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Abstract With energy communities and local electric-
ity markets on the rise, the possibilities for prosumers
to be actively involved in the energy system increase,
creating more complex settings for energy commu-
nities. This paper addresses the following research
question: Does having knowledge about the future
development in energy communities help make bet-
ter decisions selecting new participants than without
consideration of any future developments? Each year,
the community is faced with the exit of existing mem-
bers and a portfolio of possible new entrants with
different characteristics. For this purpose, a bi-level
optimization model for dynamic participation in lo-
cal energy communities with peer-to-peer electricity
trading, which is able to select the most suitable new
entrants based on the preferences of the members
of the original community, is extended to a stochas-
tic dynamic program. The community wants to plan
a few years ahead, which includes the following un-
certainties: (i) whichmembers leave after each period,
and (ii) which are the potential new members willing
to join the community. This paper’s contribution is
a stochastic optimization approach to evaluate possi-
ble future developments and scenarios. The focus lies
on the contractual design between the energy com-
munity and new entrants; the model calculates the
duration of contracts endogenously. The results show
a sample energy community’s decision-making pro-
cess over a horizon of several years, comparing the
stochastic approach with a simple deterministic alter-
native solution.
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Ein stochastischer Ansatz zur dynamischen
Teilnahme an Energiegemeinschaften

Zusammenfassung Mit dem Aufkommen von Ener-
giegemeinschaften und lokalen Strommärkten neh-
men die Möglichkeiten für Prosumenten zu, sich aktiv
am Energiesystem zu beteiligen, wodurch komplexere
Rahmenbedingungen für Energiegemeinschaften ent-
stehen. Dieser Beitrag befasst sich mit der folgenden
Forschungsfrage: Hilft Wissen über die zukünftige
Entwicklung in Energiegemeinschaften, bessere Ent-
scheidungen bei der Auswahl neuer Teilnehmer zu
treffen als ohne Berücksichtigung zukünftiger Ent-
wicklungen? Jedes Jahr wird die Gemeinschaft mit
dem Ausscheiden bestehender Mitglieder und ei-
nem Portfolio möglicher neuer Teilnehmer mit unter-
schiedlichen Eigenschaften konfrontiert.
Zu diesem Zweck wird ein zweistufiges Optimierungs-
modell für die dynamische Teilnahme an lokalen
Energiegemeinschaften mit Peer-to-Peer-Stromhan-
del, das in der Lage ist, die am besten geeigneten
neuen Teilnehmer auf der Grundlage der Präferen-
zen der Mitglieder der ursprünglichen Gemeinschaft
auszuwählen, zu einem stochastischen dynamischen
Programm erweitert. Die Gemeinschaft möchte einige
Jahre im Voraus planen, wobei folgende Unsicherhei-
ten bestehen: (i) welche Mitglieder nach jeder Peri-
ode ausscheiden und (ii) wer die potenziellen neuen
Mitglieder sind, die bereit sind, der Gemeinschaft
beizutreten.
Der Beitrag dieser Arbeit ist ein stochastischer Opti-
mierungsansatz zur Bewertung möglicher zukünftiger
Entwicklungen und Szenarien. Der Schwerpunkt liegt
dabei auf der Vertragsgestaltung zwischen der Ener-
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giegemeinschaft und den Neueinsteigern; das Mo-
dell berechnet die Vertragsdauer endogen. Die Ergeb-
nisse zeigen den Entscheidungsprozess einer beispiel-
haften Energiegemeinschaft über einen Horizont von
mehreren Jahren und vergleichen den stochastischen
Ansatz mit einer einfachen deterministischen Alter-
nativlösung.

Schlüsselwörter Energiegemeinschaften · Peer-
to-Peer-Handel · Stochastische dynamische
Programmierung · Zahlungsbereitschaft · Bi-Level-
Optimierung

1 Introduction

1.1 Motivation

Decentralized electricity production creates an oppor-
tunity for traditional consumers such as households
or small businesses to become producers at the same
time (called prosumers) and thereby become active
participants in the energy system. Because a single
prosumer is only a very small player in the system,
a step forward for prosumers is to collectively organize
themselves in so-called energy communities, where
members have the opportunity to share or trade elec-
tricity with each other. A common trading approach
in scientific literature is peer-to-peer trading,1 where
participants directly buy and sell electricity from/to
their “peers” ([44] and [48]). The objectives of energy
community members are mostly to increase their eco-
nomic benefits and to contribute to climate change
mitigation ([42] and [3]). Photovoltaic (PV) systems
play a major role in the production of clean electricity
[23], and the number of prosumers in the energy sys-
tem is rises steadily. In the European Union, the REDII
[12] paves the way to enable renewable energy com-
munities (REC). The therein defined measures will
lead to higher acceptance and a better establishment
of energy communities in the future, which means not
only that the formation of energy communities is fa-
cilitated and that entry barriers are reduced, but also
that stabilization, medium- and long-term develop-
ments, and selection processes in energy communi-
ties should be better understood. The analyses of this
paper consider existing energy communities wherein
a community manager selects optimal new partici-
pants for the community in order to maximize the
environmental benefits of its members.

1.2 Core objective and research question

The core objective of this work is to optimize the se-
lection process of an energy community wherein the
prosumers’ PV electricity generation is allocated using

1 Different trading approaches besides peer-to-peer trading are
found in scientific literature; a comparative review of state-of-
the-art in local energy markets is compiled by [9].

a peer-to-peer trading scheme. The research question
is the following: Does having knowledge about the fu-
ture development in energy communities help a com-
munity manager make better decisions selecting new
participants than without consideration of any future
developments? The decision considers a portfolio of
possible new entrants to the community, who might
or might not join in the future.

1.3 Applied method

For the purpose of answering the research question
defined above, a stochastic dynamic program with
a look-ahead policy is developed. The model is based
on the bi-level optimization model presented by the
authors in [33], which is able to select optimal new
members for an energy community while simultane-
ously optimally allocating the PV generation between
the members considering their individual willingness-
to-pay. In this paper, that model is further developed
such that the decision made here and now includes
a time horizon peaking into the future. Future pa-
rameters are stochastic and scenarios are used to ad-
equately represent possible future developments.

1.4 Structure of the paper

The next Sect. 2 provides a comprehensive review of
relevant scientific literature and concludes with the
paper’s contributions beyond state-of-the-art. Sect. 3
describes the method and modeling approach of the
dynamic program in detail, including data and further
empirical assumptions. The results of an illustrative
case study analyzing an energy community of 20 pro-
sumers in Austria are shown in Sect. 4. A conclusion
and the outlook for future research needs in Sect. 5
complete the paper.

2 State-of-the-art and progress beyond

This chapter provides a discussion of recent scientific
literature relevant to energy communities and peer-
to-peer trading. Sect. 2.1 evaluates papers that study
participation in energy communities, business mod-
els and contracts developed in the context of energy
communities. Sect. 2.2 gives an overview of models
that include stochastic approaches in modeling of en-
ergy communities. Sect. 2.3 presents this paper’s con-
tribution beyond state-of-the-art.

2.1 About participation and contracts in energy
communities

Main research topics within the field of energy com-
munities and local electricity markets are the barriers
and incentives to participation of prosumers in en-
ergy communities. In this regard, the contracts and
formation of energy communities are key. A litera-
ture review summarizing recent publications to de-
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rive challenges and barriers in energy communities
from a consumer perspective is found in [28]. At Eu-
ropean level, [4] provide a qualitative overview of en-
ergy community concepts and strategies that lead to
their creation and growth. [3] make a distinction be-
tween incentives of members of small and large com-
munities: Financial motives are most important for
members of large communities, while non-economic
drivers (environmental, social, and other) dominate
for members of smaller, local communities. Accord-
ing to the analysis in [18] focusing on intentions of pri-
vate households to participate in peer-to-peer trading
mechanisms in Germany, highly interested potential
participants exhibit environmental rather than eco-
nomic preferences, and are drawn to innovative pric-
ing schemes. [43] find that reliability is a key com-
ponent and that citizens recognize the added non-
monetary values of renewable energy communities.

To ensure a just energy transition to a carbon-neu-
tral economy, energy community projects should be
observed from a social perspective [29] as well. How
vulnerable groups might benefit from renewable en-
ergy communities is explored in [19], who investigated
71 RECs in Europe. Policy advice for new European
rules for RECs are derived in [22]. Fair revenue shar-
ing and exit clauses are examined in [15], to identify
the optimal sizing of energy communities. [39] inves-
tigate how energy communities and climate city con-
tracts are key interventions to face the ambitious goal
of implementing citizens centered and climate-neu-
tral cities.

Energy communities are opportunities to possibly
create new (sustainable) business models [14]. An
optimistic outlook on possible business models in
the context of energy communities is brought by [7],
where sizing of PV systems and electrochemical en-
ergy storage is optimized solving a mixed integer
linear program leading to an internal rate of return
of 11%. Investments via consumer stock ownership
plans as the prototype business model for renewable
energy communities are introduced in [30].

In local electricity markets and especially in peer-
to-peer trading, dynamics and diversity of the actors
involved have to be considered. Creating dynamic
peer-to-peer clusters for virtual local electricity mar-
kets to optimally match load and renewable genera-
tion profiles for an electric vehicle (EV) flexibility mar-
ketplace is presented in [21]. Diverse distributed en-
ergy resources (DER) portfolio characteristics of pro-
sumers are included in the study of [37], who de-
veloped a multi-agent deep reinforcement learning
approach to address the peer-to-peer trading prob-
lem. The concept of so-called (smart) contracts in
energy communities or peer-to-peer trading is de-
scribed, among others, in the following literature: [27]
reviews smart contracts in energy systems, which are
applied, e.g., in peer-to-peer trading, electric vehi-
cle charging, and demand-side response. [27] propose
a systematic model of the smart contracting process to

guide researcher and practitioners in this field. [6] de-
veloped an automated peer-to-peer negotiation strat-
egy for settling energy contracts under consideration
of prosumers’ individual and heterogeneous prefer-
ences over societal and environmental criteria. [50]
propose an energy contract based on Shapley values
to allocate profits among participants in a fair way.
Another automated negotiation process of bilateral
energy contracts is presented in [36].

An energy community is a small, tangible social
unit, wherein trust and confidence in the community
are key. Automated, smart contracts for trading, as
seen in [6, 27, 36, 50] and virtual energy communities
[21] are useful and supporting instruments. Our work
goes beyond these short-term optimal allocation and
trading contracts; we also consider the medium- to
long-term development of an energy community.

2.2 Stochastic modeling and optimization of energy
communities

In the field of energy systems, there are many deci-
sions that require dealing with uncertainty, especially
due to growing volatile renewable generation (wind
and solar) and price variations. [51] identified four
methods to tackle uncertainties: Monte Carlo analy-
sis, stochastic programming, robust optimization, and
modeling to generate alternatives. About one third of
the studies reviewed in [51] apply formal uncertainty
techniques. The majority of energy system models
use sensitivity or scenario analyses to include effects
of uncertainty.

We find different stochastic optimization approa-
ches within microgrids and (smart) energy com-
munities in scientific literature. Energy manage-
ment of a smart community with EV charging using
a scenario-based stochastic model predictive control
framework is presented in [52]. Among other stochas-
tic parameters, moving-horizon probabilistic models
are applied for the prediction of the arrival time of
EVs. [25] show a pooled local flexibility market design
under demand uncertainty and stochastic bidding
process, which can reduce the costs of grid opera-
tion. Net-zero communities are modeled in [26] using
a fuzzy multi-criteria decision making approach: Re-
newable energies are selected based on a life-cycle
perspective and under uncertainty. [31] analyze smart
local networks, where customers can choose between
alternative solutions of energy supply according to
their own preferences. Customers’ decisions are ad-
dressed by a stochastic modeling approach. Robust
optimal on-line scheduling of an energy community,
where renewable energy sources including a com-
munity storage are shared, is accomplished in [40]
using a stochastic model predictive control (MPC)
approach. Uncertainty from forecast of inflexible
demand profiles and renewable production curves
are included. In [8], the operating strategy for the
flexibility of end-users is modeled using a rolling
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horizon approach, including trades at Day-Ahead and
Intraday spot markets. A scenario-based stochastic
multi-energy microgrid investment planning model
to minimize costs is presented in [10]. Again regard-
ing a microgrid, a two-stage program for unit com-
mitment is combined with a Markov decision process
in [41] considering wind uncertainties. [1] developed
a bi-level stochastic optimization for microgrids. [24]
present a combined robust and stochastic MPC for EV
charging stations in microgrids.

In this section, we introduced models that include
uncertainty in the planning and the operation of en-
ergy communities. We found that stochastic param-
eters concern, among others, renewable generation
profiles, energy demand of prosumers, or EV charg-
ing. Some models include individual preferences of
prosumers, e.g., in [31], where preferences of cus-
tomers to choose from alternative energy sources are
included in their modeling approach. We found that
little attention is paid to individual preferences of pro-
sumers and their willingness to participate in energy
communities or local electricity markets.

2.3 Progress beyond state-of-the-art

The progress beyond state-of-the-art can be summa-
rized as following:

� To our knowledge, preferences of prosumers to join
or leave an energy community as stochastic input
are not analyzed in any other paper.

� We consider the medium- to long-term develop-
ment and stabilization of an energy community. We
ask how to assign contracts in energy communities,
such that participants are assured that the commu-
nity is evolving according to their needs, and trust is
strengthened.

� Finally, the explicit search for optimal participants
for an energy community instead of searching for an
optimal technology portfolio, as it is state-of-the-art
in most papers, is a prominent aspect of this work.
With increasing number of prosumers in the energy
system and energy communities as an established
instrument, selection of participants will become
more and more standard practice.

3 Method

The following chapter describes the methodology
that is developed in this paper. An overview of the
methodology is provided in Sect. 3.1, followed by
a detailed description of the stochastic dynamic pro-
gram in Sect. 3.2. Details on data and assumptions of
a case study and the scenarios used are presented in
Sect. 3.3 and Sect. 3.4, respectively.

3.1 Overview on the methodology

The purpose of this work is to develop a sound frame-
work for energy communities to select from a portfolio

of potential members under consideration of uncer-
tainties, which is why a stochastic dynamic program-
ming approach is developed. We consider the (poten-
tial) members’ preferences to stay, leave, or wanting to
join the community as the main uncertainty. There-
fore, scenarios are developed and we use probabilities
of possible future entries and exits in/from the com-
munity. A community manager has to decide what
kind of contracts to offer to each of the prosumers.
These contracts are binding from the perspective of
the community manager (members are not allowed
to be kicked out), but members can decide to leave
the community before the end of the contract.

The procedure can be summarized as follows: Each
year, the community manager captures the existing
members and their contracts. Next, information on
new possible entrants and their willingness to join the
community is collected. Finally, we check if there are
any existing members who want to early phase out
of their contract and leave the community. Now the
community manager has collected all of the certain
(deterministic) information. Stochastic input data of
future developments are then estimated, considering
the following uncertainties: (i) which members are
leaving after each period, and (ii) which are the poten-
tial newmembers willing to join the community. A set
of scenarios is designed to represent these uncertain-
ties and include them in the optimization problem.

3.2 Stochastic dynamic program

This section presents the core of the method, the
stochastic dynamic program. The procedure intro-
duced in Sect. 3.1 is now mathematically explained.
The dynamic program needs a policy, which is a func-
tion to determine decisions given available informa-
tion in a state. We choose a look-ahead policy: De-
cisions are made explicitly optimizing over a certain
time horizon with stochastic forecasts. Fig. 1 shows
an overview of the structure of the dynamic program.
The planning horizon corresponds to n years in a set
N , the scenarios ω are of a finite sample of potential
outcomes Ω, and i ∈I are all (possible) prosumers of
a portfolio. The optimization model solves two main
problems simultaneously: (i) selecting optimal new
participants from the portfolio of possible entrants
and assigning contracts to them, and (ii) optimally al-
locating the trading between participants considering
their individual willingness-to-pay. Optimal alloca-
tion in (ii) means maximizing the community welfare
(see Sect. 3.2.4) considering the participants chosen
in (i). Therefore, the problem can be formulated as
bi-level problem, wherein the leader (i) anticipates
the reaction of the follower (ii).

3.2.1 Upper-level problem
The problem is divided into two steps: The first one,
year n = 1, represents the “here and now” decision.
We know the status-quo of the community and the
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Fig. 1 Overview on the
stochastic dynamic pro-
gram

portfolio of new members, who might or might not
want to join, at this time. The second step starts at
n = 2 until n =N , where we use scenarios such that the
decision at n = 1 can “see” the future within a certain
horizon.

3.2.2 Objective function
The objective function is minimized considering sce-
narios and planning horizon:

min
xn,i (ω),un,i (ω),bn,i (ω),Qi ,t ,n (ω)

F1+
∑

ω∈Ω

N∑

n=2
p(ω)Fn(ω) (1)

F1 is the the value of the objective function at n = 1
(deterministic; scenarios are not included). Fn (ω) is
the value of the objective function of a certain forecast
year n and scenario ω, and p(ω) is the probability that
ω happens.

As reference, we calculate the emissions of all pos-
sible members as if they were stand-alone prosumers
(not part of the community; hence, no electricity trad-

ing with anyone else but the grid, with the objective of
maximizing their own self-consumption). The objec-
tive function measures the improvement of the com-
munity members’ emission balances. Therefore, the
optimal selection of new members should improve
the emission balance of the existing participants. The
emissions of each community member i over a year
n are calculated as following:

emissionsn,i (ω)=
∑

t∈T
et q

Gin
i ,t ,n(ω) (2)

This definition considers the purchases qGin
i ,t ,n from the

grid only, as the production of PV electricity does not
generate marginal emissions. Fn (ω) is composed of
emissionsn,i (ω) and emissionsout,i; the latter are an-
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nual emissions of member i as a stand-alone pro-
sumer, as mentioned above.

Fn(ω)=
∑

i∈I
(emissionsn,i (ω)

−bn,i (ω)emissionsout,i) · sn,i (ω) ·b0,i
(3)

Let us describe Equation (3) in detail: We use b0,i and
sn,i (ω)2 to exclude prosumers, who were not part of the
original community (i.e., b0,i = 0) and those who want
to leave the community in scenario ω (i.e., sn,i (ω)= 0),
from the calculations. In addition, we use bn,i (ω) to
ensure that the share of prosumer i ’s emission bal-
ance in Fn(ω) is zero if prosumer i is not part of the
new community (bn,i (ω) = 0) in year n and scenario
ω.3 Thus, linearity of the problem, apart from binary
variables, is maintained.

3.2.3 Transition function
A so-called transition function reflects the system dy-
namics of a dynamic program. In this work, the transi-
tion function calculates the remaining contract length
(state variable xn,i (ω) ≥ 0) of each prosumer i . It de-
pends on the number of years remaining from the pre-
vious year (xn−1,i (ω)) and the control variable un,i (ω)≥
0, which is the possible extension of the contract. The
transition function is defined as:

xn,i (ω)= xn−1,i (ω)−bn−1,i (ω)+ sn,i (ω)un,i (ω) (4)

valid for ∀i ∈ I ,n > 1 ∈ N ,ω ∈ Ω. sn,i (ω) is an ex-
ogenous parameter from the scenarios, representing
the (possible) choices of the portfolio: staying/joining
(sn,i (ω) = 1), or leaving/not joining (sn,i (ω) = 0). Note
that when sn,i (ω)= 0, then xn,i (ω)= 0. The binary vari-
able bn,i (ω) is one if there is a valid contract for pro-
sumer i in year n:

bn,i (ω)=
{
1 if xn,i (ω) > 0

0 if xn,i (ω)= 0
(5)

bn,i (ω) ∈ {0,1} serves two ends: (i) in transition func-
tion (4), bn,i decreases the contract length of the pre-
vious year xn−1,i (ω) by one year; (ii) bn,i (ω) can set the
lower-level constraints (16b) and (16c) to zero, thus
excluding a prosumer (refer to Sect. 3.2.4 for better
understanding). The relationship between xn,i (ω) and
bn,i (ω) can be expressed by using a big-M approach.
For n = 1, we use the initial values x0,i and b0,i for the
transition function:

x1,i =
{
x0,i −b0,i + s1,i u1,i if s1,i = 1

0 if s1,i = 0
(6)

2 b0,i and sn,i (ω) are exogenous parameters.
3 The model sets all decision variables Qi ,t ,n(ω) = 0 if bn,i (ω) = 0;
hence, emissionsn,i (ω)= 0.

Note that at n = 1, non-anticipativity constraints are
imposed:

u0,i (ω)−u0,i = 0 (7)

Eq. (7) means that we have to choose one decision u0,i
for the contract length of prosumer i regardless of the
outcome ω; hence, we are not allowed to see into the
future. Non-anticipativity constraints are included for
all other variables too:

x0,i (ω)− x0,i = 0 (8)

b0,i (ω)−b0,i = 0 (9)

Qi ,t ,0(ω)−Qi ,t ,0 = 0 (10)

There is also a rule implemented that prosumers, that
wanted to join the community (sn,i (ω) = 1), but were
rejected (bn,i (ω) = 0), are not considered anymore in
the following years; hence, bm,i (ω)= 0 ∀m > n. We as-
sume that once a prosumer was rejected, they search
for other, alternative energy communities to join.

3.2.4 Lower-level problem
The dynamic program has to solve a lower-level prob-
lem to optimally allocate PV electricity generation
within the community according to the participants’
individual willingness-to-pay. The lower-level prob-
lem is adopted from [33]; therefore, a very brief
overview is presented in the following. For details
refer to the original publication.

3.2.5 Willingness-to-pay
The willingness-to-pay of prosumer j at time t to buy
from prosumer i , wtpi , j ,t , is as follows:

wtpi , j ,t = pGin
t +wj (1−di , j ) ·et . (11)

3.2.6 Community welfare
The aim of peer-to-peer electricity trade is to max-
imize community welfare, which is defined in two
parts. Part I of community welfare measures the opti-
mal resource allocation at community level, maximiz-
ing self-consumption of the community as a whole
over a year. Part II optimally assigns PV generated
electricity to each member in consideration of their
individual willingness-to-pay; thus, part II represents
peer-to-peer trading from one prosumer to another,
qshare
i , j ,t . Community welfare (CW) within scenario ω

over year n is defined as following:

CWn(ω)=
∑

t∈T ,i∈I
(pGout

t qGout
i ,t ,n (ω)−pGin

t qGin
i ,t ,n(ω)︸ ︷︷ ︸

I

+
∑

j∈I
wtpi , j ,t q

share
i , j ,t ,n(ω)

︸ ︷︷ ︸
II

)
(12)
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Table 1 Parameters of the prosumers of the portfolio (“–” indicates that a technology type is not included)
Annual demand PV PV peak BESS CO2-price

(kWh) orientation (kW) (kWh) (EUR/tCO2)

Prosumer SH 1 3336 South 5 3 100

Prosumer SH 2 4538 South 5 0 0

Prosumer SH 3 5253 – – – 90

Prosumer SH 4 5824 South 3 3 30

Prosumer SH 5 6337 South 5 0 50

Prosumer SH 6 6833 South 5 3 60

Prosumer SH 7 7346 – – – 40

Prosumer SH 8 7917 South 3 3 80

Prosumer SH 9 8632 South 5 0 20

Prosumer SH 10 9834 – – – 100

Prosumer SAB 1 6258 South 8 3 100

Prosumer SAB 2 8513 West 8 0 0

Prosumer SAB 3 9854 – – – 90

Prosumer SAB 4 10926 South 5 3 30

Prosumer SAB 5 11888 East 8 0 50

Prosumer SAB 6 12820 West 8 3 60

Prosumer SAB 7 13782 – – – 40

Prosumer SAB 8 14854 South 5 3 80

Prosumer SME 1 16195 South 8 0 10

Prosumer SME 2 18450 – – – 20

The set of variables

Qi ,t ,n (ω)=
{
q
Gin
i ,t ,n (ω),q

Gout
i ,t ,n (ω),qsharej ,i ,t ,n (ω),q

Bin
i ,t ,n (ω),q

Bout
i ,t ,n (ω),SoCi ,t ,n (ω)

}

(13)

are the lower level primal decision variables. The for-
mulation is found in the Appendix. The lower level
problem is reformulated to its corresponding Karush-
Kuhn-Tucker (KKT) conditions in order to solve the
bi-level problem.

3.3 Data and assumptions

3.3.1 Model implementation
The open-sourcemodel4 is implemented using Python
(version 3.9.7; [49]), the Pyomo package (version 6.2;
see [20] and [5]), and the commercial5 solver Gurobi
(version 9.5.0; see [17]). The stochastic dynamic pro-
gram is very computationally expensive; with a time
horizon of five years considering four scenarios, the
case study presented in the following paragraphs takes
7 hours and 36 minutes to solve on a standard com-
puter with Intel(R) Core(TM) i7 CPU. A deterministic
solution of the same problem without forecast and
scenarios takes 47 seconds.

4 https://github.com/tperger/PARTICIPATE.
5 Alternatively, the problem can be solved with the open-source
solver GLPK (see [16]).

3.3.2 Parameters of the case study
In this case study, a portfolio of 20 artificial prosumers
consisting of ten single houses (SH), eight small apart-
ment buildings (SAB), and two small businesses (SME)
is considered. Single houses have PV systems with
up to 5kWpeak installed, and apartment buildings and
businesses up to 8kWpeak. Additionally, some pro-
sumers own a battery storage system (BESS). Not all
prosumers have their own PV systems; hence, they are
consumers only. The detailed data including PV sys-
tem orientation and willingness-to-pay (CO2-price wj )
can be found in Table 1. wj covers a range between
0–100EUR/tCO2,6 depending on how strong a pro-
sumer’s environmental ambitions are. The distance
preferences di , j between prosumers are arbitrarily as-
signed within di , j ∈ [0,1]. The distances are symmetric,
thus di , j = dj ,i .

The initial set-up consists of ten prosumer (five
SHs, four SABs, and one SME); from there, the dif-
ferent scenarios are developed as shown in Sect. 3.4.
Electricity demand data and PV production data are
obtained from open-source tools. Residential demand
profiles (LoadProfileGenerator version 10.4.0, see [32]
and [35]) represent different living situations and de-
mographics. Renewables.ninja (see [34, 38], and [45])
provides electricity output data from PV systems; in
this case study, data from Vienna, Austria from 2019 is
applied. To represent demand profiles of businesses,

6 With average emissions of 132gCO2kWh from electricity gen-
eration in Austria and, for example, wj = 100EUR/tCO2, the will-
ingness-to-pay is 1.32cent/kWh above the retail electricity price.
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Fig. 2 Choice of the pro-
sumers sn,i (ω) depending
on the scenarios ω ∈ Ω

(blue – sn,i (ω) = 1; yellow
– sn,i (ω)= 0; red highlighted
– changes compared to the
original community)

a synthetic load profile for standard businesses (G0
“Gewerbe allgemein”) is used (see [2]).

Other parameter of the case study concern electric-
ity prices and emissions from the grid. Prosumers buy
remaining electricity, which they could not buy from
other community members or self-generate, from the
retailer. The average residential electricity price in
Austria was pGin

t = 0.22EUR/kWh in 2021 (see [13]).
This value is constant over all t ∈ T and n ∈N . The
excess PV generation, which prosumers could not sell
to other community members or self-consume, is sold
to the grid at Day-Ahead (DA) market prices. pGout

t are
Austrian DA prices from 2019 (see [11]). These values
are time-variant over t ∈T ; the time series is re-used
for all n ∈N . Emissions from the grid are calculated
using again data from [11] for Austria. The calcula-
tion considers the amount of electricity generated per

hour and per generation type to account for the cor-
responding emissions. et are hourly average values in
gCO2kWh; this time series is again used for all n ∈N .

Annual hourly data that is available for a whole year
is transformed into three representative days using the
Python tslearn package [46], which is based on a k-
means clustering algorithm [47]. This step is neces-
sary to reduce computational efforts, because solving
MPECs is already very time-consuming. Per year, 8760
time steps are reduced to 72 time steps only. The re-
sulting representative days reflect a summer, a win-
ter, and a spring/fall day. The input data sets that are
clustered mainly vary during different times of the day
and the year (i.e., seasons). This information is pre-
served in the representative time series, therefore the
clustering approach is reasonable in our application.
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3.4 Scenarios

We use a finite set of scenarios to represent possible
developments of the portfolio of possible prosumers.
Considering in total 20 prosumers, their possible deci-
sions, and a time horizon of a few years, a large num-
ber of permutations are obtained. Therefore, a sce-
nario tree with all possibilities would be very large.
Due to the high computational efforts of stochastic
programming, we do not aim at using the full sce-
nario tree for our research. Instead, a relatively small
set of completely different scenarios is developed to
represent the wide spectrum of possibilities.7 This de-
cision is also justified by the fact that in the objective
function in Eq. (1), the scenarios are weighted with
their probabilities p(ω). As a result, with increasing
number of scenarios, the probabilities of each single
scenario drop.

The use case that will be shown in the results sec-
tion considers different building and prosumer types:
single houses (SH), small apartment buildings (SAB),
and small businesses (SME). At the beginning, the ini-
tial set-up contains five SHs, four SABs, and one SME.
The present contract lengths with the community x0,i
vary between zero (in the portfolio, but not a member)
and three years. From there, four different scenarios
are considered:

� ω1: additional SABs might want to join in the up-
coming years

� ω2: the SABsmight want to phase-out in the upcom-
ing years

� ω3: additional SHsmight want to join in the upcom-
ing years

� ω4: the SHs might want to phase-out in the upcom-
ing years

Fig. 2 shows a graphical representation of each sce-
nario ω ∈Ω from year one to year five (blue – sn,i (ω)= 1;
yellow – sn,i (ω)= 0; highlighted in red – changes com-
pared to the original community). The original com-
munity consists of the following prosumers: SH 1, SH
2, SH 3, SH 6, SH 7, SAB 3, SAB 4, SAB 5, SAB 7, SME
1.

4 Results

This chapter covers the results of the case study and
the corresponding scenarios introduced in Sects. 3.3
and 3.4. The first set of results in Sect. 4.1 shows
the community manager’s decision of one year using
a horizon with stochastic forecasts. Sect. 4.2 presents
the selection process over several, consecutive years,
and compares the results between deterministic and
stochastic decisions.

7 The values of sn,i (ω) are randomly assigned.

Fig. 3 Peer-to-peer trading annual results of the original
community in kWh/year

4.1 Selection of new members in year one using
a horizon with stochastic forecasts

The energy community that is investigated in the case
study considers a portfolio of 20 (possible) prosumers.
The portfolio is diverse: different building types (sin-
gle houses and apartment buildings), residential and
commercial consumers, different PV system sizes, etc.
are included. Initially, the community consists of ten
members; the other ten prosumers are not members
(yet), but part of the portfolio. It is up to the com-
munity manager to define who could be a potential
new member in the future. Observing a neighbor-
hood or a district, buildings currently under construc-
tion or newly constructed buildings could be poten-
tial new members in a few years or even sooner. Also,
growing interest in energy communities per se is con-
sidered. Residents of existing buildings with already
installed PV systems might notice the advantages of
joining forces in a community. With some expertise,
such portfolio can be created. The next step involves
the development of plausible scenarios. If and when
a potential new prosumer might announce their will-
ingness to join the community are estimated. This
does not have to be exact, because uncertainties can
be represented in the different scenarios.

4.1.1 Original community
Initially, the status-quo of the original community is
observed to create a starting point for the further eval-
uations of the results. Fig. 3 shows the peer-to-peer
traded electricity (in kWh/year) in detail; columns
represent the purchases of each member, and rows
the respective sales. The allocation is based on the
participants’ willingness-to-pay: Prosumers sell self-
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Table 2 Summary of the peer-to-peer trading results of the original community
Prosumer SH 1 SH 2 SH 3 SH 6 SH 7

Buying grid (kWh) 479.5 3369.5 3961.1 2712.2 4933.7

Selling grid (kWh) 815.3 2857.8 0 469.9 0

Battery charging (kWh) 880.0 0 0 880.0 0

Battery discharging (kWh) 747.4 0 0 776.8 0

Self-consumption (kWh) 1877.5 1099.2 0 3291.2 0

Buying community (kWh) 231.2 68.8 1291.4 53.1 2412.5

Selling community (kWh) 2887.9 2503.7 0 1819.6 0

Emissions (tCO2) 0.1 0.5 0.5 0.4 0.7

Costs (EUR) -531.0 78.4 1169.6 184.5 1637.1

Prosumer SAB 3 SAB 4 SAB 5 SAB 7 SME 1

Buying grid (kWh) 5601.8 6984.5 7741.2 7338.9 10452.5

Selling grid (kWh) 0 1319.5 665.8 0 1584.0

Battery charging (kWh) 0 880.0 0 0 0

Battery discharging (kWh) 0 783.0 0 0 0

Self-consumption (kWh) 0 3148.5 3855.7 0 5532.1

Buying community (kWh) 4252.5 10.0 291.4 6443.3 210.7

Selling community (kWh) 0 1112.7 3720.0 0 3221.0

Emissions (tCO2) 0.7 0.9 1.1 1.0 1.4

Costs (EUR) 2227.1 1249.7 910.2 3083.2 1578.7

generated PV electricity to those members with high-
est willingness-to-pay. Table 2 shows the quantitative,
annual results (kilowatt-hours of electricity bought
and sold, emissions, and costs) of all members. The
community consists of six prosumers, who own PV
systems (three of them own an additional BESS), and
four consumers, who cannot sell electricity; they rely
on purchases from the grid or from the community.

4.1.2 Stochastic solution
The first set of results shows the selection process for
one year in detail. A time horizon of five years with
stochastic forecasts from year n = 2, . . .,5 is included in
the decision at year n = 1. For each scenario within the
time horizon, different decisions are made depend-
ing on which configuration is optimal within each sce-
nario. The resulting numbers of prosumers are shown
in Fig. 4, grouped into the following categories: the
numbers of existing members (blue) and newly added
members (green) are counted on the positive y-axis,
and the numbers of prosumers, who are part of the
portfolio but no members of the community (yellow),
and those leaving the community (red) are counted on
the negative part of y-axis. The scenarios ω1,ω2,ω3,ω4
are shown one below the other. Note that in year one,
there is only one joint decision for all scenarios to-
gether because of the non-anticipativity constraints
imposed in Eqs. (7)–(10).

As shown in Fig. 4, the decision at year one involves
three prosumers who join the community, and two
prosumers who leave. Prosumer SAB 3 and prosumer
SAB 7 left on a voluntary basis (s1,i = 0). At n = 1, de-
cisions on the potential participation of prosumer SH
5, prosumer SAB 8, and prosumer SME 2, who show
interest in joining the community (s1,i = 1), are made.

The stochastic dynamic program under consideration
of all four scenarios accepts the new prosumers into
the community. Prosumer SH 5 and SAB 8 bring PV
systems to the community, which facilitates accep-
tance. Prosumer SME 2 on the other hand presents
an interesting case: Not owning PV systems, but hav-
ing the highest electricity demand within the com-
munity, prosumer SME 2 is not the ideal candidate
for this community with the objective of minimiz-
ing emissions. In our case study, there is sufficient
excess PV generation available for prosumer SME 2
to be included in the community without worsening
the objective function, because prosumer SAB 3 and
SAB 7, who are both consumers only, left. We take
a look at Fig. 5, where increase (or decrease) of annual
costs and emissions comparing the original commu-
nity and the community at n = 1 are illustrated. Costs
and emissions of prosumers that left the community
(prosumer SAB 3 and SAB 7), and of those who joined
the community (prosumer SH 5, SAB 8, and SME 2),
are compared with the costs/emissions of stand-alone
prosumers. Without the community, emissions due to
electricity consumption of prosumers SAB 3 and SAB
7 highly increase in n = 1. All other emission balances
are negative except for prosumer SME 1, thus most
prosumers can avoid emissions by trading electricity
with other community members. The only prosumer
with highly increasing costs in year one is prosumer
SAB 5, who joined the community at n = 1.

Returning to Fig. 4, we now compare the scenarios
from year two to year five. There is a distinct differ-
ence between the scenarios starting from year three:
In scenario ω1 and ω3, new prosumers show interest
in joining the community, while in ω2 and ω4, some
existing members leave the community, without re-
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Fig. 4 Acceptance/drop-
ping out per scenario con-
sidering all prosumers in the
portfolio – stochastic solu-
tion

Fig. 5 Difference of annual costs and emissions between
original community and new community at n = 1 (red – an-
nual costs; green – annual emissions); increase of costs and
emissions counted positive, decrease negative

placement by new prosumers. This diversity within
the scenarios is also reflected in the selection pro-
cess. Single houses have higher PV capacities installed
in relation to their annual electricity demand than
apartment buildings or businesses. Therefore, single
houses share more PV generated electricity with other
members than other prosumer types. In scenario ω4,
five single houses, which were part of the original
community, leave in year n = 3. The remaining mem-
bers are then left with a community without suffi-
cient PV capacities to actually benefit from peer-to-
peer trading. Hence, the remaining prosumers leave
too. The explanation for scenario ω2 is similar.

Let us now discuss the development of the original
community’s annual emissions over five years. The

contributions of each scenario to the expected emis-
sion are shown in Fig. 6. In this graph, only emissions
of active members count; thus, emissions in scenarios
ω2 and ω4 converge to zero. Additional SABs joining
at n = 3 in scenario ω1 increase emissions of the orig-
inal community members, while staying well below
the baseline, the emissions without sharing electric-
ity in the community (dashed black line). In scenario
ω3, the annual emission decrease, because the newly
added SHs provide more PV generated electricity, rel-
ative to their own demand, to trade with the commu-
nity.

4.1.3 Deterministic solution
Next, we compare the selection of the stochastic ap-
proach with a simplified, deterministic approach. The
deterministic implementation is as following: First,
the existing members and potential new members are
captured. The optimization is executed knowing all
relevant parameters of year n = 1, but not considering
any future developments. The simplified version of
Eq. (1) is:

min
xn,i ,bn,i ,un,i ,Qi ,t ,n

Fn (14)

Constraint and lower level problem remain un-
changed to those presented in Sect. 3.2, however, the
scenarios ω are missing. Fig. 7 compares stochastic
and deterministic solutions of the problem by show-
ing the decision for each prosumer separately. While
prosumers SH 5 and SME 2 are accepted into the
community as in the stochastic solution, prosumer
SAB 8 is rejected using a deterministic approach,
which is the only distinction between the two cases.
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Fig. 6 Emissions over
five years by scenario
ω1,ω2,ω3,ω4 – stochastic
solution

Fig. 7 Selection of pro-
sumers in year n = 1 (top –
stochastic approach; bot-
tom – deterministic)

4.2 Selection process over five years comparing
stochastic vs. deterministic solution

Recalling the research question of this paper, we want
to find out if the stochastic approach to dynamic par-
ticipation in energy communities leads to different
selection of prosumers than a more simple, deter-
ministic approach. For this purpose, the optimization
model is applied over several consecutive years using
the deterministic implementation briefly explained in

the previous section. The consecutive execution of
the deterministic program is performed as following:
We optimize using Eq. (14) with n = 1 as our objective
function, knowing all the relevant parameters of year
one, but not considering any future developments.
The resulting configuration of members is the new so-
called original community for the following year and
the contract lengths are updated. We use scenario ω1

A stochastic approach to dynamic participation in energy communities K
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Fig. 8 Acceptance/drop-
ping out per scenario con-
sidering all prosumers in
the portfolio – deterministic
solution

Fig. 9 Emissions over
five years by scenario
ω1,ω2,ω3,ω4 – deterministic
solution

as a reference scenario, which we assume is actually
taking place, meaning

sn,i = sn,i (ω1). (15)

The optimization is repeated year by year for all n ∈N .
Afterwards, the whole procedure is again repeated for
the other scenarios ω2,ω3,ω4.

Fig. 8 presents the decisions of the deterministic
approach comparing all four scenarios one below the

other. In year one, all scenarios deliver the same
results, because the same parameters are assumed.
Comparing with Fig. 4, it is interesting to notice that
in the deterministic solution for scenarios ω2 and ω4,
there are still members in the community at n = 5,
which is not the case in the stochastic solution. This
can be explained as follows: The objective function
Fn takes into account the emission balances of all
members of the original community. The determinis-
tic approach updates the community each year, thus
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the set-up of original members changes as well. The
stochastic results from the previous Sect. 4.1 are ob-
tained from the decision at year one and only consid-
ers the original community at the starting point. The
corresponding emissions are shown in Fig. 9.

5 Conclusions

In this work, a stochastic dynamic program is devel-
oped to optimally select new members for an energy
community with peer-to-peer trading scheme. Based
on previous work on energy communities by the au-
thors in [33], where a bi-level optimization model can
choose optimal parameters (PV capacity and annual
electricity demand) of a new member and choose
between potential new members, the present work
includes scenarios of possible future developments
within the energy community into the decision mak-
ing process.

Core characteristic of our approach to the selec-
tion process is the community members’ objective
to minimize emissions from electricity consumption.
The peer-to-peer trading mechanism maximizes self-
consumption – and therefore also minimizing emis-
sions from electricity consumption – of the commu-
nity as a whole while considering prosumers’ indi-
vidual willingness-to-pay. When selecting prosumers
from a portfolio of potential new members, the origi-
nal community aims at further avoiding emissions. It
is up for discussion if energy community members are
more interested in improving economic (e.g., by sav-
ing annual costs for electricity) or environmental ben-
efits. Because literature often indicates that environ-
mental incentives play a particularly important role
for participants of energy communities, and because
individual willingness-to-pay that determine peer-to-
peer trading in our work include a preference to save
emissions, this analysis focuses entirely on environ-
mental interests. Therefore, we made a conscious
decision not against minimizing costs, but for mini-
mizing emissions in the objective function, which is
a distinguishing feature of this particular analysis.

This leads to the next discussion point. Our model
allows the energy community to reject potential mem-
bers, which is in some way a contradiction to the
environmental preference attested to the community
members. On the one hand, an energy community
should be a small, socially tangible entity of manage-
able size. A sense of belonging, trust, and confidence
are easier maintained in a small and selective com-
munity. Therefore, boundaries are consciously drawn.
On the other hand, the suggested selection process is
not a one-size-fits-all approach. Energy communities
can have different sizes, goals, and diversity of actors
involved. Not setting boundaries and accepting all in-
terested prosumers into the community would even-
tually lead to one big energy community for a whole
country, which is not a socially tangible entity any-
more. The possibility to actively participate and to

engage in the energy system according to one’s own
preferences would be lost.

The analyses showed that the stochastic approach
to optimize a selection process of energy community
members is cumbersome. Not only are stochastic dy-
namic programs computationally expensive, but also
the creation of adequate scenarios, data collection
and estimation of existingmembers and potential new
ones is a complex procedure in real-life situations.
Though, including scenarios that are most likely to
happen as a forecast in the decision process is recom-
mended. The exact contractual design between com-
munity members and the community as a legal entity
is subject to further research, which should include
real test sites and legal aspects.
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6 Appendix

6.1 Lower-level problem formulation

The formulation of the lower-level problem is:

max
Qi ,t ,n(ω)

CW1+
∑

ω∈Ω

∑

n∈N
p(ω)CWn (ω) (16a)

subject to:
qGin
i ,t ,n(ω)+qBout

i ,t ,n(ω)+
∑

j∈I
qshare
j ,i ,t ,n(ω)−bn,i (ω)q

load
i ,t = 0

(λload
i ,t ,n (ω)) ∀i , t ,n

(16b)

qGout
i ,t ,n (ω)+qBin

i ,t ,n(ω)+
∑

j∈I
qshare
i , j ,t ,n(ω)−bn,i (ω)q

PV
i ,t = 0

(λPV
i ,t ,n(ω)) ∀i , t ,n

(16c)

SoCi ,t−1,n(ω)+qBin
i ,t ,n(ω) ·ηB −qBout

i ,t ,n (ω)/η
B −SoCi ,t ,n(ω)= 0

(λSoC
i ,t ,n(ω)) ∀i , t > t0,n

(16d)
SoCi ,t=tend,n(ω)+qBin

i ,t0,n
(ω) ·ηB −qBout

i ,t0,n
(ω)/ηB

−SoCi ,t0,n(ω)= 0 (λSoC
i ,t0,n

(ω)) ∀i , t = t0,n
(16e)

SoCi ,t=tend,n(ω)−SoCinit = 0 (λSoCinit
i ,tend,n

(ω))

∀i , t = tend,n
(16f)
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SoCi ,t ,n(ω)−bn,iSoC
max
i ≤ 0 (μSoCmax

i ,t ,n (ω)) ∀i , t ,n
(16g)

qBin
i ,t ,n(ω)−bn,i q

Bmax

i ≤ 0 (μ
Bmax
i n

i ,t ,n (ω)) ∀i , t ,n (16h)

qBout
i ,t ,n (ω)−bn,i q

Bmax

i ≤ 0 (μ
Bmax
out

i ,t ,n (ω)) ∀i , t ,n (16i)

−qGin
i ,t ,n(ω),−q

Gout
i ,t ,n (ω),−qshare

i , j ,t ,n(ω),−qBin
i ,t ,n(ω),−q

Bout
i ,t ,n(ω),

−SoCi ,t ,n(ω)≤ 0

(βGin
i ,t ,n(ω),β

Gout
i ,t ,n(ω),β

share
i , j ,t ,n(ω),β

SoC
i ,t ,n(ω),β

Bin
i ,t ,n(ω),β

Bout
i ,t ,n(ω))

∀i , t ,n
(16j)

6.2 Nomenclature

Table 3 Nomenclature
Sets

n ∈N = {1, . . .,N } Years (forecasting horizon)

t ∈T = {1, . . .,T } Hourly time steps

i ∈I = {1, . . .,M} Index of prosumers in the portfolio

ω ∈Ω= {ω1, . . .,ω|Ω|} Set of scenarios

Parameter

q loadi ,t Demand of prosumer i (kWh)

qPVi ,t PV generation of prosumer i (kWh)

SoCmaxi Capacity of prosumer i ’s battery (kWh)

qBmax
i Maximum (dis)charging power of prosumer i ’s battery (kW)

ηB Efficiency of the batteries

wj Prosumer j ’s preference to avoid emissions (EUR/tCO2)

di j Distance preference between prosumers i and j (∈ [0,1])

wtpi , j ,t Willingness-to-pay of prosumer j (EUR/kWh)

pG in
t Average spot market electricity price (EUR/kWh)

pGout
t Retailer’s electricity price (EUR/kWh)

et Emissions from the grid (tCO2/kWh)

sn,i (ω) Decision of i to join, stay or leave the community

p(ω) Probability of scenario ω

Decision variables

xn,i (ω) State variable: Remaining contract duration of i in year n

un,i (ω) Control variable: Contract extension for i in year n

bn,i (ω) ∈ {0,1} Binary variable if i has a valid contract in year n

qG in
i ,t ,n (ω) Purchase of prosumer i from the grid (kWh)

qGout
i ,t ,n (ω) Sales from prosumer i to the grid (kWh)

qsharei , j ,t ,n (ω) Purchase of prosumer j from prosumer i (kWh)

qBin
i ,t ,n (ω) Charging of prosumer i ’s battery (kWh)

q
Bout
i ,t ,n (ω) Discharging of prosumer i ’s battery (kWh)

SoCi ,t ,n (ω) State of charge of prosumer i ’s battery (kWh)

λi ,t ,n (ω),βi ,t ,n (ω),μi ,t ,n (ω) Dual variables of the problem

Fn (ω) Value of objective function at n and ω

emissionsn,i (ω) Annual emissions of prosumer i

emissionsout,i Annual emissions of prosumer i if they are not a member

CWn (ω) Community welfare
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