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Abstract

To ensure stable product quality and batch to batch reproducibility of fermentation pro-
cesses, bioprocess control is the matter of choice. A majority of recombinant protein pro-
duction processes are carried out in fed-batch mode, which enables control by the feed
addition. Models are needed for the establishment and the investigation of more complex
control objectives as a representation of the real process. These models could be extended
to applicable Digital Twins if they are integrated in the monitoring and control loop of the
fermentation plant.

The aim of the thesis is to find control laws to keep biomass specific rates of a recombinant
protein producing E.coli fed-batch process constant and investigate the impacts and the
usability of this new control approaches. Therefore an already existing process model was
extended and fitted to historical datasets. Subsequently the model was used to carry out
a nonlinear feedback linearization to obtain the demanded control laws. In addition to the
well known and often used control of the specific growth rate control laws were derived to
control the biomass specific substrate uptake rate, the recombinant protein production rate
as well as the biomass specific oxygen uptake and carbon dioxide production rate.

To judge the applicability of these control laws an implementation study was carried out.
Therefore an independent verification plant was simulated as a substitute for real experi-
ments. To apply the control laws in a meaningful way a setpoint optimization was performed
beforehand and the controllers were tuned.

The control laws could successfully be used to keep the biomass specific rates at constant set-
points. Additionally the implementation study showed an theoretical potential to improve
process performance using the determined optimized setpoints. Eventually the potential to
apply this novel control approaches and the model to real experiments is discussed with
regard to an applicable digital twin.



Contents iv

Contents

1 Introduction 1
1.1 Biotechnological production . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Recombinant protein production processes . . . . . . . . . . . . . . . . . . . 2
1.3 Digital twins in biotechnology . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Process modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 From classical to digital twin based process control . . . . . . . . . . 4

1.4 Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Goals and workplan of the thesis 6
2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Workplan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Material and methods 8
3.1 Process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 System kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Substrate consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Biomass growth rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Product formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Product release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

NRMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Process control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Common control strategies for bioprocesses . . . . . . . . . . . . . . . 15
3.4.2 Feedback linearization . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.3 Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Open-loop controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Closed-loop controller . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



Contents v

4 Results and discussion 20
4.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Controller development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Feedback linearization . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Control laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 Control circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Setpoint optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Setpoints for optimal space-time yield . . . . . . . . . . . . . . . . . . 34
4.3.2 Setpoints for maximum product concentration . . . . . . . . . . . . . 39
4.3.3 Selected setpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Feed profiles of control laws . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Performance of control laws with model-plant mismatches . . . . . . . . . . . 43
4.6 Implementation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.1 Selected plant within the calibrated range . . . . . . . . . . . . . . . 49
4.6.2 Independent verification plant . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Applicability of the different controllers . . . . . . . . . . . . . . . . . . . . . 54
4.7.1 Growth rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7.2 Substrate uptake rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.3 Product formation rate . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.4 Oxygen uptake and carbon dioxide emission rate . . . . . . . . . . . . 56

5 Conclusion 58

Bibliography 60



List of Figures

2.1 Workplan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Workflow of systematic parameter subset selection and tuning procedure [30] 13
3.2 Closed loop block diagram of non-linear SISO system [33] . . . . . . . . . . . 18
3.3 Example of open loop control system [32] . . . . . . . . . . . . . . . . . . . . 18
3.4 Example of two-degree-of-freedom control system. C(s) describes the func-

tion for the serial compensator, Cf (s) the feedforward compensator, together
they respresent the controller. The function H(s) incorporates the feedback
and noise detection, P (s) is the mathematical description of the system with
the corresponding disturbances Pd(s) [35] . . . . . . . . . . . . . . . . . . . . 19

4.1 Feed profiles of Experiments chosen from the data set provided . . . . . . . . 21
4.2 Experiment with increasing feed rate and high starting point: comparison

between experimental data and model estimation, illustrated in red color in
figure 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Experiment with increasing feed rate and medium starting point: comparison
between experimental data and model estimation, illustrated in green color
in figure 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Experiment with increasing feed rate and low starting point: comparison
between experimental data and model estimation, illustrated in blue color in
figure 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Experiment with constant feed rate and low set point: comparison between
experimental data and model estimation, illustrated in yellow color in figure
4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Experiment with constant feed rate and medium set point: comparison be-
tween experimental data and model estimation, illustrated in pink color in
figure 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.7 Experiment with constant feed rate and high set point: comparison between
experimental data and model estimation, illustrated in cyan color in figure 4.1 25



List of Figures vii

4.8 Modelfit of all experiments: shown are the deviations between the overall
model prediction and experimental data for the biomass (X), the product
concentration (Ptot), in cell (P) and released product (PR), for the specific
growth rate (µ), the substrate uptake rate (qS), the product formation rate
(qP ), and the respiratory rates (qO2 and qCO2) . . . . . . . . . . . . . . . . . 27

4.9 Feedforward control circuit: cf. Fig. 3.4, the feedback term H(s) is not
applicable, the controller just incorporates the feedforward compensator Cf (s) 32

4.10 Feedback contol circuit: cf. Fig. 3.4 and Eq. 4.12 the feedforward part
compares the mismatch of the model prediction and the set point (w − q∗)
and the feedback part incorporates the mismatch of the model and the real
plant behavior (q∗ − q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.11 Setpoint optimization constant substrate feed and the harvest time (time):
the first contour line shows the limits in which 95% of the maximum possible
space-time yield can be achieved, the second the 90% limit and then in 10%
steps downwards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.12 Setpoint optimization constant qS: the first contour line shows the limits in
which 95% of the maximum possible space-time yield can be achieved, the
second the 90% limit and then in 10% steps downwards. . . . . . . . . . . . 36

4.13 Setpoint optimization constant µ: the first contour line shows the limits in
which 95% of the maximum possible space-time yield can be achieved, the
second the 90% limit and then in 10% steps downwards. . . . . . . . . . . . 36

4.14 Setpoint optimization constant qp: the first contour line shows the limits in
which 95% of the maximum possible space-time yield can be achieved, the
second the 90% limit and then in 10% steps downwards. . . . . . . . . . . . 37

4.15 Setpoint optimization constant qO2 : the first contour line shows the limits in
which 95% of the maximum possible space-time yield can be achieved, the
second the 90% limit and then in 10% steps downwards. . . . . . . . . . . . 37

4.16 setpoint optimization constant qCO2 : the first contour line shows the limits
in which 95% of the maximum possible space-time yield can be achieved, the
second the 90% limit and then in 10% steps downwards. . . . . . . . . . . . 38

4.17 setpoint optimization to reach maximum possible product concentration dur-
ing the process shown for the specific substrate uptake rate qS as an example:
it can be seen that lower setpoints and slower processes achieve the highest
product concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.18 Feedprofiles of different control laws as well as courses of product formation
rate qP , growth rate µ and product concentration cP tot, cP and cP r over time. 41

4.19 controller performance qS: on the left hand side the course in time of the
controlled rates for feedforward and feedback control is shown. On the right
hand side the courses of the product formation are shown to assess the effects
of deviations on the process performance. . . . . . . . . . . . . . . . . . . . . 44



List of Figures viii

4.20 controller performance µ: on the left hand side the course in time of the
controlled rates for feedforward and feedback control is shown. On the right
hand side the courses of the product formation are shown to assess the effects
of deviations on the process performance. . . . . . . . . . . . . . . . . . . . . 46

4.21 controller performance qP : on the left hand side the course in time of the
controlled rates for feedforward and feedback control is shown. On the right
hand side the courses of the product formation are shown to assess the effects
of deviations on the process performance. . . . . . . . . . . . . . . . . . . . . 46

4.22 controller performance qO2: on the left hand side the course in time of the
controlled rates for feedforward and feedback control is shown. On the right
hand side the courses of the product formation are shown to assess the effects
of deviations on the process performance. . . . . . . . . . . . . . . . . . . . . 47

4.23 controller performance qCO2: on the left hand side the course in time of the
controlled rates for feedforward and feedback control is shown. On the right
hand side the courses of the product formation are shown to assess the effects
of deviations on the process performance. . . . . . . . . . . . . . . . . . . . . 47

4.24 Achieved product concentration of different control laws with setpoints for
maximum space-time yield to be expected . . . . . . . . . . . . . . . . . . . 50

4.25 Achieved product concentration of different control laws with setpoints for
maximum product concentration to be expected . . . . . . . . . . . . . . . . 50

4.26 Achieved product concentration of different control laws with setpoints for
maximum space-time yield to be expected for the independent experiment . 52

4.27 Achieved product concentration of different control laws with setpoints for
maximum product concentration to be expected for the independent experiment 52



List of Tables

3.1 Degree of reduction γ and molar mass of every compound used in the stoichio-
metric balance to get the expression for the biomass specific oxygen uptake
and CO2 emission rate depending on the specific rates of growth, product
formation and substrate consumption . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Parameters and feed settings for the model and the six experiments (high
constant (hc), high ramp (hr), mid constant (mc), mid ramp (mr), low con-
stant (lc), low ramp (lr)). Model parameters were investigated for every data
set separately and the whole data set was used to fit the model. . . . . . . . 28

4.2 Control law tuning parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Setpoint values for every rate used as a control objective to achieve maxi-

mum space-time yield or maximum product concentration respectively. The
setpoints for the maximum space-time yield can be read out from the counter
plots in chapter 4.3.1. The optimal setpoints to generate the maximum prod-
uct concentration were obtained via simulations of the process as shown in
the example for qS as control variable in 4.17. . . . . . . . . . . . . . . . . . 40

4.4 Normalized root mean square errors between setpoint and the concerning
specific rate held constant via feedforward or feedback control . . . . . . . . 48

4.5 Normalized root mean square errors between setpoint and the concerning
specific rate held constant via feedforward or feedback control . . . . . . . . 48

4.6 Parameter set for the new plant gained fitting an independent experiment . . 51
4.7 Normalized root mean square errors between desired and the actual value

of the concerning specific rate held constant due to simulation of the virtual
experiment for the setpoint of the maximum space-time yields for feedforward
and feedback control respectively . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Normalized root mean square errors between desired and the actual value
of the concerning specific rate held constant due to simulation of the vir-
tual experiment for the setpoint of the maximum product concentration for
feedforward and feedback control respectively . . . . . . . . . . . . . . . . . 54



List of Tables x

4.9 Normalized root mean square errors between desired and the actual value
of the concerning specific rate held constant due to simulation of the vir-
tual experiment for the setpoint of the maximum product concentration for
feedforward and feedback control respectively . . . . . . . . . . . . . . . . . 54



Chapter 1

Introduction

1.1 Biotechnological production
Bioprocesses are widely used to produce chemicals, bulk enzymes, foods, and pharmaceu-
ticals. Commonly used industrially strains are already highly developed and assure high
productivity. Additional process optimization focuses on the optimal conditions during
the fermentation. Besides physico-chemical parameters such as pH, temperature, dissolved
oxygen and nutrient levels the course in time of the process, which can be manipulated
via the feed addition is also investigated as it influences the performance of the process.[1]
Bioprocesses can be categorized according to their mode of operation, a distinction is made
between batch, fed-batch and continuous processes.[2] The simplest process mode is batch
fermentation, where the nutrients for the entire process are provided from the beginning.
The disadvantage of the batch mode is the fact that growth and product formation rates
cannot be regulated and happen at uncontrolled, rates. Continuous operation is intended
to maintain the system in a steady state, this is done by keeping identical mass flows in
feed and out-flow rates. Even if very effective processes can be achieved with this mode
of operation, they have the disadvantage on an industrial scale, in addition to the higher
contamination risk, that they must be monitored extremely strictly and that changing cell
metabolism and degeneration hampers their long term stability.[1] Therefore, Batch and
fed-batch cultivations are used more frequently than continuous processes. A large number
of processes are run in fed-batch mode, which will be described in more detail below.
The fed-batch process is characterized by the fact that the reactor volume changes over time
as medium is continuously added to the process vessel. The method is used for processes in
which growth conditions must be kept low in order to enable product formation.[2] In many
cases, the fed-batch production process is preceded by a batch process to increase biomass
accumulation in the first step.[1] The continuous feeding method has the advantage over
batch operation that substrate inhibition or catabolite suppression of product synthesis can
be prevented. [3] In addition, the fed-batch offers the possibility of process optimization
by regulating the feed rate, as it directly influences the metabolic activity and the volume
of the system. More specifically, the substrate concentration contained in the feed or the
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applied feed rate has an influence on the growth rate, the specific product formation rate,
and the oxygen uptake rate. In addition feeding has an impact on any other concentration
in the system due to dilution effects. [1]

1.2 Recombinant protein production processes
Recombinant proteins make up a large proportion of new important pharmaceutical agents.[4]
The name recombinant proteins is derived from the fact that the DNA of the host cell that
encodes them has been recombined or manipulated, because the host in which they are syn-
thesized often belongs to a different species than the one from which the proteins originate.
[5]
Since the approval of human insulin as the first recombinant product, many other products
have been approved for human use, including thrombolytics, hormones, growth factors, in-
terferons and antibody fragments. [5] Just like but not limited to monoclonal antibodies,
antibody fragments can also bind antigens. Since full length antibodies are glycosylated,
they must be produced in mammalian cells. In contrast, antibody fragments can be pro-
duced in microorganisms, which are easier to cultivate.[6] Because of the application ad-
vantages such as low doubling times, lower contamination risk and cheap media, E.coli is
popular for the production of recombinant proteins. [7]
The production of recombinant proteins requires strict safety requirements and operational
restrictions, as their clinical efficacy is influenced by deviations in the production pro-
cess. To ensure consistent product quality, batch-to-batch reproducibility is of particu-
lar importance.[4] Desired productivity and consistent product quality were traditionally
achieved mainly through genetic engineering and media development. [8]

1.3 Digital twins in biotechnology
Currently, the focus to improve biotechnological manufacturing processes is increasingly on
process system engineering (PSE). PSE mainly comprised creation of mathematical models
and implementation of model-based methods for experimental designs, process optimiza-
tion and real-time monitoring and control strategies.[8] While process control can improve
reproducibility[4], automated control is not easy to implement due to the complexity of
bioprocesses and requires holistic approaches for monitoring and control. This involves
replacing manual and therefore discontinuous measurements and control strategies with a
systematic process that takes the entire process into account. A digital twin is suitable
here consisting of soft-sensors, real-time mass balances, state observers or model based or
model predictive controllers.[9] A digital twin is a digital replica of the actual process that
represents the physical state and contains all relevant information of the system. A fully
developed digital twin consists of three components: a digital model of the system, soft
sensors for real-time acquisition and integration of process data, and automated communi-
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cation between the system and the twin via sufficient model-based control algorithms.[10]

Digital Twins as a tool for process control or for process optimization as well as for sim-
ulation are increasingly used in all kinds of industries.[11] In the pharmaceutical industry,
the technical use of control programs lags a bit behind other fields due to the complexity of
the biotechnological processes. Therefore, the technology of the digital twin and the pos-
sibilities for processing huge amounts of data, model based techniques are becoming more
and more interesting in this field. [11] Digital twin technology is so applicable because they
offer a way to represent the complexity of a biotechnological process well enough. In bio-
processes, attention must be paid to the physical, chemical and kinetic peculiarities of the
system, as well as the mechanical effects of the process environment on the organisms.[12]
A holistic process model such as a digital twin can provide a very precise description of the
complex structure of biotechnological processes and thus also significantly improve process
understanding and process control strategies.[13]

1.3.1 Process modeling
Models serve to describe real behavior as closely as possible. In particular, the aim is to
describe important system properties in order to forecast the original system dynamics.[2]
Typically, either data-driven or mechanistic models are used in bioprocess modelling. The
advantage of data-driven models is that they are quick and easy to implement, as available
regression algorithms such as artificial neural networks (ANN) do not require a detailed
understanding of the process. The disadvantage is that the models often do not represent
causal relationships, which can lead to error-prone conclusions. In contrast, mechanistic
models are based on physical relationships, but do not include smaller process variations.
Mechanisitc models are less accurate on the training data but their transferability and
prediction ability is often better than purely data driven approaches.[14]
The generic process model used in this work is a physiological model. It is based on the
metabolic kinetics and differential equations obtained by the unsegregated kinetic model
with closing elemental balances. In this way, relationships between substance concentrations
in the system, process parameters and the kinetic parameters can be described. Therefore,
model-based investigations can replace experiments of the original process. This opens up
many possibilities in research and development, as the less complex models can significantly
improve the understanding of the process. In addition, costs and time factors are of course
much lower than with real experiments.[2] For this reason, models are a popular tool for
biotechnological process development. Due to the better understanding and predictabil-
ity of molecular processes that can be obtained using process models, they are also used
for optimization and control purposes.[15] Considering the many variables and non-linear
kinetics of a bioprocess, modelling is particularly interesting in this field especially with
regard to control. Adaptive and non-linear control strategies based on mathematical mod-
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els offer good alternatives to conventional methods, which often reach their limits in this
application.
Models are usually created gradually adding more and more information that is either
theoretical or the results of practical experiments.[2] This procedure can be subdivided into
several steps; defining the overall purpose of the model, defining the network structure of
the model, identification of kinetic rate expressions, completion of the model structure,
parameter determination and validation of the model.[15]
Eventually, the model is intended to describe the temporal progressions of the state vari-
ables of a system. The state variables describe the mass and energy accumulations of the
system. Using the input variables that are not system-dependent, output variables and the
states can be calculated via the model. The model thus relates all physical variables of a
system to each other via mathematical descriptions. In addition to states, input and out-
put variables, these mathematical descriptions also contain other model-describing variables
called parameters.[2]
After a model is described mathematically, it must be calibrated, analyzed and validated.[16]

1.3.2 From classical to digital twin based process control
Digital twins have the potential to be utilized for the development and implementation of
conventional controllers, advanced control strategies and holistic bioprocess control even-
tually. In contrast to the chemical industry, where digital twins are already used in the
development of control strategies, the application possibilities for bioprocesses are still in
their infancy. This is due to the fact that in bioprocesses many reactions take place simulta-
neously and small deviations of process variables can already have a strong influence on the
kinetics.[12] Due to this complexity of bioprocesses there are still various problems to tackle
until fully developed digital twins can be realized for industrial processes.[10] In process
control, digital twins can be used to determine the appropriate controller type, to improve
control performance and to enhance the overall process performance through appropriate
control strategies. Using a digital twin conventional control strategies yield comparable
results as more complex nonlinear model predictive control. Advanced and model-based
control strategies are already investigated for various processes.[12] Model-based and model
predictive control can be based on simple mathematical models [15] and are interesting
for bioprocesses because reduced response times of these control strategies lead to higher
product concentrations than conventional controllers.[12]
In this work, methods shall be developed in order to be able to control and investigate
correlations between feed rate and other typical rates in Fab-Fragment producing E. coli
Fed-Batch process. These control models shall than be examined and improved by ex-
tending a process model towards an applicable digital twin, which in addition to product
formation and growth kinetics shall include constraints such as mass transfer limitations
and elemental balances. The controller and the process model have to be adapted and im-
proved to be able to make better process predictions and thus to be able to answer concrete
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questions about the investigated system. In particular, the various relationships between
feed design and process-relevant biomass specific rates such as the substrate uptake rate,
the growth rate, the product formation rate, as well as the oxygen uptake rate and the CO2
emission rate will be examined.

The method of non-linear feedback linearization is applied to create control laws to keep the
specific rates constant during the production phase. A non-linear relationship between the
controlled variable and the input variable can be transformed by this method into a linear
form that compensates for the non-linearities of the system and can thus be integrated into
classical linear controller designs.

1.4 Novelty
Digital twins are an interesting approach to improve process efficiency, product quality and
safety in industrial bioprocesses. Despite the many sources and articles appearing recently
on Digital Twins in the biochemical industry, most approaches are very general and con-
ceptual. Literature regarding implementation of the concept is rare.[17]

In industrial applications advanced control strategies like multivariate control, model-based
control and adaptive control is still rarely used for bioprocesses.[18] On a scientific scale
model predictive control is a widely investigated approach [19][20]. In [21] it is shown that
the simpler approach of model-based control cannot compete with model predictive control
due to the non-linearities and the limitation to the linearized control space. These two prob-
lems can be addressed with the method of nonlinear feedback linearization used in this work.

To generate control laws which incorporate the nonlinearities of a fermentation process the
method of nonlinear feedback linearization has recently been used by [22] and [23]. In my
work, the method of feedback linearization in combination with a generic model is used to
control biomass specific rates of a fed batch fermentation process. After the performance
of the control laws has been checked and optimized, it is discussed and elaborated which
advantages and disadvantages the control of the individual rates possesses and, above all,
an outlook on implementing the laws for real processes is given with regard to existing
measurement methods.

To control biomass specific substrate uptake rate, growth rate, oxygen uptake or carbon
dioxide emission rate via the feedrate in a fed-batch fermentation process, the approach of
feedback linearization has not been used so far. As the respiratory rates could be determined
quite straight forward via mass balances over aeration and off-gas measurements, the control
of the oxygen uptake rate or the carbon dioxide emission rate could be interesting approaches
regarding the implementation of evolved digital twins for this type of fermentation process.



Chapter 2

Goals and workplan of the thesis

2.1 Goals
This thesis aims to elucidate possibilities to control relevant biomass specific rates directly
or indirectly of a Fab-fragment producing E. coli fed-batch fermentation process. To achieve
this overall goal, the following milestones had to be worked on successively:

1. An recently developed model had to be extended and parameterized to a broader set
of data. The extension of the model involved the integration of off-gas dynamics such
as oxygen consumption and CO2 emission by elemental balancing.

2. Subsequently, various control laws were obtained from the nonlinear dynamic model
by the method of feedback linearization. Control laws to control biomass specific rates
via feed supply for substrate uptake, growth, product formation, oxygen uptake and
carbon dioxide emission were received for the intention to keep this rates at constant
setpoints and investigate the resulting process behavior.

3. To examine the performance of this control laws a setpoint optimization was carried
out

4. An independent experimental data set was parameterized to establish a virtual plant
for the simulation study to gain knowledge on the potential applicability
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2.2 Workplan

Figure 2.1: Workplan



Chapter 3

Material and methods

3.1 Process model
To set up a model of a bioprocess, one needs differential equations that can be derived
from the material balances 3.1, 3.2 of the system. In combination with the kinetics of the
system, a process can be described in a simplified way. The resulting descriptions promote
the understanding of the processes and can be used for control and optimization of the
processes. [2]
The material balances of a fed-batch bioreactor can be written as follows:

dm

dt
= ṁin − ṁout (3.1)

and further the material balance for a single component i in the broth:
dmi

dt
= ṁi,in − ṁi,out + ri (3.2)

With mi, in and mi, out being the mass in- and outfluxes of a component i and the reaction ri

within the reactor. Accordingly, the following general balance results for the concentration
of any component i 3.3 in the reactor. VR is the reactor volume, ci describes the related
concentration, ci,in and ci,out describe inflow and outflow of component i respectively, V̇in

the volumetric flux into the system and ri the reaction rate of component i

d(ciVR)
dt

= ci,inV̇in − ci,outV̇in + VRri (3.3)

3.1.1 System kinetics
Substrate consumption

The biomass specific substrate uptake rate qS can be described using a Monod Kinetic.

qS = qS,max
cS

cS + KS

, (3.4)

in 3.4 qS,max describes the maximal biomass specific substrate uptake rate, cS is the mass
concentration of substrate and KS is the saturation constant for substrate uptake.
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Biomass growth rate

The biomass growth rate µ is described by 3.5

µ = YX/S(qS − M) (3.5)

where YX/S is the coefficient which describes the metabolization of substrate into biomass.
The maintenance coefficient M describes the limitation of the growth rate by the energy
demand of the cells required for maintenance and repair, so in the case of strong substrate
limitation, substrate uptake can occur without any growth at all.[2] The yield can then be
further expressed by 3.6 where the maximum possible yield YX/S,max and an asymptotic
decay KYX/S

of the metabolized sugar Smet to account for an decreasing yield during the
recombinant protein formation phase.

YX/S = YX/S,maxe
(−SmetKYX/S

) (3.6)

Product formation

The product formation is composed of two terms, a monod term and a Haldane term, which
describes the product inhibition. Inhibition in biotechnological processes is often referred to
as the reverse phenomenon of substrate limitation, a reduction in growth, substrate uptake
rate, or as in the scenario here, a reduction in product formation occurs as the concentration
of an acting substance increases. [2]

qP = qP,max
qS

qS + KSqS

Smet

SHal
met

KIqP

+ Smet + KSqP

(3.7)

In 3.7 the Monod term the dependence of qpmax, the maximum product formation rate on
qS with the half saturation term KSqS

is described. The Haldane term describes the start
and decay phase with Smet as the trigger. KSqP

is the delay coefficient KIqP
the decay

coefficient and Hal is the Haldane exponent.

Product release

In addition to the product formation, an expression for the product release has to be
considered since product is also observed outside the cells. This product release 3.8 can be
determined based on the metabolized sugar and the substrate uptake rate.

qPr = Kqsrel(qS − M)(1 − e
Smet
KSps ) (3.8)

Where KqSrel describes the half-speed constant, and KSP s the delay coefficient.
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Respiration

The specific oxygen rate qO2 and the specific CO2 rate qCO2 can be obtained via the material
balances of carbon and the degree of reduction balance. In order to draw conclusions from
the material balance, the compositions of substrate, biomass and product are essential.[24]
The material balance can be written as follows.

CHmOn + a O2 – b NH3 −−→ c CHαOβNδ + d CHxOyNz + e H2O + f CO2

The first term CHmOn describes the substrate used which was Glycerol in the case of
the considered fermentation. The oxygen and ammonia inputs are not relevant for the C-
balance. Ammonia can also be neglected for the DoR balance, since the DoR is γNH3 =
0. This also applies to H2O and CO2 on the right hand side of the chemical equation.
The composition of the biomass CHαOβNδ was available, the composition of the product
CHxOyNz for which a standard Fab-fragment composition was used. To obtain expressions
for the respiration-specific rates the C-balance 3.9 and the DoR-balance 3.10 are written as
shown below. The rates must behave in such a way that their sum is always zero.

rS + rX + rP + rCO2 = 0 (3.9)
rSγS + rO2γO2 + rXγX + rP γP = 0 (3.10)

The stoichiometric rates here represent the substrate uptake rate rS, the biomass formation
rate rX and rP the product formation rate, the oxygen uptake rate (OUR) rO2 and the
carbon dioxide emission rate (CER) rCO2 . The biomass specific rates for oxygen uptake
and CO2 release can now be written in terms of the specific rates for biomass and product
formation and substrate uptake previously explained. The biomass specific rates for oxygen
uptake 3.11 and CO2 release 3.12 can now be expressed by the specific rates previously
explained and the molar masses for the substrate, biomass, and product which are shown
in table 3.1

qO2 = − 1
γO2

(µγX

MX

+ qP γP

MP

− qSγS

MS

) (3.11)

qCO2 = µ

MX

+ qP

MP

− qS

MS

(3.12)

Substrate O2 Biomass Product Dim
DoR 4.667 −4 4.159 − −
M 30.67 16 25 23.25 gmol−1

Table 3.1: Degree of reduction γ and molar mass of every compound used in the
stoichiometric balance to get the expression for the biomass specific
oxygen uptake and CO2 emission rate depending on the specific rates
of growth, product formation and substrate consumption
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3.1.2 Differential equations
To describe a simple fed-batch fermentation process, a dynamic model must consist at least
of three conservation mass balances, one for the cells, one of the substrate and the overall
mass or mass concentration respectively.[25] The fermentation process employed here can
be expressed by the following differential equations 3.13 for the changing reactor volume,
the mass concentrations of the biomass, of the substrate and the product both intracellular
and released as well as the metabolized substrate. These equations are derived from the
mass concentration balance of any component i (3.3).

dVR

dt
= V̇in

dcX

dt
= µcX + V̇in

VR

(cX,in − cX)

dcS

dt
= qScX + V̇in

VR

(cS,in − cS)

dcP

dt
= qP cX − qPR

cP − V̇in

VR

cP

dcPR

dt
= qPR

cP − V̇in

VR

cPR

dSmet

dt
= qS

(3.13)

The change in reactor volume VR results from operating in fed-batch mode, where a con-
tinuous feed but no outflow is presumed to dVR

dt
= V̇in. The concentration changes of the

cell mass cX , the substrate in broth cS, the intracellular product cP as well as the released
product cPR

and the metabolized substrate Smet in the system can be described by the
associated specific rates and the dilution effect caused by the substrate feed V̇in.

3.2 Experimental data
The experimental data used was generated by a previous master thesis (by Julian Kager
2015) [26] and provided for the realization of this work. For the process, a modified K12 E.
coli strain was used for the production of a recombinant protein which was a Fab-fragment
of an Antibody. The strain has a rhamnose-inducible expression system (rhaBAD promoter)
as an expression vector. The fermentations were run in a DASGIP multi-bioreactor system
(Eppendorf, Hamburg, Germany). DASGIP modules were used to control components such
as the stirrers and pumps for feeding and base addition, to control aeration and to measure
pH, pO2 and temperature. Throughout the process, the temperature was kept at 35°C,
the stirrer speed at 1400, the gassing at 1.4 vvm and the pH at 7 using a 12.5% NH4OH
solution. The standardized synthetic media used, contained Glycerol as carbon source. The
batch phase was started from a pre-culture of 2.5% of the 1L batch volume. For the 12 hour
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batch phase, a 20 gL−1 glycerol feed was exponentially fed. With the one-time addition of
a sterile rhamnose solution (1.5 g L-rhamnose) at the end of the exponential feed phase,
the recombinant protein production was started and the glycerol feed was set to a constant
value or linearly increased. For each experiment, 8 offline samples were taken during the
induction phase and evaluated manually. The biomass cell dry weight was determined by
centrifuging 2 ml of broth (4500g, 10 min at 4°C), washing the pellet with 5 ml of water and
weighing it after drying. An analogue pellet was disrupted and re-buffered to determine
the intracellular product and the supernatant to determine the extracellular product. A
protein G affinity column (HiTrap ProtG, GE Healthcare, USA) was used for this purpose.
Acetate and glycerol concentrations were determined from the supernatant by enzymatic,
photometric principle in a robotic system (BioHT, Roche, Germany) and were not possible
to measure because of the detection limit and the limiting conditions during induction.
Specific rates were calculated using a predefined algorithm.[26]

3.3 Parameter estimation
Mechanistic models partially contain terms that are based on experience or assumptions
about the behavior of the described system. The parameters of these terms must be esti-
mated, measured or determined from experimental data.[16][2]
Since biological processes are very complex and models do not describe all factors that
influence the system, the determination of parameters is more difficult than in physical
models.[16]
The process of gaining parameters that describe a system quantitatively is referred to as
parameter estimation (identification), model calibration or parameter fitting. Parameters
of a model are determined using statistical methods which provide approached values for
the investigated system.[27]
These statistical methods usually describe offsets between preliminary estimations and data
as well as how reliable resulting values are. Parameter estimation therefore tries to minimize
a distance criterion between prediction and data.[16] For example, parameters could be esti-
mated using the log likelihood function, which is a very common method. [27] A well-known
algorithm for optimizing a bioprocess model is the Nelder-Mead simplex algorithm.[16]
A further approach to fit predicted parameters is the weighted sum of squared residuals.[28]
It is used to validate an error over the trial time span of one single state.[29]
The strategy used in [16] to estimate the parameters consists of systematic testing, model
analysis, model calibration and model validation. The presented workflow for model calibra-
tion consists of 3 steps. After an initial set of parameters has been estimated, the first step
consists of analyzing the resulting model. This analysis step includes a sensitivity analysis
of all parameters, colinearities are determined and an identification analysis is performed.
In the second step, the information obtained will be used to restrict the limits between
which parameters are estimated. Once a new parameter estimation has been carried out,
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the model obtained must be validated. Error calculations are used to determine whether
the model sufficiently describes the processes under investigation.
A similar workflow is illustrated in [30] and shown in 3.1

Model definition

Experimental Layout

First parameter set

Calculation of model output

Compute sensitivities

Using parameter subsets for manual 
tuning or parameter estimation

Parameter importance ranking

Definition of parameter subsets

Examination of bias problems

Parameters are adjusted manual or 
parameter estimation is performed

Ite
ra

tio
n 

ste
p 

w
ith

 
ne

w
 p

ar
am

et
er

 se
t

Figure 3.1: Workflow of systematic parameter subset selection and tuning proce-
dure [30]

In the first step the model is defined as explained before, specifying process balances, inputs
and initial conditions. Step 2 contains the definition of the experimental layout. The third
step is based on expert knowledge and essential for the quality of the resulting conclusions.
It shall provide a first set of parameters for iteration including quantified uncertainties and
an assessment of the predictability from process data. Furthermore scales of the different
outputs shall be estimated. Step 5 to 7 are the calculation of sensitivities and identifiability
of parameter subsets. Parameter subsets are identifiable if they are linear independent firstly
and secondly made up of sufficiently sensitive parameters. Choosing parameter subsets for
manual tuning (step 9) is carried out in Step 8, which is also depending on expertise.
Subsequently potential bias problems of the parameter values gained by the estimation
process could be examined. [30]

NRMSE

The normalized root-mean-square error 3.14 can be used to examine how high the deviation
between an individual state is compared to its model prediction. It is often used as an
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acceptance criterion.[29] If the deviations of all measuring points from a predicted value and
the corresponding actual value are summed up, i.e. the errors, divided by the number of
measuring points and then the square root of this average prediction error is calculated one
obtains the root-mean-square error (RMSE). Usually this value is normalized by dividing
it by the difference between the largest and the smallest value measured.

NRMSE(ci) =

�
1
d

�d
j=1(ci,j − c∗

i,j)2

max(ci) − min(ci)
(3.14)

ci is the concentration of any state i, d the number of measuring points an c∗
i the model

prediction of the state i. The smaller the error, the better the model fits to describe the
corresponding state. In this study the NRMSE is additionally used to describe the control
quality of the received control laws as shown in 3.15

NRMSE(qi) =

�
1
d

�d
j=1(qi,j − q∗

i,j)2

(q̄i)
(3.15)

In this case the RMSE for any controlled rate qi is normalized by the mean value of the
concerning rate q̄i.

3.4 Process control
Even though the scope of bioprocess control does not only concern the fermentation pro-
cess but also various product recovery and purification steps, the bioreactor itself is the
biggest challenge in terms of process control.[31] In general, control can be described as
the manipulation of a controlled variable to reduce or eliminate measured deviations from
a desired status.[32] Bioprocess control can be defined in this context as the creation and
maintenance of a close to optimal environment for microorganisms to grow, multiply and
produce the desired products. For the further approach it is important to underline that the
process control of fermentations is based on influencing internal dynamics by manipulating
the external environment. To create this environment, important cellular parameters such
as temperature and pH must be kept at an ideal level for the biomass, and the optimum
nutrient supply must be ensured. Benefits that can be achieved through better control
strategies include reduction of process variability, higher productivity and product yields,
and better on-line monitoring and troubleshooting for more automated processes. [31]
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3.4.1 Common control strategies for bioprocesses
It is very common way to control a fed-batch fermentation process by manipulating the fee-
drate as it directly affects the proceedings.[1] Feeding profiles should be smooth to generate
stable processes. Smooth feeding profiles have important significance for process stability
because abrupt changes in the environment of the cells affect cell metabolism in a way that
negatively impacts productivity.[3]
Control strategies used to regulate the feed rate are open loop control, adaptive control,
model predictive control (MPC), fuzzy control, artificial neural networks (ANN), probing
control and statistical process control (SPC).[1]

For open loop control, a defined feed is added to the process. Such a profile is determined
beforehand in such a way that a desired process behavior can be expected. An example
of how predefined feed profiles could be used in industrial processes is the control of the
growth phase, where exponential feed profiles can be defined taking into account the initial
conditions and strain-specific parameters. Even if disturbances cannot be taken into ac-
count, open loop control is an interesting way to control processes due to its simplicity.[1]

In closed-loop control, online information is additionally used to correct the manipulated
variable in such a way that firstly the output variable is kept at the required setpoint and
secondly the manipulated variable can be regulated to the target setpoint as accurately
as possible and with little time delay. With open loop control, a distinction can be made
between feedback and feedforward control. The difference is that feedback control measures
the controlled variable and reacts to its deviations, whereas feedforward control measures the
disturbance and thus, in the best case, influences the deviation of the controlled variable in
advance. Since feedforward control requires a model that can predict the controlled variable
and in application usually does not make a perfect estimate, feedback control is often the
preferred strategy.[32] Feedback control with classical PI or PID controllers is often used in
biotechnological processes to control variables such as temperature, pH or dissolved oxygen.
When controlling other process variables, problems can arise due to a lack of measurement
methods or non-linear process behavior. This problem can be addressed with kinetic models.
Unmeasured conditions can be estimated and thus regulated.[21]

3.4.2 Feedback linearization
Unlike conventional linearization, the feedback linearization method used here is not simply
a linear approximation of a non-linear behavior in a chosen operating point.[33] In feedback
linearization, a nonlinear system is linearized by a nonlinear coordinate transformation.[34]
The purpose of this method is to generate a nonlinear feedback controller which compensates
the nonlinearity of the system exactly and therefore can be integrated in a linear control
loop.[33] Here, an input affine single-input single-output (SISO) system is considered, which
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can be described as shown in 3.16 due to [33]

ẋ = f(x) + g(x)u
y = h(x)

(3.16)

In the first equation, the state equation x describes the the state vector, u the input and
f(x) and g(x) the nonlinear mappings. The second equation (output equation) y describes
the output of the system and h(x) the nonlinear mapping.[25] Now the derivative of the
output results in 3.17

ẏ = dh(x)
dt

= ∂h(x)
∂x

ẋ

= ∂h(x)
∂x

�
f(x) + g(x)u

�
= Lfh(x) + Lgh(x)u

(3.17)

The terms Lfh(x) and Lgh(x) are the so called Lie-derivatives along f(x) and g(x) of
h(x).[33]
With Lgh(x) = 0 which is the case in the vast majority of technical applications, the
derivative of the output 3.18 can be written

ẏ = Lfh(x) (3.18)
The relative degree δ of the system describes the order of the higher derivative of y where
the term LgLf

δ−1h(x) �= 0. A system where δ = dim(x) is said to have full relative degree
n. Every system with a relative degree δ < dim(x) comprise so called internal dynamics.
Unlike external dynamics which describe the changes of the states and therefore influence
the system output, internal dynamics have no effect on the output variable and can not be
observed either.
The nonlinear transformation z of a system with internal dynamics leed to 3.19

z =



z1
z2
...

zδ

zδ+1
...

zn


= t(x) =



h(x)
Lfh(x)

...
Lf

δ−1h(x)
tδ+1(x)

...
tn(x)


(3.19)

where the elements of tδ+1(x), ..., tn(x) are chosen arbitrarily so that t satisfies the require-
ment to be continuously differentiable and additionally has an inverse function 3.20

x = t−1(z) (3.20)
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for which the same applies.
For the SISO system introduced in the beginning of the chapter the derivative transforma-
tion yields

ż =



ż1
ż2
...
˙zδ−1

żδ

˙zδ+1
...

żn


= t(x) =



Lfh(x)
Lf

2h(x)
...

Lf
δ−1h(x)

Lf
δh(x) + LgLf

δ−1h(x)u
ṫδ+1(x)

...
ṫn(x)


(3.21)

For 3.21 the derivatives for the terms ti for i = δ + 1, . . . , n are determined such that the
dependence on u disappears and therefore leads to 3.22

ṫi(x) = ∂ti(x)
∂x

ẋ

= ∂ti(x)
∂x

�
f(x) + f(x)u

�
= Lf ti(x) + Lgti(x)� �� �

=0

u

= Lf ti(x)

(3.22)

The internal dynamics are not linearizable and therefore not controllable and as mentioned
before the internal dynamics can not be observed and have no impact on the output y(t).
The external dynamics on the other hand can be linearized exactly by transforming the
input variable u to a new input v.
For this new input v a classical state vector feedback control law 3.23 is used

v = −kT z + Kww (3.23)

where the vector kT = [α0 α1 . . . αδ−1 0 . . . 0] describes the gains. This results in the
following for the actual nonlinear control law 3.24

u = − Lδ
fh(x) + kT z

LgLδ−1
f h(x)

+ Kw

LgLδ−1
f h(x)

w (3.24)

which can also be written in the form 3.25

u(x, w) = −r(x) + q(x)w (3.25)

The term q(x) which depends on the reference input w can be considered as pre-filter. In
the closed loop system as shown in figure 3.2 the term r(x) describes the feedback part.
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With Kw = α0 the terms can be written as 3.26

r(x) =
Lδ

fh(x) + kT z

LgLδ−1
f h(x)

q(x) = α0

LgLδ−1
f h(x)

(3.26)

Figure 3.2: Closed loop block diagram of non-linear SISO system [33]

3.4.3 Controller design
Since control laws obtained by feedback linearization compensate for all non-linearities, they
can therefore be integrated into simple open-loop or closed-loop controllers.

Open-loop controller

For the open-loop control, a suitable feed profile was calculated via the model and handed
over to the process without integrating any information regarding the course of the process
into the controller. The open-loop controller can be represented as shown in 3.3.

Figure 3.3: Example of open loop control system [32]
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Closed-loop controller

A two-degrees-of-freedom controller was chosen as the closed-loop controller. Degree of
freedom in this context is described as the number of independently adjustable transfer
functions. Thus, the two previously described closed-loop strategies can be combined, as
shown in figure 3.4. The controller thus still has an output variable but an additional
input, the setpoint r and the controlled variable y, on the basis of which the manipulated
variable u is determined. The transfer function of the feedback part C(s) is called the serial
compensator, Cf (s) is referred to as the feedforward compensator. [35]

Figure 3.4: Example of two-degree-of-freedom control system. C(s) describes the
function for the serial compensator, Cf (s) the feedforward compen-
sator, together they respresent the controller. The function H(s) in-
corporates the feedback and noise detection, P (s) is the mathematical
description of the system with the corresponding disturbances Pd(s)
[35]

3.5 Software
The computational work to analyze data as well as to evaluate the process behavior using
a model were performed in Matlab R2020b (The MathWorks, Inc., USA). Using an ODE
solver, the time-dependent behavior of the states as subjects of the feed profile can be
calculated by solving the system of differential equations in 3.13.



Chapter 4

Results and discussion

4.1 Model description
A recently developed kinetic, unstructured model for the induction phase of the fermen-
tation process was extended and parameterized to a broader set of data. Therefore the
experimental data described in 3.2 on page 11 was used. The extension of the model in-
volves the integration of off-gas dynamics such as oxygen consumption and CO2 emission.
The respiratory rates were included in the model using elemental balancing described in
chapter 3.1.1 on page 10. This should enable the model to calculate the specific rates for
the substrate consumption qS, the growth µ, the product formation qP , the oxygen demand
qO2 , and the CO2 emission qCO2 in the course of the process and to subsequently control
them.
To fit model parameters, 6 experiments were selected from the series of trials. Care was
taken to ensure that the experiments were run at feed rates that varied as much as possible
during the induction phase of the fermentation and that they were stable processes that
could be described as well as possible with the known kinetics. Three experiments with
constant feed rate at three different setpoints were selected, one experiment with very low
feed rate, one with medium and one with high feed rate. In addition, three experiments
with dynamically changing feed rates were selected, and profiles with different start values
and gradients were chosen. The feed profiles of the selected experiments on which the model
was fitted are shown in the graph below 4.1.
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Figure 4.1: Feed profiles of Experiments chosen from the data set provided

4.1.1 Model evaluation
The parameters for each experiment as well as of the resulting model were now calculated as
described in chapter 3.3. Graphs 4.3, 4.2, 4.7, 4.6, 4.5, 4.4 show the deviations of the final
model estimations from the data of the individual experiments. The model estimates are
compared with the data of the biomass concentration, the product concentrations in the cell
and outside the cell as well as the total product concentration. In addition, the deviations
of the specific product formation rate, the substrate uptake rate and the respiratory rates
CER and OUR are presented.
For the experiment with the very high and rapidly increasing feed rate, the model under-
estimates the measured biomass and consequently also the product concentrations formed
and the associated product formation rate. For the other two experiments with increasing
feed rates, all process variables shown are described very well by the model. The measured
biomass concentrations are slightly underestimated for all experiments. Especially for the
experiment with constant and very low feed rate the growth within the experiment is signif-
icantly higher than the model is expecting. The product concentrations are generally very
well represented by the model.

It should be noted that the model does not accurately describe the process behavior after
the maximum has been reached. This poor description towards the end of the process can
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be explained by the fact that the dynamics for cell lysis and product degradation are not
incorporated in the model.
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Figure 4.2: Experiment with increasing feed rate and high starting point: compar-
ison between experimental data and model estimation, illustrated in
red color in figure 4.1
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Figure 4.3: Experiment with increasing feed rate and medium starting point: com-
parison between experimental data and model estimation, illustrated
in green color in figure 4.1



4.1 Model description 24

0 50 100

process time in h

40

50

60

70

b
io

m
a
s
s
 i
n
 g

L
-1

0 50 100

process time in h

0

1

2

3

4

c
P

to
t i

n
 g

L
-1

0 50 100

process time in h

0

1

2

3

c
P
 i
n
 c

e
ll 

in
 g

L
-1

0 50 100

process time in h

0

0.1

0.2

0.3

0.4

0.5

c
P

r i
n
 g

l-1

0 50 100

process time in h

0

5

10

15

q
P
 i
n
 h

-1

10
-4

0 50 100

process time in h

-0.06

-0.04

-0.02

0

q
S
 i
n
 h

-1

0 50 100

process time in h

0

0.05

0.1

0.15

C
E

R
 i
n
 m

o
lh

-1

0 50 100

process time in h

0

0.2

0.4

0.6

O
U

R
 m

o
lh

-1

Figure 4.4: Experiment with increasing feed rate and low starting point: compar-
ison between experimental data and model estimation, illustrated in
blue color in figure 4.1
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Figure 4.5: Experiment with constant feed rate and low set point: comparison
between experimental data and model estimation, illustrated in yellow
color in figure 4.1
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Figure 4.6: Experiment with constant feed rate and medium set point: comparison
between experimental data and model estimation, illustrated in pink
color in figure 4.1
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Figure 4.7: Experiment with constant feed rate and high set point: comparison
between experimental data and model estimation, illustrated in cyan
color in figure 4.1
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In figure 4.8 the deviations between the measurements and the model predictions for impor-
tant process variables are illustrated. The experiments used for this evaluation are those on
which the model is based. The calculated error (RMSE) of the biomass concentration X,
the concentration of the product inside P and outside PR the cells and the total product
Ptot is presented. Also shown is the RMSE of important and later controlled rates such
as growth rate µ, substrate uptake rate qS, product formation rate qP and the respiratory
rates OUR and CER. The overall error for every variable of all experiments can also be
derived from the plot. Since the control laws are eventually to be evaluated in terms of
their influence on productivity, it is important that the model provides good forecasts of
the productivity behavior.

The errors on biomass and product concentration as well as inside the cells and outside
are lower than 15%, the error on the total product is beneath 10%. Especially with regard
to product formation and the very closely related biomass development, the model shows
relatively small errors and should thus serve its purpose. The errors on the specific rates
are acceptable with around 25%. The growth rate of the experiments with high and mid
increasing feed deviate significantly from the model which leads to an overall error of 28%
on the growth rate. The carbon dioxide emission is described well by the model with an
overall error of 15.2%. The error on the oxygen uptake rate is higher because oxygen was
dynamically added to the air during the processes.

The accuracy and level of detail of a model are driven to a large extent by the model
objective, i.e. what the model is usually intended to do. In process control, dynamic
models that capture the time courses of the variables properly are needed; they do not
require very accurate models [25], since deviations from the behavior are taken into account
in the process control and are compensated by the controller.
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Figure 4.8: Modelfit of all experiments: shown are the deviations between the
overall model prediction and experimental data for the biomass (X),
the product concentration (Ptot), in cell (P) and released product (PR),
for the specific growth rate (µ), the substrate uptake rate (qS), the
product formation rate (qP ), and the respiratory rates (qO2 and qCO2)

The parameters of the model were estimated as described in 3.3. Instead of a Nelder-Mead
simplex algorithm mentioned on page 12, parameters were obtained using (fmincon, MAT-
LAB) an other simplex optimization algorithm with estimation boundaries.

Table 4.1 shows the obtained parameter values for the model and the experimental data.
It can be seen that the parameters of the individually fitted experiments do not deviate
strongly from the overall model. The model parameters usually result as an average value
between the parameters of the experiments with low feed rates and those with high feed
rates, as it is the case for qP,max. This parameter is higher for lower feed settings and lower
for the fast processes with the high feeds.
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Table 4.1: Parameters and feed settings for the model and the six experiments
(high constant (hc), high ramp (hr), mid constant (mc), mid ramp (mr),
low constant (lc), low ramp (lr)). Model parameters were investigated
for every data set separately and the whole data set was used to fit the
model.

Model hc hr mc mr lc lr Dim
V̇in − 0.015 hr 0.01 mr 0.002 lr Lh−1

cS,in 850 931 900 841 796 853 853 gL−1

qS,max 1 1 1 1 1 1 1 gg−1h−1

qP,max 0.008 0.00794 0.00766 0.00720 0.0088 0.00869 0.00867 gg−1h−1

KS 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 gL−1

M 0.02 0.018098 0.018 0.020617 0.018098 0.021981 0.020147 h−1

YX/S,max 0.47 0.47 0.47 0.47 0.47 0.47 0.47 gg−1

KYX/S
0.39525 0.42263 0.35575 0.43474 0.43477 0.35766 0.35579 gg−1

KSqS
0.1591 0.16317 0.16654 0.17501 0.14319 0.14874 0.14688 gg−1h−1

Hal 3.833 3.9087 3.8051 4.2161 3.5313 4.2117 4.0057 −
KIqP

6.9 6.8991 7.0742 6.21 7.3056 6.6868 6.9710 −
KSqP

0.19513 0.17879 0.21464 0.20769 0.17563 0.19048 0.17562 gg−1

KqS,rel
0.18898 0.20786 0.17009 0.20765 0.20788 0.17014 0.17008 h−1

KSPS
2.2924 2.0639 2.5216 2.0744 2.0632 2.5153 2.5104 −

4.2 Controller development

4.2.1 Feedback linearization
In order to feedback linearize the state space model, presented in Chapter 3.1.2, can be writ-
ten according to equation 3.16 in chapter 3.4.2 using the state vector x = [VR cX cS cP cPR

Smet]T
with the associated differential equations given in 3.1.2 in the following form



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6


=



0
µ x2
qS x2

qP x2 − qPR
x4

qPR
x4

qS


+



1
cX,in−x2

x1
cS,in−x3

x1
x4
x1
x5
x1

0


u (4.1)

The biomass-specific rates (µ, qS, qP , qO2, qCO2) are intended to be controlled, therefore the
respective rate is selected as the output variable of the control law. In the following,
the procedure is described as an example for the substrate uptake rate (qS), therefore
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y = qS. The flow rate into the reactor V̇in is the controlled variable u. Inserting the kinetic
correlations that are outlined in 3.1.1 the system can be written as



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6


=



0

YX/S,maxe

�
−x6 KYX/S

� �
qS,max x3
x3+KS

− M
�

x2
qS,max x3
x3+KS

x2
qP,max

qS,max x3
x3+KS

qS+KSqS

x6
xHal

6
KIqP

+x6+KSqP

x2 − Kqs,rel

�
qS,max x3
x3+KS

− M
� 

1 − e
x6

KSPS

�
x4

KqS ,rel

�
qS,max x3
x3+KS

− M
� 

1 − e
x6

KSPS

�
x4

qS,max x3
x3+KS



+



1
cX,in−x2

x1
cS,in−x3

x1
x4
x1
x5
x1

0


u

(4.2)
Now the Lie-derivative along g(x) of h(x) = y = qS can be calculated to determine the
relative degree of the system.

Lgh(x) = ∂h(x)
∂x

g(x) = [0 0 qS,max KS

(x3 + KS)2 0 0 0]



1
cX,in−x2

x1
cS,in−x3

x1
x4
x1
x5
x1
0


�= 0 (4.3)

Because Lgh(x) �= 0 the relative degree of the system δ = 1. With the formula 3.24 given
in 3.4.2 the law for the controlled variable can be determined as follows

u = − L1
fh(x) + kT z

LgL0
fh(x) + Kw

LgL0
fh(x) w = − Lfh(x) − α0 qS + α0 w

Lgh(x) (4.4)

The control laws for every other specific rate can be obtained analogously. The relative
degree is always δ = 1 because Lgh(x) �= 0 for all cases considered as can be seen in chapter
4.2.2.

4.2.2 Control laws
Due to 4.4 the nonlinear system can now be written in the following form of a simple
proportional control law 4.5 where w describes the reference input (the setpoint) and q for
the concerning controlled rate.

V̇in = α0 ∗ (w − q) − Lfh(x)
Lgh(x) (4.5)

The control law for the respective rate is thus fully specified by the defined setpoint, the
behavior of the rate over time predicted by the model and the associated Lie derivatives.
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The proportional term α0 is obtained by simulating an experiment several times and is thus
also determined for each rate separately. The Lie derivatives of the various control laws are
given in equation 4.6, 4.7, 4.8, 4.9 and 4.10.

Substrate rate qS

Lfh(x) = −qScX
qSmax − qS

KS + cS

Lgh(x) = (cS,in − cS)
VR

(qSmax − qS)
KS + cS

(4.6)

Growth rate

Lfh(x) = qS


µ KYX/S

− YX/S qS cX

�
1 − 1

KS + cS

� �

Lgh(x) = (cS,in − cS)
VR

YX/S qSmax KS

(KS + cS)2
(4.7)

Product formation rate

Lfh(x) = qS qP (b1 cX + b2)

Lgh(x) = (cS,in − cS)
VR

b1 qP

b1 = 1
KS + cS


qSmax − qS

KSqs + qS

− KS

cS

�

b2 =
KS qS − (Hal−1)SHal

met

KIqP

Smet

�
KS qp + Smet + SHal

met

KIqP

�
(4.8)
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Oxygen uptake rate

Lfh(x) = qS

4 (cX a1 + µ a2)

Lgh(x) = (cS,in − cS)
VR

a1

a1 =
γX YX/S

qS,max−qS

KS+cS

MX

+ γS (qS − qS,max)
MS (KS + cS)

a2 =
γX KYX/S

MX

(4.9)

Carbon dioxide emission rate
Lfh(x) = −qS A − qS cX (B + qP C)

Lgh(x) = (cS,in − cS)
VR

(B + qP C)

A = −µ KYX/S

MX

+ qP

MP

� 1
Smet

−
Hal∗S

(Hal−1)
met

KIqp
+ 1

KSqp + Smet + S
Hal

KIqp

met

�
B = qSmax − qS

KS + cS

∗ ( 1
MS

− YX/S

MX

)

C = 1
MP (KS + cS) − 1

MP cS

+
qSmax−qS

KS+cS

MP (KSqs + qS)

(4.10)

4.2.3 Control circuits
The proportional controller described in equation 4.5 showed a simple proportional control
law. First we use the model calculated rate q∗ as a feedback to generate a feed trajectory to
keep the desired rate at the predefined setpoint w. This resulting feed trajectory will further
be used to control the rates of a virtual process and due to the model based character will
further be referenced as feedforward controller and is shown in equation 4.11. The control
loop 4.9 shown below describes why this controller could be interpreted as an feedforward
controller. The feedback linearized control law referred to as feedforward controller in the
graph compares the desired setpoint w with the output of the parallel running model q∗

and thus counteracts disturbances that could be described by the model.

V̇in = α0 ∗ (w − q∗) − Lfh(x)
Lgh(x) (4.11)



4.2 Controller development 32

Figure 4.9: Feedforward control circuit: cf. Fig. 3.4, the feedback term H(s) is
not applicable, the controller just incorporates the feedforward com-
pensator Cf (s)

In application the simulation will most likely not be able to compensate for all disturbances
of the real process. To compensate mismatches from the model, the feedforward control law
above will now be extended by a feedback term. According to [31] bioprocess control loops
often use PI controllers. Therefore, a PI term is also used here for the feedback part. The
resulting law compares the setpoint with the model (w − q) and the output of the model
with that of the real process (q∗ − q). The control law thus represents a two degrees of
freedom controller shown in 4.10 and described in chapter 3.4.3.

V̇in = α0 ∗ (w − q∗) + α1
� t

0(q∗ − q)dt + α2(q∗ − q) − Lfh(x)
Lgh(x)

(4.12)
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Figure 4.10: Feedback contol circuit: cf. Fig. 3.4 and Eq. 4.12 the feedforward
part compares the mismatch of the model prediction and the set point
(w−q∗) and the feedback part incorporates the mismatch of the model
and the real plant behavior (q∗ − q)

With these control laws, the individual rates can now be kept constant. The resulting
substrate feed profiles are shown in figure 4.18. The feedforward control loops will be used
to find optimal setpoints, the 2DoF controllers in the following referred to as feedback
controllers are calibrated and used to control an independent validation plant to assess the
applicability of the different control approaches.
In table 4.2 the tuning parameters α0 for the feedforward part, α1 and α2 for the feedback
part of the control laws are shown for each controlled rate.

Table 4.2: Control law tuning parameters
controlled rate α0 α1 α2
V̇in 20 10 7
qS 1 100 5
µ 2000 1000 7
qP 3500 500 20
qO2 6000 100 0.01
qCO2 2500 70 60
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4.3 Setpoint optimization
In order to apply the obtained control laws to the process in a meaningful way, to compare
them and to analyze the applicability, setpoints have to be defined. The setpoints should
be chosen in a way that the processes can run physiologically stable. Since the control laws
will be compared with the original process runs in terms of their performance, setpoints
should also be chosen such that the predicted productivities or product yields are optimal.
Typically, feasible setpoints for bioprocesses are determined by trial and error in pilot plants,
which is a slow and labor-intensive process. Modeling can not only help develop optimal
control strategies through better process understanding, but can also be used to generate
better process setpoints or even optimal setpoint trajectories.[31]
In order to generate comparable setpoints of the different control laws for the implementa-
tion study, a setpoint optimization was performed.
In fed-batch processes, the down times for cleaning, preparation and sterilization of a new
batch, play a decisive role with regard to the overall yield of the process. In the industry,
the focus is therefore often on optimizing the space-time yield in order to generate more
effective processes.[7]
Therefore, for each control objective two setpoints were defined using the optimal space-time
yield and the maximal achievable product concentration predicted as performance criteria.
First the setpoints with the highest space-time yield were determined.

4.3.1 Setpoints for optimal space-time yield
The process down-times were estimated. In [7] the duration of sterilization in place (SIP)
and cleaning in place (CIP) are given as 3 and 6 hours respectively, the duration of the
batch phase as 6h and the non-induced fed-batch as 8h. In this work, the batch process
is considered to take 8h and the non-induced fed-batch 12h, these estimates are based on
the experimental data used. For set-up, dismantling and cleaning, 16 hours were taken
into account, resulting in a non-productive process time of 34 hours to be considered in the
calculation of the space-time yield.
Perfect model assumption and the feedforward control circuit were used to simulate the
process outcomes.
Graph 4.11, 4.12, 4.13,4.14, 4.15 and 4.16 show the contour plots for every constant spe-
cific rate used as a control objective. The optimal space-time yield is indicated by an x.
The space-time yield is given for the combination of different constant setpoints and the
respective harvest points in time.
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Figure 4.11: Setpoint optimization constant substrate feed and the harvest time
(time): the first contour line shows the limits in which 95% of the
maximum possible space-time yield can be achieved, the second the
90% limit and then in 10% steps downwards.



4.3 Setpoint optimization 36

10 20 30 40 50 60 70 80 90 100

time in h

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
q

S
 i
n
 g

g
-1

h
-1

0

0.005

0.01

0.015

0.02

s
p
a
c
e
 t
im

e
 y

ie
ld

 i
n
 g

L
-1

h
-1

Figure 4.12: Setpoint optimization constant qS: the first contour line shows the
limits in which 95% of the maximum possible space-time yield can be
achieved, the second the 90% limit and then in 10% steps downwards.

Figure 4.13: Setpoint optimization constant µ: the first contour line shows the
limits in which 95% of the maximum possible space-time yield can be
achieved, the second the 90% limit and then in 10% steps downwards.



4.3 Setpoint optimization 37

10 20 30 40 50 60 70 80 90 100

time in h

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
q

P
 i
n
 g

 g
-1

h
-1

10
-3

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

s
p
a
c
e
 t
im

e
 y

ie
ld

 i
n
 g

L
-1

h
-1

Figure 4.14: Setpoint optimization constant qp: the first contour line shows the
limits in which 95% of the maximum possible space-time yield can be
achieved, the second the 90% limit and then in 10% steps downwards.
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Figure 4.15: Setpoint optimization constant qO2 : the first contour line shows the
limits in which 95% of the maximum possible space-time yield can be
achieved, the second the 90% limit and then in 10% steps downwards.
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Figure 4.16: setpoint optimization constant qCO2 : the first contour line shows the
limits in which 95% of the maximum possible space-time yield can be
achieved, the second the 90% limit and then in 10% steps downwards.

The optimal setpoints can be derived from the contour plots, which show the relationship
between harvest time, rate setpoint and space-time yield. The first dark red contour line,
which describes the range in which 95% of the highest possible space-time yields are possible,
shows that different levels of setpoint achieve good results in terms of time dependent
product yield. The optimal space-time yield occurs at about the same time for all the
control laws examined. This is due to the fact that the preparation and post-processing
times of the process have a significant influence on the space-time yield and are the same
for all control laws. The yields are also comparable, whereby the direct control of the feed
rate together with the control of the oxygen uptake rate performs best. The respiratory
rates have the advantage that the time window for harvesting is the largest at around 15
hours. Maintaining the sweet spot of the product formation rate as a control variable turns
out to be the most difficult to ensure.
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4.3.2 Setpoints for maximum product concentration
The virtual experiments implemented later should behave differently from the model due
to their parameterisation. This is to investigate the applicability of the model. In order
to be able to compare the processes and make possible forecasts about the improvement of
the processes, they are evaluated with regard to the maximum productivity. For this rea-
son, in addition to the setpoints for the optimal time-space yields, the setpoints at which
the maximum possible product concentration could be reached during the process were
also identified. As could be seen in figure 4.17 very low setpoints lead to a higher maxi-
mum product concentrations. This correlation is valid for every examined rate. Therefore
the chosen setpoints do not just serve the selected process goals, they also represent the
boundaries of the feedrate that lead to reasonable processes.

Figure 4.17: setpoint optimization to reach maximum possible product concentra-
tion during the process shown for the specific substrate uptake rate
qS as an example: it can be seen that lower setpoints and slower pro-
cesses achieve the highest product concentrations
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4.3.3 Selected setpoints
The optimal setpoints identified for all investigated control laws are listed in table 4.3. As
discussed before, very low setpoints lead to the best overall product output. Setpoints to
achieve the maximum space-time yield are way higher. These setpoints assure processes
with harvest times between 21 hours (for the controlled growth rate) and 25 hours (for the
substrate uptake rate control) from the beginning of the induction process. The processes
run on the lower setpoints to maximize the product concentration take between 200 hours
and up to nearly 400 hours.

Table 4.3: Setpoint values for every rate used as a control objective to achieve max-
imum space-time yield or maximum product concentration respectively.
The setpoints for the maximum space-time yield can be read out from
the counter plots in chapter 4.3.1. The optimal setpoints to generate
the maximum product concentration were obtained via simulations of
the process as shown in the example for qS as control variable in 4.17.
maximum space-time yield maximum cP Dim

V̇in 0.006 0.001 Lh−1

qS 0.1 0.035 gg−1h−1

µ 0.02905 0.00005 gg−1h−1

qP 0.002 0.0007 gg−1h−1

qO2 0.003 0.0012 molg−1h−1

qCO2 0.0026 0.0009 molg−1h−1
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4.4 Feed profiles of control laws

Figure 4.18: Feedprofiles of different control laws as well as courses of product
formation rate qP , growth rate µ and product concentration cP tot, cP

and cP r over time.
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The different specific rates that are kept constant result in different feeding profiles that
have to be supplied to the process in order to maintain the desired setpoint. This causes
changes in the process behavior and productivity. With the setpoints defined in the previ-
ous chapter where the maximum space-time yield occurred (See Table 4.3), an feedforward
simulated to illustrate the different rates and process behavior was executed.

Graphic 4.18 shows the feed profiles associated with the respective specific rate as well
as the product formation rate, the specific growth rate and the progress of the product
concentration over the time course of the process.
Compared to the constant feeding rate, especially the profiles for the product formation
rate and the growth rate deviate strongly. Considerable feed adjustments are needed to
keep these two rates at a constant level. This was to be expected, as constant growth can
only be guaranteed by an exponentially increasing feedrate. Since productivity is strongly
related to the growth, it is only logical that a exponential feed is also required in this case to
keep the rate at a constant level. For the specific substrate uptake rate, an approximately
linear course of the feed rate results, which was also to be expected. For the respiration
rates, flat feed curves result, which are quite similar.
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4.5 Performance of control laws with model-plant
mismatches

An virtual plant was created to evaluate the control performance. The plant behaves math-
ematically like the model used. The parameters of the plant were adapted to the experiment
with low and constant feed from the data set and are shown in 4.1. Simulations were carried
out with this experimental plant to tune the control laws for the desired setpoint.

As can be seen in graphs 4.19, 4.20, 4.21, 4.22 and 4.23 the model (shown in blue color)
and the simulated plant (shown in orange for the feedback controlled and in yellow for the
feedforward controlled system) deviate from each other. The deviation is referred to as
model-plant mismatch and has impact on the productivity and the temporal evolvement of
the process. The figures show the controller performances using the setpoints for the highest
space-time yield. The time curves of the constant rates for both the open-loop control and
the closed-loop control as well as the corresponding curves of the product concentration
over time are displayed.

In blue, the model (as presented in chapter 4.1) behavior holding the simulated setpoint is
shown. In orange the control performance of the feedback controller while simulating the
virtual plant shows, that the setpoint could be held well on the desired (blue) value. The
corresponding productivity is also shown in orange color. The plant was also simulated for
using a feedforward controller (depicted in yellow color) and shows that it does not perform
as well as the feedback controller in keeping the desired setpoint. However, since there
is no time delay in the control at the beginning of the process, the feedforward controller
performs slightly better than the feedback controller for the respiratory rates, since these
seem to be less sensitive to setpoint deviations for the investigated process.
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Figure 4.19: controller performance qS: on the left hand side the course in time
of the controlled rates for feedforward and feedback control is shown.
On the right hand side the courses of the product formation are shown
to assess the effects of deviations on the process performance.

In figure 4.19 on the left hand side it is shown how well the specified setpoint could be kept
by the control laws. With the feedforward control law the desired setpoint could not be held
constant during the whole process. The necessary adjustment to maintain the setpoint is
achieved by the feedback control law which performed very well for the substrate rate. On
the right hand side the course of the product concentration during the process is depicted.
The product concentration is increasing faster at the beginning for the feedforward control
law. This is due to the fact that the feedrate for the feedforward control is a bit higher
at the beginning of the process. Because of the minor deviations between feedback and
feedforward control similar product concentrations could be reached during the course of
the process.

Unlike the control of the substrate uptake rate, the deviation between the feedforward and
the feedback control law is significant for both the control of the specific growth rate 4.20
and the specific product formation rate 4.21. The feedforward control do not achieve con-
stant rates. The control performance for both control approaches can therefore be improved
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considerably. Feedback control achieves satisfactorily constant rates which additionally has
a positive impact on the productivity.

The control performance of the specific oxygen uptake rate is shown in figure 4.22 and the
behavior is similar to the substrate rate controller. The feedforward law does not fulfill
the desired constant setpoint but the deviation could be compensated very well with the
feedback controller. Again the increase of the product concentration is grater because of
higher feedrates at the beginning of the investigated process which is also the case for the
specific CO2 emission rate. For this control objective the feed trajectory does not supply
the right feedrate during the whole process to keep the setpoint. Feedback control works
better but in the course of the process it could be seen that the controller is not able to
compensate disturbances perfectly as the curve of the carbon dioxide emission rate exceeds
the setpoint at the end of the process.
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Figure 4.20: controller performance µ: on the left hand side the course in time
of the controlled rates for feedforward and feedback control is shown.
On the right hand side the courses of the product formation are shown
to assess the effects of deviations on the process performance.
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Figure 4.21: controller performance qP : on the left hand side the course in time
of the controlled rates for feedforward and feedback control is shown.
On the right hand side the courses of the product formation are shown
to assess the effects of deviations on the process performance.
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Figure 4.22: controller performance qO2: on the left hand side the course in time
of the controlled rates for feedforward and feedback control is shown.
On the right hand side the courses of the product formation are shown
to assess the effects of deviations on the process performance.
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Figure 4.23: controller performance qCO2: on the left hand side the course in time
of the controlled rates for feedforward and feedback control is shown.
On the right hand side the courses of the product formation are shown
to assess the effects of deviations on the process performance.
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Apparently all the graphs above show that the examined experiment performed better con-
cerning productivity than the model on which the controller is based on.

In table 4.4 the NRMSE of the control laws is given for the feedforward as well as for the
feedback control laws. It can be seen, that the feedback control law using the presented
two degrees of freedom controller could improve the control performance. Anyway due
to its simplicity the model based feedforward controller is also an interesting approach for
further investigations. Of course, as discussed before especially for the control of the specific
product formation and growth rate the courses obtained using feedforward control deviate
strongly from the setpoint which has negative effects on the productivity and the target to
keep the rates constant.

Table 4.4: Normalized root mean square errors between setpoint and the concern-
ing specific rate held constant via feedforward or feedback control

control objective feedforward control feedback control Dim
qS 2.83 0.70 %
µ 9.18 0.88 %
qP 38.94 8.30 %
qO2 4.28 1.24 %
qCO2 5.38 2.02 %

Additionally, the control errors for the maximum product formation setpoints are shown in
table 4.5. The errors for the feedforward controller exceeds those of the space-time yield
setpoints as the controller was tuned on those. Besides this higher errors the feedback
control is still effective and reduced the tracking error compared to the feedforward control.

Table 4.5: Normalized root mean square errors between setpoint and the concern-
ing specific rate held constant via feedforward or feedback control

control objective feedforward control feedback control Dim
qS 1.36 1.73 %
µ 59.64 313.34 %
qP 69.69 4.22 %
qO2 1.85 0.25 %
qCO2 9.88 10.66 %



4.6 Implementation study 49

Table 4.5 shows that the constant growth rate controller does not work properly at the low
setpoint. The growth rate becomes negative due to the very low feed and the model behaves
physiologically incorrectly. Despite the negative growth rate, the product concentration
continues to increase. Thus, keeping the growth rate constant at the specified level is
difficult to control and results on the product yield are not conclusive for this case.

4.6 Implementation study
The implementation study is intended to provide first insights on the applicability of the
developed model-based control laws. For realistic model-plant mismatches the controller
used the generic model parameters 4.1 and the plant behavior was simulated with param-
eters from the single Experiments. In a addition to that an "new" verification plant was
included which contained model parameters from an experiment, which was not included
in the model parameterisation procedure.

4.6.1 Selected plant within the calibrated range
For the implementation study the experiment with the low constant feed rate 4.6 was chosen
because it was the expermient with the highest product yields and concentrations. The
graph 4.24 below shows the maximum achievable product concentrations for each control
law at the setpoint for the maximum space-time yield. To provide a reference, the product
yield of the experiment for the described data set is also given. It can be seen that the
model predicts less product yield than can be achieved with the parameter set of the selected
experiment in the simulation. As explained in the previous chapter, the setpoints can be
well maintained with both the feedforward and the feedback controller. Because of this
and because the experiment was used to fit the model and thus behaves very similar to
the model, product yields using both control strategies are comparable. Just in the case
of controlling the specific product formation rate, the feedback controller has a decisive
advantage compared to the feedforward control strategy. At the setpoints for the optimal
space-time yields, the maximum achievable product concentration is not to be expected and
in graph 4.24 is also not evident. The results are shown in figure 4.25 and demonstrate the
potential of the control strategies to improve the process.



4.6 Implementation study 50

reference model prediction feedforward control feedback control
0

0.5

1

1.5

2

2.5

3

P
ro

d
u

c
t 

c
o

n
c
e

n
tr

a
ti
o

n
 i
n

 g
L

-1

substrate feed

q
S

q
P

q
O

2

q
CO

2

Figure 4.24: Achieved product concentration of different control laws with set-
points for maximum space-time yield to be expected
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Figure 4.25: Achieved product concentration of different control laws with set-
points for maximum product concentration to be expected
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4.6.2 Independent verification plant
To get an idea of the applicability of the obtained control laws, the plant behavior of the
independent verification experiment was simulated as a substitute for a real experiment.
This independent verification plant was created by selecting an experiment from the data
set, that was not included into model parametrization. The model parameters of the veri-
fication plant were estimated in the same way as for the model calibration. Mass balances
and kinetic expressions to describe the behavior of plant were kept the same.

The parameters of this verification plant are listed in table 4.6. They deviate significantly
from the actual model compared to the experiments that were included in the model. Espe-
cially parameters related to the product formation like qP,max, KSqS

the Haldane coefficient
Hal and KIqP

deviate considerably from the parameters obtained by the calibration data
sets 4.1.

Table 4.6: Parameter set for the new plant gained fitting an independent experi-
ment

Model New
plant

Dim

V̇in − − Lh−1

cS,in 850 840 gL−1

qS,max 1 1 gg−1h−1

qP,max 0.008 0.00686 gg−1h−1

KS 0.0050 0.0050 gL−1

M 0.02 0.022 h−1

YX/S,max 0.47 0.47 gg−1

KYX/S
0.39525 0.42263 gg−1

KSqS
0.1591 0.04013 gg−1h−1

Hal 3.833 5.6 −
KIqP

6.9 4.82 −
KSqP

0.19513 0.14 gg−1

KqS,rel
0.18898 0.1134 h−1

KSPS
2.2924 2.0829 −

The developed controllers, the predetermined, optimal setpoints were used to run several
simulations using the new independent plant. The results are shown in the bar charts below.
Figure 4.26 shows the product concentrations achieved with the setpoints for the maximum
space-time yield and figure 4.27 the expected maximum product concentrations.
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Figure 4.26: Achieved product concentration of different control laws with set-
points for maximum space-time yield to be expected for the inde-
pendent experiment

Figure 4.27: Achieved product concentration of different control laws with set-
points for maximum product concentration to be expected for the
independent experiment
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Overall the independent plant performed better than the model concerning productivity.
In 4.26 it could be seen that with the direct control of qP (violet bar) the highest product
concentrations could be achieved with the optimal space-time yield setpoint. For this rate
the feedforward and feedback control differ significantly from each other. Nevertheless the
performance of the feedforward control was comparable to the results of other controlled
rates even if it deviates strongly from the desired trajectory. With the feedback control
the space-time yield setpoint for qP could be held constant quite well with an error < 7 %
and the highest maximum product concentration could be reached with about 3 g/l. The
feedforward control performed well for all the other rates and the setpoints for the optimal
space-time yield, therefore the maximum product concentrations for both feedforward and
feedback control were quite the same.

4.27 shows the performance of the setpoints for the maximum product concentration. Feed-
back control improved the control performance of all controlled rates and therefore higher
product titers were reached compared to feedforward control. This was especially the case
for the product formation rate. Again the low setpoint for the growth rate can not be
held constant for the same reason described before. The high product concentrations pre-
dicted are not reliable as the model behaves incorrectly in the case of negative growth rates.

The errors of the control laws are depicted for the virtual experiment as well in table 4.7
for the setpoints for the maximum space-time yield and in table 4.9 for the setpoints for
the maximum product concentration.

Table 4.7: Normalized root mean square errors between desired and the actual
value of the concerning specific rate held constant due to simulation
of the virtual experiment for the setpoint of the maximum space-time
yields for feedforward and feedback control respectively

control objective feedforward control feedback control Dim
qS 0.96 0.34 %
µ 2.44 1.34 %
qP 175.17 6.96 %
qO2 2.03 1.95 %
qCO2 2.52 2.03 %
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Table 4.8: Normalized root mean square errors between desired and the actual
value of the concerning specific rate held constant due to simulation
of the virtual experiment for the setpoint of the maximum product
concentration for feedforward and feedback control respectively

control objective feedforward control feedback control Dim
qS 2.09 0.43 %
µ 365.8 137.5 %
qP 85.81 74.21 %
qO2 3.48 0.37 %
qCO2 3.99 3.97 %

Table 4.9: Normalized root mean square errors between desired and the actual
value of the concerning specific rate held constant due to simulation
of the virtual experiment for the setpoint of the maximum product
concentration for feedforward and feedback control respectively

The control laws for the different constant rates could be successfully applied to control the
independent plant. The feedforward control approach reaches satisfactory results concerning
the product output. However the feedback control of the product formation rate achieves the
best result with the maximum space-time yield setpoint. The mismatches for the maximum
product formation rate setpoints are high for the product formation rate as well as for the
growth rate. While the product formation could be improved again via feedback control,
the setpoint for the growth rate could not be reached as described above. In general the
different control laws and setpoints lead to improved processes compared to the reference
experiments for the simulation. Of course, this results have to be investigated further in
experiments. However the implementation study shows the potential of the investigated
control laws, especially for the feedforward control approach. In application the feedback
controller might nevertheless be the better choice to compensate disturbances.

4.7 Applicability of the different controllers
The simulation of the experiment, which is independent of the model, shows that the control
laws created are functional. Furthermore, an increase in productivity can be expected
through setpoint optimization using the developed model. This model can also be used to
find feed trajectories or to derive control laws to control biomass specific rates.
The effects on keeping the desired setpoint at a constant level and on productivity achieved
by optimization using the model can be additionally improved by feedback control. However,
it must be noted that both specific rates and the process variables necessary for calculation
cannot be determined straightforwardly online. Many important process variables are de-
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termined by sampling and are therefore not available in time resolved form, which makes
feedback control challenging.[21]
As the specific rates are not directly measurable, the assumption of continuous informa-
tion about the controlled variable used for the simulation of the virtual experiment is a
simplification and does not usually apply to practical applications. In the following, the
applicability of the individual specific rates as controlled variables will be further discussed.

4.7.1 Growth rate
The growth rate is one of the key variables in a fed-batch fermentation process, as it has a
direct influence on cell metabolism and thus on product formation.[36]
Especially when it comes to process control the growth rate is of great importance. This
results from the strong impact on the productivity and product quality, as the biosynthesis
of many products depend on certain growth profiles and overflow metabolism that decreases
biomass productivity can be prevented controlling the growth rate below a critical value.
However the control of the specific growth rate in fed-batch processes depends on the ac-
curacy of biomass estimation.[37]
Although biomass concentration can be monitored using various methods, the signal ob-
tained is often noisy and unstable. This is caused due to the sensitivity of the probes to
process conditions such as flow and aeration. These inaccuracies in biomass estimation make
it difficult to control the specific growth rate. After all, since feedback control depends on
the capability to quantify the biomass trend in real time. Thus, to obtain useful feedback
on biomass concentration, appropriate data processing methods are needed in addition to
measurement technologies to smooth and filter the signals. Signal filtering can reduce signal
noise, but unfortunately at the cost of measurement delays, which in turn negatively affect
controllability.[36]
Usually the growth rate is estimated using reference models that take substrate consump-
tion or the oxygen uptake rate into account because measuring the biomass directly faces
difficulties. Because of uncertainties caused by the continually changing state of the culture
models are not able to predict the biomass concentration and therefore the specific growth
rate precisely. Highly complex adaptation mechanisms to face this problem by minimizing
model mismatches often lack the necessary robustness to be applicable.[37]
The simple approach of controlling µ by using a predefined exponential feed profile for
open-loop control is therefore often used, but the simple exponential feed cannot cope with
unpredictable process dynamics.[36]
Using conventional proportional or proportional-integral controllers to face this problem is
difficult because of the exponential nature of process kinetics and disturbances and therefore
lack the required robustness. Dabros et al. used a simple feed-forward/feedback principle
where the proportional and integral terms are included directly in the exponential term
which led to a sufficiently stable control. Dielectric spectroscopy was used to monitor the
the biomass which than was subjected to online balances and reconciled in real time against
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metabolite concentrations and off-gas compositions.[37]
As dependable online measurements of biomass concentration, using online balancing and
data reconciliation for verification can be achieved [37], the presented control strategy for
the growth rate could be an interesting approach.

4.7.2 Substrate uptake rate
The biomass-specific substrate uptake rate is also an interesting control variable. The con-
trol of the substrate concentration close to a value corresponding to the critical osmotic
capacity can be used as well as the control of the specific growth rate to prevent overflow
metabolism.[22] Compared to the growth rate, it features a larger control range at lower
values. In [21] the biomass specific uptake rate of limiting substrate could be successfully
controlled using an PI(D) controller as well as an open loop model based controller. The
occurring instabilities of the PI controller as well as the limitation of the MBC controller
described could be tackled using the approach detailed in this work. Of course, this as-
sumption has to be verified in practice, but it could possibly be a simpler alternative to a
model predictive control.

4.7.3 Product formation rate
Increasing the overall product concentration or the productivity of a fed-batch fermen-
tation process is of course a common control objective. However, the absence of robust
on-line measurements of these variables still hamper the direct control of the product spe-
cific quantities.[1]

The presented approach to control the specific product formation rate via an open loop
control based on the model presented could therefore be an interesting strategy to be inves-
tigated further in laboratory experiments. In addition, as the future focus in the biotech
industry moves towards continuous processes [38], the approach mentioned here to keep
productivity constant is particularly interesting.

4.7.4 Oxygen uptake and carbon dioxide emission rate
Especially for high cell-density cultures, the oxygen transfer rate plays a major role. In
such processes, the limiting oxygen transfer capacities are problematic, as accumulated cell
mass decreases the mass transfer of oxygen, and thus the specific growth rate, decreases.[39]
Dissolved oxygen is one of the few robust and reliable measured variables in the bioprocesses.
In addition, the variables measured in the exhaust gas have the considerable advantage that
they are very accurate, as they are not affected by concentration fluctuations such as those
measured in the reactor. The online gas data therefore provide important information on
the CO2 emission rate (CER) the oxygen uptake rate (OUR) and the respiratory quotient
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(RQ).[1] Since these values are available in good quality and in real time, it is reasonable
to consider them as potential control variables. Gustavsson et. al could show that a fed-
batch culture producing a recombinant protein can be controlled by the CO2 emission rate.
already the simple feedback control used in this work could achieve good results for process
control via qCO2. This variant of bioprocess control via alternative rates will presumably
be further improved with more precise process models and thus become interesting for
industrial applications.[40] Like CER, OUR is also a potential control variable. In a study
from 2010, it was shown that a process for the biotechnological production of a plant
protection agent could be successfully controlled on an industrial scale via the oxygen uptake
rate.[41] In [42] a respiratory quotient (RQ) based feedback control was applied for glucose
feeding. A PID controller was used to automatically adjust the flow rate to maintain RQ
at a set point to control metabolism and avoid glucose overflow. This resulted in higher
product titers and lower by-product production.



Chapter 5

Conclusion

The aim of the thesis was to obtain and investigate control laws to control the biomass spe-
cific rates of a fed-batch fermentation process in the induction phase. For this purpose, an
already existing nonlinear process model was extended and fitted on selected experiments
of a provided data set. Using the method of nonlinear feedback linearization control laws
to keep the specific rates constant were obtained. These control laws which compensate the
nonlinearities of the system were than be integrated into a linear control loop. An optimiza-
tion was performed simulating the process at various setpoints for the controlled variable
to receive interesting setpoints for further investigations. The conclusive implementation
study showed the theoretical potential of the control laws concerning controller robustness
as well as optimization potential.

In this work new possibilities to control the induction phase of a fed-batch fermentation
process are shown. The described approach has two advantages with respect to process
control; (1) a relatively simple model is used that can be easily adapted to other processes
with sufficient knowledge of process kinetics, (2) despite or because of the simple model that
does not use complicated adaptation algorithms, a simple and robust feedback control can
be achieved that compensates for process instabilities. These aspects, in combination with
sufficiently accurate measurement data, seem to bring a direct control of interesting process
parameters such as the growth or product formation rate within reach. Especially when it
comes to continuous processing keeping the specific product formation rate or specific rates
strongly related to product formation like the growth rate constant could be an interesting
applicable approach to control a fermentation process.

However, the applicability of the presented control laws depends strongly on the availability
of sufficiently accurate measurement methods. The simplifications used with regard to the
availability of time-resolved measurements for the individual rates are not permissible, as in
reality online measurement methods or analytical methods for data preparation represent
a bottleneck in process realization.[38] Model-based control addresses this problem in part,
of course, by predicting deviations, but it cannot completely replace measurements. Since
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the model used behaves physiologically analogously to the simulated experimental process,
the controller using model-based feedforward control is similarly effective to the closed loop
feedback control. Feedforward control for the process described here could therefore have
great potential in application, which needs to be tested in practice.
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