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Kurzfassung

Die Erkennung von Anomalien ist ein sehr wichtiger Bereich, um unerwünschtes Verhalten
und Angriffe auf Computersysteme zuverlässig zu erkennen. Für eine präzise Anomaly
Detection (AD) können Logdaten verwendet werden, die eine bedeutende Quelle für
Informationen zu überwachten Systemen darstellen. Angesichts der schieren Menge an
Logdaten, die heute zur Verfügung stehen, wird Machine Learning (ML) und dessen
Weiterentwicklung Deep Learning (DL) seit Jahren zur Erstellung von Modellen für
die AD eingesetzt. Insbesondere bei der Verarbeitung von komplexen Logdaten ist DL
oft in der Lage eine bessere Leistung als ML zu erreichen. Ähnlich wie bei ML können
DL Modelle unterteilt werden in supervised, unsupervised und semi-supervised Ansätze.
Semi-supervised Ansätze trainieren ihre Modelle nur mit anomalie-freien Logdaten. Durch
die große Menge an Logdaten entstehen Probleme bei der Übertragung an eine zentrale
Stelle, an der Modellberechnungen stattfinden können. Federated Learning (FL) versucht
dieses Problem zu überwinden, indem lokale Modelle gleichzeitig auf Endgeräten gelernt
und Verzerrungen, die aufgrund mangelnder Heterogenität der Trainingsdaten auftreten
können, durch den Austausch von Modellparametern einzudämmen, um schließlich zu
einem konvergierenden globalen Modell zu gelangen. Die lokale Betrachtung der Logdaten
trägt dem Datenschutz und rechtlichen Bedenken Rechnung. Dies könnte eine stärkere
Koordinierung und Zusammenarbeit zwischen Forschern und Cybersecurity-Unternehmen
usw. in Zukunft möglich machen. Derzeit gibt es nur wenige wissenschaftliche Veröffentli-
chungen über logdaten-basierte AD, die FL verwenden. Es ist notwendig zu untersuchen,
ob der Einsatz von FL für AD ein praktisch einsetzbares Anwendungsgebiet ist. Die
Grundlage für diese Masterarbeit ist ein zentralisierter Ansatz unter Verwendung eines
Autoencoder (AE) und eines Long Short-Term Memory (LSTM) Modells für AD. Das AE
Modell wird von Grund auf implementiert und für das LSTM Modell wurde eine moderne
Open Source Implementierung namens LogDeep angepasst. Nach der Validierung der
Ergebnisse mit anderen wissenschaftlichen Publikationen, übertragen wir die Modelle
in eine FL Umgebung. Für die Auswertung verwenden wir einen Hadoop Distributed
File System (HDFS) Datensatz, der in der aktuellen Forschung weit verbreitet ist, und
einen Audit Datensatz, der vom Austrian Institute of Technology (AIT) zur Verfügung
gestellt wird. Die ersten Ergebnisse zeigen, dass das AE Modell nicht für den unter-
suchten Audit-Datensatz geeignet ist. Die Ergebnisse für das LSTM Modell und den
HDFS Datensatz zeigen, dass FL fast die gleichen Ergebnisse in Bezug auf die Metriken
Accuracy, Precision, Recall und F1-Score, liefert wie ein zentraler Ansatz. Wobei wir im
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Zuge der Implementierung von LogDeep auf einen Vorverarbeitungschritt gestoßen sind
ohne den die guten Ergebnisse aus der Literatur nicht repliziert werden konnte. Der Audit
Datensatz war aufgrund der inkludierten Labels nicht uneingeschränkt für die gewählten
Modelle nutzbar. Die Implementierung von FL bietet den Vorteil, dass die Modelle trotz
einer ungleichen Verteilung der Logdaten konvergieren. Außerdem können die Ergebnisse
durch die Variation einzelner LSTM Modellparameter erheblich verbessert werden. Den-
noch können durch Einschränkungen bei den verwendeten Datensätzen keine generellen
Aussagen getroffen werden. Es ist weitere wissenschaftliche Forschung notwendig, um die
FL Ansätze zu optimieren und den Bedarf an Rechenressourcen zu reduzieren.



Abstract

Anomaly Detection (AD) is a very important area to reliably detect unwanted behavior
and attacks on computer systems. Log data is a rich source of information about systems
under investigation and thus provides a suitable input for accurate AD. With the sheer
amount of log data available today, Machine Learning (ML) and its further development
Deep Learning (DL) is used for years to create models for AD. Especially when processing
complex log data, DL is often able to achieve better performance than ML. Similar to ML,
DL models can be divided into supervised, unsupervised and semi-supervised approaches.
Semi-supervised approaches train their models only with benign log data. With the
large quantity of log data, issues arise with the transfer of log data to a central entity
where model computation can be done. Federated Learning (FL) tries to overcome this
problem, by learning local models simultaneously on edge devices and overcome biases
due to a lack of heterogeneity in training data through exchange of model parameters
and finally arrive at a converging global model. Processing log data locally takes privacy
and legal concerns into account and this could make more coordination and collaboration
between researchers, cyber security companies, etc., feasible in the future. Currently,
there are only few scientific publications on log-based AD which use FL. It is necessary
to investigate whether the implementation of FL for AD is a practical field of application.
The basis of this master thesis is a centralized approach using an Autoencoder (AE)
and a Long Short-Term Memory (LSTM) model for AD. The AE model is implemented
from scratch and for the LSTM model a state of the art open source implementation
called LogDeep is adapted. After validating the results with other scientific publications,
we transfer the models into a FL environment. For the evaluation, we use a Hadoop
Distributed File System (HDFS) data set, which is well studied in current research, and
an Audit data set provided by the Austrian Institute of Technology (AIT). The initial
results show that AE is not suitable for the Audit data set under investigation. The
results for a LSTM model show that FL yields almost the same results in terms of the
metrics Accuracy, Precision, Recall, and F1-Score as a centralized approach. In the
course of implementing LogDeep, we encountered a preprocessing step without which
the good results from the literature could not be replicated. The Audit data set was
not fully usable for the selected models due to the included labels. Implementing FL
gives the advantage of converging models despite heterogeneous distribution of log data.
Furthermore, by varying individual LSTM model parameters, the results can be greatly
improved. However, due to limitations in the data sets used, no general statements can
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be made. Further scientific research will be necessary to optimize FL approaches and
reduce computational resource requirements.
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CHAPTER 1
Introduction

1.1 Motivation
Anomaly Detection (AD) has been an actively researched field for decades in various
domains. Abnormalities, deviants, or outliers from normal expected behavior are referred
to as anomalies and the goal of anomaly detection is to find those instances as efficiently
and quickly as possible [CC19]. The application areas range from cyber security, health
applications to risk management and many more. In this master thesis, we investigate
the detection of anomalies in the cyber security domain using log data analysis.

In recent years, cyber attacks have become more sophisticated and the attack surface has
tremendously increased because of nowadays complex computer systems and networks.
The variety of cyber attacks is broad and ranges from obtaining unauthorized access into
systems and data breaches to the destruction of critical infrastructures. This causes a slow
but steady rise of awareness in non-security companies for security countermeasures. AD
is widely used in Intrusion Detection Systems (IDS) to automatically detect and classify
intrusions, attacks, or violations of security policies in infrastructures at network-level
and host-level [VAS+19].

Conventional signature-based IDS, using patterns of already known attacks and behavior
have become insufficient and the need for more flexibility and adaptability is immanent.
As a result, we see a shift towards anomaly based IDS, which use various data sources like
textual log data and network traffic data to reliably discover deviations from a desired
system’s behavior. This approach supports reaching the goals of minimal maintenance,
human interaction, and delay in response time [WSSF18].

Earlier work shows a development of applying Machine Learning (ML) in AD [CBK09].
Especially Deep Learning (DL) as a branch of ML, whose performance is remarkable has
become a research hot spot [LOSW22]. DL can discover the essential differences between
normal and abnormal data with high accuracy [LL19]. This strengthens monitoring
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1. Introduction

systems, by creating a single model for benign behavior and threat detection. DL can
support security experts to react quickly and effectively to known and unknown attacks
and to gain a broad overview of the threat landscape. Therefore, security experts can
expand their arsenal of security countermeasures and combine tools to keep up with
the accelerating pace of cyber threats [PRT+18]. But it soon became apparent that DL
for AD approaches also incorporate disadvantages, such as that the massive amount of
data generated by edge devices must be communicated to a central node, for example, a
data center, where the model is generated and trained. This introduces a single-point of
failure. Those approaches are also often plagued by a delay in response time, where a
fast analysis would be required. Furthermore, the transfer of data over the internet to a
central node itself raises privacy concerns [RTTM20].

One promising solution to overcome those disadvantages is a distributed paradigm called
Federated Learning (FL). In FL, training of DL models for AD is solved by a federation
of participating devices, often referred to as clients, coordinated by a central server. This
decentralized technique leaves the data distributed on the clients. With this data, each
client trains a local DL model and sends only updates of the local models to a central
server. The central server conducts the training of the global DL model by aggregating
locally-computed updates and manages the communication of the global model back to
the clients with the overall goal of a fast converging global DL model for AD [MMR+17].
This aggregation maximizes the usage of limited information of each client because every
client can benefit from the updated global model [NMM+19].

With implementing FL for AD, we want to find out if it is possible to overcome limitations
of centralized approaches. For example, achieving better adaptability of local DL models
on each client without retraining models from scratch when the observed system is in a
rapidly changing environment. It also appears fruitful to utilize log data for training DL
models. Log data give a more detailed look for behavioural understanding of a system
than network traffic data and is useful for troubleshooting. Contrarily to many available
state of the art AD systems, which process network traffic data, a paradigm shift towards
log data should be considered [WSSF18]. There are currently not many approaches
in scientific research, combining DL methods for AD utilizing Audit log data and FL.
Therefore, this master thesis aims to close this research gap further.

1.2 Research Questions
The thesis aims to explore two open source data sets (Hadoop Distributed File System
(HDFS) [XHF+09] and Audit [LSW+21]) and to compare two DL algorithms, namely
Autoencoder (AE) and Long Short-Term Memory (LSTM), with respect to their capability
detecting anomalies. Also their disadvantages and limitations will be identified. An
already existing centralized open source implementation of DL models for AD that has
been applied to HDFS is adapted for the Audit data set. To test whether it is worthwhile
implementing FL for AD, we conduct comparable simulation experiments of FL- and
centralized AD. A multitude of research questions arise when trying to integrate FL
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1.3. Approach

models into AD. Those which are addressed in this thesis are the following:

• R1: Which DL algorithm, AE or LSTM, is more suitable with regard to Accuracy,
Precision, Recall and F1-Score for the investigated data sets in the domain of AD?

• R2: Can a FL AD implementation reach the same Recall as a centralized DL AD
for a well-studied HDFS and an Audit data set?

• R3: How fast do DL models for AD converge with regard to the Recall when FL is
used in comparison to a centralized DL AD approach?

• R4: What are the open challenges for integrating FL for AD?

In this master thesis, we consider suitability using metrics that are commonly used for AD.
Namely, the metrics are Accuracy, Precision, Recall, and F1-Score. Those are described
in more detail in Sect. 4.8. For convergence we examine whether a FL implementation
achieves the same Recall value as a central implementation, and if so, within what period
of time.

1.3 Approach
First, we choose two open source data sets containing log data. The HDFS [XHF+09]
data set is widely used in research for evaluating DL models in the AD domain and the
Audit [LSW+21] data set is provided by the Austrian Institute of Technology (AIT). For
the AE algorithm we build a detector from scratch and for the LSTM detector we use
an open source implementation of DeepLog, which is a state of the art DL approach
for AD. We verify published metrics for the HDFS data set with LogDeep, which is an
open source re-implementation of DeepLog and uses LSTM as DL model, and adapt this
re-implementation with the capability to process Audit data sets. By tuning DL model
parameters, we show by which degree metric values change. With a working centralized
foundation we proceed our research and implement a FL approach for LogDeep, in order
to compare the FL approach with the centralized solution.

1.4 Contribution
The main contributions of this work are:

• In depth analysis of the Audit data set and comparison with the HDFS data set.

• Stand-alone AE implementation for Audit data set.

• Analysis of existing open source implementation of LSTM models for AD and
selection of the most suitable for aforementioned data sets. It turned out that
LogDeep [DA20] is best suited for the two data sets because of its documentation
and ease of adaptation.
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• Experiments with LogDeep utilizing the HDFS data set to confirm results from
[DLZS17] and provide a basis for comparison with the FL implementation. The
results could be reproduced, but shortcomings in the implementation based on
simplified assumptions were identified.

• Adaption of LogDeep for Audit data set.

• Experiments with LogDeep for Audit data set to check if similar results as with
HDFS data set can be achieved.

• Implementation of LogDeep in flower framework and experiments with evenly and
unevenly split HDFS and Audit data sets.

1.5 Structure
In Chapt. 2 we provide background information about how ML, DL and log data are
used in the field of AD, as well as a an introduction of two examined DL algorithms,
which would be AE and LSTM. Furthermore, we explain FL and its basic features. The
current state of the art research of DL and FL in the AD domain will be presented in
Chapt. 3. A description of the data sets, data preprocessing, implementation approaches
and used metrics can be found in Chapt. 4. To make this work reproducible, a detailed
description of all experiments, which were carried out, can be found in Chapt. 5. In
Chapt. 6 we interpret the results of the experiments. Finally, in Chapt. 7 and Chapt. 8,
we will go into detailed review of the right and wrong assumptions we made at the start
of this master thesis and also point out directions and considerations, which should be
investigated further in future research.

1.6 Support
This work was partly funded by the EU project PANDORA (SI2.835928).
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CHAPTER 2
Background

In this section we provide an overview of general concepts which act as foundation of
this master thesis, namely: AD, DL, FL and log data.

2.1 Anomaly detection
AD describes the procedure to find instances in data sets that deviate from the expected
behavior. Those deviations are often called anomalies or outliers. Anomalies can be
caused by various things such as malicious activities and also wrong usage of a system.
Many of the AD systems in use are tailored to one specific application [CBK09].

The main advantage over conventional signature-based approaches lies in increased
flexibility to detect novel and previously unknown attacks. It is also necessary to consider
an automatic analysis due to the huge amount of data. Some anomaly based detection
approaches apply machine learning to first learn a system’s normal behavior and then
use the divergence to detect anomalies [BB15][LZXS07][XHF+09].

Basically, anomalies can be classified into three categories, which would be:

• Point Anomalies: Those anomalies usually stand out from the rest of the data
set because they deviate significantly. The vast majority of research focused on
this kind of anomalies, because these are the simplest type of anomalies to detect
[CBK09]. In this master thesis, we try to detect point anomalies with an AE
approach.

• Contextual Anomalies: If parts of the data set are anomalies only in a certain
context but not individually, then we speak of contextual anomalies. To detect
contextual anomalies, we need to consider both contextual attributes, like passed
time between data instances and behavioral attributes such as occurrences of specific
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2. Background

data instances. Anomalies can be detected when we combine both, i.e. values of
behavioral attributes in a specific context [SWJR07]. Most commonly explored are
time-series data sets. The predestined DL algorithm here is LSTM [KMDH19].

• Group Anomalies: Individual data instances in isolation appear as normal but if
observed collectively they can be detected as anomalies. Group anomalies can be
seen as point anomalies which appear over and over again [CC19][CBK09]. Because
it always depends on the data set which kind of anomalies can be investigated, we
have chosen the two previous categories for this master thesis.

AD techniques can be classified based on the availability of labels. Labels indicate
whether a respective data instance is benign or malicious. The three categories are
[LOSW22][CBK09]:

• Supervised: A fully labeled training set containing both benign and anomalous
data is required. A common approach is to build a predictive model for both data
classes. Then unseen data instances are tested with the model to determine which
class they belong to. At first glance, it is easy to create a model like this but it
has two major disadvantages. First, usually data sets contain fewer anomalies than
benign data which leads to an imbalanced class distribution. Second, it is not
trivial and thus challenging to label the anomaly class.

• Semi-supervised: The prerequisite is that the training set only contains benign
data. After training, the model is used to identify anomalies in test data. This
technique assumes availability of benign training data sets which can be challenging
in some application domains.

• Unsupervised: The system learns independently to distinguish between benign
and anomalous data without the prerequisite of a fully labeled training set. This
approach makes use of the intrinsic properties of data instances. In principle, it is
often the case that data sets under investigation have fewer anomalies than benign
data, which would speak for an unsupervised approach. The trained model should
be robust to those few anomalies. If this assumption does not apply it will lead to a
high false alarm rate. But what we see in recent research is that a semi-supervised
approach is often more suitable, because it is often simpler to gather benign data
then modeling anomalies.

It is worth noting that both semi-supervised and unsupervised can never match the
performance of supervised AD, e.g., binary classifier. Nevertheless, we have chosen a
semi-supervised approach for this master thesis, because it is a realistic scenario with
regard to real world applications to first learn a model in an anomaly-free area with
benign data and then switch to live operation.
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2.2 Machine Learning
The main reason to use machine learning algorithms for AD is to create a baseline for
a system under observation with minimal human interaction and keeping it up to date.
Therefore, machine learning can be used on two fronts [SWL21]:

1. First, to learn which data and features are useful and relevant to detect anomalies.

2. Second, to create and maintain a model which can distinguish between normal and
malicious behaviour and reveal hidden relations.

In the past, machine learning algorithms such as Decision Tree (DT), Support Vector
Machine (SVM) and Principal Component Analysis (PCA) were mainly used for log-based
AD. But it became clear that those algorithms are not good at analyzing concealed
relationships of some features. Nowadays, DL algorithms are being used to overcome
this limitation [YKD20].

2.3 Deep Learning
DL is a further development of classical ML which shows good performance and flexibility,
especially when data sets become larger and the structure of data becomes more complex
[CC19]. The complexity lies in the fact that anomalies often show clear abnormal
characteristics in low dimensional space that are virtually not noticeable in higher
dimensional space. Another reason why DL has become so important is the necessary
shift to semi-supervised and unsupervised AD [PSCH22]. It simply does not correspond
to reality to assume availability of completely labeled data sets. The choice of the DL
architecture depends usually on the type of input data. A widespread assumption is that
AE are preferred for image data sets and LSTM are good for processing sequential data
[CC19].

2.3.1 Autoencoder
AE is one of the well studied DL algortihms which can be used for unsupervised and
semi-supervised AD [ITM21]. An AE consists of an encoder and decoder. At first, input
data gets compressed and mapped to a low-dimensional feature space by the encoder.
As a second step, the decoder tries to recover the input data from the encoded data.
Through a bottleneck network architecture an attempt is made to retain information
that is necessary to reconstruct the input data. Finally, input data is compared with
the output data and a reconstruction error is determined [YKD20][PSCH22]. Anomalies
should be harder to reconstruct from compressed space than benign data which lead to a
large reconstruction error [CC19]. This large reconstruction error can then be used as an
indicator for anomalies. The mathematical expression for the encoder and decoder can
be found in Eq. 2.1 and 2.2 [ITM21]. A basic structure of an AE can be seen in Fig. 2.1.
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Encoder Stage : H = G(x · α + b) (2.1)

Decoder Stage : y = H · β (2.2)

where:

H = Hidden-layer matrix

G = Activation function

x = Input

α = Input weight matrix

b = Bias vector

y = Ouput

β = Output weight matrix

β is trained so that an input is reconstructed as correctly as possible.

Figure 2.1: Basic design of an AE based on [ITM21].

After training we calculate the Root Mean Squared Error (RMSE) as shown in Eq. 2.3.

RMSE(wi
−1) =

��wi
−1 − �wi

−1
��2 (2.3)

where:

wi−1 = Original data

�wi−1 = Reconstructed data

In conclusion, AE is a straightforward approach for many different types of data sets
which is the biggest advantage. In the AD domain, AE can be used to detect point
anomalies. But the learned model can be biased and therefore unsuitable for AD, if the
training data set contains anomalies or infrequent regularities [PSCH22].
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2.3.2 RNN & LSTM
A Recurrent Neural Network (RNN) is an artificial neural network which can learn
sequential or temporal interrelationships. To achieve that, RNNs have the ability to
memorize and store a previous output of a learning node and return it as an input to
a subsequent learning node [DLZS17][YKD20]. In principle, an input layer represents
features at one point in time t where the number of dimensions of this layer corresponds
to the feature size of the input data [HXY15]. The output layer gives a probability
function for predicted labels at time t. The equation for hidden state can be found in Eq.
2.4 and for the output in Eq. 2.5 [HXY15].

ht = f(Ux(t) + Wh(t − 1)) (2.4)

yt = g(Vh(t)) (2.5)

where:

ht = Hidden state

xt = Input

yt = Output

U,W,V = Connection weights

f , g = Activation functions

The authors of [VSP17] claim that LSTM as a variant of RNNs algorithm is one of
the most important approaches to represent long-range temporal dependencies in log
sequences of arbitrary length. For AD, this means that we use past information to predict
whether future events are benign or anomalous. This past information is especially
important when we want to detect contextual and group anomalies. Unlike RNN, LSTM
replaces hidden layers with special memory cells [HXY15]. The mathematical expressions
for a basic LSTM cell can be found in Eq. 2.6,2.7,2.8,2.9,2.10 and 2.11 [SH21]. A basic
structure of a LSTM cell can be seen in Fig. 2.2.

ft = σ(Wf xt + Rf ht−1 + bf ) (2.6)

gt = tanh(Wgxt + Rght−1 + bg) (2.7)

it = σ(Wixt + Riht−1 + bi) (2.8)

ct = ft ⊙ ct−1 + it ⊙ gt (2.9)

ot = σ(Woxt + Roht−1 + bo) (2.10)

ht = ot ⊙ tanh(ct) (2.11)

where:
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ft = Forget gate

gt = Memory cell

it = Input gate

ot = Output gate

ct = Cell state

ht = Hidden state

W = Input Weight matrices

R = Recurrent Weight matrices

b = Bias vectors

σ = Sigmoid activation function

⊙ = Pointwise product

Figure 2.2: LSTM cell based on [SH21].

The LSTM model is composed of several LSTM cells. Each cell stores the state of the
input. In addition, cells also receive the state of the preceding cell. This way, historical
information is passed on. An exemplary structure of several interconnected LSTM cells
can be seen in Fig. 2.3.

2.4 Federated Learning
Both ML and DL can nowadays benefit from the sheer volume of data. However, with this
large quantity there arise issues with transferring this data to a central server. FL tries
to avoid this problem by having the training data never leave local devices. A shared DL
model is learned through locally aggregated updates. Because the DL model is learned
on local devices, it also reacts better to environmental changes over time [ITM21]. The
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Figure 2.3: Interconnected LSTM cells based on [DLZS17].

localization of data also takes privacy and legal concerns into account. This could make
it feasible in the future that there is even a secure data exchange between organizations
that currently do not cooperate with each other. Coordination and collaboration will
become very important in the future, especially in the cyber security domain. FL was
first introduced in 2016, by researchers of Google [MMR+17]. The term FL origins from
the fact that the model learning task is performed by a loose federation of devices called
clients which are coordinated by a central server. Each client trains a local DL model
only with a local training data set and sends updates for a global model to a central
server. It must be mentioned that the central server that manages the training and
distribution of the global model must be trusted. Another reason why it is interesting
to deal with FL is to reduce communication costs. Nowadays, devices like smartphones
have fast processors and Graphics Processing Units (GPUs). Assuming that local data
sets are small, the described hardware can simply take over computation of DL models
instead of many devices taking up bandwidth unnecessarily by sending data to a central
server, thus reducing communication costs [MMR+17]. A final statement on the saving
of computational resources is difficult, because it depends strongly on the other load of a
client and which energy resource, e.g., battery, is available.

Basically, FL consists of the following steps [LFL20]:

1. All participating clients get a generic global model from a central server for local
training.

2. Each client learns a local DL model for themselves with local data.

3. After the learning phase, clients send back their local parameter updates to the
central server for aggregation.

4. The central server averages those updates and sends back an updated version of
the global model.

5. Those processes are repeated until desired performance is achieved. An iteration of
those processes is called a round.

The process described here is shown in Fig. 2.4.
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Figure 2.4: Illustrative FL scenario based on [RTTM20].

2.4.1 Categorization of Federated Learning
The authors of [YLCT19] proposed the following categorization of FL approaches based
on how data is distributed among participating clients in feature and sample space, where
a sample is a single entry in a data set and a feature is a measurable value of such entry
[Bis06].

• Horizontal FL: The feature space is the same but the sample space is different.
An example would be two regional banks which of course have different customers
(=samples) but the business transactions (=features) are very similar.

• Vertical FL: Unlike horizontal FL, it is the other way around, i.e. in both data
sets there are identical samples that can be recognized by an identifier but have
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different features. For example, two different companies have the same customers
(=samples) with the same residential address, but the companies provide different
services (=features) to these customers.

• Federated transfer learning: Data sets on the clients differ in both sample and
feature space. There is only a small overlap, e.g., in the feature space, and this
allows conclusions to be drawn about the entire sample- and feature space. This
approach is still at the beginning of a development but should be mentioned here
for the sake of completeness.

In this master thesis, we use the horizontal approach for AD. The logs of the data sets
are recorded centrally. They have the same feature space and are divided into parts for
a number of clients for experiments. So each client on its own can make a local AD
system and collaboratively learn from others simultaneously. Concretely, local biases
that arise due to lack of heterogeneity in the training data can be overcome [LPBA22].
But existing FL approaches for AD are still missing a uniform structure and are far from
complete, especially when utilizing log data.

2.5 Log data
Since the dawn of programming, logging was used to record program variable values,
trace execution, report runtime statistics, and even print out full sentence messages
designed to be read by a human. In that sense, log data is a valuable source to help
debug system failures and perform root cause analysis. Naturally that is the reason why
log data is used for AD. But, we have to keep in mind that it is not always sufficient
to look at the presence, absence or frequency of a single type of log data to pinpoint a
problem. Often the problem reveals itself only when we look at correlations or relative
frequencies. The important information and interrelationships is buried in millions of
log lines. So logs often indicate sources of problems, but have become to large to be
examined manually. Automatic intrusion detection performed by ML and DL sounds
promising [XHF+09].

Usually, log-based DL for AD consists of three steps: log parsing, feature extraction and
AD. Log parsing allows us to turn unstructured log lines into structured data. During
feature extraction, this structured data is transformed into numerical feature vectors,
because DL processes only numerical representations of log lines. Finally, a DL algorithm
is applied to classify between benign and malicious log lines [HZHL16].

The majority of scientific research in the field of AD does not focus on log data. A
large number of scientific publications investigate AD based on network traffic. Network
features, such as source and destination, ports, TCP flags, protocols, and packet lengths
are examined [LPBA22].
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CHAPTER 3
State of the art

There are currently many scientific publications on how DL can support AD. But as
mentioned before, research publications dealing with log data, AD, DL and FL are rare.
In principle, the majority of research in the field of DL and AD utilizes network traffic
data sets and neglect log data sets. The reason for this is the simpler processing of
numerical data sets where the parsing step is left out. The sheer variety makes log data
processing not trivial. Also FL is still a relatively new research topic. Those are the main
reasons that there are still only few publications in this field. Nevertheless, we would
like to present a few research results worth mentioning in the individual domains in this
chapter.

3.1 Deep Learning for anomaly detection
In this section we list three state of the art approaches that use DL for AD.

3.1.1 DeepLog
The authors of [DLZS17] have developed an approach called DeepLog that uses an LSTM
as DL model that processes log lines as sequences. The model thereby learns log patterns
during normal execution and detects anomalies when log patterns deviate from this
learned model. Even though this approach was published in 2017, it still has great
significance to this day. As a starting point of development, the authors describe that
log entries in most cases have fixed patterns and also follow grammar rules. But they
also state that it is still difficult to make a generalization about interesting features for
different data sets. To evaluate their implementation the authors use the HDFS data
set [XHF+09] and the OpenStack data set [DLZS17]. The OpenStack data set contains
administrative logs of virtual machine instances. DeepLog works in a semi-supervised way,
therefore only anomaly-free sequences are used for training the LSTM model. First, the
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Spell parser extracts so-called log keys (=constant part) and parameter values (=variable
part) from each log line. This way two separate AD systems can be set up. First,
DeepLog checks if the log key to be examined is a known one. In case it is, it can then
check if parameter values indicate anomalies. First, the paper describes the process for
log keys. In principle, one can assume that the number of different log keys is constant,
no matter how log lines are recorded for a given data set. This assumption indicates
that the authors do not take into account new log lines, that have a new structure.
The log producing system forms a sequence of the process to be observed with a finite
number of log keys. The sequence in which log keys occur can be used to detect so-called
execution path anomalies. This type of anomalies correspond to the contextual anomalies
explained above. The LSTM model uses a set of log keys with a fixed size, called window
size, and uses the gathered knowledge to predict which log key should follow. After
training the LSTM model, DeepLog outputs possible candidates that were predicted
with their respective probabilities. In contrast to this, parameter values are used to find
irregularities in log lines with the same log keys. A matrix is built up where each column
corresponds to a log key and the corresponding parameter values are entered in the rows.
For the evaluation of the matrix, an LSTM model can also be used. The individual
parameter values are used as input in the order in which they occur and an attempt is
made to generate a prediction for the following parameter value based on this existing
history. The structure of the DeepLog architecture described here is shown in Fig. 3.1.

Figure 3.1: DeepLog architecture based on [DLZS17].

The two most important input parameters DeepLog needs are length of the window
under consideration and number of top candidates for prediction. The choice of these
parameters depends on the problem to be considered. For example, if we choose the
window size too large we get a wide view in the past and a better overall picture, but
we also have to expect performance losses resulting in long training time. The choice
for the number of candidates results in a trade off between AD rate (=true positives)
and false alarm rate (=false positives). For benchmarking the authors used PCA- and
Invariant Mining (IM) approaches, as classical ML methods, to compare it with their
DeepLog implementation. The breakdown of the HDFS dataset for evaluation can be
seen in Tab. 3.1 and resulting metrics for DeepLog compared to approaches using PCA
and IM are shown in Fig. 3.2.
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Train (normal) sequences Test normal sequences Test abnormal sequences
4,855 553,366 15,200

Table 3.1: Splitting of HDFS data set used in [DLZS17].
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Figure 3.2: Evaluatution results of [DLZS17].

It is evident that DeepLog delivers the best results in comparison. This is proven by
an F1-Score of 96%. A shortcoming of this publication is that the authors only briefly
mention that they use the Keras and TensorFlow library to implement DeepLog, but did
not go into more detail or published open source code. In summary, DeepLog was the first
framework to detect contextual anomalies in log data using DL. Another reason for its
relevance to date is the release of open source re-implementations by various developers
[LOSW22].

3.1.2 LogAnomaly
LogAnomaly follows a similar approach as DeepLog. The authors of [MLZ+19] claim
that if we just look at log keys rigidly you get many false alarms, because log lines are
much more complex. Therefore they analyze not only log keys but also semantics of
the logs. For this they use a method they call template2vec. This method extracts
semantics including synonyms and antonyms. They use LSTM as DL model to predict
consecutive logs and HDFS as data set for evaluation. In addition, they also consider
the Blue Gene/L (BGL) data set [OS07], which consists of logs from a supercomputer
and was manually labeled. The authors designate LogAnomaly as an unsupervised
approach, but they use labels of the data sets as groundtruth for evaluation. According
to the experiments performed, LogAnomaly performs better than DeepLog based on

17



3. State of the art

the evaluation metrics for the datasets investigated. However, a described case study
in this paper shows that DeepLog triggered an alarm faster than LogAnomaly in a
single anomaly case scenario. Unfortunately, we were not able to inspect the authors’
template2vec method more closely using code examples, but re-implementations are
available.

3.1.3 LogRobust
In the paper [ZXL+19], the authors draw attention to instability of log data. This is
caused by the evolution of the logging process itself and of processing noise in log data.
Evolution is based on constant development of software and associated changes in source
code and logging statements. The introduction of noise already happens during data
collection. In distributed systems, logs can be lost or duplicated during transfer to a
central entity. But logs can also be misinterpreted during parsing. All this reduces
the accuracy of an AD system. To counteract this, the authors of LogRobust rely on
semantic vectors. Not unlike LogAnomaly, semantic properties of log lines are extracted.
But in contrast to previously discussed approaches, LogRobust can also process new
log lines if they are similar to known ones. To test this, slightly modified log lines are
inserted in the HDFS data set to be examined. It is important to note that training of
the model is still performed with unmodified log lines i.e. the original HDFS training
data set. LogRobust is basically very similar to DeepLog and LogAnomaly. It also uses
log sequences as input for a LSTM. First difference is that it is a supervised approach
and uses 6000 benign log sequences and 6000 malicious log sequences which are chosen
randomly from the HDFS data set to train the model. As expected due to the supervised
approach metrics after training are better, for testing without modified log lines, than
for the other two approaches shown above. The metrics for the test data set (562855
benign log lines and 10838 malicious log lines) result to: Precision=98% Recall=100%
F1-Score=99%. Further Evaluation shows that LogRobust still achieves good metrics
even with high injection rates of modified log lines in the test data. For example, the
F1-Score decreases to only 89% at 20% injection rate compared to no injection. Again,
the authors have not published the source code for their work, but re-implementations
are available.

3.1.4 Deep Learning for Anomaly Detection in Log Data: A Survey
Only recently mid 2022, [LOSW22] published a survey of how DL is used in the area
of AD with a focus on log data. The paper focuses on explaining aspects of different
DL architectures and neglects a quantitative comparison between different approaches,
published up to that point. At the beginning of the paper, the authors explain how
they conducted the literature search and what their reasons were for including or
rejecting certain papers in their survey. Their review identifies Convolutional Neural
Networks (CNN), RNN (e.g., LSTM and Gated Recurrent Unit (GRU)), and AE as the
most commonly used DL architectures in this scientific domain. Furthermore, the authors
confirm the observation, that some publications claim unsupervised approaches when in
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fact they are semi-supervised approaches. A clear definition would be desirable in this
area in any case. They confirm the assumption that for a large part of the evaluations
only four data sets are used, namely: HDFS [XHF+09],BGL [OS07],Thunderbird [OS07]
and OpenStack [DLZS17]. Based on number of citations but also how often it was used
as a benchmark, the authors confirm the enormous importance of [DLZS17].

3.1.5 Selection of open source state of the art implementations
As discussed above, it is unfortunately often the case that authors of scientific papers
only rarely publish their source code and thus results cannot be verified. Nevertheless,
some developers make the effort and re-implement presented architectures and publish
them. Tab. 3.2 shows a selection of such open source implementations.

3.2 Federated learning for anomaly detection
The authors of [GWZ+21] published one of the few papers that deal with AD, FL
and log data. A central point of this research is that it deals with the issue of trans-
mission of updates between clients and servers. It has been found that attackers can
intercept communicated gradient updates and thus violate the privacy protection of
local data. Therefore it is advantageous if this communication is encrypted. However,
encryption always leads to a computation overhead which is proportional to the size
of gradient updates. The authors therefore propose a lightweight FL method for AD
called FLOGCNN. Lightweight is obtained by reducing the model parameters. As a
result the AD model uses one-dimensional convolution with very few parameters. For the
evaluation of the presented approach the authors use the HDFS data set and Thunderbird
data set [OS07]. Thunderbird is an publically available data set of logs collected from a
Thunderbird supercomputer system at Sandia National Labs in Albuquerque. The data
set distinguishes between alert and non-alert messages. This is a labeled data set which
can also be used for supervised approaches. For FLOGCNN two roles are defined. A
server aggregates gradient updates and distributed participants, which are here called
log owner. The server randomly selects a number of log owners and sends initial model
parameters to them. Log owners learn independently and send updates back to the server.
For evaluation purposes, the authors compare their implementation with a centralized
LogRobust implementation. For both implementations the source code is not publicly
available. The author’s implementation achieves slightly worse results for the metrics
than LogRobust. As a positive result the authors state a lower training time. A limitation
of this approach is that it only shows how to deal with HDFS and Thunderbird logs.
These are data sets with few features and little variation. Therefore, feature reduction is
easy. It is questionable whether the presented architecture will perform as well, when
other log data sets are used.
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CHAPTER 4
Methodology

In this chapter, we provide an introduction to the data sets used. The individual features
of the audit data set we use are discussed and reasons are given as to which features are
selected. The preprocessing of log lines is an important step to prepare data as input for
DL networks. DeepLog which was described in the previous chapter is adapted for this
master thesis. We decided to first implement DeepLog in a centralized way and verify it
with existing results. This is followed by a decentralized FL implementation and here we
also explain our chosen FL aggregation algorithm. The FL implementation is based on
the flower framework, the basics of which are briefly explained. At the end of this chapter
we will discuss metrics that are used to make our implementations comparable to others.

4.1 Data sets
Many AD systems are tailored to a specific environment to detect cyber attacks. Bench-
marking AD for real-world applications is nontrivial. To make valuable statements about
AD they require data sets collected in realistic system environments [LSW+21]. Some
data sets become standards for evaluation over time such as the HDFS [XHF+09] data
set we used in this thesis. However, we should keep in mind that most data sets become
outdated over time.

4.1.1 HDFS data set
The HDFS is a file system designed for storing large files, batch processing and to run on
commodity hardware. Because of to the popularity of HDFS, it has been widely studied
in recent years and is used in this thesis for providing reproducible comparison with state
of the art anomaly based IDS. The data set was generated in a private cloud environment
(Amazon’s Elastic Compute Cloud) using benchmark workloads and is described in detail
in [XHF+09]. It consists of 11.2 million system log entries. It was manually labeled
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by Hadoop domain experts, to identify anomalies. 2.9% of all system log entries were
labeled as malicious by those experts. The raw HDFS logs are semi-structured and
consist of a header- and a content part. The log data are sliced into sequences according
to block_ID’s. Then each trace associated with a specific block_ID is assigned a ground
truth label: normal/anomaly. In this master thesis we use the HDFS data set to test our
DeepLog implementation and to compare it with published results of [DLZS17].

It is interesting to mention that through the labeling work of Hadoop domain experts a
bug has been uncovered, which was hidden in HDFS for a long time. The bug involves a
relatively rare code path. This code path attempts to delete a replica of a block that
no longer exists and could only be discovered because abnormal execution paths were
analyzed. The Hadoop developers stated that this bug was hard to find, because it
was no single error message and only shows when we look at a sequence of log lines.
This incident shows an additional motivation to deal with abnormal execution paths
[XHF+09].

4.1.2 Audit data set
This data set was provided by researchers of the AIT and is also publicly available.
How to set up a testbed, to generate the Audit data set, is shown in [LSW+21]. They
published four testbeds, where they log users accessing a webmail platform and online
store in a time period of six days. Within this time period one multistep attack and
one complex vulnerability exploit were launched. The exact procedure of the multistep
attack and tools used are described in Fig. 4.1. The testbed is designed in such way that
logs are collected by a Linux Audit daemon. Those logs are interesting, because they
provide low-level syscall information and show accesses of files and paths on the host.
Audit log lines include types such as SYSCALL-, CWD-, PATH- or PROCTITLE type.
Each individual entry consists of at least one log line of type SYSCALL, but can also be
extended by log lines of other types. The type of each log line is specified at the beginning
of the log line in the type field. Type SYSCALL indicates that a log line was triggered
by a system call to the kernel. Type CWD does not occur in the dataset provided by
the AIT. Type PATH specifies all paths that a system call gets as arguments. Finally,
Type PROCTITLE entry gives the complete command-line in hexadecimal notation. In
this master thesis we concentrate only on the entries of type SYSCALL, because they
contain all relevant information and the remaining type fields do not always occur. A
detailed description of all individual features of a SYSCALL Audit log line is described
in Tab. 4.1.

In principle, it appears to be challenging to analyze Audit log, because of their sheer
quantity [SWL21]. As mentioned before, the most difficult task related to data set
creation is to correctly label log lines. For this data set the authors used time-based
labels and line-based labels. Time-based labeling uses time stamps, which are parsed
with each log line. An attack is labeled malicious, when the log line occurrence lies within
the time frame of the attack stage. Problems with this approach arise, if normal log
lines interleave between log lines of an attack. So the second approach called line-based

22



4.1. Data sets

labeling tries to overcome this shortcoming by labeling attack steps in an idle system.
It turns out that most attacks generate ordered log sequences (e.g., webshell upload)
or repeating log lines (e.g., scans). In this thesis, we look at an Audit data set with
line-based labels.

Figure 4.1: Procedure of multistep attack based on [LSW+21].
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Feature Description
msg This field contains a timestamp and a unique ID. Multitple log line can

share the same timestamp and ID if they were generated as part of the
same Audit event. The timestamp is given in unix time format and must
be converted for further processing.

arch This field contains information about the CPU architecture of the system.
syscall This syscall field records the type of the system call that was sent to the

kernel.
success This field records whether the system call recorded in that particular

event succeeded or failed.
exit This field contains a value that specifies the exit code returned by the

system call. This value varies for different system call.
a0-a3 Those fields record the first four arguments, encoded in hexadecimal

notation, of the system call in this event.
items This field contains the number of PATH auxiliary records that follow the

syscall record.
ppid This field records the Parent Process ID (PPID).
pid This field records the Process ID (PID)
auid This field records the Audit user ID, that is the login uid. This ID is

assigned to a user upon login and is inherited by every process even when
the user identity changes.

uid This field records the user ID of the user who started the analyzed
process.

gid This field records the group ID of the user who started the analyzed
process.

euid This field records the effective user ID of the user who started the
analyzed process.

suid This field records the set user ID of the user who started the analyzed
process.

fsuid This field records the file system user ID of the user who started the
analyzed process.

egid This field field records the effective group ID of the user who started the
analyzed process.

sgid This field records the set group ID of the user who started the analyzed
process.

fsgid This field records the file system group ID of the user who started the
analyzed process.

tty This field records the terminal from which the analyzed process was
invoked.

ses This field records the session ID of the session from which the analyzed
process was invoked.

comm This field records the command-line name of the command that was used
to invoke the analyzed process.

exe This field records the path to the executable that was used to invoke the
analyzed process.

key This field records the administrator-defined string associated with the
rule that generated this event in the Audit log.

Table 4.1: Features of audit log line [RH].
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4.2 Audit data set exploration
The choice of a suitable DL algorithm depends on the way input data are processed.
Input data usually can be classified into sequential (e.g., Audit log lines with the same
process ID) or non-sequential data (e.g., single Audit log lines). In this master thesis
we try to identify both point anomalies and context anomalies. In order to be able
to feed previously described data sets into a DL model, some preprocessing steps are
required. One of the biggest challenges is to select appropriate features for DL. In
principle, there are approaches that also use DL for feature extraction. However, research
from paper [HWZ+21] shows that these approaches currently achieve worse values for
the Recall than DeepLog. That is why we have performed a detailed analysis of the raw
Audit logs manually. The considerations for selection of a feature for the AE training
can be seen in Tab. 4.2 and the correlations between features are shown in Fig. 4.2.
We used the Spearman’s rank correlation coefficient to measure monotonic correlation
between two features. The values lie between -1 and +1, -1 indicating total negative
monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total
positive monotonic correlation.

4.3 Audit data set preprocessing
To make the features described above accessible from raw logs we use a parser. With log
parsing we extract event templates from unstructured raw log data. Each log message
consists of a constant event template and a variable part, where values can differ over
time. The goal is to separate constant- from variable parts and form a log event. In
[DLZS17] they use an effective methodology to extract so called log keys. Those log keys
represent the constant part of a print statement in given log entries. In this master thesis
we used a state of the art parser called Spell [DL16], which utilizes a Longest Common
Subsequence (LCS) based method. The LCS method is based on the assumption that
constant part takes a majority part of the whole log lines and the variable part only takes
a small portion. If two log lines are produced by the same log printing statement and
only differ in the dynamical variable part, the LCS of the two log lines is very likely to
be constant and thus an event template. In a log line all occurring words are so-called
tokens separated by delimiters. These delimiters depend on the format of the log line.
The tokens are used for the construction of the LCS [DL16]. An example of the output
after preprocessing is shown in Fig. 4.3.

4.4 Feature extraction
After data preprocessing, the next step is feature extraction. This is needed because
DL models require numerical feature vectors as input. An important aspect is to know
the range of considered features. The simplest approach is one hot encoding, where
each feature value is assigned a numeric value. But the one hot encoding method is not
sufficient when the numerical representation is too large for a high number of different
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Feature Useful? Explanatory note
msg no The unique ID is only used for concatenating log lines with

the corresponding label. The timestamp could be used for
frequency analysis for certain log lines, but is not used in
this master thesis.

arch no Could be useful but this training data set was recorded on
one system and therefore the value is constant.

syscall yes This feature is very important because the system call is the
fundamental interface between an application and the Linux
kernel. It has a high correlation with items, comm and exe

success yes Whether a system call has succeeded or failed is important
for classification and detection of anomalies.

exit yes The return value of successful system calls is helpful for
identification of anomalies. The values are skewed and have
a high correlation with ses

a0-a3 no The hexadecimal representation of the first four arguments
of a system call is not important, because we look at the
decimal representation. Those fields have a high cardinality.

items no Because we do not look at the PATH records, this feature is
not important. It has a high correlation with syscall.

ppid no Because the value of this feature is not unique and can be
reassigned it is removed. It has a high correlation with uid,
gid, euid, suid, fsuid, egid, sgid, fsgid

pid no Same as ppid.
auid no Same as ppid.
uid no Same as ppid.
gid no Same as ppid.
euid no Same as ppid.
suid no Same as ppid.
fsuid no Same as ppid.
egid no Same as ppid.
sgid no Same as ppid.
fsgid no Same as ppid.
tty no Constant value.
ses no 97.9% of all audit log lines have the same value. It is not

helpful for the analysis. It has a high correlation with items,
comm and exe.

comm yes For AD it is very important to know, which commands have
been entered. The values have a high cardinality and have a
high correlation with syscall and exe.

exe yes To know the path of the executable is of great importance.
The values have a high cardinality and have a high correlation
with syscall.

key no Constant value.

Table 4.2: Analyzed Features of Audit logs.26



4.4. Feature extraction

Figure 4.2: Spearman’s rank correlation for features of Audit data set.

values, which can lead to many new feature dimensions and therefore to memory and
computation problems. For our selected features in the AE implementation, one hot
encoding is sufficient. An example after one hot encoding for 3 features of 5 log lines
is shown in Fig. 4.4 where syscall has 15 distinct numeric values, success has 2 distinct
string values, and exe has 69 distinct string values. The distinct string values are mapped
to distinct numeric values.
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Figure 4.3: Parsing for one single line.
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4.5. Autoencoder implementation

Figure 4.4: One hot encoding for 3 features of 5 log lines.

If we want to detect unusual patterns that span over multiple log lines we need to group
these log lines together. These event groups can then be processed by an LSTM. The
groups are divided into windows and can be based on time or sessions. Time-based
grouping is again divided into sliding time - and fixed time windows. For sliding time
windows, a duration is specified and pushed over all data with a static step size. For
each step all log lines are grouped together that are between a start and end time of
a time window. By moving the window further, an overlapping of log lines is possible.
On the other hand for fixed windows, the step size is the same as window size. Log
lines are always considered in exactly one window size and overlapping is not possible.
Fixed time windows give a less fine-grained view on log lines but each log line is also only
considered once. In contrast, session windows group log lines by session identifiers. This
way, program flows can be represented very well, which may be processed at different
times. It can also be used to distinguish between events that may be taking place in
parallel. Unfortunately, not all types of log data have session identifiers [LOSW22].

For HDFS log data "block_id" serves as session identifier, which marks a particular
execution sequence and groups together particular log lines. For the processing of Audit
log lines we use a combination of sliding and session window. This way we can use the
advantages of both. As session identifier we can use the pid feature. Fig. 4.5 shows how
we get from unstructured Audit log lines to structured Audit log sequences.

For each log sequence an event count vector is created which counts how often a certain
event occurs in a log sequence. These event count vectors are in turn combined into a
matrix called event count matrix. The event count matrix is used as input for training
an LSTM network. After training, the LSTM network is used to determine whether a
new incoming log sequence is normal or malicious.

4.5 Autoencoder implementation
The implementation of an AE was done using Python 3.9.13 including the libraries Pandas
0.25.2, Numpy 1.20.3, Keras 2.3.1 and Scikit-learn 0.23.1. For each experiment we have
removed other features, which is described in 5.1.1 and 5.1.2, to keep dimensions small
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4. Methodology

Figure 4.5: From unstructured log lines to structured log sequences.

from the start and thus calculation of models small and also to eliminate non-meaningful
features from the start. After we have redacted the data set to the features we want
to look at, we use the Keras class Tokenizer which allows to vectorize occuring text,
e.g., exe feature. As a result each text is turned into an integer. A list of tokenized log
lines is passed to the AE as input. The model of the AE is built with so called dense
layers. The dimension of those layers depends on the dimension of the input. Each
dense layer works with Rectified Linear Unit (ReLu) as activation function. We have
chosen ReLu as activation function, because of its computational performance [SH20].
As optimizer, the Adam optimizer was used and the loss function is calculated with the
RMSE. The Adam optimizer is often used for tasks where sparse gradients are to be
expected. The advantages of this optimizer are increased computational performance
and low memory requirements [KB17]. To get fast results, experiments have shown that
the model converges very fast, if a low number of epochs with 5 was selected. The batch
size was chosen with 256, which is an average batch size for the size of the Audit data set.
The test validation data was also randomly shuffled to eliminate temporal dependencies
on the log lines. After the model has been trained, a prediction is made for each log line
as to whether it is normal data or an anomaly. The RMSE error is calculated for this.
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4.6 Deeplog implementation
A in depth research was performed. Common databases for open source, such as Github
and Gitlab, were searched. A search string containing the terms AD, DL, and log
data was used. To narrow down the results, we filtered by the number of ratings, the
year of publication and the data sets used. After a thorough research, the open source
implementation LogDeep of [DA20] stood out, because of its detailed documentation and
ease of adaptation.. There are more open source implementations which can be found
in Tab. 3.2. It combines the work of [DLZS17],[ZXL+19] and [MLZ+19] to a framework
for AD utilizing log data and has already been adapted in other scientific work, such as
[GYW21]. Because of the scientific relevance, we have focused on the DeepLog part from
this implementation. As previously described, DeepLog uses LSTM as a DL model. The
main adjustable parameters in the LogDeep implementation are:

• L: Number of layers of LSTM.

• α: Number of memory units in one LSTM block.

• Window size: Length of window under consideration.

• Candidates: Number of candidates that were predicted with their respective
probabilities.

After the parameters have been set, LogDeep reads the training log sequences. The log
sequence must have at least the length of the specified window size. After that, the
read log sequences are fed to the LSTM. In principle, training of the DL model and
AD, that uses the trained model, are separate. The reason for this is that after the
training, the model is stored and can be transferred somewhere else in order to perform
AD there as well. As with the AE, the Adam optimizer is used for the LSTM. The
LSTM delivers candidates with a certain probability of which log key is next in the log
sequence. Therefore we use the cross entropy as loss function here, which quantifies the
difference between probability distributions. After training, LogDeep can be used for
AD. For this purpose, benign and malicious test data are read in separately. The model
calculates which log key comes next for each individual window and compares whether
this matches the log keys in the test data. If the following log key is not contained in the
proposed candidates, this log sequence is marked as anomaly.

4.7 Federated learning
4.7.1 Flower
In July 2020 flower was released [BTM+20]. flower is a scaleable open source framework,
in terms of number of clients. With this it is very convenient to implement existing DL
setups in a federated setting and evaluate their convergence- and training time. One of the
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4. Methodology

main advantages of flower is that it is programming language- and ML framework-agnostic
by design. The flower core framework, as common in FL, consists of a server and client
part. The flower server is further divided into three main components: Client Manager,
FL loop and Strategy. The client manager is responsible for communication between
connected clients. The strategy describes the aggregation algorithm of updates. The
algorithm we have chosen will be discussed below in Sect. 4.7.2. The FL loop works as a
central entity. It queries strategies, receives updates from connected clients, calculates
global models and returns calculated models to clients via client manager. The client
side only waits for instructions from the server and executes them. The client manager
works with so called flower messages. These messages are based on Remote Procedure
Call (RPC) streams. RPC is efficient for low bandwidth transmission, because of the
binary serialization format. So the client manager works as a RPC server for sending and
receiving flower messages [BTM+20]. The flower architecture described was summarized
in Fig. 4.6.

Figure 4.6: Flower architecture based on [BTM+20].

For this master thesis first a standalone LogDeep client is re-implemented and evaluated.
Then we port this working and tested LogDeep implementation to the flower environment.
Each client runs the same LogDeep implementation, but with different data sets. We
mainly investigate the capability of FL, how clients learn DL models for AD with different
sized data sets.

4.7.2 Federated Averaging

The Federated Averaging (FedAvg) aggregation algorithm assumes K participating clients,
where each client has a number of nk log lines as training data and a local model weight
wk

t+1. For the (t + 1)-th round aggregation is given by Eq. 4.1.

wt+1 =
K�

k=1

nk

n
wk

t+1 (4.1)
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where the global model weight update is denoted with wt+1. n indicates total number of
log lines at K clients [LCL+19]. Besides FedAvg, there are more complex aggregation
algorithms, which for example select only a part of total available clients K and which may
differ from round to round. A listing and description of further aggregation algorithms
can be found in [LPBA22]. In this master thesis we only consider FedAvg for simplicity.

4.8 Metrics
In this thesis binary classification is chosen to measure the effectiveness of the studied
AD. True Positives (TP) are anomalous log lines or sequences correctly detected as
anomalies. Benign log lines or sequences evaluated as normal on the other hand are
marked as True Negatives (TN). False Positives (FP) are benign log lines or sequences
which are wrongfully marked as anomalies. Finally, False Negatives (FN) are anomalies
which were not detected as such. The most widely used metrics in this context are
Accuracy, Precision, Recall, F1-Score and are briefly described below:

The Accuracy indicates the ratio of correctly classified log lines or sequences to total
amount of input log lines or sequences.

Accuracy = TP + TN

TP + TN + FP + FN
(4.2)

The Precision indicates the number of log lines or sequences that are actually anomalies
divided by all classified anomalous log lines or sequences.

Precision = TP

TP + FP
(4.3)

The Recall indicates the probability that an anomaly is detected as such.

Recall = TP

TP + FN
(4.4)

The F1-Score is the summed average of Precision and Recall.

F1 − Score = 2TP

2TP + FP + FN
(4.5)
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CHAPTER 5
Experiments

In this chapter, all experiments performed are listed and described in detail. Basically,
DL requires a lot of processor power and Random Access Memory (RAM). However,
nowadays, more and more edge devices have the required resources and researchers work
on the resource-hungry requirements of DL. In the beginning experiments were performed
on a laptop provided by the AIT. The resources it had were sufficient in the beginning.
With time it became clear that simultaneous model training and other analysis brought
this laptop to its limits. Thankfully the AIT provided another possibility to process
simultaneous experiments faster. Resources were provided to realize OpenStack instances.
The specifications of the laptop and the individual OpenStack instances can be found
in Tab. 5.1. A central OpenStack instance was used to verify experiments which were
previously performed with the laptop. The second type of OpenStack instance describes
the specification of FL clients and servers.

Laptop OpenStack (central) OpenStack (FL)

Processor IntelCore
i7-8665U

8 VCPU 2 VCPU
RAM 32GB 16GB 4GB
Operating System Windows 10 20H2 Ubuntu 20.04 Ubuntu 20.04

Table 5.1: Specifications of the laptop and the individual OpenStack instances.

All experiments that were performed can be found in Tab. 5.2, where ✓ describes that a
function (Padding, FL or Splitting) was used in the experiment. All experiments with a -
describes that the function is not relevant for this experiment. Finally, experiments with
✓/✗ are comparative experiments where the function is switched on and off.
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5.1. Autoencoder

5.1 Autoencoder

The baseline of the Audit [LSW+21] data set consists of 18,428,737 log lines. The log
lines are shuffled with a random state. This has the advantage that the training data set
does not only include log lines for training that occur up to a certain point in time. The
same applies to the test data set. 70% of the log lines were selected for the training data
set and 30% for the test data set. This distribution was taken from [YB22]. The exact
division into training and test data can be found in the following Tab. 5.3.

Train (normal) log lines Test normal log lines Test abnormal log lines
12,895,886 5,526,809 6,041

Table 5.3: Splitting of Audit data set with ~18 million log lines.

5.1.1 Autoencoder with 3 features

The selected features for this experiment can be seen in Tab. 5.4. The msg field
was removed because the unique ID is only used for concatenating log lines with the
corresponding label and the timestamp could be used for frequency analysis for certain
log lines, but is not used in this master thesis. Each log line is reduced to 3 features. All
log lines have a value for the 3 features present. The selection of the features is based on
the findings conducted by the Audit data set exploration in Sect. 4.2 and Tab. 4.2. If
a log line is unique it gets a unique token. After tokenization we get 86 unique tokens.
Due to the 3 selected features the input dimension of the AE is also 3. The input layer
is followed by a dense layer with dimension 2 and the ReLu activation function. In the
middle there is a dense layer with dimension 1 which is also called bottleneck layer. After
the bottleneck layer the decoder comes with the first dense layer with dimension 2 and
an output dense layer with dimension 3. The structure described is shown in Fig. 5.1.

Figure 5.1: Structure of AE layers for 3 features.
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Features selected Features removed
syscall msg
success exit
exe a0

a1
a2
a3
ppid
pid
auid
uid
gid
euid
suid
fsuid
egid
sgid
fsgid
tty
ses
comm
key

Table 5.4: Selected & removed Features for 5.1.1.

5.1.2 Autoencoder with 5 features

The selected features for this experiment can be seen in Tab. 5.5. The reasons for the
selection of the 5 features can be taken from Tab. 4.2. Each log line is reduced to 5
features. After tokenization we get 13,740 unique tokens. Due to the 5 selected features
the input dimension of the AE is also 5. The input layer is followed by a dense layer
with dimension 3 and the ReLu activation function. This completes the encoder and is
followed by the decoder with the first dense layer with dimension 3 and an output dense
layer with dimension 5. The structure described is shown in Fig. 5.2.

5.2 LogDeep (LSTM)
The re-implementation of DeepLog called LogDeep [DA20] was used as baseline for all
further experiments. In the first step the code base was analyzed. Since only the DeepLog
part is relevant for this master thesis, the code had to be refactored. With the original
code base only the HDFS data set can be processed. The code has been adapted to
allow a user to choose if he wants to process a HDFS or an Audit data set. In our
implementation the parameters for the selected data set can be set and padding, which
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5.2. LogDeep (LSTM)

Figure 5.2: Structure of AE layers for 5 features.

Features selected Features removed
syscall msg
success a0
exe a1
exit a2
comm a3

ppid
pid
auid
uid
gid
euid
suid
fsuid
egid
sgid
fsgid
tty
ses
key

Table 5.5: Selected & removed Features for 5.1.2.

is described in Sect. 5.2.2 can be activated or deactivated. The following requirements
for the current implementation apply: python>=3.6 and pytorch>=1.1.0.

5.2.1 LogDeep (LSTM) with HDFS data set
First we verified if the evaluation metrics of LogDeep correspond to those published in
[DLZS17]. For this purpose we set the window size to 10. The hidden size, which defines
the number of hidden states was set to 64. Further, the number of layers was set to 2,
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number of candidates to 9, batch size to 2,048, and number of epochs to 300. These values
were also taken from [DLZS17]. As a basis for evaluation we used the freely available
HDFS data set in parsed form. This way our implementation can be compared with
other scientific publications and errors caused by parsing can be ignored. The number of
log keys is 29 and the exact breakdown of the data set can be taken from Tab. 5.6.

Train (normal)
sequences

Test normal
sequences

Test abnormal
sequences

4,855 553,366 16,838

Table 5.6: Splitting of HDFS data set.

5.2.2 LogDeep (LSTM) with HDFS data set and padding function
While analyzing the source code of LogDeep, we came across an interesting point. If we
take a closer look at the HDFS data set, we see that train- and test normal log sequences
consist of at least 10 consecutive log keys. However, shorter sequences also occur in
test abnormal log sequences. This results in a problem for the window size, because the
LSTM determines how far it stores past information. In order to be able to analyze these
short sequences with the model, so-called padding is used. In this case, log sequences are
filled with a log key, that is not yet in use, in order to achieve desired window size. This
log key must be unquie and must not have occurred before, otherwise the data set would
be corrupted. Based on this discovery, we conducted another experiment to show what
effect padding has on LogDeep and the results can be found in Sect. 6.2.2. If padding is
omitted, LogDeep cannot process and discards all test abnormal log sequences in the AD
phase, whose number of log keys is less than the window size. The size of the training
and test normal data set remains the same as in experiment 5.2, only the size of the test
abnormal data set is reduced. The exact breakdown can be found in the Tab. 5.7.

Train (normal)
sequences

Test normal
sequences

Test abnormal
sequences

4,855 553,366 10,647

Table 5.7: Splitting of HDFS data set without padding.

5.2.3 LogDeep (LSTM) with Audit data set
In order to get Audit log sequences, preprocessing and parsing had to be adapted for the
Audit [LSW+21] data set. First, log lines were grouped based on the pid feature. This
way, we get all log lines that belong to a process. With the Spell parser, these grouped
log lines were parsed based on the syscall feature. Thus, each syscall that occurs in the
data set corresponds to a log key. There are 268 log keys in total. The result of these
steps are ordered log sequences that can be used as input for the LSTM. In order to
make experiments and their results for the Audit data comparable with those for HDFS
data, we decided to use padding in the first step. The baseline of the Audit data set
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consists of 18,428,737 log lines. For the Exp. 5.3.5,5.3.6, and 5.3.7 a reduced to 2 million
log lines Audit data set is used in the FL environment due to performance limitation. In
this experiment for a centralized approach we also compare if the reduction has an impact
on the metrics before we conduct experiments in the FL environment. The division into
training, test normal and test abnormal sequences can be seen in the Tab. 5.8. The
LSTM was not fundamentally changed. We only had to adapt a few parameters for the
Audit data set. The following remained the same: window size was set to 10, hidden size
to 64, number of layers to 2, and batch size to 2,048. Only the number of candidates
with 6 and number of epochs with 20 were changed. For verification the best values
for the metrics are obtained with these parameter values. We have conducted further
experiments which are described below.

Train (normal)
sequences

Test normal
sequences

Test abnormal
sequences

~18 mil. 33,634 8,409 90
2 mil. 4,142 1,036 90

Table 5.8: Splitting of Audit data set.

5.2.4 LogDeep (LSTM) with Audit data set and padding function
Comparative experiments to see what effect padding has on Audit data.

5.2.5 LogDeep (LSTM) with Audit data set: Number of epochs
For this experiment, only the number of epochs change. All other parameters remain the
same. We investigate how metrics change between 5 and 35 epochs.

5.2.6 LogDeep (LSTM) with Audit data set: Number of candidates
For this experiment, only the number of candidates change. All other parameters remain
the same. We investigate how metrics change between 1 and 7 candidates.

5.2.7 LogDeep (LSTM) with Audit data set: Length of window
For this experiment, only the window size changes. All other parameters remain the
same. We investigate how metrics change between 3 and 12 for length of window.

5.3 Federated learning
For FL experiments we port the working LogDeep implementation to 5 clients. The
number of clients was chosen due to resource limitations. First, experiments were started
on a laptop, described above. Further on, the FL implementation was ported to an
OpenStack environment. The server uses Federated Averaging as update aggregation
methods and starts the FL process only when all 5 clients are available. The connection
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to clients happens on the laptop locally and for the OpenStack implementation via IP
addresses of clients. We have chosen a scenario as a basis for FL, where all clients have
different training data but the same normal and abnormal test data locally. At the start of
the FL process, the server passes model parameters with the fit method to all the clients.
All the clients receive parameters for their local model and start the first training phase.
After completion of the first training phase, all clients send their current local model
parameters as an update to the server with the method get_parameters and evaluate the
local model with the normal and abnormal test data. The server aggregates all received
updates and sends them back again. After that, all clients have the updated model
parameters and the test data is evaluated again with them in the so-called evaluation
phase. With this same level of knowledge, the clients start the next round and try again
to improve the model with their local training data. The process described here can be
repeated as often as desired and is shown for 2 rounds in Fig. 5.3.

Figure 5.3: Flowchart of flower framework.
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5.3.1 Federated learning with HDFS data set

The LogDeep client for HDFS data uses again window size 10, hidden size 64, number of
layers 2, and number of candidates 9. The number of log keys is again 29. As a baseline
for the first experiments the number of epochs is set to 300. Furthermore, experiments
are conducted where the number of epochs is decreased to 3 and compared to the results
for number of epochs of 300 in Sect. 5.3.4. Basically, we use padding to make the results
comparable with the central implementations.

5.3.2 Federated learning with even splitted HDFS data set

To show advantages of FL we have decided on two illustrative scenarios. First to divide
training data evenly among all clients and second to divide it by percentage such that
clients get a different amount of training data. With even as well as with uneven splitting
the sequences are shuffled. Otherwise it could be that certain sequences only appear
at certain times, e.g., at night, which would only be seen by one client, if we keep the
temporal order of sequences. The even distribution is described in Tab. 5.9.

Client No. Train (normal)
sequences

Test normal
sequences

Test abnormal
sequences

1 971 (20%) 553,366 16,838
2 971 (20%) 553,366 16,838
3 971 (20%) 553,366 16,838
4 971 (20%) 553,366 16,838
5 971 (20%) 553,366 16,838

Table 5.9: Even splitting of HDFS data set for 5 FL clients.

5.3.3 Federated learning with uneven splitted HDFS data set

We have selected the following uneven distribution key for the percentage distribution:
Client 1 receives 5%, Client 2 receives 20%, Client 3 receives 20%, Client 4 receives 5%
and Client 5 receives 50%. In our opinion, this distribution could describe a realistic
scenario, where one client keeps a lot of log data locally and can use it for model training
and other clients keep much less log data locally but can learn from other participating
clients. The uneven distribution is described in Tab. 5.10.
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Client No. Train (normal)
sequences

Test normal
sequences

Test abnormal
sequences

1 243 (5%) 553,366 16,838
2 971 (20%) 553,366 16,838
3 971 (20%) 553,366 16,838
4 243 (5%) 553,366 16,838
5 2,427 (50%) 553,366 16,838

Table 5.10: Uneven splitting of HDFS data set for 5 FL clients.

5.3.4 Federated learning with HDFS data set: Number of epochs

For this series of experiments we vary the number of epochs for the uneven distributed
HDFS training data set. It should be shown that by FL reducing the number of epochs
and thus shortening training time still produces acceptable results. For this experiment,
we reduce the number of epochs from 300 to 3. A total of 3 FL rounds are run.

5.3.5 Federated learning with Audit data set

Again, the LogDeep implementation, which was tested centrally, is ported to 5 clients.
Due to computational limitations we use the Audit data set, with 2 million log lines and
the splitting which is shown in Tab. 5.8.

5.3.6 Federated learning with even splitted Audit data set

In this section the Audit data set is split even and exact splitting can be taken from
Tab. 5.11. The sequences are shuffled again during splitting. It should be shown how the
metrics develop over 3 FL rounds.

Client No. Train (normal)
sequences

Test normal
sequences

Test abnormal
sequences

1 828 (20%) 1,036 90
2 828 (20%) 1,036 90
3 828 (20%) 1,036 90
4 828 (20%) 1,036 90
5 828 (20%) 1,036 90

Table 5.11: Even splitting of Audit data set for 5 FL clients.

5.3.7 Federated learning with uneven splitted Audit data set

In this section the Audit data set is split uneven and exact splitting can be taken from
Tab. 5.12. The sequences are shuffled again during splitting.
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Client No. Train (normal)
sequences

Test normal
sequences

Test abnormal
sequences

1 207 (5%) 1,036 90
2 828 (20%) 1,036 90
3 828 (20%) 1,036 90
4 207 (5%) 1,036 90
5 2,071 (50%) 1,036 90

Table 5.12: Uneven splitting of Audit data set for 5 FL clients.
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CHAPTER 6
Results

In this chapter we present results for the experiments described in the previous chapter.
Like in the previous chapters, this chapter is divided into results for centralized approach
(AE and LogDeep (LSTM)) experiments and FL experiments.

6.1 Results of Autoencoder experiments
This section presents the results retrieved from the AE experiments.

6.1.1 Results of Autoencoder experiments with 3 features
This section presents the results retrieved from the Exp. 5.1.1. After 5 epochs of training
the model has an Accuracy of 95% for the test data. For AD we calculate the RMSE.
The RMSE for anomalies should be high, because the trained model should reconstruct
these log lines poorly. Unfortunately this is not the case. The values of the RMSE can
be seen in Fig. 6.1. The explanation for those poor results is as follows:

1. If you discard duplicates of the ~18 million Audit log lines with 3 features that
comprise the training and normal test data set, 335 unique Audit log lines remain.
The same is done for the abnormal test data set, leaving 120 unique Audit log lines.
The low number of unique log lines results from the low number of distinct values
of the 3 features considered as discussed in the Sect. 4.4. Syscall has 15 distinct
numeric values, success has 2 distinct string values, and exe has 69 distinct string
values. If we compare the unique Audit log lines with each other, we see that 83
unique abnormal Audit log lines (=69%) occur in the training and test data set
in exactly the same way. An example of identical log lines with 3 features and
different labels can be seen in Fig. 6.2.These identical log lines were sometimes
labeled as benign but also sometimes as malicious when the Audit data set was
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Figure 6.1: RMSE for ~18 million Audit log lines with 3 features.

recorded. They were labeled as malicious if they occurred within a time when an
attack was active. So the difference in how such a log line was labeled is based on
a different context which makes an analysis of individual log lines very difficult.
With this limitation in mind, the AE does exactly what it is supposed to do. It
does not detect the identical log lines as an anomaly if it was already classified as
benign in the training. The remaining 37 abnormal Audit log lines do not occur
exactly identically.

2. The averaged RMSE can be taken from Tab. 6.1. An important addition to the
averaged RMSE for train- and test normal data and Fig. 6.1 is that 14,686,862
(=79%) of the train- and test normal log lines are even below the averaged RMSE
for abnormal test data. However, there are outliers that also increase the values
for the averaged RMSE. The Audit data set is also very imbalanced. As Tab.
5.3 shows, there are ~18 million benign log lines compared to 6041 malicious log
lines. Thus no threshold can be set to reliably distinguish test abnormal log lines
(=anomalies) from train and test normal log lines. This indicates that the small
number of features and their conditional variability prevent application for AD.

Averaged RMSE for train data 2.79
Averaged RMSE for normal test data 2.78
Averaged RMSE for abnormal test data 2.20

Table 6.1: Averaged RMSE for experiment 5.1.1.
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Figure 6.2: An example of identical log lines with 3 features and different labels.

6.1.2 Results of Autoencoder experiments with 5 features
This section presents the results retrieved from the Exp. 5.1.2. After 5 epochs of training
the model has an accuracy of 64.84% for the test data. The results of the calculated
RMSE can be seen in Fig. 6.3. The explanation for the poor results is as follows:

Figure 6.3: RMSE for ~18 million Audit log lines with 5 features.

1. If you discard the duplicates of the ~18 million Audit log lines with 5 features,
that comprise the training and normal test data set, 27,671 unique Audit log lines
remain. The same is done for the abnormal test data set, leaving 654 unique Audit
log lines. If we compare the unique Audit log lines with each other, we see that 293
unique abnormal Audit log lines (=44%) occur in the training and test data set in
exactly the same way. The percentages are lower than in 6.1.1 but still too high.
Thus, the AE cannot detect those anomalies at all because it has learned them as
benign in the training phase. The remaining 361 abnormal Audit log lines do not
occur exactly identically.
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2. The averaged RMSE can be taken from Tab. 6.2. An important addition to the
averaged RMSE for train- and test normal data and Fig. 6.3 is that 8,656,001
(=48%) of the train- and test normal log lines are even below the averaged RMSE
for abnormal test data. However, there are outliers that also increase the values
for the averaged RMSE. The Audit data set is also very imbalanced. As Tab. 5.3
shows, there are ~18 million benign log lines compared to 6041 malicious log lines.
The RMSE has generally increased and unfortunately, even with 5 features, it is
still not possible to make accurate statements for AD.

Averaged RMSE for train data 16.87
Averaged RMSE for normal test data 16.78
Averaged RMSE for abnormal test data 6.27

Table 6.2: Averaged RMSE for experiment 5.1.2.

Changing the dimension number to 2 for the dense layer before the bottleneck did not
improve the performance of the model. Increasing features for the AE did not bring any
improvement either.

In summary, it was planned to use the AE to analyze single log lines and detect point
anomalies. As the results in Sect. 6.1.1 and 6.1.2 have shown, the Audit data set is
unsuitable for AD with an AE. In the data set, individual log lines are labeled both as
benign and malicious even though their features are identical. The AE cannot detect an
anomaly that it actually learned in training as benign log lines. At this point we decided
to change the approach to LSTM since it does not only consider single log lines and by
looking at sequences, we expect better performance.

6.2 Results of LogDeep (LSTM) experiments
This section presents the results retrieved from the LogDeep experiments for the HDFS
and Audit data sets.

6.2.1 Results of LogDeep (LSTM) experiments with HDFS data set
The results of Exp. 5.2.1 show that the re-implementation achieves the same metrics as
in [DLZS17]. The comparison is listed in Tab. 6.3.

Accuracy Precision Recall F1-Score
DeepLog [DLZS17] - 95% 96% 96%
LogDeep [DA20] 99.76% 95.63% 96.35% 95.99%

Table 6.3: Comparison between DeepLog and LogDeep.

A subsequent experiment was conducted to see if changes to the number of epochs had a
large effect on metrics. The results in Tab. 6.4, and Fig. 6.4 and 6.5 show that LogDeep
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is very stable with respect to changes in the number of epochs. But the very best metrics
overall are at an epoch count of 300. If the number of epochs is increased further, an
over-fitting of the model occurs and the metrics deteriorate again.

Epochs Accuracy Precision Recall F1-Score
5 99,54% 87,15% 99,17% 92,77%
10 99,54% 87,16% 99,17% 92,78%
20 99,52% 86,77% 99,16% 92,55%
50 99,50% 89,53% 94,32% 91,86%
100 99,53% 90,32% 94,51% 92,37%
200 99,62% 94,25% 93,02% 93,63%
300 99,76% 95,63% 96,35% 95,99%
350 99,65% 95,87% 92,19% 93,99%
390 99,65% 95,53% 92,61% 94,05%
450 99,65% 95,55% 92,63% 94,06%
550 99,65% 95,63% 92,60% 94,09%

Table 6.4: Variation of number of epochs for LogDeep with HDFS data.
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Figure 6.4: Effect on Accuracy and Precision for changing epoch number for LogDeep
with HDFS data.
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Figure 6.5: Effect on Recall and F1-Score for changing epoch number for LogDeep with
HDFS data.
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6.2.2 Results of LogDeep (LSTM) experiments with HDFS data set
and padding

This section presents the results retrieved from the Exp. 5.2.2. The effects of padding
can be analyzed well using the HDFS data set. Since only the abnormal test data set
contains short log sequences smaller than the window size, padding is only applied here.
The splitting of the data set and the reduction of the analyzed abnormal test data is
shown again in Tab. 6.5. By appending a unique log key, the log sequence is artificially
extended in order to be processed with the LSTM. In principle, this results in a trade off.
On one hand, artificial lengthening gives better results for the metrics. By attaching a
unique log key to the abnormal test data set the AD is very simple and it is like attaching
an anomaly label. Therefore the results are not really useful due to padding. On the
other hand, without padding, log sequences that are too short would simply be discarded
and not fed into the AD process. The small amount of abnormal test data compared to
the normal test data indicates an imbalanced data set. The results of this experiment
can be seen in Tab. 6.6 and Fig. 6.6.

Train (normal)
sequences

Test normal
sequences

Test abnormal
sequences

padding 4,855 553,366 16,838
nopadding 4,855 553,366 10,647

Table 6.5: Splitting of HDFS data set with padding and without padding.

Accuracy Precision Recall F1-Score
padding 99.66% 95.13% 95.81% 94.45%

nopadding 99.66% 93.07% 89.03% 91.00%

Table 6.6: Comparison between padding and nopadding for LogDeep with HDFS data.

6.2.3 Results of LogDeep (LSTM) experiments with Audit data set
This section presents the results retrieved from the Exp. 5.2.3. The results for a
centralized LogDeep approach with ~18 million and 2 million Audit log sequences can be
taken from Tab. 6.7. The reason why the metrics for Audit log sequences are so poor
is similar to the AE. When analyzing the ~18 million Audit log sequences, we see that
39.56% of the abnormal Audit log sequences also occur in the training set and 28.67%
of the abnormal Audit log sequence occur in the normal test set. And for the 2 million
Audit log sequences, we see that 39.56% of the abnormal Audit log sequence also occur in
the training set and 26.37% of the abnormal Audit log sequence occur in the normal test
set. However, we have extended the analysis to not only look at identical log sequences
but also to check if abnormal Audit log sequences occur at some arbitrary point in a
training or test sequences. This is an important difference to the AE. An Audit log
sequence is built up on individual log keys, e.g., syscalls. A practical example could be:
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Figure 6.6: Comparison between padding and nopadding for LogDeep with HDFS data.

If we log the behavior of a user, the sequence of syscalls which are executed, is not clear
from the start or can also occur in a different order. To continue the example one can
assume an attacker, who behaves like a normal user up to a certain point. Thus, the
beginning of an Audit log sequence can look exactly the same in the benign as well as in
the anomaly case. This makes it difficult to distinguish between benign and malicious log
sequences and leads to poor Recall scores and this would be the most important value
for accurate AD. One recognizes a limitation here due to the recorded features of Audit
logs. Another important point for the Audit data set is that it is an imbalanced data set.
As Tab. 5.8 shows we have only 90 malicious log sequences. The low number compared
to train and test normal log sequences is the reason for the high Accuracy values.

Accuracy Precision Recall F1-Score
~18 mil. 99.04% 68.00% 18.88% 29.56%
2 mil. 94.23% 80.49% 36.68% 50.38%

Table 6.7: Comparison between ~18 million and 2 million Audit log sequences with
padding.

6.2.4 Results of LogDeep (LSTM) experiments with Audit data set
and padding function

This section presents the results retrieved from the Exp. 5.2.4. If the 18 million Audit
log sequence data set is not padded, the number of sequences for training is reduced
from 33634 to 32822, the number of sequences for test normal from 8409 to 8169 and
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the number of sequences for test abnormal from 90 to 44. And if the 2 million Audit log
sequence data set is not padded, the number of sequences for training is reduced from
4142 to 4030, the number of sequences for test normal from 1036 to 996 and the number
of sequences for test abnormal from 90 to 44. The exact breakdown is listed again in
Tab. 6.8 and the results for both reduced data sets can be seen in Tab. 6.9. It can be
seen that some metrics for both data sets are degraded by nopadding. But the Recall
seems to increase. The reason for this is that we have sequences in the abnormal data
set that are detected regardless of whether they are padded or not. Those sequences
are very long sequences and stand out from the rest. Nopadding reduces the number
of processable anomalies by half. This reduction increases the Recall despite the same
detection. Nopadding is also not an option because too short log sequences are simply
omitted. In our opinion the effect of padding for Audit data is also not as poor as for
the HDFS data, because the same unique log key is appended to the train, test normal
and test abnormal data sets. After this experiment we decided to use only 2 million of
the ~18 million log lines for training and test normal to get results in a certain time and
because the analysis, of how many malicious log sequences appear in the training and
test normal data set, show similar results. But all anomalies were extracted from the
whole data set.

Train (normal)
sequences

Test normal
sequences

Test abnormal
sequences

~18 mil. padding 33,634 8,409 90
~18 mil. nopadding 32,822 8,169 44

2 mil. padding 4,142 1,036 90
2 mil. nopadding 4,030 996 44

Table 6.8: Splitting of Audit data set for ~18 million and 2 million Audit log sequences
with padding and without padding.

Accuracy Precision Recall F1-Score
~18 mil. nopadding 99.53% 58.07% 40.91% 48.00%
2 mil. nopadding 95.67% 47.62% 22.7% 30.77%

Table 6.9: Comparison between ~18 million and 2 million Audit log sequences without
padding.

6.2.5 Results of LogDeep (LSTM) experiments with Audit data set:
Number of epochs

This section presents the results retrieved from the Exp. 5.2.5. The best results of the
metrics for AD are achieved after 20 epochs. Before that the model has not learned
enough and after that the metrics stagnate or decrease again which can be due to over-
fitting. Again, we see very poor values for the Recall. This is related to the identical log
sequences which originate from the identical log lines in the train, test normal, and test
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abnormal data set as described in Sect. 6.2.3. The detailed results can be found in Tab.
6.10, and Fig. 6.7 and 6.8.

Epochs Accuracy Precision Recall F1-Score
5 81.97% 24.20% 58.88% 34.30%
10 91.39% 43.14% 24.44% 31.21%
15 92.72% 61.11% 24.44% 34.92%
20 94.23% 80.49% 36.68% 50.38%
25 94.05% 84.84% 31.15% 45.52%
30 94.13% 85.29% 32.22% 46.77%
35 93.60% 80.00% 26.66% 40.00%

Table 6.10: Variation of number of epochs for LogDeep with Audit data.
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Figure 6.7: Effect on Accuracy and Precision for changing epoch number for LogDeep
with Audit data.

56



6.2. Results of LogDeep (LSTM) experiments

5 10 15 20 25 30 35
0%

20%

40%

60%

80%

100%

Epochs

Pe
rc

en
ta

ge

Recall
F1-Score

Figure 6.8: Effect on Recall and F1-Score for changing epoch number for LogDeep with
Audit data.
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6.2.6 Results of LogDeep (LSTM) experiments with Audit data set:
Number of candidates

This section presents the results retrieved from the Exp. 5.2.6. The Recall is best if
only one candidate is used. As the Recall indicates the probability that an anomaly is
detected this would be desirable, but when we look at the Precision when using just one
candidate it shows that we must expect many false positives. As a middle way between
high detection of anomalies and less false positive alarms, the number of candidates with
6 is suitable. The detailed results can be found in Tab. 6.11, and Fig. 6.9 and 6.10.

Number of candidates Accuracy Precision Recall F1-Score
1 29.31% 8.66% 82.22% 15.68%
2 82.59% 29.29% 83.33% 45.35%
3 89.07% 38.92% 64.44% 48.54%
4 90.41% 42.23% 54.46% 47.57%
5 94.22% 74.52% 42.22% 53.90%
6 94.23% 80.49% 36.68% 50.38%
7 92.95% 82.35% 15.56% 26.17%

Table 6.11: Variation of number of candidates for LogDeep with Audit data.
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Figure 6.9: Effect on Accuracy and Precision for changing number of candidates for
LogDeep with Audit data.
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Figure 6.10: Effect on Recall and F1-Score for changing candidates number for LogDeep
with Audit data.

6.2.7 Results of LogDeep (LSTM) experiments with Audit data set:
Length of window

This section presents the results retrieved from the Exp. 5.2.7. For the window size, the
best metrics are obtained with a length of 10. The detailed results can be found in Tab.
6.12, and Fig. 6.11 and 6.12. This value is a good middle ground between too short
window sizes, which would result in a too short view into the past, and too long window
sizes, which would increase the training time without improving the metrics much.

Window size Accuracy Precision Recall F1-Score
3 86.41% 32.97% 67.78% 44.36%
4 91.12% 45.97% 63.33% 53.27%
5 92.18% 50.90% 62.22% 56.00%
6 91.65% 48.15% 57.77% 52.52%
7 91.38% 46.73% 55.55% 50.76%
8 93.69% 65.07% 45.55% 53.22%
9 92.63% 56.86% 32.22% 41.14%

10 94.23% 80.49% 36.68% 50.38%
11 92.45% 60.00% 16.66% 26.08%
12 92.10% 58.47% 15.55% 25.25%

Table 6.12: Variation of length of window for LogDeep with Audit data.
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Figure 6.11: Effect on Accuracy and Precision for changing length of window for LogDeep
with Audit data.
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Figure 6.12: Effect on Recall and F1-Score for changing length of window for LogDeep
with Audit data.
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6.3 Results of Federated learning experiments
This section presents the results retrieved from the FL experiments for the HDFS data
set and Audit data sets.

6.3.1 Results of Federated learning experiments with HDFS data set
The effect of FL is not yet clearly visible in Exp. 5.3.1. With the training data set evenly
and unevenly distributed over 5 clients, almost the same performance can be achieved
as with the centralized implementation. The comparison between centralized and FL
implementation is shown in Tab. 6.13, where uneven and even splitting of the training
data set are listed separately.

Accuracy Precision Recall F1-Score
LogDeep (Centralized Sect. 6.2.1) 99.76% 95.63% 96.35% 95.99%
LogDeep (FL) even splitted 99.59% 92.21% 94.22% 93.16%
LogDeep (FL) uneven splitted 99.65% 94.25% 93.73% 93.99%

Table 6.13: Comparison between LogDeep(Centralized) and LogDeep(FL).

6.3.2 Results of Federated learning experiments with even splitted
HDFS data set

This section presents the results retrieved from the Exp. 5.3.2. The results of the metrics
for even splitting of training data set for 5 clients and 3 rounds can be seen in the Fig.
6.13,6.14,6.15 and 6.16. On the x-axis the respective rounds are shown where the letter L
indicates a local evaluation after training phase and letter G indicates a global evaluation
after the updates from all clients have been aggregated.

The accuracy which is shown in Fig. 6.13 is already from the first round on a very high
level of almost 98% and then seems to stagnate. The reason for this is the imbalanced
HDFS data set as explained in Sect. 6.2.2. The precision increases continuously as Fig.
6.14 shows because the false positive log sequence decreases over the rounds. The values
for the recall are also already from Round 1 on a high level as Fig. 6.15 shows because of
the padding function. The reason for using the padding function is to be able to compare
the results in a FL environment with the results of a central implementation from Paper
[DLZS17].
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Figure 6.13: Accuracy for 5 Clients with even distributed HDFS data set.
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Figure 6.14: Precision for 5 Clients with even distributed HDFS data set.
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Figure 6.15: Recall for 5 Clients with even distributed HDFS data set.
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Figure 6.16: F1-Score for 5 Clients with even distributed HDFS data set.
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6.3.3 Results of Federated learning experiments with uneven splitted
HDFS data set

This section presents the results retrieved from the Exp. 5.3.3. The first signs that FL
has a useful effect can be seen in the following results, where training data is unevenly
distributed as shown in Tab. 5.10 among 5 clients. The clients with the lowest percentage
of training data sets first achieve not so good results and then can improve the performance
due to collaborative learning. The results of the metrics for 5 clients and 3 rounds can
be seen in the Fig. 6.17,6.18,6.19 and 6.20.
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Figure 6.17: Accuracy for 5 Clients with uneven distributed HDFS data set.

The accuracy is again high from the start as Fig. 6.17 shows because of the imbalanced
data set as explained in the Sect. 6.3.2. Figure 6.18 shows for Client 4 a Precision
of only arround 70%. This could be due to the fact that Client 4 only receives 5% of
the train sequences. Client 1 also received only 5% of the train sequences but due to
the random splitting of the HDFS train dataset it is possible that LSTM from Client 1
simply received a more significant portion in terms of AE than Client 4. The values for
the Recall are also already from Round 1 on a high level as Fig. 6.19 shows because of
the padding function.
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Figure 6.18: Precision for 5 Clients with uneven distributed HDFS data set.
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Figure 6.19: Recall for 5 Clients with uneven distributed HDFS data set.
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Figure 6.20: F1-Score for 5 Clients with uneven distributed HDFS data set.
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6.3.4 Results of Federated learning experiments with HDFS data set:
Number of epochs

This section presents the results retrieved from the Exp. 5.3.4. In this experiment, the
effect of FL is seen most clearly. By reducing the epoch, the model still converges very
quickly. A comparison between 300 and 3 epochs can be seen in Tab. 6.14. Nearly
equal metrics can be obtained. The reduced precision comes from increased false positive
alarms, but even more anomalies can be detected. The results of the metrics for 5 clients
and 3 rounds with 3 epochs of training can be seen in the Fig. 6.21,6.22,6.23 and 6.24.

Accuracy Precision Recall F1-Score
LogDeep (FL) 300 Epochs 99.59% 92.21% 94.22% 93.16%
LogDeep (FL) 3 Epochs 99.54% 87.15% 99.17% 92.77%

Table 6.14: Comparison between LogDeep(FL) 300 Epochs and LogDeep(FL) 3 Epochs.
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Figure 6.21: Accuracy for 5 Clients with uneven distributed HDFS data set and 3 epochs
training.

Figures 6.21, 6.22, and 6.24 show the effect of uneven splitting very clear. It can be seen
quite exactly the distribution of train sequences in percentages as in Tab. 5.10 to the
individual Clients in the first round of the local calculation of the model. Compared
to the results from Sect. 6.3.2 and 6.3.3, the reduction of the epochs leads to a slower
increase for the Accuracy and Precision. The recall as shown in Fig. 6.23 remains at a
high level from the beginning because of the padding function.
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Figure 6.22: Precision for 5 Clients with uneven distributed HDFS data set and 3 epochs
training.
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Figure 6.23: Recall for 5 Clients with uneven distributed HDFS data set and 3 epochs
training.
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Figure 6.24: F1-Score for 5 Clients with uneven distributed HDFS data set and 3 epochs
training.
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6.3.5 Results of Federated learning experiments with Audit data set
This section presents the results retrieved from the Exp. 5.3.5. With the training data
set evenly and unevenly distributed over 5 clients, similar metrics can be achieved. The
comparison between centralized and FL implementation is shown in Tab. 6.15, where
uneven and even splitting are listed separately. For AD, a high Recall is desirable,
because this metric indicates the probability that an anomaly is recognized as such.
Therefore, a centralized approach would be favored. The reason for the poor values of
the Recall is explained in Sect 6.2.3 and also applies in a FL environment. A generalized
statement as to whether FL is suitable for Audit data cannot be made definitively due to
the limitations of Audit data discussed above.

Accuracy Precision Recall F1-Score
LogDeep (Centralized Sect. 6.2.3) 94.23% 80.49% 36.68% 50.38%
LogDeep (FL) even splitted 93.16% 78.26% 20.00% 31.86%
LogDeep (FL) uneven splitted 93.43% 83.33% 22.22% 35.09%

Table 6.15: Comparison between LogDeep(Centralized) and LogDeep(FL) for Audit data.

6.3.6 Results of Federated learning experiments with even splitted
Audit data set

This section presents the results retrieved from the Exp. 5.3.6. The results of the metrics
for even splitting of training data set for 5 clients and 3 rounds can be seen in the Fig.
6.25,6.26,6.27 and 6.28. On the x-axis the respective rounds are shown where the letter L
indicates a local evaluation after training phase and letter G indicates a global evaluation
after the updates from all clients have been aggregated.

The Accuracy is at a high level from the beginning as Fig. 6.25 shows because of the
imbalanced Audit data set with only 90 malicious log sequences. The Precision increases
continuously as Fig. 6.26 shows because the false positive log sequence decreases over
the rounds. Recall remains at a poor level and the explanation for this is described in
Sect. 6.3.5.
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Figure 6.25: Accuracy for 5 Clients with even distributed Audit data set.
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Figure 6.26: Precision for 5 Clients with even distributed Audit data set.

71



6. Results

R1(L) R1(G) R2(L) R2(G) R3(L) R3(G)
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

Client 1
Client 2
Client 3
Client 4
Client 5

Figure 6.27: Recall for 5 Clients with even distributed Audit data set.
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Figure 6.28: F1-Score for 5 Clients with even distributed Audit data set.
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6.3.7 Results of Federated learning experiments with uneven splitted
Audit data set

This section presents the results retrieved from the Exp. 5.3.7. The results of the metrics
for uneven splitting of training data set for 5 clients and 3 rounds can be seen in the
Fig. 6.29,6.30,6.31 and 6.32. The precision metric shows that the client with the largest
training data set dominates at least in the first 2 rounds. Furthermore, the best Precision
is achieved with uneven splitting. Unfortunately, the AD indicated by the Recall is again
poor. Basically, it can be stated again that FL leads to the situation that even clients
with small data sets can achieve comparable metrics as clients that have training data
sets 10 times as large.
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Figure 6.29: Accuracy for 5 Clients with uneven distributed Audit data set.

The values for Accuracy in round 1 as shown in Fig. 6.29 reflect the uneven distribution
from Tab. 5.12 very well. Precision increases from round to round and the explanation
for this is described in Sect. 6.3.6 and is independent of splitting. The reason for the
poor values of the Recall is explained in Sect 6.2.3 and also applies in a FL environment.
Interesting is that the Recall in the first round is highest for Client 4 even though it has
only 5% of the data set. The reason for this is that Client 4 flags many anomalies in the
first round but these are actually false positives which reduces the Recall over the rounds.
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Figure 6.30: Precision for 5 Clients with uneven distributed Audit data set.
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Figure 6.31: Recall for 5 Clients with uneven distributed Audit data set.
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Figure 6.32: F1-Score for 5 Clients with uneven distributed Audit data set.

75





CHAPTER 7
Discussion

With this master thesis we tried to show the advantages of implementing DL models for
AD with FL and to answer the following research questions:

• R1: Which DL algorithm, AE or LSTM, is more suitable with regard to Accuracy,
Precision, Recall and F1-Score for the Audit data sets in the domain of AD?

• R2: Can a FL AD implementation reach the same Recall as a centralized DL AD
for a well-studied HDFS and an Audit data set?

• R3: How fast do DL models for AD converge with regard to the Recall when FL is
used in comparison to a centralized DL AD approach?

• R4: What are the open challenges for integrating FL for AD?

In the beginning we have investigated a simple approach using the AE to detect point
anomalies in the Audit [LSW+21] data set. This requires extensive knowledge of how
Audit log lines are constructed to select the most meaningful features. If no feature
reduction is performed, the number of dimensions and the number of Audit log lines
exceeds the regular processing capabilities of the AE. But even by reducing the features
of Audit log lines, good metrics for AD are not guaranteed. The main problem is that
when creating the Audit data set, sometimes identical log lines were labeled differently.
They were labeled as malicious if they occurred within a time when an attack was active.
So the difference in how such a log line was labeled is based on a different context which
makes an analysis of individual log lines very difficult. Therefore the Audit data set is
not usable for the application of an AE. As results in Sect. 6.1.1 and 6.1.2 show, an AE
can only work as good as its input data. Specifically, if the AE learns Audit log lines
in the training data that occur identically in the abnormal test data set, it is unlikely
that these log lines will be detected as anomalies. We can also extend this statement, if
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we want to detect contextual anomalies to LSTM models in general and our LogDeep
implementation as the results in Sect. 6.2.3 show. Here we have chosen the syscall feature
as log key. Experiments have shown that due to the small number of distinct values for
the syscall and again the occurrence of identical log sequences in the train, test normal
and test abnormal data set a precise AD is not possible as shown in Sect 6.2.3. Another
important point for the Audit data set is that it is an imbalanced data set. As Tab. 5.3
for the AE and Tab. 5.8 for LSTM show. The Audit data set consists of a lot of benign
log lines but very few malicious log lines.

To overcome the limitation of the Audit data set, further research is necessary. For the
investigated Audit data set, the multiple occurrences of log lines in the training- and test
data set cannot be avoided, because attackers partly behave the same way as normal
users. That means up to a certain point the behavior looks identical to the logging
system, because the same commands are executed. It would be necessary to improve
the logging fundamentally and to collect more features. In this master thesis we decided
not to simply discard the multiple occurrences of Audit log lines just to achieve better
metrics. Simply deleting these multiple occurrences would falsify the existing Audit data
set.

Apart from this limitation, due to the structure of the Audit data set, the variation of
the number of epochs for the LSTM model implemented with LogDeep, shows visible
effects for the HDFS [XHF+09] data set and Audit data set, which are presented in Sect.
5.2.1 and 5.2.3. Adjustment of the number of epochs has to be done carefully that no
over-fitting is introduced. Also the change of number of candidates and length of window
have a visible impact on the metrics. The choice of the appropriate number of candidates
is a trade off. In our experiments a small number of candidates led to better Recall
because it is a middle way between high detection of anomalies and less false positive
alarms. A similar trade off occurs with the choice of window size. If we increase the
window size, the Precision increases but the Recall decreases. While validating already
published scientific results for HDFS data sets processed by a LSTM with LogDeep, we
noticed that the authors used a specific padding function. Padding results in an artificial
lengthening of log sequences. That means if log sequence are not at least as long as the
window size they will not be considered at all and discarded. Especially for the HDFS
data set this has strong effects. In the training and test normal HDFS data set there
are sufficiently long log sequences. This is important for the applied window size of the
LSTM model. In contrast to this, the log sequences in the test abnormal data set are
artificially lengthened with a unique log key. For AD it is very simple to detect these log
sequences, because they are not visible during training and testing with normal HDFS
data sets. Only abnormal log sequences are shorter and padded. Therefore these log
sequences could be easily detected. The described effect for the HDFS data set can be
seen in from Tab. 6.6. We have also investigated the effects of padding for the Audit data
set. In contrast to the HDFS data set, the training- , test normal-, and test abnormal
Audit data set have shortened log sequences with respect to the window size. When
artificially lengthened with a unique log key, padding has the same effect on all 3 data
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sets. But even here you can see an improvement when padding is used. The results are
shown in Tab. 6.7 and Tab. 6.9.

The use of the padding function has also led to distorted results as shown in Sect 6.2.4.

• A1: For the investigated Audit data set, LSTM is better suited as a DL algortihm
than AE, because the LSTM approach implemented with LogDeep detects contex-
tual anomalies. The AE experiments unfortunately do not provide interpretable
results for point anomalies, because there were limitations in recording the Audit
data set.

After discarding AE as DL algorithm for the data sets under investigation, we have
settled on LSTM implemented with LogDeep for the remainder of this master thesis.
This implementation is the foundation and the central approach for our log-based AD
approach. In the next steps, we implemented this central approach in a FL environment.
Useful for this was the open source framework flower, which allows a transfer of central
approaches into FL approaches. For the experiments we implemented only 5 clients due to
limitations in computational resources. Furthermore, we have only examined FedAvg as
an aggregation algorithm. Newer aggregation algorithms are currently being researched.
These try to get a grip on the problems, which would be, for example, the correct client
selection and excluding unsatisfying local models [LMD+22][LPBA22]. For the HDFS
data set slightly worse metrics for the FL approach could be achieved compared to a
centralized approach. This can be explained by the aggregation algorithm FedAvg where
only an averaging of the aggregated updates takes place. The results can be seen in Tab.
6.13. The first noticeable effects can be seen when the HDFS data set is distributed
unevenly in size across the 5 clients. This was also one of the advantages we wanted to
prove with the implementation of FL. In a scenario where one client holds a lot of log
data locally, FL allows other clients to learn a lot from it and adapt their models locally.
The same statements can be made for the Audit data set. The results are shown in Tab.
6.15. Again, we achieve slightly worse metrics compared to a central approach. This
means that the effect is independent of the data sets we examined.

• A2: Our FL AD implementation cannot achieve the same values for the Recall as
a centralized approach. Further research is needed to verify if other aggregation
algorithms can achieve better metrics.

For the time measurement, when our models converge the training time with padding of
the models was used. The central implementation of LogDeep and the HDFS data set
requires 1 hour and 52 minutes for 300 epochs for the training of the LSTM model. For
the Audit data set, LogDeep requires for 18 million log sequences 9 hour and 55 minutes
for 20 epochs and for 2 million log sequences 53 minutes. Our FL implementation with
5 clients for the HDFS data set, requires for the even splitted data set 4 hours for 300
epochs and 3 rounds, and for the uneven splitted data set 4 hours and 30 minutes. For 2
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million even splitted Audit log sequences, the FL implementation requires 4 hours and 11
minutes for 20 epochs and 3 rounds, and 4 hours and 46 minutes for the uneven splitted
Audit log sequences.

• A3: Due to the fact that our FL implementation does not achieve the same results
as the central implementation, the time for convergence of the models is of secondary
importance. Nevertheless, it can be stated that time saving of our FL approach
with a number of 5 clients is not yet recognizable. With the size of the investigated
data sets, the central implementation is faster than FL implementations with 3
rounds.

With this master thesis we tried to prove some advantages of FL. It is evident that with
a heterogeneous distribution of log data, FL can support clients to learn and benefit from
each other without an actual exchange of data sets taking place as shown in Sect. 6.3.3
and 6.3.7. Nevertheless, open challenges remain for further research in this area. It is
questionable if the experiments carried out here on a small scale with five clients can
be generalized to large-scale problems. As the number of clients continues to grow, it is
important to implement better aggregation algorithms than FedAvg. By including clients
with superior models, overall performance can be increased. Also mitigating the inclusion
of erroneous or intentionally malicious clients will be necessary in the future. In course
of this master thesis, however, the still high demand for computational resources was
pointed out. This area is also a challenge for future applications, especially in constrained
environments such as low-bandwidth networks, or low-powered devices. There is also the
disadvantage with FL that the raw data does not have to be sent to a central entity but
the updates of the local models still have to be sent. Furthermore, there is an additional
effort for the calculation of the final score for the AD.

• A4: The aggregation algorithms and the optimization with respect to computational
resources are examples of open challenges we could identify in this master thesis.
These issues should be resolved to advance the integration of FL.
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CHAPTER 8
Conclusion

The goal of this master thesis was to identify DL algorithms for the investigated HDFS
[XHF+09] and Audit [LSW+21] data sets and to integrate them into FL. We succeeded
in developing a running implementation for this purpose. Nevertheless, some limitations
were identified in the process.

It is imperative to have a basic understanding of how the log data to be analyzed are
collected and structured. One of the biggest challenges for AD is to find the right DL
method for the use case at hand and its suitability for a given data set. First, we
implemented an AE for AD of individual log lines for the Audit [LSW+21] data set
provided by AIT. In doing so, we encountered problems that occur during the processing
of the audit data set. When recording the audit data set, individual log lines were labelled
on the basis of their time occurrences. This means that certain log lines that were recorded
during an attack were labelled as malicious. If identical log lines occurred during normal
times when no attacks were active, they were labelled as benign. This means that an AE
that has only been trained with benign log lines cannot distinguish between identical
log lines that are labelled once as malicious and once as benign. We then turned to an
LSTM approach that uses log sequences as input. Log sequences are individual log lines
that can be grouped based on features such as the pid. We reimplemented a state of the
art open source application called LogDeep and were able to replicate the results from
paper [DLZS17] which uses a HDFS [XHF+09] data set. However, we found a limitation
that occurs due to the padding function that was used in the paper [DLZS17]. Through
this function it is possible to change the too short log sequences with respect to the
window size important for the LSTM in the abnormal test data set in such a way that a
simple AD is possible. The very good detection performance reported in paper [DLZS17]
cannot be achieved without the padding function. Afterwards, we adapted LogDeep for
the Audit data set. Unfortunately, we could not achieve nearly satisfactory values for
the metrics of AD. The padding function described above did not improve the results.
One of the reasons for the poor results is that the Audit data set is imbalanced. In
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this data set there is an overabundance of benign log sequences compared to a small
number of malicious log sequences. Furthermore, a large number of log sequences were
again found to be identical in the benign and malcious data set. This is again due to
the labelling problem described above. With the limitations in mind, we ported our
central implementation of LogDeep to a FL environment. There is evidence that FL has
a positive impact on the AD of log data, but due to the limitations described above,
further scientific work is needed to substantiate this statement.

With this master thesis we wanted to investigate if FL can improve the AD performance.
However, we discovered several problems with the two data sets in use. A preprocessing
step has altered the HDFS data set which leads to a very simple AD and enables the
very good results for the metrics described in the literature [DLZS17]. The Audit data
set provided by AIT was labelled based on attack times. After removing the timestamps
and extracting the features it contains identical log lines that are labelled as benign and
malicious. With this data as basis it is difficult to train a line-based classifier such as an
AE. We found out that also identical log sequences occur that are labelled as benign and
malicious, making the data unsuitable also for sequence-based classifier such as a LSTM.

Nevertheless, FL could play a major role in future log-based AD systems. The exchange
of log data across users, companies or countries etc. could become more important. This
would enable AD systems to get a large overview of occurring attacks or unintended
behavior. This in turn would contribute to better countermeasures and greater resilience
of future systems. With this master thesis we made a contribution to advance the
integration of FL.
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APPENDIX A
Acronyms

AD Anomaly Detection

AE Autoencoder

AIT Austrian Institute of Technology

BGL Blue Gene/L

CNN Convolutional Neural Networks

DT Decision Tree

DL Deep Learning

FedAvg Federated Averaging

FL Federated Learning

GRU Gated Recurrent Unit

GPUs Graphics Processing Units

HDFS Hadoop Distributed File System

IDS Intrusion Detection Systems

IM Invariant Mining

LSTM Long Short-Term Memory

LCS Longest Common Subsequence

ML Machine Learning
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PCA Principal Component Analysis

RAM Random Access Memory

ReLu Rectified Linear Unit

RNN Recurrent Neural Network

RPC Remote Procedure Call

RMSE Root Mean Squared Error

SVM Support Vector Machine
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