
A Generic Conceptual Model to
Graph Transformation Framework
and its Application for Enterprise

Architecture Analysis

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

066 926 Business Informatics

by

BSc Muhamed Smajevic
Registration Number 11742556

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork

Vienna, 21st November, 2022
Muhamed Smajevic Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

BSc Muhamed Smajevic

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. November 2022
Muhamed Smajevic

iii

Acknowledgements

First of all, I want to thank God for providing me the possibility to be where I am
now and to finish working on this thesis. I have spent more than two years writing
and implementing necessary things, which is much more than it should be, and I can
say I do not regret it at all. It was not an easy path, and I learned a lot. I met many
interesting people and tasted how it is to work in academia and be a part of the research
community. I worked mainly on the thesis in Austria but also did important parts in my
home country Bosnia. This would not be possible to accomplish at all if there were no
people around me to whom I wanted to express my gratitude. I will mention some of
them here, but also, there are others I did not forget but are not mentioned here (they
will know who they are). I want to tell you how incredibly grateful I am to have you.

I want to express my first and most profound appreciation to my mentor Dominik Bork.
If I put aside all his expertise and essential feedback, I want to thank him for changing
how I think and approach things. He was great motivation; he always tried to push me
to gain more and made me feel important by bringing the best out of me, which I am
most thankful for.

Secondly, I want to thank my family for their tremendous support. I want to thank them
for supporting my decision to move to Vienna and do my master’s there. I want to thank
my parents, Meho and Hamida, for constantly asking me about my progress and creating
a slight pressure to keep working and don’t quit. I want to thank my brother Arslan and
sister Emina for so many talks showing their trust in me.

Next, I want to express my gratitude to my best friend, Kenan. He constantly increased
my confidence and was my destination to talk to whenever I had stressful situations.

I also want to thank Ahsena for her unique role in this journey.

Lastly, I want to thank my two bosses, Manfred and Florian, for offering new business
opportunities in exchange for finishing my studies.

Now it is time for something new.

v

Abstract

Core assets of enterprise architecture (EA) are its models. They encapsulate enterprise
structure and IT knowledge by providing a holistic view of an organization that can
drive decision-making. For making good decisions, it is necessary to have an excellent
overview and to know how to analyze the model to gain information that different
business stakeholders need. From the perspective of history, EA has evolved a lot, and
the models have become larger and more complex. Models’ change in size and complexity
requires other techniques to analyze the model since the analysis of models in their
raw form can exceed human capabilities by far. Therefore current approaches focus on
studying partial views over the model, thus providing a partial valuation. This thesis
proposes a slightly different approach to cope with EA analysis. The method is based on
transforming conceptual models into graphs and analyzing the model in a graph-based
manner by using knowledge and possibilities from graph theory. To put this into the
real world, we have developed a generic framework and implemented it in the prototype
platform, which we call CM2KG. The platform allows analysts to upload different models
created in industry-standard tools and transform them into a standardized graph format.
From there on, it becomes possible for them to visualize and interact with the model
using multiple techniques, query the whole model, and define custom functions that will
provide valuable information. We discuss some basic examples for each part to scratch
the surface of what is possible. We also put one existing application of EA analysis into
the perspective of this approach by implementing queries that are used to identify smells
in EA models.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 Problem Definition . 2

1.1.1 Problem Statement . 2
1.1.2 Research Questions and Objectives 3
1.1.3 Research Scope . 4

1.2 Research Methodology . 5
1.3 Significance of the Thesis . 6
1.4 Thesis Outline . 7
1.5 Publications Based on This Thesis . 7

2 Background 9
2.1 Enterprise Architecture Management 9

2.1.1 The Open Group Architecture Framework 10
2.1.2 Conceptual Modelling . 11
2.1.3 Model Transformation . 13

2.2 Metamodels . 13
2.2.1 Ecore . 13
2.2.2 ArchiMate . 13
2.2.3 ADOxx . 15

2.3 Graph Analysis . 16
2.3.1 Quantitative Graph Theory . 16
2.3.2 Graph Visualisation . 19
2.3.3 GraphML . 19

2.4 Goal Question Metric . 22
2.5 Smell Detection . 24

2.5.1 EA Smell Detection . 24
2.5.2 Code Smell Detection . 24

3 Related work 27

ix

3.1 EA and Graph-based Analysis . 27
3.2 State of the art EA Tools . 35

3.2.1 Archi . 38
3.2.2 ADOxx and TEAM . 39
3.2.3 ADOIT . 40
3.2.4 ABACUS . 42
3.2.5 HoriZZon . 42
3.2.6 Ardoq . 43

3.3 Summary . 46

4 Transforming Conceptual Models to Graphs 47
4.1 General Transformation Concept . 47
4.2 Ecore to GraphML Transformation . 48
4.3 ADOxx to GraphML Transformation 50
4.4 Papyrus to GraphML Transformation 52
4.5 Archi- And ArchiMate-Specific Transformation to GraphML 54

5 Prototype Platform 57
5.1 Platform Overview . 57

5.1.1 Process . 58
5.1.2 Input . 58
5.1.3 Output . 61
5.1.4 Components . 61
5.1.5 Transformation . 62
5.1.6 Web Interface . 62
5.1.7 External Tools . 64

5.2 Use of Graph Metrics . 65
5.2.1 Centralities . 65
5.2.2 Community Detection . 72

5.3 EA Smell Detection . 74
5.4 UML Code Smell Detection . 84

6 Evaluation 87
6.1 Generic Analysis Approach Evaluation 87

6.1.1 Ecore Model Instance . 87
6.1.2 Archi Model Instance . 87
6.1.3 ADOxx Model Instance . 88
6.1.4 Papyrus UML Model Instance 89
6.1.5 Generic Transformation Framework 89
6.1.6 Benefits of Graph-Based Analysis for EAs 92

6.2 Analysis Automation Evaluation . 96
6.2.1 Analysis Tool Considerations 97
6.2.2 Prototype Tool Evaluation . 99

6.3 Smell Detection Evaluation . 100

6.3.1 EA Model Smell Detection . 100
6.3.2 Code smell . 103
6.3.3 Smell Detection Conclusion . 104

6.4 State of the Art Tools vs Graph-Based Analysis Comparison 105

7 Conclusion and Future Work 107
7.1 Summary . 107
7.2 Contributions . 109
7.3 Limitations . 110
7.4 Future Research . 110

List of Figures 111

List of Tables 115

List of Algorithms 117

Acronyms 119

Bibliography 121

CHAPTER 1
Introduction

In their work, Davoudi and Aliee state that "Enterprises are complex, highly integrated sys-
tems comprised of processes, organizations, information, and supporting technologies, with
multifaceted inter-dependencies and interrelationships across their boundaries" [DA09].
Enterprise Architecture (EA) based on Holm et al. "describes the fundamental artifacts
of business and IT as well as their interrelationships, typically through dimensions such
as business, application, technology, and information" [Hol+12].

EA based on Österlind, Lagerström, and Rosell "has become an established discipline
for business and IT management" [ÖLR12] with many initiatives. Dreyfus and Iyer
claim that since "enterprises face a turbulent and competitive environment, they must
continuously innovate and engage in multiple IT implementation projects" [DI06]. Buschle,
Johnson, and Shahzad state that "the management of organizations and their IT systems
require frequent decision-making" [BJS13]. Veneberg et al. claim that when "having to
decide about strategy and investments, managers deal with complex situations that could
influence the future of their organizations" [Ven+14].

In order to provide guidance for project decisions, Dreyfus and Iyer state that "companies
develop a designed architecture where subsequent projects’ impact on existing applications,
data, and technology can, and often does, create a gap between the emergent architecture
and the designed architecture" [DI06]. Buschle, Johnson, and Shahzad in their work
claim that "these decisions can, for example, be whether an existing system, in order to
provide the performance needed for future services, should be replaced, upgraded, or
kept as it is" [BJS13] or "whether two applications should be integrated, used in the
same fashion they have been used until now or whether the provided services should
be outsourced" [BJS13]. For these decisions, Barbosa et al. state that "EA analysis is
considered as a fundamental practice of Enterprise Architecture Modeling" [Bar+19].

When it comes to different approaches, Lantow et al. claim that "many analysis approaches
have been proposed by researchers and current Enterprise Architecture Modeling (EA

1

1. Introduction

Modeling) tools implement analysis functionalities where in practice, EA is often analyzed
by using visualizations and are typically created using EA Modeling tools" [Lan+16].
Analyzing previous works, Srinivas, Gill, and Roach conclude that "traditional EA
modeling and deliverables are composed of static diagrams or viewpoints that are presented
to stakeholders and do not change with the changing nature of data" [SGR20]. Regarding
the new analysis approaches, Lantow et al. then state that "modern analysis approaches
should combine interactive visualizations with automated analysis techniques" [Lan+16].

If we summarize all the information from the different papers above, we can see how
vital analysis is for businesses. However, how much is done in this area? While little
research about mechanisms to classify, compare, or organize the existing EA analysis
research can be found, Barbosa et al., in their paper [Bar+19], introduce a taxonomy
for EA analysis research. The taxonomy introduces four main dimensions: EA scope,
analysis concern, analysis technique, and modeling language.

Regarding the modeling language dimension, paper states that 80% of all papers lead to
4 modeling language groups: ArchiMate (ArchiMate)-based, combined models, graphs,
own. Regarding the graphs group, Barbosa et al. describe that "in the graphs group,
the EA are modeled as graphs, with their components and relations being represented
by nodes and edges, respectively" [Bar+19]. Another dimension in the taxonomy is the
analysis technique, which covers techniques and methods to perform EA analysis, taking
into consideration another dimension, the analysis concern dimension.

Results show that "about 70% of the studies corresponded to the following five values
for analysis technique: (Semi) Formalism Based, Metric-based, Probabilistic-based,
Structural Analysis, and Visual Analysis" [Bar+19]. Moreover, since some techniques
are highly dependant on which modeling language is used, researchers remodeled or
transformed the models from ArchiMate modeling language to graph modeling language
in order to get new insights.

1.1 Problem Definition
This section is dedicated to specifying the problem for this thesis. The main research
questions are formulated. The research objective clarifies what this research wants to
achieve. Also, the scope of the thesis is defined.

1.1.1 Problem Statement
In order to to provide the stakeholders with additional insights some researchers have
incorporated graph-based approach in their analysis. For example, Garg, Kazman, and
Chen, in their paper [GKC06], describe how a 3-tier architecture component diagram
can be designed as a graph to provide stakeholders with the following results: a system
of systems view, architectural analyses (reliability, redundancy), risk analysis. The
same paper [GKC06] states that the system has already provided essential insights into
enterprise architecture that was hitherto unavailable.

2

1.1. Problem Definition

A specific tool (EA Builder) was developed by Aier in [Aie06] in order to create clusters
based on graph structure where the clusters identified are candidates for service domains
while the activities are candidates for services that have to encapsulate the existing IT
systems. In order to aid decision-making, Österlind, Lagerström, and Rosell, in their
work [ÖLR12], suggest changes in Modifiability Analysis Tool and present a case study in
which these changes have been tested.

Authors Holschke et al. propose another idea in their paper [Hol+09] on using Enterprise
Architecture models coupled with Bayesian Belief Networks to facilitate Failure Impact
Analysis. Buschle, Johnson, and Shahzad in [BJS13] present the class model that allows
investigating availability at enterprises and is built upon ArchiMate, which makes use of
the fault tree formalism. Another approach by Wood et al. in their research [Woo+13]
collects the different stakeholders in EA and puts them in the Social Network analysis
context.

Similar to previous authors, Dreyfus and Iyer propose "Architecture as a social system"
in [DI06] by emphasizing network analysis. Literature shows that many papers talk about
EA analysis techniques involving graph theory. A more detailed discussion about the
related work and the motivation for this thesis can be found in Sec. 3.1.

Coming back to different dimensions from EA analysis taxonomy ([Bar+19]) there are
two cases. We have examples modeled in a graph modeling language supporting graph
analysis as the first case. The second case represents all other modeling languages
where only a specific subset of EA elements is transformed to a graph and analyzed
as before. The problem is that there is no general approach that will provide different
analysis techniques that graph modeling languages provide to other categories in modeling
language dimension (ArchiMate, Combined, Own). In their big survey of EA analysis
and network thinking, Santana, Fischbach, and Moura perform a broad literature review
of EA network-based analysis [SFM16]. In their work they identify applied measures and
main achievements and propose potential topics for future research. One of the missing
parts and recommendations for future research is the tool development for EA analysis
since most papers propose the measures only theoretically. Combining the problem of
lacking application of graph-based analysis techniques to different modeling languages
with the recommendation of building up the tool that will enable practical EA analysis
with different measures, leads us to a motivation to explore this area and ask questions
that are described in the next section.

1.1.2 Research Questions and Objectives

In this section, we formulate the research questions. Additionally, we define the respective
research objectives for each question that will guide us to answer a question.

RQ1 Is it possible to accomplish a generic approach of conceptual model analysis based
on model transformation and graph structures at all?

3

1. Introduction

Objective 1.1 Quantitative and qualitative analysis of the conceptual models
overview.
The objective is to do a review of related work with respect to the classification
of existing metrics and algorithms for graph/network analysis.

Objective 1.2 Concept definition to transform conceptual models into graph struc-
tures.
The objective is to explore a new generic concept based on model transforma-
tion on meta2-level to a graph structure.

RQ2 What is an appropriate means to automate graph-based analysis of Enterprise
Architecture models?

Objective 2.1 Automation of the graph-based analysis of conceptual models.
The objective is to explore the ways to automate the analysis based on
different technologies/libraries/frameworks for ADOxx (ADOxx)-based and
Ecore (Ecore)-based modeling languages.

RQ3 Is it possible to detect smells in EA and UML models using graph-based analysis
approach?

Objective 3.1 Specific smell detection application in graph-based analysis.
The objective is to research how the graph-based analysis approach can be
used to detect smells in EA and UML models.

RQ4 How does the graph-based analysis of Enterprise Architecture models compare to
model analysis techniques provided by State-of-the-Art Enterprise Architecture
Management tools?

Objective 4.1 Exploration of analysis options provided by State-of-the-art EAM
tools overview.
The objective is to explore the different options that some tools provide
regarding the analysis. We will take Archi (Archi) that supports ArchiMate
modeling, TEAM library developed in ADOxx, and yED (yED), which is
already based on graph structure. We do this to include different sides into an
overview. On the other hand, we also want to explore the industry standards
and compare them with open source options.

1.1.3 Research Scope
The work aims to provide different analysis techniques currently supported for graph-based
modeling languages to other categories in the modeling language dimension mentioned in
EA analysis taxonomy. This will be done by developing a general concept to analyze
the conceptual models based on many already developed and proven concepts in graph
theory and social network analysis.

4

1.2. Research Methodology

The idea behind this is to have transformation [Lan+12] of high-level meta-modeling to
a graph structure and analyze a graph. This concept will be applied to two meta-models:
Ecore [Ecl21a] and ADOxx [ADO21a]. Next, the models created using tools Archi and
TOGAF based Enterprise Architecture Management (TEAM) [Bor+18], which provide
instances of Ecore (developed by ArchiMate modeling language) and ADOxx respectively,
will be used for analysis. These models will be transformed and analyzed, and the
analysis will be compared with the analysis options provided by state-of-the-art tools.
We want to find out what graph-based analysis enables or more efficiently solves than
non-graph-based approaches.

Concerning this context, three examples are provided. Different concerns for Enterprise
Architect covered in [Bar+19] like Cost Analysis, EA Change, and EA Alignment involve
impact analysis, so one example is how the tools respond to this. Another example are
the options to prioritize the importance of an entity in the Enterprise Architecture. The
third example can be seen as identification and visualisation of sub-communities within
the Enterprise Architecture.

To achieve this, the analysis of the transformed models will be based on two approaches:
a quantitative and qualitative analysis. For quantitative analysis [DES17], for the sake of
simplicity, standard graph measures and algorithms will be taken. The measures that will
be considered are degree centrality, closeness centrality, Eigenvector centrality, PageRank
centrality, connected components, local clustering [EK13] [BJT16].

On the other side, qualitative analysis will include: graph querying, graph visualization,
different layouts based on size and color of nodes and edges concerning a different node or
edge measures, and multi-layer visualization [CSQ08]. Furthermore, qualitative research
to obtain information about human perception of the given comparison will be performed.

Lastly, some of the known issues in EA analysis would be considered how they can be
solved using the graph-based analysis approach. This includes the detection of smells in
EA models, which can be identified by profoundly examining the structure of the model
and trying to find some pattern that would yield what is considered as smell. The scope
is to show this also on a similar setup but the different domain. Such domain is the
UML class diagram, where there much of discussion about detecting smells in the class
diagram model.

1.2 Research Methodology
To conduct this research, we will use Design Science Research [HC10]. We start by setting
a goal to produce an artifact in several iterations. After each iteration, this artifact
should be evaluated. Regrading the methodology framework, we will use Design Science
Research Methodology (DSRM) described in [HC10]. The Design Science (DS) process
includes six steps: problem identification and motivation; definition of the objectives for a
solution, design, and development; demonstration; evaluation; and communication[HC10].
Below are the descriptions on how the all the activities will be performed [BHM20].

5

1. Introduction

Activity 1. Problem identification and motivation. This was already discussed
in 1.1.

Activity 2. Define the objectives for a solution. This was already discussed in
1.1.2.

Activity 3. Design and development. Here we first design and develop the trans-
formation of the conceptual model to a graph. The transformation concept from the
conceptual model to a graph has to be developed along with two examples Ecore
to GraphML (GraphML) and ADOxx to GraphML.
Next, we proceed with graph analysis. The method of graph analysis concept
consists of the following steps:

(a) Quantitative analysis - graph measures have to be applied to a graph like: de-
gree centrality, closeness centrality, Eigenvector centrality, PageRank centrality,
connected components, local clustering.

(b) Qualitative analysis - different visualizations have to applied using library
Gephi (Gephi)/Neo4j (Neo4j)/yED: graph querying, graph visualization, dif-
ferent layouts based on size and color of nodes and edges with respect to a
different node or edge measure and multi-layer visualization.

And lastly, smell detection. Development of queries to detect EA models smells
and UML class diagram model smells.

Activity 4. Demonstration. The artifacts will be demonstrated with multiple differ-
ent ArchiMate, TEAM, and UML class diagram models.

Activity 5. Evaluation. Evaluation will show how different models are transformed
and how graph-based approaches cope with EA model analysis. For research
questions, we define the requirements that will be used for evaluation.

Activity 6. Communication. Since no actual practicing professionals are available,
the communication will be provided through different research papers to academic
audience and feedback will be gathered from there.

1.3 Significance of the Thesis
This thesis aims to create practical and theoretical contributions in enterprise architecture
analysis and graph-based domains. The thesis will provide some general knowledge about
the graph-based analysis approach. It will try to answer if the general analysis approach
is feasible. It will try to create artifacts that different stakeholders can use to perform
different actions. Introduction to the State-of-the-Art tools will also be provided to a
reader. Moreover, the project will create some insights and hopefully open possible areas
for further research.

6

1.4. Thesis Outline

1.4 Thesis Outline
The rest of the thesis is divided into six chapters. It starts with the background knowledge
about the terms and topics used throughout the thesis. The next chapter is about the
related work, which will describe different studies and some state-of-the-art tools. This
will summarize the gaps and lead to a better understanding of the motivation for this
thesis. The next chapter is devoted to designing the general framework used for analysis.
The fifth chapter is about implementing the prototype platform using the framework
developed in chapter four. After the platform is developed, we provide an evaluation of
research objectives in chapter six. The last chapter will conclude and answer the research
questions defined in the first chapter.

1.5 Publications Based on This Thesis
In parallel to writing this thesis, the author of the thesis in the co-author role was involved
in several publications based on topics from this thesis. The first paper [SB21b] was a
joint work of Smajevic and Bork named "Towards Graph-based Analysis of Enterprise
Architecture Models" which was published in the 40th International Conference on
Conceptual Modeling. The second paper [SHB21] named "Using Knowledge Graphs to
Detect Enterprise Architecture Smells" was a joint work of Smajevic, Hacks, and Bork and
was presented in 14th IFIP Working Conference, PoEM 2021, Riga, Latvia, November 24-
26, 2021. The third and the last published paper [SB21a] named "From Conceptual Models
to Knowledge Graphs: A Generic Model Transformation Platform" was a collaboration
of Smajevic and Bork and was published in 2021 ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion (MODELS-C) - Tools
& Demonstrations Track.

7

CHAPTER 2
Background

In this chapter, we will go through different terms and topics used throughout the thesis.
This includes an introduction to what Enterprise Architecture Management is, what is
considered as graph analysis, what is quantitative graph theory, some information on
graph visualizations, meta-models like Ecore, ArchiMate, ADOxx, model transformation,
graph structure format GraphML, and goal question metric.

2.1 Enterprise Architecture Management
Enterprise Architecture Management (EAM) "emerged as a way to deal with organizational
complexity and change in an increasingly turbulent business environment" [Ahl+12]. In
the 1980s, system engineers tried to have a holistic perspective of the whole organization
that would help them design the information system, but they realized that they could
design good software if they had a better understanding of the organization [Ahl+12].
Ahlemann et al. define EAM as “management practice that establishes, maintains and uses
a coherent set of guidelines, architecture principles and governance regimes that provide
direction for and practical help with the design and the development of an enterprise’s
architecture in order to achieve its vision and strategy” [Ahl+12]. Historically, EAM has
developed throughout the different phases as described in Fig. 2.1.

Zachman and his Zachman Framework [Zac87] heavily impacted the formation of EAM.
At that time, Zachman realized that term architecture was used widely, but it had many
different meanings. He introduced the framework that introduces different architecture
perspectives, such as enterprise, technical, or system models. This was done by having
different architecture descriptions like function, network, or data [Ahl+12].

In the next phase of EAM development, there were issues with spending on information
systems and technology. This included solving local issues, introducing isolated systems,
having many redundancies. Naturally, stakeholders felt that more transparent decision-

9

2. Background

Figure 2.1: Development phases of EAM throughout the years [Ahl+12].

making was needed, and IT management processes and governance mechanisms had to be
improved to achieve that. Based on this, new EAM frameworks were developed [Ahl+12].
One of the examples is The Open Group Architecture Framework (TOGAF).

Nowadays, EAM is not just a part of IT. It is a strategic function of a board member on
the top level. This is because EAM can achieve full potential if it is linked directly to a
business strategy [Ahl+12].

2.1.1 The Open Group Architecture Framework
Vicente, Gama, and Mira da Silva describe TOGAF as "a framework for developing
an EA"[Gro18; VGM13]. From the development and maintenance perspective "it was
developed and is currently maintained as a standard by The Open Group (TOG). The
first version of TOGAF, in 1995, was based on the US Department of Defenses Technical
Architecture Framework for Information Management (TAFIM)" [Gro18; VGM13]. "Each
version of the standard is developed collaboratively by the members of the TOG Architecture
Forum" [Gro18; VGM13]. "The first seven versions of TOGAF addressed technology
architecture based on its adoption in businesses at the time each was written. In 2002,
Version 8 was published, which expanded the scope of TOGAF from a pure technology
architecture to an EA, by including business and information systems architecture in
the new version" [Van09; VGM13]. Later in 2009, "TOGAF 9 was released with new
features as a modular structure, a content framework specification, extended guidance,
and additional detail" [Gro18; VGM13]. "TOGAF provides the methods and tools for
assisting in the acceptance, production, use, and maintenance of an EA" [Gro18; VGM13].
"It is one of the leading architecture frameworks worldwide, and in its latest version, there
is an increasing reflection on the use of the architecture and its governance" [Van09]. "It

10

2.1. Enterprise Architecture Management

is based on an iterative process model supported by best practices and a reusable set
of existing architecture assets" [Gro18; VGM13]. "The TOGAF document focus on EA
key concepts and TOGAF Architecture Development Method (ADM), a step-by-step
approach to developing an EA" [JPT09; VGM13].

2.1.2 Conceptual Modelling
Conceptual modeling topic has had a growing interest over the last decade. As the
interest in this topic grows, it leads to different views and opinions, which creates a
ground for a debate that can lead to misunderstanding. Robinson et al. discuss this in
[Rob+15], where they try to gather leading researchers to identify and discuss their views
on conceptual modeling. They discuss the definition, purpose, and benefits of conceptual
modeling. The following questions are covered [Rob+15]:

1. "What is a conceptual model? (and how does the conceptual model relate to the real
world (problem) and to the computer model?)"

2. "What is the purpose of conceptual modeling?"

3. "What are the benefits of a conceptual model?"

Figure 2.2: Artifacts of conceptual modeling by Robinson [Rob+15]
Below are the summarized views on topic conceptual modeling with the respect to
definition, purpose, and benefits by different researches.

11

2. Background

Definition of conceptual model [Rob+15]
Arbez and Birta: "The conceptual model is a concise and precise consolidation
of all goal-relevant structural and behavioral features of the SUI presented in a
predefined format. "
Robinson: "A non-software specific description of the computer simulation model
(that will be, is or has been developed), describing the objectives, inputs, outputs,
content, assumptions and simplifications of the model. "
Tolk: "Result of the processes leading from the task to the specification of the
conceptualization of the ontological structure of the problem domain, comprising
assumptions and constraints on all relevant modeling decisions."
Wagner: "A solution independent description of a real world problem domain, from
which a platform independent simulation design model can be derived for a given
set of research questions."

Purpose of conceptual modeling [Rob+15]
Arbez and Birta: "The conceptual model should enable all stake holders to discuss
the SUI’s behavior and it must be sufficiently comprehensive to serve as a specifica-
tion for a computer program."
Robinson: "A simulation model cannot exist without a conceptual model. A docu-
mented conceptual model is for communication."
Tolk: "Capturing and communicating the conceptualization with intended as well
as potentially unforeseen simulation users."
Wagner: "To capture a sufficiently large, and sufficiently complete, part of the real
world problem domain, for which a simulation study is to be performed, in such a
way that all kinds of research questions concerning this domain can be investigated."

Benefits of conceptual model [Rob+15]
Arbez and Birta: "The conceptual model ensures that key SUI features (e.g. behav-
ior, granularity) evolve from discussion with all stakeholders rather than from a
programming bias."
Robinson: "A documented conceptual model is the basis for guiding all activities in
simulation model development and use."
Tolk: "Building trust by unambiguously documenting the model – which is the foun-
dation of the resulting simulation – which is pivotal in case of reuse or composition."
Wagner: "The CM can help to clarify questions about the scope and purpose of
a simulation project, and it is an asset that can be re-used for making different
solution designs for different research questions."

We will follow the definition of Robinson where the artifacts of conceptual modeling are
shown in Fig. 2.2.

12

2.2. Metamodels

2.1.3 Model Transformation
According to Langer et al., Model-Driven Engineering (MDE) "places models as first-
class artifacts throughout the software lifecycle. In this context, model transformations
are crucial for the success of MDE, being comparable in role and importance to com-
pilers for high-level programming languages, for bridging the gap between design and
implementation" [Lan+12].

In the past, several model transformation approaches were developed where "most of
them are based on the abstract syntax of modeling languages which is defined by so-called
metamodels" [Lan+12]. Regarding the metamodels, they "describe by a limited set of
UML class diagram concepts the object structure for computer internally representing and
persisting models" [Lan+12].

It is stated in the same paper that "modeling language engineering in MDE comprises
at least two components" [Lan+12]. "First, the abstract syntax of a language has to be
defined by a metamodel, i.e., a model defining the grammar of the language. Second, to
make a language more usable, a mapping of abstract syntax elements to concrete syntax
elements (such as rectangles, edges, and labels) has to be provided" [Lan+12].

A general explanation stated by the same paper is that in "transformation engineering
in general, a model transformation takes a model as input and generates a model as
output" [Lan+12].

2.2 Metamodels

2.2.1 Ecore
According to Eclipse, the Eclipse Modeling Framework (EMF) is a project which "is a
modeling framework and code generation facility for building tools and other applications
based on a structured data model" [Ecl21a]. The model specification is described in XMI
which can be used "to produce a set of Java classes for the model" [Ecl21a] which means
it is facility to build up code based on model specification.

The framework itself consists of three parts: EMF, EMF.Edit [Ecl21a], and EMF.Edit.
The core of the EMF is the meta model called Ecore. This model allows creating other
models. The hierarchy of the components used to create this meta model can be seen in
Fig. 2.3. Relevant concepts of the Ecore meta model can be seen in Fig. 2.4.

2.2.2 ArchiMate
"The ArchiMate EA modeling language was developed to provide a uniform representation
for architecture descriptions. It offers an integrated architectural approach that describes
and visualizes the different architecture domains and their underlying relationships and
dependencies" [JPT09; VGM13]. Furthermore, the goal of the ArchiMate project "is to
provide domain integration through an architecture language and visualization techniques

13

2. Background

Figure 2.3: Ecore components hierarchy [Ecl21b].

that picture these domains and their relations, providing the architect with instruments
that support and improve the architecture process" [VGM13]. Additionally "in a short
time, ArchiMate has become the open standard for architecture modeling in the Nether-
lands; it is now also becoming well known in the international EA community" [JPT09].

Nowadays, ArchiMate is considered as popular EA Modeling language [Lan+09; OMG19].
ArchiMate represents the layered view of an organization. Many EAM tools provide the
ArchiMate model by default or try to enrich it to increase the model value.

Regarding the ArchiMate structure "the domains of business, application, and infrastruc-
ture are connected by a service orientation paradigm, where each layer exposes functionality
in the form of a service to the layer above" [VGM13; Gro12]. Additionally ArchiMate,
"also distinguishes between active structure, behavior, and passive structure elements,
having also another distinction between internal and external system view" [VGM13;
Gro12] and "ArchiMate is a formal visual design language, supports different viewpoints
for selected stakeholders, and is flexible enough to be easily extended" [VGM13; Gro12].
On the other side, ArchiMate has limited semantic distinction [PB17] and also provides
limited information processing contained in the model [BJS13].

14

2.2. Metamodels

Figure 2.4: Most relevant concepts and their relations in Ecore [ecl21].

2.2.3 ADOxx

Based on its website, ADOxx "is the meta-modeling development and configuration
platform for implementing modeling methods" [ADO21b]. Furthermore, "implementation
of full-fletched modelling methods can be realized using the platform, consisting not
only of a modelling language, but also of modelling procedure and the corresponding
functionality in the form of mechanisms and algorithms." [ADO21b]. All developed
artifacts are contained in Application Library which contains definition of model types,
classes, and relation classes (this includes both: abstract and concrete level) [ADO21b].
This can be seen in Fig. 2.7.

Fill and Karagiannis give more details about ADOxx such as that in the background,
ADOxx meta2 model is developed in C++ [FK15]. "User-specific meta-models are derived
from classes of the ADOxx Meta Model and described by a meta modeler using the
proprietary ADOxx Library Language (ALL)" [FK15]. ADOxx can export models in

15

2. Background

Figure 2.5: Top-Level Hierarchy of ArchiMate Concepts [Gro21].

ADL or XML format [FK15]. Meta model of ADOxx can be seen in Fig. 2.8.

Core part of ADOxx consists of classes and relation classes which are grouped by model
types [FK15]. In both cases, these classes can have attributes that can be help text or
regular expressions [FK15].

2.3 Graph Analysis
Pachayappan and Venkatesakumar explain that a graph "connects two or more entities
where entities can be anything: human beings, machines, animals, characters in a movie,
and variables in literature" [PV18]. Furthermore, the paper states that "in Graph Theory,
these entities are considered as Nodes while the relationships are considered as Edges
and their connections form a graph"" [PV18]. There are three types of graphs undirected,
directed, and mixed graphs. Analyzing a graph is a wide area and many applications on
how to analyze a graph exists. We will briefly introduce quantitative graph analysis and
visual analysis in the following sections.

2.3.1 Quantitative Graph Theory
Dehmer et al. define Quantitative Graph Theory as "a measurement approach to quantify
structural information of networks" [Deh+14]. It is a branch of Graph theory and it is

16

2.3. Graph Analysis

Figure 2.6: Hierarchy of ArchiMate Behavior and Structure Elements [Gro21].

Figure 2.7: The ADOxx library definition [ADO21b]

concerned about quantification of structural information in networks [DES17]. Compared
to classical graph theory, Dehmer, Emmert-Streib, and Shi describe "some highlights of

17

2. Background

Figure 2.8: The ADOxx meta2 model [FK15].

the new branch of quantitative graph theory and explains its significant different features
compared to classical graph theory" [DES17]. Furthermore, authors state that the main
goal of quantitative graph theory "is the structural quantification of information contained
in complex networks by employing a measurement approach based on numerical invariants
and comparisons" [DES17]. Moreover, "the methods as well as the networks do not need
to be deterministic but can be statistic" [DES17]. By doing this authors emphasize that
"this complements the field of classical graph theory, which is descriptive and deterministic
in nature"[DES17]. The same paper provides examples "of how quantitative graph theory
can be used for novel applications in the context of the overarching concept of network
science" [DES17].

Methods used in quantitative graph theory described in [DES17] are as follows:

Comparative graph analysis. "Comparative graph analysis means determining the
structural similarity or distance between two or more networks." [DES17]

Graph characterization. "In quantitative graph theory, graph characterization relates
to determining the complexity of a given network by using numerical graph in-
variants. Graph invariants are graph measures to characterize graphs structurally
which are invariant under isomorphism." [DES17]

Software for quantitative graph analysis. "Programs developed for the statistical
programming language R" [DES17]

18

2.3. Graph Analysis

2.3.2 Graph Visualisation
Schulz and Schumann emphasize that "visualizing structures is a hot topic in the domain
of information visualization" [SS06]. Furthermore, authors state that "visualization of
graphs has proven to be very useful for exploring structures in different application do-
mains" [SS06]. Graph visualisation can be understood differently. Two terms that should
be distinguished are graph drawing ("which focuses on optimized layouts for modeling
representations of networks" [SS06]) and information visualization ("which focuses on
hierarchies focusing on very large structures, different views, and interactivity") [SS06].

Additionally, authors give "a systematic view of the problem of graph visualization by
combining both approaches" [SS06] as follows:

Hierarchy Representations. "There are two principal alternatives to classify visual-
ization techniques for hierarchies" [SS06]:

• explicit vs. implicit
• axes-oriented vs. radial

Network Representations. "While the organization of data in a hierarchical manner is
a powerful pattern used frequently throughout many fields of application, hierarchies
and especially trees are just a tiny subclass compared to the huge graph class of
networks." [SS06]

Additionally one should look for constraints on network visualization [SS06]:

• "User Constraints: compatibility of visualization and user, compatibility of visu-
alization and interaction techniques, compatibility of different visualization tech-
niques." [SS06]

• "Data Constraints: static data vs. dynamic updates, size, and density of the graph,
graph topology." [SS06]

2.3.3 GraphML
Brandes et al. talk about the general requirement for graph structure format specification
and introduce GraphML as follows: "Among the multitude of software packages that
process graphs, some are dedicated graph packages while others operate on graph structures
implicitly. All of them have in common the need to input existing data and to output
their computation results in files or streams. GraphML (Graph Markup Language) is
an XML-based format for the description of graph structures, designed to improve tool
interoperability and reduce communication overhead" [Bra+02]. The same paper states
that GraphML "it is open to user-defined extensions for application-specific data. Thanks
to its XML syntax, GraphML-aware applications can take advantage of a growing number
of XML-related technologies and tools, such as parsers and validators" [Bra+02].

19

2. Background

Figure 2.9: The basic graph model of GraphML [Bra+02].

Brandes and Pich provide more information about GraphML with a "key feature of
GraphML is the separation into structural and data layer, both conceptually and syn-
tactically; this enables applications to extend the standard GraphML vocabulary by
custom data labels that are transparent to other applications not aware of the extension.
Furthermore, applications are free to ignore unknown concepts appearing in the structural
layer, such as <port>s, <hyperedge>s or nested <graph>s" [BP05].

Figure 2.10: A hyperedge to v1, v2, and v4, where v1 is a source, and v2 is a sink. [Bra+02].
Brandes and Pich add more information on benefits of using GraphML: "Thanks to
its XML syntax, GraphML can be used in combination with other XML based formats:

20

2.3. Graph Analysis

On the one hand, its own extension mechanism allows to attach <data> labels with
complex content (possibly required to comply with other XML content models) to GraphML
elements, such as Scalable Vector Graphics describing the appearance of the nodes and
edges in a drawing; on the other hand, GraphML can be integrated into other applications,
e.g. in SOAP messages" [BP05].

Figure 2.11: The graph on the left represented in the most basic layer of
GraphML. [Bra+02].
GraphML consists of the following XML constructs [BP05]:

Mixed Multigraphs. "A mixed multigraph is a graph that may contain both directed
and undirected edges and may have loops and multi-edges. The representation
chosen for GraphML is a simple list of nodes and edges. GraphML defines XML
tags <graph>, <node>, and <edge> for this purpose." [Bra+02].

Ports. "A port is a subset of the incidence relations of a node and can be viewed as a
part of a node to which edges may attach. In electrical circuits for instance ports
can be legs of a chip, and in graph drawing, they may be used to specify points at
which edges connect to a node. In GraphML <port>s appear as nested subelements
of <node>s, and <edge>s may specify <port>s they attach to for both of their
endpoints" [Bra+02].

Hyperedge. "A hyperedge is a subset of nodes, together with a classification of these
nodes into inputs, outputs, or neither of the two. A GraphML tag <hyperedge>
may therefore contain any number of <endpoint>s which, in turn, refer to <node>s,
but also classify these nodes using the XML attribute type." [Bra+02].

Nested Graphs. "A nested graph is a graph occurring in an element of another graph.
There are many models of hierarchical graphs, e.g., allowing more than one nested
graph per element or a graph to be contained in more than one element. Each item
of a graph, i.e. each <node>, <edge>, or <hyperedge> may contain one nested
<graph> element. Though simple, this model is sufficiently general to support all
of the above variants. More than one contained graph can be expressed by defining

21

2. Background

a single contained graph that has a node for each of the child elements, and a
contained graph appearing in different places can be referenced using a <locator>
element." [Bra+02].

2.4 Goal Question Metric
Solingen et al. describe The Goal Question Metric (GQM) approach "is based upon the
assumption that for an organization to measure in a purposeful way it must first specify the
goals for itself and its projects, then it must trace those goals to the data that are intended
to define those goals operationally, and finally provide a framework for interpreting
the data with respect to the stated goals" [Sol+02]. Furthermore, authors emphasize
that "it is important to make clear, at least in general terms, what informational needs
the organization has so that these needs for information can be quantified whenever
possible, and the quantified information can be analyzed a to whether or not the goals
are achieved" [Sol+02].

Figure 2.12: GQM model is a hierarchical structure [Sol+02].
From the historic perspective, the approach "was originally defined for evaluating defects
for a set of projects in the NASA Goddard Space Flight Center environment" [Sol+02].
"The application involved a set of case study experiments" [BW84] "and was expanded
to include various types of experimental approaches" [Sol+02]. "Although the approach
was originally used to define and evaluate goals for a particular project in a particular
environment, its use has been expanded to a larger context" [Sol+02]. "It is used as the
goal-setting step in an evolutionary quality improvement paradigm tailored for a software
development organization, the Quality Improvement Paradigm, within an organizational
framework, the Experience Factory, dedicated to building software competencies and
supplying them to projects" [Sol+02].

Solingen et al. state that "the result of the application of the Goal Question Metric
approach application is the specification of a measurement system targeting a particular
set of issues and a set of rules for the interpretation of the measurement data" [Sol+02].
The resulting measurement model has three levels [Sol+02]:

Conceptual level (GOAL). "A goal is defined for an object, for a variety of reasons,

22

2.4. Goal Question Metric

Figure 2.13: The complete Goal/Question/Metric Model [Sol+02].

with respect to various models of quality, from various points of view, relative to a
particular environment." [Sol+02]. Objects of measurement are [Sol+02]:

• Products: Artifacts, deliverables, and documents that are produced during
the system life cycle; E.g., specifications, designs, programs, test suites.

• Processes: Software-related activities normally associated with time; E.g.,
specifying, designing, testing, interviewing.

• Resources: Items used by processes in order to produce their outputs; E.g.,
personnel, hardware, software, office space.[Sol+02]

Operational level (QUESTION). "A set of questions is used to characterize the way
the assessment/achievement of a specific goal is going to be performed based on
some characterizing model. Questions try to characterize the object of measurement
(product, process, resource) with respect to a selected quality issue and to determine
its quality from the selected viewpoint." [Sol+02]

Quantitative level (METRIC). "A set of data is associated with every question in
order to answer it in a quantitative way." [Sol+02] The data can be:

• Objective: If they depend only on the object that is being measured and not
on the viewpoint from which they are taken; E.g., number of versions of a
document, staff hours spent on a task, size of a program.

• Subjective: If they depend on both the object that is being measured and the
viewpoint from which they are taken; E.g., readability of a text, level of user
satisfaction.[Sol+02]

23

2. Background

2.5 Smell Detection
2.5.1 EA Smell Detection
Hacks et al. in the paper [Hac+19] propose to combine the concept of Technical
Debt [Cun92] by Cunningham with the concept of Enterprise Architecture to a so-called
EA Debts. This was not to cover technical aspects but instead, EA debts were to provide a
more holistic view of the entire organization, including flaws in the organization structure.
This proposal lacked an effective way to measure EA Debts. Furthermore,Salentin and
Hacks, in a new paper [SH20b] used the concept of Code Smells to adopt it and build
EA Smells since it was more popular to measure Technical Smells. They took into
consideration 56 Code smells and made a catalog of 45 EA Smells [Sal+21]. Later, this
was extended by Lehmann et al. in [Leh+20] by taking the inspiration from process
anti-pattern, and Tieu and Hacks in their paper [TH21] where they were inspired by
software architecture smells.

2.5.2 Code Smell Detection
Initial work on code smell detection goes back to Fowler in his book [Fow99], where
a work on code refactorings was published. Later this was developed further to code
smells with respect to UML Class Diagrams by Arendt and Taentzer; Suryanarayana,
Samarthyam, and Sharma; Haendler; Mumtaz et al. in [AT10; SSS14; Hae18; Mum+19]
respectively. Some of the code smells can be seen in Figure 2.14.

24

2.5. Smell Detection

Figure 2.14: Overview of 14 software design smells categorized by design principles
[Hae18]

25

CHAPTER 3
Related work

3.1 EA and Graph-based Analysis
We have already introduced some of the related work in Sec. 1.1.1. Here we now expand
this topic with the related work in this domain. As already stated, there is a lot of research
to give more options to enterprise architects with additional analysis techniques [BMS09].
Buckl, Matthes, and Schweda emphasize the necessity of automated tools that will provide
different analysis techniques. Additionally they put the emphasis on scalability of the
approaches in order to handle large EA models. In their work, Lantow et al. state that
"Modern analysis approaches should combine interactive visualizations with automated
analysis techniques" [Lan+16]. Additionally, Santana et al. emphasise the need to have a
proper tool which will enable EA analysis. Barbosa et al. were concerned on what EA
analysis is, and therefore developed a taxonomy for EA analysis research [Bar+19]. This
taxonomy consists of four dimensions: EA Scope, Analysis Concern, Analysis Technique,
and Modelling Language. The last dimension was then separated in nine groups. Out
of these nine groups, two are interesting for this thesis ArchiMate-based and Graphs.
Moreover, different analysis techniques like Metric-based, Structural analysis, and Visual
analysis are introduced.

We now move into research on the intersection of EA analysis and graph-based analysis.
Garg, Kazman, and Chen in their study [GKC06], propose a 3-tier architecture in order
to enable the definition of different enterprise applications by transforming them into
the graph structure. The reason for this representation is the tendency to provide
better visual analysis through a "system of systems" view, reliability and redundancy
via architectural analysis, and risk analysis. This proposal does not contain modeling
possibility and is technical and conceptual by nature. Aier presents a tool called EA
Builder [Aie06]. The purpose of this tool is to identify clusters in the candidates for service
in a service-oriented architecture which are presented in graph structures. EA Builder
provides the possibility to model the EA via Event-Driven Process Chains. Unfortunately,

27

3. Related work

this tool is not available anymore. Similar to this, Iacob and Jonkers present the idea to
quantitatively analyze "layered, service-oriented EA models, which consists of top-down
propagation of workload parameters and bottom-up propagation of performance and cost
measures" [IJ06].
Another approach is focused on using Bayesian Belief Networks. This was proposed by
Holschke et al. in their study [Hol+09] where they use these networks to implement failure
impact analysis on models developed in ArchiMate. The work presented in [San+16]
proposes a cognitive-structural diagnosis analysis method that combines manual inspection
by experts (i.e., enterprise architects) with the computational power of graph analysis
algorithms. In contrast to our approach, their approach is data-driven and manual,
i.e., not using a modeling language and is not following a model-driven approach. The
authors claim their approach would "benefit considerably from a software plugin capable
of converting data from architecture models to networks." [San+16, p. 5]
Santana, Fischbach, and Moura perform a broad literature review of EA network analysis
in their study [SFM16]. They identify applied measures and main achievements. In total,
29 papers were chosen and analyzed. The concepts from EA domains from TOGAF are
used to classify all the measures. They found that 22 out of 29 papers have application
architecture as the input. 10 out of 29 papers contained only an illustrated application,
5 out of 29 proposed measures theoretically. Furthermore, "most of the measures (51 out
of 67) are designed for relationship level". Summary of the network analysis initiatives
can be seen in Fig. 3.1 and Fig. 3.1. One of the recommendations for future research
is the tool development for EA analysis. It is mentioned here that [LH12] presents the
transformation of the BPMN model to network structure suitable for analysis while
[Ram+14] presents additional example of tool support.
We now briefly discuss the EA analysis approaches that do not involve graph structures.
Österlind, Lagerström, and Rosell in their study [ÖLR12] propose a tool named Enterprise
Architecture Analysis Tool (EAAT). The idea behind this tool is to extend ArchiMate
concepts "with variables that are computed for structurally analyzing the EA" [ÖLR12].
These variables are then used to calculate the metrics for Coupling, Complexity, Size, and
Modifiability which should help enterprise architects in their decisions on modifying the
EA. More on the metrics side is proposed by Singh and Sinderen where they introduce
"seven metrics to measure the criticality and impact of any element in an EA model" [SS15].
Another idea is to adapt ArchiMate modeling language itself to perform some analysis.
This was done by Buschle, Johnson, and Shahzad where they present a tool that can be
used to analyze the availability of EA components by using "fault tree formalism" [BJS13].
Antunes, Caetano, and Borbinha address the complexity of the models, which will have
to be analyzed manually [ACB14]. The paper states the need for the appearance of
automated analysis proposals. Furthermore, the paper discusses the use of ontologies
for EA analysis "focusing on the particular case of description logics" [ACB14]. For
that purpose, a "survey on analysis approaches is performed and the reasoning features
provided by description logics are matched to the different types of EA analysis" [ACB14].
With the results there, "a set of constructs is proposed for the representation, integration,

28

3.1. EA and Graph-based Analysis

Figure 3.1: Network analysis initiatives found in primary studies part 1. [SFM16].

29

3. Related work

Figure 3.2: Network analysis initiatives found in primary studies part 2. [SFM16].

and analysis of EA models" [ACB14]. As an example, "a demonstration of such constructs
applied in compliance analysis is performed using an example scenario" [ACB14]. They
propose "architecture that makes possible the usage of reasoning for performing analysis
of the models, providing the required information for stakeholders" [ACB14]. On the
other side authors mention a limitation that "different types of analysis rely on different
types of techniques that offer features that cannot be offered by ontologies" [ACB14].
The additional limitation which is mentioned is "not to the ontology technology, but to
the analysis itself, which is that the quality of the analysis is dependent on the quality of
the information captured in the EA" [ACB14].

Furthermore, Antunes et al. add more to ontology-based enterprise architecture model
analysis in another study [Ant+14]. This paper describes an application of ontology
engineering to enterprise architecture. As a contribution it provides "an extensible
architecture description language that includes an upper ontology that can be integrated
with multiple domain-specific ontologies, each focusing on different concerns" [Ant+14],
where "resulting integrated models can be automatically analyzed" [Ant+14]. As a case
study an example based on "concerns a regulatory organization that assesses and monitors
the structural safety of large engineering infrastructures, such as hydroelectric power

30

3.1. EA and Graph-based Analysis

plants, dams, and bridges" [Ant+14] is provided. The proposal "was evaluated with a
case study that uses ArchiMate as the upper ontology and a number of domain-specific
ontologies that extend the core description language" [Ant+14]. The authors claim
that "in this way, the domain-specific ontologies increase the expressiveness of the upper
ontology with domain-specific aspects" [Ant+14].

Another very important work that connects EA and graph-based analysis comes from
Naranjo, Sánchez, and Villalobos and their prototype tool PRIMROSe [NSV15]. The
authors highlight the problems of complexity and size when it comes to static analysis of
models. They discuss how "current approaches focus on partial views and queries over this
model, leading to partial assessments of the architecture" [NSV15] and propose "a different
approach to EA analysis, which consists on the incremental assessment of the architecture
based on the interaction of the user with visualizations of the whole model" [NSV15]. So
the main idea is to move from partial view-based assessment to whole model assessment.
Their approach is based on graphs which are "a homeomorphism on the enterprise
models" [NSV15]. In PRIMROSe, Naranjo et al. are focusing on: Incremental Analysis,
Reusable and extensible functions, Non-destructive Analysis, Independence from the
Visualization toolkit, and Customizable Visualizations. The PRIMROSe architecture can
be seen in Fig. 3.3. It consists of four components: Graph Manager (used to translate
EA model into an Expanded Graph), Project Manager (administration of the different
projects of a user), Pipeline Engine (management and application of different stages with
respective sequential operations), and User Interface (editor for Pipeline Descriptors and
workbench for visual analysis).

Figure 3.3: PRIMROSe Architecture. [NSV15]
An example of PRIMROSe model visualisation can be seen in Fig. 3.4. Authors also
define term Analysis Functions "which receives as input the Analysis graph", and "its
output is the modified graph, with additional selectors, and even new attributes" [NSV15].
As an example they implement two analysis functions: Degree Calculator and Impact
Analysis. The result can be seen in Fig. 3.5.

More recent non-academic work seems to really address the intersection of EA and
graph structures. Lazarevic speaks about on Using a Graph Database to Explore Your
ArchiMate Model in her blog pages [Laz19; Laz21]. Lazarevic addresses "the challenge in
getting started can be from moving from existing modelling tools and artefact repositories
to be able to start using the power of graph databases" [Laz19]. Lazarevic also talks about

31

3. Related work

Figure 3.4: PRIMROSe ArchiSurance Model Graph. [NSV15]

importing "an existing ArchiMate diagram into Neo4j using either the Archi database
plugin, or Neo4j Cypher queries" [Laz21] and then "query the diagram, both for basic
items such as lone elements and connectivity, to using some graph algorithms to look
at element relationship strengths" [Laz21]. In order to import the data in Neo4j she
mentions two ways. First one via the Archi database plugin and second via the Neo4j
CSV importer. Archi database plugin [Jou+21] provides the possibility to export Archi
models to PostGreSQL, MySQL, MS SQL Server, Oracle or SQLite and Neo4j [Jou+21].
An example can be seen in Fig. 3.6.

She then provides examples of questions an enterprise architect could ask and provides
a Cypher query to answer this question. One such example is "Q4: What elements are
impacted if technology service “Claim Files Service” stops working?" [Laz21] which is
answered by Cypher query matching pattern. Moreover she even uses some centrality
algorithm measures in order to answer some questions. One example for this is "Q5:
What are the most connected elements in my estate?" [Laz21] where she uses PageRank
algorithm to answer this.

32

3.1. EA and Graph-based Analysis

(a) (b)

Figure 3.5: Incremental appliance of Analysis Functions Degree calculator (a), Impact
Analysis (b). [NSV15]

(a)
(b)

Figure 3.6: Neo4j Archi database plugin transformation of initial model (a), result in
Neo4j (b).

33

3. Related work

Study

Te
ch

no
lo

gy

To
ol

su
pp

or
t

M
od

el
lin

g
la

ng
ua

ge

A
pp

ro
ac

h

[GKC06] WEB J2EE IDEA - Graph visualisation

[Aie06] Desktop
Java EA builder specific EA Builder

meta-model
Clustering algorithms
in networks

[IJ06] - - ArchiMate Quantitative Analysis
[LH12] - - BPMN Network analysis
[Ram+14] Desktop ArchiAnalysis ArchiMate Quantitative analysis

[SFM16] - - TOGAF Survey network analy-
sis

[Hol+09] - GeNIe-tool ArchiMate Bayesian Belief Net-
work

[ÖLR12] Desktop TEAMATe ArchiMate, TEAMATe
metamodel Metrics, OCL

[SS15] - - ArchiMate Lightweight graph met-
rics

[BJS13] Desktop
Java EAAT customized ArchiMate Property analysis, fault

tree formalism
[ACB14] - - ArchiMate Description Logics
[Ant+14] - - ArchiMate OWL-DL
[NSV15] Desktop PRIMROSe ArchiMate Graph based analysis

[Laz19; Laz21] Desktop
Archi
database
plugin

ArchiMate Graph based analysis,
Neo4j

[Hew19] Desktop
Archi
database
plugin

ArchiMate Graph based analysis,
Neo4j, Gephi

Table 3.1: Summary of studies with a relation between EA analysis and graph struc-
tures.

Heward reflects on [Laz19] in his blog page [Hew19] and introduces more ideas. He
wanted to "be able to get data out of the excellent Archi tool into a place where I can
perform meaningful queries on it" [Hew19]. He then explains how he was thinking to
achieve it. He talks about the idea to use the Jasper reporting tool, but that turned
out to be too complicated. Moreover, he talks about the possibility to export Archi
model to Open Exchange File and use some XLST transformation to transform the data
to GraphML and import it to Neo4j. However he had issues to load GraphML file to
Neo4j. Then he tried to use Gephi, but this also did not enable much possibilities to
querying for him. He also talks about importing it to MySQL. He also compares the
Neo4j to JArchi and MySQL database and he claims neo4j "is just more dynamic and
visual" [Hew19] and it "really works well with highly complex data structures (which a

34

3.2. State of the art EA Tools

mature Architecture repository based in ArchiMate becomes)" [Hew19]. He emphasizes
that Neo4j provides "queries and dependency queries that are not naturally possible with
scripts and SQLs" [Hew19].

In the end of this section we provide a summary of different studies mentioned before.
Summary can be seen in Tab.3.1. We set this summary based on following criteria:

Technology: which technology is used in tool

Tool support: if exists, name of the tool developed to support analysis process

Modeling language: which modeling language is used to represent the architecture

Approach: high level representation of the used analysis approach

3.2 State of the art EA Tools
Apart from different analysis approaches from various research papers, standardized
industry tools compete to be selected by large enterprises in real-world situations. Many
tools enable EAM in organizations. Choosing a state-of-the-art tool at a given time is no
easy task. Since having information on what tool is among the best ones is important
to different stakeholders, many consulting agencies exist that research to give clear and
precise recommendations to their clients. One such company is Gartner [Gara]. Gartner
is one of the world’s most popular review agencies, and many companies compete to get
a better ranking there. Gartner offers what they call "Magic Quadrant" that consists of
two dimensions:

• Ability to execute

• Completeness of vision

These two dimensions then enable 4 quadrants:

Challengers high ability to execute, low completeness of vision

Niche players high ability to execute, low completeness of vision

Visionaries low ability to execute, high completeness of vision

Leaders high ability to execute, high completeness of vision

Companies placed in the quadrant by Gartner use this as one of the most vital marketing
points. One such example is ServiceNow [Ser] with ITSM Magic Quadrant. Gartner has
also done the same for Enterprise Architecture Tools for many years now. The latest
version Magic Quadrant for Enterprise Architecture Tools 2021 [Garb] presents what

35

3. Related work

Figure 3.7: Magic Quadrant for Enterprise Architecture Tools [Garb].

they claim the state of the art tools for Enterprise Architecture. Results for Enterprise
Architecture tools can be seen in Figure 3.7

The Leaders (state of the art) based on Gartners in Enterprise Architecture tools are:

BOC Group Tool name: ADOIT. Slogan: "Leverage Enterprise Architecture to Outpace
Your Competition.". Key features: ArchiMate, Lean Design & More, Effective
Teamwork, Agile Goal Management, Powerful Analysis ("Leverage endless graphical
analysis possibilities. Turn data into actionable insights. And facilitate fact-based
decision making across the enterprise."), Next-Level Openness, Flexible Set-Up &

36

3.2. State of the art EA Tools

Licenses, Great Configurability, Easy Migration [Gro].

LeanIX Tool name: LeanIX EAM. Slogan "Manage the transformation and risk of your
IT landscape". Key features: "increase speed (access to relevant data immediately,
save time for manual data collection, accelerate decisions with insightful data), save
costs (reduce redundant or unused technology, identify cost drivers quickly, free
up financial resources for innovation), reduce risks (identify technical debts easily,
address technology risks proactively, stay compliant with regulations)" [Lea].

MEGA International Tool name: MEGA, Slogan: "Leverage next-gen enterprise
architecture solution to accelerate business transformation". Key features: IT
Business Management, IT Architecture, IT Portfolio Management [Int].

BiZZdesign Tool name: BiZZdesign. Slogan; "Integrating IT insights for a holistic
approach to executing business strategy and business change". Key features: "Native
ArchiMate 3 support for consistent modeling, Collaboration across departments
and continents, Support decision-making with customizable views and dashboards,
Define and manage the impact of change" [BiZc].

Software AG Tool name: Alfabet. Slogan: "Change enterprise architecture fast with
Alfabet". Key features: Validate change initiatives, Coordinate your changes, Inform
change decisions [AG].

Avolution Tool name: ABACUS. Slogan: "ABACUS enables organizations to analyze
business scenarios, model people, processes and technology, build roadmaps and align
IT and business strategies". Key features: "Cloud-based collaboration, supporting
remote working and digital strategy, Building enterprise architecture roadmaps to
navigate IT and business change, Centralized data in a single repository with our
integrations and API" [Avoa].

Capsifi Tool name: Capsifi. Slogan: "Align organizational teams around a common
understanding of how business functions are supported by your technology portfolio
and manage the lifecycle of your digital assets with Capsifi’s enterprise architecture
operating model.". Key features: "Transformation planning, Strategic roadmaps,
Business motivation model, Value trees, Capability maps, Heatmaps, Technol-
ogy portfolio, Customer segments and personas, Organisation structure, Business
requirements, API management, etc."[Cap].

Ardoq Tool name: Ardoq. Slogan: "Navigate Your Change Initiative with Confidence".
Key features: "Automation, Engagement, Flexibility, Surveys, Presentations, Broad-
casts, Graph Powered Reporting and Dashboards, Intelligent Graph Powered Fields,
Graph Powered Filters, Visualize, Compare and Share at Speed" [Arda]. This tool
provides: graph powered reporting and dashboards, intelligent graph powered fields,
graph powered filters which will be examined further in the evaluation chapter.

37

3. Related work

Based on the Gartner Magic Quadrant for Enterprise Architecture tools, we will compare
some leaders and open-source tools like Archi. The following sections will briefly explain
the analysis possibilities of some open-source and Gartner leaders tools.

3.2.1 Archi

We will start with Archi. Archi tool is an open-source tool and is running on the local
machine. On the left side, a user can see the models view where all the elements and
views are located. Users can search by element name or view name or relation name.
When some element is selected in the view, a user can see in which views the element is
used and which relations it has in a list manner. Next, in the Visualiser user can check
the relations of the element in a graph-based manner.

Figure 3.8: Archi Visualiser view with the possibility to set relation depth.

What is important to note is that it is possible to select the depth of the visualization
to up to 6 (this means the user can see all the relations of the selected elements up to
the 6th element following the relations). On the same visualizer, a user can also see the
relations of the neighbors of the selected element.

Regarding the filtering of this visualization, it is possible to select which element type
(user can select to use all or only one element type) is used, which relation type (same
applies as for elements), and also which relation direction. Additionally, for this graph-
based visualization, it is possible to select specific Viewpoint filter which are sets of
specific element types and relations. One example is Application Usage viewpoint filter

38

3.2. State of the art EA Tools

that will show relations to elements like application service, business process, application
collaboration.

The tool offers the export of created visualizations as images. Additionally, the tool
offers Validator tab which will show errors, warnings, and advice. An example of an
error is the illegal relation, and an example of warning is that the element is not used in
a view or element is a possible duplicate. An example of advice would be that the view
is empty or the element is nested visually in another element, but there is no nesting
relation between them.

Apart from standard functionality there are plugins and one such plugin is discussed
in Sec. 3.1. This plugin [Jou+21] can export the Archi model to database engines like
PostGreSQL, MySQL, MS SQL Server, Oracle or SQLite and Neo4j.

3.2.2 ADOxx and TEAM

Another open-source tool we will evaluate is ADOxx. The same as Archi, it runs locally
on a machine. The difference to Archi is that ADOxx uses a local SQL database to store
all information. This includes information about users, libraries, and models. ADOxx
provides the possibility of creating a custom meta-model, and using it to create model
instances from it. The platform itself consists of two parts: ADOxx Development Toolkit
and ADOxx Modeling Toolkit. Users can manage users, libraries, and models in the
development toolkit. On the other hand, the modeling toolkit provides the possibility to
work with the models, analyze models, and execute simulations and evaluations. In the
context of analysis ADOxx provides a separate button called Analysis which provides
the following features: Queries/Reports, Predefined Queries, and Analytical Evaluation.
Queries are defined in the development toolkit and an example can be seen in Fig. 3.9.

(a)
(b)

Figure 3.9: ADOxx TEAM library example query definition development toolkit (a),
result in modeling toolkit (b).

39

3. Related work

Furthermore, in the same way, as for executing analysis queries, ADOxx provides the
possibility to create evaluation queries. With respect to visualizations, ADOxx does not
offer different model layouts. It does provide a Notebook and Table view for entity. This
can be seen in Fig. 3.10.

(a)

(b)

Figure 3.10: ADOxx TEAM library example notebook view (a), table view (b).

On the other hand, users can create different icons for each entity and relationship,
resulting in the possibility of creating the ArchiMate model. This was enabled by the
TEAM tool [Bor+18]. The tool was a joint work of Bork et al. where they have created
"a prototype TOGAF-based Enterprise Architecture Management (TEAM) modeling tool
that implements the Archimate 3.0.1. standard" [Bor+18]. The TEAM modeling tool is
realized with the ADOxx metamodeling platform, and it supports all ArchiMate 3.0.1
layers aligned with the TOGAF framework. Combined, the tool "enables basic ArchiMate
modeling and TOGAF support as well as acting as a facilitator for EAM" [Bor+18].

The tool offers "the modeling palette, listing the available ArchiMate language concepts
of the currently opened model on the left side", "intuitive context menu that features the
model queries - e.g., for the lifecycle management", and "the additional functionality -
e.g., for the business continuity management" [Bor+18]. The screenshot from the tool
can be seen in Fig. 3.11.

3.2.3 ADOIT
This tool runs directly in the cloud and is accessible via the browser and is accessible via
user credentials. Straight from this, it can be seen that sharing is easy since the tool is
running in the cloud and has user management. On the left side, the tool offers three
tabs: objects, models, quick access. Each tab contains a list, and it is similar to Archi.
On top of these tabs, there is a field filter, where the user can type in some text, and
objects/models will be shown. Users can also download the models and objects in the
ArchiMate exchange file.

40

3.2. State of the art EA Tools

Figure 3.11: "Executing model queries in the TEAM tool." [Bor+18]

Users can also download the report in PDF format containing the model’s image and all
elements with details and relationships. Furthermore, the interface has Analyse button in
the top navigation bar. This offers reports in the following representations: cluster map,
Gantt, matrix, and portfolio. Additionally, there are predefined reports grouped by the
ArchiMate layer. For example, users can create a Gantt report with all the application
components and system software to see when some software will expire. Another example
is to create a matrix to see which business object uses which application component.

On the other hand, the tool offers search with the following criteria: topic(motivation,
strategy, business), model (by name), object (by name), by property (name or description).
The tool also offers to validate button, which can be executed on all models. This will

41

3. Related work

provide information about methodological warnings such as the mandatory field is not
populated or relation does not comply with best practice. There is a button Insights for
each object where the user can see the classification of the element in RACI, relations
to other elements in graph-based view, data usage in applications, and application
component details with the business and IT fit.

3.2.4 ABACUS

Another tool is Avolution ABACUS. It provides many standard frameworks like ArchiMate,
BPMN, and many more (100+ frameworks). Each meta-model can be adjusted. Although
ABACUS is a desktop tool, it provides cloud-based collaboration. On the analysis side,
it provides scenarios similar to other tools in order to test future state architectures.

It also provides automated calculations to show costs, risks, technical and operational
metrics, and dependencies. In order to visualize things, ABACUS offers to create
dashboards with charts and metrics specific to different stakeholders. ABACUS has used
graph database technology for over 15 years [Avob], where they claim that traditional
relational databases are a source of frustration because they cannot fulfill increasing user
demands and analysis techniques.

3.2.5 HoriZZon

BiZZDesign offers a tool called HoriZZon, which is an enterprise architecture platform.
The platform has a modeling environment called Enterprise Studio. The platform is a
SaaS product, but also hybrid (cloud and desktop), and also on-premise versions are
available. It provides integrations to Jira, SAP, Azure, AWS, and others regarding data
integration.

Modeling and roadmapping as core feature, offers different modeling frameworks like
ArchiMate 3.1, BPMN 2.0, UML/ERD, DMN. Out-of-the-box platform offers different
user stories. These user stories are Strategy and Motivation, Understand, Connect
Business Technology, Design Roadmap Change, Assess Risk, Execute Change. Each user
story is a set of different views for management purposes.

For example, Strategy and Motivation contains views like Transformation Dashboard,
Business Motivation Model, SWOT Analysis, and Balanced Scoreboard. By default, the
views are visualized using Elasticsearch Kibana. Other BI tools are also supported. When
an entity is selected on the right-side, a user can see properties, documentation, metrics,
relations, and views.

An example of metrics for an ArchiMate capability is Total OpEx(Current). These metrics
can be then incorporated into different charts, and all these charts can be exported. In
the Enterprise Studio, it is possible to select different elements and create a view that
contains relations to predefined types of elements.

42

3.2. State of the art EA Tools

Figure 3.12: Avolution ABACUS graph database usage vision of benefits [Avob]

3.2.6 Ardoq

Ardoq and ABACUS are probably the closest to what this research is about. Ardoq is data-
driven enterprise architecture platform which is powered by graph-based analytics. The
core thing in this online platform is the graph that represents the enterprise architecture
modeled by different stakeholders. This graph consists of components and references,
which represent nodes and relations, respectively. These components and references are
contained in workspaces that act as repositories.

The platform offers out-of-the-box meta-models (such as ArchiMate 3.0) and allows the

43

3. Related work

Figure 3.13: Strategy and Motivation user story views in HoriZZon [BiZa]

Figure 3.14: Enterprise Studio in HoriZZon platform [BiZb]

creation of a new meta-model that can be used later. Furthermore, the tool offers creation
of dashboards and also presentations. Compared to other tools we mentioned, these
presentations are unique about this platform. These presentations offer the possibility to
create different views with the reports based on the graph behind them. These reports
consist, similar to ADOIT, gent diagrams, different matrices, and others.

44

3.2. State of the art EA Tools

Figure 3.15: Possibility to define Gremlin search queries in Ardoq [Ardc]

Figure 3.16: Block diagram with specific components and references grouped by compo-
nent type in Ardoq [Ardb]

Users can also create a view based on selected components and relations that can be
further grouped in such a view based on different conditions. These conditions can be
component type based, property condition-based. The tool has many integrations to

45

3. Related work

different sources of data like Excel, Jira, ServiceNow, and others. Users can easily share
created dashboards and presentations with other users. It is also possible to directly run
the presentation in the browser and show it to people. It also has some other features
like surveys and architecture scenarios that can be easily visualized to as-is and to-be
architecture models.

As already mentioned, the platform stores all the entities and relations in a graph
database. This leads to another possibility to provide execution of the queries directly.
Luckily this is also enabled. The platform provides a possibility to specify queries written
in Gremlin and execute them on the database. There is a set of predefined queries, but
users can also create/save/share queries with other users. Considering this tool, it acts
most similar to the platform developed in this thesis as a prototype.

3.3 Summary
If we compare Fig. 3.1, Fig. 3.2, Tab. 3.1 and Sec. 3.2 we can conclude the following.
There are many studies with different initiatives that utilize network analysis for analyzing
EAs [SFM16]. Additionally, multiple statements and recommendations are highlighting
the need for EA analysis tool development [SFM16]. Tab. 3.1 shows that there is not
much diversity in modeling language (mostly ArchiMate) and is mostly a desktop-based
tool. On the other hand, state-of-the-art tools are all cloud-based, offering dozens of
different modeling languages and have uniform analysis methods. This leads us to a
conclusion that there is a high need for a generic tool (platform) that will support the
implementation of different initiatives discussed in [SFM16]. This is the main motivation
for this thesis. To build up such a tool, we first have to define a framework that will serve
as a starting point in the graph-based analysis of EA models. We state here EA models,
but we can also extend this to a more general topic, i.e., conceptual models. We introduce
the framework that explains how the general graph-based analysis of conceptual models
could be. The central part is the connection between conceptual models themselves and
network structures. This central part is the transformation of the conceptual model to a
suitable network analysis-ready structure, which we introduce in the following chapter.

46

CHAPTER 4
Transforming Conceptual Models

to Graphs

In this chapter, we will discuss the design of a general framework for analyzing conceptual
models in a graph-based manner. We will also define a transformation from different
meta-models to graph structure meta-models.

4.1 General Transformation Concept
This section introduces the framework to analyze the EA in a graph-based manner. The
framework can be seen in Fig. 4.1. Opposite to other works, this framework is designed
to be generic and easy to extend. It consists of three parts. It starts with popular
conceptual models developed in Ecore or ADOxx meta-modeling platforms. This way,
the framework enables the transformation of all models created with these meta-models
to a graph structure model. Next, the central part is the transformation of the model to a
GraphML model itself. This includes high-level transformation and also domain-specific
transformation if needed. This all together enables the use of third-party tools used to
analyze graphs. These tools have to support standardized graph structure GraphML. This
way, we design a framework that has models produced in standardized meta-modeling
platforms on one side, and the other side is an analysis of the graph itself. Having this
approach will enable a unified graph-based analysis approach of different models.

As seen in the framework overview Fig. 4.1, it was designed to start from meta2-level
to provide general transformation rules for higher-level (meta2) and then define custom
rules, if necessary, for lower meta-level. It can be discussed why it did not start from the
meta3 level but this can be left for further research. Additionally, we focus on the most
popular meta-modeling platforms to show the framework’s generality. After the model is
transformed (either from meta2-level or meta-level), the result is a graph-based structure

47

4. Transforming Conceptual Models to Graphs

Figure 4.1: A generic framework for transforming conceptual models into graphs. [SB21a]

file in standardized GraphML format. This format is supported by popular and powerful
tools such as Neo4j, Gephi, and yED. Some examples were displayed in the modeling
section in Fig. 4.1, which means we will discuss this further. For these examples, we will
provide transformation rules from Ecore, Archi, ADOxx, and PapyrusUML models into
GraphML. We take these four types of models to show the applicability of our generic
framework.

4.2 Ecore to GraphML Transformation
The first transformation is a transformation from the Ecore model to the GraphML
model. Meta-model to meta-model mappings can be seen in Fig. 4.2. It can be clearly
seen which Ecore concepts are mapped to which GraphML concepts. First EPackage
is being mapped to GraphML, and then all others are mapped to Graph. Every EClass
corresponds to Node, and each EReference corresponds to an Edge. For source value of an
edge, we take the initial EClass, and for the target, we take the corresponding outgoing
eReferenceType. Additional information about the EClass and EReference by means of
EAttributes is stored in the Data concept. Mapping of Ecore to GraphML concepts in
summarized version can be seen in Tab. 4.1.

Regarding the implementation of mapping shown in Tab. 4.1 there can be different
ways. Here we discuss one possibility where we will utilize existing methods of Java
implementation of Ecore metamodel [ecl21]. Algorithm 4.1 presents the pseudo-code for a
given Ecore2GraphML transformation. The transformation uses any specific conceptual

48

4.2. Ecore to GraphML Transformation

Figure 4.2: Generic transformation from Ecore to GraphML. [SB21b]

Ecore Concept GraphML Concept Rationale
EPackage GraphML General graph placeholder.
Epackage Graph Different packages apply to different

graphs.
EClass (EC) Node Ecore class represents graph node.
EReference(ER) Edge Ecore reference represent graph

edge.
EC → Edge.Source
ER.eReferenceType → Edge.Target

EC.EAttribute Node.Data Applies for all nodes.
ER.EAttribute Edge.Data Applies for all edges.

Table 4.1: Ecore2GraphML transformation rules.

model that is an instance of the Ecore metamodel as input and outputs a corresponding
graph represented in GraphML. As said, algorithm takes instance of model developed
by Ecore metamodel and outputs GraphML instance. In order to do so, there are three
important parts. The first part is to iterate through all packages of the input model
(line 1-20. 4.1). We map this to GraphML graph concept. The second port is to iterate
through all EObjects and transform them into nodes (line 3-9. 4.1). It is also important
to take all attributes of EObject and add them to the already created node (line 5-7. 4.1).
Third and last part is to transform the relationships between EObjects into edges. We
have to iterate through all EObjects again (line 10-20. 4.1) and iterate all its relationships
(line 11-19. 4.1). We did not do this in the second part because to create an edge in
GraphML, we have to have all nodes already created. In order to create an edge (line

49

4. Transforming Conceptual Models to Graphs

12.), we have to set source and target values, for which we have to find an already created
node (method findNode lines 13. and 14.). After this is done, same as in step two, we also
have to take special attributes of Ecore reference and transform them into GraphML edge
attributes (line 15-17. 4.1). If this is all done, we should have transformed all information
from the input model into the output model.

Algorithm 4.1: Ecore2GraphML transformation.
Input: Ecore model instance.
Output: GraphML model instance.

1 for EObject package : input.eAllContents().getPackages() do
2 Graph g ← transformPackage(package)
3 for EObject eo : package.eAllContents() do
4 Node n ← transformNode(eo)
5 for EAttribute a : eo.getEAllAttributes() do
6 n.addAttribute(transformAttribute(a))
7 end
8 g.add(n)
9 end

10 for EObject eo : package.eAllContents() do
11 for EReference ref : eo.getEAllReferences() do
12 Edge ed ← transformEdge(ref)
13 ed.source ← findNode(eo)
14 ed.target ← findNode(eo.get(ref))
15 for EAttribute a : ref.getEAllAttributes() do
16 ed.addAttribute(transformAttribute(a))
17 end
18 g.add(edge)
19 end
20 end
21 output.add(g)
22 end
23 return output

4.3 ADOxx to GraphML Transformation
In this section transformation of a model developed in ADOxx is discussed. The
transformation rules for this transformation are given in the table 4.2. As seen in Fig. 2.8
in the middle of the ADOxx metamodel, there is a model type that is the base of the
model which has attributes and contains objects and relationships together with their
attributes. Therefore the mapping goes from ADOxx Modeltype to GraphML Graph. For
each model we transform Class to Node and Relation Class to Edge. Additionally we
also transform class and relation class Attributes to Data. It is important to note here

50

4.3. ADOxx to GraphML Transformation

the particular case of classes with type Grouping which can hold other class instances;
therefore, we map this to a Graph.

ADOxx Concept GraphML Concept Note
- GraphML General graph placeholder.
Modeltype Graph Different model types apply to dif-

ferent graphs.
Class "Grouping" Graph Classes of type "Grouping" represent

subgraphs.
Class Node Class represents graph node.
Relation class (RC) Edge Relation class represent graph edge.

RC.is From → Edge.Source
RC.is To → Edge.Target

Class.Attribute Node.Data Applies for all nodes.
RC.Attribute Edge.Data Applies for all edges.

Table 4.2: ADOxx2GraphML transformation rules.

ADOxx uses a standardized and unified Extensible Markup Language (XML) structure
for storing and transferring the models from one environment to another. This is not the
case with Ecore, which is always different and dependant on an actual conceptual model
when exported to XMI. Therefore the transformation works by transforming the ADOxx
XML file to a GraphML. The pseudo-code is given in algorithm 4.2.

Here we utilize the XML structure of ADOxx file, and therefore we can iterate through
the nodes of the XML document and transform it how we want. The algorithm has two
main parts here, and each part has specific rules to handle the specific case of grouping
we mentioned before. The first part consists of iterating through all nodes of the XML
document with the name "INSTANCE" (line 2-12 4.2). For each instance, we check
whether it is grouping or not. In case of grouping we create new graph (subgraph) and
add it to the parent graph (line 3-5 4.2). In other cases, we create a node and map its
properties (line 7-11 4.2).

After the first part is completed, i.e., creating the nodes and subgraphs, we can now
iterate through connectors and build up edges. Again here, we have to check if it has
something with the grouping, and therefore we check if the relation has attribute class
"Is inside", which means that from class is contained in the group. In this case we move
the node from initial graph and add it to the graph of class to (line 15-18 4.2). In other
cases, we create an edge and map its properties (line 20-26 4.2).

51

4. Transforming Conceptual Models to Graphs

Algorithm 4.2: ADOxx2GraphML transformation.
Input: ADOxx model instance (XML file).
Output: GraphML model instance.

1 Graph g ← transformPackage(instance)
2 for Instance i : input.getElementsBy("INSTANCE") do
3 if getClassName(i) = "Grouping" then
4 Graph gGroup ← transformPackage(i)
5 g.add(gGroup)
6 else
7 Node n ← transformNode(i)
8 for Attribute a : i.getElementsBy("ATTRIBUTE") do
9 n.addAttribute(transformAttribute(a))

10 end
11 g.add(n)
12 end
13 end
14 for Connector c : input.getElementsBy("CONNECTOR") do
15 if c.getAttribute("class") = "Is inside" then
16 Graph gOrigin ← getGraph(c.to)
17 gOrigin.add(c.from)
18 g.remove(c.from)
19 else
20 Edge ed ← transformEdge(c)
21 ed.source ← c.from
22 ed.to ← c.to
23 for Attribute a : c.getElementsBy("ATTRIBUTE") do
24 ed.addAttribute(transformAttribute(a))
25 end
26 g.add(edge)
27 end
28 end
29 output.add(g)
30 return output

4.4 Papyrus to GraphML Transformation
This section shows the mapping from the Papyrus UML class diagram to GraphML.
As shown in Table 4.3 we have specified only a few concepts. This is because we only
focus on the UML class diagram and not all UML concepts. Here we have a bit different
situation than before since both classes and relationships are represented as Class objects
in UML. In the case of classes, we map the class object of type Class, AssociationClass,
Package, Component, and DataType to a node. In the case of relationships, we are

52

4.4. Papyrus to GraphML Transformation

mapping class objects of type Generalization, Realization, Abstraction, Dependency, and
Realization to an edge.

Papyrus UML
Concept

GraphML Concept Note

UML Model GraphML General graph placeholder.
Package Graph Different packages apply to different

graphs.
Class Node Class represents graph node.

Following types are considered:
uml:Class
uml:AssociationClass
uml:Package
uml:Component
uml:DataType

Class Edge Relation class represent graph edge.
Following types are considered:
uml:Generalization
uml:Realization
uml:Abstraction
uml:Dependency
uml:Realization

Class.Attribute Node.Data Applies for all nodes.

Table 4.3: PapyrusUML2GraphML transformation rules.

The pseudo-code can be seen in Algorithm 4.3. The implementation focuses on parsing
the XML file where the UML model is stored. The algorithm consists of two parts. The
first part is transforming the nodes, and the second is transforming the edges. XML
structure of Papyrus UML stores all elements under a XML node called packageImport.
Each of these XML nodes has a property called xmi:type where the name of class is
stored (in some cases this property is called xsi:type). As we are dealing with UML
models are considering the following types uml:Class, uml:AssociationClass, uml:Package,
uml:Component, and uml:DataType. We iterate through all packagedElement nodes
and we check if the type is one of the class name types (line 4-11 4.3). In the second
part, where we have to transform edges, we follow the same procedure, but now we filter
only XML elements that represent relationships (line 13-22 4.3). It is important to note
here that there are differences in identifying an edge’s source and target values. XML
structure of Papyrus UML files stores this information differently for specific classes. The
id of the source element is always stored in xmi:id property. In case of uml:Generalization
it is stored in attribute called general, in case of uml:Class it is stored in attribute called
name, in case of uml:ElementImport in attribute called importedElement and in other

53

4. Transforming Conceptual Models to Graphs

Algorithm 4.3: PapyrusUML2GraphML transformation.
Input: Papyrus model instance (XML file).
Output: GraphML model instance.

1 classes ← {”uml : Class”, ”uml : AssociationClass”, ”uml : Package”, ”uml :
Component”, ”uml : DataType”}

2 relations ← {”uml : Class”, ”uml : Abstraction”, ”uml : Dependency”, ”uml :
Realization”, ”uml : Association”}

3 Graph g ← transformPackage(instance)
4 for Instance i : input.getElementsBy("packagedElement") do
5 if classes.contains(i.getAttribute("xmi:type")) then
6 Node n ← transformNode(i)
7 for Attribute a : i.getAttributes() do
8 n.addAttribute(transformAttribute(a))
9 end

10 g.add(n)
11 end
12 end
13 for Instance i : input.getElementsBy("packagedElement") do
14 if relations.contains(i.getAttribute("xmi:type")) then
15 Edge ed ← transformEdge(i)
16 ed.source ← getObject(i.getAttribute(”xmi : id”))
17 ed.to ← getObject(getTargetAttributeBasedOnClassType(i))
18 for Attribute a : i.getAttributes() do
19 g.addAttribute(transformAttribute(a))
20 end
21 g.add(edge)
22 end
23 end
24 output.add(g)
25 return output

cases in attribute called type. Therefore it is necessary to correctly identify the target
element of an edge (line 17. 4.3).

4.5 Archi- And ArchiMate-Specific Transformation to
GraphML

As shown in Fig 4.2 the transformation can include some domain-specific transformation
steps. For example, the ArchiMate model can be developed upon different meta-models.
One such example is Ecore, and also one such tool that follows this is Archi. An example
of overriding the general rules is given in the next section.

54

4.5. Archi- And ArchiMate-Specific Transformation to GraphML

Here we handle the domain-specific transformation. We will override generic transforma-
tion Ecore2GraphML (Table 4.1) to support the specific needs of some modeling language
(i.e., ArchiMate). What is explicitly included in the Archi tool are the folders and diagram
models. We handle this so that we add a rule that transforms a Grouping, Folder, or
DiagramModel concept into a nested Graph. The initial transformation would yield a
node for this. Also, what is important is to put all content associated with these concepts
into nested groups so we can utilize possibilities provided by GraphML. If some entity
were a part of a folder, it would be contained in a nested graph in GraphML. Additionally,
since we are using the Ecore2GraphML general transformation, we need to exclude
unnecessary concepts developed additionally in ArchiMate meta-model. One concept,
for example, is DiagramModelArchimateObject, which is used to store the information
about how the object is rendered in the Archi tool, which is not helpful information for
analysis that will take place on a resulting graph, so no need to transform this.

ArchiMate (Archi) GraphML Note
Grouping Nested graph Different groupings, folders, and

diagrams correspond to different
graphs.

IFolder
IDiagramModel
IArchimateRelationship
(iAR)

Edge This specific Archi concept corre-
spond to an edge.
iAR.parent → Edge.Source
iAR.target To → Edge.Target

IFolder no mapping This entities are excluded since
IDiagramModel they are not relevant.
IDiagramModel
DiagramModelBendpoint
DiagramModelArchimateConn
DiagramModelNote
DiagramModelReference
Bounds
IArchimateRelationship
ArchimateModel

Table 4.4: Archi- and ArchiMate-specific transformation rules.

In this domain-specific example, the different way of storing relationships in Archi is also
important to consider. Relations are stored as entities IArchimateRelationshipEntitys,
and in the default configuration, they will be transformed into nodes which is not correct
(refer to Fig. 2.6). This has to be changed, and the IArchimateRelationshipEntity should
be transformed into an Edge. This rule is also included in Tab. 4.4.

55

CHAPTER 5
Prototype Platform

This chapter is devoted to details about implementing a prototype platform for the
framework introduced in section 4.1 described in Fig. 4.1). The platform is called
Conceptual Model to Knowledge Graph Platform (CM2KG)1. Several things can be
considered when it comes to creating a prototype platform for the introduced framework.
These topics are related to storage, performance, user interface, and depending on this,
different technologies can be used to achieve such requirements. The platform developed
for this thesis is cloud-based, and the reason for this is to enable as much as possible
that cloud solutions offer. Also, this chapter will contain information on how different
centralities can be used and how different EA and UML Code smells queries can be
implemented in a graph-based manner. The code for all this can be found in the GitHub
repository [BS21].

5.1 Platform Overview
In this section, we will discuss the prototype platform architecture. Again, this can
be implemented in a different way and is dependant on software requirements itself.
The platform has three different parts, which can be seen in Fig. 5.1. These parts are
Modeling Tools, CM2KG Cloud, and Third-Party Tools. It starts with the Modeling Tools,
where users create models in different modeling tools. Next, models are then exported in
standardized formats (mostly XML structured files). Previous step is then input for the
next part in the architecture chain, i.e., CM2KG Cloud. This part is where the prototype
platform is deployed and hosted. It consists of application and database servers running
in two different virtual machines (it can also run on one machine only). The application
server has the functionality to host the web application, which servers as a user interface,
and additionally, it has logic to transform models. This web application is intended to be

1CM2KG platform [online]: https://me.big.tuwien.ac.at/

57

https://me.big.tuwien.ac.at/

5. Prototype Platform

extended with different analysis modules like smell analysis, which will be discussed later.
On the other side, the database server has the role of storing the transformed graph and
provide different graph algorithm functionalities. In our case, for the background graph
database, we will use the Neo4j database, which is very popular and capable of handling
millions of nodes and edges, additionally providing SQL-like query syntax called Cypher.
The web application will use the neovis.js [Con21] library to render and visualize query
results from the neo4j database. Third and last part of the platform is the cooperation
with third-party tools. These tools are used if further analysis is needed and the web
interface cannot answer what users want. This is enabled by using the GraphML format
and third-party tools [Bra+13] that support this format like Gephi or yEd.

Figure 5.1: CM2KG platform architecture. [SHB21]

5.1.1 Process

In this section, we discuss what is required from the end-user (stakeholder that is doing
the analysis) are discussed. From the user’s perspective, the user must provide an instance
of the model that is being analyzed in the structure explained in the next section. The
next step is to add some custom configuration to the model transformation if necessary.
The last step represents the output of the whole process, i.e., a GraphML file used to
leverage the possibilities of graph theory.

5.1.2 Input

As discussed in the section for transforming enterprise architecture into graphs, the input
is an instance of the enterprise architecture model, and depending on the implementation
of such model specific model transformation is executed. In the prototype implementation

58

5.1. Platform Overview

CM2KG uses two types of inputs: ArchiMate Model Exchange File Format [Lib19] and
ADOxx ADL file.

Open Group ArchiMate Model Exchange File Format Standard represents a
format intended to be a "standard for ArchiMate model exchange data between
tools that need to import and export ArchiMate notation"[Lib19]. These "exchange
files enable exporting content from one ArchiMate modeling tool or repository and
importing it into another while retaining information describing the model in the file
and how it is structured, such as a list of model elements and relationships"[Lib19].
The file itself uses standardized XML representation, and therefore it is easy to do
the transformation of this model representation. The overall view of this XML file
representation can be seen as a model node on top with some metadata nodes inside
this node as name and documentation. Then the elements node follows having all
the element nodes inside. The same applies to relationships.

1 <model xmlns="http://www.opengroup.org/xsd/archimate/3.0/"
2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:schemaLocation="http://www.opengroup.org/xsd/archimate/3.0/
4 http://www.opengroup.org/xsd/archimate/3.1/archimate3_Model.xsd"
5 identifier="model-1" version="1.0">
6 <name xml:lang="en">Basic Model</name>
7 <documentation xml:lang="en">Example of a basic model with
8 two elements and a relationship</documentation>
9 <elements>

10 <element identifier="ba1" xsi:type="BusinessActor">
11 <name xml:lang="en">A Business Actor</name>
12 </element>
13 <element identifier="br1" xsi:type="BusinessRole">
14 <name xml:lang="en">A Business Role</name>
15 </element>
16 </elements>
17 <relationships>
18 <relationship identifier="relation-1" source="ba1"
19 target="br1" xsi:type="Assignment">
20 <name xml:lang="en">Assignment Relationship</name>
21 </relationship>
22 </relationships>
23 </model>

Listing 5.1: Archi example input file.

ADOxx XML ADL file represents the standardized model representation for the
ADOxx platform described in XML notation. Because of the unified XML structure,
like in ArchiMate Model Exchange File Format Standard, it is easy to parse and
process the file following the transformation rules described in Section 4.3. On
the high level, the model consists of a models node that can have multiple model
nodes inside. Furthermore, each model has a model attributes node, which can have
multiple attribute nodes. In the same model, node entities are stored in instance

59

5. Prototype Platform

nodes with multiple attribute nodes. The same applies to the connector which have
inside the nodes from and to.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE ADOXML SYSTEM "adoxml31.dtd">
3 <ADOXML version="3.1" ...>
4 <MODELS>
5 <MODEL id="mod.19809" name="test" version=""
6 modeltype="Business Layer" libtype="bp"
7 applib="...">
8 <MODELATTRIBUTES>
9 <ATTRIBUTE name="Version number"

10 type="STRING">
11 </ATTRIBUTE>
12 </MODELATTRIBUTES>
13 <INSTANCE id="obj.19811" class="Grouping"
14 name="Grouping-19811">
15 <ATTRIBUTE name="External tool coupling"
16 type="STRING">
17 </ATTRIBUTE>...
18 </INSTANCE>
19 <INSTANCE id="obj.19822"
20 class="Business collaboration"
21 name="Business collaboration-19822">
22 <ATTRIBUTE name="External tool coupling"
23 type="STRING"></ATTRIBUTE>...
24 </INSTANCE>
25 <CONNECTOR id="con.19825" class="Is inside">
26 <FROM instance="Business collaboration-19822"
27 class="Business collaboration"></FROM>
28 <TO instance="Grouping-19811"
29 class="Grouping"></TO>
30 <ATTRIBUTE name="AutoConnect"
31 type="STRING">
32 </ATTRIBUTE>
33 </CONNECTOR>
34 </MODEL>
35 </MODELS>
36 </ADOXML>

Listing 5.2: ADOxx example input file.

Papyrus UML file similar to the ADOxx XML file, Papyrus also packs files as XML
unified structures. It consists of uml:Model as the initial node and core information
as packagedElement nodes. Each node has an id and type as well as a name. An
example of such a file is as follows.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <uml:Model xmi:version="20131001"
3 xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
4 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
5 xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"
6 xmi:id="_mRWEkOAoEeu-XNcrlfd6Uw" name="PapyrusTestModel">

60

5.1. Platform Overview

7 <packageImport xmi:type="uml:PackageImport"
8 xmi:id="_mU8LIOAoEeu-XNcrlfd6Uw">
9 <importedPackage xmi:type="uml:Model"

10 href="pathmap://UML_LIBRARIES/UMLPrimitiveTypes
.library.uml#_0"/>

11 </packageImport>
12 <packagedElement xmi:type="uml:Class"
13 xmi:id="_BK2jIOYHEeuzZOeHOQQcTg"
14 name="Class2"/>
15 <packagedElement xmi:type="uml:Class"
16 xmi:id="_BaMmsOYHEeuzZOeHOQQcTg"
17 name="Class3"/>
18 <packagedElement xmi:type="uml:Abstraction"
19 xmi:id="_CIblsOYHEeuzZOeHOQQcTg"
20 name="someAbstraction"
21 client="_BK2jIOYHEeuzZOeHOQQcTg"
22 supplier="_BaMmsOYHEeuzZOeHOQQcTg"/>
23 </uml:Model>

Listing 5.3: ADOxx example input file.

5.1.3 Output
As discussed in Section2.3, GraphML format (XML file) is the main output of the whole
process. This specific graph representation schema is used because it contains the most
features and is supported by many different tools [Bra+13]. This specific format allows
the enterprise architects to use different tools and leverage all the features graph analysis
tool offers. Some of the features this file and the CM2KG platform provide are discussed
in the next section.

5.1.4 Components
This section will provide details on the functionality that CM2KG cloud platform provides.

Model Transformation & Inspection. The first functionality is uploading an EA
model (XML format or another standardized format for specific meta-modeling
tools and transformation to a GraphML graph-structured format. Initial and
transformed models can then be compared. The result of the transformation, the
GraphML file, can then be downloaded if necessary for the user.

Graph Visualisation & Analysis. When the model is transformed, and the resulting
graph is there, it is possible to visualize this graph which can be done directly in
the browser. This visualization can be configured to set up different parameters
for the size and color of the nodes and how the node label will be presented. This
visualization itself automatically provides a tool for performing analysis on a model.
Furthermore, this component provides a possibility for the user to select some of
the predefined graph algorithms. These algorithms are based on graph centrality

61

5. Prototype Platform

and community detection metrics. Users can select an algorithm (and override it
with different parameters if necessary) and perform analysis. These algorithms are
provided directly by the graph database engine, which is the idea of the framework
itself. The last and significant feature provided to a user in this component is
the possibility of writing their neo4j query and executing it directly on the graph
database. These queries are written in Cypher syntax and provide almost an
unlimited source of possibilities to extract some information.

Interoperability. As the platform is running in the cloud and utilizes a graph database
engine, it is possible to provide the resulting graph to other tools. Each transformed
graph can be easily reached by URL, and this enables again connecting Neo4j
Desktop Browser or some different graph analysis third-party tool directly. This
way, the platform bridges the resulting graph and different tools by providing "a
hook" to a standardized graph format to utilize different possibilities provided by
different tools and libraries.

5.1.5 Transformation
The platform uses the implemented libraries to transform the models. Depending on the
size of the model, performance can differ. To speed up transformation, some optimizations
are implemented which gave better results. The transformation libraries are designed so
that new transformations for other models are easily incorporated.

5.1.6 Web Interface
The web interface consists of several pages. In the following text, each page is described
along with the screenshoot. Homepage of the platform2 is shown in Fig. 5.2.

Model type selection. This is the starting page (see Fig. 5.3), and the user can select
the model type he wants to upload. There are four possibilities to choose from:
Ecore, Archi, ADOxx, and Papyrus UML . When a user clicks the button, he is
redirected to the next page.

File selection. In this view (see Fig. 5.4), the user is asked to provide the input file
or files he wants to transform. As said on the previous page, there were four
possibilities. For example, if the second one is selected, i.e., Archi, the user is
asked to upload the ArchiMate Model Exchange File Format. If the user selects for
example third option, i.e., ADOxx, two files are required: ADOxx XML ADL file
and .dtd file. After this is done, the user can proceed to the next screen.

Model comparison. In this screen (see Fig. 5.5), a user is presented with both models:
the input and the transformed GraphML model. The reason for this is to give a
direct comparison of the models so the user can check how the initial information

2CM2KG platform [online]: https://me.big.tuwien.ac.at/

62

https://me.big.tuwien.ac.at/

5.1. Platform Overview

Figure 5.2: CM2KG home screen.

is transformed into the desired one. Multiple possibilities are possible from this
screen. Users can either download the raw model. Users can open the raw XML
preview of the GraphML model. Next, the user can download the GraphML file
format. Lastly, user can open the open the model analysis view by initializing
Neo4j graph.

XML Model preview. As said in the previous point, users can have a direct XML
preview of the GraphML model (see Fig. 5.6).

Model Analysis This is the page that is based on Graph Science Playground Library
for Neo4j (see Fig. 5.7). Users can do multiple things here. In the central part, the
GraphML model is always visible. Additionally, users can type the Cypher query
to query the graph. Next, the user can select some of the centrality detection and

63

5. Prototype Platform

Figure 5.3: CM2KG model type selection.

Figure 5.4: CM2KG Open Group ArchiMate Model Exchange File Format selection.

community detection algorithms and add some configuration in the algorithm query
field. Users can also configure some things like which field in the GraphML will be
used to render the node’s size and which field should be used to specify the caption
for a node. Each change in the configuration will refresh the graph preview.

5.1.7 External Tools

Here we discuss the intention to use standardized formats like GraphML supported by
tools like Neo4j, yED, and Gephi. Here, we present some possibilities that this concept is
enabling. Gephi supports large graph visualizations. It enables the execution of different
graph centrality algorithms, provides different visualizations for nodes and edges in
different colors and sizes. Additionally, it provides different pre-made layouts for graph,
which ends up in many possibilities to analyze a graph. yED is another tool, and it
provides similar possibilities as Gephi, but it also provides more choices for configuring
the layout of nodes and relations. On the other side, neo4j is a graph database engine

64

5.2. Use of Graph Metrics

Figure 5.5: CM2KG Model comparison.

capable of handling millions of nodes and edges. It provides many different algorithms,
and most importantly, it provides querying in SQL-like syntax called Cypher.

5.2 Use of Graph Metrics
This section will provide examples of some graph metrics that can be used to analyze a
graph. Table. 5.1 shows potential questions and metrics and how they can be utilized
in the analysis of Enterprise Architecture. This table was created following the goal
question metric approach as the basis for formulating enterprise architect competency
questions.

Summarized and more EA analysis-oriented questions can be found in Table. 5.2. This
table represents example enterprise architect questions and a graph metric that could be
used to answer the question.

5.2.1 Centralities

This section will show examples of how the centralities can be used with respect to
Enterprise Architecture. All Neo4j queries in this section are written using Graph Data
Science Library (GDS) version 1.4.0 and APOC 4.1.0.6 neo4j plugins.

65

5. Prototype Platform

Type Number Example

Goal Purpose
Issue
Object
Viewpoint

Improve
Structural analysis of
Dependencies in EA models
From EA architect viewpoint

Question Q1.1 Which are the most important elements?

Metric M1.1.1
M2
M3
M4
M5

Degree
Page Rank
Closeness centrality
Betweenness centrality
Eigenvector centrality

Question Q1.2 If X is down which Y is affected the most?

Metric M1.2.1
M7

Baseline importance / New importance
Modularity

Question Q1.3 What is the current speed of providing answers?

Metric M1.3.1 Average processing time

Question Q1.4 Is the performance Satisfactory from EA Architect viewpoint?

Metric M1.4.1 Subjective evaluation by the project manager

Question Q1.5 Is the speed of providing answers improving?

Metric M1.5.1
M10

Current time / baseline time
Subjective evaluation by the project manager

Goal Purpose
Issue
Object
Viewpoint

Improve
Structural analysis of
Coverage in EA models
From EA architect viewpoint

Question Q2.1 Is X affected by a change in Y?

Metric M2.1
M2.1.2

Baseline importance / New importance
Modularity

Question Q2.2 If X is down which Y is affected the most?

Metric M2.2.1 Baseline importance / New importance

Question Q2.3 What is the current speed of providing answers?

Metric M2.3.1 Average processing time

Question Q2.4 Is the performance Satisfactory from EA Architect viewpoint?

Metric M2.4.1 Subjective evaluation by the project manager

Question Q2.5 Is the speed of providing answers improving?

Metric M2.5.1
M2.5.2

Current time / baseline time
Subjective evaluation by the project manager

Goal Purpose
Issue
Object
Viewpoint

Improve
Structural analysis of
Complexity in EA models
From EA architect viewpoint

Question Q3.1 Which are the most complex elements?

Metric M3.1.1 Degree

Question Q3.2 What is the current speed of providing answers?

Metric M3.2.1 Average processing time

Question Q3.3 Is the performance Satisfactory from EA Architect viewpoint?

Metric M3.3.1 Subjective evaluation by the project manager

Question Q3.4 Is the speed of providing answers improving?

Metric M3.4.1
M3.4.2

Current time / baseline time
Subjective evaluation by the project manager

Table 5.1: Goal question metric approach in enterprise architecture proposal.
66

5.2. Use of Graph Metrics

Figure 5.6: CM2KG XML Model preview.

Graph metric EA interpretation and exemplary competency question (CQ)

Centralities

Degree The higher the value the more edges a node has.
CQ: How many application components are used by one business role?

Closeness How close is a Node to the other graph components.
CQ: What is the closest switch that can be used to connect two servers?

Betweenness How important is a Node in connecting different parts of a graph?
CQ: What is the impact of removing an application component?

Eigenvector How important are the connected Nodes of a Node?
CQ: What is the ranking of Business Actors?

Page Rank How important is a Node for its directed network.
CQ: What is the ranking of the most important Drivers in a given model?

Community Detection

Weakly Connected
Components

For one community there exists a path from each node to another one without considering
the direction of the relationship.
CQ: Is the device part of a network?

Strongly Connected
Components

For one community every node is reachable from every other node when considering the
direction of the relationship.
CQ: Can each device in a group exchange information with another one?

Local Clustering Represents the likelihood that the neighbors are also connected.
Coefficient CQ: If the switch is down can neighbor switches help and overtake the traffic?

Table 5.2: Interpretation of graph metrics for ArchiMate models. [SB21b]

67

5. Prototype Platform

Figure 5.7: CM2KG graph-based model visualisation and analysis.

Degree

In this example, the ArchiMetal model from Archi is used as an example. In graph theory,
the degree is related to how many edges a node has. There can be a differentiation
between incoming or outgoing degrees depending on the type of edge if it is directed.
EA Question : How many application components are used by one business role?

In order to answer this question, a projection of the initial graph can be taken with the
following nodes: Business Role, Application Component, and edges: Serving Relationship.

1 CALL gds.graph.create(
2 ’degree-subgraph’,
3 {
4 BusinessRole: {},
5 ApplicationComponent: {}
6 },
7 {
8 ServingRelationship: {}
9 }

10)

Listing 5.4: Neo4j degree centrality projection preparation query.

68

5.2. Use of Graph Metrics

After the projection is created, an algorithm calculating degree centrality can be executed.
1 CALL gds.alpha.degree.stream(’degree-subgraph’)
2 YIELD nodeId, score
3 with gds.util.asNode(nodeId) as n, score
4 where n.name="Some business role name"
5 return n.name, score
6 ORDER BY score DESC

Listing 5.5: Neo4j degree centrality result query.

It is important to note that the same degree centrality calculation could be done on the
whole graph, but it is important to understand the context in which the degree is being
evaluated and the business needs.

Closeness

In graph theory, closeness centrality can be described with the following question: how
close is a node to the other nodes?
EA Question : What is the closest switch that can be used to connect two servers?

In order to answer this question, a projection of the initial graph can be taken with the
following nodes: Device, Communication Network, and Node and relations: Association
Relationship and Realization Relationship. Again it is important to note that we are
projecting of the whole repository to the subset of nodes that would be interesting to our
specific question.

1 CALL gds.graph.create(
2 ’closeness-subgraph’,
3 {
4 Device: {},
5 CommunicationNetwork: {},
6 Node: {}
7 },
8 {
9 AssociationRelationship: {},

10 RealizationRelationship: {},
11 }
12)

Listing 5.6: Neo4j closeness centrality projection preparation query.

After the projection of the whole repository is created, we can then execute the algorithm
for closeness centrality and filter the switch with the biggest closeness centrality.

1 CALL gds.alpha.closeness.stream(’closeness-subgraph’)
2 YIELD nodeId, score
3 with gds.util.asNode(nodeId) as n, score
4 where n.name contains "Switch"
5 return n.name, score
6 ORDER BY score DESC

Listing 5.7: Neo4j closeness centrality result query.

69

5. Prototype Platform

Betweenness

The same ArchiMetal model is used in this example. In graph theory, the betweenness
is related to the importance of connecting two other nodes. Moreover, if the node is
contained in the shortest path between two nodes, it will boost the betweenness centrality
score.
EA Question : What is the impact of removing an application component?

In order to answer this question, a projection of the initial graph can be taken with the
following nodes: Application Component and edges: Flow Relationship. The query is as
follows:

1 CALL gds.graph.create(
2 ’betweenness-subgraph’,
3 {
4 ApplicationComponent: {}
5 },
6 {
7 FlowRelationship: {}
8 }
9)

Listing 5.8: Neo4j betweenness centrality projection preparation query.

After the projection is created, an algorithm for calculating betweenness centrality can
be executed, and we can see the ordered list of application components scored by how
important are they when standing in between others.

1 CALL gds.betweenness.stream(’betweenness-subgraph’)
2 YIELD nodeId, score
3 with gds.util.asNode(nodeId) as n, score
4 RETURN n.name, score
5 ORDER BY score DESC

Listing 5.9: Neo4j betweenness query result.

Eigenvector

In graph theory, eigenvector centrality can be described with the following question: how
important are the connected nodes of a node?
EA Question : What is the ranking of Business Actors?

"Eigenvector Centrality is an algorithm that measures the transitive influence of nodes.
A high eigenvector score means that a node is connected to many nodes who themselves
have high scores"[neo21a]. To answer this question, a projection of all nodes and edges
can be taken into consideration. The query is as follows:

70

5.2. Use of Graph Metrics

1 CALL gds.graph.create(
2 ’eigenvector-subgraph’,
3 "*",
4 "*"
5)

Listing 5.10: Neo4j eigenvector centrality projection preparation query.

After the projection is created, an algorithm for calculating Eigenvector centrality can be
executed.

1 CALL gds.eigenvector.stream(’eigenvector-subgraph’)
2 YIELD nodeId, score
3 with gds.util.asNode(nodeId) as n, score
4 WHERE n.ClassName = "BusinessActor"
5 return n.name, score
6 ORDER BY score DESC

Listing 5.11: Neo4j degree pagerank result query.

Page Rank

In graph theory, page rank centrality can be described with the following question: how
important is a node for its directed network?
EA Question : What is the ranking of most important Drivers in a given model?

In graph theory, the PageRank is a variant of Eigenvector that works on directed networks
where Eigenvector works with undirected networks.

"The PageRank algorithm measures the importance of each node within the graph, based
on the number of incoming relationships and the importance of the corresponding source
nodes. The underlying assumption roughly speaking is that a page is only as important as
the pages that link to it." [neo21b]. In order to answer this question, a projection of all
nodes and edges can be taken into consideration. The query is as follows:

1 CALL gds.graph.create(
2 ’pageRank-subgraph’,
3 "*",
4 "*"
5)

Listing 5.12: Neo4j pagerank centrality projection preparation query.

After the projection is created, an algorithm for calculating PageRank centrality can be
executed.

71

5. Prototype Platform

1 CALL gds.pageRank.stream(’pageRank-subgraph’)
2 YIELD nodeId, score
3 with gds.util.asNode(nodeId) as n, score
4 WHERE n.ClassName = "Driver"
5 return n.name, score
6 ORDER BY score DESC

Listing 5.13: Neo4j degree pagerank result query.

5.2.2 Community Detection
Weakly Connected Components

For one community there exists a path from each node to another one without considering
the direction of the relationship.
EA Question : Is the device part of a network?

In order to answer this question, a projection of the initial graph can be taken with the
following nodes: Device, Communication Network, and Node and relations: Association
Relationship and Realization Relationship.

1 CALL gds.graph.create(
2 ’wcc-subgraph’,
3 {
4 Device: {},
5 CommunicationNetwork: {},
6 Node: {}
7 },
8 {
9 AssociationRelationship: {},

10 RealizationRelationship: {},
11 }
12)

Listing 5.14: Neo4j weakly connected components centrality projection preparation query.

After the projection of the whole repository is created, we can then execute an algorithm
for community detection and show to which group the device belongs.

1 CALL gds.wcc.stream(’wcc-subgraph’)
2 YIELD nodeId, score
3 with gds.util.asNode(nodeId) as n, score
4 where n.name contains "Specific device name"
5 return n.name, score
6 ORDER BY score DESC

Listing 5.15: Neo4j weakly connected components centrality result query.

Strongly Connected Components

For one community, every node is reachable from every other node when considering the
direction of the relationship.

72

5.2. Use of Graph Metrics

EA Question : Can each device in a group exchange information with another one?

In order to answer this question, a projection of the initial graph can be taken with the
following nodes: Device, Communication Network, and Node and relations: Association
Relationship, Realization Relationship.

1 CALL gds.graph.create(
2 ’scc-subgraph’,
3 {
4 Device: {},
5 CommunicationNetwork: {},
6 Node: {}
7 },
8 {
9 AssociationRelationship: {},

10 RealizationRelationship: {},
11 }
12)

Listing 5.16: Neo4j strongly connected components centrality projection preparation
query.

After the projection of the whole repository is created, we can then execute an algorithm
for the strongly connected components community detection and show all groups where
each node can reach another node.

1 CALL gds.wcc.stream(’scc-subgraph’)
2 YIELD nodeId, score
3 with gds.util.asNode(nodeId) as n, score
4 where n.name contains "Specific device name"
5 return n.name, score
6 ORDER BY score DESC

Listing 5.17: Neo4j strongly connected components centrality result query.

Local Clustering

Represents the likelihood that the neighbors are also connected.
EA Question : If the switch is down can neighbor switches help and overtake the traffic?

In order to answer this question, a projection of the initial graph can be taken with the
following nodes: Node and relations: Association Relationship. We want to check if a
switch is connected to another two switches, and if it goes down, can two other switches
still work, i.e., is there a connection between them.

73

5. Prototype Platform

1 CALL gds.graph.create(
2 ’lc-subgraph’,
3 {
4 Node: {}
5 },
6 {
7 AssociationRelationship: {}
8 }
9)

Listing 5.18: Neo4j local clustering centrality projection preparation query.

After the projection of the whole repository is created, we can then execute an algorithm
for local clustering and show all nodes and their score concerning local clustering, showing
if the neighbors of the selected node are connected.

1 CALL gds.localClusteringCoefficient.stream(’lc-subgraph’)
2 YIELD nodeId, score
3 with gds.util.asNode(nodeId) as n, score
4 return n.name, score
5 ORDER BY score DESC

Listing 5.19: Neo4j local clustering centrality result query.

5.3 EA Smell Detection
This section will introduce queries that enable finding the EA smell inside a model.

Chatty Service

A high number of operations is required to complete one abstraction. Such operations
are typically rather simple tasks that needlessly slow down an entire process.

1 MATCH (a)-[r]-(b)
2 WHERE a.ClassName contains ’Service’ and b.ClassName contains ’Service’
3 WITH a,count(r) as cnt
4 WHERE cnt>4
5 MATCH (a)-[r1]-(b1)
6 WHERE a.ClassName contains ’Service’ and b1.ClassName contains ’Service’
7 RETURN a,b1, cnt

Listing 5.20: Cypher query to identify EA chatty service smell.

Cyclic Dependency

Two or more abstractions directly or indirectly depend on each other.
1 MATCH (a)-[r1]->(b)-[r2]->(c)-[]->(a)
2 RETURN a,b,c

Listing 5.21: Cypher query to identify EA cyclic dependency smell.

74

5.3. EA Smell Detection

(a)

(b)

Figure 5.8: Chatty service smell detection initial (a), the result of detection (b).

(a)

(b)

Figure 5.9: Cyclic Dependency smell detection initial (a), the result of detection (b).

Data Service

A service that exclusively performs information retrieval and typically provides only
simple read operations.

75

5. Prototype Platform

1 MATCH (a)-[r1]-(b1)
2 WHERE a.ClassName=’BusinessService’ and (b1.ClassName = ’BusinessObject’
3 or b1.ClassName = ’DataObject’ or b1.ClassName = ’SystemSoftware’)
4 WITH a,r1,b1
5 MATCH (a)
6 WHERE not (a)--(:BusinessService)
7 RETURN a

Listing 5.22: Cypher query to identify EA data service smell.

(a)

(b)

Figure 5.10: Data Service smell detection initial (a), a result of detection (b).

Dead Component

A component is no longer used or used to support potential future behavior.

1 MATCH (n)
2 WHERE not (n)--()
3 RETURN n

Listing 5.23: Cypher query to identify EA dead component smell.

Dense Structure

An EA repository has dense dependencies without any particular structure.

76

5.3. EA Smell Detection

(a)

(b)

Figure 5.11: Dead Component smell detection initial (a), the result of detection (b).

1 MATCH (p)
2 RETURN CASE
3 WHEN avg(apoc.node.degree(p))>1.75 THEN 1
4 ELSE 0
5 END AS result;

Listing 5.24: Cypher query to identify EA dense structure smell.

(a)

Figure 5.12: Dense Structure smell detection result (true/false).

77

5. Prototype Platform

Documentation

Lengthy documentation often points to unnecessary complex structures.
1 MATCH (n)
2 WHERE size(n.documentation)>256
3 RETURN n

Listing 5.25: Cypher query to identify EA documentation smell.

(a)

(b)

Figure 5.13: Documentation smell detection initial (a), a result of detection (b).

Duplication

Two or more abstractions with highly similar functionality exists.
1 MATCH (a),(b)
2 WHERE a<>b and a.ClassName = b.ClassName
3 and apoc.text.jaroWinklerDistance(a.Label, b.Label)>0.8
4 RETURN a,b,
5 apoc.text.jaroWinklerDistance(a.Label, b.Label) as similarNameScore

Listing 5.26: Cypher query to identify EA duplication smell.

Hub-like Modularization

This smell arises when an abstraction has dependencies (both incoming and outgoing)
with a large number of other abstractions, being a single point of failure.

1 MATCH (a)-[r]-(b)
2 WHERE (r.Label contains ’Aggregation’
3 or r.Label contains ’Realization’
4 or r.Label contains "Composition"
5 or r.Label contains "Assignment")
6 and a.ArchimateLayer = b.ArchimateLayer
7 WITH a, collect(r) as rels, a+collect(b) as cluster
8 MATCH (m)-[r1]-(n)
9 WHERE not (r1.Label contains ’Aggregation’

10 or r1.Label contains ’Realization’
11 or r1.Label contains "Composition"

78

5.3. EA Smell Detection

(a)

Figure 5.14: Documentation smell detection initial (a), a result of detection (b).

12 or r1.Label contains "Assignment") and
13 (m in cluster and not n in cluster)
14 WITH a, cluster, collect(r1) as fanout
15 MATCH (m)-[r2]-(n)
16 WHERE not (r2.Label contains ’Aggregation’
17 or r2.Label contains ’Realization’
18 or r2.Label contains "Composition"
19 or r2.Label contains "Assignment") and
20 (not m in cluster and n in cluster)
21 WITH a, cluster, fanout, collect(r2) as fanin
22 WHERE size(fanout) > 7 and size(fanin)>7
23 RETURN a, cluster, size(fanout), size(fanin)

Listing 5.27: Cypher query to identify EA hub-like modularization smell.

79

5. Prototype Platform

(a)

(b)

Figure 5.15: Hub-like Modularization smell detection initial (a), a result of detection (b).

Lazy Component

A component that is not doing enough to pay for itself should be eliminated. Those
components often only pass messages on to another.

1 MATCH (n)
2 WHERE n.Label contains ’controller’
3 or n.Label contains ’manager’
4 RETURN n

Listing 5.28: Cypher query to identify EA lazy component smell.

Message Chain

A chain of service calls and messages fulfills common functionality.
1 MATCH (a)-[r1]->(b)-[r2]->(c)-[]->(d)-[]->(e)
2 WHERE a.ClassName=’BusinessService’
3 and b.ClassName=’BusinessService’
4 and c.ClassName=’BusinessService’
5 and d.ClassName=’BusinessService’
6 and e.ClassName=’BusinessService’
7 RETURN a,b,c,d,e

Listing 5.29: Cypher query to identify EA message chain smell.

Shared Persistency

Different services access the same database. In the worst case, different services access
the same entities of the same schema.

80

5.3. EA Smell Detection

(a)

(b)

Figure 5.16: Lazy Component smell detection initial (a), a result of detection (b).

(a)
(b)

Figure 5.17: Message Chain smell detection initial (a), a result of detection (b).

1 MATCH (a)-[r]-(b)
2 WHERE a.ClassName=’SystemSoftware’
3 and (r.Label=’AssociationRelationship’
4 or r.Label=’RealizationRelationship’
5 or r.Label=’AssignmentRelationship’)
6 WITH a,count(r) as cnt
7 MATCH (a)-[r1]-(b1)
8 WHERE cnt>1 and
9 (r1.Label=’AssociationRelationship’

10 or r1.Label=’RealizationRelationship’
11 or r1.Label=’AssignmentRelationship’)
12 RETURN a,b1

Listing 5.30: Cypher query to identify EA shared persistency smell.

81

5. Prototype Platform

(a)

(b)

Figure 5.18: Shared Persistency smell detection initial (a), a result of detection (b).

Strict Layers Violation

An element skips the EA layer directly beneath and accesses a layer further below instead.

1 MATCH (a)-[r]-(b)
2 WHERE a.ArchimateLayer contains ’Business’
3 and b.ArchimateLayer contains ’Technology’ //example
4 RETURN a,b,r

Listing 5.31: Cypher query to identify EA strict layers violation smell.

Weakened Modularity

Each module must strive for high cohesion and low coupling. This smell arises when a
module exhibits high coupling and low cohesion.

82

5.3. EA Smell Detection

(a)

(b)

Figure 5.19: Strict Layers Violation smell detection initial (a), a result of detection (b).

1 MATCH (a)-[r]-(b)
2 WHERE (r.Label contains ’Aggregation’
3 or r.Label contains ’Realization’
4 or r.Label contains "Composition"
5 or r.Label contains "Assignment")
6 and a.ArchimateLayer = b.ArchimateLayer
7 WITH a, collect(r) as rels, a+collect(b) as cluster
8 MATCH (m)-[r1]-(n)
9 WHERE m in cluster and n in cluster

10 WITH a, cluster, collect(r1) as internal
11 MATCH (m)-[r2]-(n)
12 WHERE not (r2.Label contains ’Aggregation’
13 or r2.Label contains ’Realization’
14 or r2.Label contains "Composition"
15 or r2.Label contains "Assignment") and
16 (not m in cluster and n in cluster)
17 or (m in cluster and not n in cluster)
18 WITH a, cluster, internal, collect(r2) as external
19 WHERE size(internal) < size(external) and size(internal)>3
20 RETURN a, cluster, size(internal), size(external)

Listing 5.32: Cypher query to identify EA weakened modularity smell.

83

5. Prototype Platform

(a)

(b)

Figure 5.20: Weakened Modularity smell detection initial (a), a result of detection (b).

5.4 UML Code Smell Detection
In this section, we will provide queries that enable finding smells in the UML class
diagram.

Cyclic Dependency

Two or more units (e.g., classes, methods) mutually depend on each other.
1 MATCH (a)-[*]->(a)
2 RETURN a, path

Listing 5.33: Cypher query to identify UML cyclic dependency smell.

Message Chain

A client unit (e.g., method) calls another unit, which then in turn calls another unit, and
so on (navigation through the class structure).

1 MATCH (a)-[r1]->(b)-[r2]->(c)-[r3]->(d)-[r4]->(e)
2 RETURN a,r1,b,r2,c,r3,d,r4,e

Listing 5.34: Cypher query to identify UML message chain smell.

Unutilized Abstraction

Not or barely used units (e.g., class or method).
1 MATCH (n)
2 WHERE n.isAbstract="true" and not (n)--()
3 RETURN n

Listing 5.35: Cypher query to identify UML unutilized abstraction smell.

84

5.4. UML Code Smell Detection

Deep Hierarchy

An unnecessarily deep hierarchy.
1 MATCH (a)-[r1]->(b)-[r2]->(c)-[r3]->(d)
2 WHERE r1.Label =’generalization’
3 and r2.Label =’generalization’
4 and r3.Label =’generalization’
5 RETURN a,b,c,d,r1,r2,r3

Listing 5.36: Cypher query to identify UML deep hierarchy smell.

Multipath Hierarchy

A subtype inherits both directly and indirectly from a supertype.
1 MATCH (c)<-[r3]-(a)-[r1]->(b)-[r2]->(c)
2 WHERE r1.Label =’generalization’
3 and r2.Label =’generalization’
4 and r3.Label =’generalization’
5 RETURN a,b,c,r1,r2,r3

Listing 5.37: Cypher query to identify UML multipath hierarchy smell.

85

CHAPTER 6
Evaluation

This chapter will go through evaluation, including examples of different model instances
developed in different modeling languages. Furthermore, we will discuss how a generic
transformation framework benefits enterprise architects. Additionally, we will report
the evaluation of smell detection on large sets of models. Lastly, we will report on the
evaluation of State-of-the-Art tools provided by Gartner.

6.1 Generic Analysis Approach Evaluation
In this section, we will answer the first research question in this thesis.

6.1.1 Ecore Model Instance

To show how it works with Ecore we have created a sample meta-model in Ecore (Fig. 6.1a)
and a sample instance of the same meta-model (Fig. 6.1b).

The results of transformation of few tweaks of sample instance ViennaBooks can be seen
in Fig. 6.2.

6.1.2 Archi Model Instance

The example of transformation and analysis of the "App Store" Archi model will be
shown. The results can be seen in Fig. 6.3 and Fig. 6.4.

As we can see, the model is successfully transformed with all the entities and relations.
What is also more important is that in Fig. 6.3 we see the representation in Neo4j, and in
Fig. 6.4 we see the model representation in another tools yED, and our platform CM2KG
all look the same as it was the intention.

87

6. Evaluation

(a)

(b)

Figure 6.1: Ecore sample meta-model Vienna Books specification (a), sample instance
(b).

(a)

(b)

Figure 6.2: Ecore sample meta-model Vienna Books resulting graph representation in
Gephi (a), yEd (b).

6.1.3 ADOxx Model Instance
In this example, we will use the TEAM library. For the evaluation we created the same
ArchiMetal Application Architecture model as in Fig. 6.9, and it can be seen in Fig, 6.5.

88

6.1. Generic Analysis Approach Evaluation

(a)

(b)

Figure 6.3: Archi example App store intial model (a), representation in neo4j (b).

We use this example since it is an excellent example to show groups and nested graphs.

The result can be seen in Fig. 6.6 and in Fig. 6.7. An example of how the class properties
are transformed is visible in the Fig.6.6a, where it can be seen how Valid until and Notes
attributes are transformed. Furthermore, the grouping it can be best seen in Fig. 6.7b,
where on the left side yEd shows nested graphs as folders which in our case were Grouping
class instances.

6.1.4 Papyrus UML Model Instance
In this section, we will show an example of transformation from UML class diagram to
GraphML. The result can be seen in Fig. 6.8. All the classes together with relations
are successfully transformed. The result shown in Fig. 6.8 is the representation of the
resulting graph in our platform CM2KG.

6.1.5 Generic Transformation Framework
To start with evaluating the general transformation framework, we will first define some
requirements that will prove the generality. In order to state that this framework is
generic, it should be able to fulfill the following requirements.

89

6. Evaluation

(a)

(b)

Figure 6.4: Archi example App store in yED (a), representation in CM2KG (b).

REQ1 A framework should be able to handle arbitrary conceptual modeling language.

REQ2 A framework should be able to handle models developed in different meta-
modeling platforms.

REQ3 A framework should enable the usage of third-party graph analysis tools.

We start with the evaluation of REQ1. Here we need to check to what extent this
approach enables usage of different modeling languages. For this, we used four different
modeling languages: Ecore, Archimate, Papyrus UML, and TEAM [Bor+18]. These
examples can be seen in Sec. 6.1.1, Sec. 6.1.2, Sec. 6.1.3, and Sec.6.1.4. Showing this
on four popular different modeling languages checks REQ1 as fulfilled. The following
requirement is related to different meta-modeling platforms. Similar to REQ1, we showed
examples for models developed in four different modeling tools: Eclipse EMF, Archi,
Eclipse Papyrus, and ADOxx. A similar claim as in the previous requirement follows
here. We have shown examples of four different popular meta-modeling platforms, and
we can state that REQ2 is also fulfilled. The third requirement is about enabling usage of
different third-party graph analysis tools. To show generality here, we have selected three

90

6.1. Generic Analysis Approach Evaluation

Figure 6.5: ADOxx exanple ArchiMetal-TEAM Application Architecture

(a)
(b)

Figure 6.6: ADOxx exanple ArchiMetal-TEAM Application Architecture representation
in CM2KG (a), in neo4j (b).

popular graph analysis tools. The first two are Gephi and yEd, by default graph analysis
tools, and the third is Neo4j, a graph database that can be used for graph analysis. We
will take one model and check it in these three different third-party tools.

91

6. Evaluation

(a)

(b)

Figure 6.7: ADOxx exanple ArchiMetal-TEAM Application Architecture representation
in Gephi (a), in yEd (b).

An example model we will use here to show generality using different third-part tools
is the publicly available model ArchiMetal [Arc16], which can be seen in Fig. 6.9. How
this model looks like in three different analysis tools can be seen in Fig. 6.10. The model
shown in Fig. 6.9 is transformed to a graph using our platform and imported in these
tools showing the same model with different features provided by tools. We can see that
the transformed models look the same, and this sums up to a claim that REQ3 can also
be checked as fulfilled.

We can say that the framework is generic since we have shown that our prototype
framework can use arbitrary modeling language, arbitrary meta-modeling platform, and
arbitrary third-party graph analysis tool.

6.1.6 Benefits of Graph-Based Analysis for EAs

In the previous section, we showed that it is possible to accomplish the generic graph-
based approach. Now we move further and discuss the benefits of using a graph-based

92

6.1. Generic Analysis Approach Evaluation

(a) The source UML model in Papyrus.

(b) The transformed Knowledge Graph in the CM2KG Cloud platform.

Figure 6.8: An example transformation from a UML model (a) to a Knowledge Graph
(b) in the CM2KG Cloud platform. [SB21a]

93

6. Evaluation

Figure 6.9: ArchiMetal Application Architecture [Arc16]

approach in analyzing conceptual models. In order to answer this, we refer to competency
questions introduced in Sec. 5.2 and summarized in Tab. 5.2. We will use the same
ArchiMetal [Arc16] model, and we will show examples of how graph centrality metrics
and community detection metrics can be used to answer some competency questions.

We will start with applying betweenness, which is a graph centrality metric, to show how
close the node is to others. The result of this we show in yEd tool, which can be seen in
Fig. 6.10c. On the exact figure, it can be seen that EAI bus is much bigger and has a
more intense red color. The reason for this is that in yEd we configured size of the node,
and the intensity of the color depends on the betweenness value. This means that EAI
bus is the node which is closest to all others which in reality totally makes sense since all
data exchange would probably go through the enterprise service bus which in this case is
called EAI bus.

The following example is related to the PageRank graph metric. We refer to the same
model ArchiMetal [Arc16], but in this case, we set on a view called Activity Model of
Production Operations Management which can be seen in Fig. 6.11 on the left side.
On the right side, we see the values of PageRank graph centrality, which shows the
importance of business functions to another. In PageRank, an entity with a higher score
means more links are pointing to it, which is more authoritative. If we go back to our
example, on the right side of Fig. 6.11 we see a listing of business functions scored based
on PageRank value in descending order. We can interpret this listing so that Production
resource management is more authoritative than Production data collection. In the real
world, this can make sense if we see it in a way that management of production resources
should come before production data collection.

The third example will be related to community detection. Again we used the same
ArchiMetal [Arc16] model, and as an example, we applied Strongly Connected Components.

94

6.1. Generic Analysis Approach Evaluation

(a)
(b)

(c)

Figure 6.10: Transformed ArchiMetal example in Neo4j (a), Gephi (b), and yEd
(c). [SB21b]

As a reminder, strongly connected components are the components where each node can
access another node. This time we show the result in another tool, Gephi, and the result
can be seen in Fig. 6.10b. Different communities are represented with different colors. If
two nodes are the same color, they belong to the same community. Interestingly, this
example is the community represented with purple color, which in the central part has
EAI bus. If we go back to Fig. 6.9, we can easily see how the EAI bus has both: incoming
and outgoing relationship to each entity, meaning information can go back and to. For
the community we detected using strongly connected components, we can see how the
algorithm identified this and knows that each application component in Fig. 6.9 can
theoretically exchange information to another one (in graph-based words, "they belong to
the same strongly connected component").

More to add on graph-based analysis in the context of business perspective is that it
can indicate which components can be a risk in running business operations in given
application architecture. Examples we showed were in third-party graph analysis tools.
However, the prototype platform CM2KG developed for the sake of this thesis can also
provide the same answer for the example of betweenness which can be seen in Fig. 6.12.

95

6. Evaluation

PageRank Business function

0.153904 Production resource mgmt

0.142801 Production definition mgmt

0.108743 Production execution mgmt

0.098338 Detailed production scheduling

0.096654 Production tracking

0.085166 Production data collection

0.061755 Production dispatching

0.030943 Product Definition

Figure 6.11: ArchiMetal Business Layer model and corresponding PageRank values.

On the exact figure, it can be seen how a user can select different graph centrality measure
(refer to Tab. 5.2) and combine it with Cypher query to filter required result further.

We now discuss how a user can use the CM2KG platform in the given context. After
the user has selected the corresponding query, it is presented in the textbox. The user
can configure it further with different parameters, and the right side of the preview can
apply different parameters for rendering the result. The last part is the Cypher query
text box in the right corner which enables full possibilities for filtering based on user
needs. Putting all together this example with betweenness (Fig. 6.12) demonstrates
that CM2KG platform is capable of providing results as some popular tools. Of course,
CM2KG has much fewer features, but it is a good example to demonstrate the generality
of the framework and benefits of graph-based analysis for enterprise architects.

The previous three examples show a part of what can be done with the application of
graph metrics, i.e., Betweenness, Strongly Connected Components, and PageRank, and
how it can benefit enterprise architects. Obviously, much more can be done and is left
for further research, but for the sake of evaluating RQ1, we have shown that there are
analysis benefits by using a graph-based approach.

6.2 Analysis Automation Evaluation

This section will focus on evaluating appropriate means to automate graph-based analysis
of EA models.

First, we define a set of requirements for automation of analyzing EA models. We set the
following requirements in Tab. 6.1. Afterwards we will explore different ways in order to
fulfill the requirements.

96

6.2. Analysis Automation Evaluation

Figure 6.12: User Interface of the eGEAA platform. [SB21b]

No. Requirement

REQ1 Automation should be supported by a tool.

REQ2 The tool should be running in the cloud.

REQ3 The tool should be able to accept EA models modelled with different languages.

REQ4 The tool should work with a widely supported file format for graphs.

REQ5 The tool should be able to transform the input model to a supported graph format.

REQ6 The tool should be able to export the transformed model.

REQ7 The tool should use well performing graph database engine.

REQ8 The tool should be able to execute queries on a graph database.

REQ9 The tool should visualise the results of a query.

REQ10 The tool should be extensible.

Table 6.1: List of requirements for automated analysis of EA models.

6.2.1 Analysis Tool Considerations

We can summarize REQ1 and REQ2 together. Nowadays, IT can highly achieve au-
tomation by using different software tools. The tool should be running in the cloud
and should be easily accessible via browser to provide as much as possible to different
users. This saves time and resources to the end-user. Combining this, it is clear that
a cloud-based platform should achieve automation. There are many different options

97

6. Evaluation

on how implementors can realize a cloud-based solution, and this is evolving each day.
Examples of back-end frameworks are Express, Django, Rails, Laravel, Spring, ASP.NET
Core. On the other side, examples of front-end frameworks are: Angular, React, Vue,
Ember, Backbone. Also important to note here are different application servers where
the application should be running. Choosing the set of various options depends on the
applicability and costs.

The third requirement is related to having a possibility to work with different EA
frameworks. Many industry standards are being used, and automation should support
analyzing them. There are frameworks like TOGAF, ArchiMate, BPMN, BIAN, Business
Model Canvas, COBIT, IT4IT, ITIL, and many more.

Moving to the next requirement (REQ4), we state we need to select a file format for
storing graph data. Here we also have many different options. These options differ in
how the file is structured, i.e., XML-based or text-based. The next difference is how they
store a data structure, i.e., adjacency list, edge list, adjacency matrix, incidence matrix.
The next difference is in the level of details about the graph, i.e., details about the nodes
or edges abstract types like sub-graph. There are following formats here: DGML, DotML,
GEXF, GraphML, GXL, XGMML, DPT. GML. On the other hand, it is important to
know what tools support the graph format and it is widely used.

Requirement five is related to a generic analysis approach. To achieve it, the tool should
take different models and transform them into selected graph formats from the previous
requirement. Then the tool could execute analysis in the same way as other models. There
are many different formats on how the enterprise models are stored, and transforming
these models into one or more graph-based structures is not easy.

Sixth requirement is to enable reusability. This means the tool should be able to export
the graph-based format so it can be used in another existing graph-analysis tools and
also provide users the features that other popular tools have. Example of these tools are
Gephi, yED, Graphviz.

The seventh requirement is very important. So far, the tool should be running in the
cloud and have the possibility to take different EA models and transform them to a graph
structure. But now the question is how to make use of it. One option is to export the
graph structure to be used with other tools. The second option is to perform the analysis
in the tool directly. To do this efficiently and to enable different analysis possibilities with
the graph, the tool should have a graph-based database in the background that will store
the graph and operate on it. Different databases provide different performance scores,
scaling possibilities, querying options, and algorithms. Options to consider here are
Neo4j, ArangoDB, Dgraph, OrientDB, Amazon Neptune, DataStax, FlockDB, Casandra.
Titan and many more. Another thing to consider here is the options for importing a
graph. The selected database should support importing a graph format from the REQ4.

The eighth requirement is connected to a previous requirement. To provide the most
features, a user should utilize the graph database in the background as much as possible.
The tool should provide the functionality to execute the query directly on the database.

98

6.2. Analysis Automation Evaluation

To provide this following should be considered. First, the graph database should have a
connector for third-party tools to execute queries. Second, the database should return a
query result so the tool can interpret it. This is dependent on the graph database itself,
and an example is Neo4j which provides Bolt and HTTP protocols to connect. It gives
library drivers for.NET, Java, JavaScript, Go, Python.

The following requirement (number nine) is related to the previous requirement. After
the graph database returns, a query result tool should visualize this. As the second
requirement states that the tool should be running in the cloud, this indicates that
visualization is related to front-end technologies. This means different JavaScript libraries
for visualizing graphs should be considered. These libraries are D3, Keylines, Vis.js,
NeoVis.js, Sigma.js, Ogma, G6, Ngraph, React-force-graph.

The last requirement for the tool is that it should be extensible. As stated in the REQ3,
tool should support different languages, and there are various analysis applications
possible. This requirement is interconnected with the REQ2 since it depends on the
selected technology. The tool should provide a set of core features (model transformation,
graph querying, graph visualization) as default. Each specific application should be able
to extend this to a particular need.

6.2.2 Prototype Tool Evaluation
In this section we evaluate the CM2KG prototype platform against the requirements
stated in Tab. 6.1.

No. Fulfilled Note

REQ1 yes CM2KG platform is a tool.

REQ2 yes CM2KG is running in the cloud.

REQ3 partially Platform accepts Open Group ArchiMate Model Exchange File For-
mat, ADOxx XML files, Papyrus UML files.

REQ4 yes CM2KG works with GraphML file format which is supported by var-
ious tools like Gephi, yED, neo4j.

REQ5 partially CM2KG can transform ArchiMate Model Exchange Format, ADOxx
XML and Papyrus XML formats to GraphML.

REQ6 yes CM2KG provides Download link button to download the file and ad-
ditionally can be shared via URL link.

REQ7 yes CM2KG uses Neo4j graph database which is scored as one of the best
graph databases by different sources.

REQ8 yes CM2KG provides input field where user can enter a query and execute
it against Neo4j.

REQ9 yes CM2KG provides the graph visualisation result via neovis.js directly
in the browser.

REQ10 partially In order to add new new module in CM2KG it is necessary to develop
new module in Spring Boot application.

Table 6.2: Evaluation of CM2KG against requirements in Tab. 6.1.

99

6. Evaluation

6.3 Smell Detection Evaluation
This section will evaluate how the graph-based approach handles smell detection in
models. We will evaluate EA smell detection and UML code smell detection since they
are very similar but also belong to totally different domains, which can further support
the claim on the generality of the framework.

6.3.1 EA Model Smell Detection
First, we define a set of requirements that will lead evaluation in this section. We set the
following requirements:

REQ1 The approach should be feasible to detect EA smells automatically in ArchiMate
models.

REQ2 The approach should be similar in performance to other EA Smell detectors.

In addition to this, we want to find out about the quality of the models with respect to
the number of smells.

To begin with, we need a repository where many models are available. We chose an
openly available model repository in the MAR search engine [LC20]. This repository
provided 369 ArchiMate models created with Archi. Dataset characteristics can be seen
in Tab. 6.3. Models were collected and transformed via CM2KG platform, and EA smells
defined in Sec. 5.3 were executed against these models in a custom-made experiment.

Table 6.3: Metadata of the EA Smells experiments

Metrics Value ± = standard deviation
Models [total] 347
Avg. model size [Nodes] 51.41 ± 97.04
Avg. model size [Edges] 47.14 ± 70.23

In order to evaluate the first requirement, models collected in [LC20] repository had
to be transformed to Open Group Exchange format first since CM2KG accepts this
standardized format. As previously stated, we had a set of 369 ArchiMate models, and
CM2KG successfully transformed 347, which is 94% of all models. The models that
were not transformed had some encoding issues in entity naming or they were corrupted.
Results show that 12 out of 13 EA smells we considered were found, as it can be seen in
Fig. 6.13 (left). This shows that the first requirement can be fulfilled and that approach
is feasible to detect EA smells automatically.

Moving to the following requirement, which is related to a performance, we can see the
results in Fig. 6.14. Executing graph queries in knowledge graphs can be done efficiently

100

6.3. Smell Detection Evaluation

Figure 6.13: Detected EA Smells. [SHB21]

Figure 6.14: CM2KG performance of running all implemented EA Smells based on graph
size. [SHB21]

on graphs with millions of nodes [Bel+19], and this can also be observed in our case
of EA Smell detection which is basically executing a query on a graph. In Fig. 6.14
we can see the relation between the size of the model and the transformation time EA
smell query execution time. Transformation time is shown in blue, and EA smell query
execution is given in orange color.

We can observe the EA smell query execution performance has linear complexity according
to the number of nodes. On the other hand, we can say the transformation has almost
constant execution time. Larger models are unlikely to be seen in reality [Lag+13; Sch16].
We can also see that in our case, a model having more than 1000 elements (nodes and
edges) was analyzed in a reasonable time. The average time for the model transformation
is 4.46ms ±23.85ms, while the query execution average time is 623.41ms ±287.58ms
depending on graph size.

Furthermore, to answer to the second requirement to have at least similar performance
to other EA smell detectors, we compare the results of our experiment to the existing

101

6. Evaluation

(a) (b)

Figure 6.15: Salentin java implementation [SH20a] and CM2KG smell detection execution
time comparison with initial vs improved queries for CM2KG.

Java-based implementation [SH20a] for EA smell detection. We have two types of results.
First result represents the execution time measured in the CM2KG platform using the
default queries and second one with improved query. The comparison (see Fig. 6.15)
shows that on average, we have achieved 7.88ms faster time with improved query. We
have to take into consideration here that Neo4j takes different actions in the background
to execute a query which includes query planning, caching, indexing, etc. This means
that with proper tweaking the execution time of CM2KG could be even better but this
was out of scope of this thesis. Overall, results show that Java-based implementation
outperforms our approach but only with a tiny difference. In the case of improved chatty
service, this difference is only 0.89ms, and in the case of normal Neo4j query, Java-based
implementation is 8.77ms faster on average. On the other hand, in some cases, the
graph-based approach is even outperforming the Java-based implementation in case of
cyclic dependency and message chain (see Fig. 6.16b and 6.16d).

Combining all these results, we can state that the second requirement is also fulfilled where
it is important to note that our approach is generic while Java-based implementation
is strictly made for one type of model. We did not invest time here to tweak the
queries to execute them in the fastest possible way. Since neo4j offers tips for query
execution improvement, one recommendation for future research could be to improve the
performance results (one option would be to run the queries as stored procedures).

Last, we evaluate in this section the quality of the models from a given repository in the
context of how many smells can be identified. The results can be seen in Fig. 6.13. The
numbers show that only one specific smell exists in a model or not. We do not state how
many times the same smell occurred in one exact model. An interesting result is that
78.38% had at least one smell. On the right side of Fig. 6.13 it can be seen that almost
half of the models belong to a group of having no smell at all or having one smell or

102

6.3. Smell Detection Evaluation

(a) (b)

(c) (d)

Figure 6.16: Salentin java implementation [SH20a] and CM2kg smell detection execution
time comparison

having two smells.

Additional interesting question is what are the most frequent smells and what are the
most frequent combinations of smells. The results showed that Duplication (249 hits),
Dense Structure (173 hits), Dead Component (166 hits), and Weakened Modularity (160
hits) are the most frequent smells. The most frequent combinations of smells are Dense
Structure and Duplication (162 hits), Duplication and Weakened Modularity (155 hits),
and Dead Component and Duplication (153 hits). Combining the results here, we can
say that the models that we were using here were quite "smelly".

6.3.2 Code smell
This section is similar to the previous section for the detection of EA smells. The
detection of UML code diagram smells is very similar to what we already did in the
previous section. The basis for EA smells was initially taken from UML code smells. We

103

6. Evaluation

have already introduced queries for the detection of UML smells in Sec. 5.4. The reason
for evaluating this similar approach to EA smells is also to show the generality of the
graph-based approach. We set the same requirements as for EA smells:

REQ1 The approach should be feasible to detect UML code smells automatically in
UML class diagram models.

REQ2 The approach should be similar in performance to other code smell detectors.

In addition to this, we want to explore the quality of the models with respect to the
number of smells.

We use the same repository [LC20] of models and we selected models created with the
Papyrus [Gér+07] modeling tool. In total we have found 5.025 UML Class Diagram
models in this repository created with Papyrus.

Again we set up a custom experiment to process all the models (i.e., transform it to
GraphML and run the queries). Again, the platform could not transform all the models,
resulting in a successful transformation of 4.262 (84.8%) out of 5.025 models. Although
this is because some models contained special characters or were corrupted, this yields
the limitation of the platform itself. Additional work has to be done to cover all the cases
that can arise but overall 84.8% of the total size of 5.025 models can be considered as a
success in order to automatically detect smells.

The results can be seen in Fig. 6.17. We were able to find all 5 smells that were described
in Sec. 5.4. This yields a positive answer to the first requirement for this evaluation.

The second requirement to analyze the performance shows similar results as EA smells.
The whole test (analysis of 5.025 models) lasted a bit more than 30 minutes. Average time
to transform the model was 16ms (where the longest was 14 seconds for a model size larger
than 100MB). The average time to execute a query was from 0.007s to 0.43s. We did not
compare this directly to some other implementation, but we can state the performance is
similar to the one in EA smells, and we can state that the second requirement is also
fulfilled.

In the end, we report on the quality of the models with respect to 5 different UML code
smell queries. Out of 4.262, we found 548 models that had at least one smell. Smell that
had most hits (325 hits) was Message Chain followed by Deep Hierarchy (199 hits). With
respect to having two different smells simultaneously in the model, we found 178 models.
The most frequent combination of two different smells was Message Chain combined with
Deep Hierarchy which we found in 102 models. The second most frequent combination
was Cyclic Dependency with Message Chain, where we found 62 models with such smells.

6.3.3 Smell Detection Conclusion
Combining results from both EA smell detection and UML smell detection, we can see
that in both cases, it is possible to set up the experiment using the graph-based approach

104

6.4. State of the Art Tools vs Graph-Based Analysis Comparison

Figure 6.17: Code smells detected in 4.262 UML Class Diagram models. [SB21a]

to detect smells automatically. We also showed that many models in openly available
model repositories contain many smells. Here we have to note that we do not guarantee
the correctness of smell queries, but we showed how it can be used, and further research
can deal with this since the point is not on the correctness of smell queries. Third and
last, we showed that the approach performs head-to-head to current smell detection
mechanisms and is scalable.

6.4 State of the Art Tools vs Graph-Based Analysis
Comparison

The final evaluation result is given in the table based on the author’s personal opinion
supported by explanations for each tool. In the Tab. 6.4, we summarize features offered
by different open source tools, some state-of-the-art tools and our prototype platform.

Commercial tools dominate the metric, sharing, collaboration features since they are
built on ideology to provide valuable metrics and good business collaboration. Also,
another dominant area of commercial tools is visual impact analysis since, again, this is
important for businesses to see the actual results. On the other hand, open-source tools
show that with simple plugins (the idea of open-source software), they can provide many
features and be very useful.

105

6. Evaluation

Feature Open Source Commercial

Archi

Archi*
TEAM

tool
ADOIT

ABACUS
BiZZDesign

Ardoq
CM

2KG

Metrics overall - -
+Metrics calculation enabled - -
+Metrics calculation based on elements - -
+Metrics calculation based on relationships - -

Visual Impact Analysis overall
+Predefined Views - -
+Customised views with filters -
+Visualised impact view based on a specific query -
+Visualised impact view based on a whole repository -

Querying overall -
+Whole repository querying enabled -
+Aggregated result for nodes and edges - - -
+Specific user query creation

Sharing and Collaboration overall -
+Online collaboration - -
+Online results sharing - - -
+Analysis export to pdf/image

Technical debts overall -
+EA Smell detection -
+Predefined smells -
+Definition of new smells - - - - -

Multiple models analysis - - -
+Bulk file analysis report enabled - - - -
+API for model analysis - - -

= provides property; = partially provides property; - = does not provide property; *with
Archimate Tool Database-Plugin

Table 6.4: Tools vs Graph-based Comparison with focus on analysis.

Sections, where platform CM2KG provides features are the querying section and multiple
models analysis since it is mostly designed for that. The reasons for this are the options
where the user can directly execute custom queries (Ardoq also supports this) and the
openness of our platform where the platform is open source, and everybody can take the
code and setup experiment in a way he needs. In the area of technical debts CM2KG
provides features because it has many new smells implemented and can easily add new
smells (again, Ardoq is not far from this since it can quickly implement the same smells).
Overall we can say that, in this artificial setup of features survey, all three (open-source,
state-of-the-art, prototype platform) provide a lot of features and can be very useful.

106

CHAPTER 7
Conclusion and Future Work

In this final chapter, we will summarize the findings of the thesis. First of all, we will
analyze all the thesis results and validate all the defined research questions. Furthermore,
we will mention the relevance of all contributions, and next, we will acknowledge the
limitations. The final part will be about the foundations for future research in this and
similar areas.

7.1 Summary

RQ1 The first research question is about accomplishing a generic approach for conceptual
model analysis which is based on model transformation and graph structures. For
this, we have developed a framework shown in Figure 4.1. In order to show to
what extent this framework is generic, we used several different modeling languages:
Ecore, ArchiMate, TEAM, and Papyrus UML. Furthermore, three different modeling
platforms were used: Eclipse EMF, Archi, Eclipse Papyrus, ADOxx with TEAM
library. On the other side, three independent third-party graph analysis tools were
used: Neo4j, Gephi, yED. We have built a platform that enables the transformation
of all these models into a graph-based structure that different graph analysis tools
can use. This way, we have shown that we have covered some of the most common
modeling languages and tools currently being used. Additionally, we have also
shown that different graph analysis tools can be used. All of this adds to the generic
nature of the framework. We have also provided examples of the benefits of how
the graph-based analysis can be helpful and how it can answer some questions by
enterprise architects by utilizing graph-based algorithms and query methods.

RQ2 The second question was about appropriate means to automate graph-based
analysis of EA models. We have defined ten requirements based on the survey of
state-of-the-art tools to answer this question. We have provided a set of possible

107

7. Conclusion and Future Work

options to consider to fulfill each requirement. We have developed the CM2KG
prototype platform1, which tries to satisfy these requirements. We have analyzed
the different options, and we have created a platform that accepts several different
models modeled with varying modeling languages. The prototype platform is
implemented as a Spring Boot application and is able to transform the Open Group
ArchiMate Model Exchange File Format, ADOxx, and Papyrus UML file formats
to a widely used GraphML format. The platform uses Neo4j graph database. In
general, automation should be supported by a cloud-based tool that can accept
different EA models. Moreover, the tool should be able to transform the input
model to the graph format and store it in a well-performing graph database. The
tool should provide a possibility to execute a query on a graph and visualize the
results.

RQ3 The third question was about whether the graph-based analysis approach can
detect EA model smells and UML model smells. In order to answer this question,
we used the generic framework discussed in the first question, which was built into
our platform. We have developed queries to identify 13 EA smells and five queries
for identifying UML code smells. After some modifications to enable large-scale
experiments, we examined 369 ArchiMate models and found out that more than
78% models had at least one smell. On the other side, we found a more extensive
model repository containing 5.025 UML class diagram models for UML code smells.
From 4.262 successfully processed models in the platform, a bit less than 13% of
models had at least one smell. We have shown that the approach can automatically
detect smells in both cases. Performance-wise, this general approach is not falling
behind the detectors written in Java, and for models with a large number of nodes,
it can even outperform current implementations by fully utilizing graph database
engines.

RQ4 The fourth question was how the graph-based analysis approach and platform
stand against the State-of-the-Art EA tools. In order to cope with this question, we
first had to define the State-of-the-Art tools. For this, we have referred to the well-
known Gartner magic quadrant. Each year, Gartner publishes the report on best
Enterprise Architecture Tools calculated on many different criteria that were not
the scope of this work, so we took the Leaders from this quadrant. Since all these
tools are commercial and not all offer free trials, we took 4/8 tools and analyzed
them with open source alternatives Archi and ADOxx. In total, we compared six
commercial and open source with the prototype platform we developed for this
thesis. Most commercial tools share the same preferences to provide well-defined
and well-structured reporting, integrated collaboration, and integrations to many
third-party platforms. Platforms also provide a possibility to work with many
different modeling languages. All commercial platforms are running in the cloud
and are accessible via browser. On the other hand, open-source tools we analyzed
Archi and ADOxx are running on a local machine where Archi collaboration is

1CM2KG platform [online]: https://me.big.tuwien.ac.at/

108

https://me.big.tuwien.ac.at/

7.2. Contributions

not possible by default(although the plugin for collaboration can be installed),
whereas ADOxx uses MS SQL database in the background and supports multiple
users. All the commercial and open-source tools had the possibility to create and
modify the models, whereas our prototype platform had only an import model
as a file option. Interestingly, 2 out of 4 commercial tools (defined as Leaders)
we analyzed are running graph databases in the background (Avolution ABACUS
and Ardoq). Avolution ABACUS team even claims that they have used graph
database technology for over 15 years because relational databases are a source
of frustration because they cannot fulfill increasing user demands and analysis
techniques. On the other hand, Ardoq even offers a user interface where, apart from
all features offered by default, users can write and execute their custom Gremlin
queries on the database containing model repositories in the background to get
relevant information. We have summarized some high-level analysis features offered
by tools that represent commercial leaders, open-source tools, and our prototype
platform in one table. Coming back to the question of how graph-based analysis
compares to analysis techniques provided by State-of-the-Art, we can say that
some leaders in this area are already utilizing the graph-based approach and claim
it opens new possibilities. Therefore we can say that the graph-based analysis
approach of Enterprise Architecture has taken place in State-of-the-Art.

7.2 Contributions

This work has many artifacts as contributions to the community. First of all, a generic
framework can be used as a guideline on how a conceptual model can be transformed
into a graph structure and then analyzed by utilizing graph methods. In order to show
the generic nature of the framework, we have developed four different transformations:
Ecore2Graphml, ADOxx2Graphml, PapyrusUML2Graphml, Archimate2Graphml. We
have created a set of rules, pseudo code, and actual Java implementation code for each
transformation. Furthermore, we have built a whole web platform that should serve as an
analysis platform for conceptual models based on a graph-based approach. This platform
is intended to be expanded furthermore with new modules. The platform supports four
different input models and can transform the models into graph structure file and also
load it into the background neo4j database and visualize a result directly in the web
browser. The platform also offers an API to upload and transform a model. Next, a
list of possible metrics for analyzing enterprise architecture was proposed based on the
goal question metric approach. This list was then summarized in a table of exemplary
competency questions for Enterprise Architects and the corresponding graph metrics. An
example of how a graph-based approach can answer each of these questions is provided.
Additional contribution is the development of 13 different queries for detecting EA smells
and five different queries for detecting UML code smells. Each smell is provided with
an example. Last but not least, a comparison of different State-of-the-Art EA tools is
summarized and evaluated against a graph-based analysis approach.

109

7. Conclusion and Future Work

7.3 Limitations
Building up the transformation was one of the most challenging tasks since many models
contained special characters (like in Archi) that were not acceptable in graph tools like
Gephi or neo4j. All these special characters had to be handled manually. As it was tough
to get professional feedback from the people working in the EA area, we do not know
what the opinion of the real stakeholders and practitioners about our approach and our
platform is. Another issue is the lack of real-world models that can be used for testing.
Repositories that we used to take the models are primarily models for academic and test
purposes, so we lacked real models from the industry. This made it harder to find some
good examples of where a graph-based approach can be utilized.

7.4 Future Research
The following are the recommendations for future research. As not much is spent on
evaluating the correctness of the transformations, this can be evaluated more in detail.
The platform we developed is intended to be extended with new modules for analysis.
The platform lacks integration options, and features that would be beneficial are, for
example:

• REST interface

• Archi plug-in

At the moment of writing this thesis, there are already other theses that have started
to expand the platform. On the other side, many options are available on applying the
graph methods and possibilities for analyzing EAs. Another open topic is the correctness
of implemented smells and the development of new ones. More can also be done on
evaluating different background graph database engines where maybe performance can be
improved. Another unexplored area is how this approach can be combined with semantic
web standards RDF/OWL. As we were limited to checking with the real practitioners on
the usability, more research can be done here.

110

List of Figures

2.1 Development phases of EAM throughout the years [Ahl+12]. 10
2.2 Artifacts of conceptual modeling by Robinson [Rob+15] 11
2.3 Ecore components hierarchy [Ecl21b]. 14
2.4 Most relevant concepts and their relations in Ecore [ecl21]. 15
2.5 Top-Level Hierarchy of ArchiMate Concepts [Gro21]. 16
2.6 Hierarchy of ArchiMate Behavior and Structure Elements [Gro21]. 17
2.7 The ADOxx library definition [ADO21b] 17
2.8 The ADOxx meta2 model [FK15]. 18
2.9 The basic graph model of GraphML [Bra+02]. 20
2.10 A hyperedge to v1, v2, and v4, where v1 is a source, and v2 is a sink. [Bra+02]. 20
2.11 The graph on the left represented in the most basic layer of GraphML. [Bra+02]. 21
2.12 GQM model is a hierarchical structure [Sol+02]. 22
2.13 The complete Goal/Question/Metric Model [Sol+02]. 23
2.14 Overview of 14 software design smells categorized by design principles [Hae18] 25

3.1 Network analysis initiatives found in primary studies part 1. [SFM16]. . . 29
3.2 Network analysis initiatives found in primary studies part 2. [SFM16]. . . 30
3.3 PRIMROSe Architecture. [NSV15] . 31
3.4 PRIMROSe ArchiSurance Model Graph. [NSV15] 32
3.5 Incremental appliance of Analysis Functions Degree calculator (a), Impact

Analysis (b). [NSV15] . 33
3.6 Neo4j Archi database plugin transformation of initial model (a), result in

Neo4j (b). 33
3.7 Magic Quadrant for Enterprise Architecture Tools [Garb]. 36
3.8 Archi Visualiser view with the possibility to set relation depth. 38
3.9 ADOxx TEAM library example query definition development toolkit (a),

result in modeling toolkit (b). 39
3.10 ADOxx TEAM library example notebook view (a), table view (b). 40
3.11 "Executing model queries in the TEAM tool." [Bor+18] 41
3.12 Avolution ABACUS graph database usage vision of benefits [Avob] 43
3.13 Strategy and Motivation user story views in HoriZZon [BiZa] 44
3.14 Enterprise Studio in HoriZZon platform [BiZb] 44
3.15 Possibility to define Gremlin search queries in Ardoq [Ardc] 45

111

3.16 Block diagram with specific components and references grouped by component
type in Ardoq [Ardb] . 45

4.1 A generic framework for transforming conceptual models into graphs. [SB21a] 48
4.2 Generic transformation from Ecore to GraphML. [SB21b] 49

5.1 CM2KG platform architecture. [SHB21] 58
5.2 CM2KG home screen. 63
5.3 CM2KG model type selection. 64
5.4 CM2KG Open Group ArchiMate Model Exchange File Format selection. . 64
5.5 CM2KG Model comparison. 65
5.6 CM2KG XML Model preview. 67
5.7 CM2KG graph-based model visualisation and analysis. 68
5.8 Chatty service smell detection initial (a), the result of detection (b). . . . 75
5.9 Cyclic Dependency smell detection initial (a), the result of detection (b). 75
5.10 Data Service smell detection initial (a), a result of detection (b). 76
5.11 Dead Component smell detection initial (a), the result of detection (b). . 77
5.12 Dense Structure smell detection result (true/false). 77
5.13 Documentation smell detection initial (a), a result of detection (b). 78
5.14 Documentation smell detection initial (a), a result of detection (b). 79
5.15 Hub-like Modularization smell detection initial (a), a result of detection (b). 80
5.16 Lazy Component smell detection initial (a), a result of detection (b). 81
5.17 Message Chain smell detection initial (a), a result of detection (b). 81
5.18 Shared Persistency smell detection initial (a), a result of detection (b). . . 82
5.19 Strict Layers Violation smell detection initial (a), a result of detection (b). 83
5.20 Weakened Modularity smell detection initial (a), a result of detection (b). 84

6.1 Ecore sample meta-model Vienna Books specification (a), sample instance
(b). 88

6.2 Ecore sample meta-model Vienna Books resulting graph representation in
Gephi (a), yEd (b). 88

6.3 Archi example App store intial model (a), representation in neo4j (b). . . 89
6.4 Archi example App store in yED (a), representation in CM2KG (b). . . . 90
6.5 ADOxx exanple ArchiMetal-TEAM Application Architecture 91
6.6 ADOxx exanple ArchiMetal-TEAM Application Architecture representation

in CM2KG (a), in neo4j (b). 91
6.7 ADOxx exanple ArchiMetal-TEAM Application Architecture representation

in Gephi (a), in yEd (b). 92
6.8 An example transformation from a UML model (a) to a Knowledge Graph

(b) in the CM2KG Cloud platform. [SB21a] 93
6.9 ArchiMetal Application Architecture [Arc16] 94
6.10 Transformed ArchiMetal example in Neo4j (a), Gephi (b), and yEd (c). [SB21b] 95
6.11 ArchiMetal Business Layer model and corresponding PageRank values. . . 96
6.12 User Interface of the eGEAA platform. [SB21b] 97

112

6.13 Detected EA Smells. [SHB21] . 101
6.14 CM2KG performance of running all implemented EA Smells based on graph

size. [SHB21] . 101
6.15 Salentin java implementation [SH20a] and CM2KG smell detection execution

time comparison with initial vs improved queries for CM2KG. 102
6.16 Salentin java implementation [SH20a] and CM2kg smell detection execution

time comparison . 103
6.17 Code smells detected in 4.262 UML Class Diagram models. [SB21a] . . . 105

113

List of Tables

3.1 Summary of studies with a relation between EA analysis and graph structures. 34

4.1 Ecore2GraphML transformation rules. 49
4.2 ADOxx2GraphML transformation rules. 51
4.3 PapyrusUML2GraphML transformation rules. 53
4.4 Archi- and ArchiMate-specific transformation rules. 55

5.1 Goal question metric approach in enterprise architecture proposal. 66
5.2 Interpretation of graph metrics for ArchiMate models. [SB21b] 67

6.1 List of requirements for automated analysis of EA models. 97
6.2 Evaluation of CM2KG against requirements in Tab. 6.1. 99
6.3 Metadata of the EA Smells experiments 100
6.4 Tools vs Graph-based Comparison with focus on analysis. 106

115

List of Algorithms

4.1 Ecore2GraphML transformation. 50

4.2 ADOxx2GraphML transformation. 52

4.3 PapyrusUML2GraphML transformation. 54

117

Acronyms

ADOxx ADOxx. 4–6, 15, 16, 39, 40, 47, 50–52, 59, 62, 115, 117

Archi Archi. 4, 5, 39, 54, 55, 62

ArchiMate ArchiMate. 2–5, 13, 14, 28, 40, 41, 54, 55, 59, 62

CM2KG Conceptual Model to Knowledge Graph Platform. 57–59, 61, 63–65, 67, 68,
87, 89–91, 93, 95, 96, 99–102, 106, 108, 112, 113, 115

DS Design Science. 5

DSRM Design Science Research Methodology. 5

EA Enterprise Architecture. 1–4, 27, 28, 31, 46, 47, 61, 96–98, 107, 108, 110, 115

EA Modeling Enterprise Architecture Modeling. 1, 2, 14

EAM Enterprise Architecture Management. 9, 10, 14, 35, 111

Ecore Ecore. 4–6, 13, 47–51, 54, 55, 62, 87, 88, 112

Gephi Gephi. 6, 48, 64

GraphML GraphML. 6, 19–21, 47–55, 58, 61–64, 89, 99, 104, 108, 115, 117

Neo4j Neo4j. 6, 48, 63–65, 87, 99, 102, 108

TEAM TOGAF based Enterprise Architecture Management. 5

TOGAF The Open Group Architecture Framework. 10

XML Extensible Markup Language. 51, 61, 63

yED yED. 4, 6, 48, 64, 87

119

Bibliography

[ACB14] Concalo Antunes, Artur Caetano, and José Borbinha. “Enterprise Architec-
ture Model Analysis Using Description Logics”. In: Sept. 2014, pp. 237–244.
doi: 10.1109/EDOCW.2014.43.

[ADO21a] ADOxx. ADOxx Home. [Online; accessed 23.12.2021] https://www.adox
x.org/. 2021. url: https://www.adoxx.org/. (accessed: 23.12.2021).

[ADO21b] ADOxx. Introduction to ADOxx. [Online; accessed 23.12.2021] https://
www.adoxx.org/live/introduction-to-adoxx. 2021. url: https:
//www.adoxx.org/live/introduction- to- adoxx. (accessed:
23.12.2021).

[AG] Software AG. Software AG Alfabet. [Online; accessed 28.11.2021] https:
//www.softwareag.com/en_corporate/platform/alfabet/en
terprise-architecture.html. url: https://www.softwareag.
com/en_corporate/platform/alfabet/enterprise-architect
ure.html. (accessed: 28.11.2021).

[Ahl+12] Frederik Ahlemann et al. Strategic Enterprise Architecture Management.
Berlin, Heidelberg: Springer, 2012.

[Aie06] Stephan Aier. “How Clustering Enterprise Architectures helps to Design
Service Oriented Architectures”. In: 2006 IEEE International Conference on
Services Computing (SCC 2006), 18-22 September 2006, Chicago, Illinois,
USA. IEEE Computer Society, 2006, pp. 269–272. doi: 10.1109/SCC.
2006.52. url: https://doi.org/10.1109/SCC.2006.52.

[Ant+14] Gonçalo Antunes et al. “Ontology-based enterprise architecture model anal-
ysis”. In: (Mar. 2014). doi: 10.1145/2554850.2555176.

[Arc16] Archi. ArchiMetal. https://github.com/archimatetool/ArchiMo
dels/tree/master/ArchiMetal. 2016.

[Arda] Ardoq. Ardoq Enterprise Architecture. [Online; accessed 28.11.2021] https:
//www.ardoq.com/. url: https://www.ardoq.com/. (accessed:
28.11.2021).

121

https://doi.org/10.1109/EDOCW.2014.43
https://www.adoxx.org/
https://www.adoxx.org/
https://www.adoxx.org/
https://www.adoxx.org/live/introduction-to-adoxx
https://www.adoxx.org/live/introduction-to-adoxx
https://www.adoxx.org/live/introduction-to-adoxx
https://www.adoxx.org/live/introduction-to-adoxx
https://www.softwareag.com/en_corporate/platform/alfabet/enterprise-architecture.html
https://www.softwareag.com/en_corporate/platform/alfabet/enterprise-architecture.html
https://www.softwareag.com/en_corporate/platform/alfabet/enterprise-architecture.html
https://www.softwareag.com/en_corporate/platform/alfabet/enterprise-architecture.html
https://www.softwareag.com/en_corporate/platform/alfabet/enterprise-architecture.html
https://www.softwareag.com/en_corporate/platform/alfabet/enterprise-architecture.html
https://doi.org/10.1109/SCC.2006.52
https://doi.org/10.1109/SCC.2006.52
https://doi.org/10.1109/SCC.2006.52
https://doi.org/10.1145/2554850.2555176
https://github.com/archimatetool/ArchiModels/tree/master/ArchiMetal
https://github.com/archimatetool/ArchiModels/tree/master/ArchiMetal
https://www.ardoq.com/
https://www.ardoq.com/
https://www.ardoq.com/

[Ardb] Ardoq. Ardoq Live Product Demo with Ian Stendera. [Online; accessed
30.11.2021] https://www.youtube.com/watch?v=8I5NTUue1h8&
list=PLN64rGvDdWmlc3FDmT_2BdcV23HNJskcn&index=5. url: ht
tps://www.youtube.com/watch?v=8I5NTUue1h8&list=PLN64r
GvDdWmlc3FDmT_2BdcV23HNJskcn&index=5. (accessed: 30.11.2021).

[Ardc] Ardoq. How to do as-is and to-be analysis in Ardoq. [Online; accessed
30.11.2021] https://www.youtube.com/watch?v=-8hKta9OaMs&
list=UU668g33FO7vdGI7pwZt4ruw&index=31. url: https://www.
youtube.com/watch?v=-8hKta9OaMs&list=UU668g33FO7vdGI7p
wZt4ruw&index=31. (accessed: 30.11.2021).

[AT10] Thorsten Arendt and Gabriele Taentzer. UML model smells and model
refactorings in early software development phases. Tech. rep. Universitat
Marburg, 2010.

[Avoa] Avolution. Avolution Abacus. [Online; accessed 28.11.2021] https://w
ww.avolutionsoftware.com/enterprise-architecture/. url:
https://www.avolutionsoftware.com/enterprise-architect
ure/. (accessed: 28.11.2021).

[Avob] Avolution. The Graph Database Advantage for Enterprise Architects. [Online;
accessed 04.12.2021] https://www.avolutionsoftware.com/abacu
s/the-graph-database-advantage-for-enterprise-archite
cts/. url: https://www.avolutionsoftware.com/abacus/the-
graph- database- advantage- for- enterprise- architects/.
(accessed: 04.12.2021).

[Bar+19] Amanda Oliveira Barbosa et al. “A Taxonomy for Enterprise Architecture
Analysis Research”. In: Proceedings of the 21st International Conference
on Enterprise Information Systems, ICEIS 2019, Heraklion, Crete, Greece,
May 3-5, 2019, Volume 2. Ed. by Joaquim Filipe et al. SciTePress, 2019,
pp. 493–504. doi: 10.5220/0007692304930504. url: https://doi.
org/10.5220/0007692304930504.

[Bel+19] Luigi Bellomarini et al. “Knowledge graphs and enterprise AI: the promise
of an enabling technology”. In: 2019 IEEE 35th International Conference
on Data Engineering (ICDE). IEEE. 2019, pp. 26–37.

[BHM20] Jan vom Brocke, Alan Hevner, and Alexander Maedche. “Introduction to
Design Science Research”. In: Sept. 2020, pp. 1–13. isbn: 978-3-030-46780-7.
doi: 10.1007/978-3-030-46781-4_1.

[BiZa] BiZZDesign. HoriZZon Demo 2. [Online; accessed 04.12.2021] https://
www.youtube.com/watch?v=JmLHOPZ5YwQ&t=27s. url: https:
//www.youtube.com/watch?v=JmLHOPZ5YwQ&t=27s. (accessed:
04.12.2021).

122

https://www.youtube.com/watch?v=8I5NTUue1h8&list=PLN64rGvDdWmlc3FDmT_2BdcV23HNJskcn&index=5
https://www.youtube.com/watch?v=8I5NTUue1h8&list=PLN64rGvDdWmlc3FDmT_2BdcV23HNJskcn&index=5
https://www.youtube.com/watch?v=8I5NTUue1h8&list=PLN64rGvDdWmlc3FDmT_2BdcV23HNJskcn&index=5
https://www.youtube.com/watch?v=8I5NTUue1h8&list=PLN64rGvDdWmlc3FDmT_2BdcV23HNJskcn&index=5
https://www.youtube.com/watch?v=8I5NTUue1h8&list=PLN64rGvDdWmlc3FDmT_2BdcV23HNJskcn&index=5
https://www.youtube.com/watch?v=-8hKta9OaMs&list=UU668g33FO7vdGI7pwZt4ruw&index=31
https://www.youtube.com/watch?v=-8hKta9OaMs&list=UU668g33FO7vdGI7pwZt4ruw&index=31
https://www.youtube.com/watch?v=-8hKta9OaMs&list=UU668g33FO7vdGI7pwZt4ruw&index=31
https://www.youtube.com/watch?v=-8hKta9OaMs&list=UU668g33FO7vdGI7pwZt4ruw&index=31
https://www.youtube.com/watch?v=-8hKta9OaMs&list=UU668g33FO7vdGI7pwZt4ruw&index=31
https://www.avolutionsoftware.com/enterprise-architecture/
https://www.avolutionsoftware.com/enterprise-architecture/
https://www.avolutionsoftware.com/enterprise-architecture/
https://www.avolutionsoftware.com/enterprise-architecture/
https://www.avolutionsoftware.com/abacus/the-graph-database-advantage-for-enterprise-architects/
https://www.avolutionsoftware.com/abacus/the-graph-database-advantage-for-enterprise-architects/
https://www.avolutionsoftware.com/abacus/the-graph-database-advantage-for-enterprise-architects/
https://www.avolutionsoftware.com/abacus/the-graph-database-advantage-for-enterprise-architects/
https://www.avolutionsoftware.com/abacus/the-graph-database-advantage-for-enterprise-architects/
https://doi.org/10.5220/0007692304930504
https://doi.org/10.5220/0007692304930504
https://doi.org/10.5220/0007692304930504
https://doi.org/10.1007/978-3-030-46781-4_1
https://www.youtube.com/watch?v=JmLHOPZ5YwQ&t=27s
https://www.youtube.com/watch?v=JmLHOPZ5YwQ&t=27s
https://www.youtube.com/watch?v=JmLHOPZ5YwQ&t=27s
https://www.youtube.com/watch?v=JmLHOPZ5YwQ&t=27s

[BiZb] BiZZDesign. HoriZZon Demo 5. [Online; accessed 04.12.2021] https://
www.youtube.com/watch?v=Md4A6IW08TY&t=527s. url: https:
//www.youtube.com/watch?v=Md4A6IW08TY&t=527s. (accessed:
04.12.2021).

[BiZc] BiZZdesign. BiZZdesign Enterprise Architecture. [Online; accessed 28.11.2021]
https://bizzdesign.com/solution/enterprise-architect
ure/. url: https://bizzdesign.com/solution/enterprise-
architecture/. (accessed: 28.11.2021).

[BJS13] Markus Buschle, Pontus Johnson, and Khurram Shahzad. “The Enterprise
Architecture Analysis Tool - Support for the Predictive, Probabilistic Archi-
tecture Modeling Framework”. In: 19th Americas Conference on Information
Systems, AMCIS 2013, Chicago, Illinois, USA, August 15-17, 2013. Associ-
ation for Information Systems, 2013. url: http://aisel.aisnet.org/
amcis2013/EnterpriseSystems/GeneralPresentations/15.

[BJT16] Francis Bloch, Matthew Jackson, and Pietro Tebaldi. “Centrality Measures
in Networks”. In: SSRN Electronic Journal (Aug. 2016). doi: 10.2139/
ssrn.2749124.

[BMS09] Sabine Buckl, Florian Matthes, and Christian M Schweda. “Classifying en-
terprise architecture analysis approaches”. In: IFIP-International Workshop
on Enterprise Interoperability. Springer. 2009, pp. 66–79.

[Bor+18] Dominik Bork et al. “Requirements Engineering for Model-Based Enterprise
Architecture Management with ArchiMate”. In: Proceedings EOMAS 2018.
Springer, 2018, pp. 16–30.

[BP05] Ulrik Brandes and Christian Pich. “GraphML Transformation”. In: Graph
Drawing. Ed. by János Pach. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 89–99. isbn: 978-3-540-31843-9.

[Bra+02] Ulrik Brandes et al. “GraphML Progress Report Structural Layer Proposal”.
In: Graph Drawing. Ed. by Petra Mutzel, Michael Jünger, and Sebastian
Leipert. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 501–512.
isbn: 978-3-540-45848-7.

[Bra+13] Ulrik Brandes et al. “Graph Markup Language (GraphML)”. In: Handbook of
graph drawing visualization. Ed. by Roberto Tamassia. Discrete mathematics
and its applications. CRC Press, 2013, pp. 517–541.

[BS21] Dominik Bork and Muhamed Smajevic. Companion source code repository
of the eGEAA platform. https://github.com/borkdominik/eGEAA.
2021.

[BW84] Victor R. Basili and David M. Weiss. “A Methodology for Collecting Valid
Software Engineering Data”. In: IEEE Transactions on Software Engineering
SE-10.6 (1984), pp. 728–738. doi: 10.1109/TSE.1984.5010301.

123

https://www.youtube.com/watch?v=Md4A6IW08TY&t=527s
https://www.youtube.com/watch?v=Md4A6IW08TY&t=527s
https://www.youtube.com/watch?v=Md4A6IW08TY&t=527s
https://www.youtube.com/watch?v=Md4A6IW08TY&t=527s
https://bizzdesign.com/solution/enterprise-architecture/
https://bizzdesign.com/solution/enterprise-architecture/
https://bizzdesign.com/solution/enterprise-architecture/
https://bizzdesign.com/solution/enterprise-architecture/
http://aisel.aisnet.org/amcis2013/EnterpriseSystems/GeneralPresentations/15
http://aisel.aisnet.org/amcis2013/EnterpriseSystems/GeneralPresentations/15
https://doi.org/10.2139/ssrn.2749124
https://doi.org/10.2139/ssrn.2749124
https://github.com/borkdominik/eGEAA
https://doi.org/10.1109/TSE.1984.5010301

[Cap] Capsifi. Capsifi Enterprise Architecture. [Online; accessed 28.11.2021] ht
tps://www.capsifi.com/solutions/architecture/. url: ht
tps://www.capsifi.com/solutions/architecture/. (accessed:
28.11.2021).

[Con21] Neo4j Contrib. neovis.js. https://github.com/neo4j-contrib/
neovis.js. https://github.com/neo4j-contrib/neovis.js.
2021.

[CSQ08] Weiwei Cui, Supervisor, and H. Qu. “A Survey on Graph Visualization”. In:
2008.

[Cun92] Ward Cunningham. “The WyCash Portfolio Management System”. In: SIG-
PLAN OOPS Mess. 4.2 (Dec. 1992), pp. 29–30. issn: 1055-6400.

[DA09] M. R. Davoudi and F. S. Aliee. “Characterization of Enterprise Architecture
quality attributes”. In: 2009 13th Enterprise Distributed Object Computing
Conference Workshops. 2009, pp. 131–137. doi: 10.1109/EDOCW.2009.
5332004.

[Deh+14] Matthias Dehmer et al. “What Is Quantitative Graph Theory?” In: Nov.
2014, pp. 1–33.

[DES17] Matthias Dehmer, Frank Emmert-Streib, and Yongtang Shi. “Quantitative
Graph Theory: A new branch of graph theory and network science”. In:
Information Sciences 418-419 (2017), pp. 575–580.

[DI06] D. Dreyfus and B. Iyer. “Enterprise Architecture: A Social Network Perspec-
tive”. In: Proceedings of the 39th Annual Hawaii International Conference
on System Sciences (HICSS’06). Vol. 8. 2006, 178a–178a. doi: 10.1109/
HICSS.2006.155.

[Ecl21a] Eclipse. Eclipse Modeling Framework (EMF). [Online; accessed 23.12.2021]
https://www.eclipse.org/modeling/emf/. 2021. url: https:
//www.eclipse.org/modeling/emf/. (accessed: 23.12.2021).

[Ecl21b] Eclipse. Package org.eclipse.emf.ecore. [Online; accessed 05.01.2022] https:
//download.eclipse.org/modeling/emf/emf/javadoc/2.9.
0/org/eclipse/emf/ecore/package-summary.html. 2021. url:
https://download.eclipse.org/modeling/emf/emf/javado
c/2.9.0/org/eclipse/emf/ecore/package-summary.html.
(accessed: 05.01.2022).

[ecl21] eclipse.org. Ecore. [Online; accessed April 10, 2021], https://www.ecl
ipse.org/Xtext/documentation/308_emf_integration.html.
2021. url: https://www.eclipse.org/Xtext/documentation/
308_emf_integration.html.

[EK13] Wendy Ellens and Robert Kooij. “Graph measures and network robustness”.
In: (Nov. 2013).

124

https://www.capsifi.com/solutions/architecture/
https://www.capsifi.com/solutions/architecture/
https://www.capsifi.com/solutions/architecture/
https://www.capsifi.com/solutions/architecture/
https://github.com/neo4j-contrib/neovis.js
https://github.com/neo4j-contrib/neovis.js
https://github.com/neo4j-contrib/neovis.js
https://doi.org/10.1109/EDOCW.2009.5332004
https://doi.org/10.1109/EDOCW.2009.5332004
https://doi.org/10.1109/HICSS.2006.155
https://doi.org/10.1109/HICSS.2006.155
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://www.eclipse.org/Xtext/documentation/308_emf_integration.html
https://www.eclipse.org/Xtext/documentation/308_emf_integration.html
https://www.eclipse.org/Xtext/documentation/308_emf_integration.html
https://www.eclipse.org/Xtext/documentation/308_emf_integration.html

[FK15] Hans-Georg Fill and Dimitris Karagiannis. “On the Conceptualisation of
Modelling Methods Using the ADOxx Meta Modelling Platform”. In: (Jan.
2015). doi: 10.18417/emisa.8.1.1.

[Fow99] Martin Fowler. Refactoring - Improving the Design of Existing Code. Addison
Wesley object technology series. Addison-Wesley, 1999.

[Gara] Gartner. Company official website. [Online; accessed 28.11.2021] https:
//www.gartner.com/en. url: https://www.gartner.com/en.
(accessed: 28.11.2021).

[Garb] Gartner. Magic Quadrant for Enterprise Architecture 2021. [Online; accessed
28.11.2021] https://www.softwareag.com/en_corporate/plat
form/alfabet/ea-tools-gartner.html. url: https://www.
softwareag.com/en_corporate/platform/alfabet/ea-tools-
gartner.html. (accessed: 28.11.2021).

[Gér+07] Sébastien Gérard et al. “Papyrus: A UML2 tool for domain-specific language
modeling”. In: Dagstuhl Workshop on Model-Based Engineering of Embedded
Real-Time Systems. Springer. 2007, pp. 361–368.

[GKC06] Aditya Garg, Rick Kazman, and Hong-Mei Chen. “Interface descriptions for
enterprise architecture”. In: Science of Computer Programming 61.1 (2006),
pp. 4–15.

[Gro] BOC Group. ADOIT Enterprise Architecture Suite. [Online; 28.11.2021]
https://www.boc-group.com/en/adoit/. url: https://www.
boc-group.com/en/adoit/. (accessed: 28.11.2021).

[Gro12] The Open Group. Archimate 2.0 Specification. 2012.
[Gro18] The Open Group. The TOGAF® Standard, Version 9.2. https://www.

opengroup.org/togaf. 2018.
[Gro21] The Open Group. ArchiMate® 3.1 Specification, a Standard of The Open

Group. [Online; accessed April 10, 2021] https://pubs.opengroup.
org/architecture/archimate3-doc/toc.html. 2021. url: https:
//pubs.opengroup.org/architecture/archimate3-doc/toc.
html.

[Hac+19] Simon Hacks et al. “Towards the Definition of Enterprise Architecture Debts”.
In: IEEE 23rd International Enterprise Distributed Object Computing Work-
shop (EDOCW). IEEE, Oct. 30, 2019, pp. 9–16. isbn: 978-1-7281-4598-3.
doi: 10.1109/EDOCW.2019.00016.

[Hae18] Thorsten Haendler. “On using UML Diagrams to Identify and Assess Soft-
ware Design Smells”. In: Proceedings of the 13th International Conference
on Software Technologies. SciTePress, 2018, pp. 447–455.

[HC10] Alan Hevner and Chatterjee. Design Research in Information Systems:
Theory and Practice. Vol. 22. Jan. 2010. doi: 10.1007/978-1-4419-
5653-8.

125

https://doi.org/10.18417/emisa.8.1.1
https://www.gartner.com/en
https://www.gartner.com/en
https://www.gartner.com/en
https://www.softwareag.com/en_corporate/platform/alfabet/ea-tools-gartner.html
https://www.softwareag.com/en_corporate/platform/alfabet/ea-tools-gartner.html
https://www.softwareag.com/en_corporate/platform/alfabet/ea-tools-gartner.html
https://www.softwareag.com/en_corporate/platform/alfabet/ea-tools-gartner.html
https://www.softwareag.com/en_corporate/platform/alfabet/ea-tools-gartner.html
https://www.boc-group.com/en/adoit/
https://www.boc-group.com/en/adoit/
https://www.boc-group.com/en/adoit/
https://www.opengroup.org/togaf
https://www.opengroup.org/togaf
https://pubs.opengroup.org/architecture/archimate3-doc/toc.html
https://pubs.opengroup.org/architecture/archimate3-doc/toc.html
https://pubs.opengroup.org/architecture/archimate3-doc/toc.html
https://pubs.opengroup.org/architecture/archimate3-doc/toc.html
https://pubs.opengroup.org/architecture/archimate3-doc/toc.html
https://doi.org/10.1109/EDOCW.2019.00016
https://doi.org/10.1007/978-1-4419-5653-8
https://doi.org/10.1007/978-1-4419-5653-8

[Hew19] Richard Heward. Enterprise Architecture Analysis in a Graph Database.
[Online; accessed 16.01.2022] https://www.tamebluelion.co.uk/EA-
in-a-graph. 2019. url: https://www.tamebluelion.co.uk/EA-
in-a-graph. (accessed: 16.01.2022).

[Hol+09] Oliver Holschke et al. “Using Enterprise Architecture Models and Bayesian
Belief Networks for Failure Impact Analysis”. In: Int. Conference on Service-
Oriented Computing. Ed. by George Feuerlicht and Winfried Lamersdorf.
Springer, 2009, pp. 339–350.

[Hol+12] Hannes Holm et al. “Automatic Data Collection for Enterprise Architecture
Models”. In: Software & Systems Modeling 13 (May 2012). doi: 10.1007/
s10270-012-0252-1.

[IJ06] Maria-Eugenia Iacob and Henk Jonkers. “Quantitative analysis of enterprise
architectures”. In: Interoperability of Enterprise Software and Applications.
Springer, 2006, pp. 239–252.

[Int] MEGA International. MEGA International Enterprise Architecture. [Online;
accessed 28.11.2021] https://www.mega.com/en/product-enterp
rise-architecture. url: https://www.mega.com/en/product-
enterprise-architecture. (accessed: 28.11.2021).

[Jou+21] Hervé Jouin et al. Archimate Tool Database-Plugin. [Online;] https://gi
thub.com/archi-contribs/database-plugin. 2021. url: https:
//github.com/archi- contribs/database- plugin. (accessed:
16.01.2022).

[JPT09] Henk Jonkers, Henderik Proper, and M Turner. “TOGAF 9 and ArchiMate
1.0”. In: (Nov. 2009).

[Lag+13] Robert Lagerström et al. “Visualizing and measuring enterprise architecture:
an exploratory biopharma case”. In: IFIP Working Conference on The
Practice of Enterprise Modeling. Springer. 2013, pp. 9–23.

[Lan+09] Marc Lankhorst et al. Enterprise architecture at work. Vol. 352. Springer,
2009.

[Lan+12] Philip Langer et al. “Model Transformation By-Example: A Survey of the
First Wave”. In: vol. 7260. Jan. 2012, pp. 197–215. isbn: 978-3-642-28278-2.
doi: 10.1007/978-3-642-28279-9_15.

[Lan+16] Birger Lantow et al. “Towards a Classification Framework for Approaches to
Enterprise Architecture Analysis”. In: Proceedings PoEM 2016. Nov. 2016,
pp. 335–343.

[Laz19] Ljubica Lazarevic. Using Neo4j to explore your ArchiMate model. [Online;
accessed 16.01.2022] https://lju-lazarevic.github.io/ArchiMa
teNeo4j1.html. 2019. url: https://lju-lazarevic.github.io/
ArchiMateNeo4j1.html. (accessed: 16.01.2022).

126

https://www.tamebluelion.co.uk/EA-in-a-graph
https://www.tamebluelion.co.uk/EA-in-a-graph
https://www.tamebluelion.co.uk/EA-in-a-graph
https://www.tamebluelion.co.uk/EA-in-a-graph
https://doi.org/10.1007/s10270-012-0252-1
https://doi.org/10.1007/s10270-012-0252-1
https://www.mega.com/en/product-enterprise-architecture
https://www.mega.com/en/product-enterprise-architecture
https://www.mega.com/en/product-enterprise-architecture
https://www.mega.com/en/product-enterprise-architecture
https://github.com/archi-contribs/database-plugin
https://github.com/archi-contribs/database-plugin
https://github.com/archi-contribs/database-plugin
https://github.com/archi-contribs/database-plugin
https://doi.org/10.1007/978-3-642-28279-9_15
https://lju-lazarevic.github.io/ArchiMateNeo4j1.html
https://lju-lazarevic.github.io/ArchiMateNeo4j1.html
https://lju-lazarevic.github.io/ArchiMateNeo4j1.html
https://lju-lazarevic.github.io/ArchiMateNeo4j1.html

[Laz21] Ljubica Lazarevic. Using a Graph Database to Explore Your ArchiMate
Model. [Online; accessed 16.01.2022] https://medium.com/geekcult
ure/using-a-graph-database-to-explore-your-archimate-
model-df7bd63f65dd. 2021. url: https://medium.com/geekcult
ure/using-a-graph-database-to-explore-your-archimate-
model-df7bd63f65dd. (accessed: 16.01.2022).

[LC20] José Antonio Hernández López and Jesús Sánchez Cuadrado. “MAR: a
structure-based search engine for models”. In: MoDELS ’20: ACM/IEEE
23rd International Conference on Model Driven Engineering Languages and
Systems, Virtual Event, Canada, 2020. Ed. by Eugene Syriani et al. ACM,
2020, pp. 57–67.

[Lea] LeanIX. Enterprise Architecture Management (EAM). [Online; accessed
28.11.2021] https://www.leanix.net/en/products/enterprise-
architecture- management. url: https://www.leanix.net/
en/products/enterprise-architecture-management. (accessed:
28.11.2021).

[Leh+20] Barry-Detlef Lehmann et al. “Towards the Identification of Process Anti-
Patterns in Enterprise Architecture Models”. In: 8th International Workshop
on Quantitative Approaches to Software Quality in conjunction with the 27th
Asia-Pacific Software Engineering Conference (APSEC 2020). Vol. 2767.
CEUR-WS, Dec. 11, 2020, pp. 47–54.

[LH12] Olga Levina and Robert Hillmann. “Network-Based Business Process Anal-
ysis”. In: Proceedings of the Annual Hawaii International Conference on
System Sciences (Jan. 2012), pp. 4356–4365. doi: 10.1109/HICSS.2012.
447.

[Lib19] The Open Group Library. “ArchiMate® Model Exchange File Format for
the ArchiMate Modeling Language, Version 3.1”. In: Nov. 2019, p. 39. isbn:
1-947754-39-3.

[Mum+19] Haris Mumtaz et al. “A survey on UML model smells detection techniques
for software refactoring”. In: Journal of Software: Evolution and Process
31.3 (2019), e2154.

[neo21a] neo4j. Eigenvector Centrality. [Online; accessed 23.12.2021] https://
neo4j.com/docs/graph-data-science/current/algorithms/
eigenvector-centrality/. 2021. url: https://neo4j.com/do
cs/graph-data-science/current/algorithms/eigenvector-
centrality/. (accessed: 23.12.2021).

[neo21b] neo4j. PageRank Centrality. [Online; accessed 23.12.2021] https://n
eo4j.com/docs/graph-data-science/current/algorithms/
page-rank/. 2021. url: https://neo4j.com/docs/graph-data-
science/current/algorithms/page-rank/. (accessed: 23.12.2021).

127

https://medium.com/geekculture/using-a-graph-database-to-explore-your-archimate-model-df7bd63f65dd
https://medium.com/geekculture/using-a-graph-database-to-explore-your-archimate-model-df7bd63f65dd
https://medium.com/geekculture/using-a-graph-database-to-explore-your-archimate-model-df7bd63f65dd
https://medium.com/geekculture/using-a-graph-database-to-explore-your-archimate-model-df7bd63f65dd
https://medium.com/geekculture/using-a-graph-database-to-explore-your-archimate-model-df7bd63f65dd
https://medium.com/geekculture/using-a-graph-database-to-explore-your-archimate-model-df7bd63f65dd
https://www.leanix.net/en/products/enterprise-architecture-management
https://www.leanix.net/en/products/enterprise-architecture-management
https://www.leanix.net/en/products/enterprise-architecture-management
https://www.leanix.net/en/products/enterprise-architecture-management
https://doi.org/10.1109/HICSS.2012.447
https://doi.org/10.1109/HICSS.2012.447
https://neo4j.com/docs/graph-data-science/current/algorithms/eigenvector-centrality/
https://neo4j.com/docs/graph-data-science/current/algorithms/eigenvector-centrality/
https://neo4j.com/docs/graph-data-science/current/algorithms/eigenvector-centrality/
https://neo4j.com/docs/graph-data-science/current/algorithms/eigenvector-centrality/
https://neo4j.com/docs/graph-data-science/current/algorithms/eigenvector-centrality/
https://neo4j.com/docs/graph-data-science/current/algorithms/eigenvector-centrality/
https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/
https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/
https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/
https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/
https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/

[NSV15] David Naranjo, Mario Sánchez, and Jorge Villalobos. “PRIMROSe: A
Graph-Based Approach for Enterprise Architecture Analysis”. In: July
2015, pp. 434–452. isbn: 978-3-319-22347-6. doi: 10.1007/978-3-319-
22348-3_24.

[ÖLR12] Magnus Österlind, Robert Lagerström, and Peter Rosell. “Assessing Modifi-
ability in Application Services Using Enterprise Architecture Models – A
Case Study”. In: Proceedings TEAR 2012. Springer, 2012, pp. 162–181.

[OMG19] OMG. ArchiMate® 3.1 Specification. http://pubs.opengroup.or
g/architecture/archimate3-doc/. The Open Group, 2019. url:
http://pubs.opengroup.org/architecture/archimate3-doc/
(visited on 03/29/2021).

[PB17] Benedikt Pittl and Dominik Bork. “Modeling digital Enterprise ecosys-
tems with ArchiMate: a mobility provision case study”. In: International
Conference on Serviceology. Springer. 2017, pp. 178–189.

[PV18] Murugaiyan Pachayappan and Ramakrishnan Venkatesakumar. “A graph
theory based systematic literature network analysis”. In: Theoretical Eco-
nomics Letters 8.05 (2018), pp. 960–980.

[Ram+14] Andres Ramos et al. “Automated Enterprise-Level Analysis of ArchiMate
Models”. In: Enterprise, Business-Process and Information Systems Model-
ing. Ed. by Ilia Bider et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 439–453. isbn: 978-3-662-43745-2.

[Rob+15] Stewart Robinson et al. “Conceptual Modeling: Definition, Purpose, and
Benefits”. In: Dec. 2015. doi: 10.1109/WSC.2015.7408386.

[Sal+21] Johannes Salentin et al. Enterprise Architecture Smells Catalog. https:
//swc-public.pages.rwth-aachen.de/smells/ea-smells/.
2021.

[San+16] Alixandre Santana et al. “Combining network measures and expert knowl-
edge to analyze enterprise architecture at the component level”. In: 2016
IEEE EDOC Conference. IEEE. 2016, pp. 1–10.

[SB21a] Muhamed Smajevic and Dominik Bork. “From Conceptual Models to
Knowledge Graphs: A Generic Model Transformation Platform”. In: 2021
ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems Companion (MODELS-C) - Tools & Demonstrations
Track. ACM/IEEE. USA: IEEE Xplore Digital Library, 2021, pp. 610–614.
isbn: 978-1-6654-2484-4. doi: 10.1109/MODELS-C53483.2021.00093.
url: https://publik.tuwien.ac.at/files/publik_297025.
pdf.

128

https://doi.org/10.1007/978-3-319-22348-3_24
https://doi.org/10.1007/978-3-319-22348-3_24
http://pubs.opengroup.org/architecture/archimate3-doc/
http://pubs.opengroup.org/architecture/archimate3-doc/
http://pubs.opengroup.org/architecture/archimate3-doc/
https://doi.org/10.1109/WSC.2015.7408386
https://swc-public.pages.rwth-aachen.de/smells/ea-smells/
https://swc-public.pages.rwth-aachen.de/smells/ea-smells/
https://doi.org/10.1109/MODELS-C53483.2021.00093
https://publik.tuwien.ac.at/files/publik_297025.pdf
https://publik.tuwien.ac.at/files/publik_297025.pdf

[SB21b] Muhamed Smajevic and Dominik Bork. “Towards Graph-based Analysis
of Enterprise Architecture Models”. In: 40th International Conference on
Conceptual Modeling. Ed. by Aditya Ghose et al. Springer. Springer, LNCS,
2021, pp. 199–209. isbn: 978-3-030-89021-6. doi: 10.1007/978-3-030-
89022-3_17. url: https://publik.tuwien.ac.at/files/publi
k_297029.pdf.

[Sch16] Anthony Schoonjans. “Social network analysis techniques in enterprise
architecture management”. PhD thesis. PhD thesis, Ghent University, Ghent,
2016.

[Ser] ServiceNow. ServiceNow named a Leader for 8th year in Gartner 2021
ITSM Magic Quadrant. [Online; accessed 28.11.2021] https://www.s
ervicenow.com/lpayr/gartner-mq-itsm.html. url: https://
www.servicenow.com/lpayr/gartner-mq-itsm.html. (accessed:
28.11.2021).

[SFM16] Alixandre Santana, Kai Fischbach, and Hermano Moura. “Enterprise archi-
tecture analysis and network thinking: A literature review”. In: 2016 49th
Hawaii International Conference on System Sciences (HICSS). IEEE. 2016,
pp. 4566–4575.

[SGR20] Shreya Srinivas, Asif Gill, and Terry Roach. “Analytics-Enabled Adaptive
Business Architecture Modeling”. In: Complex Systems Informatics and
Modeling Quarterly (July 2020), pp. 23–43. doi: 10.7250/csimq.2020-
23.03.

[SH20a] Johannes Salentin and Simon Hacks. Enterprise Architecture Smells Pro-
totype. https://git.rwth-aachen.de/ba-ea-smells/program.
2020.

[SH20b] Johannes Salentin and Simon Hacks. “Towards a Catalog of Enterprise Ar-
chitecture Smells”. In: Entwicklungen, Chancen und Herausforderungen der
Digitalisierung: Proceedings der 15. Internationalen Tagung Wirtschaftsin-
formatik, WI 2020, Potsdam, Germany, March 9-11, 2020. Community
Tracks. Ed. by Norbert Gronau et al. GITO Verlag, 2020, pp. 276–290.

[SHB21] Muhamed Smajevic, Simon Hacks, and Dominik Bork. “Using Knowledge
Graphs to Detect Enterprise Architecture Smells”. In: Proceedings of the
14th IFIP Working Conference, PoEM 2021, Riga, Latvia, November 24-26,
2021. Springer International Publishing, 2021, pp. 48–63. isbn: 978-3-030-
91278-9. url: https://publik.tuwien.ac.at/files/publik_
297954.pdf.

[Sol+02] Rini Solingen et al. “Goal Question Metric (GQM) Approach”. In: Jan. 2002.
isbn: 9780471028956. doi: 10.1002/0471028959.sof142.

[SS06] Hans-Jörg Schulz and H. Schumann. “Visualizing Graphs - A Generalized
View”. In: vol. 9. Aug. 2006, pp. 166–173. isbn: 0-7695-2602-0. doi: 10.
1109/IV.2006.130.

129

https://doi.org/10.1007/978-3-030-89022-3_17
https://doi.org/10.1007/978-3-030-89022-3_17
https://publik.tuwien.ac.at/files/publik_297029.pdf
https://publik.tuwien.ac.at/files/publik_297029.pdf
https://www.servicenow.com/lpayr/gartner-mq-itsm.html
https://www.servicenow.com/lpayr/gartner-mq-itsm.html
https://www.servicenow.com/lpayr/gartner-mq-itsm.html
https://www.servicenow.com/lpayr/gartner-mq-itsm.html
https://doi.org/10.7250/csimq.2020-23.03
https://doi.org/10.7250/csimq.2020-23.03
https://git.rwth-aachen.de/ba-ea-smells/program
https://publik.tuwien.ac.at/files/publik_297954.pdf
https://publik.tuwien.ac.at/files/publik_297954.pdf
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1109/IV.2006.130
https://doi.org/10.1109/IV.2006.130

[SS15] Prince M Singh and Marten J van Sinderen. “Lightweight metrics for
enterprise architecture analysis”. In: International Conference on Business
Information Systems. Springer. 2015, pp. 113–125.

[SSS14] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. Refactor-
ing for software design smells: managing technical debt. Morgan Kaufmann,
2014.

[TH21] Benny Tieu and Simon Hacks. “Determining Enterprise Architecture Smells
from Software Architecture Smells”. In: 23rd IEEE International Conference
on Business Informatics Workshops (to be published). IEEE, 2021.

[Van09] Ermersj J. Van Sante T. TOGAF 9 and ITIL V3. White Paper. http:
//www.best-management-practice.com/. 2009.

[Ven+14] R. K. M. Veneberg et al. “Enterprise Architecture Intelligence: Combin-
ing Enterprise Architecture and Operational Data”. In: 2014 IEEE 18th
International Enterprise Distributed Object Computing Conference. 2014,
pp. 22–31. doi: 10.1109/EDOC.2014.14.

[VGM13] Marco Vicente, Nelson Gama, and Miguel Mira da Silva. “Using ArchiMate
and TOGAF to Understand the Enterprise Architecture and ITIL Relation-
ship”. In: vol. 148. June 2013, pp. 134–145. isbn: 978-3-642-38489-9. doi:
10.1007/978-3-642-38490-5_11.

[Woo+13] John Wood et al. “A framework for capturing the hidden stakeholder system”.
In: Systems Engineering 16 (Sept. 2013). doi: 10.1002/sys.21224.

[Zac87] John Zachman. “A framework for information systems architecture”. In:
IBM Systems Journal 26 (1987), pp. 276–292.

130

http://www.best-management-practice.com/
http://www.best-management-practice.com/
https://doi.org/10.1109/EDOC.2014.14
https://doi.org/10.1007/978-3-642-38490-5_11
https://doi.org/10.1002/sys.21224

	Abstract
	Contents
	Introduction
	Problem Definition
	Problem Statement
	Research Questions and Objectives
	Research Scope

	Research Methodology
	Significance of the Thesis
	Thesis Outline
	Publications Based on This Thesis

	Background
	Enterprise Architecture Management
	The Open Group Architecture Framework
	Conceptual Modelling
	Model Transformation

	Metamodels
	Ecore
	ArchiMate
	ADOxx

	Graph Analysis
	Quantitative Graph Theory
	Graph Visualisation
	GraphML

	Goal Question Metric
	Smell Detection
	EA Smell Detection
	Code Smell Detection

	Related work
	EA and Graph-based Analysis
	State of the art EA Tools
	Archi
	ADOxx and TEAM
	ADOIT
	ABACUS
	HoriZZon
	Ardoq

	Summary

	Transforming Conceptual Models to Graphs
	General Transformation Concept
	Ecore to GraphML Transformation
	ADOxx to GraphML Transformation
	Papyrus to GraphML Transformation
	Archi- And ArchiMate-Specific Transformation to GraphML

	Prototype Platform
	Platform Overview
	Process
	Input
	Output
	Components
	Transformation
	Web Interface
	External Tools

	Use of Graph Metrics
	Centralities
	Community Detection

	EA Smell Detection
	UML Code Smell Detection

	Evaluation
	Generic Analysis Approach Evaluation
	Ecore Model Instance
	Archi Model Instance
	ADOxx Model Instance
	Papyrus UML Model Instance
	Generic Transformation Framework
	Benefits of Graph-Based Analysis for EAs

	Analysis Automation Evaluation
	Analysis Tool Considerations
	Prototype Tool Evaluation

	Smell Detection Evaluation
	EA Model Smell Detection
	Code smell
	Smell Detection Conclusion

	State of the Art Tools vs Graph-Based Analysis Comparison

	Conclusion and Future Work
	Summary
	Contributions
	Limitations
	Future Research

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

