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Hierarchical Biomechanics:
Concepts, Bone as Prominent
Example, and Perspectives
Beyond
The main motivation for “hierarchical biomechanics” is that the wide variability of
mechanical properties encountered at the macroscopic scale may be traced back to just a
few “universal” or invariant mechanical properties of elementary components at a suffi-
ciently small scale (such as collagen, elastin, and water in case of soft tissues; comple-
mented by hydroxyapatite in case of hard “mineralized” tissues such as bone), and to the
nano-and microstructures which the latter build up. This challenging task requires a
physically rigorous and mathematically sound basis, as provided by Finite Element and
Fast Fourier Transform methods, as well as by continuum micromechanics resting on
(semi-)analytical solutions for Eshelby-type matrix-inclusion problems. Corresponding
numerical and analytical mathematical models have undergone diligent experimental
validation, by means of data stemming from a variety of biophysical, biochemical, and
biomechanical testing methods, such as light and electron microscopy, ultrasonic testing,
and scanning acoustic microscopy, as well as physicochemical tests associated with
dehydration, demineralization, decollagenization, ashing, and weighing in air and fluid.
While elastic scale transition and homogenization methods have attained a high maturity
level, the hierarchical nature of dissipative (i.e., viscous or strength) properties is still a
vibrant field of research. This applies even more to hierarchical approaches elucidating
the interface between biological cells and extracellular matrices (“mechanobiology”), to
cells interacting in complex biofluids such as blood, and to the intricate and highly undis-
covered mechanics unfolding within biological cells. [DOI: 10.1115/1.4055032]

1 Introduction—Scope

In an interesting, recently published review article, Alber et al.
[1] propose the following definition of multiscale modeling:
“Multiscale modeling is a successful strategy to integrate multi-
scale, multiphysics data and uncover mechanisms that explain the

emergence of function.” In this context, Alber et al. [1] refer to
“small-scale” constitutive equations, and “large-scale” conserva-
tion laws as the general physical frame in which the multiscale
models, being themselves supported by machine learning if neces-
sary, may be developed. Thereby, the small-scale constitutive
equations may be adopted from the classical engineering field, by
considering elastic, viscoelastic, or elastoplastic behavior. As con-
cerns living materials, the constitutive equations may be more
complex, and concerning the “large-scale laws”, biological appli-
cations may require rethinking “of the underlying kinetics, the
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balance of mass, and the laws of thermodynamics”, and also the
inclusion of “the biological, chemical, or electrical fields that act
as stimuli of this living response”. We here embrace the afore-
mentioned focus on integration of multiscale/multiphysics data,
and we share with Alber et al. [1] a deep root in engineering
mechanics, as evidenced through their association of small-scale
differential equations with classical mechanical behaviors, such as
elasticity [2], viscoelasticity [3,4], and elastoplasticity [5,6].
Accordingly, we set, in this review paper, the primary focus on
multiscale mechanics modeling. This choice appears natural,
given the importance of mechanics-related aspects in the biomedi-
cal field, in particular when focusing on multiscale modeling.
However, we wish to complement the account of the state of the
art by Alber et al. [1] in multiscale modeling of biomedical mate-
rials and systems, by adopting an extended theoretical frame.
More specifically, we set our focus not so much on one small
(“constitutive”) versus one large (“conservation laws-related”)
scale, but on the numerous intermediate scales, where one type of
constitutive behavior is effectively transformed into another type
of constitutive behavior. At the same time, we wish to review and
discuss how the constitutive behavior at the smallest relevant
scale of a biomechanical system may be either governed by
largely invariant (“universal”) continuum mechanical properties,
or even from atomistic mechanics, in both cases avoiding any
empirical parameter fitting. It is this focus on the intermediate
scales and on the corresponding successive scale transitions,
which defines the (bio-)mechanical science-related literature
reviewed and discussed in this paper, referred to by the term
“hierarchical biomechanics”. Still, we do not restrict ourselves to
multiscale methods for pure mechanics, but we also address the
exploration of the cross-roads of mechanics/physics and biology,
as it is well-known that biologically driven processes may influ-
ence mechanical properties, and that, in turn, mechanical loading
may influence the biological environment. In this context, the
present review is completed by multiscale modeling concepts
which, in a theoretically consistent manner, obey both the tradi-
tions of mechanics/physics (by employing field theories, interac-
tion/constitutive laws, and geometrical compatibility), and of
biology (by employing cell population dynamics, and cell biology
models).

2 The Representative Volume Element—“Home” of a

Constitutive Law

2.1 Poromechanical Approach. As a rule, biomedical mate-
rials and biological tissues are hierarchically organized, encom-
passing multiple pore spaces and other organizational patterns at
different length scales [7,8]. Therefore, the ad hoc adoption of the
material point concept inherent to traditional solid mechanics is
not straightforward, and in most cases even questionable. This
suggests prudence and good reasoning whenever using standard
continuum mechanics quantities associated with the so-called
material point, such as the Cauchy stress tensor (and associated
notions of mechanical strength), various types of strain tensors (in
particular the Green–Lagrange or the linearized strain tensor), or
corresponding stress–strain laws (also referred to as constitutive
laws), in the context of highly complex biological and biomedical
materials. A good starting point for tackling the corresponding
challenges is to resort to well-accepted, theoretically formulated
and practically useful concepts which originate from geotechnical
engineering, and which actually form the very basis of the scien-
tific field called poromechanics [9]—, i.e., mechanics of porous
media, rather than mechanics of pure solids.

A conceptual crystallization point in this context is the so-
called representative volume element (RVE), which may be traced
back to Biot’s famous 1941 treatise on consolidation [10]—the
latter is, in Biot’s words, a “phenomenon […] whose mechanism
is known to be in many cases identical with the process of squeez-
ing water out of an elastic porous medium.” For the appropriate

representation of such an elastic porous medium, Biot proposes:
“Consider a small cubic element of the consolidating soil, its
sides being parallel with the coordinate axes. This element is
taken to be large enough compared to the size of the pores so that
it may be treated as homogeneous, and at the same time small
enough, compared to the scale of the macroscopic phenomena in
which we are interested, so that it may be considered as infinitesi-
mal in the mathematical treatment.”

We see that Biot defines a small element, at the same time, both
as a point at the macroscopic scale and as a volumetrically
extended (here cubic) entity at the microscopic scale. Explicitly
assigning two scales to one and the same element goes impres-
sively beyond the material point concept of classical solid
mechanics, and hence, is not only qualified as the birth of porome-
chanics, but, from a more general viewpoint, marks the actual
starting point of multiscale modeling in the engineering scien-
ces—long before this term eventually gained ubiquitous popular-
ity, both in the traditional engineering sciences and beyond,
especially so in biomedical engineering. The concept of such a
simple RVE consisting of a solid matrix and a fluid-filled pore
space entails a fundamentally new constitutive property. The latter
is called Biot coefficient in the isotropic case [10], and Biot tensor
(of second order) in the general anisotropic case [11], and it links
pore pressure variations, under constant macroscopic strains, to
macroscopic RVE-related stresses. The RVE-concept implies
repeated introduction of one and the same type of material prop-
erty, namely, at different length scales: Elastic properties are
assigned to the solid matrix at the microscopic scale and to the
overall porous medium, i.e., to the entire RVE. As an additional
complication, the overall, RVE-related elastic properties depend
again on the action of the fluid, with two important limit cases, as
first described by Gassmann [12]: (i) the case of empty pores or of
pores with pressures governed from outside of the RVE (drained
stiffness), and (ii) the case of a closed RVE with the fluid being
trapped inside the RVE (undrained conditions). Corresponding,
meanwhile classical relations were applied to soils, rocks, and
shales, and nurtured important technological progress in geotech-
nical and petroleum engineering throughout the next four decades.
It was not before the late 1990s, that such basic poromechanical
relations entered the bio-engineering realm. This was largely the
merit of Cowin and coworkers, who dealt with the poroelasticity
of bone [13,14], and transferred, very successfully, the consolida-
tion problem into biomechanics, by discussing the role of fluid
flow in stimulating biological cells residing in pores, one of the
key topics of this review.

2.2 Micromechanical Approach. Independently of the early
poromechanical developments, the idea of an RVE was also
embraced by the community dealing with reinforced solids. Going
beyond the poromechanicians’ conceptualization of a fluid pres-
sure at the microscale, the reinforced solids community intro-
duced the entire stress and strain fields at the microscale, thereby
establishing, in the 1960s, a new scientific field called composite
mechanics or continuum micromechanics [15]. The key concept
of the latter is that a macroscopic material point is associated with
a full continuum mechanics boundary value problem, formulated
on an RVE defined at the microscopic scale. In terms of length
scales, this RVE coincides with that of poromechanics. More spe-
cifically, the size of the pores is now taken by the size of any type
of (solid) inhomogeneities, and the boundary of the RVE is sub-
jected to a microscopic displacement field which is governed by
homogeneous macroscopic strains. These boundary conditions
readily imply a strain average rule [16,17]: The spatial average of
kinematically compatible microscopic strains is equal to the mac-
roscopic strain. Alternatively, if the boundary of the RVE is sub-
jected to microscopic traction forces which are associated, via
Cauchy’s fundamental theorem, with one and the same macro-
scopic stress tensor, the following stress average rule applies: The
spatial average of equilibrated microscopic stresses is equal to the
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macroscopic stress. Accordingly, one of the pioneers in the field,
Rodney Hill, writes in 1963, when explaining what he calls “the
representative volume” [16]: “This phrase will be used when
referring to a sample that (a) is structurally entirely typical of the
whole mixture on average, and (b) contains a sufficient number of
inclusions for the apparent overall moduli to be effectively inde-
pendent of the surface values of traction and displacement, so
long as these values are macroscopically uniform. That is, they
fluctuate about a mean with a wavelength small compared with
the dimensions of the sample, and the effects of such fluctuations
become insignificant within a few wavelengths of the surface. The
contribution of this surface layer to any average can be made neg-
ligible by taking the sample large enough.” Hill has also comple-
mented the stress and strain average rules by a third average rule
associated with (rates of) work, standardly referred to as Hill’s
lemma: The average (rate of) work done by equilibrated micros-
tresses on kinematically compatible (rates of) microstrains is iden-
tical to the (rate of) work done by the macroscopic stresses on the
macroscopic strains.

2.3 Representative Volume Element Size. In this context,
the following practical question arises: Which ratio between the
characteristic length of the RVE and that of the typical inhomoge-
neity within the RVE is needed to keep the aforementioned fluctu-
ations sufficiently small, i.e., to make homogenization over
microheterogeneity admissible and useful? This question had kept
the scientific community busy for some time, until Drugan and
Willis [18] provided a particularly satisfying answer, by consider-
ing the ergodicity principle and employing ensemble averaging.
More precisely, Drugan and Willis [18] consider the RVE as an
ergodic system where “local configurations [of microscopic quan-
tities, such as polarization stresses quantifying the fluctuation of
elasticity tensors] occur over any one specimen with the frequency
with which they occur over a single neighborhood in an ensemble
of specimens.” Hence, the spatial average of microstrains over
one material sample representing the small material element in
the sense of Biot and Hill becomes equivalent to the average of
the microstrain at one specific microscopic point over an ensem-
ble of very many samples representing the same type of material.
Subsequent comparison of the mathematical solution for the
stress–strain relations of the homogenized single sample with that
of the ensemble averages reveals a surprising result: An RVE
exceeding only twice the diameter of spherical reinforcements
defining the microheterogeneity size already allows for an accu-
rate prediction of the overall elasticity, as quantified by an error
margin of only 5%. Only one year later, this somewhat surprising
result was heuristically confirmed by Monte Carlo computations
on cubic unit cells hosting very many different disordered
arrangements of spheres subjected to periodic boundary condi-
tions [19], and the same scale separation factor holds for parallel,
infinitely long cylindrical inhomogeneities [20]. The rather small
RVE size also indicates that the boundary of an RVE undergoing
homogeneous (i.e., Hill-Hashin) boundary conditions must be
carefully chosen: It needs to circumvent local environments with
high elasticity fluctuations, as explicitly noted by Dormieux et al.
[21] when discussing pores as “zero-stiffness reinforcements”.

2.4 Applications in Bio-Engineering. The aforementioned
compact RVE sizes impressively underline the role of continuum
(micro-)mechanics as a particularly efficient, robust, and versatile
tool for materials with pronounced microscopic organizations,
such as biological tissues. However, similar to the situation with
poromechanical theories, RVE approaches hardly entered the bio-
medical field before the 1990s, and it was not before the 2000s
until they started to flourish. They did particularly well for the
intricate hierarchical organization of bone tissue where classical
anatomical terms could be well assigned to RVEs of different
sizes: trabecular bone to an RVE with a size of several millimeters
[22–30], cortical bone to an RVE with a size of several hundred

micrometers [20,23,31–46], extravascular bone material to an
RVE with a size of hundred micrometers [35,46,47], extracellular
material to an RVE with a size of tens of micrometers
[32,35,39,41,47–51], and finally both mineralized collagen fibrils
[34,35,47,48,52–54] and extrafibrillar polycrystals [34,35,47,
52,55] were assigned to RVEs with a size of about hundred nano-
meters. The latter two RVE types contain the elementary building
blocks (or “major components” [7]) of bone: i.e., nanometer-sized
hydroxyapatite crystals and crosslinked type I collagen molecules
[52]. Notably, when using semi-analytical approaches, as dis-
cussed in more detail in Sec. 3, several of the aforementioned
RVEs were straightforwardly combined to multistep homogeniza-
tion schemes, sometimes referred to as “Russian doll models”
[23,24,32,34,35,39,41,48–50,56–67]. In this case, the microheter-
ogeneities within an RVE are represented by yet smaller RVEs,
with the size of the latter being smaller or equal to the aforemen-
tioned microheterogeneity size [47]. An illustrative example is
depicted in Fig. 1, featuring the hierarchical organization of cortical
bone, from the macroscopic, structural scale down to the scale of
single collagen molecules, hydroxyapatite crystals, and fluid-filled
pore spaces, together with the corresponding multistep microme-
chanical representation. Again, the actual realization of homogene-
ous stress or strain boundary conditions imposed onto a sufficiently
RVE may practically imply carefully chosen, somewhat wavy RVE
boundaries deviating from Biot’s originally envisioned element
(being of cubic shape), as can be seen from Level 5 shown in Fig. 1.

While bone appears as the most intensively studied biological
tissue, several other biomedical materials have been studied by
RVE approaches as well, including arterial wall tissue [73,74],
muscle tissue [75], skin tissue [76–78], heart tissue [79], dentin
[80–82], lung tissue [83,84], or synthetic tissue engineering mate-
rials [85–90].

The general nature and usefulness of the RVE being set now, it is
time to continue with connecting microscopic to macroscopic physi-
cal quantities i.e., with scale transition: upscaling and downscaling.

3 Scale Transition—Up/Downscaling and

Homogenization

3.1 The Classical Computational Mechanics Approach:
Finite Element Method. The quest for efficient and/or accurate
solutions for microscopic boundary value problems associated
with RVEs has stirred enormous scientific efforts and led to many
applications of standard computational mechanics-based approxi-
mation tools, such as the Finite Element (FE) method
[20,29,76,83,85–94]. In the latter context, periodic boundary con-
ditions are usually prescribed in a detailed representation of the
RVE’s microstructure. The latter may be (i) geometrically well-
defined, as is the case for synthetic tissue engineering scaffolds
[85–87,89,90]; (ii) generated through suitable algorithms imitat-
ing key morphological features, such as fractal trees in skin micro-
vasculature [76] or hexagonal staggered prisms in dental enamel
[91]; or (iii) reconstructed from imaging data provided by techni-
ques such as scanning acoustic microscopy [20,95] or microcom-
puted tomography (micro-CT) [29,83,88,92–94,96]. While
appealing from a “ready-to-use” perspective which does not
require deeper conceptual scrutiny, such approaches require a
“full” description of the microstructure. Given the corresponding
high computational demands, the latter are typically restricted to
single-step homogenization procedures. Hence, the material prop-
erties entering the FE models on the integration point level either
need to be known or suitably guessed, or they follow from addi-
tional, then analytical or semi-analytical homogenization and
scale transition techniques “digging” deeper into the micro-and
nanostructures of the investigated material systems [66,88,96].

3.2 Efficient Computational Strategies Based on Fast Fou-
rier Transforms. With the FE method, the CPU time scales with
the square of the degrees-of-freedom, which may render this

Applied Mechanics Reviews MAY 2022, Vol. 74 / 030802-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/74/3/030802/6945012/am

r_074_03_030802.pdf by TU
 W

ien user on 28 N
ovem

ber 2022



method inefficient for very large complex problems, where, in
addition, meshing may become a challenge on its own. As a rem-
edy, both the scaling and meshing problems can be elegantly over-
come by numerical methods based on the Fast Fourier Transform
(FFT). The latter methods rely on the smart use of Green’s func-
tions [97–99], i.e., of the solution for the displacement field

throughout an infinitely extended homogeneous elastic body sub-
jected to a singular point load of unit intensity. First, the microhe-
terogeneous linear elasticity field is equivalently represented as
the superposition of a homogeneous elastic field and a field of
microheterogeneous eigenstresses, so-called polarization stresses.
Setting the microstress and microstrain fields of both

Fig. 1 Hierarchical organization of bone (see images and cartoons, respectively), and the corresponding micromechanical rep-
resentation (elliptic cross sections through the three-dimensional RVEs), with indication of the respective characteristic lengths;
the micromechanical representation follows from Refs. [35,47]. Note that on level 5, the region across which the representative
volume is defined is precisely indicated (with the Haversian canals seen in their cross-sectional planes), whereas the respective
cartoon is included as well (with the Haversian canals seen in longitudinal orientation). The image of wet collagen (level 1) is
reprinted from Ref. [68], Copyright 2006 National Academy of Sciences, Washington, DC; the schematic images of the collagen/
hydroxyapatite network (level 2 A) and of the hydroxyapatite foam (level 2B) are reprinted from Ref. [35], with permission from
Elsevier; the image of extracellular bone matrix (level 3) is reprinted by permission of Springer Nature Customer Service Center
GmbH, from Calcified Tissue International [69], Copyright 1996; the image of extravascular bone matrix (level 4) is reprinted
from Ref. [70], with permission from the Acoustic Society of America; the image of macroscopic bone material (level 5) is
reprinted from Ref. [71], with permission of John Wiley & Sons, permission conveyed through Copyright Clearance Center, Inc.;
and the image of the femoral whole bone structure (level 6) is reprinted from Ref. [72], with permission from Elsevier.
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representations equal to each other delivers the polarization
stresses as the tensor product of the microheterogeneous devia-
tions of the micro-elasticity field from the properties of the homo-
geneous elastic body on the one hand, and the microstrains on the
other hand [100–102]. This opens the way to incorporating solu-
tion schemes for the Lippmann-Schwinger equation—which was
originally proposed in the framework of quantum mechanics
[103]—into the conceptual framework of continuum microme-
chanics, particularly in the context of FFT analyses. The latter
was pioneered by Moulinec and Suquet [104] and refined there-
after by Brisard and Dormieux [105]. Only very recently, namely,
since 2018, these elegant solutions have made their way into the
image-based micromechanics of cortical bone [38,67]. Such
approaches outperform FE-based homogenization approaches by
orders of magnitude in terms of computational efficiency—how-
ever, they still rely on “complete” microstructural information.
This might be the reason why yet another approach, namely, that
based on so-called material phases and estimates for homogenized
mechanical properties, has gained much more popularity in the
theoretical and applied mechanics field; and substantially pro-
pelled true multiscale approaches in biomechanics and bio-
engineering.

3.3 Semi-Analytical Approaches Based on Elastic Matrix-
Inhomogeneity Problems. The premise for phase-based estima-
tion of RVE-related properties is the explicit awareness that the
resolution of the microstructure in infinite completeness is eventu-
ally impossible. Accordingly, this resolution is not even aimed at,
but the focus is a priori set at microstructural features potentially
governing the homogenized mechanical behavior of the RVE. To
that end, homogeneous subdomains, referred to as material
phases, are introduced within the RVE [15,17,106]. Each material
phase is characterized by homogeneous mechanical properties
(such as a phase elasticity tensor, instead of a micro-elasticity

field), by a characteristic shape, and by the volume fraction it
occupies within the RVE.

As the first key modeling step in phase-based homogenization,
each phase is approximated by a homogeneous ellipsoidal elastic
inhomogeneity, and each of those inclusions is embedded into the
same type of infinitely extended auxiliary matrix subjected to
homogeneous strains at its infinitely remote boundary, see Fig. 2.
This auxiliary matrix exhibits elastic properties which are differ-
ent from those of the inhomogeneity. The interest in such auxil-
iary matrix-inhomogeneity problems arises from the existence of
corresponding analytical and semi-analytical solutions. They were
provided by Eshelby [107] and by Laws [108], for inhomogene-
ities embedded in isotropic and anisotropic matrices, respectively.
As was the case with the FFT solutions described in the last para-
graph, also the solutions for Eshelby’s matrix-inhomogeneity
problems were derived by combining the polarization stress con-
cept with the method of Green’s functions. These solutions pro-
vide the remarkable result that the strains in the inhomogeneity
are actually homogeneous and depend on the inhomogeneity
shape, the elastic stiffness contrast between the inhomogeneity
and the surrounding matrix, as well as on the remote matrix
strains. If the investigated RVE is predominantly made up by a
matrix phase in which inclusion phases are dilutely embedded, the
RVE-related macroscopic strains can be approximated by the aux-
iliary matrix, and the macro-to-microstrain transition is already
completed. Insertion of the phase strains into the phase-specific
linear elastic laws yields phase stresses and averaging the latter
over the RVE eventually gives access to macroscopic stresses;
leading to the homogenized elasticity tensor associated with the
so-called dilute homogenization scheme. Modeling of “dilute sus-
pensions” can be traced back to Einstein’s 1906 treatment of rigid
spherical inclusions in a Newtonian viscous fluid [109], and
already appears as a broad review topic in Ref. [106].

However, for the frequently encountered cases where the indi-
vidual phases are equally dominant in filling the RVE and

Fig. 2 Concept of matrix-inhomogeneity-problem-based homogenization (also called “mean-
field-homogenization” or “homogenization of media with random microstructures”): several such
problems are subjected to the same fictitious far-field strains, and then “superimposed” into an
RVE, by means of the strain average rule; figure adapted and modified from Ref. [49], with permis-
sion of Elsevier
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consequently interact with each other, a second key modeling step
is necessary, as sketched by Mori and Tanaka in 1973 [110] and
rigorously formulated by Benveniste in 1987 [111]: Namely, the
matrix-inhomogeneity problems-related phase strains are inserted
into the strain average rule, thereby providing a link between the
remote auxiliary matrix strains and the macroscopic strains associ-
ated with the RVE, see Fig. 2. This link is then combined with the
aforementioned solutions for the matrix-inhomogeneity problems,
yielding relations between phase strains and RVE-related macro-
scopic strains. The latter relations are multilinear and hence
expressed by so-called strain concentration or downscaling tensors
of fourth order. Use of the phase-to-RVE strain relations in the
phase-specific microscopic linear elastic law, and subsequent
averaging of corresponding microstresses over the RVE yields the
macroscopic (homogenized) RVE-related elasticity tensor, as an
analytical or semi-analytical tensor function involving the elastic
properties of the phases, their shapes, their volume fractions, and
the stiffness of the auxiliary matrix [15], see also Fig. 3. Choice of

the latter completes the elasticity upscaling problem, with two
main options: Choosing the matrix as an individual phase with
given stiffness and volume fraction leads to the so-called Mori-
Tanaka scheme [110], which is appropriate for matrix-inclusion
composites. The second option is to assign the homogenized elas-
tic properties and a zero volume fraction to the matrix. This leads
to an implicit equation for the homogenized elastic properties. Its
iterative solution is called self-consistent scheme. This scheme is
appropriate for polycrystalline materials where all phases are in
intimate mutual contact. Self-consistent schemes in the context of
continuum mechanics can be traced back to the 1950s and 1960s
[112–114]. However, they effectively entered bio-engineering
only in the early 2000s, in the context of modeling the porous pol-
ycrystals (or mineral foams) [115] and the mineralized collagen
fibrils [49] present in the ultrastructure of bone. From that time
on, also the Mori-Tanaka homogenization scheme was success-
fully applied to various levels across the hierarchical organization
of bone, namely, for the representation of wet collagen (Level 1 in

Fig. 3 Stiffness homogenization over an RVE, based on the constitutive and concentration relations of
Fig. 2; with application to the six RVEs depicted in Fig. 1; explicit expressions for the matrix inclusion
problem-related concentration tensors can be found in Refs. [35,47]
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Fig. 1), of the extracellular bone matrix (Level 3 in Fig. 1), of the
extravascular bone matrix (Level 5 in Fig. 1), and of the macro-
scopic bone material (Level 6 in Fig. 1). The corresponding semi-
analytical tensorial expressions are given in Fig. 3.

3.4 Semi-Analytical Approaches Based on Eigenstressed
Matrix-Inhomogeneity Problems. Bio-engineering applications
were a major driving force for developing Eshelby problem-based
homogenization schemes for material properties beyond the elas-
tic regime. The corresponding classical extension is that from
elasticity to viscoelasticity, i.e., to assigning Boltzmann-type lin-
ear viscoelastic behavior to the material phases which per se
remain fixed throughout time. In the Laplace-Carson space, such a
linear viscoelastic behavior appears as a succession of formally
linear elastic material behaviors, for each of which the classical
Eshelby problem-based homogenization schemes described in the
two preceding paragraphs can be employed, as explained in detail
by Laws and McLaughlin in 1977 [116]. Effective application of
this type of theory in bio-engineering took place only in 2014
[117], by assigning viscoelastic properties to the hydrated extrafi-
brillar mineral crystals in the ultrastructure of bone, in order to
explain hydration- and mineralization-dependent creep of macro-
scopic bone material. In this context, the computational endeavors
really start when back-transforming the homogenized properties
into the time domain; e.g, by means of the Gaver-Wynn-Rho
algorithm [118].

Another straightforward extension beyond elastic homogeniza-
tion concerned perfectly brittle materials where failure at the
microscopic level is directly associated with overall macroscopic
failure of the RVE. Accordingly, the insertion of the phase stress-
to-RVE stress relation (expressed by fourth-order stress concen-
tration tensors) into a microscopic failure criterion directly yields
a macroscopic failure criterion, which considers not only the
strength properties of the weakest phase, but also the mechanical
interaction of phases, driven by their shape, arrangement, and
elastic stiffness contrast. However, when comparing the evalua-
tion of corresponding mathematical formulations with experi-
ments (see Sec. 4), the representation of the RVE’s microstructure
in terms of a finite number of phases generally turns out as a too
crude approximation. As a remedy, the RVE may be represented
by infinitely many nonspherical phases being oriented in all space
directions, as indicated in Fig. 1, Level 2B, and labeled by polar
and azimuthal angles [119]. Corresponding two-dimensional inte-
grals over the unit sphere are then solved by appropriate approxi-
mation schemes such as Stroud’s formulae [120]. This type of
multiscale modeling has provided unprecedented insight into the
strength characteristics of man-made hydroxyapatite biomaterials
[121–123]—and more generally, of a large number of ceramic
material systems [124,125].

However, what really broadens the application range of
Eshelby-problem-based homogenization, is the explicit introduc-
tion of eigenstresses and eigenstrains in the true physical sense,
i.e., the introduction of strains and/or stresses which are fully
independent of elastic, i.e., nondissipative, phenomena. In the
context of biomedical materials, two types of such eigen-
quantities are of particular interest: plastic strains associated with
ductile behavior, and pore pressures arising from fluids entering
and leaving the various pore spaces found throughout the materi-
als’ hierarchical organizations. Important averaging rules for
eigenstresses and eigenstrains go back to Levin [126] and follow
from repeated use of Hill’s lemma, as explained in Refs. [15,127]:
The macroscopic eigenstress tensor is the average over the RVE,
of the tensor contraction between the microscopic eigenstress ten-
sor and the strain concentration tensor; and the macroscopic
eigenstrain tensor is the average over the RVE, of the tensor con-
traction of the microscopic eigenstrain tensor and the stress con-
centration tensor. The aforementioned eigenstress averaging rule
implies a most interesting link between the micromechanics of
media with random microstructures and the classical

poroelasticity theory of Biot, as lined out in Ref. [21]: Consider-
ing a two-phase composite consisting of an elastic matrix and a
pore space with eigenstresses of the format pore pressure times
the second-order unity tensor yields the Biot tensor as the pore
space-related strain concentration tensor times the porosity. This
has a very important practical implication for the investigation of
porous materials: The Biot tensors quantifying the interaction
between pore pressure and macroscopic stress under a state free of
macroscopic deformation need not be determined from complex
poromechanical tests with independent control of pore pressure
and macroscopic stress or strain, but can be readily determined
once an elasticity homogenization scheme, as the ones discussed
further above, has been established. This opportunity has been
repeatedly taken in the context of the mathematical modeling of
bone, in particular so for the determination of pore pressures in
the intermolecular, intercrystalline, lacunar, and vascular pore
spaces under various physiologically relevant loading scenarios
[46,128–130]. The vascular and lacunar pore spaces host the bio-
logical cells involved in bone remodeling: osteoclasts, osteoblasts,
and osteocytes, see Sec. 5 and Fig. 9 for more details.

When the interest goes beyond “simple” eigenstress or eigen-
strain averaging of a two-phase composite with only one phase
being eigenstressed, interesting scale transition solutions concern-
ing eigenstrains and eigenstresses can be obtained from the exten-
sion of the classical Eshelby-Laws matrix-inhomogeneity
problems to eigenstressed matrix-inhomogeneity problems [15].
The solutions to such problems are again based on Green’s func-
tions, now in combination with a homogeneous elastic medium
and two types of eigenstresses: the classical polarization stress
explained further above, and an additional, physically motivated
eigenstress, such as a pore pressure or an eigenstress associated
with plastic strains. Benveniste’s micro-to-macroscale transitions
can then be extended to eigenstressed multiphase media, as out-
lined by Pichler and Hellmich [131]: Each phase is represented by
an inhomogeneity in an infinite matrix subjected to remote auxil-
iary strains; however, now both the inhomogeneity and the matrix
exhibit eigenstresses. Insertion of corresponding phase-specific
homogeneous strains into the strain average rule yields a relation
between the remote auxiliary strains, the RVE-related macro-
scopic strains, and the eigenstresses in the inhomogeneity and in
the matrix, respectively. In order to eventually relate the eigens-
tresses in the auxiliary matrix to the RVE-related macroscopic
eigenstresses, additional use of Levin’s theorem is made, finally
yielding the so-called concentration-influence relations. The latter
is the cornerstone of Dvorak’s “transformation field analysis”
introduced in the early 1990s [132–134]: The strains in each phase
are not only related to the RVE-related overall macroscopic
strains (by the already discussed strain concentration tensor), but
also to the eigenstrains in all other phases and in the considered
phase itself (by means of so-called fourth-order influence tensors).
Homogenization of eigenstressed media was particularly helpful
for explaining the strength of bone, arising from ductile sliding
between hydrated crystals followed by brittle failure of molecular
collagen [35]: Therefore, elementary plastic strains fulfilling the
flow and consistency rules of classical plasticity [135] were intro-
duced at the level of the hydroxyapatite crystals at Level 2B of
Fig. 1, and thereafter upscaled up to the level of macroscopic
bone material. More recent studies based on the representation of
Level 2B of Fig. 1 have revealed the elastoplastic failure behavior
of the cement lines surrounding secondary osteons in Haversian
bone from the surrounding bone matrix [55].

3.5 Extensions Concerning the Large Strain Regime. Yet
further extension of the use of Eshelby problems for scale transi-
tions in complex materials concerns large deformations, the typi-
cal biological example being soft tissues. As compared to hard
tissues, this challenge has only recently been tackled. First success
approaches dealing with arterial and tendinous tissues [74,136]
were mainly based on (i) re-formulation of the Eshelby problem
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for velocity gradients (rather than linearized strains), allowing for
the derivation of concentration relations between macroscopic
strain rates on the one hand, and microscopic strain and spin rates,
on the other hand; as well as on (ii) thermodynamically consistent
hypoelastic material laws [137,138], linking objective (i.e.,
observer-independent) phase properties. Such Eshelby problem-
based approaches may well help to overcome persisting difficul-
ties in hierarchical soft tissue modeling. The latter include (i) the
incomplete description of load-induced (micro-)fiber kinematics
in the context of deformation gradient-based (hyperelastic) mod-
els, requiring rather complex, computationally expensive rem-
edies [139,140]; and (ii) the similarly high computational expense
of fiber network models [141–144], which, in addition, do not pro-
vide explicit access to the matrices found in between the fibers.

As a rule, the usefulness of all the aforementioned applications
of scale transition techniques to biological and biomedical materi-
als needs to be shown through careful and extensive experimental
validation. This is the topic of the next section.

4 Experimental Validation—Different Methods at Dif-

ferent Scales

4.1 General Strategy. According to Popper’s famous reason-
ing on the logic of scientific discovery [145,146], a hypothesis
which the human mind comes up with needs to survive as many
statistically and physically different falsification tests as possible,
in order to eventually reach, after extensive discussions and
debates between the peers within a scientific community, the sta-
tus of a reliable scientific theory. In this spirit, various multiscale
micromechanics approaches, as described in Sec. 3, have been
carefully validated by means of biomechanical, biophysical, and
biochemical experiments [23,35,47,49,52,55,147]. Typically, such
experiments concern

(i) “universal”, i.e. tissue-invariant, mechanical properties of
the elementary components making up any tissue belong-
ing to a particular class of tissues (e.g., in the case of bone
tissues: molecular collagen type I (making up around 90%
of all organic matter found in bone [148]), hydroxyapatite,
and water with non-collagenous organic, see Secs. 4.2–4.4
for details);

(ii) tissue-specific mechanical properties at any hierarchical
level above that of the elementary constituents, tested
across the vertebrate animal kingdom, see Secs. 4.2 and
4.4 for details, and

(iii) tissue-specific compositional information which can be
converted into phase volume fractions, phase shapes, and
phase interaction patterns at any hierarchical level above
that of the elementary constituents, again tested across the
vertebrate animal kingdom, see Sec. 4.5 for further details.

Based on these tests, the validation strategy is as follows:

(i) the “universal” properties of the elementary components
are associated with the phases which are not anymore
resolved into RVEs themselves (i.e. in the case of bone
illustrated in Fig. 1 to crosslinked molecular collagen, to
hydroxyapatite, and to the intermolecular, intercrystalline,
lacunar, and vascular pore spaces);

(ii) the micromechanical model is fed with phase-specific vol-
ume fractions arising from biochemical and biophysical
tests as detailed further below; and

(iii) the respective model predictions in terms of the mechani-
cal properties associated with the different RVEs are com-
pared to corresponding experimental data on the very
same mechanical properties.

This validation strategy has been particularly successful in the
context of bone and mineralized tissues; and this concerns
different types of mechanical properties, associated with elasticity
[23,41,48,49,51,53,61,65,66,115,147], viscoelasticity [117],

poroelasticity [128–130], and elastoplasticity/strength
[35,55,149]. We note in passing that scattering in material proper-
ties typically decreases upon elastic homogenization from smaller
to larger scales [150]; and we continue with a more detailed
account of the various experimental techniques that have provided
data for the aforementioned model validation strategies. The term
“universal” in the above paragraphs makes reference to the con-
cept of architectural constraints governing the universal patterns
which are omnipresent in the living world, classically discussed in
the context of evolutionary biology [151,152]; later, this discus-
sion has been extended toward a mathematical setting for hier-
archical biomaterials mechanics [47].

4.2 Ultrasonic Pulse Transmission and Brillouin Light
Scattering Measurements—Elastic Properties of Tissues and
Their Elementary Components. Ultrasonic measurements refer
to a very wide range of testing devices, including elastography
which “aims at quantitatively image the Young’s E modulus, the
physical parameter corresponding to the stiffness”, typically
throughout larger portions of the organ [153].

Our present focus is different, and concerns the characterization
of a particular material sample rather than a larger portion of an
organ, and more precisely, the determination of several compo-
nents of the elasticity tensor defining tissue properties at different
length scales. In elastic media, the product of the squared pulse
velocity with the sample’s mass density gives access to the com-
ponents of the elasticity tensor [154]. However, ultrasonic tests
may also give access to the elastic properties of media which are
not behaving purely elastically. In more detail, for impulse fre-
quencies associated with oscillation periods which are much
shorter than the characteristic creep times of elasto-viscous mate-
rials, the wave velocity is linked to the instantaneous elastic prop-
erties of the material, even if the latter may show also inelastic
deformations [154]. It is important to note that the actually tested
RVE is determined through the wavelength, with the characteris-
tic length of the RVE being five to ten times smaller than the
wavelength [155], see Fig. 4. Ultrasonic tests have been very suc-
cessfully employed for biological and biomedical material charac-
terization, both at the fundamental level of the elementary
constituents of a biological tissue class and at various levels of
hierarchical organization. In the case of bone, ultrasonic tests at
different frequencies give access to the majority of the RVEs
depicted in Fig. 1 [23,47,147]: 10 MHz tests [70,156–158] refer to
the extracellular bone material (Level 3 of Fig. 1); 2.25 MHz tests
[159–161] refer to the extravascular bone matrix (Level 4 of Fig.
1), and 50 kHz tests [162–164] refer to the macroscopic (here tra-
becular) bone material (Level 5 of Fig. 1).

Ultrasonic tests have also provided access to the elastic proper-
ties of the aforementioned elementary components of bone: The
bulk modulus of water amounts to 2.3 GPa [165]; and compared
to this value, the shear modulus is negligibly small; tests on dense
hydroxyapatite powder reveal an isotropic elastic Young’s modu-
lus of 114 GPa and a Poisson’s ratio of 0.27 [166]. The elementary
component “type I collagen” was elastically characterized by
Cusack and Miller [167], by an interesting variant of ultrasound
transmission concerning very high frequencies, called Brillouin
light scattering. Namely, the speed of thermally excited elastic
waves is measured in terms of the inelastic scattering of light
which these waves emit. The employed 10 GHz signals refer to
wavelengths of 300–400 nm, hence characterizing an RVE of
some tens of nanometers characteristic length, i.e., to Level 1 in
Fig. 1. In more detail, Cusack and Miller tested rat tail tendon,
which, upon drying, collapses to a material consisting almost
exclusively of type I collagen [168,169] and hence, represents
“molecular collagen” phase of the RVE of Level 1 in Fig. 1
[47,49]. This reasoning was further refined [168] by considering
xylene imbibition tests [170], showing that dried collagen still
exhibits 12% intermolecular porosity in the sense of Level 1 of
Fig. 1; and most interestingly, hydration-dependent wave velocity
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changes reported by Cusack and Lees [171] could indeed be
traced back to composite material behavior in the sense of the
RVE of Level 1 in Fig. 1. However, the issue might get trickier
once a critical water-to-organic mass ratio of about 0.45 is
exceeded: then, conformational changes of the molecular collagen
itself are probable to lower its intrinsic elastic stiffness.

4.3 Persistence Length- and Bending Energy-Based Evalu-
ation of Electron Micrographs—Elastic Properties of Long,
Wound Bio-Macromolecules. Totally different from high-
frequency elastic waves, the geometrical configurations of bioma-
cromolecules, as observed under the electron microscope, may
also give access to their elastic properties. The respective concep-
tual and theoretical foundations are as follows [172,173], see also
Fig. 5: The investigated biomacromolecule is considered as a

long, wound thread approximated by a two-dimensional curve of
arbitrary (differentiable) shape. Starting from a chosen origin, all
the points on the curve are labeled by a contour length variable,
and each of these points is assigned to the cosine of the angle
between the tangent to the curve at the specific point, and the tan-
gent to the curve at the origin. This process is repeated for many
different origins and averaged over all the associated cosine-
length relations: As a result, the average over the cosines of angles
between any two tangents with a particular contour length
between, decays exponentially when considered as function of the
aforementioned (increasing) contour length; starting with one, and
eventually tending to zero. The length characteristic quantifying
this exponential decay is called persistence length. For small
angles, the cosine can be expressed by means of the square of the
angle, with the latter becoming a function of the contour length
and the persistence length, see Fig. 5. The key to relating this

Fig. 4 Elasticity testing by means of ultrasonic pulse transmission: (a) higher frequency and (b) lower frequency
pulse induce (a) shorter and (b) longer acoustic wavelengths, characterizing (a) smaller and (b) larger RVEs: RVE stiff-
ness components are proportional to the square of the pulse velocity; figure adapted from [47], with permission from
Elsevier

Fig. 5 Determination of persistence length P, and associated elastic modulus E, from electron micro-
graph of long collagen molecules: (a) tangents to molecular curve hardly vary over distances sI which
are short when compared to the persistence length and (b) show large variability over long distances
sII
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statistical distribution of “bending angles” between tangents, to
mechanical properties lies in the consideration of different bend-
ing energy states, each of which can also be expressed in terms of
a bending angle and a contour length. Moreover, the bending
energy states follow a Boltzmann distribution governed by the
absolute temperature. Equating the Boltzmann distribution-related
average of the square of the bending angles, to the corresponding
average obtained from the geometrical evaluation of the bioma-
cromolecule’s shape, finally provides the bending stiffness (also
referred to as flexural rigidity) as a function of the persistence
length, the Boltzmann constant and the absolute temperature.
When considering, in addition, the biomacromolecule to have a
circular cross section, standard beam theory can be used for relat-
ing the bending stiffness to the Young’s (elastic) modulus of the
“material” making up the biomacromolecule. In the case of colla-
gen type I molecule with side chains in a biologically relevant
conformation [174–177] a cross-sectional diameter of 1.4 nm,
together with a persistence length of 57 nm, results in an elastic
modulus of approximately 3 GPa.

4.4 Quasi-Static Mechanical Tests: (Visco-)Elastic and
Strength Properties. The epitome of biomechanical testing is
uni-axial quasi-static experiments, where a cuboidal or cylindrical
sample is subjected uni-axially to tension or to compression
forces, see Fig. 6. Care needs to be taken in order to realize, as far
as possible, homogeneous uni-axial mechanical stress states, with
a magnitude amounting to that of the applied force divided by the
area over which the force is transferred onto the material sample.
These mechanical stresses are related to length changes of the
sample. The latter may be recorded by very elaborate techniques,
such as wide angle X-ray scattering in order to detect length
changes at the level line elements which are as small as 0.29 nm
[178]. Corresponding tension tests on bovine achilles tendon con-
firmed the 3 GPa elastic modulus of collagen, as referred to above
in Sec. 4.3. Collagen is known to behave, in a fairly good approxi-
mation, elastically upon loading, with an abrupt transition from
elastic deformations to brittle fracture, as can be inferred from
tensile tests on collagen fibers [179]. However, this is not the case
any more with more complex composite-type materials such as
bone, where elasto-plastic behavior is encountered already at low
loading levels [35,55,180].

In order to retrieve elastic properties from such tests, the ther-
modynamic nature of elasticity needs to be carefully considered
[2,3,9,181]: Elastic energy is that portion of the internal energy
stored in the material, which can be back-transformed into

efficient mechanical work. This transformation happens once a
sample is unloaded. Hence, slopes in the loading regime of
mechanical tests encompass both (visco-)elastic and plastic por-
tions, and only the unloading regimes guarantee the absence of
plastic deformations. Accordingly, moduli derived from the load-
ing portions of stress–strain curves qualify as “(visco-)elasto-
plastic”, and only the unloading branches of stress–strain curves
are associated with (visco-)elasticity only [182–185]. In this con-
text, we also note that the mineral and water contents are key driv-
ers of bone viscoelasticity: This underlines the importance of the
hydrated extrafibrillar polycrystal for the dissipative mechanical
behavior of bone [117,182,186,187].

When it comes to strength, there is virtually no alternative to
mechanical tests. However, in the context of strength, the load is
not lowered so as to get access to (visco-)elastic properties, but it
is increased up to mechanical failure of the sample. Accordingly,
the strength properties of the elementary components of bone (col-
lagen and hydroxyapatite) were inferred from uni-axial mechani-
cal tests where rat tail tendons [179] and samples of densely
compacted hydroxyapatite powder [189,190] have been loaded up
to failure. The strength of the extracellular bone material can be
gained from micropillar testing [188,191,192], the strength of pol-
ycrystalline material making up the cement lines around osteons
can be accessed through osteon push-out tests [193], and the
strength of macroscopic bone materials has been amply tested
over the last five decades (at least). In this context, it is advisable
to prefer tests where homogeneous stress states prevail in the sam-
ple, such as uni-axial tension tests and uni-axial compression tests
[194–211]. For example, bending tests deliver much less reliable
results as major hypotheses concerning material and structural
behavior need to be made. Normally, such hypotheses have been
readily borrowed from engineering steel construction—however,
as actually evident from abundant mechanical and chemical fea-
tures, bone is obviously not steel.

4.5 Physico-Chemical Tests—Textural and Compositional
Properties. In this context, demineralization, decollagenization,
and/or dehydration tests, in combination with weighing tests,
Archimedes’ principle, inductively coupled optical emission spec-
troscopy (ICP-OES), and microsocpic investigations
[69,212–218] are the key experimental access to the chemical
composition of bone ultrastructure. Surprisingly, across many dif-
ferent bone tissues of differently aged mammalian and avian spe-
cies, there emerges a clear bilinear relationship between the
apparent mass densities of mineral and organic matter (i.e., of the

Fig. 6 Quasi-static mechanical testing: (a) single micrometer-sized cuboid sample of bovine femoral bone;
prepared, by means of focused ion beam milling, for uni-axial testing through a flat punch installed in a
nano-indenter setting [188], (b) corresponding stress–strain curve characterizing micrometer-sized RVE in
loading and unloading mode [188]; the latter gives access to the elastic Young’s modulus. The image of the
bovine femoral bone sample shown in (a) was extracted from Ref. [188], the corresponding stress–strain
curve shown in (b) was adapted from Ref. [188], with permission from Elsevier.
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masses of mineral and organic matter divided by the volume of
extracellular matrix within which they reside), see Fig. 7
[157,219–225].

When additionally considering X-ray and neutron diffraction
tests giving access to the distance between collagen molecules,

several “universal” rules concerning the composition and micro-
structure of mineralized collagenous tissues (such as bone) can be
derived: (i) upon hydration, the extrafibrillar space grows propor-
tionally to the fibrillar swelling in nonmineralized collagenous tis-
sues [168]; (ii) within the bone ultrastructure, the average

Fig. 7 Sequence of dehydration, demineralization, and weighing tests: (a) scheme and (b) resulting bilin-
ear organic-to-mineral relationship
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extrafibrillar, and the average extracollageneous mineral concen-
tration are the same [226]; (iii) the mineral and collagen volume
fractions within the extracellular bone matrix are linearly related
to each other [227]; and (iv) tissue shrinkage upon mineralization
can be explained from precipitation of mineral from a liquid solu-
tion under closed thermodynamic conditions [228]. These rules
yield the tissue-specific volume fractions within the RVEs of Lev-
els 1 to 3 in Figs. 1 and 3; while the pore volume fractions at the
higher levels are accessible from light microscopy [225] or com-
puted tomography (CT) [229]. On top of that, the RVE representa-
tion of the bone ultrastructure has independently been confirmed
by an electrodynamics model based on Maxwell’s equations
[230].

4.6 Whole Bone Tests—Model Validation at the Organ
Scale, in Terms of Safety Levels and Ultimate Structural
Strength. Experimentally validated material properties retrieved
from hierarchical biomechanics models for level 5 of Fig. 1 can
also be used for feeding structural mechanics models of organs,
such as an FE model of a lumbar vertebra as seen in Fig. 8. Such
models are typically derived from CT [231–233]. Thereby, the CT
data gives access to (i) the topology of the organ and (ii), via the
average rule for X-ray attenuation coefficients [234,235], to heter-
ogeneous fields of vascular porosities throughout the organ. When
additionally accounting for the invariance over space and time of
the organ-specific chemical composition of the bone ultrastructure
when averaged over millimeter-sized domains [225,236–239], and
of the correspondingly invariant volume fractions inside the RVEs
of the ultrastructure level and below, the aforementioned homoge-
nization schemes provide inhomogeneous mechanical property
distributions throughout the FE models. Eventually, this allows
for the estimation of patient- and activity-specific safety factors of
a load-bearing organ; elucidating that mild physiological loading
of a lumbar vertebra is associated with a safety factor of around
five [231], see Fig. 8. This value is fully consistent with the ulti-
mate forces obtained from mechanical tests on whole vertebrae
[240–243] as well as with loadings encountered in the context of
extreme sports activities [244]. Similar types of structural model-
ing have been realized for various other systems, including human
and murine femora [233,245,246], human mandibles [232,247], or
different tissue engineering constructs [88,96,122,123,248].

5 Perspectives on Hierarchy-Related Aspects in

Mechanobiology, Single Cell Mechanics, and

Biomacromolecules

As is evident from the preceding sections, hierarchical biome-
chanics has most maturely evolved in the case of bone tissue, with

first interesting approaches appearing for other tissues as well. All
these results concern mechanical properties, and how they are
related to tissue composition and organization. However, hier-
archical modeling may still enter the picture in a yet broader
scope, namely, when studying the interplay between mechanics
and biology, either at the hierarchies found in tissues or within
individual biological cells themselves, down to the level of indi-
vidual biomacromolecules such as DNA. This broadened vision of
“hierarchical biomechanics” is the scope of the present
subsection.

5.1 Toward Hierarchical Mechanobiology. When dealing
with biological tissues, it is well known that the mechanical load-
ing they are subjected to may have a substantial influence on the
biological processes responsible for maintaining their integrities,
or even for their sizes and shapes [249–253]. In more detail,
mechanical loading is usually applied macroscopically, and is
somehow transferred to the scale of cellular processes or even
below, where corresponding mechanical stimuli influence the
occurrence and behavior of biological factors. Hence, multiscale
mechanobiology involves, per se, multiscale (poro-)mechanics,
on the one hand, and multiscale systems biology, on the other
hand. Multiscale (poro-)mechanics has already been dealt with in
the previous sections, and it has been successfully applied to bone
tissue, in order to estimate mechanical stimuli occurring on the
cell scale in response to macroscopically applied mechanical load-
ing; see, e.g., [46,254–258]. These examples are based on or
inspired by continuum micromechanics as underlying concept. As
an alternative, numerical homogenization approaches similar to
those described in Sec. 3.1 have been used for studying bone
regeneration guided by tissue engineering scaffolds
[85–87,259,260]. A rare, quite mature example of hierarchical
mechanobiology, documented in Ref. [255], is illustrated in
Fig. 9: The macroscopic (oscillating) loads applied to a bony
organ, such as a human femur (see Fig. 9(a)), are first converted
into local stresses associated with macroscopic RVEs, one of
which is shown in Fig. 9(b). This RVE coincides with that of
Level 5 in Fig. 1. The aforementioned stresses are then down-
scaled to (oscillating) pore pressures in the vascular pores, where
they affect the biochemical activities of two types of biological
cells: osteoblasts and osteoclasts, see Fig. 9(d). Interestingly,
physiological load levels translate into vascular pore pressures of
the order of several tens of kilopascals [46]: This is the magnitude
to which a large set of biological cells are reacting [261–277].
Further downscaling from the macroscopic RVEs of Fig. 9(b), to
the level of lacunar pores (see Fig. 9(c)), delivers pore pressures
of similar magnitude, stimulating osteocytes, as seen in Fig. 9(e).
In more detail, the increase of lacunar and vascular pore pressures

Fig. 8 Micromechanics-informed safety assessment of human lumbar vertebra under mild
physiological loading, after [231]: FE model (a) is fed with local material properties retrieved
from (b) RVE of level 5 according to Fig. 1; color represents loading degree with respect to
ultimate load (100% relates to elastoplastic failure)
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stimulates the proliferation of active osteoblasts. The latter builds
up new extravascular bone matrix. At the same time, increasing
lacunar and vascular pore pressures suppress the production of
RANKL, i.e., of the key factor activating osteoclasts, the cells
which dissolve extracellular bone matrix.

It is interesting to note that similarly large pressures occur in
the extrafibrillar matrices of soft tissues, as has been quantified by
the hierarchical tendon model of Morin et al. [136], also referred
to in Sec. 3.5. This holds the promise for wide research opportuni-
ties unifying not only hard and soft biomechanics, but also hard
and soft tissue mechanobiology.

Biological cells may not only populate pores with extracellular
matrices making up tissues (the latter may be categorized as
porous solids with largely varying stiffnesses), but they may also
govern the behavior of complex fluids such as blood. The latter is
made up of red blood cells, white blood cells, platelets, and
plasma. From the viewpoint of “fluid micromechanics”, these four
constituents would appear as “phases” making up a “fluid material
system”. However, the nature of the dynamics of blood (stand-
ardly referred to as hemodynamics) rendered particle-based

methods [278], rather than semi-analytical solid mechanics meth-
ods, as particularly appropriate. Accordingly, biological entities
such as cells or platelets are modeled as discrete particles. Moving
from the blood itself back to the vessels in which it is contained,
particle mechanics has also been beneficial in the context of
artherosclerosis, where low-density lipoprotein (LDL) molecules
enter into the intima, either through mediation of vesicles taking
up LDL or through apoptosis-induced leaky junctions in the endo-
thelium [279,280]. In this context, the so-called discrete particle
dynamics (DPD) method turned out as particularly effective when
it comes to simulating hydrodynamics of simple and complex
liquids on a mesoscopic scale [281]. Details on the mathematical
implementation of the DPD approach can be found, e.g., in Ref.
[278,282–285], see also Fig. 10. A particularly illustrative exam-
ple concerns the modeling of thrombosis as the interaction
between activated platelets, forming aggregations among them-
selves and with the adjacent endothelial cells [283], see Fig. 11.
Of similar interest is the DPD-based prediction of shear fluid
stress-dependent initiation of atherosclerosis by means of binding
LDL to the blood vessel walls [279].

Fig. 9 The multiscale model proposed by Pastrama et al. [255] couples multiscale poromicromechanics of bone, providing
the oscillatory hydrostatic pressure in the pore spaces hosting the bone cells (osteocytes, osteoblasts, osteoclasts), with a
multiscale bone cells population model for bone remodeling, with the micromechanically derived pore-scale pressures as reg-
ulatory factors; figure adapted from Ref. [255], with permission from Elsevier
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5.2 Hierarchies in the Mechanics of Single Cells and Bio-
Macromolecules. We finally turn toward single biological cells
and their internal structure: Traditional visco-elastic continuum
models have been widely used to quantify cell mechanical proper-
ties [286]. Such models are convenient to help parameterize the
results of mechanical measurements from techniques such as

atomic force microscopy (AFM), micropipette aspiration, micro-
rheology, and parallel plate compression [287]. They offer a
straightforward and minimal way to interpret differences between
experimental conditions and summarize the results of mechanical
measurements. When restricted to the timescale and spatial reso-
lution of a specific measurement, these relatively simple

Fig. 10 Illustration of the fundamental principle of discrete particle dynamics approaches,
including a brief sketch of the related mathematical framework, involving the forces acting
onto the considered particles; drawing adapted from Ref. [283]

Fig. 11 Platelet aggregation and adhesion leading to thrombosis; the drawing follows Ref. [283]
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mechanical models are in strikingly good agreement with
observed mechanical behavior. For example, the force-indentation
response obtained from an AFM measurement typically corre-
sponds well to Hertz’s theory for elastic bodies [288]. Under this
framework, many model implementations have been introduced
to analyze AFM experiments using visco-elastic theory, such as
adaptations of Hertz theory for the specific contact geometry
[289], models that consider the viscous response of the cell or the
distinct mechanical properties of the actin cortex [290–292], and
FEM analysis to represent the specific geometry of the cell and
the position on the nucleus [293].

However, when generalizing mechanical properties across spa-
tial and temporal scales, visco-elastic or poro-elastic constitutive
models invariably break down. Instead, living cells appear like
glassy materials that exhibit power law rheology when probed
across time scales [294–296]. This property has been attributed to
the cells active material properties [297]. At the microscopic
scale, the mechanical behavior of a cell is governed by the cyto-
skeleton, a dynamic reorganizing polymer network that forms
mechanically relevant structures at a broad spectrum of character-
istic length scales, giving rise to self-similarity and fractals [298].
Furthermore, the cytoskeleton exhibits biphasic rheology, with
frequent solid-to-fluid dynamics and even self-organized critical-
ity in active structures such as the lamellipodium [299,300].

To date, the aforementioned properties have complicated
homogenization attempts to model the mechanical behavior of
intracellular material [301]. Indeed, the absence of a clearly
defined microscopic (small) length scale prevents the straightfor-
ward formulation of “representative volume elements” in the pur-
suit of macroscopic constitutive equations. Successful attempts to
model the mechanical properties of intracellular material at a cel-
lular scale include coarse-grained representations of acto-myosin
polymer networks and continuum models based on hydrodynamic
theory of active fluids.

Coarse-grained molecular dynamics models of active polymers
aim to provide a computationally minimal representation of the
network structure formed by the cytoskeleton [302,303]. Typi-
cally, they include, as discrete elements, the filaments, and cross-
linkers of acto-myosin or microtubule networks. Contrary to full-
atomistic resolved molecular dynamics, they do not include
atomic interactions, but instead are based on coarse-grained
approximations of thermal forces, internal mechanics, and

interaction properties [304]. For example, the mechanical proper-
ties of polymers are commonly represented using worm-like chain
models, whereas the asymmetry in attachment of myosin motors
to actin filaments is modeled using a “ratchet” potential
[305,306]. Various computational implementations of these dis-
crete coarse-grained elements exist, such as bead-spring models,
rod models, and FE representations of fibers [307]. As a whole,
this family of models has been very successful in unraveling the
mechanics of specific relevant cytoskeletal structures, such as
polymerization in the lamellipodium, the attachment membrane or
adhesion complexes, and the formation of stress fibers [308–310].
Moreover, they are particularly useful in studying artificial cytos-
keletal structures, such as reconstituted acto-myosin networks, of
which the well-known composition and chemical conditions
greatly facilitate mechanistic model formulation [311]. Vice
versa, such artificial structures provide convenient test beds to cal-
ibrate and validate simulations of coarse-grained polymer assem-
blies. Alternatively, these systems can be experimentally studied
at submicroscopic scales, using techniques such as active and pas-
sive microrheology [312]. Nonetheless, the applicability of this
family of models in the context of a biological cell is limited, not
only due to computational limitations, restricting the spatio-
temporal scale of the domain, but also due to the inability to
exhaustively represent the complex environment in intracellular
material.

At the other end, hydrodynamic models of active fluids (or
active “gels”) are constitutive continuum models that represent a
relevant subset of behaviors of intracellular material [313,314]. In
poroviscous theory, pioneered in the context of cells by Dembo
and coworkers, the intracellular material is modeled as two
coupled interpenetrating fluids, the cytosol and a gel-like cytos-
keletal network [315]. By addition of signaling-coupled reaction
terms for network assembly and disassembly, these models can
simulate various cell dynamical processes. Active nematic theory
combines the hydrodynamic equations of an active—typically,
contractile—fluid with a polar or apolar director field. In doing so,
it is able to capture the intrinsic anisotropy of the underlying net-
work and the spontaneous flow as a result of contractile forces
generated by myosin activity [316]. Since they are essentially
fluid models, these models are generally unable to describe the
elastic mechanical response that would be measured in a typical
AFM measurement [317]. However, they provide a very useful

Fig. 12 Atoms-to-beam homogenization of DNA molecules [325]
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tool to help understand the intracellular flows that allow the cell to
reorganize itself over longer timescales. For example, simulations
using these models have been instrumental in explaining the role of
the dynamical organization of actin filaments in furrow formation
during development [318,319]. Furthermore, the emergence of spon-
taneous cell division and cell motility has been observed in models
that combine active nematics with poroviscous theory [320].

To address the shortcomings of these limiting conceptual
frameworks, various hybrid modeling approaches have been pro-
posed that combine discrete coarse-grained networks with hydro-
dynamic continuum equations or simplified phenomenological
models [321]. These attempts have yielded important insights into
specific cell mechanical processes such as bleb initiation, protru-
sion formation, or cell-matrix interaction [322]. Operating at the
cellular scale, these models are used to study mechanisms of
active force generation and mechanotransduction. As such, they
are suitable for the interpretation of traction force microscopy
measurements, in which active forces are quantified by measuring
the deformation of a well-characterized substrate. For example, a
hybrid model that combines discrete tensional cables in a contin-
uum contractile material was able to relate forces exerted by the
cell on the substrate to the generated tension in actin stress fibers
[323]. However, these hybrid modeling frameworks are generally
limited to specific phenomena, with an associated reduction in
spatio-temporal scales. As such, the formulation of a general mod-
eling methodology for describing cell mechanical behavior, based
on measurable microscopic parameters and amenable to homoge-
nization for multiscale models, remains a major scientific chal-
lenge [317].

A perspective toward overcoming this major challenge recently
emerged from a very classical concept in continuum mechanics:
the principle of virtual power in its most modern format put for-
ward by Germain [324]: This principle is a natural merger of the
laws of equilibrium (or motion in case of inertia forces) with the
kinematical characteristics of the investigated mechanical system.
Accordingly, it states that the virtual power of internal, external,
and inertial forces on arbitrary admissible virtual velocity fields
defining the kinematical nature of the considered mechanical sys-
tem, need always to be zero. Given the current atomistic-to-
continuum homogenization challenge, identification of the virtual
power performed by equilibrated molecular dynamics-derived
atomistic forces in different configurations of the investigated sys-
tem, on virtual velocity fields characterizing macromolecular
kinematics in terms of beam-theory-type continuum notions
(stretching, twisting, bending) opened a new avenue to study
coupled deformation modes in DNA [325], see Fig. 12: Stretching
and twisting of these long double-helical macromolecules are, as
a rule, coupled, and the type of coupling depends on the deforma-
tional state. This may hold the promise to come up with a new
type of structural mechanics which is complex and at the same
time stable enough, so as to effectively build up a new,
mechanics-driven, addition to the current state of the art in genet-
ics and cell biology. These most probably worthwhile endeavors
have been recently coined as “mechanobiome” research [326]. It
holds the promise to integrate the vast “computational wisdom”
accumulated for DNA and other biomacromolecules [327–329]
into (micro)structural mechanics terms, allowing for linking this
“condensed wisdom” to the wide field of hierarchical biome-
chanics. More precisely, any characteristics emerging through
homogenization over the atoms making up the biomolecules, and
over the latter seen as structural members with appropriately
defined mechanical properties, may provide radically new knowl-
edge for at least two challenging open fields in bio-engineering
and the life sciences: (i) deeper, and more quantitative, under-
standing of mechanical stimulation properties of overall biological
cells, which could then enter hierarchical models as the one seen
in Fig. 9; and (ii) more comprehensive insight into the mechanical
competence of extracellular matrices under extreme, i.e., also
pathological, conditions, as additional input for hierarchical mod-
els as the one shown in Fig. 1.

6 Conclusions

A set of several scale-specific representative volume elements,
nested among each other and each equipped with stress and strain
average rules, as well as with scale transition rules for elastic as
well as inelastic strains, allows for the prediction of mechanical
properties from composition and organization of biological tis-
sues. This has been shown in greatest detail in the case of bone,
by combining analytical or computational homogenization
schemes with the data obtained from a variety of biochemical,
biophysical, and biomechanical experiments. Recent research
results suggest a similarly, high potential for the soft tissue
regime, and hierarchical modeling approaches seem particularly
promising in the fields of mechanobiology (where biological cells
are “inserted” into the tissues’ pore spaces) and cell/biomacromo-
lecule mechanics.
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Nomenclature

AFM ¼ atomic force microscopy
CT ¼ computed tomography

DPD ¼ discrete particle dynamics
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FFT ¼ fast Fourier transform
ICP-OES ¼ inductively coupled optical emission spectroscopy
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RANKL ¼ receptor of activator nuclear factor jB ligand
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