methods to record performance events (e.g., function
wrapping, dynamic instrumentation, stack sampling, etc.). For that
reason, we described each tool in, what we believe, is the most
common use case for that tool.

mpiP and IPM. Let us start with introducing the profiling tools
examined in our study. mpiP [23] is one such MPI profiler, which
is centered around the idea of presenting the MPI usage statistics
per call site. A call site is a specific place in the program from
which MPI events originate, i.e., calls to the same MPI operation but
from different parts of the code can be distinguished. The profiler
IPM [18] produces similar results as mpiP, as both tools report
on the accumulated time spent in different MPI communication
operations. However, IPM uses a rather buffer-centric presentation
of the MPI statistics compared to mpiP. While mpiP presents the
performance data by call site, IPM aggregates the data by buffer
size, e.g., IPM distinguishes between an Allreduce on ten bytes and
an Allreduce on 100 bytes.

While mpiP and IPM use the PMPI interface of MPI for recording
profiling events, two other performance tools use different tech-
niques to extract application profiles, which are Score-P [14] and
HPCToolkit [2].

Score-P. It is hard to compare the functionality of Score-P to
mpiP and IPM, as Score-P provides multiple methods for perfor-
mance analysis. Similar to IPM and mpiP, Score-P can make use of
the PMPI interface for recording timing statistics of MPI operations.
However, in addition to profiling, Score-P also supports the tracing
of MPI applications, where the start and the end time of each MPI
event is recorded for each process. Yet, Score-P can do even more,
for example, it supports the automatic instrumentation of functions.
This way, it is possible to obtain fine-grained statistics of individual
events. Moreover, it also supports stack sampling for generating

Paper Presentation PERMAVOST '22, June 30, 2022, Minneapolis, MN, USA

7

Table 1: MPI performance analysis tools. Tools marked
with ’*’ are evaluated in our study.

name ref type main method

PAPI [20] HPCs special-purpose registers
Likwid [21] HPCs special-purpose registers

*IPM [18] profiling PMPI interface
*mpiP [23] profiling PMPI interface

*HPCToolkit [2] profiling/ stack sampling
tracing

*Score-P [14] profiling/ PMPI interface
tracing instrumentation, sampling

*Extrae [4] tracing PMPI interface
instrumentation, sampling

ScalaTrace [16] tracing trace compression
*Pilgrim [24] tracing trace compression

performance profiles and traces. Score-P is the measurement infras-
tructure that lays the foundation for other performance analysis
tools such as Scalasca [9], Tau [17], or Vampir [15].

Extrae. The functionality of the tracing part of Score-P is compa-
rable to the Extrae/Paraver [5] toolchain. Paraver is a sophisticated
viewer for traces that were recorded with Extrae, and Extrae sup-
ports instrumentation and sampling techniques.

HPCToolkit. HPCToolkit [2] is a performance analysis tool that
supports profiling and tracing. It relies on sampling-based measure-
ments of the current program stack and of hardware performance
counters. After the data collection has been completed, HPCToolkit
can generate a trace or a profile from the samples recorded for
each process.

ScalaTrace and Pilgrim. Last, we mention two MPI tracing li-
braries that are primarily concerned with trace compression, which
are ScalaTrace [16] and Pilgrim [24]. ScalaTrace distinguishes be-
tween intra- and inter-node compression. The intra-node compres-
sion is performed on the fly, i.e., each process compresses its local
trace while executing the MPI program. In a second step, these
profiles are merged into a global profile, while trying to identify
repetitive patterns that can be exploited for further compression.
The trace library Pilgrim uses a different compression method, as it
builds a context free grammar during the execution of the program.
To that end, it stores MPI calls and their parameters in a signature
table to be used as terminal symbols in the grammar. Both libraries,
ScalaTrace and Pilgrim, significantly reduce the size of recorded
traces compared to traces obtained with Extrae or Score-P.

Table 1 presents an overview of the described performance analy-
sis tools and their implemented methods. The table also marks these
tools with an asterisk, whose runtime overheads are investigated
in the present work.

3.3 Inspected MPI Applications
A study on the impact of performance analysis tools on MPI appli-
cation clearly depends on the type of the examined applications.
In our work, we wanted to build upon the studies presented by

Table 2: Performance analysis tools and their build details.

Software Version Package origin

MPICH 3.4.2 spack

Extrae 3.8.3 spack
HPCToolkit 2022.01.15 spack
IPM 02f0cdc (sha1) GitHub
mpiP 3.5 spack
Pilgrim e389398 (sha1) GitHub
Score-P 7.0 spack

Sultana et al. [19] and by Klenk and Fröning [13]. Thus, we also
focused on the ECP Proxy Applications [1]. Sultana et al. excluded
Ember, miniQMC, and XSBench from their analysis, which we also
did. The reason is that miniQMC and XSBench were reported to
lack MPI calls for solving a computational problem, and Ember is a
collection of common communication patterns. In addition, we ex-
cluded MACSio, as it is primarily targeted towards I/O performance.
We also excluded Fortran-based applications such as NEKbone.

We examined the following five ECP Proxy Applications [1]:
(1) AMG (commit 3ada8a1),
(2) ExaMiniMD (commit 7a31e3b),
(3) miniAMR (commit ff07856),
(4) miniVite (commit 2324e20), and
(5) SW4Lite (commit 06b888c).

They use a mix of point-to-point and collective communication
operations and do not depend on external libraries such as Laghos
and SWFFT, as each external library could potentially introduce
another experimental factor into our overhead study, which we
wanted to avoid.

While examining the overheads of different MPI performance
tools, we noticed that we should also consider a worst-case scenario
for each tool, which consists of continuously calling MPI functions.
For that purpose, we used our own ReproMPI benchmark [11, 12],
which can provide this functionality.

3.4 Hardware Configuration
We run all experiments on a 36-node cluster at TU Wien called
Hydra. Each compute node is comprised of two 16-core Intel Xeon
Gold 6130F processors, leading to 32 physical cores per node. The
compute nodes are interconnect with a dual-rail Intel Omni-Path
network, where each processor (socket) has its own Omni-Path
interface. Profiles and traces arewritten toHOME directories, which
are imported from an NFS server via a 10-Gbit-Ethernet link.

3.5 Selection of Performance Analysis Tools
Table 2 contains a list of all MPI performance analysis tools and their
respective version examined in our study. Compared to Table 1, we
omit results for PAPI, Likwid, and ScalaTrace from the experimental
results. One reason is that PAPI and Likwid logically work at a dif-
ferent, lower level than the other tools, which often themselves use
PAPI to monitor HPCs. For ScalaTrace, the situation was different.
ScalaTrace worked in many scenarios, and the observed overheads
were comparable to the ones of Pilgrim. Yet, ScalaTrace offers two
types of trace compression, one is the node-only compression while

Paper Presentation PERMAVOST '22, June 30, 2022, Minneapolis, MN, USA

8

the other is the global compression. When enabling global compres-
sion, we should obtain a single compressed trace. Unfortunately,
we had problems getting the global compression method to work,
which was primarily caused by our more recent set of developer
tools (gcc, libunwind). Although the node-compression worked, we
decided to omit these results, as it would be less fair to compare it
to tools that gather the performance data and write one final file
(e.g., mpiP, Pilgrim, Extrae, etc.).

3.6 Objectives and Limitations
3.6.1 Main Focus: MPI. Our main focus of the overhead study of
the various performance analysis tools is on MPI, since all of the
tools support MPI. For that reason, in each tool, we only enabled the
features that are needed to monitor MPI events. This is especially
important for Score-P and Extrae, as they allow users to monitor
many other types of functions (e.g., OpenMP or CUDA) as well.

Score-P. All proxy applications were compiled using the Score-P
compiler wrapper with the --nocompiler and --noopenmp flags
enabled. This way we can ensure that no other function except MPI
functions will be instrumented.

Extrae. When configuring Extrae, we disabled all additional mod-
ules except MPI, e.g., OpenMP, Pthreads, hardware performance
counters, etc. We use the merge option (enabled by default) to
eventually create a single merged trace in the Paraver trace format.

HPCToolkit. We use the tracing option (hpcrun -t) when mea-
suring the overheads of HPCToolkit. The main reason was that
we almost exclusively use this option for our own research, as it
provides a large amount of useful statistics. For the experiments, we
have used the default sampling frequency. We have also analyzed
the impact of the sampling frequency on the overhead, but we are
unable to show the results in this paper due to space limitations.

Pilgrim. We comment out the MPI_Wait and MPI_Test wrapper
functions in Pilgrim, as they led to unreasonable large runtimes for
AMG. The proxy application AMG makes heavy use of MPI_Test,
which seemed to cause performance issues with Pilgrim. For the
other proxy applications, no noticeable difference was observed
whether or not Pilgrim wrapped these functions.

3.6.2 TimeMeasurements. Figure 2 depicts ourmeasurement setup.
We wrap calls to MPI_Init and MPI_Finalize in our own small
functions called TIME_MPI_Init and TIME_MPI_Finalize. Thus,
we modify the source of each application by replacing the original
MPI init and finalize functions. Inside each wrapper, we record
timestamps using the POSIX function clock_gettime, since we
cannot rely on MPI_Wtime because the MPI environment may not
be initialized. This way, we can measure the time spent inside
MPI_Init and MPI_Finalize, and we then also know how much
time is spent in the main MPI application. To measure the wrap
time, we record the time that is spent in an srun/mpirun call. This
will eventually reflect the total amount of compute minutes that
we have to pay for each MPI job in our batch scheduling system.

3.6.3 Input Sizes. We also had to decide on the size of the inputs
given to each ECP proxy application. Strong scaling was quickly
dismissed, as the running time is either too small for a larger number

srun MPITOOL

TIME MPI Init MPI main computation() TIME MPI Finalize

clock gettime MPI Init clock gettime clock gettime MPI Finalize clock gettime

Linux time

Figure 2: Time measurements for quantifying the different
tool overheads (■ net, ■ hook, ■ wrap).

of processes or too large for a small number of processes. We also
attempted to perform weak scaling experiments, but some tools
simply did not scale well, which rendered obtaining a statistically
sound number of experiments infeasible.

Eventually, we select the input sizes by the runtime of the base-
line run, i.e., how long the overall execution takes without applying
a performance analysis tool. In particular, we chose the parameters
in such a way that the input leads to a runtime of roughly 10 s
to 20 s. This allows to not only compare the tools per application,
but also to compare the application characteristics for a similar
runtime. The input sizes used for the experiments shown in the
present article are summarized in Table 3.

3.6.4 Experimental Factors and Limitations. We are aware that
our study will only capture a relatively small fraction of possible
performance analysis experiments, as the experimental parameter
space is huge. Our goal was to get a first overview of the individual
overheads introduced by each tool for two process configurations:
1×32 and 32×32 processes. With the smaller process configuration,
we test how well the tools work on one compute node only. By
examining the results for 32 × 32 processes, we get insights in how
well the tools scale.

In contrast to previous studies [7, 24], the resulting file size of
profiles and trace is not one of our main concerns. Our major focus
is on examining if the performance analysis tools perturb the actual
MPI application, i.e., altering the net time of an application.

Our study is currently limited to one machine only. We also
planned to present experimental from other machines. However, it
turned out to be more problematic than we had initially expected.
First, in a multi-user batch system, jobs may wait for several days in
a queue before the requested number of resources is granted, which
limits the number of experiments that can be done in a certain
amount of time. Second, and more severe were the software compi-
lation and building problems. We settled for only five applications
and six performance tools. However, getting all of them to run on
other systems was extremely time consuming. For example, we
could not get Pilgrim to work with MPI libraries other than MPICH.
In another case, we were unable to compile libunwind with the
pre-installed compiler, which is required by several performance
tools, such as mpiP. Third, several tracing tools may take very
long to merge and write out performance data. These runs quickly
consume the users’ allocated compute hours.

Paper Presentation PERMAVOST '22, June 30, 2022, Minneapolis, MN, USA

9

Table 3: MPI applications used in this study and associated input sizes.

name input 1 × 32 procs input 32 × 32 procs

AMG -problem 1 -n 80 80 80 -P 4 4 2 -problem 1 -n 80 80 80 -P 16 8 8
ExaMiniMD run=1000; region=0 40 0 40 0 40 run=1200; region=0 120 0 120 0 120
miniAMR npx 4 npy 4 npz 2 nx 32 ny 16 nz 16 num_tsteps 120 npx 16 npy 8 npz 8 nx 32 ny 16 nz 16 num_tsteps 120
miniVite -n 1966208 -n 62918656
SW4Lite pointsource.in modified pointsource.in modified

grid x=10 y=10 z=6 h=0.04; time t=1.0 grid x=160 y=20 z=6 h=0.04; time t=1.0

ReproMPI MPI_Bcast, 1024 B, nrep=1000000 MPI_Bcast, 1024 B, nrep=300000

4 EXPERIMENTAL RESULTS
We present the results of our experiments on a single node and
on 32 nodes. The dataset with the raw experimental results can be
found at https://zenodo.org/record/6535636.

Figure 3 summarizes the experimental results obtained on one
compute node, where each MPI application is run with 32 processes,
each of which is mapped to a dedicated core. The figure shows
the composition of the different time slots that were defined in
Section 3.1. For all ECP proxy application, we can clearly observe
that most of the running time is spent in the MPI main program
(the net time, yellow). We can also see that Extrae spends more time
writing the final performance results compared with the other tools,
which can be seen for AMG and miniAMR. For ReproMPI, the time
difference between Extrae and the other tools becomes significant.

In Figure 4, we examine the net overhead caused by each tool
with respect to an application run without the utilization of a per-
formance analysis tool. Therefore, the figure does not contain a bar
for the baseline, as we normalize the net time measured for each
tool to this baseline. Our initial hypothesis was that applying per-
formance tools would add a noticeable overhead of roughly 5–10%.
But the results shown in Figure 4 showed a completely different
picture. All performance tools worked extremely well for all ECP
proxy applications tested. Only, for the stress test with ReproMPI,
visible overheads could be observed. We have to emphasize that, in
the experiment with ReproMPI, we call MPI_Bcast 106 times and
each broadcast is synchronized with an MPI_Barrier, leading to a
total of 2 × 106 collective calls with 32 processes. It is therefore not
surprising that tracing tools such as Score-P and Extrae entail an
overhead of 13% and 20%, respectively, which is still very low for
such a scenario.

Now, we turn to the results for 32 compute nodes, which are
shown in Figure 5. We start again by looking at the contribution of
each individual time. We need to point out that we were unable to
obtain results for mpiP with AMG and for Extrae with ReproMPI.
In the case of mpiP, it simply never finished creating the profile
for AMG. In the other case with Extrae and ReproMPI, we could
observe that Extrae was still trying to merge the trace files to create
a single Paraver trace, but we stopped it after 45 minutes when the
trace file had reached a size of 130GB. When inspecting the results
shown in Figure 5, we were not surprised to observe that tracing
tools like Extrae and Score-P had spent a significant fraction of the
overall runtime in writing the final trace file. In these cases, the hook
and wrap times are significantly increased. A little surprising was
the fact that mpiP required a comparatively long time for creating
the final profiles. Notice that the hook and wrap time can heavily

be impacted by the speed of the file system. Therefore, a faster file
system may mitigate the relatively large writing overhead.

In Figure 6, we compare the net overheads introduced by each
performance tool to the MPI applications. Notice the different scales
on the y-axes for each MPI application. Similarly to the results
for one compute node, all performance analysis tools performed
extremely well, leading to a net overhead of less than 5% overhead
for virtually all ECP proxy applications. Extrae on miniAMR and
Pilgrim on AMGwere the only cases that significantly exceeded the
5% overhead threshold. Overall, we had not expected to measure
such small net overheads across the different performance analysis
tools and proxy applications.

5 CONCLUSIONS
In this work, we have examined the composition of the running
time of MPI applications when being monitored with a performance
analysis tool. Our main goal was to quantify the overhead intro-
duced by the various profiling and tracing tools inside the main
application, which is the part of the application after MPI_Init and
before MPI_Finalize. Performance tools should not perturb MPI
applications in this time period, as the recorded performance result
may otherwise just represent artifacts.

We defined and investigated different overheads that may occur
in a performance analysis run of an MPI application. Our results
showed that all current MPI performance analysis tools, although
often having completely different objectives, entail a very small
overhead in the main part of MPI applications, i.e., they do not
significantly perturb these applications.

Our study of the overheads introduced by performance analysis
tools is far from complete. There are many more experimental
factors that can be explored, e.g., the number of processes, the
number of compute nodes, or the utilization of threads at node
level with OpenMP or Kokkos [22]. Finally, we need to point out a
lesson learned during this study. It is extremely hard (or perhaps
impossible) to get a fair comparison of the various performance
analysis tools. Many tools are themselves built on a large software
stack. Even small modifications of the stack may change the results
and the outcome. There are many pitfalls, since most tools have
a rather steep learning curve. However, in sum, all performance
tools significantly exceeded our expectations in terms of overhead.

ACKNOWLEDGMENTS
Wewould like to thank Markus Geimer for answering our countless
questions concerning Score-P.

Paper Presentation PERMAVOST '22, June 30, 2022, Minneapolis, MN, USA

10

https://zenodo.org/record/6535636

miniVite SW4Lite ReproMPI

AMG ExaMiniMD miniAMR

ba
se
lin
e

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

ba
se
lin
e

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

ba
se
lin
e

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

0

5

10

15

20

0

100

200

300

400

500

0

5

10

0

5

10

0

5

10

15

20

0

5

10

15

20

ti
m
e
[s
]

Time type wrap hook net

Figure 3: Composition of performance analysis times; 1 × 32 processes; machine: Hydra.

miniVite SW4Lite ReproMPI

AMG ExaMiniMD miniAMR

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

M
P
I
n
et

ov
er
h
ea
d
(w

rt
b
as
el
in
e)

[%
]

Figure 4: MPI net time overhead of performance analysis tools w.r.t. baseline execution; 1 × 32 processes; machine: Hydra.

Paper Presentation PERMAVOST '22, June 30, 2022, Minneapolis, MN, USA

11

n
o
d
a
ta

n
o
d
at
a

miniVite SW4Lite ReproMPI

AMG ExaMiniMD miniAMR

ba
se
lin
e

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

ba
se
lin
e

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

ba
se
lin
e

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

0

100

200

0

50

100

150

0

30

60

90

0

20

40

60

0

100

200

300

400

0

50

100

150ti
m
e
[s
]

Time type wrap hook net

Figure 5: Composition of performance analysis times; 32 × 32 processes; machine: Hydra.

n
o
d
a
ta

n
o
d
at
a

miniVite SW4Lite ReproMPI

AMG ExaMiniMD miniAMR

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

E
xt
ra
e

H
P
C
To
ol
ki
t

IP
M

m
pi
P

P
ilg
ri
m

Sc
or
e-
P
(p
ro
f)

Sc
or
e-
P
(t
ra
ce
)

0.0

2.5

5.0

7.5

0

5

10

15

20

0

1

2

3

0.0

0.2

0.4

0.6

0

10

20

30

0.0

0.5

1.0

1.5

2.0

M
P
I
n
et

ov
er
h
ea
d
(w

rt
b
as
el
in
e)

[%
]

Figure 6: MPI net time overhead of performance analysis tools w.r.t. baseline execution; 32 × 32 processes; machine: Hydra.

Paper Presentation PERMAVOST '22, June 30, 2022, Minneapolis, MN, USA

12

REFERENCES
[1] 2020. Exascale Proxy Applications. https://proxyapps.exascaleproject.org/
[2] Laksono Adhianto, S. Banerjee, Michael W. Fagan, Mark Krentel, Gabriel Marin,

John M. Mellor-Crummey, and Nathan R. Tallent. 2010. HPCTOOLKIT: tools for
performance analysis of optimized parallel programs. Concurr. Comput. Pract.
Exp. 22, 6 (2010), 685–701. https://doi.org/10.1002/cpe.1553

[3] David Böhme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Giménez, Matthew P. LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
performance introspection for HPC software stacks. In Proceedings of the Super-
computing (SC). IEEE Computer Society, 550–560. https://doi.org/10.1109/SC.
2016.46

[4] BSC Performance Tools. 2022. Extrae. https://tools.bsc.es/extrae
[5] BSC Performance Tools. 2022. Paraver. https://tools.bsc.es/paraver
[6] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and Kalyan Ku-

maran. 2018. Characterization of MPI usage on a production supercomputer.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC). IEEE / ACM, 30:1–30:15.

[7] I-Hsin Chung, Robert Walkup, Hui-Fang Wen, and Hao Yu. 2006. MPI tools
and performance studies - MPI performance analysis tools on Blue Gene/L. In
Proceedings of the ACM/IEEE SC2006 Conference on High Performance Networking
and Computing, November 11-17, 2006, Tampa, FL, USA. ACM Press, 123. https:
//doi.org/10.1145/1188455.1188583

[8] Bengisu Elis, Dai Yang, Olga Pearce, Kathryn Mohror, and Martin Schulz. 2020.
QMPI: A next generation MPI profiling interface for modern HPC platforms.
Parallel Comput. 96 (2020), 102635. https://doi.org/10.1016/j.parco.2020.102635

[9] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker,
and Bernd Mohr. 2010. The Scalasca performance toolset architecture. Concurr.
Comput. Pract. Exp. 22, 6 (2010), 702–719. https://doi.org/10.1002/cpe.1556

[10] Sascha Hunold, Jordy I. Ajanohoun, and Alexandra Carpen-Amarie. 2021. Mi-
croBench Maker: Reproduce, Reuse, Improve. In Proceedings of the International
Workshop on Performance Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems (PMBS 2021). IEEE, 69–74. https://doi.org/10.1109/
PMBS54543.2021.00013

[11] Sascha Hunold and Alexandra Carpen-Amarie. 2016. Reproducible MPI Bench-
marking is Still Not as Easy as You Think. IEEE Trans. Parallel Distributed Syst.
27, 12 (2016), 3617–3630. https://doi.org/10.1109/TPDS.2016.2539167

[12] Sascha Hunold and Alexandra Carpen-Amarie. 2018. Hierarchical Clock Synchro-
nization in MPI. In IEEE International Conference on Cluster Computing, CLUS-
TER 2018, Belfast, UK, September 10-13, 2018. IEEE Computer Society, 325–336.
https://doi.org/10.1109/CLUSTER.2018.00050

[13] Benjamin Klenk and Holger Fröning. 2017. An Overview of MPI Characteristics
of Exascale Proxy Applications. In Proceedings of the 32nd ISC High Performance
(LNCS, Vol. 10266), Julian M. Kunkel, Rio Yokota, Pavan Balaji, and David E. Keyes
(Eds.). Springer, 217–236. https://doi.org/10.1007/978-3-319-58667-0_12

[14] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen D.
Malony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou,

Dirk Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg,
and Felix Wolf. 2011. Score-P: A Joint Performance Measurement Run-Time
Infrastructure for Periscope, Scalasca, TAU, and Vampir. In Proceedings of the
5th International Workshop on Parallel Tools for High Performance Computing.
Springer, 79–91. https://doi.org/10.1007/978-3-642-31476-6_7

[15] Matthias S. Müller, Andreas Knüpfer, Matthias Jurenz, Matthias Lieber, Holger
Brunst, Hartmut Mix, and Wolfgang E. Nagel. 2007. Developing Scalable Appli-
cations with Vampir, VampirServer and VampirTrace. In Prceedings of the ParCo
2007 (Advances in Parallel Computing, Vol. 15). IOS Press, 637–644.

[16] Michael Noeth, Prasun Ratn, Frank Mueller, Martin Schulz, and Bronis R. de
Supinski. 2009. ScalaTrace: Scalable compression and replay of communication
traces for high-performance computing. J. Parallel Distributed Comput. 69, 8
(2009), 696–710. https://doi.org/10.1016/j.jpdc.2008.09.001

[17] Sameer Shende and Allen D. Malony. 2006. The Tau Parallel Performance System.
Int. J. High Perform. Comput. Appl. 20, 2 (2006), 287–311. https://doi.org/10.1177/
1094342006064482

[18] David Skinner. 2005. Performance monitoring of parallel scientific applications.
Technical Report. https://doi.org/10.2172/881368

[19] Nawrin Sultana,Martin Rüfenacht, Anthony Skjellum, PurushothamV. Bangalore,
Ignacio Laguna, and Kathryn Mohror. 2021. Understanding the use of message
passing interface in exascale proxy applications. Concurr. Comput. Pract. Exp. 33,
14 (2021). https://doi.org/10.1002/cpe.5901

[20] Daniel Terpstra, Heike Jagode, Haihang You, and Jack J. Dongarra. 2009. Col-
lecting Performance Data with PAPI-C. In Tools for High Performance Comput-
ing 2009 - Proceedings of the 3rd International Workshop on Parallel Tools for
High Performance Computing, September 2009, ZIH, Dresden, Matthias S. Müller,
Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel (Eds.). Springer,
157–173. https://doi.org/10.1007/978-3-642-11261-4_11

[21] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: Lightweight Per-
formance Tools. In Competence in High Performance Computing 2010 - Proceedings
of an International Conference on Competence in High Performance Computing,
Schloss Schwetzingen, Germany, June 2010, Christian H. Bischof, Heinz-Gerd
Hegering, Wolfgang E. Nagel, and Gabriel Wittum (Eds.). Springer, 165–175.
https://doi.org/10.1007/978-3-642-24025-6_14

[22] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Q.
Dang, Nathan D. Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Holl-
man, Dan Ibanez, Nevin Liber, Jonathan R. Madsen, Jeff Miles, David Poliakoff,
Amy Powell, Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland,
Bruno Turcksin, and Jeremiah Wilke. 2022. Kokkos 3: Programming Model Ex-
tensions for the Exascale Era. IEEE Trans. Parallel Distributed Syst. 33, 4 (2022),
805–817. https://doi.org/10.1109/TPDS.2021.3097283

[23] J. Vetter and C. Chambreau. 2006. mpiP: Lightweight, Scalable MPI Profiling.
https://github.com/LLNL/mpiP

[24] Chen Wang, Pavan Balaji, and Marc Snir. 2021. Pilgrim: scalable and (near)
lossless MPI tracing. In SC ’21: The International Conference for High Performance
Computing, Networking, Storage and Analysis, St. Louis, Missouri, USA, November
14 - 19, 2021, Bronis R. de Supinski, Mary W. Hall, and Todd Gamblin (Eds.). ACM,
52:1–52:14. https://doi.org/10.1145/3458817.3476151

Paper Presentation PERMAVOST '22, June 30, 2022, Minneapolis, MN, USA

13

https://proxyapps.exascaleproject.org/
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.1109/SC.2016.46
https://tools.bsc.es/extrae
https://tools.bsc.es/paraver
https://doi.org/10.1145/1188455.1188583
https://doi.org/10.1145/1188455.1188583
https://doi.org/10.1016/j.parco.2020.102635
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1109/PMBS54543.2021.00013
https://doi.org/10.1109/PMBS54543.2021.00013
https://doi.org/10.1109/TPDS.2016.2539167
https://doi.org/10.1109/CLUSTER.2018.00050
https://doi.org/10.1007/978-3-319-58667-0_12
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1016/j.jpdc.2008.09.001
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://doi.org/10.2172/881368
https://doi.org/10.1002/cpe.5901
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-642-24025-6_14
https://doi.org/10.1109/TPDS.2021.3097283
https://github.com/LLNL/mpiP
https://doi.org/10.1145/3458817.3476151

	Abstract
	1 Introduction
	2 Related Work
	3 Overhead Analysis: The Setup
	3.1 Definitions: MPI Performance Times
	3.2 MPI Performance Analysis Tools
	3.3 Inspected MPI Applications
	3.4 Hardware Configuration
	3.5 Selection of Performance Analysis Tools
	3.6 Objectives and Limitations

	4 Experimental Results
	5 Conclusions
	Acknowledgments
	References

