
Advances in
Distributed Randomness

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl. Ing. Philipp Schindler, BSc
Registration Number 1128993

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.-Prof. Dipl.-Ing. Mag. Dr. techn. Edgar Weippl

The dissertation has been reviewed by:

Aviv Zohar Gerald Quirchmayr

Vienna, 25th January, 2022
Philipp Schindler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Advances in
Distributed Randomness

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl. Ing. Philipp Schindler, BSc
Matrikelnummer 1128993

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.-Prof. Dipl.-Ing. Mag. Dr. techn. Edgar Weippl

Diese Dissertation haben begutachtet:

Aviv Zohar Gerald Quirchmayr

Wien, 25 Jänner, 2022
Philipp Schindler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Dipl. Ing. Philipp Schindler, BSc

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 25th January, 2022
Philipp Schindler

v

Acknowledgements

I am very glad for the support I received from so many people doing the process towards
this Ph.D. thesis. Certainly, without such great support composing this thesis would not
have been possible.

First, I would like to express my gratitude towards my advisor Edgar Weippl. Since
writing on my master thesis, during the work on many exciting research topics, and
finally during the path of my Ph.D. Prof. Weippl was always available when I needed
support or guidance while also providing me with the freedom needed to pursue my
research ideas. Thank you.

Furthermore, a sincere thank you goes to all the wonderful people at SBA Research I
worked with during last years. I really enjoyed the endless inspiring discussions with
the different research teams as well as the opportunity to join the colleges from SBA’s
commercial services division on many interesting projects. I thank SBA Research not
only for the financial support making this dissertation possible, but also the people and
friends there for making this unique workplace feel like a little second home.

Aljosha and Nicholas, you really give me a hard time to now express how much I enjoyed
collaborating with both of you during the last couple of years. I am so glad and honored
to be tackling so many interesting and challenging topics with you guys. I deeply thank
both of you, Nicholas and Aljosha, for the outstanding discussions, never ending support,
essential feedback and the amazing time we spent and will spend together.

Finally, there is one person who joined not only the journey through my studies but my
life’s journey. Martha. Since we first met you have always been on my side. I cannot
begin to express how much your support and your belief in me mean to me. And thank
you not only for being there for me in difficult times but also for celebrating the good ones
with me. I am so glad for all the countless awesome moments we experienced together
and the many many more to come. I love you.

vii

Abstract

Distributed randomness, the problem of how a network of computers can jointly and
securely generate a sequence of verifiably random values, is a long standing research topic
in computer science. Recently, the problem has seen a large amount of renewed interest,
in particular due to technical innovations emerging in the field of public distributed
ledgers. Whereas Bitcoin was the first to implement a digital currency which does not rely
on a central party, we now see thousands of projects building platforms and applications
far beyond the functionality of a payment system. Still, many large real-world systems in
this domain are powered by Proof-of-Work based consensus algorithms, the core concept
powering Bitcoin. Unfortunately, Proof-of-Work inherently requires a tremendous amount
of electrical power to ensure the system’s security. This is one of the key reasons why
leading projects in this field have already switched to, or are considering, alternative
designs, most prominently Proof-of-Stake. And distributed randomness, for example,
used to implement leader selection, sharding, or the resolution of ties in the consensus
algorithm turns out to be an essential component of these designs.

To support the development of these alternatives, as well as a number of other use
cases, this thesis sets out to explore, analyze and improve upon existing approaches for
distributed randomness. Our main results include two novel protocol designs named
HydRand and RandRunner. With HydRand we not only improve upon the theoretical
efficiency compared to other designs with similar guarantees but also demonstrate that
these results are translatable into practice by providing our prototype implementation.
RandRunner’s design, despite being quite minimalistic, furthermore improves communica-
tion to a single message being propagated to produce a fresh random output. Additionally,
it achieves a wide range of desirable security guarantees and properties, for example, being
able to automatically recover from temporary network failures. These improvements are
(in part) made possible by leveraging our novel construction of a trapdoor verifiable delay
function with strong uniqueness.

ix

Kurzfassung

Verfahren zur verteilten und manipulationssicheren Erzeugung von verifizierbaren Zu-
fallszahlen in einem Computernetzwerk (distributed randomness) sind ein seit langem
offenes Forschungsthema der Informatik. Insbesondere die jüngsten Entwicklungen aus
dem Bereich der öffentlichen, verteilten Systeme (distributed ledgers) führen zu einem
neuen starken Interesse an diesem Forschungsfeld. Zu den Vorreitern dieser Systeme
zählt Bitcoin, eine digitale Währung, die unabhängig von zentralen Stellen erzeugt und
verwaltet wird. Mittlerweile gibt es jedoch auch eine große Bandbreite an Projekten,
Plattformen und Anwendungen, die in ihrer Funktionsweise weit über die Funktionali-
tät eines Zahlungssystems hinausgehen. Eine Vielzahl dieser Systeme basiert trotz der
fortschreitenden technischen Innovation immer noch auf dem Prinzip des Proof-of-Work,
das bereits bei Bitcoin zum Einsatz kommt. Der enorme Ressourcenverbrauch, der in
Proof-of-Work basierten Systemen notwendig ist um Sicherheit zu garantieren, wird
jedoch zunehmend als problematisch angesehen. Dies ist einer der Hauptgründe warum
führende Projekte in diesem Bereich bereits auf alternative Konstruktionen, insbesondere
Proof-of-Stake, umgestellt haben oder diese in Betracht ziehen. Diesbezüglich stellt sich
die verteilte Erzeugung von Zufallszahlen als Kernbestandteil heraus und findet unter
anderem bei der Implementierung von Auswahlmechanismen für autoritative Knoten
(leader selection), Sharding oder bei der Konfliktlösung in Entscheidungsprozessen der
Konsensalgorithmen ihre Anwendung.

Um diese Entwicklungen, sowie zahlreiche weitere Anwendungsfälle zu unterstützen, setzt
sich diese Dissertation zum Ziel bestehende Ansätze zu erforschen und entsprechend
weiterzuentwickeln. Die wichtigsten Ergebnisse umfassen zwei neue Protokolle: HydRand
und RandRunner. Mit HydRand wird nicht nur die theoretische Effizienz im Vergleich zu
anderen Designs mit ähnlichen Garantien verbessert, sondern auch mit einer prototypi-
schen Implementierung aufgezeigt, dass diese Ergebnisse in die Praxis überführbar sind.
Darüber hinausgehend wird gezeigt, dass RandRunner mit Hilfe eines minimalistischen
Designs den Kommunikationsaufwand weiter reduzieren kann und die Erstellung eines
neuen zufälligen Werts mit nur einer einzelnen Nachricht, die durch das Netzwerk verteilt
wird, sicherstellen kann. Zudem bietet das Protokoll zahlreiche wichtige Sicherheitsga-
rantien und gewünschte Eigenschaften, zum Beispiel die Fähigkeit der automatischen
Betriebswiederaufnahme nach einem Netzwerkausfall. Diese Verbesserungen werden unter
anderem durch den Einsatz eines weiterentwickelten kryptografischen Verfahrens, der
sogenannten „Trapdoor Verifiable Delay Functions with Strong Uniqueness“, ermöglicht.

xi

Contents

Abstract ix

Kurzfassung xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 3
1.3 Results . 4
1.4 Methodology . 7
1.5 Structure . 12

2 HydRand: Efficient Continuous Distributed Randomness 13
2.1 Introduction to Distributed Randomness 13
2.2 System and Threat Model of the HydRand Protocol 16
2.3 Overview of the HydRand Protocol . 16
2.4 The HydRand Protocol . 21
2.5 Analysis of HydRand’s Protocol Properties 24
2.6 Evaluation of the HydRand Protocol 30
2.7 Comparison of Random Beacon Protocols 32
2.8 Discussion of HydRand and Existing Approaches for Generating Dis-

tributed Randomness . 41
2.9 Summary of our Findings on the HydRand Protocol 43
2.A Appendix: HydRand Notation Reference 44

3 EthDKG: Distributed Key Generation with Ethereum Smart Con-
tracts 47
3.1 Introduction to Distributed Key Generation Protocol 48
3.2 Related Work in Distributed Key Generation 49
3.3 System Model and Threat Model of the EthDKG Protocol 51
3.4 The EthDKG Protocol . 53
3.5 Security Analysis of the EthDKG Protocol 58
3.6 Implementation of the EthDKG Protocol 59

xiii

3.7 Evaluation of the EthDKG Protocol 65
3.8 Discussion and Comparison of EthDKG and Existing Distributed Key

Generation Protocols . 70
3.9 Summary of our Findings on the EthDKG Protocol 73
3.A Appendix: EthDKG Notation Reference 74

4 RandRunner: Distributed Randomness from Trapdoor VDFs with
Strong Uniqueness 75
4.1 Revisiting the State-of-the-Art in Distributed Randomness 76
4.2 Introduction to RandRunner . 77
4.3 Trapdoor VDFs with Strong Uniqueness 78
4.4 Conceptual Design of the RandRunner Protocol 85
4.5 System and Threat Model of the RandRunner Protocol 86
4.6 The RandRunner Protocol . 88
4.7 Analysis of RandRunner’s Security Guarantees 93
4.8 Comparing RandRunner to Existing Distributed Randomness Beacons 103
4.9 Summary of our Findings on the RandRunner Protocol 105
4.A Appendix: Additional Evaluation Results for the RandRunner Protocol 106
4.B Appendix: RandRunner Notation Reference 112

5 Conclusion 115
5.1 Highlights of our Research Contributions 115
5.2 Research Impact . 118
5.3 Directions for Future Research . 120

List of Figures 123

List of Tables 125

Bibliography 127

CHAPTER 1
Introduction

1.1 Motivation
A classic example of generating randomness is rolling a dice. In an idealized world, one
would expect the dice to eventually land on one of its six sides with equal probability. In
the real world the results may differ depending of a range of circumstances: A dice may
roll of the table, raising the question if it should be counted anyway or rerolled, or, for
example, physical imperfections, a deliberately manipulated dice, or a skilled dice roller
may alter the odds of the dice landing on a particular number. Depending on the stakes
at play, a range of countermeasures from using standardized transparent dice to specific
rules on how to perform rolls are used to ensure the fairness of dice rolls.

The topic of how to generate randomness/random numbers has also been extensively
studied in a range of (academic) disciplines. Within this work, we focus on the computer
science aspects, although there are multiple touching points with other disciplines, for
example, with physics and electronics considering the design and implementation of
hardware random number generators (HRNGs). These HRNGs, often also referred to as
true random number generators (TRNGs), are devices which exploit physical phenomena
that fundamentally behave in a nondeterministic way (e.g., electrical and thermal noise,
radioactive decay, or quantum effects such as photon arrival times) to provide a sequence
of unpredictable random numbers for computer programs [113]. This approach is in great
contrast to pseudo random number generators (PRNGs) – algorithms which essentially
generate a sequence of “random-looking” numbers in a deterministic manner. Statistical
samples, computer games, simulations or randomized algorithms are some of the many
applications where PRNGs are used in favor of TRNGs, e.g., due to their superior
performance characteristics or ease of implementation. For a range of other applications,
in particular considering cryptographic protocols, the use of PRNGs introduces serious
security vulnerabilities and must therefore be strictly avoided. For these kinds of security
critical applications specifically designed cryptographically secure pseudorandom number

1

1. Introduction

generators (CSPRNGs) are employed. CSPRNGs are initialized using a high-quality
source of entropy. Modern operating systems use a combination of multiple sources
(device drivers, keyboard/mouse interrupts, harddisk access pattern, inter-interrupt
timings, HRNGs) to ensure a proper initialization of the used CSPRNGs [50]. Assuming
the correct implementation and initialization of CSPRNGs – by itself a challenging
but well understood task beyond the scope of this dissertation – modern computers
are able to securely generate randomness for cryptographic use. Moreover, they are
not only capable of doing so, but actually many day-to-day applications including
secure messaging protocols, encrypted file storage, internet communication protocols,
authentication solutions and digital signatures heavily rely on this capability.

Unfortunately, these local approaches to generate randomness fail to meet key criteria for
applications which use randomness collectively. Reconsidering the dice example from the
beginning of this introduction, imagine a multiplayer dice game played over the phone.1
In this case, the person rolling the dice literally tells the other person the resulting
number as the other party cannot directly observe the result. This approach however
immediately raises the question of trust. Previously, i.e., when playing a dice game
locally (e.g., by everyone sitting around a table), all players can observe/verify the dice
roll and agree on the result. In the over-the-phone scenario, however, the “observing”
players cannot actually verify the result of the dice roll – they have to go by the word
of the rolling player, who may dishonestly claim the dice shows a six when it indeed
landed on a different side. Considering distributed systems the same issue applies. Here,
generating randomness on one computer and (securely) sending the result to another
computer leaves the latter with no choice but to blindly trust that the randomness was
indeed generated using a suitable method and not manipulated. For a large range of
applications including, for example, Byzantine fault tolerant (BFT) and blockchain-based
consensus protocols, e-voting, verifiable selection processes, online gaming and gambling,
or parameter generation for cryptographic protocols, the introduction of these trust
assumptions are undesirable at best or intolerable at worst. This raises the demand for
solutions which are suitable for collective use in a distributed setting – typically discussed
under the terms of distributed randomness or randomness beacons.

In particular, also the tremendous growth and new developments in the field of blockchain-
and distributed ledger technologies since the emergence of Bitcoin [86] in 2008 sparked
renewed interest in the topic of distributed randomness. It is an essential component of
the core of Bitcoin, Ethereum [120] and related Proof-of-Work based consensus protocols.
One essential function provided by the stochastic process of mining in these kinds of
protocols is the randomized selection of an individual among the pool of participating
miners, which is then allowed to advance the state of the blockchain by appending a
new block. The underlying mechanism of Proof-of-Work is typically implemented as the
computationally difficult task of finding specially formed inputs to cryptographic hash
functions, which result in outputs with a large number of zero-bits. The advantages and

1The presented example is inspired by M. Blum’s article “Coin flipping by telephone” [17].

2

1.2. Aims

drawbacks of such an approach as the basis for a consensus algorithm are heavily and
controversially discussed among the different communities. Avoiding essential drawbacks
such as the very high consumption of electricity, many leading projects in the field,
including, for example, the second largest cryptocurrency and smart contract platform
Ethereum are in the process of transitioning away from a Proof-of-Work based mechanism.
Others, for example, Cardano, emerging from the academic research on the Ouroboros
protocol family [78, 46, 7], Ripple [109], AlgoRand [42, 69] or Dfinity [72] are designed
from the ground up based on alternative mechanisms. These alternatives to Proof-of-
Work are commonly based on the idea of Proof-of-Stake or use traditional Byzantine
fault tolerant (BFT) protocols and heavily rely on the secure generation of distributed
randomness for their operation.

The need for distributed randomness manifests itself on many different levels. On the
most fundamental level, Fischer, Lynch and Paterson [59] proved that reaching consensus
with one faulty node is impossible for any deterministic algorithm under asynchronous
network conditions. Consequently, already early on approaches were conceived that rely
on randomization to overcome this impossibility and solve the underlying Byzantine
agreement problem under such a system model. Notably, Ben-Or’s solution [11] employs
locally generated random bits to solve the problem. However, depending on the number
of Byzantine nodes, the protocol is rather inefficient and may only reach agreement
after an exponential number of rounds in expectation. Rabin [96] improved upon this
result by assuming a lottery service – essentially a distributed randomness beacon –
which regularly provides all protocol participants with an agreed upon random value.
Similarly, in practice we now see many recently developed BFT and Proof-of-Stake based
protocol designs employing distributed randomness. Here, the application of distributed
randomness is not limited to the core of the consensus protocol, but it is also useful in the
context of improving scalability (sharding), to ensure order-fairness, or on an application
level where secure access to randomness is, for example, needed within the deterministic
execution environment of smart contracts.

1.2 Aims

Already back in 1983, long before the emergence of modern distributed ledger technologies,
the first methods of how to generate distributed randomness were being discussed by
Blum [17] under the term coin flipping protocols and Rabin [97] introducing the notion
of a (randomness) beacon (protocol), emitting a random integer within a chosen range at
regularly spaced time intervals. Since then, and in particular in recent history, a range
of new techniques and protocols addressing the problem have emerged. This work sets
out to systematically collect, analyze, compare and improve upon the existing solutions
within this domain. The aim of the work is extended to also include the design and
implementation of supporting building blockings, in particular distributed key generation
(DKG) protocols, which, in combination with threshold signature algorithms, serve as the
basis of some modern approaches for generating distributed randomness. By pursuing

3

1. Introduction

these research challenges, this thesis sets out to support the many current and future
advancements in the larger field of distributed ledger technologies.

1.3 Results
Considering the design and implementation of state-of-the-art randomness beacon pro-
tocols, our first main result is the HydRand protocol. HydRand is a novel method for
collectively generating a sequence of random values, emitted continuously at regular
intervals. HydRand’s design is based on well established cryptographic primitives, in
particular digital signatures and publicly-verifiable secret sharing (PVSS), and avoids
the need for distributed key generation (DKG) for the protocol setup. HydRand ful-
fills all key properties expected from a randomness beacon protocol. In particular, it
ensures the property of guaranteed output delivery, which guarantees that a new value
is produced timely, even if an adversary’s leader or coalition of less than a third of the
nodes does not follow the described protocol rules. Compared to other protocols based
on similar assumptions, HydRand uses a pipelining approach which manages to reduce
the communication complexity of the protocol from O(n3) to O(n2) per round.

Alongside the design and implementation of the HydRand protocol itself, a range of other
protocol designs in this field have been surveyed and compared. The analyzed designs
include other PVSS-based protocols as well as protocols using threshold signatures, hash-
chains or verifiable random functions (VRFs) as the main cryptographic building blocks.
Furthermore, methods based on Proof-of-Work have been examined and compared. Our
comparison results highlight the advantages, drawbacks and tradeoffs made by the different
designs and suggest that there is no clear best protocol emerging. Nevertheless, we show
that HydRand minimizes drawbacks and achieves the various desirable properties in a
unique way. Both, the main protocol, its evaluation, as well as the survey and comparison
of the other state-of-the-art protocols, have been published in the corresponding research
paper accepted at the 2020 IEEE Symposium on Security and Privacy (SP 2020) [106].

Our survey conducted on the different methods for generating randomness distributedly
highlights a range of efficient protocol designs, for example, the approach described
by Cachin et al. [33] or Dfinity [72], which require the use of a DKG protocol for the
trustless setup of the private keys used for threshold signing in the operational stage of
the protocols.2 Unfortunately, the availability of real world implementations for DKG, in
particular considering the recent advancement in the field of public distributed ledgers,
is rather limited. Leveraging these advancements enabled us to design, implement and
evaluate EthDKG, a DKG protocol targeting the deployment on modern smart contract
platforms such as Ethereum. EthDKG’s core is based on the very well established line
of research on DKG by Gennaro et al. [63, 64] (itself based on Pedersen’s works [92,

2Although, alternatively, the use of a trusted dealer distributing key shares to the participants is
possible in principle, this approach is highly undesirable in practise as it introduces a single point of
failure/trust.

4

1.3. Results

91] and Feldman’s verifiable secret sharing [56]). Through the careful use of smart
contract platforms as a base layer for secure and publicly-verifiable message exchange
and cryptographic commitments, we obtain an efficient practical system, while keeping
the simplicity of the original design by Gennaro et al. and incorporating more recent
advancements such as the dispute resolution mechanism described by Neji et al. [87].
A key achievement of our design is that the correctness of the protocol’s execution is
verifiable in-band, i.e., within the smart contract platform, while tolerating minority
attacks on the safety and liveness of the protocol. Our design can easily be augmented
using the platform’s features. For example, security deposits can be mandated for all
joining participants. In this case, the safety of an honest party’s deposit is ensured even
considering a majority attack on the protocol. Furthermore, our design allows for dynamic
participation rules specified upon the deployment of the respective smart contract as well
as efficient on-platform verification of threshold signatures. We open sourced the protocol’s
implementation, demonstrated its practical performance via extensive benchmarks, and
presented our results at the 2019 Cryptocurrency’s Implementer Workshop (CIW 2019)
at the 23rd International Conference on Financial Cryptography and Data Security
conference (FC 2019). In addition, a further improved version of the paper is available
on the Cryptology ePrint Archive [105].

Finally, we design a new novel randomness beacon protocol named RandRunner. Ran-
dRunner’s central cryptographical building block is a special kind of trapdoor verifiable
delay function (T-VDF) which does achieve the property of strong uniqueness we intro-
duce in Section 4.3.2. While previous constructions of T-VDFs (see, e.g., the work by
Wesolowski [118]) are able to guarantee uniqueness for a party without possession of the
trapdoor, our new construction first demonstrates how uniqueness can be guaranteed
despite an adversarial party with knowledge of the trapdoor. This is a key requirement
for the use of T-VDFs within a distributed randomness beacon because it guarantees
bias-resistance when computing the next beacon value using input(s) provided by an
adversary. Leveraging the strong uniqueness property, we obtain not only a highly
efficient but also very simplistic protocol: In essence, the protocol outputs a fresh random
beacon value as the (regularly changing) protocol leader disseminates a single message,
i.e., the result of evaluating the leader’s T-VDF on the previous beacon output using the
trapdoor. In case of an unresponsive or adversarial leader, all other nodes compute the
leader’s T-VDF without using the (to them unknown) trapdoor and obtain the same
result after a short delay. Within our work published at the Network and Distributed
System Security Symposium (NDSS 2021) [103], we furthermore highlight additional
properties including the resilience of the protocol against temporary network delays or
outages, responsiveness under good network conditions, or a non-interactively verifiable
protocol setup without requiring a DKG protocol.

The main results summarized above, have been presented at a range of highly renowned
international conferences:

P. Schindler, A. Judmayer, N. Stifter, and E. Weippl. HydRand: Efficient Continuous
Distributed Randomness. In 2020 IEEE Symposium on Security and Privacy (SP 2020),

5

1. Introduction

pages 32–48. IEEE, May 2020.

P. Schindler, A. Judmayer, N. Stifter, and E. Weippl. EthDKG: Distributed Key
Generation with Ethereum Smart Contracts. Cryptology ePrint Archive, Report 2019/985,
2019. 3

P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. Weippl. RandRunner:
Distributed Randomness from Trapdoor VDFs with Strong Uniqueness. In 28th Annual
Network and Distributed System Security Symposium (NDSS 2021). The Internet Society,
February 2021.

In the spirit of open science – to ensure reproducibility of our results and foster further
improvements – we made the research artifacts developed during the work on the
HydRand-, EthDKG- and RandRunner protocols publicly accessible. In particular, the
source code for the prototypes and simulations, additional documentation, as well as the
developed evaluation tools and benchmark results have been published on the respective
Github repositories:

• https://github.com/PhilippSchindler/HydRand

• https://github.com/PhilippSchindler/EthDKG

• https://github.com/PhilippSchindler/RandRunner

In addition to the results presented within this Ph.D. thesis, a number of contributions
on related research topics in the field of blockchain and distributed ledger technologies
have been made during the course of this studies:

A. Judmayer, N. Stifter, P. Schindler, and E. Weippl. Estimating (Miner) Extractable
Value is Hard, Let’s Go Shopping! In Financial Cryptography and Data Security FC 2022
International Workshop on Coordination of Decentralized Finance (CoDecFin). Springer,
February 2022.

N. Stifter, A. Judmayer, P. Schindler, A. Kern, and W. Fdhila. What is Meant by
Permissionless Blockchains? In 2021 Crypto Valley Conference on Blockchain Technology
(CVCBT). IEEE, October 2021.

K. Pfeffer, A. Mai, A. Dabrowski, M. Gusenbauer, P. Schindler, E. Weippl, M. Franz,
and K. Krombholz. On the Usability of Authenticity Checks for Hardware Security
Tokens. In 30th USENIX Security Symposium (USENIX Security 2021), pages 37–54.
USENIX Association, August 2021.

3An earlier revision of this work was presented at the Cryptocurrency Implementers’ Workshop (CIW
2019) in association with the 23rd International Conference on Financial Cryptography and Data Security
(FC 2019).

6

 https://github.com/PhilippSchindler/HydRand
 https://github.com/PhilippSchindler/EthDKG
 https://github.com/PhilippSchindler/RandRunner

1.4. Methodology

N. Stifter, A. Judmayer, P. Schindler, and E. Weippl. Opportunistic Algorithmic
Double-Spending: How I learned to stop worrying and hedge the Fork. Cryptology ePrint
Archive, Report 2021/1182, 2021.

A. Judmayer, P. Schindler, and N. Stifter. Blockchain-Technologie – Anwendungsfor-
men. LexisNexis, April 2021.

A. Judmayer, P. Schindler, and N. Stifter. Blockchain-Technologie – technische Erk-
lärung. LexisNexis, January 2020.

N. Stifter, P. Schindler, A. Judmayer, A. Zamyatin, A. Kern, and E. Weippl. Echoes
of the Past: Recovering Blockchain Metrics From Merged Mining. In International
Conference on Financial Cryptography and Data Security (FC 2019), pages 527–549.
Springer, February 2019.

A. Judmayer, P. Schindler, N. Stifter, and E. Weippl. Book chapter “Blockchain:
Basics” in Business Transformation through Blockchain. pages 339–355. Springer, 2019.

A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and W. J. Knottenbelt.
A Wild Velvet Fork Appears! Inclusive Blockchain Protocol Changes in Practice (Short
Paper). In Financial Cryptography and Data Security FC 2018 International Workshops,
BITCOIN, VOTING, and WTSC, pages 31–42. Springer, March 2018.

A. Judmayer, N. Stifter, P. Schindler, and E. Weippl. Pitchforks in Cryptocurrencies:
Enforcing Rule Changes Through Offensive Forking and Consensus Techniques (Short
Paper). In Cryptocurrencies and Blockchain Technology ESORICS 2018 International
Workshop (CBT 2018), pages 197–206. Springer, September 2018.

A. Zamyatin, N. Stifter, P. Schindler, E. Weippl, and W. J. Knottenbelt. Flux: Re-
visiting Near Blocks for Proof-of-Work Blockchains. Cryptology ePrint Archive, Report
2018/415, 2018.

N. Stifter, A. Judmayer, P. Schindler, A. Zamyatin, and E. Weippl. Agreement with
Satoshi – On the Formalization of Nakamoto Consensus. Cryptology ePrint Archive,
Report 2018/400, 2018.

1.4 Methodology
To achieve our stated goals, we base our methodological approach for conducting the
work on this dissertation on the design science paradigm as described by Hevner et al. in
their essay “Design Science in Information Systems Research” [73]. They describe design
science as a problem solving process, where knowledge and understanding of a design
problem with its corresponding solution(s) are attained by creating a design artifact
and applying it to the problem domain. In order to support researchers in effectively
conducting design science research, they derive the following set of seven guidelines:

• Design as an Artifact

7

1. Introduction

• Problem Relevance

• Research Rigor

• Design Evaluation

• Design as a Search Process

• Research Contribution

• Communication of Research

We find that we can apply many of the stated principles throughout the work on this
dissertation. The following subsections provide details on how the guidelines are imple-
mented within the scope of this work. Thereby, we follow Hevner et al.’s recommendations
which advocate for a creative and careful assessment of when, where, and in which way
researchers should apply the guidelines, and against a strict mandatory use.

1.4.1 Design as an Artifact
Hevner et al. [73], in their first guideline, define the result of a design science research
process to be a purposeful, innovative and effectively described IT artifact. They
do not limit their definition of the term artifact to the instantiation (i.e., a software
implementation in our context), but rather consider it in a broader way, including
the underlying constructs, models and methods. Following this definition, the artifacts
originating from the work on this dissertation are the three developed protocols: HydRand,
EthDKG and RandRunner. The artifacts include the protocol descriptions of all three
protocols, the implementation of HydRand and EthDKG as well as the simulation model
created for RandRunner. As RandRunner’s trapdoor verifiable delay function with strong
uniqueness subcomponent is not only a viable building block for the protocol itself but
also of independent interest, we additionally consider it as a design artifact according to
Hevner et al.’s categorization. The artifacts are purpose-built to address open and relevant
research problems, as described in Section 1.1 and the following subsection. Furthermore,
the innovative nature of the designed protocols is highlighted by comparing them to
existing state-of-the-art designs and showing improvements upon the prior state-of-the-art
in many aspects. A summary of our main results is presented in Section 1.3, whereas we
refer to the chapters 2, 3 and 4 for detailed descriptions of the specific artifacts.

1.4.2 Problem Relevance
The objective of design science research is the development of technological solutions to
important and relevant business problems [73]. Although we typically do not characterize
modern distributed ledger technologies as businesses, we see a tremendous amount of
interest from users, research groups, foundations and traditional companies in these
technologies. As we describe in detail in Section 1.1, solutions for the distributed
randomness problem are highly relevant in this context. The necessity can be seen on the

8

1.4. Methodology

most fundamental level, e.g., considering the Fischer, Lynch and Paterson impossibility
result [59], or on higher levels, e.g., studying a variety of protocol designs as alternatives
to Proof-of-Work, or on the application layer itself where secure distributed randomness
is needed within the execution environments of smart contracts. Further highlighting
the significance of the problem, we identify and compare a large body of recent research
which also addresses the research problem at hand. An overview and comparison of these
works are provided in Section 2.7.

1.4.3 Research Rigor
Following the guideline on research rigor given by Hevner et al. [73], we set out to apply
rigorous methods in both the design and the evaluation of our design artifacts. We
describe the methods used to ensure a rigorous design and description in this section.
An overview of our methodology regarding the evaluation of the designs is given in the
next subsection. The details regarding the used evaluation methods of the individual
artifacts are provided in sections 2.6, 3.7 and 4.7 respectively.

To establish an effective knowledge base upon which rigor is derived, we conduct an
extensive literature review as a first step. This review includes both state-of-the-art
protocols for distributed randomness generation, as well as application scenarios, in
particular distributed consensus protocols. To further expand upon this initially built
knowledge base, the initial review of existing designs is extended to a detailed analysis
and comparison. For this purpose, first the desired properties and characteristics of
distributed randomness protocols are collected. Then, the drawbacks, advantages and
tradeoffs of the individual designs are identified and compared with each other. The
identified shortcomings and areas of potential improvements serve as the basis for the
further design and prototypical implementation of new protocols in the next steps.

To rigorously describe our research artifacts, in particular the three protocol designs
HydRand, EthDKG, RandRunner and their required subcomponents, we first informally
describe the most fundamental design principles. The goal of this first step is to provide
the reader with the key intuitions required to more easily apprehend the details of full
protocol specifications given afterward. To allow for precise protocol specification a
certain level of abstraction is needed. Following Hevner et al.’s cautious words regarding
excessive formalism [73], and our own experience studying related work written with
different levels of formalism, we attempt to find a good balance between the use of
informal language and a highly formal mathematical notation for the description of our
protocols. Furthermore, we explicitly state the assumptions we make in the respective
system- and threat models of our designs, and wherever possible stick to assumptions
widely known and used in related works.

1.4.4 Design Evaluation
In order to demonstrate the utility, quality, and efficiency of our design artifacts we
perform an extensive evaluation for each of the artifacts. This evaluation is based

9

1. Introduction

on two main pillars, formal reasoning and practical demonstration via prototypical
implementations and simulations.

Regarding HydRand, we show it achieves its intended design goals by providing formal
security proofs for each of the expected properties. A theoretical analysis shows that the
per-round communication complexity can be reduced from O(n3) to O(n2). This result
is complemented by extensively testing and benchmarking a prototype implementation
of the protocol. The benchmark results, presented in Section 2.6, demonstrate that the
approach does not only provide theoretical improvements but instead also highlights its
applicability for practical use given the high throughput, fast verification times and low
resource requirements.

EthDKG’s quality is ensured by reducing its main security guarantees to the protocols
it built upon and showing that any modification made does not negatively affect the
original guarantees provided. Its practical utility is demonstrated by first implementing
the protocol for the Ethereum platform and then deploying, running and documenting
its execution on the Ethereum testnet Ropsten. Its efficiency is shown by executing
the protocol under different configurations in a local environment and measuring key
performance metrics such as execution time and computational costs in terms of gas
usage. The details on our evaluation methods and results are presented in Section 3.7.

Similar to HydRand, we also formally analyze our protocol RandRunner. We first show
the security of the underlying verifiable delay function (VDF) by providing a formal proof.
This is accomplished by showing that our construction ensures all preconditions required
to apply the security proof of the VDF designed by K. Pietrzak [94] which forms the
base of our VDF variant. After establishing the security of this key component, we can
use it (or any potential future construction with the required guarantees) in a black-box
manner to formally prove the properties of the overall protocol. We refer to sections
4.3.6 and 4.7 for the details on the security proofs of the underlying VDF and the full
protocol design respectively. This theoretical analysis is accompanied by developing a
simulation model which is used to evaluate important protocol characteristics including,
e.g., unpredictability and recoverability from periods of asynchrony, over a large range
of parameter sets. The practical efficiency of the protocol immediately follows from the
simplicity of the protocol, requiring only a single, small message being propagated in
each round.

1.4.5 Design as a Search Process
Hevner et al. [73] describe design science as an inherently iterative search process towards
discovering an effective solution for a given problem at hand. Ideally one would search
for the best possible solution. However, they find the search for an optimal solution
is often intractable, considering real world problems in information systems. Based on
our findings and comparisons with the related literature, we can certainly confirm that
their general statement applies to our specific problem domain. Despite the infeasibility
of an exhaustive approach for exploring all possible solutions, design science can still

10

1.4. Methodology

be applied by using an approach Hevner et al. describe as heuristic search strategies.
In our case, conducting an extensive literature review helps us to explore the possible
design space and identify shortcomings of existing solutions. For example, in regards to
protocol designs for distributed randomness based on publicly-verifiable secret sharing,
we find that a high communication complexity and the lack of an integrated agreement
protocol limit the utility of the explored prior solutions – two key design limitations
we are able to overcome with our protocol design HydRand. Similarly, our search for
different possible solutions reveals that prior solutions based on the concept of verifiable
delay functions have not received great attention by other researchers. Here, a closer
look into this restricted design space leads us towards our second randomness beacon
design named RandRunner.

To eventually arrive at the presented protocol designs, we iteratively change the design
and/or implementation of our protocols, reevaluate them, and compare the results with
the previously obtained ones. There is a wide range of factors contributing to this
iterative design approach. These factors include findings from our performance tests,
feedback received from various internal discussions and the academic peer reviewing
process. All of these factors strengthen the deeper understanding of the problem and
solution space and allow us to continuously improve our protocol designs.

Another interesting observation arises when we compare the heuristic search processes
used for HydRand and EthDKG with RandRunner. In contrast to HydRand and
EthDKG, iterative changing and reevaluating the RandRunner protocols reveals that
certain design decisions are beneficial under a particular set of preconditions, whereas
conflicting decisions provide better guarantees under other circumstances. In the search
to improve HydRand and EthDKG we did not discover such an effect. To resolve the
situation for RandRunner, we follow both “branches” of the search tree independently
and obtain two variants of the RandRunner protocols. The variants share most properties
but differ in regards to the unpredictability guarantees they provide for the generated
sequence of randomness beacon values. A detailed discussion on this aspect is provided
in Section 4.7.4.

1.4.6 Research Contribution

According to Hevner et al. [73] “effective design-science research must provide clear
contributions in the areas of the design artifact, design construction knowledge (i.e.,
foundations), and/or design evaluation knowledge (i.e., methodologies)”. We see our main
contribution in the generated design artifacts themselves and refer to Section 1.3 for a
summary of the key research contributions made. We follow best practices and make
the source code for all prototypical implementations, the scripts required for setting up
experimental environments as well as the simulations model developed for RandRunner
publicly available on the Github platform. These additional contributions may turn
out to be useful for other researchers which want to reproduce our results or adopt the
provided resources for their own protocol evaluations.

11

1. Introduction

1.4.7 Communication of Research
As we outline in more detail in Section 1.3, the research efforts within this dissertation
have been presented to an expert audience at a range of renowned scientific conferences,
including the IEEE Symposium on Security and Privacy and the Annual Network and
Distributed System Symposium. To communicate the results to a broader audience,
in-depth as well as higher level presentations about the works have been given at a range
of other national and international venues. Recorded presentations on the HydRand and
RandRunner protocols are also publicly available on the video sharing platform Youtube.

1.5 Structure
This thesis is structured as follows:

Chapter 1 (this chapter) provides an introduction to the topic of randomness and
distributed randomness, motivates the need for further research in this field, outlines the
goals of this thesis, describes the methodology used towards achieving these goals as well
as summarizes the main contributions being made.

Then, chapters 2, 3, and 4 of this thesis’s structure follow the corresponding scientific
publications.

Chapter 2 introduces our first design of distributed randomness beacon, named HydRand.
This chapter includes the design, implementation and evaluation of the protocol itself as
well as a survey and comparison of other state-of-the-art designs in the field.

Chapter 3 describes the distributed key generation protocol EthDKG. The chapter covers
the importance of distributed key generation in regards to distributed randomness and
other applications, the related work in this field, and the design, implementation and
evaluation of the protocol.

Chapter 4 introduces our trapdoor verifiable delay function (T-VDF) with strong unique-
ness and demonstrates how we leverage this cryptographic building block to design our
simple, yet highly efficient randomness beacon protocol RandRunner.

Finally, Chapter 5 concludes this thesis. In this chapter, key aspects of the field of
distributed randomness and our results in this context are highlighted and potential
directions for future research in this field are discussed.

12

CHAPTER 2
HydRand: Efficient Continuous

Distributed Randomness∗

A reliable source of randomness is not only an essential building block in various crypto-
graphic, security, and distributed systems protocols, but also plays an integral part in the
design of many new blockchain proposals. Consequently, the topic of publicly-verifiable,
bias-resistant and unpredictable randomness has recently enjoyed increased attention.
In particular random beacon protocols, aimed at continuous operation, can be a vital
component for current Proof-of-Stake based distributed ledger proposals. In this chapter,
we improve upon previous random beacon approaches by presenting HydRand, a novel
distributed protocol based on publicly-verifiable secret sharing (PVSS). The protocol de-
sign ensures the key properties of unpredictability, bias-resistance, and public-verifiability
for a continuous sequence of random beacon values. Furthermore, HydRand provides
guaranteed output delivery of randomness at regular and predictable intervals in the
presence of adversarial behavior and does not rely on a trusted dealer for the initial setup.
Compared to existing PVSS based approaches that strive to achieve similar properties,
our solution improves scalability by lowering the communication complexity from O(n3)
to O(n2). Furthermore, we are the first to present a detailed comparison of recently
described schemes and protocols that can be used for implementing random beacons.

2.1 Introduction to Distributed Randomness
The question of how to generate trustworthy random values among a set of mutually
distrusting participants over a message passing network was first addressed by Blum in

∗This chapter is an updated version of the equally-named research paper [106] published at the 41st
IEEE Symposium on Security and Privacy (SP) 2020. Large text passages from the original work are
used in verbatim form in this work.

13

2. HydRand: Efficient Continuous Distributed Randomness

1983, thereby introducing the notion of coin tossing protocols [17]. Distributed randomness
also forms a key component of asynchronous consensus protocols in the form of local [11]
and common coin designs [96, 33].

Lately, coin tossing protocols have received increased attention, in part because gener-
ating shared randomness is proving to be a vital component of most distributed ledger
approaches (e.g. [13, 42, 78]) that aim to replace the computationally intensive Proof-of-
Work (PoW) mechanism as found in Bitcoin [86] and similar cryptocurrencies. Specifically,
Proof-of-Stake (PoS) blockchain proposals, which rely on virtual resources in the form of
digital assets, call for manipulation resistant and unpredictable leader election as part of
a secure protocol design [78]. The distributed generation of trustworthy random values
can hence be considered a complementary problem to the development of such protocols.

Random beacon protocols aim to generate publicly-verifiable, bias-resistant and unpre-
dictable randomness in distributed environments. The concept of a random beacon was
first formalized by Rabin [97], where a service that emits a fresh random number at
regular intervals is proposed. Potential application areas for random beacons are broad
and, as described in [114, 38, 25], include:

• the secure generation of protocol parameters for cryptographic schemes [8, 80]

• privacy preserving messaging services [119, 117, 70]

• protocols for anonymous browsing, including Tor hidden services [48, 71, 68]

• electronic voting protocols [1]

• publicly-auditable selections [25]

• gambling and lottery services [25]

With the emergence of blockchain protocols additional areas that demand secure sources
of public randomness, such as sharding approaches [45], were formed. In particular smart
contracts often draw upon insecure sources of randomness or trusted third parties [4, 32]
such as the NIST random beacon, Random.org or Oraclize.it.

The revealed backdoor in the Dual Elliptic Curve PRNG [14], the unreliability of propri-
etary beacons [25], and the possibility of a centralized provider buffering, manipulating,
and benefiting from prior knowledge of the provided randomness [25] are only a few of
many reasons in favor of distributed randomness beacons where trust is spread among
participants.

Considering distributed approaches, the following properties, as outlined in [6, 25, 114],
are desiderata of a random beacon protocol:

1. Availability/Liveness:
Any single participant or colluding adversary should not be able to prevent progress.

14

2.1. Introduction to Distributed Randomness

2. Unpredictability: Correct, as well as adversarial nodes, should not be able to
predict (precompute) future random beacon values.

3. Bias-Resistance: Any single participant or colluding adversary should not be
able to influence future random beacon values to their advantage.

4. Public-Verifiability: Third parties not directly participating in the protocol
should also be able to verify generated values. As soon as a new random beacon
value becomes available, all parties can verify the correctness of the new value using
public information only.

Additionally, we follow the notion of [78, 38] where guaranteed output delivery
(G.O.D.) [98] i.e., the inability for an adversary to prevent correct participants of the
protocol from obtaining an output, is also considered as an important property of random
beacon protocols. In particular, if an adversary is not sufficiently restricted by how much
it can affect the timing of the random beacon’s output in system models with bounded
delays, both unpredictability and bias-resistance are weakened because the adversary can
influence if an application is able to receive the output before a certain time or not.

Another particular desirable property for random beacons in the context of (permissionless)
distributed ledgers is the avoidance of an initial trusted setup, e.g., a trusted
dealer [114].

Current random beacon protocols aim to provide solutions by employing different tech-
niques, reaching from Proof-of-Delay [32, 30] and incentive based solutions [29, 99] over
publicly-verifiable secret sharing (PVSS) [6, 38, 78, 114] and unique signatures [42, 72]
to utilizing Bitcoin itself as a source of randomness [12, 25]. The diversity of these
approaches, as well as the differences in their underlying assumptions and characteristics,
make them difficult to compare and not equally suited for all use-cases. Furthermore,
various recently described (PoS) blockchain schemes utilize or provide a random beacon
as part of their protocol design and are therefore not easily comparable or deployable as
a stand-alone protocol.

2.1.1 Contribution
In this chapter we present HydRand, a PVSS based distributed random beacon protocol
geared towards the continuous provision of randomness at regular intervals in a Byzantine
failure setting. HydRand provides guaranteed output delivery, i.e., it guarantees the
generation of new, bias-resistant randomness in every round of the protocol. As a hybrid
approach, HydRand provides both a probabilistic guarantee for unpredictability, which
ensures that a successful prediction of future random beacon values becomes exponentially
unlikely, as well as unpredictability with absolute certainty for applications which wait
for at least f + 1 rounds before using a future protocol output. The protocol assumes a
synchronous system model and n = 3f +1 participants. In respect to previous approaches
based on PVSS, the communication complexity is hereby lowered from O(n3) to O(n2)

15

2. HydRand: Efficient Continuous Distributed Randomness

as HydRand only requires at most one PVSS distribution/recovery operation per round.
Our protocol is described in a self contained manner and neither relies on a trusted dealer
nor on a distributed key generation (DKG) protocol.

Moreover, to the best of our knowledge, we are the first to provide an extensive comparison
of state of the art random beacon protocols in this field that considers and analyzes a
variety of key characteristics and assumptions.

2.1.2 Structure of the Remainder of this Chapter
The remainder of this chapter is structured as follows: The assumed system model is
presented in Section 2.2. Section 2.3 provides a high level overview of the HydRand
protocol and highlights the employed variant of PVSS, which constitutes one of the
main cryptographic primitives that is utilized. Then, the protocol’s operation is further
illustrated by discussing an exemplary execution in Section 2.3.3 and the details of the
protocol in Section 2.4. An extensive analysis including proofs showing that HydRand
achieves the desired properties is presented in Section 2.5. Our evaluation results obtained
from measurements of our prototypical implementation are described in Section 2.6.
Section 2.7 compares HydRand to other related schemes, while Section 2.8 and Section 2.9
discuss and conclude the chapter. A quick reference for the utilized symbols and notations
can be found in the Appendix 2.A at the end of the chapter.

2.2 System and Threat Model of the HydRand Protocol
We assume a fixed set of known participants, hereby referred to as nodes, of size n = 3f +1,
of which at most f nodes may exhibit Byzantine failures and can deviate arbitrarily from
the specified protocol. A node is considered to be correct if it does not engage in any
incorrect behavior during the entirety of the protocol execution, else it is considered to be
faulty. The terms Byzantine or malicious are used synonymously to refer to faulty nodes.
The set of all nodes is denoted by P = {1, 2, ..., n} and each node i ∈ P is assumed to
have a private/public key pair
ski, pki�. The public keys of these keypairs are known
to all participants. A synchronous system model with a fully connected network of
authenticated and reliable bidirectional point-to-point messaging channels is assumed.
We argue that the chosen timing model is reasonable for a small to moderate set of
participants, and defer an analysis of our protocol in other system models to future
work. Further, for many application areas of random beacons, e.g., in the context of
cryptocurrencies, partially synchronous and synchronous system models are prevalent.
Here, a synchronous random beacon protocol that also provides guaranteed output
delivery may be necessary if strong notions of bias-resistance are a requirement.

2.3 Overview of the HydRand Protocol
The aim of HydRand is to provide a bias-resistant, publicly-verifiable and unpredictable
stand-alone random beacon which emits random values at a regular interval. We target

16

2.3. Overview of the HydRand Protocol

HydRand at a permissioned setting with a fixed set of participants and assume a known
upper bound1 on both computation and message transmission times.

For the protocol setup it is assumed that all participants exchanged their public keys
and prepared an initial commitment using publicly-verifiable secret sharing (PVSS).
The protocol operation itself is separated into rounds, where each round consists of
three distinct phases – propose, acknowledge and voting. We describe these phases in
detail in Section 2.4. In each round, the previously generated random value is used for
uniquely determining the current round leader. This leader has two choices: (i) The
leader reveals the correct secret value he has committed himself to the last time2 he
was leader and attaches his next commitment. (ii) The leader does not reveal his secret
value and therefore cannot attach another commitment. In the latter case, the previously
committed secret value is reconstructed by f + 1 other nodes, including at least one
correct participant. The properties of the underlying PVSS scheme ensure that the
random beacon value obtained by reconstruction is always equal to the value that is
obtained when a leader reveals his secret – this establishes bias-resistance. Additionally,
guaranteed output delivery follows because the protocol outputs a random beacon value
at each round, independent of the actions of the (potentially adversarial) leader and
other faulty nodes.

In case the leader’s previous commitment is reconstructed, the leader is excluded from
being eligible as leader in future rounds since no new valid commitment was provided.
However, the presented protocol could also be adapted to facilitate that temporarily
failed nodes may rejoin f + 1 rounds after a fresh commitment is provided and agreed
upon. A correct leader constructs a new dataset, which includes: (i) the secret value
they previously committed themselves to, (ii) a new commitment to a uniformly random
sampled value and (iii) a reference to the dataset of the previous round. The leader signs
this dataset using their private key and broadcasts this message and signature to all
other nodes in the network. After receiving and verifying the dataset, each node can
compute the new random value of the beacon.

In case a leader is faulty and does not broadcast any data, other participants can
collaborate to reconstruct the missing secret value, i.e. the value the leader has previously
committed himself to in (ii). The reconstructed value can be used by any node to obtain
the new random beacon value and thereby advance the protocol to the next round and
leader. This process is repeated until eventually a correct leader is selected that creates
a new dataset that accounts for all reconstructed datasets in between.

To ensure that a correct node is selected as leader after (at most) f + 1 rounds, all
previously selected leaders of the last f rounds are exempt from becoming leader in
the current round. Since malicious nodes are unable to determine how an unrevealed
commitment of an honest leader will influence future random beacon values, they cannot

1We assume that a message sent at the beginning of one phase is received within that same phase.

2The initial commitment from the protocol setup is used the first time.

17

2. HydRand: Efficient Continuous Distributed Randomness

precompute any future output once a correct node is selected as leader. Moreover, correct
participants converge on a single history after a correct node is selected as leader, because
correct leaders are required to build on top of a single dataset and never sign different
datasets in the same round. The correct node acts as a barrier for unpredictability and
anchor for agreement on the protocol state. Unpredictability is thereby ensured with
certainty for any round after f + 1 rounds in the future. Public-verifiability is established
by leveraging the properties of the underlying PVSS scheme.

2.3.1 Publicly-Verifiable Secret Sharing
We rely on PVSS as a primary building block in the HydRand protocol. More specifically,
we make use of Scrape’s PVSS protocol [38], which is an optimization of Schoenmakers’
PVSS scheme [108], and allows a node (dealer) to efficiently share a secret value s ∈ Zq

among a set of n recipients, such that any subset of at least t recipients is able to
recover/reconstruct the value hs ∈ Gq, where h is one of two independent generators
of the group Gq and the prime q denotes the order of this group. The value of the
reconstruction threshold t is set in a way that does not enable a colluding adversary to
successfully recover a shared secret without requiring the collaboration of at least one
correct node, i.e. t = f + 1. A key property of a publicly-verifiable secret sharing protocol
is that, upon receiving the secret shares, not only the recipients but any third party with
access to the public keys of the participants can verify the correctness of the shares prior
to reconstruction of the secret. We use the term PVSS commitment, denoted by Com(s),
to refer to the result of the share distribution process of Scrape’s PVSS. To form a PVSS
commitment, a dealer provides:

• The encrypted shares for a secret s, i.e. one encrypted share ŝi for each node i,
encrypted with the receiver’s public key.

• The commitments v1, v2, ..., vn to the shares for each node.

• A non-interactive zero-knowledge (NIZK) proof ensuring the correctness of the
encrypted shares

For additional details regarding Scrape we refer the reader to [38].

2.3.2 Design Rationale
A malicious leader can try to construct and send different commitments, and hence
different datasets, to other participants of the protocol or selectively withhold information
to bias the resulting sequence of random beacon values. Hence, some form of (Byzantine)
consensus protocol is necessary for participants to agree either on a single, valid com-
mitment or the fact that the leader was faulty. In this respect, HydRand leverages on
its intended application as a continuous random beacon to amortize the communication
overhead of Byzantine agreement (BA) that is incurred at each round. Specifically,

18

2.3. Overview of the HydRand Protocol

propose ack. vote propose ack. vote propose ack. vote propose ack. vote
round r1 round r2 round r3 round r4

correct node Byzantine node

node selected as leader message broadcast

n1

node knows valid confirmation
certificate for current round

node knows valid recovery
certificate for current round

n2

n3

n4

n5

n6

n7

Figure 2.1: Example execution of four rounds of the HydRand protocol with n = 3f+1 = 7
nodes

HydRand introduces a variant of repeated Byzantine agreement that defers consensus
decisions for up to f +1 rounds, and combines data from multiple consensus instances that
are executed with every consecutive new round of the HydRand protocol. By exempting
a current leader to be re-elected within the next f rounds, enough time is given to reach
agreement if the leader was faulty or not. Thereby, the overall communication (bit)
complexity in regard to PVSS based random beacon schemes with comparable guarantees
is reduced from O(n3) to O(n2).

2.3.3 Example Protocol Execution
Figure 2.1 shows four rounds of an example execution of the HydRand protocol in a
setting of f = 2 Byzantine nodes. The sequence of randomly selected leaders in this
example execution includes a worst case scenario, where f distinct leaders were drawn
from the set of Byzantine nodes (nodes n4 and n5), followed by a correct node and then
again the first Byzantine node (n4).

Round r1: In this execution the first node that gets selected as the leader (i.e., node n4)
belongs to the set of Byzantine nodes. This leader selectively sends a propose message
only to a subset of correct nodes. In our case the nodes n1, n2 and n3. Moreover, the
Byzantine node n5 only sends acknowledge messages to the very same nodes (n1, n2, n3).
After that phase, the Byzantine node n5 sends a recover message to the nodes n6 and n7.

This leads to a situation where the correct nodes n1, n2 and n3 receive 2f +1 acknowledge
messages. Therefore, those nodes (n1, n2 and n3) broadcast confirm messages which
together form a valid confirmation certificate known to every node. Further, the nodes n6
and n7 as well as the adversary are in possession of a valid recovery certificate RC(r1),

19

2. HydRand: Efficient Continuous Distributed Randomness

as nodes n5, n6 and n7 sent out recover messages.

Round r2: The next node (n5) that is selected as leader is also in the set of Byzantine
nodes and does not broadcast any message. Therefore, the secret value of the rounds
leader gets reconstructed at the end of the vote phase and all nodes are only in possession
of a reconstruction certificate RC(r2) for this round.

Round r3: The leader (n3) of this round belongs to the set of correct nodes and has
received f + 1 confirm messages in round r1. Moreover, node n3 is not in possession of a
valid recovery certificate for r1 since he has only received f recover messages, i.e. from
node n6 and n7 but not from node n5. Therefore, the leader broadcasts a new dataset
D3 containing a valid confirmation certificate CC(D1) for round r1, as well as a recovery
certificate RC(r2) for round r2.

After receiving the propose message, all correct nodes, including n6 and n7, are safe to
assume that at least f + 1 correct nodes are in possession of dataset D1. The justification
for this assumption comes from the fact that the propose message contains a confirmation
certificate composed of f + 1 signed messages including the hash H(D1) of D1. This
necessarily includes at least one honest node which, per definition, only sends a confirm
message if it has received 2f + 1 valid acknowledge messages in advance. Therefore, at
least f + 1 correct nodes have to be in possession of dataset D1. As a result, all correct
nodes accept this rounds new dataset D3 containing CC(D1). This holds true, even for
nodes n6 and n7 although they have not received dataset D1.

If node n6 or n7 would have been selected as leader in round r3, then this node would
have constructed a dataset D3 that contains a valid recovery certificate for round r1 and
r2 as well. In that case the nodes n1, n2 and n3 would have discarded their dataset D1.

Round r4: In this round node n4 is again selected as leader. This is valid since f
rounds have passed since this node has been selected as leader. Therefore, at least one
correct node was selected as leader in between – in this case node n3. Since there is no
recovery certificate RC(r3) for round r3 available, all further leaders have to include the
confirmation certificate CC(D3) for round r3 to extend upon the chain of valid datasets.
Otherwise their future datasets would not be valid and rejected by all correct nodes.
Therefore, all nodes including node n4, have to accept the view of node n3 in this case.

In our example, node n4 attempts to stall the protocol by selectively releasing a new
dataset D4 only to the nodes n2, n3. But since those nodes are not able to reach the
required number of 2f + 1 acknowledge messages (together with the Byzantine nodes
n4 and n5), no correct node will send a confirmation message in the last phase of this
round. As a result all correct nodes will send reconstruct messages leading to a total
of 2f + 1 reconstruct messages, which is more than f + 1 and hence enough to form a
reconstruction certificate and to reconstruct the leader’s secret for round r4 given the
decrypted shares of n1, n2 and n3.

Note that, although possible, the PVSS reconstruction of the secret from r1 would not be
necessary here, since in this example the leader of r4 selectively sent out a new dataset

20

2.4. The HydRand Protocol

and therefore revealed the secret to at least one correct node, namely n2 and n3. Per
definition, correct nodes broadcast the revealed secret in their acknowledge messages.
Therefore, all other correct nodes receive the revealed secret in round r4 even if they
have not received the dataset D3 directly.

2.4 The HydRand Protocol
HydRand proceeds in rounds, where each round r ≥ 1 consists of three phases: propose,
acknowledge and vote. Further, each round has a uniquely associated leader #r ∈ P that
is selected through the randomness generated by the protocol. When referring to the
current round’s leader, we may omit the subscript and simply denote the leader by #.

Each round, #r is selected uniformly at random from the set of all nodes that were not
leader during the last f + 1 rounds3. At the end of a round all nodes learn a new random
beacon value Rr. For simplicity, we hereby assume that correct nodes agree on the initial
random beacon value R0 used to select the leader of round 1, as well as the set of initial
commitments of all nodes. R0 becomes public knowledge only after the set of initial
commitments was defined during setup.4

To simplify our notation, we assume that the sender of a broadcast is also a recipient
of that message. Similarly, the dealer in the PVSS protocol also provides a share for
himself. We use
m�i to denote the message m a node i cryptographically signed with
its private key ski. We further assume, that each correct node discards invalidly signed
messages and processes only messages for the current round and phase.

2.4.1 Propose Phase
During this phase the round leader # reveals his previously committed value s� and
provides a new commitment Com(s�

�). For this purpose, it is the leader’s task to propose
a new dataset Dr for the current round r. As a performance optimization, we split a
dataset into two parts: a header and a body. For certain operations, we only require
sending the header of the dataset. The header header(Dr) of dataset Dr contains:

• the hash of the dataset’s body H(body(Dr))

• the current round index r

• the round’s random beacon value Rr

• the revealed secret value s�

3The detailed leader selection mechanism is described in Section 2.4.4.

4In practice this initial random value can, for example, be obtained via Proof-of-Delay [32] or a
Proof-of-Work [12].

21

2. HydRand: Efficient Continuous Distributed Randomness

• the round index 4r of the previous dataset D 4r

• the hash H(D 4r) of the previous dataset D 4r if 4r > 0

• a list of random beacon values {Rk, Rk+1, ...} for all recovered rounds between 4r
and r (if any)

• the Merkle tree root hash Mr over all encrypted shares in the new commitment
Com(s�

�)

We use H(Dr) = H(header(Dr)) to denote the cryptographic hash of the dataset Dr.
The body body(Dr) of dataset Dr contains:

• a confirmation certificate CC(D 4r), which confirms that D 4r was previously accepted
as a valid dataset

• a recovery certificate RC(k) for all rounds k ∈ { 4r + 1, 4r + 2, ..., r − 1}, which
confirms that there exists a recovery for all rounds between 4r and r If 4r = r − 1
then no such intermediate round exists and this value is omitted.

• the commitment Com(s�
�) to a new randomly chosen secret s�

�

The leader selects 4r < r as the most recent regular round, for which the leader is not
aware of any successful recovery. As we prove in Section 2.5.1, such a round always exists
and the leader is in possession of the confirmation certificate CC(D 4r) required for the
dataset’s body.

After the construction of the above dataset, a correct leader # broadcasts a signed
propose message

�
propose,
header(Dr)��, body(Dr)

�
�

to all nodes. Each node i, which
receives such a message from the leader before the end of the propose phase, checks
the validity of the dataset Dr. For this purpose i verifies that Dr is constructed as
previously defined and properly signed. This includes a check that the revealed secret s�

corresponds to the previous commitment Com(s�) of the current leader. Additionally,
the validity of the confirmation and recovery certificates is checked. A confirmation
certificate CC(D 4r) for dataset D 4r is valid iff it consists of f + 1 signed messages of
the form
confirm, 4r , H(D 4r)�i from f + 1 different senders i. Similarly, a recovery
certificate RC(k) for some round k is a collection of f + 1 signed messages of the form

recover, k�i from f + 1 different senders.

2.4.2 Acknowledge Phase
If a node i receives a valid dataset Dr from the round’s leader # during the propose
phase, a signed acknowledge message

�
acknowledge, r, H(Dr)�i,
header(Dr)��

�
i

is
constructed and broadcasted, thereby the node also forwards the revealed secret value
s� as part of the header. Furthermore, each node i collects and validates acknowledge
messages from other nodes.

22

2.4. The HydRand Protocol

2.4.3 Vote Phase
Each node i checks the following conditions:

• During the current propose phase a valid dataset Dr was received.

• During the current acknowledge phase at least 2f + 1 valid acknowledge messages
from different senders have been received.

• All acknowledge messages received refer to the dataset’s hash H(Dr). Valid
acknowledge messages for more than one value of H(Dr) form a cryptographic
proof of leader equivocation.5

If all conditions are met, node i broadcasts a signed confirmation message of the form

confirm, r, H(Dr)�i. Otherwise node i, broadcasts a corresponding recover message�
recover, r�i, s�, Com(s�)[si], ŝi, Mk[ŝi], Rr−1

�
i
. Here, Com(s�)[si] denotes i’s decrypted

share si and its share decryption proof according to Scrape’s PVSS, which cryptographi-
cally proves that si is a valid decryption of ŝi under i’s secret key. Round k denotes the
round in which # has provided the commitment Com(s�) and a Merkle tree root hash Mk.
The Merkle branch Mk[ŝi] proves that the encrypted share ŝi was previously distributed
as part of Com(s�) and therefore also of Dk. The values ŝi and Mk[ŝi] are required to
enable nodes which are not in possession of Com(s�) to verify the share decryption proof
for si. Rr−1 is included for efficient external verification.

Correct nodes always include values for s�, Com(s�)[si], ŝi and Mk[ŝi] if they are in
possession of the required data. Otherwise the unknown value(s) are omitted. This can
happen if an adversary selectively sent the previous dataset Dk to a subset of nodes.
Therefore, upon receiving recovery messages from other nodes, correct nodes accept
messages with omitted values. The protocol guarantees that at least f + 1 correct nodes
have received the dataset with a valid confirmation certificate, and hence are able to
provide the necessary shares required for reconstructing the respective secret. An example
is presented in Section 2.3.3.

At the end of this phase each node i can obtain the round’s random beacon value Rr.
We distinguish between the following two cases: (i) node i already knows the secret value
s�, because it received the dataset Dr or an acknowledge message for Dr, and (ii) node i
has received at least f + 1 valid recover messages which include at least f + 1 decrypted
secret shares for s�. In the latter case the reconstruction procedure of Scrape’s PVSS can
be executed to produce the value hs� . In both cases Rr is then obtained by computing:

Rr ← H(Rr−1 || hs�) (Definition 1)

5In a (PoS) cryptocurrency setting, the protocol could be extended such that this equivocation proof
is used to seize some form of security deposit from the leader.

23

2. HydRand: Efficient Continuous Distributed Randomness

2.4.4 Leader Selection

At the beginning of each round r ≥ 1, a node i determines the round’s leader #r based
on the available local information it gathered so far. For this purpose node i uses the
randomness Rr−1 of the previous round to deterministically select #r from the set Lr of
potential leaders. We denote the canonical representation of Lr as
l0, l1, ..., l|Lr|−1� and
obtain #r as follows:

#r ← l(Rr−1 mod |Lr|) (Definition 2)

Let D 4r denote the most recent valid dataset, for which node i is not in possession of a
corresponding recovery certificate RC(4r). If no such dataset exists we set 4r = 0. Now
we introduce a method to determine the set of recovered nodes rn(·) as a component
needed for the definition of Lr. Intuitively, the set rn(·) contains all nodes, which have
not provided valid datasets for some round where the node was selected as leader. We
define the set of all leaders that were recovered in some round up to a referenced dataset
as follows:

rn(Dx) =
�

∅ if x = 0
{#k | RC(k) ∈ Dx} ∪ rn(D 4x) otherwise

(Definition 3)

Here D 4x denotes the previous dataset referenced by Dx. This function is used to
construct the set of available nodes Pr for round r recursively by excluding all nodes
which have been selected as leader in a round for which a valid reconstruction certificate
exists:

Pr = P \ rn(D 4r) (Definition 4)

Based on this notion, the definition of the set of potential leaders Lr for round r follows:

Lr = Pr \ {#r−f , #r−f+1, ..., #r−1} (Definition 5)

Intuitively, the set Lr only includes nodes that were not selected as leader for at least f
rounds in the past and have not been reconstructed in any previous round, i.e., nodes
that distributed valid datasets for all rounds in which they were selected as leader.

2.5 Analysis of HydRand’s Protocol Properties
In the following, we show that HydRand achieves the desirable properties of a random
beacon protocol as outlined in Section 2.1: liveness, guaranteed output delivery, unpre-
dictability, bias-resistance, and public-verifiability. We furthermore show that our protocol
also achieves uniform agreement. In our proofs we may refer to the definitions introduced
in Section 2.4.

24

2.5. Analysis of HydRand’s Protocol Properties

2.5.1 Liveness and Guaranteed Output Delivery
To show that HydRand satisfies liveness and guaranteed output delivery, we first introduce
and prove several primary lemmas. We show that (i) correct nodes are always able to
provide a valid dataset if they are selected as leader, (ii) correct nodes can never be
recovered and (iii) the set of potential leaders always contains at least f + 1 correct nodes.
Using these results, we infer that correct nodes can always output the round’s random
beacon value by the end of the round, given that they know the value for the previous
round. Finally, we use an inductive argument to prove liveness and guaranteed output
delivery of our protocol.

Lemma 1. (Possibility of construction of valid datasets) For each round r a correct
leader #r can construct a valid dataset Dr.

Proof. Implicit agreement by all correct nodes on the current round number r follows
from the synchronous system model and fixed duration of phases. A correct leader is in
possession of its own secret s� and thus knows Rr. Furthermore, the leader can always
construct a new PVSS commitment for a new secret Com(s�

�) and is able to provide a
valid value for Mr. Therefore, it only remains to be shown that each correct node is able
to provide the required confirmation certificate CC(·) and recovery certificates RC(·).
During the vote phase of every previous round, correct nodes have either broadcast a
recover or confirm message. As there are at least 2f + 1 correct nodes, each node is
guaranteed to receive at least f + 1 recover messages or at least f + 1 confirm messages
(or both) for each of these rounds. As f + 1 recover messages form a recovery certificate
and f + 1 confirm messages form a confirmation certificate, each node is in possession
of a recovery certificate or a confirmation certificate (or both) for every previous round,
and is hence able to provide the required certificates for Dr.

Lemma 2. (No recovery of correct leaders) If leader #r is correct, there does not exist a
node i, which is in possession of a valid recovery certificate RC(r).

Proof. A correct leader #r sends valid proposal Dr to all nodes during the propose phase.
By Lemma 1, #r can always construct such a dataset. As all correct nodes consider
Dr as valid, at least 2f + 1 nodes broadcast acknowledge messages for Dr during the
acknowledge phase. All 2f + 1 correct nodes therefore receive at least 2f + 1 valid
acknowledge messages for Dr. Since there cannot exist a valid acknowledge for a different
dataset D�

r (a correct leader only provides his signature for Dr) all correct nodes broadcast
confirm messages during the vote phase. As correct nodes only broadcast either confirm
or recover messages, there are at most f recover messages (from Byzantine nodes). A
valid recovery certificate RC(r) however requires at least f + 1 recover messages from
different nodes, and therefore cannot exist.

Lemma 3. (Availability of leaders) For each round r ≥ 1, the set of potential leaders Lr

contains at least f + 1 correct nodes.

25

2. HydRand: Efficient Continuous Distributed Randomness

Proof. We first show that for each round r, the set of available nodes Pr contains at least
2f + 1 correct nodes. By Definition 3 and Definition 4 (see Section 2.4.4), we ensure
that only leaders #k for some round k, in which a recovery certificate RC(k) exists, are
excluded from the set P to form Pr. As we have shown in Lemma 2 there are no recovery
certificates for rounds with correct leaders. Therefore correct nodes cannot be excluded
from P to form Pr, and thus Pr contains at least 2f + 1 correct nodes.

Using the above result and Definition 5, which excludes at most f + 1 nodes from Pr to
form Lr, Lr contains at least f + 1 correct nodes.

Lemma 4. (Liveness) If a correct node knows the random beacon value Rr−1, it can
output the random beacon value Rr by the end of round r (independent of the actions of
the round’s leader #r).

Proof. Following Lemma 3 we guarantee the existence of a leader #r. Since #r ∈ Lr and
Lr ⊂ Pr, we know that #r ∈ Pr. By applying Definition 4 we get #r !∈ rn(D 4r). Hence,
there exists some history of datasets with head D 4r , in which there does not exist a
recovery certificate RC(k) for any round k < 4r in which #r was also leader. Such a
history for any valid dataset Dk can only exist if at least one correct node confirmed that
Dk was correctly distributed and acknowledged by 2f + 1 nodes by providing a confirm
message. Hence, at least f + 1 correct nodes know a common dataset Dk for all rounds k
where #r was previously selected as leader. In addition, all nodes know the shares for #r’s
first commitment as defined in the protocol setup. Thus, at least f + 1 correct nodes can
broadcast the decrypted share in case a recovery of the leader #r in round r is necessary.
Hence all nodes learn the value hs� corresponding to #r’s last commitment Com(s�), and
thus obtain Rr using hs� and Rr−1 via Definition 1.

Theorem 1. (Guaranteed Output Delivery) For each round r all correct nodes output a
new random beacon value Rr.

Proof. We use lemmas 3 and 4 and prove the theorem by induction on the round index
r. For the base case we have an agreed random beacon value R0 as given by the protocol
setup. For the induction step, we assume that Rr−1 is known by all correct nodes.
Lemma 3 ensures that the set of potential leaders Lr contains at least f + 1 correct
nodes. Therefore, Definition 2 can always be applied to a selected leader #r using Lr and
Rr−1. Hence, we can use Lemma 4, to show that by the end of round r each correct node
outputs a value Rr.

2.5.2 Agreement
In the following, we show that all correct nodes agree on a common sequence of random
beacon values. We start by showing that (i) within f + 1 rounds a correct node is selected
as leader and (ii) all correct nodes agree on a common set of potential leaders and use
this two results to prove that uniform agreement is satisfied for the random beacon values
in HydRand.

26

2.5. Analysis of HydRand’s Protocol Properties

Lemma 5. (Selection of correct leaders) In each interval {k, k + 1, k + 2, ..., k + f} of
f + 1 consecutive rounds there is at least one round 4k ∈ {k, k + 1, k + 2, ..., k + f}, such
that the leader # 4k

of that round is correct.

Proof. We assume that there is no correct leader in {#k, #k+1, #k+2, ..., #k+f } and derive a
contradiction. We apply the definition of the set of potential leaders for round k + f :

Lk+f = Pk+f \ {#k, #k+1, ..., #k+f−1}
Notice that {#k, #k+1, ..., #k+f−1} denotes a set of f Byzantine nodes. As there are only
f Byzantine nodes in total, Lk+f cannot contain any Byzantine nodes. However, the
Byzantine node #k+f is assumed to be leader of round k + f and therefore #k+f ∈ Lk+f ,
which completes the contradiction.

Lemma 6. (Agreement on potential leaders) If a node constructs a valid set of potential
leaders Lr in round r, then every correct node constructs the same value for Lr.

Proof. Using Lemma 5, for the interval {r − f − 1, r − f, ..., r − 1}, we know that there is
some round 4r with a correct leader # 4r in this interval. Using Lemma 1, we know that # 4r
is able to construct a valid dataset D 4r in round 4r . As # 4r is correct, it has distributed
this dataset to all nodes during the propose phase of round 4r . All correct nodes therefore
acknowledge D 4r in the acknowledge phase of round 4r . Since there are at least 2f + 1
correct nodes, all correct nodes receive at least 2f + 1 valid acknowledge messages for
D 4r by the end of the acknowledge phase. No node can receive a valid acknowledge for
some different dataset D�

4r , because the correct leader # 4r does not provide a signature
for a different value. Therefore, all correct nodes broadcast confirm messages for D 4r .
As all correct nodes broadcast either one confirm or one recovery message, there are at
most f recover messages (by Byzantine nodes). Therefore, no valid recovery certificate
RC(4r) exists for round 4r . Thus, any valid future dataset needs to (indirectly) reference
the common and unique dataset D 4r . Consequently, we established agreement on D 4r
and its common history provided by the references to the predecessor datasets.

As the set of available nodes P 4r for round 4r is defined using only the agreed set of all
nodes P and D 4r , P 4r is also agreed upon. Since the definition of Lr does not depended
on whether or not leaders are recovered during the rounds {r − f, r − f + 1, ..., r − 1}
and 4r ≥ r − f − 1, agreement on the set Lr follows.

Theorem 2. (Uniform Agreement) If a node outputs a valid random beacon value Rr in
round r, then every node that outputs a valid beacon value in round r outputs the same
Rr.

Proof. We prove the theorem by induction on the round index r. For the base case we
have an agreed common random beacon value R0 as defined by the protocol setup.

For the induction step, we assume that every node that outputs a valid beacon value
in round r − 1 outputs the same Rr−1. We have agreement on Rr−1 by the induction

27

2. HydRand: Efficient Continuous Distributed Randomness

hypothesis and show agreement on the set of potential leaders Lr in Lemma 6. As the
leader selection mechanism given in Definition 2 only depends on those two arguments,
all correct nodes agree on a common unique leader #r. By applying Lemma 4 we obtain
that each correct node learns the leader’s previously committed secret hs� . By either
checking the revealed value of s� against the leaders commitment or verifying the validity
of the share decryption proof according to Scrape’s PVSS description [38], uniqueness of
a valid hs� and consequently of Rr is ensured.

2.5.3 Unpredictability
Intuitively, the prediction of a future random beacon value by the adversary is only
possible if the adversary is selected as leader for that particular round, as well as all
rounds before that point, because each round’s random beacon value depends on a secret
value only known to the round leader. As we prove below, this is impossible for f + 1
consecutive rounds.

However, even before this bound is reached, the possibility of successful prediction
decreases exponentially in the number of rounds to predict. The probability of successful
prediction of ω future random beacon values, where ω < f + 1, can be characterized by
a hypergeometric distribution with population size n, ω draws (the number of values
to predict) and f success states (adversarial nodes) in the population. The prediction
is possible, iff all of the ω draws pick one of the success states. Figure 2.2 shows the
probabilities for different values of n, under the n = 3f + 1 security assumption. For
large values of n, the probability converges to a geometric distribution.

Theorem 3. (Unpredictability) At the beginning of round r, no node can predict the
outcome Rr+f of the random beacon protocol in round r + f .

Proof. By applying Lemma 5 we show that there is at least one correct leader during the
interval of f + 1 consecutive rounds {r, r + 1, r + 2, ..., r + f}. Let k denote any round
during this interval in which the leader #k is correct. As #k follows the protocol, it has
not distributed its secret value s�k

to any node at the beginning of round r. Additionally,
no correct node will provide a decrypted secret share, which could be used in the recovery
process of the secret value. Therefore only f secret shares are available for an adversary
to try and recover the secret in order to compute Rk (and potentially consecutive random
beacon values). However, the protocol defines the reconstruction threshold t used by the
PVSS scheme to be f + 1. Therefore, an adversary cannot obtain the underlying secret
before it is revealed or recovered during round k. Consequently, Rk and all consecutive
random beacon values (including Rr+f) are unpredictable at the start of round r.

2.5.4 Bias-Resistance

Theorem 4. (Bias-Resistance) No node i can, for any round r, influence the value Rr

of the random beacon protocol in a meaningful (i.e. predictable) way.

28

2.5. Analysis of HydRand’s Protocol Properties

0 5 10 15 20 25 30

number of rounds to predict

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

p
ro

b
ab

il
it

y
 o

f
su

cc
es

sf
u
l

p
re

d
ic

ti
o
n

n= 64

n= 128

n= 256

upper bound for any n

Figure 2.2: HydRand’s unpredictability guarantees for different numbers of nodes (n),
assuming a 33% adversary, i.e. f = �n

3 � - 1

Proof. This property follows from unpredictability and the fact that the protocol is
constructed in a way that ensures that any action a (Byzantine) nodes takes in some
round r, can only influence the value of the random beacon at round r + f + 1 or later. In
Theorem 3 we have shown that the random beacon value at round r + f is unpredictable
at the beginning of round r. Therefore, a node cannot influence the random beacon
values for rounds r to r + f , and may only influence values at round r + f + 1 or later
in an unpredictable manner.

2.5.5 Public-Verifiability

Theorem 5. (Public-Verifiability) For each round r, an external verifier can check the
correctness of the random beacon value Rr, at the end of round r.

Proof. The external verifier receives from any correct node (i.e. after querying at most
f + 1 nodes) its history up to and including round r. The verifier can, by following
the protocol rules, only obtain a random beacon value Rr iff the provided data is
correct. Additionally, an external verifier can obtain and verify recovered random beacon
values between the last valid dataset D 4r and the current dataset Dr for all rounds
k ∈ { 4r + 1, 4r + 2, ..., r − 1}.

29

2. HydRand: Efficient Continuous Distributed Randomness

Lemma 7. (Efficient-Verification) For each round r, an external verifier can check
the correctness of the random beacon value Rr in O(n), at the end of round r (without
validation of all previous rounds).

Proof. We distinguish two cases: (i) the leader of round r provided a valid dataset Dr

in time. The confirmation certificate CC(Dr) is hereby available at the end of round r
and can be used to verify the correctness of Dr (and hence the included Rr) by verifying
f + 1 signatures; (ii) the leader of round r was recovered. In this case, an external verifier
requests the necessary information to simulate a node’s execution of the recovery step of
round r, i.e. f + 1 recover messages from round r as well as the header header(Dr�) and
confirmation certificate CC(Dr�) of the failed leader’s previously distributed dataset Dr� .
The simulation of a node’s recovery requires f + 1 validations of decrypted PVSS shares,
combining the shares via Lagrange interpolation, and checking f + 1 signatures to verify
CC(Dr�), and can thus be performed in O(n).

2.6 Evaluation of the HydRand Protocol
To outline the feasibility and practicability of HydRand, we develop a fully functional
protocol prototype in Python, and make our code publicly available on Github [107]. The
evaluation was performed by executing the HydRand protocol on Amazon EC2 t2.micro
instances (1 GiB of RAM, one virtual CPU core, 60-80 Mbit/s network bandwidth). To
simulate an execution over the internet, instances were spread equally over multiple data
centers in eight AWS regions (Canada, London, Ireland, N. California, N. Virginia, Paris,
Singapore and Tokio).

Executions were performed both, with correct nodes only, as well as considering up to f
simulated node failures. The synchronous round duration was derived experimentally and
leaves room for improvement, as both the resource and network capacity of the instances
can be adjusted, and the protocol code may be further optimized. Figure 2.3 presents
the throughput our protocol achieves within the aforementioned setup conditions for
different numbers of nodes (n) where failures can occur.

Figure 2.4 outlines the average bandwidth used per node over the duration of 30 minutes
of protocol execution, with and without simulated failures. It should be noted that the
protocol parametrization, specifically the round duration, is the same only for executions
with the same n, i.e. for faulty and correct executions for a particular n, and corresponds
to that of Figure 2.3. In the presented data it appears executions with simulated failures
grow linearly with the size of n, whereas the average amount of data transferred per node
in failure-free runs appears almost constant for different sizes of n. This is expected,
given that executions with simulated failures induce larger message exchanges between
participants if a leader has to be recovered and therefore consume more bandwidth than
runs without failures.

In regard to verification performance, we measure that an (external) client can publicly
verify the correctness of a round’s random beacon in ≈ 57ms, considering the worst case

30

2.6. Evaluation of the HydRand Protocol

16 32 64 96 128

total number of nodes n

0

5

10

15

20

25

30

35

40
th

ro
u

g
h

p
u

t
(b

ea
co

n
s/

m
in

)
without failures

with f simulated failures

Figure 2.3: Measured throughput for the HydRand protocol, considering different numbers
of nodes (n) with and without simulated failures

in a setting with with 128 nodes. The corresponding proof, which enables non-interactive
verification, is ≈ 26kB in size.

The results of our research prototype evaluation highlight that the presented HydRand
protocol is practicable for realistic deployment scenarios. Data from our performed execu-
tions suggests that the beacon throughput for large n was restricted by the computational
capacity of the AWS instances. An evaluation of the effects of different parameterizations,
including the utilization of more powerful instances, as well as an analysis of resource
consumption under more complex adversarial behavior, is deferred to future work.

31

2. HydRand: Efficient Continuous Distributed Randomness

16 32 64 96 128

total number of nodes n

0

50

100

150

200

250

300
se

n
d
+

re
ce

iv
ed

 d
at

a
 (

K
b
it

/s
)

average send+recv. per node

as above with f simulated failures

Figure 2.4: Measured average per node network bandwidth for the HydRand protocol,
considering different total number of nodes (n), with and without simulated failures

0 20 40 60 80 100

CPU usage in percent, measured every second on all nodes

16

32

64

96

128

n
u

m
b

er
 o

f
n

o
d

es

Figure 2.5: Total CPU utilization (in %), measured once every second on all nodes for
different total number of nodes (n)

2.7 Comparison of Random Beacon Protocols

Recent years have seen a substantial amount of new research related to the generation of
publicly-verifiable (distributed) randomness being published in academia as well as the
industry. Thereof, we distinguish between the following types of protocols:

1. Stand-alone protocols, that are specifically designed to provide randomness. This
includes the approach described within the first Ouroboros Proof-of-Stake protocol
[78], the Scrape protocol [38], the Rand* protocol family [114], as well as our
HydRand protocol.

32

2.7. Comparison of Random Beacon Protocols

2. Protocols designed for the purpose of generating randomness, leveraging resources
of existing systems, namely Caucus [6] and Proof-of-Delay [32, 30].

3. Protocols that produce randomness as a byproduct of their operation, including
Algorand [42], the BA protocol by Cachin et al., Dfinity [72] and Ouroboros Praos
[46].

Additionally, we include Proof-of-Work blockchains, as first described by S. Nakamoto [86],
as a source of public-verifiable randomness [25] in our comparison.

Proof-of-Work and Proof-of-Delay inherently require a substantial amount of computa-
tional resources to ensure security. When directly relying on the block hashes of a PoW
blockchain as a source of randomness, bias-resistance can generally not be ensured. A
miner can, with non-negligible probability, pick/reject random beacon values which suit
him by choosing to withhold a valid PoW solution in favor of some other block(s). Hence,
random beacon values derived by this mechanism may not be guaranteed to be uniformly
distributed.

Proof-of-Delay, as described by Bünz et al. [32], addresses this problem by employing a
delay function on top of the PoW block hash. Here, a cryptographic hash function or
symmetric encryption algorithm is applied iteratively to the block hash to produce the
randomness. The number of iterations Δ is a security parameter of the protocol and must
be selected in a way that ensures that no adversary can finish this inherently sequential
computation within the typical confirmation time of a block. While the adversary can
still withhold its value and influence the protocol’s output, they can only do so blindly
without knowing the effects at the time of the decision, which ensures bias-resistance.
However, full verification of a random beacon value is slow, as it requires the same
sequential recomputing.

Algorand [42], Ouroboros Praos [46] and Caucus [6] are comparable in their approach of
combining the previous public randomness with a (verifiable) source of private randomness,
i.e., in the form of a VRF or hash chain, from an eligible leader to form the next random
value. However, leader uniqueness by itself is not guaranteed and additional consensus
rules are necessary to reach agreement. In this respect Algorand implements a Byzantine
agreement protocol with finality, whereas Ouroboros Praos is a Proof-of-Stake blockchain
protocol with eventual agreement, and Caucus is implemented within a smart contract
that leverages the consensus protocol provided by the underlying Ethereum blockchain.

Cachin et al. [33] and Dfinity [72] both employ unique threshold signatures as a core
primitive in their construction. The BLS signature scheme of Boneh et al. [24, 23], is a
suitable candidate as its signatures are unique and both the signing process as well as
the aggregation process are non-interactive. The main idea is that all nodes (i) provide a
signature share on some common value (e.g. a round number), (ii) verify the received
signatures shares and (iii) combine the valid shares to obtain the next random beacon
value. As long as a threshold of nodes contributes valid signature shares the aggregation
succeeds. Both approaches require the secure distribution of a shared private key as a

33

2. HydRand: Efficient Continuous Distributed Randomness

precondition. While a trusted dealer is assumed in [33], Dfinity uses a distributed key
generation protocol to establish this key.

The approaches described in the initial Ouroboros protocol [78], Scrape [38] and Rand-
Share [114] all rely on PVSS as an underlying primitive. The general idea is that each node
first privately generates a random secret value, and then sends out a publicly-verifiable
commitment and shares of this secret using PVSS to all nodes. After verification and
filtering out invalid commitments, the nodes begin to reveal their respective secrets. If
a node fails to reveal or maliciously withholds its value, the other nodes step in and
collectively recover the secret from the shares they received previously. Finally, all
revealed/reconstructed secrets are combined to form the randomness.

RandHound [114] and RandHerd [114] are also protocols based on PVSS, but operate in
a different manner. RandHound is a one-shot protocol, where a client divides nodes into
multiple smaller groups and combines the randomness generated by these groups to form
a random beacon value, whereas RandHerd is tailored towards continuous operation.
The latter uses RandHound to establish a fair division of nodes, executes a distributed
key generation protocol within these groups, and leverages on collective signing [115] to
produce a sequence of random beacon values.

2.7.1 Comparison Overview
In this section, the results of our comparison of the herein presented and discussed
approaches for generating publicly-verifiable distributed randomness are outlined. We
highlight that a broad comparison was performed by not only considering protocols
specifically targeted at implementing random beacons, but also by including approaches
that can readily provide a random beacon functionality as a byproduct of their intended
application, such as the provision of a distributed public ledger. Consequently, the
underlying models, assumptions, notations, as well as the context differ from protocol to
protocol and render an evaluation of the herein presented approaches a non-trivial task.
We conducted the comparison to the best of our knowledge, contacted the respective
protocol authors to try and clarify ambiguities and explicitly state whenever we were
unable to adequately determine certain properties or had to estimate them.

The main results are presented in Table 2.1 and the various protocol properties are
discussed in greater detail in the following subsections. For the presented complexity
evaluations, n refers to the number of protocol participants, and c denotes the size of
some subset of nodes, if one is assumed in the specific protocol. Notice that the subset
size c is protocol dependent and, although typically constant, a non-negligible factor for
the resulting communication complexity in practice (see Section 2.7.4 for a more detailed
discussion).

2.7.2 Communication Model
We classify the communication model of the analyzed protocols into three categories,
namely synchronous, semi-synchronous and asynchronous protocols. We call a protocol

34

2.7. Comparison of Random Beacon Protocols

Table 2.1: Comparison of approaches for generating publicly-verifiable randomness

C
om

m
un

ic
at

io
n

m
od

el

Li
ve

ne
ss

/
fa

ilu
re

pr
ob

ab
ili

ty
♦

C
om

m
.

co
m

pl
ex

ity
(o

ve
ra

ll
pr

ot
oc

ol
)

U
np

re
di

ct
ab

ili
ty

B
ia

s-
R

es
is

ta
nc

e

C
om

p.
co

m
pl

ex
ity

(p
er

no
de

)

Ve
ri

f.
co

m
pl

ex
ity

(p
er

pa
ss

iv
e

ve
ri

fie
r)

C
ha

ra
ct

er
is

tic
cr

yp
to

gr
ap

hi
c

pr
im

iti
ve

(s
)

Tr
us

te
d

de
al

er
or

D
K

G
re

qu
ir

ed

[42] Algorand semi-syn. 10−12 O(cn)∗ t� � O(c)∗ O(1)∗ VRF no
[33] Cachin et al. asyn. � O(n2) � � O(n) O(1) uniq. thr. sig. yes
[6] Caucus syn. � O(n) t� � O(1) O(1) hash func. no

[72] Dfinity syn. 10−12 O(cn) � � O(c) O(1) BLS sig. yes#

[78] Ouroboros syn. � O(n3) � � O(n3) O(n3) PVSS no
[46] Ourob. Praos semi-syn. � O(n)∗ t� � O(1)∗ O(1)∗ VRF no
[86] Proof-of-Work syn. � O(n) t� � very high§ O(1) hash func. no
[32] Proof-of-Delay syn. � O(n) � � very high§ O(log Δ)◦ hash func. no

[114] RandShare asyn. �† O(n3) � � O(n3) O(n3) PVSS no
[114] RandHound syn. 0.08% O(c2n)‡ � � O(c2n) O(c2n) PVSS no
[114] RandHerd syn. 0.08% O(c2 log n)‡ � � O(c2 log n) O(1) PVSS/CoSi yes#

[38] Scrape syn. � O(n3) � � O(n2) O(n2) PVSS no
HydRand syn. � O(n2) t�� � O(n) O(n) PVSS no

♦ For the failure probability we give the upper
bound for the parameterization of the protocol as
suggested by the respective authors.

∗ The approach for generating randomness is not
described in a stand-alone matter and requires ad-
ditional communication and verification steps for
the underlying consensus protocol or the imple-
mentation of e.g. a bulletin board. The herein
presented values do not account for this additional
complexity.

‡ In contrast to Algorand and Dfinity, the parame-
ter c in RandHound/RandHerd actually depends
on n and is thus not constant. This is a direct
consequence of sharding n nodes into groups of
size c, as the protocols fail to provide availabil-
ity if any single group fails. Keeping c constant
while increasing n leads to a higher number of
groups m, and thus increases the probability of a
liveness failure. To counter this effect requires a
security/performance tradeoff where c also has to
be increased as n grows. In Section 2.7.3 we further
outline that c is a relevant factor in practice, in
particular if one wants to achieve a similar liveness
guarantee as e.g. Algorand or Dfinity.

† The protocol only provides liveness with addi-
tional synchrony assumptions. See Section 2.7.3
for a detailed discussion.

§ The complexity is not dependent on the num-
ber of nodes n, but the involved Proof-of-Work is
inherently computationally demanding. For Proof-
of-Delay the computational complexity depends
on the chosen input for the delay function. For
the typical choice of using the blockhashes of the
underlying Proof-of-Work system as inputs, the
cost of the mining process is inherited.

In Dfinity’s and RandHerd’s approach nodes
are split into smaller groups. Within each of these
groups a distributed key generation protocol is run.

t� The protocols provide probabilistic guarantees
for unpredictability, which quickly (exponentially
in the waiting time) get stronger the longer a client
waits after it commits to use a future protocol
output. For HydRand, we indicate that unpre-
dictability with absolute certainty is reached after
f rounds using the additional �symbol.

◦ We refer to the verification executed within
the Smart Contract via an interactive chal-
lenge/response protocol. It has logarithmic com-
plexity O(Δ) in the security parameter Δ, which
describes how many iterations of the hash function
are applied to the seed.

35

2. HydRand: Efficient Continuous Distributed Randomness

synchronous, if a fixed known upper bound on message propagation delay is assumed. If
no assumption on this delay is imposed by the protocol and messages are only eventually
delivered, we categorize the protocol as asynchronous. If some weaker assumptions in
regard to synchrony are made, we informally use the term semi-synchronous. This applies
for instance to Algorand and Ouroboros Praos, where the underlying assumptions are
outlined in detail, but are not readily comparable to other definitions of partial-synchrony,
such as those first established in the context of distributed consensus [49, 53].

Dfinity [72] is aimed at a semi-synchronous setting, however security proofs are currently
only published for the synchronous case.

We inferred the synchrony assumption from the protocol description or the underlying
protocol whenever they have not been stated explicitly. Currently deployed Proof-of-Work
blockchains such as Bitcoin and Ethereum assume a synchronous communication model.
As Proof-of-Delay [32] and Caucus [6] are built on top of such Proof-of-Work blockchains,
these protocols are also classified as synchronous. In [114], RandShare is described within
an asynchronous setting6. For RandHound and RandHerd synchrony is indicated in
various paragraphs, e.g. III. A. for RandHound and IV. B. 1) for RandHerd [114].

2.7.3 Liveness/Availability
In regard to liveness, we distinguish between three different protocol types:

1. protocols which achieve liveness unconditionally (in the respective system model)

2. protocols which have a (configurable) but non-zero probability of a liveness failure

3. protocols which do not provide liveness (in the respective system model)

We mark protocols of the first type with a � symbol in our comparison table. This
category also includes HydRand, which achieves liveness and guaranteed output delivery
in the respective system model unconditionally. For protocols of the second type, namely
Algorand, Dfinity, RandHound and RandHerd, we give a typical failure probability as
described by the respective authors. The authors of Algorand and Dfinity consider failure
probabilities of at most 10−12 [42] and 2−40 ≈ 10−12 [72] as suitable for the respective
setting, whereas a typical failure probability of 0.08% [114] is stated for the exemplary
configuration in the RandHound and RandHerd protocols.

For all of the above protocols, the failure probability can be adjusted through a security
parameter. For example, to lower the failure probability of RandHound and RandHerd to
a level of 10−12, the group size c can be increased. By applying the formula given in Syta
et al. [114], we observe an increase in group size from c = 32 to c = 125 to achieve this
failure rate against an adversary controlling less than 1/3 of the nodes. Consequently,

6see Section 2.7.3 for detailed discussion on liveness problems in this setting

36

2.7. Comparison of Random Beacon Protocols

performance is decreased, as the communication complexities of both protocols contain c
as a quadratic factor.

The RandShare protocol is described in an asynchronous communication model (under an
n = 3f + 1 adversary assumption). However, a closer analysis of the protocol shows that
further synchrony assumptions are required and therefore RandShare does not guarantee
liveness under full asynchrony. The problem arises in paragraph II. D. 2. 1) [114], where
sj(i) is used to denote the secret share of the secret sj(0), which node j sends privately
to node i.

Initialize a bit-vector Vi = (vi1, ..., vin) to zero, to keep track of valid
secrets sj(0) received. Then wait until a message with share sj(i) from each
j != i has arrived.

In an asynchronous setting a node i cannot wait to receive a message from each other
node j, as Byzantine nodes might never send such a message. Similarly, a node should
not broadcast a negative vote in case no value Âj is received, as described in paragraph
II. D. 2. 3), because this would imply a time bound for being able to send valid votes.7

2.7.4 Communication Complexity
In Table 2.1, we outline the communication complexity of different approaches that provide
randomness either as a stand-alone service or by deriving it from the characteristics of
the underlying protocol. Thereby we consider the overall bits transmitted for all nodes
per round, i.e. per produced random beacon value.

The different approaches exhibit a wide range of communication complexities. In the
simplest scenario, where a Proof-of-Work blockchain forms the basis for the random
beacon, a successful miner only has to perform one broadcast, leading to a complexity
of O(n). This also applies for the Proof-of-Delay approach. Caucus also provides a low
communication complexity of O(n) by leveraging the properties of the underlying Smart
Contract platform.

For the Algorand and Ouroboros Praos protocols, an analysis of the communication
complexity is not provided in the respective publications [42, 46]. We infer that Ouroboros
Praos has a communication complexity in O(n), because the protocol only provides
guarantees for eventual consensus and is based upon many of the design principles of
Proof-of-Work blockchains, whereas protocols like Algorand, which provide consensus
finality, generally operate at a higher per round communication cost. Both protocols
use a similar approach based on private randomness, where a verifiable random function

7Even if this issue is corrected, i.e., by modifying the protocol to only wait for 2f + 1 shares, and
broadcasting negative votes only after receiving 2f + 1 valid messages, the protocol can not guarantee
liveness, as the threshold of 2f + 1 positive votes as described in paragraph II. D. 2. 4) may never be
reached, and consequently the protocol aborts as stated in paragraph II. D. 3. 2).

37

2. HydRand: Efficient Continuous Distributed Randomness

(VRF) is used to compute and verify a local source of randomness. The leader’s local
randomness is then combined with the previous global randomness to obtain the next
global randomness. Used in this way, the communication complexity is only dependent
on the underlying agreement protocol and does not incur any additional overhead.

To optimize the amount of data transmitted, the Algorand and Dfinity protocols perform
certain communication-heavy operations only within a single subset of nodes. RandHound
and RandHerd employ sharding to split nodes into multiple smaller groups, where some
operations are performed independently within all groups, and the results from individual
groups are then combined in a final step. The required sizes for these subgroups typically
depend on the assumptions in regard to the adversarial power and the described failure
probability. Algorand is designed for a very large number of nodes, and the group size
is c ≈ 1000 [69]. Dfinity outlines a group size of c = 405 under a n = 3f + 1 security
assumption and a failure probability of 2−40 ≈ 10−12. As the authors outline, for small
values of n, Dfinity’s random beacon protocol may also be executed by all nodes, i.e.
without selecting a committee as a subset of all nodes. In this case n nodes broadcast a
signature share to all other nodes, leading to a complexity of O(n2).

For RandHound and RandHerd, group sizes of 16, 24, 32 and 40 are considered by the
authors. As we outline in Section 2.7.3, a group size of c ≥ 125 is required to establish a
failure probability similar to Algorand or Dfinity.

The approaches employed by Ouroboros, RandShare and Scrape are similar, where each
node in the protocol employs a PVSS scheme to commit to a secret value. This involves
the distribution of the PVSS shares, i.e. each node has to broadcast a message of size
O(n) to all other nodes. The resulting communication complexity of O(n3) is a major
drawback of these approaches, however in this context (P)VSS can also help to achieve
guaranteed output delivery [97].

HydRand is similar in this respect, as it also uses PVSS as an underlying primitive, but
improves efficiency by a factor of O(n) because only a single node has to perform the
distribution of PVSS shares per round. HydRand’s communication complexity of O(n2)
includes all messages required to establish Byzantine agreement. The communication
complexity is reduced by shifting the transmission of messages of size n to the leader
and employing cryptographically signed conformation/recovery certificates to converge
on a history of datasets. Messages that need to be broadcast by all nodes are always of
constant size. In our evaluation (see Section 2.6), we provide information on the produced
network traffic for different numbers of nodes (n) in practice.

2.7.5 Unpredictability
Unpredictability is a key property related to randomness that is provided by all compared
protocols. We distinguish between the following two types of unpredictability that the
protocols achieve:

1. all future random beacon values are fully unpredictable for all participants, and

38

2.7. Comparison of Random Beacon Protocols

2. the probability of predicting future random beacon values decreases exponentially
with the number of rounds to predict.

Protocols, where each round’s random beacon is dependent on the input of a (Byzantine)
quorum of participants, namely the protocols by Cachin et al., Ouroboros, Dfinity,
RandShare, RandHound, RandHerd and Scrape, fall into the first category. For Proof-
of-Work, Algorand, Caucus, Ouroboros Praos this is not the case and the next random
beacon depends on a single node’s (i.e. the miner’s or the leader’s) secret value. Clearly,
since this node knows the next random number in advance it is able to predict the next
random beacon value. In case adversarial nodes mine a sequence of blocks or are selected
repeatedly as leader, prediction of more than one value is possible if they collude. This
issue is typically addressed by a random selection of the respective leader, rendering
prediction unlikely quickly. As long as the leader selection process ensures that honest
nodes are selected with non-negligible probability, the probability of successful prediction
decreases exponentially with the number of rounds to predict.

Proof-of-Delay can, in principle, achieve full unpredictability or unpredictability with high
probability even though the next random beacon value depends on the output of a single
node, because the leader (e.g. the miner who finds a valid PoW) does not immediately
know the resulting random number that is derived from their output. If the leader tries
to predict a future value, it has to withhold their output until it is able to finish the
sequential computation required for the delay function. Depending on the underlying
synchrony assumptions and consensus protocol, withholding the solution (e.g. block) for
too long will either exclude the leader’s output with certainty or high probability, as the
delay parameter can be set much greater than the time bounds used for consensus.

In the context of unpredictability, HydRand offers both unpredictability with exponentially
increasing probability for at most f rounds, as well as full unpredictability after f + 1
rounds. We provide a detailed analysis in Section 2.5.3, outlining the necessary waiting
times to achieve an error margin of 10−12 for different participant numbers when waiting
less than f + 1 rounds to achieve guaranteed unpredictability.

2.7.6 Bias-Resistance
Bias-resistance is the property that ensures a protocol’s output cannot be manipulated
by a (colluding) adversary, i.e. each random beacon value should be uniformly drawn
from the set of possible values. Following the work in Cascudo at el. [38], we observe
that bias-resistance is closely related to the property of guaranteed output delivery. In
case an adversary can learn a candidate output and subsequently prevent the random
beacon protocol from producing that output, the resulting beacon values are no longer
guaranteed to be uniformly distributed. Even if an adversary is only able to prevent the
output of a random beacon value to be available at some specific time, without having
previously gained knowledge of the candidate value itself, bias resistance may not be
guaranteed. Here, the synchrony requirements of the application(s) toward the delivery
of new random beacon values determine biasability. In either cases, further security

39

2. HydRand: Efficient Continuous Distributed Randomness

assumptions and additional primitives (e.g. PVSS or threshold signatures and n > 2
participants) are necessary if bias-resistance is to be guaranteed.

For all (of the compared) protocols, where the last interacting party can influence the
random beacon value, this strong form of bias-resistance can not be ensured. This does not
necessarily imply that an adversary can arbitrarily manipulate the probability distribution
or, even worse, select a specific output. For example, the respective publications for
Algorand and Ouroboros Praos show techniques to efficiently use this somewhat biasable
form of randomness for the purpose of leader selection.8 However, if the specific application
requires a true uniform distribution of random beacon values, only protocols that provide
the previously outlined strong notion of bias-resistance should be considered, namely the
protocols by Cachin et al., Dfinity, Ouroboros, Proof-of-Delay, RandShare, RandHerd,
Scrape and HydRand.

2.7.7 Computation and Verification Complexity
For our analysis we distinguish between (i) computation complexity, which describes the
amount of operations an active protocol participant has to perform during one round of
the protocol, and (ii) verification complexity, referring to the amount of computation
an external (passive) observer of the protocol has to perform in order to verify the
correctness of one random beacon value.

A main drawback of using Proof-of-Work and Proof-of-Delay as a source of randomness
is the high computational complexity, as both approaches inherently rely on solving
cryptographic puzzles as part of their security model. The other protocols herein
considered have a computational complexity of at most O(n3). The protocols RandShare
and Ouroboros, which require O(n3) due to the involved PVSS instances, may be
optimized by updating the employed PVSS scheme to the variant introduced by Scrape [38].
The VRF based approaches from Algorand, Ouroboros Praos as well as Caucus (after
the initial setup) are very efficient, because they only require the verification of a VRF or
hash preimage. In regard to verification complexity, when applying the optimization of
the PVSS protocol introduced by Scrape, all protocol outputs can be verified reasonably
efficiently, i.e. within O(n2).

For Proof-of-Delay, the drawbacks of a high verification complexity, and consequently the
disadvantages of an interactive verification process for the use within Smart Contracts,
may also be addressed by employing verifiable delay functions (VDF) [18, 118, 94, 19].
While VDFs are not sufficient to provide the functionally of a random beacon on their
own, they enable efficient verification of the involved sequential computation steps and
can be used in combination with a consensus protocol for agreement on the VDF inputs
to form a random beacon. On the contrary, the high computation complexity is inherent
in Proof-of-Delay protocols and cannot be reduced using VDFs.

8Both publications are aware of, and analyze the fact that the distribution of random numbers
produced by their approaches is not uniform and consider the potential implications [42, 46].

40

2.8. Discussion of HydRand and Existing Approaches for Generating Distributed Randomness

The most efficient protocols in regard to computation and verification complexity are
based on threshold signatures, VRFs and Proof-of-Work. We consider these approaches
most suitable for verification within smart contracts or embedded devices, if fast im-
plementations of the required cryptographic primitives are available within the specific
platform.

2.8 Discussion of HydRand and Existing Approaches for
Generating Distributed Randomness

The comparison in Section 2.7 outlines that there exist a variety of different approaches
for implementing random beacon protocols. Improvements in one characteristic or aspect
are often met with negative trade-offs in others, providing no clear candidate that is
suitable for all applications. In the following, we discuss defining characteristics of the
herein considered protocol designs, to aid in the selection process for particular use case
scenarios.

2.8.1 Key Characteristics of Existing Protocol Designs
Both Proof-of-Work [86] and Proof-of-Delay [32] based random beacon approaches are
well suited for larger and dynamic sets of participants and can easily leverage on existing
Proof-of-Work blockchains. While Proof-of-Work alone is not sufficient to establish bias-
resistance, Proof-of-Delay can serve as an augmentation to achieve this guarantee with
high probability. However, both approaches require a very high amount of computational
resources. Proof-of-Delay may also serve as a suitable bootstrapping mechanism for
generating an initial random value to be used in other protocols.

Ouroboros [78], RandShare [114], and Scrape [38] are PVSS based protocols. While the
produced randomness of these approaches satisfies strong notions of unpredictability
and bias-resistance, their high communication overhead significantly impacts scalability.
Consequently, these protocols seem most suitable for a small scale setting (e.g. a
private/consortium blockchain) or as an alternative for a Proof-of-Delay bootstrapping
mechanism without the computational requirements.

Caucus [6] is an approach that can be deployed and efficiently verified within Smart
Contracts but unfortunately cannot ensure bias-resistance.

Algorand [42] targets a large set of nodes while still being able to provide consensus
finality without requiring strong synchrony assumptions. As a trade-off, the protocol can
not ensure a strong notion of bias-resistance. In this regard Ouroboros Praos [46] makes
a similar trade-off to achieve better scalability at the cost of consensus finality and also
weakening bias-resistance.

The randomness produced by the threshold signature based protocols of Cachin et al. [33]
and Dfinity [72] provide strong bias-resistance. Additionally, Cachin et al. is the only
protocol in our comparison that is proven secure in an asynchronous communication

41

2. HydRand: Efficient Continuous Distributed Randomness

model. Dfinity’s approach scales to a larger number of nodes, but security is only proven
in a synchronous system model. The drawback of both protocols is their reliance on
cryptographic primitives that are based on elliptic curve pairings, which are not yet
well-established. E.g. Menezes et al. [84] and subsequently Barbulescu et al. [9] showed
the security level of a commonly used pairing-friendly curve is in fact 2110 or 2100 instead
of the targeted 2128. Also these protocols require a trusted dealer or distributed key
generation protocol.

RandHound [114] and RandHerd [114] employ a sharding approach to achieve good
scalability for a large number of participants. RandHound does not provide a strong
notion of bias-resistance while RandHerd requires additional view-change and agreement
protocols when a leader is Byzantine or non-available.

2.8.2 Advantages and Limitations of HydRand
HydRand is a dedicated random beacon protocol tailored towards continuous operation
and assumes a small to medium set of nodes. The protocol provides strong properties
that are comparable to other PVSS-based approaches, while reducing the communication
overhead by O(n). A resulting trade-off is the need to wait for f +1 rounds for guaranteed
unpredictability, however strong probabilistic unpredictability is ensured within a few
rounds (see Figure 2.2), and bias-resistance is always achieved.

An evaluation (see Section 2.6) of our open-source Python implementation of the HydRand
protocol outlines the practicability for a wide range of participant configurations, while
requiring minimal hardware resources. The protocol design is simple, and its design
goals are achieved without requiring a trusted dealer or DKG in the initial setup,
thereby avoiding the introduction of additional security assumptions and implementation
complexity. Moreover, a detailed analysis and security proofs of the protocol’s properties
and guarantees are provided.

HydRand furthermore ensures guaranteed output delivery: A new random beacon value
is guaranteed to be produced at each round, i.e. in regular intervals, regardless of the
adversary’s actions. This is of particular importance for application scenarios in which
strong synchrony requirements or gapless delivery of new random beacon values is required.
To achieve the design goal of producing random beacon values at regular intervals,
HydRand implicitly requires synchronous round-to-round communication. A resulting
drawback is that any leader which (temporarily) fails to deliver required messages is
excluded from further participation. Consequently, in systems where synchrony guarantees
may have a probability of being temporarily violated, the round duration parameter has
to be carefully selected to avoid any resulting liveness failures. In future work, we envision
an extension of the HydRand protocol to also consider and tolerate crash-recovery failures,
which may be able to address the current limitations in this regard.

Requiring strong synchrony can also prove advantageous for a public randomness beacon,
as an external validator with knowledge of the setup parameters and the protocol start
time cannot be tricked into accepting outdated random beacon values. Further, unlike

42

2.9. Summary of our Findings on the HydRand Protocol

protocols aimed at a dynamic set of participants (e.g. Algorand, Dfinity or Ouroboros
Praos), a static set can also render the validation of random beacon values simpler. For a
static validator set, no additional proofs need to be provided to convince any third party,
which has not observed the entire protocol execution, that the current set of validators
has legitimately evolved from some initial configuration.

Although excellent performance results were obtained when testing our implementation
with up to 128 globally distributed nodes, scalability to a much larger set of participants
is limited due the inherent communication complexity of O(n2). In such a scenario,
approaches where the consensus algorithm is only executed by a subset of the participating
nodes, or Proof-of-Delay based protocols may prove advantageous.

2.9 Summary of our Findings on the HydRand Protocol
In this chapter we present HydRand, a synchronous random beacon protocol that tolerates
up to one third Byzantine failures and show that it provides liveness, public-verifiability,
bias-resistance, and probabilistic as well as hard bounds for unpredictability. HydRand
ensures guaranteed output delivery, namely that randomness is produced at regular
intervals, even under adversarial conditions. The protocol is designed for stand-alone
use, but could also find utility in the context of current and future Proof-of-Stake and
permissioned blockchain or consensus protocols.

Additionally, we provide the first in-depth comparison and discussion of novel approaches
for generating publicly-verifiable randomness, which enables researchers to compare
current as well as future designs objectively with each other. We highlight the different
trade-offs these approaches make and provide a detailed discussion on the protocol
properties, which supports future researchers and application engineers during the
selection process for their specific use case. Thereby, we highlight that HydRand achieves
various desirable properties in a unique way without incurring major drawbacks: (i) it is
a stand-alone protocol that can be readily adapted for different use-cases, (ii) it neither
requires a trusted dealer nor a distributed key generation protocol, and (iii) it offers
strong guarantees for the produced randomness while improving upon the performance
and scalability of previous solutions with comparable guarantees.

Furthermore, we develop and evaluate a fully functional protocol prototype in Python
to demonstrate the feasibility and practicability of HydRand. The source code and
additional information on the implementation details are publicly available on Github
[107].

43

2. HydRand: Efficient Continuous Distributed Randomness

2.A Appendix: HydRand Notation Reference

Table 2.2: HydRand notation reference – symbols

Symbol Description

f number of Byzantine nodes
n number of all nodes, defined as n = 3f + 1
t reconstruction threshold for PVSS, defined as t = f + 1
i a node as defined by context
r, k, x some round as defined by context
leader of the current round r

#x leader of round x

H(·) cryptographic hash function

ski, pki� private/public keypair of node i

m�i some message m signed using the secret key ski of node i

|| string/list concatenation
Rx randomness of round x

Dx dataset of some round x, consists of a header(Dx) and body(Dx)
H(Dx) cryptographic hash of the header(Dx)

4x previous round of round x, such that there exists a valid dataset for round 4x

D 4x previous dataset referenced in dataset Dx

P set of all nodes (processes), P is of size n

Px set of available nodes for some round x, i.e., set of all nodes excluding recovered
nodes till round x

Lx set of potential leaders for some round x, i.e., set of all nodes excluding recovered
nodes till round x and excluding nodes that have been selected as leader within
the last f rounds

rn(Dx) set of recovered nodes up to block Dx

q prime number q

Zq ring of integers modulo q

Gq multiplicative group of order q, in which the discrete log problem hard
h generator for the group Gq

s underlying secret value, a dealer wants to share with PVSS, s ∈ Zq

Com(s) PVSS commitment to the value s, includes commitments to the coefficients of the
underlying polynomial, encrypted shares and a NIZK correctness proof.

hs result of the reconstruction process for a commitment Com(s)
ŝi encrypted share for node i, part of the commitment Com(s)
Com(s)[si] node i’s decrypted share for the commitment Com(s), result of decrypting ŝi using

i’s private key

44

2.A. Appendix: HydRand Notation Reference

Table 2.3: HydRand notation reference – symbols continued

Symbol Description

s� current leader’s previously committed secret value.
s�

� current leader’s new randomly selected secret value.
Com(s�) current leader’s previous commitment
Com(s�

�) current leader’s new commitment
CC(Dx) commit certificate of dataset Dx that contains at least f + 1 valid confirmation

messages.
RC(x) recovery certificate of round x that contains at least f + 1 valid recover messages.
Mx root of a Merkle tree for the shares ŝ1, ŝ2, ..., ŝn for #x’s commitment Com(s�x

) in
round x

Mx[ŝi] merkle branch for ŝi, showing that ŝi is under the Merkle root Mx (and thus part of
Dx)

Table 2.4: HydRand notation reference – message formats

Message Description�
propose,
header(Dr)��, body(Dr)

�
�

The message that is broadcasted by correct
leaders in the propose phase of each round.�
acknowledge, r, H(Dr)�i,
header(Dr)��

�
i

The message that is broadcasted by correct
nodes that received a valid propose messages
from the leader of the current round. Broad-
casting this messages ensures that the leader
cannot equivocate.�

confirm, r, H(Dr)
�

i
The message that is broadcasted by correct
nodes that received 2f + 1 valid acknowl-
edge messages from other nodes during this
round. Any node which received f +1 of these
messages can construct a valid confirmation
certificate for round r.�
recover, r�i, s�, Com(s�)[si], ŝi, Mk[ŝi], Rr−1

�
i

The message that is broadcasted by correct
nodes that did not receive a valid propose
message from the leader at the beginning of
this round. Any node which received f +
1 of these messages can reconstruct a valid
recovery certificate for round r.

(f + 1) ×
confirm, r, H(Dr)�i commitment certificate CC(Dr) for dataset
Dr with hash H(Dr)
(valid if it contains correctly signed messages
from f + 1 different nodes i)

(f + 1) ×
recover, r�i recovery certificate RC(r) for round r
(valid if it contains correctly signed messages
from f + 1 different nodes i)

45

CHAPTER 3
EthDKG: Distributed Key

Generation with Ethereum Smart
Contracts∗

In the previous chapter we described HydRand, a novel protocol for generating distributed
randomness. HydRand’s used cryptographic primitives (i.e., digital signatures, hash
functions, and publicly-verifiable secret sharing) rely upon well established cryptographic
assumptions. The protocol’s setup is simple and does not require interaction between
the participants. Together with the strong guarantees provided, HydRand is suitable for
a wide range of application scenarios. Comparing HydRand with protocols which rely
on threshold signatures as their main cryptographic primitive, we show that HydRand
asymptotically achieves the same communication complexity (see Section 2.7). However,
we also observe that the use of unique threshold signatures for implementing a randomness
beacon, in particular the Boneh-Lynn-Shacham (BLS) signature scheme [24], leads to
small message sizes which, together with the used aggregation techniques, reduce the
communication overhead in practice. This advantage comes with the drawback of
additional cryptographic assumptions (pairing based cryptography) and the question on
how to securely generate and distribute the key shares required for the threshold signing
operations. Still, the increased communication efficiency and constant computational
costs for verifying a (pre-aggregated) random beacon output can outweigh the drawbacks
in many circumstances. An prominent application example where is fact becomes
particularly clear is the provisioning of distributed randomness for a smart contract

∗This chapter is an extended version of the equally-named research paper initially presented at the
2019 Cryptocurrency’s Implementer Workshop (CIW 2019) hosted at the 23rd International Conference
on Financial Cryptography and Data Security conference (FC 2019). Large text passages from the
original work are used in verbatim form in this work.

47

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

platform such as Ethereum. In this case, computational costs directly relate to monetary
costs and are particularly high in case of network congestion, which mandates the
reduction of the use of computational resources for a cost effective operation. While
one has to study but eventually accept the additional cryptographic assumptions when
opting for a threshold signature based solution, the remaining question of how to securely
generate the key shares is addressed by distributed key generation (DKG) protocols –
the main topic covered in this chapter.

Distributed key generation (DKG) is a fundamental building block for a variety of
cryptographic schemes and protocols, such as threshold cryptography, multi-party coin
tossing schemes, public randomness beacons and consensus protocols. More recently, the
surge in interest for blockchain technologies, and in particular the quest for developing
scalable protocol designs, has renewed and strengthened the need for efficient and practical
DKG schemes. Surprisingly, given the broad range of applications and available body of
research, fully functional and readily available DKG protocol implementations still remain
limited. With our work on the EthDKG protocol, we aim to close this gap by tailoring
Gennaro et al.’s [63] well known protocol design towards being efficiently implementable
within public cryptocurrency ecosystems such as Ethereum. Our theoretical improvements
are supported by an open source, fully functional, well documented DKG implementation1

that can employ any Ethereum Virtual Machine (EVM) compatible smart contract
platform as a communication layer. We evaluate the efficiency of our protocol and
demonstrate its practicability through the deployment and successful execution of our
DKG contract in the Ethereum Ropsten testnet. Given the current Ethereum blocks
gas limit, all steps required for the key generation process, even in demanding scenarios
tested with up to 256 nodes, can be verified at the smart contract level.

3.1 Introduction to Distributed Key Generation Protocol
Distributed key generation (DKG) protocols serve as a key building block for threshold
cryptography. The goal of a DKG scheme is to agree on a common secret/public key
pair such that the secret key is shared among a set of n participants. Only a subset of
t + 1 ≤ n parties can use or reveal the generated secret key, while t collaborating parties
cannot learn any information about it. In this regard DKG is related to secret sharing
protocols, as first introduced by Shamir [110] and Blakley [16]. However, in contrast to
secret sharing, DKG protocols do not rely on a (trusted) dealer which generates, knows
and distributes the secret key, and hence avoid this single point of failure. Instead, the
key pair is generated using a multi-party computation in a way that no single party
learns the secret that is being shared.

Distributed key generation has been studied and discussed for over two decades [92, 22,
63, 64, 76, 77, 87]. However, the extensive body of literature is currently not matched

1The source code, documentation, and logs of a successful execution in the Ropsten testnet are
publicly available at https://github.com/PhilippSchindler/EthDKG/.

48

https://github.com/PhilippSchindler/EthDKG/

3.2. Related Work in Distributed Key Generation

by a single clear, succinct, and practical protocol design template that reflects the state
of the art and leverages on recent technical developments such as distributed ledgers.
Moreover, real-world open source implementations of DKG protocols are still rare, and
often not well documented.

We aim to close this gap by providing and evaluating a lightweight, scalable, and
well-documented protocol design and open source implementation of a DKG protocol.
Our design is based on the Joint-Feldman DKG protocol [63] and incorporates the
enhancements proposed by Neji et al. [87] to address biasing attacks [63], without
requiring two distinct secret sharing rounds. Additionally, we describe and implement
a new mechanism that handles disputes during the protocol execution more efficiently.
The resulting protocol design is described in its generality for any discrete logarithm
based cryptosystem, and we demonstrate that our protocol improvements enable the
verification of the key generation process within Ethereum, and similar smart contract
platforms.

Leveraging the capabilities provided by distributed ledger-based smart contract platforms,
our DKG protocol allows the set of participating entities to be dynamically defined and
can incentivize participation as well as penalize adversarial behavior. Further, we are
able to ensure that any security deposits provided by participants following the protocol
rules always remain safe, even if the DKG protocol itself is executed by a majority of
adversarial participants. This design approach can help address the issue of Sybil nodes
in settings where open participation for better decentralization [116] in the DKG is
desirable.

3.1.1 Structure of the Remainder of this Chapter
We continue this chapter by introducing and comparing related work to our approach in
Section 3.2. We describe our system model, including assumptions concerning the network
infrastructure, the capabilities of the adversary as well as the security properties expected
from DKG protocols in Section 3.3. Our generalized protocol design for discrete logarithm
based cryptosystems is presented and analyzed in Section 3.4 and Section 3.5. Section 3.6
provides implementation specific details, while Section 3.7 provides our evaluation results.
Finally, we discuss and conclude the chapter in Section 3.8 and Section 3.9. Additionally,
a notation reference for the symbols used in our descriptions of the EthDKG protocol is
provided in Appendix 3.A at the end of this chapter.

3.2 Related Work in Distributed Key Generation
The first protocol for DKG was introduced by Pedersen [92] in 1991, and was subsequently
built upon within a wide range of publications in the field of threshold cryptography. A
popular variant is the so called Joint-Feldman DKG protocol, introduced by Gennaro
et al. [63] as a simplification of Pedersen’s work. The core idea of the Pedersen (and
the Joint-Feldman) protocol is that each party executes Feldman’s [56] verifiable secret

49

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

sharing (VSS) protocol, acting as a dealer in order to share a randomly chosen secret
among all parties. After a verification step, ensuring the participants shared their secrets
correctly, the resulting group private key is defined by the sum of the properly shared
secrets. This private key is unknown to the individual participants, but may be obtained
by a collaborating group of parties. The corresponding public key can be computed using
the commitments published during the sharing phase with Feldman’s VSS protocol and
is the public result of executing the DKG protocol.

However, as described in great detail by the works of Gennaro et al. [63, 64], keys
generated using (a wide range of variants of) the Pedersen protocol, are not guaranteed
to be uniformly distributed over the respective keyspace. An adversary can bias bits of
the resulting key by selectively denouncing the validity of shares of one or more of the
parties it controls. Consequently, the set of parties which properly shared their secrets,
and thus define the resulting key, is influenced as the denounced parties are excluded.
The issue in this case is that honest parties have provided all the information required to
compute the resulting public key before agreement on the set of shares that are used to
create the master key is reached, allowing the adversary to influence the final outcome.2

Gennaro et al. [63] presents mitigation strategies against these kind of attacks. However,
their approach adds complexity as it requires an additional secret sharing step using
Pedersen’s VSS protocol [91]. Canetti et al. [36] extend the solution from Gennaro et al.
to cope with adaptive adversaries, which may corrupt parties based on prior knowledge
gathered during the protocol execution. More recently, Neji et al. [87] describe a different
countermeasure which we adopt in this work, avoiding these drawbacks.

Kate and Goldberg [76] were the first to study DKG in an asynchronous communication
model, whereas synchronous message delivery was previously assumed. In order to
support these weaker assumptions, they require a network of n ≥ 3t + 2f + 1 participants,
out of which t are controlled by the adversary and thus considered Byzantine and f
parties may fail in the crash-stop model. This is in contrast to works in the style of
Gennaro et al. and our protocol, which require synchrony but can tolerate (n ≥ 2t + 1)
Byzantine adversaries. In a subsequent extension of their work [77], Kate et al. provide
an implementation, tested with up to 70 parties distributed over multiple continents.
A crucial distinction between Kate and Goldberg’s work and the approach followed by
Gennaro et al. and this work, is that the former also implement a Byzantine agreement
protocol alongside the DKG, whereas the consensus protocol is not part of the DKG
specification in the latter. We outline the advantages and drawbacks of both design
decisions in our discussion (see Section 3.8).

To the best of our knowledge, the DKG protocol developed by the Orbs Network team [88]
is the only publicly available protocol targeted at a similar deployment scenario, namely,
an implementation of a DKG protocol using the Ethereum platform. However, the
presented prototypical implementation appears to be incomplete and has not been

2We refer to the works of Gennaro et al. [64, 65] for an in-depth discussion of the implications of a
non-uniform distribution.

50

3.3. System Model and Threat Model of the EthDKG Protocol

updated since 5th August, 2018. A peer-reviewed publication outlining the details of the
protocol is also not available at the time of writing. Further, this approach, in comparison
to the works of Gennaro et al., Kate and Goldberg, and our work, fails to guarantee
liveness under adversarial behavior. It requires a protocol restart even if only a single
adversarial participant sends an invalid share – a major drawback we can avoid.

3.3 System Model and Threat Model of the EthDKG
Protocol

Using our protocol, a set of n participants P = {P1, P2, ..., Pn} wish to jointly generate
a master secret/public key pair of the form mpk = gmsk for a discrete logarithm based
threshold cryptosystem. We use g and h to denote two independently3 selected generators
of the group Gq with prime order q and assume that computing discrete logarithms in Gq

is hard and the Computational Diffie-Hellman (CDH) assumption holds for this group.
The master public key mpk is the (public) output of the protocol. The corresponding
(virtual) secret key msk is shared among the participants, and may be obtained by
pooling the shares from t + 1 collaborating parties. Depending on the use case scenario,
it may not be desirable or even necessary to ever obtain msk. For instance, by employing
BLS threshold signatures [24], a signature verifying under the master public key mpk
can be obtained by aggregating signature shares without recovering msk first.

3.3.1 Communication Model

We assume all parties can monitor and broadcast messages on a shared public and
authenticated communication channel. Further, all participants are in agreement on
a common view and ordering of these broadcast messages. We assume synchrony in
the sense that, any message that is broadcast by a participant during some protocol
phase is received by all other parties before the next phase starts. In this regard, our
communication model is closely related to the notion of public bulletin boards [43].

In contrast to Gennaro et al. [63], we do not consider pairwise private communication
links between parties. Instead, we assume that each participant Pi ∈ P generates a
fresh secret/public key pair
ski, pki� of the form pki = gski prior to the protocol start
and knows the public keys of all other participants.4 Note that these keypairs are
independent of the keys used to establish the authenticated communication channel, and
are only used to derive a symmetric encryption key for each sender/receiver pair of nodes.
These symmetric keys are then used once to ensure the secrecy of the key shares being
transmitted in the sharing phase of the protocol.

3I.e., the discrete logarithm dlogg(h) between g and h is unknown.

4Instead of assuming a priori knowledge of the other parties’ keys, an additional registration phase
(see Section 3.6.6) can be used to exchange the public keys.

51

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

Blockchain protocols, which allow inclusion of arbitrary data, and other BFT state
machine replication and distributed ledger protocols present suitable candidates for
such communication channels. In practice, we leverage the Ethereum blockchain as a
public authenticated communication channel and consensus protocol, where agreement
on message ordering is ensured through the common prefix property [62]. Together with
our client software, which enforces appropriate stabilization times to ensure agreement
with high probability, the desired guarantees can be achieved. We refer to Section 3.6.1
for additional details on how the communication channel is instantiated.

3.3.2 Adversarial Model
To ensure secrecy of the generated secret key msk, we assume that an adversary controls
at most t participants, whereas a collaboration of t + 1 participants is required to derive
msk. A node controlled by the adversary may deviate arbitrarily from the specified
protocol. We consider an adaptive adversary, in the sense that it can decide which parties
to corrupt based on prior observations. However, the adversary is not mobile, once a
party is corrupted it is considered compromised for the entire protocol execution. To
guarantee both, secrecy of the generated key as well as liveness, i.e., that the protocol
completes successfully, the adversary must not control more than t < n/2 parties. These
are the optimal bounds one can hope to achieve in this setting [63].

3.3.3 Security Properties
In the following, we reiterate on the security properties we aim for and expect from a
DKG protocol. Hereby, we follow the definitions given by Gennaro et al. [63] and Neji et
al. [87] for correctness and secrecy and refer to the corresponding works for a more formal
definition. The uniformity property highlights a shortcoming identified by Gennaro et
al. [63] that was not covered by the original Joint-Feldman protocol. Because recent DKG
implementations appear to not consider this property, e.g., the Ethereum-based DKG
implementation in [88], we use a distinct category to further emphasize this characteristic.
Robustness ensures that a subset of parties, which want to recover the master secret key,
is able to do so under adversarial influence. The definitions of secrecy, uniformity and
robustness follow the correctness definitions C3 and C1’ from Gennaro et al. We also
add a definition for liveness, which was not explicitly stated in Gennaro et al.’s work.

Secrecy No information about the master secret key msk can be learned by the
adversary except for what is implied by the value of the master public key mpk = hmsk.

Correctness All sets of t + 1 correct key shares define the same unique master secret
key msk and all honest parties agree on the common value of the master public key
mpk = hmsk.

Uniformity The master secret key msk is uniformly distributed in Zq, and hence the
master public key mpk is uniformly distributed in Gq.

52

3.4. The EthDKG Protocol

Robustness There is an efficient procedure that, on input of the public information of
the DKG protocol and n submitted shares, outputs msk, even if up to t invalid shares
have been submitted by malicious or faulty participants.

Liveness As long t + 1 nodes are controlled by correct parties, an adversary cannot
prevent the protocol from completing successfully.

3.4 The EthDKG Protocol
In this section, we present our generalized DKG protocol design for discrete logarithm
based cryptosystems. We start by giving a brief overview of our three consecutive protocol
phases, and then describe each phase in detail in sections 3.4.1, 3.4.2 and 3.4.3. For
implementation specific details we refer to Section 3.6.

Sharing Phase During the first phase, each participant in Pi ∈ P selects a randomly
chosen secret si ∈R Zq and subsequently uses Feldman’s VSS to share this secret among
all parties, such that t + 1 collaborating parties can recover si, in case a malicious party
withholds the required information during the key derivation phase. The verification
procedure of Feldman’s protocol enables the parties to check that received shares are
indeed valid.

Dispute Phase During the dispute phase, each party that received one or more invalid
shares in the previous phase uses a non-interactive proof technique to convince other
parties about the fact that the issuer violated the protocol.

Key Derivation Phase At the beginning of the last phase, a set of qualified parties
Q ⊆ P is formed. A party Pi is part of Q if and only if it (i) broadcasted the required
information during the sharing phase and (ii) no party broadcasted a valid dispute against
Pi during the dispute phase. In other words, the set Q contains all parties which correctly
shared their secret and should thus contribute to form the master key pair
msk, mpk�.
Finally, for all parties Pi ∈ Q the values hsi , related to the randomly chosen secrets si,
are either revealed or recovered and used to derive the master public key mpk. Using
Lagrange interpolation, msk can be computed after pooling the shares from t + 1 parties.
However, depending on the use case scenario, it may not be desirable or necessary to
ever obtain msk.

3.4.1 Sharing Phase
Share Generation At the beginning of the sharing phase, each party Pi ∈ P executes
the first step of the Joint-Feldman DKG protocol [63]. In order to share a randomly
chosen secret si ∈R Zq among all5 registered parties, Pi acts as the dealer in an (n, t)

5For ease of exposition, we assume that Pi also provides one share for itself.

53

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

Feldman VSS protocol [56]. For this purpose it picks a secret polynomial fi : Zq → Zq

with coefficients ci0 = si and ci1, ci2, ..., cit drawn uniformly at random from Zq:

fi(x) = ci0 + ci1x + ci2x2 + ... + citx
t (mod q) (3.1)

Then Pi computes the shares si→j = fi(j) for all Pj ∈ P, and the commitments
Ci0 = gci0 , Ci1 = gci1 , ..., Cit = gcit to the coefficients of fi(·). These commitments are
used in the verification process for the shares and implicitly define Pi’s public polynomial
Fi : Zq → Gq:

Fi(x) = Ci0 · Cx
i1 · Cx2

i2 · ... · Cxt

it (3.2)

Share Transmission Next, each Pi has to securely send its shares si→j to all other
parties Pj ∈ P. Contrary to the original description of the Joint-Feldman DKG, we do
not assume access to private communication channels between parties, but rather realize
the secure sending of the shares using encryption over our public broadcast channel. We
use a symmetric key encryption algorithm Enckij

(·) to ensure secrecy of a sent share from
Pi to Pj . The corresponding encryption key kij can be derived non-interactively by both
parties:

kij = pkj
ski = pki

skj = gskiskj (3.3)

Notice that this approach is inspired by the techniques used in the Diffie Hellman key
exchange protocol [101] and the ElGamal encryption scheme [61].

Finally, Pi broadcasts the encrypted shares si→j = Enckij
(si→j) for all i != j as well

as the commitments Ci0, Ci1, ..., Cit from Feldman’s VSS. Each party Pj monitors the
communication channel for messages broadcasted by other participants. Upon receiving
encrypted shares and commitments from Pi, Pj decrypts its share to obtain si→j =
Deckij

(si→j).

Share Verification Pj employs the verification procedure of Feldman’s VSS to check
the validity of each share si→j . A share is valid if and only if the following share
verification condition holds:

gsi→j = Fi(j) (3.4)

In case si→j is found invalid, further actions are required in the dispute phase. As Pi only
expects to receive a single message from each party, only the first message is processed,
any additional messages from the same sender are ignored. In our smart contract based
implementation (see Section 3.6), the smart contract itself ensures that parties can only
broadcast a single message during the sharing phase.

54

3.4. The EthDKG Protocol

3.4.2 Dispute Phase

In case a party Pj notices that it received an invalid share si→j from Pi in the previous
phase, Pj must broadcast a dispute claim in order to ensure that Pi is excluded from
further steps of the protocol execution. Intuitively, Pi must be excluded because its secret
si may not be recoverable by a collaboration of t + 1 correct parties.

In the original description of the Joint-Feldman DKG protocol, an adversarial Pj can
always issue an (unsupported) claim stating that it received an invalid share from a correct
Pi, requiring Pi to prove adherence to the protocol rules. We flip this notion in the sense
that it is Pj ’s obligation to show that Pi indeed violated the protocol. To accomplish this
we use a non-interactive proof technique described below, and can consequently reduce
the required number of interactions between parties.

Issuing a Dispute Claim The key idea how Pj is able to prove that Pi provided
an invalid share si→j is to publish the key kij used for encryption and decryption of
the share. Using this key, other parties are able to decrypt the previously distributed
share si→j and can, in the same way as Pj did, verify that si→j is indeed invalid. To
ensure that an adversarial Pj cannot just publish an invalid key k�

ij , which would again
lead to a false accusation of Pi, it is required that Pj proves the correctness of kij . We
use a common non-interactive zero-knowledge (NIZK) proof technique for showing the
equality of the two discrete logarithms [41, 35] to show the correctness of kij . The
corresponding proving and verification procedures are denoted by DLEQ(x1, y1, x2, y2, α)
and DLEQ-verify(x1, y1, x2, y2, π).

Procedure 1: DLEQ(x1, y1, x2, y2, α).

To show that dlogx1(y1) = dlogx2(y2) holds without revealing the discrete logarithm α,
a prover proceeds as follows:

1. compute t1 = xw
1 adding t2 = xw

2 for w ∈R Zq

2. compute c = H(x1, y1, x2, y2, t1, t2)

3. compute r = w − αc (mod q)

4. output π =
c, r�

Instantiating the above procedure, Pj can prove the correctness of the decryption key kij

by providing π(kij) = DLEQ(g, pkj , pki, kij , skj) in addition to kij .

Verifying a Dispute Claim Upon receiving a dispute claim
kij , π(kij)� against Pi,
issued by Pj , one can use DLEQ-verify(g, pkj , pki, kij , π(kij)) to check the validity of the
received key kij .

55

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

Procedure 2: DLEQ-verify(x1, y1, x2, y2, π).

To check the correctness of a proof π =
c, r�, showing that dlogx1(y1) = dlogx2(y2)
holds, a verifier proceeds as follows:

1. compute t�
1 = xr

1yc
1 and t�

2 = xr
2yc

2

2. output VALID if c = H(x1, y1, x2, y2, t�
1, t�

2) holds
output INVALID otherwise

If the key is found invalid, the dispute claim is invalid. Otherwise, the verification proce-
dure continues by decrypting the corresponding share si→j = Deckij

(si→j) and checking
its correctness according to the share verification condition specified in Equation 3.4.
The dispute is valid if and only if kij is found valid but the verification condition does
not hold.

The protocol ensures that: (i) In case a correct participant received an invalid share from
another party, the share issuer is considered disqualified by all (correct) parties at the
end of the dispute phase. (ii) An adversary cannot wrongly accuse any correct party
of providing it with an invalid share. (iii) The adversary does not gain any additional
information when a party Pj reveals the values kij and π(kij), because the adversary
can always compute (and therefore publish) kij = pkj

ski using Pi’s secret key, and the
NIZK proof π(kij) does not reveal additional information apart from the correctness of
the statement.

3.4.3 Key Derivation
Deriving the Set of Qualified Nodes The first step in the key derivation phase is
determining the set of qualified parties Q ⊆ P , describing which parties should contribute
to the resulting key pair
msk, mpk�. If we recall the current protocol state at the
beginning of the key derivation phase, we observe that each Pi ∈ P has either:

1. correctly shared its secret si with all other parties.

2. incorrectly shared its secret si.

3. did not share its secret si at all.

We say a secret was correctly shared by Pi, if and only if no valid dispute claim against Pi

was filed during the dispute phase. Parties which incorrectly shared their secrets, or did
not share their secrets at all, are disqualified and excluded from the upcoming protocol
steps. The remaining parties form the set Q. In other words, a node Pi ∈ P is only part
of Q if (i) it published the values Ci0, Ci1, ..., Cit and si→j for all i != j during the sharing
phase and (ii) no node Pj filed a valid dispute against Pi during the dispute phase.

56

3.4. The EthDKG Protocol

Bias when Computing the Keys Directly Using this definition of the set Q, the
resulting group public key mpk could be derived by following the description of the
Joint-Feldman protocol:

mpk =

Pi∈Q
Ci0 =

Pi∈Q

gsi (3.5)

However, as described in great detail by the works of Gennaro et al. [63, 64], the above
approach does not ensure that the resulting key pair is uniformly distributed. An
adversary can bias bits of the resulting key by selectively denouncing one or more of its
nodes, which influences the set Q and thus the resulting key. The critical6 issue here
is, that all information required to compute the resulting public key is known to the
adversary before the set Q is fixed.

Protection against Biasing of the Generated Keys We adopt a recent counter-
measure described by Neji et al. [87] to ensure the resulting key is uniformly distributed.
The key idea to ensure uniformity is to instead compute mpk as follows:

mpk =

Pi∈Q
hsi (3.6)

Here, h is used to denote an additional generator of the group Gq, such that dlogg(h) is
unknown. The required values hsi used to compute mpk are published by the parties
in Q after this set is fixed. Each value Pi shows the correspondence between the values
hsi and Ci0 = gsi using the NIZK proof π(hsi) = DLEQ(g, gsi , h, hsi , si) as introduced
in Section 3.4.2. In case any (adversarial) party Pi ∈ Q does not reveal its value hsi

and a valid proof π(hsi) by the end of the key derivation phase, a set of t + 1 correct
parties is always able to use the recovery procedure of Feldman’s VSS to obtain si and
consequently hsi anyway. Without loss of generally, let R ⊆ Q denote a set of t + 1
correct parties. Then, si is obtained via Lagrange interpolation:

si =
�

Pj∈ R
si→j

Pk∈ R

j �=k

k

k − j
(3.7)

Deriving the Keys Finally, the common master public key mpk can be derived as
specified in Equation 3.6 using the published or recovered values hsi | Pi ∈ Q. Additionally,
each Pj ∈ Q can compute its individual group key pair
gskj , gpkj�:

gskj =
�

Pi∈Q
si→j gpkj = hgskj (3.8)

In order to enable a third party to verify gpkj , Pj provides the values ggskj as well as
a correctness proof DLEQ(g, ggskj , h, gpkj , gskj). The verifier accepts gpkj as valid if

6See [64, 65] for an in-depth discussion on the implications of non-uniform distribution.

57

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

checking of the proof via DLEQ-verify(·) succeeds, and the verification of ggskj using the
previously committed public polynomials is successful:

ggskj =

Pi∈Q
Fi(j) (3.9)

The corresponding master secret key msk is shared among all nodes in Q and can be
obtained as follows:

msk =
�

Pi∈Q
si (3.10)

In case Pi does not reveal its secret si, it can always be computed by t + 1 collaborating
parties, because each Pi ∈ Q has correctly shared si among the parties during the first
protocol phase. Alternatively, a set of t + 1 collaborating parties, denoted by R, can also
derive the master secret key msk via Lagrange interpolation from their group secret keys:

msk =
�

Pj∈ R
gskj

Pk∈ R

j �=k

k

k − j
(3.11)

However, for many threshold cryptographic applications msk might never be computed
at a single location. Considering, e.g. BLS threshold signatures, t + 1 collaborating
parties might produce a signature σ on message m which verifies under the public key
mpk. For this purpose, each of these parties Pj uses its individual group signing key gskj

to issue a partial signature for m, which upon aggregation form σ. There is no need to
compute the master secret key msk in order to issue the signature in this scenario.

3.5 Security Analysis of the EthDKG Protocol
For brevity, we omit a detailed analysis of the guarantees in regard to correctness and
uniformity in this chapter, as the corresponding security proofs provided by Gennaro et
al. [63] and Neji et al. [87] directly apply to our protocol. We hence refer the reader to
the aforementioned publications for further details.

Secrecy In order to show that the original security proof regarding secrecy still applies,
we show that the dispute process we introduce as alternative to the steps described by
Neji et al. [87] does not provide the adversary with any additional information, and hence
preserves secrecy. Specifically, any information a correct node Pi secretly transfers to
another correct node Pj must remain hidden from the adversary to ensure it cannot
reconstruct the master secret key msk from those messages. The only point in time when
information is exchanged secretly, is the share transmission step (see Section 3.4.1). Here
a correct party Pi always encrypts the share si→j it sends to Pj using a symmetric key
encryption algorithm Enckij

(·). Under the Computational Diffie-Hellman assumption,
the shared key kij used for en-/decryption can only be derived using secret information

58

3.6. Implementation of the EthDKG Protocol

ski or skj from node Pi or Pj . However, neither Pi nor Pj reveal this information or kij

itself during the protocol execution if they are both honest.

If we instead consider the case where Pi is honest but Pj is controlled by the adversary,
the adversary also does not gain any additional information. In this case, the only point
in time an honest node Pi would publish additional information, namely kij and the
corresponding correctness proof π(kij) = DLEQ(g, pki, pkj , kij , ski), is during the process
of issuing a dispute claim (Section 3.4.2). However, being the intended communication
partner, the adversary was already able to derive kij = pki

skj (and thus obtain si→j) as
part of the protocol. Hence, no additional information is revealed when Pi publishes kij ,
Furthermore, e.g. as outlined by Camenisch and Stadler [35], the NIZK proof π(kij) does
not reveal any information in addition to correctness of kij , in particular does not reveal
any information about ski.

Robustness Robustness requires an efficient procedure, that recovers the master secret
key msk from a set of at least t + 1 correct shares. However, this set may additionally
contain up to t invalid shares provided by the adversary. We obtain such a procedure,
by first checking the validity of a provided share gski using the verification condition
specified in Equation 3.9. Lagrange interpolation is then used to compute msk from any
set of t + 1 valid shares (see Equation 3.11).

Liveness In our synchronous system model, the protocol always reaches the beginning
of the key derivation phase, as the sharing and dispute phases always end after a
fixed amount of steps (the respective number of blocks per phase). Consequently, the
completion of the key derivation phase (and thus the completion of the protocol), depends
on the nodes’ ability to gather all the information required to compute mpk from the
values hsi provided by all Pi ∈ Q. Each correct node in the set of qualified nodes Q,
publishes this value at the beginning of the phase. However, up to t adversarial nodes,
which completed the sharing and dispute phase successfully, and are thus part of Q,
might not reveal the respective values. In this case, the correct parties obtain all missing
values hsi by recovering si using Lagrange interpolation from their shares for si (see
Section 3.4.3 for additional details). This process requires the collaboration of at least
t+1 correct nodes, and thus completes successfully for configurations where the adversary
controls at most n − t − 1 nodes.

3.6 Implementation of the EthDKG Protocol

To highlight the feasibility and practicality of our approach, we present a prototype
implementation. It consists of two parts: (i) an Ethereum smart contract serving as the
communication and verification platform, and (ii) a client application written in Python
and executed locally by each participant. Both implementations are open source and
publicly available on Github https://github.com/PhilippSchindler/EthDKG/.

59

https://github.com/PhilippSchindler/EthDKG/

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

In the following, we describe the steps required to apply our generalized protocol descrip-
tion for the concrete use case of deriving key pairs to be used with the BLS signature
scheme. Thereby, we outline (i) how our communication model can be realized, (ii) which
techniques are necessary to efficiently implement the required cryptographic primitives,
and (iii) how the protocol execution can be verified at the smart contract level, despite
the limitations of the Ethereum platform. The BLS signature scheme was chosen not
only because Ethereum has built-in support for a pairing friendly elliptic curve which can
be used with BLS, but also due to the wide range of desirable properties this signature
scheme provides for different application scenarios. These properties include short signa-
ture size, non-interactive aggregation capabilities as well as signature uniqueness. For
additional details on BLS signatures, their properties and use cases we refer the reader
to the original descriptions [24, 23, 20].

When using our protocol for BLS signatures, a set of parties first executes our DKG
protocol to compute a master BLS key pair
msk, mpk�. The public key mpk is published
and verified within the smart contract, whereas the (virtual) secret key msk is shared
among the parties. Each party Pi is then capable of using its individual signing key gski

to sign messages with BLS. Any set of t + 1 valid7 signatures on a common message can
be combined to form a threshold signature, which verifies under mpk, for that message.
This aggregation process can be performed without necessitating on-chain transactions
within Ethereum. Furthermore, the cost of verifying the resulting threshold signature
within the smart contract does not depend on the number of participants or signers.

3.6.1 Realizing our Communication Model

Revisiting the assumptions from our protocol description (see Section 3.3.1), we require a
shared agreed-upon authenticated broadcast channel and adherence to certain synchrony
assumptions to separate the different protocol phases. These assumptions are realized as
follows:

Ethereum as a Broadcast Channel In our implementation, each participant of the
DKG protocol actively monitors the Ethereum blockchain. In particular, clients monitor
all transactions to the address of the pre-deployed DKG contract. A message is broadcast
by issuing a transaction that calls a function within the DKG smart contract when
the transaction is mined within a block in the Ethereum network. Upon being called
successfully, the contract triggers Ethereum events, which are processed by the client
implementation.

7The process is robust in the sense that the validity of an individual signature can also be checked
using the issuer’s public key.

60

3.6. Implementation of the EthDKG Protocol

Agreement After detecting the emission of a new event, the client software of each
participant waits for a sufficient number8 of confirming blocks. This ensures that all
nodes agree on a common history of blocks, and consequently on the triggered events
and their order w.h.p, before they react to the events. This requirement is a direct
consequence of the fact that the Ethereum blockchain may fork and thus does not provide
immediate agreement on newly mined blocks.

Message Authentication The requirements in regard to message authenticity are
directly supported by Ethereum. In fact, Ethereum enforces that all transactions are
cryptographically signed by the issuer in order to be processed.

Synchrony Assumptions Our synchrony assumptions can be realized by specifying
the start and end of each protocol phase based on appropriate relative Ethereum block
heights. Liveness, i.e. ensuring the protocol completes successfully even under adversarial
conditions, critically depends on the ability of correct nodes to timely disseminate
information. Consequently, it has to be ensured that any transaction a node issues at
the beginning of a protocol phase is confirmed, and consequently received by all other
correct nodes, by the beginning of the next phase. The required phase durations depend
on a range of factors including: the number of participants, the state of the Ethereum
network, and the amount of transaction fees the participants are willing to pay. Thus
they need to be analyzed on a case by case basis or selected conservatively. We provide
an evaluation in regards to the required durations, considering the network conditions at
the time of writing as well as a general description, in Section 3.7.

3.6.2 Cryptographic Primitives
When leveraging a smart contract-based DKG implementation that is capable of per-
forming the verification steps on-chain, an efficient implementation of the underlying
cryptographic primitives can be crucial for a low cost protocol design. Within the
Ethereum platform, only a limited range of so called pre-compiled contracts for elliptic
curve cryptography are available currently. The supported operations target the groups
G1, G2 and GT of prime order q, defined on the elliptic curve BN254 [15, 3] and include
point/point addition (G1 ×G1 → G1), point/scalar multiplication (G1 ×Zq → G1) and a
verification procedure for the pairing e : G1 × G2 → GT . We rely upon these operations
to efficiently implement the verification procedures for our DKG, targeting the generation
of keys for the BLS signature scheme.

As BLS public keys reside in G2, most of the operations required for our protocol
would use group G2, if we directly apply our general protocol description. However,
as of the current Ethereum release, computations in G2 are not natively supported,

8For an in depth discussion on the required number of confirmations we refer to the works of Gervais
et al. [67] and Sompolinsky and Zohar [112]. We furthermore provide concrete values for this manner in
our evaluation (see Section 3.7.3).

61

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

and implementing the required operations using available Ethereum Virtual Machine
(EVM) opcodes would lead to very high gas consumption and thus render the approach
inefficient.9 Fortunately, the corresponding operations in group G1 and a verification
procedure for the pairing e exist as pre-compiled contracts in Ethereum [100, 31]. This
allows us to efficiently perform operations in G1 and verify the corresponding element in
G2 using the pairing check within the smart contract. In the following sections 3.6.3, 3.6.4
and 3.6.5, we outline the details for incorporating this approach into our protocol design.

3.6.3 Sharing Phase
During the sharing phase, each participant Pi ∈ P proceeds as specified in our general
protocol description (see Section 3.4.1). In particular, Pi shares a secret si ∈R Zq among
all parties in P using Feldman’s VSS protocol. The commitments Ci0, Ci1, ..., Cit are
group elements from G1: Cik = gcik

1 | 0 ≤ k ≤ t, where g1 denotes a generator of G1.
Because there are no primitives for symmetric encryption available within Ethereum,
we realize the encryption and decryption algorithms Enckij

(·) and Deckij
(·) using a one

time pad, where we derive a unique key from kij and j by using a cryptographic hash
function10 H(·):

Enckij
(si→j) = si→j ⊕ H(kij || j)

Deckij
(si→j) = si→j ⊕ H(kij || j)

To ensure that such a simple approach is secure in practice, it is crucial that (i) the pads
used for encryption of messages between honest parties are indeed used only once, and (ii)
the encrypted data is additionally protected against malleability. For two distinct honest
parties Pi and Pj , the value of kij is defined by the values of the randomly generated
private keys ski and skj , and is thus unique. Combining this unique value with the
index of the share receiver j further ensures that the one time pads used to encrypt the
single message from Pi to Pj and the single message from Pj to Pi are encrypted with
different pads. Consequently, criterion (i) is met. Also criterion (ii) is fulfilled, as the
encrypted values are transmitted as part of Ethereum transactions, which are signed
and published on the broadcast channel and thus protected against malleability. To
publish the required information, namely the encrypted shares si→j for all i != j and the
commitments Ci0, Ci1, ..., Cit, the client constructs and broadcasts the corresponding
Ethereum transaction, invoking the pre-deployed smart contract.

The smart contract ensures that only eligible parties, i.e. Pi ∈ P may provide a single,
well-formed message. The set of eligible parties is either specified statically at the time
of creation of the smart contract, or via a dynamic registration process as described in

9A Solidity implementation of a single multiplication of a group element from G2 with a 256 bit
scalar requires approximately 2 000 000 gas [2],

10In our implementation, the value si→j and the output of the used cryptographic hash function are
256 bits each.

62

3.6. Implementation of the EthDKG Protocol

Section 3.6.6. A message is considered well-formed, if it contains exactly n − 1 encrypted
shares, and t + 1 commitments to the coefficients of the secret sharing polynomial. Upon
receiving a well-formed transaction from an eligible party, the smart contract notifies
all other participants about the published information using an Ethereum event. The
contents of the encrypted shares and the validity of the commitments are not verified at
this point in time. Instead, the verification is only performed on demand, i.e. in case a
dispute is submitted in the next protocol phase. In order to verify a potential dispute in
the next phase, the smart contract stores a cryptographic hash of the message content.
As we see in Section 3.6.4, the hash is sufficient to fully verify a potential dispute. It
would also be possible to store the entire message instead of the digest. However, storing
only the hash significantly reduces the amount of on-chain storage required, and thus
lowers transactions fees, in particular for large n.

3.6.4 Dispute Phase

In case a party Pj finds that Pi provided an invalid share for si, Pj follows our general
protocol description to publish a dispute. For this purpose, it constructs a transaction
which, in addition to kij and π(kij), includes the message content sent by Pi in the
previous protocol phase. This enables the smart contract to recompute and compare the
hash of Pi’s message with the stored value. If the hashes do not match, the dispute is found
invalid and the smart contract aborts. Otherwise the smart contract has all information
required to perform a full verification. In particular, it can verify that the encrypted share
si→j present in the dispute transaction is indeed the share Pi previously distributed. The
verification continues as stated in Section 3.4.1. The corresponding computations can
efficiently be performed using the Ethereum pre-compiled contracts [100] for arithmetic
in G1. If the dispute is considered valid, the share issuer is flagged as adversarial and
thus excluded from the set Q in the key derivation phase. Additionally, the smart
contract triggers a corresponding event to notify all parties about the successful dispute.
Optionally the issuer may be economically punished, and a security deposit could be
used to refund the disputer for its transaction fees. Similarly, an adversarial disputer
could be penalized for submitting an invalid dispute. In either case, the contract may
not process a dispute transaction against an already disqualified participant. In fact, in
this scenario, our implementation of the smart contract aborts immediately in order to
save transaction fees.

3.6.5 Key Derivation Phase

Again, we closely follow our protocol specification from Section 3.4.3 to implement the
key derivation phase. Similar to the definition of h, we use h1 ∈ G1 and h2 ∈ G2 to
denote independently selected generators for the groups G1 and G2.

As a first step, each Pi ∈ Q computes the values h1
si and the corresponding NIZK

proof π(h1
si) showing its correctness. The corresponding computations are performed

in group G1. However, as the master public key mpk = h2
msk is an element of G2, Pi

63

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

is also required to map its key share h1
si to G2, i.e. compute hsi

2 . Then, Pi crafts and
publishes a transaction, containing h1

si , π(h1
si) and hsi

2 . As described, a collaboration
of t + 1 parties recovers si (and thus h1

si , π(h1
si) and hsi

2) in case Pi does no publish
the required information by the end of the key derivation phase. This recovery process
can be performed either with or without interaction with the Ethereum platform. We
opted for using Ethereum for this purpose, instead of adding complexity to the design
by implementing an additional off-chain communication channel. After completing the
recovery, any one of the involved parties can issue the corresponding transaction on behalf
of Pi. Either way, it is ensured that h1

si , π(h1
si) and hsi

2 become public and available for
the smart contract for all Pi ∈ Q. The smart contract can verify the provided information
with the DLEQ-verify(·) procedure and use the precompiled pairing contract [31] to check
the validity of h2

si . The value h2
si is considered correct if e(h1

si , h2) = e(h1, h2
si) holds.

Finally, any party can compute and publish the master public key mpk = �
Pi∈Q hsi

2 and
mpk∗ = �

Pi∈Q hsi
1 . The smart contract can recompute mpk∗ and use the pairing e(·) to

verify the correctness of mpk.

3.6.6 Dynamic Participation
The utilization of an open smart contract platform such as Ethereum also enables us to
readily implement dynamic participation strategies. If the choice is made to employ this
protocol feature, the set of participants P which run the DKG protocol is not defined a
priori, but rather obtained in an additional registration phase, executed at the beginning
of the protocol. For this purpose, the creator of the corresponding smart contract specifies
a set of participation rules at the time of contract creation. A participation rule specifies
under which condition a particular Ethereum account is allowed to “join” the set P.
Within the limitations of the Ethereum platform, arbitrary smart contract code can
be used to define participation rules. In the following, we provide basic examples for
participation rules while more elaborate and robust schemes against adversarial behavior
are left to future work.

1. First come, first serve: Only the first N parties to register are allowed to join the
protocol.

2. Security deposit: Only parties, which provide a security deposit of at least X Ether
are allowed to join the protocol.

3. Highest bidding: The N parties, which provided the highest amount of security
deposit are allowed to join the protocol.

For conditions 1 and 2 the participation rules are checked as soon as a registration
transaction is included in an Ethereum block. Only upon success is the issuer of the
transaction added to the set P , tracked within the smart contract. The implementation
of condition 3 is rendered slightly more complex. In this case, the smart contract keeps
track of the set P consisting of up to N participants and their provided security deposits.

64

3.7. Evaluation of the EthDKG Protocol

Upon registration of party PN+1, the registration is accepted if the deposit provided is
bigger than the smallest deposit received so far. If this is the case, the registration is
accepted by adding PN+1 to the set P and removing the participant with the smallest
deposit from P. Otherwise the registration is rejected and P remains unchanged.

3.7 Evaluation of the EthDKG Protocol
The following paragraph provides a brief overview of our evaluation results, while our
detailed findings are provided in the corresponding subsections: Section 3.7.1 (computa-
tional costs for all interaction between the parties and the smart contract), Section 3.7.2
(communication complexity), and Section 3.7.3 (execution time).

Even in demanding scenarios (tested with up to 256 nodes), each step in our imple-
mentation the DKG protocol can be verified at the smart contract level well within
the Ethereum block gas limit. However, the overall costs of running the DKG protocol
depends on various highly fluctuating factors such as the exchange rate of ETH to, e.g.,
USD, or the gas price depending on the current network load. Therefore, it is difficult
to provide accurate execution cost estimates. For example, at the time we initially
performed our evaluation, Ethereum gas prices of 2 GWei11 were recommended, whereas
at the time of writing 50 GWei are common. Combining the increase in gas prices with
the increase in the ETH to USD exchange rate, our approach, while technically feasible, is
currently rendered costly for scenarios with a high number of nodes, whereas our original
estimate of $1.68 per participant in a 256 node scenario, was of little practical concern.
We note that our solution can also be deployed on other EVM compatible ledgers that
currently offer markedly lower transaction fees compared to Ethereum.

3.7.1 Computational Costs
Figure 3.1 provides the measured gas consumption per executed transaction for different
numbers of parties participating in the DKG protocol. We observe that (i) gas costs for
contract deployment (2 551 221), for registration (106 385), and (recovered) key share
submission (222 510) do not depend on the number of participants, (ii) costs for recovery
linearly depend on the number of recovered parties, whereas (iii) the costs for the other
operations increase linearly with increasing numbers of participants. Figure 3.1 reports
the measured costs for (ii) and (iii) in the worst case for different numbers of participants
(n). We use a setup with n = 2t+1 participants, where t parties are executing adversarial
actions, i.e. they either provide invalid shares, handled by issuing dispute transactions, or
they withhold the required values during the key generation phase, leading to a recovery
of the missing information.

The most critical operations in terms of gas consumption are the execution of a dispute
transaction (potentially executed once per adversarial node), and the submission and

111 GWei = 10−9 ETH

65

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

64 128 192 256

Number of Participants (n)

0

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

1,750,000

2,000,000
G

as
 R

eq
u
ir

ed
share distribution

dispute

key share recovery

master key submission

Figure 3.1: Computational costs, measured in gas per transaction, for the different types
of interactions with the EthDKG smart contract

verification of the master public key (once at protocol end). In the most demanding
scenario with n = 256 participants we evaluated, a dispute consumes approximately 1.5
million gas, whereas the master key submission requires around 1.7 million gas. In both
cases, the costs are largely dominated by the internal verification procedures, relying
on elliptic curve multiplications. Compared to the evaluation performed for an earlier
version of this work, the gas costs for these operations have been significantly reduced due
to implementation of the EIP-1108 proposal [37] as part of Ethereum’s Istanbul hardfork.
With these reductions, we tested our implementation with up to 256 participants and
find that our protocol is able to perform all required operations well within the current
Ethereum block gas limit of 15 000 000 gas [55].

In case all participants behave according to the protocol, no transactions for dispute,
and key share recovery are executed. In the worst case, a dispute transaction has to be
executed for each adversarial party in order to prove that the respective party violated
the protocol rules. To avoid that correct parties need to cover the costs for the dispute
transactions, a recommended mitigation strategy is to require security deposits during
registration. The deposit from an adversarial party is then seized when a valid dispute is
submitted, and used to refund the disputing party for the expenses incurred by publishing
the dispute transaction. In case dispute transactions against the same party are issued
concurrently, the fees for all but the first processed transaction are much cheaper, as
the contract aborts prematurely. However, also in this case the additional costs may be
covered by the adversary’s security deposit. A different mitigation strategy is to reduce

66

3.7. Evaluation of the EthDKG Protocol

number of nodes 8 16 32 64 128 192 256

base 0.14 $ 0.15 $ 0.16 $ 0.18 $ 0.23 $ 0.28 $ 0.32 $
dispute 0.03 $ 0.05 $ 0.08 $ 0.14 $ 0.26 $ 0.38 $ 0.50 $
key share recovery 0.01 $ 0.01 $ 0.01 $ 0.01 $ 0.01 $ 0.01 $ 0.01 $
master key verification 0.09 $ 0.10 $ 0.13 $ 0.20 $ 0.32 $ 0.45 $ 0.57 $
deployment 0.84 $ 0.84 $ 0.84 $ 0.84 $ 0.84 $ 0.84 $ 0.84 $

Table 3.1: Estimated transaction fees for EthDKG at the time of initial evaluation
(2020-04-12; gas price: 2 GWei, exchange rate: 165 $ / ETH)

number of nodes 8 16 32 64 128 192 256

base 69 $ 72 $ 77 $ 88 $ 111 $ 133 $ 156 $
dispute 17 $ 24 $ 38 $ 67 $ 124 $ 181 $ 239 $
key share recovery 5 $ 5 $ 5 $ 5 $ 5 $ 5 $ 5 $
master key verification 42 $ 50 $ 65 $ 94 $ 154 $ 214 $ 274 $
deployment 405 $ 405 $ 405 $ 405 $ 405 $ 405 $ 405 $

Table 3.2: Estimated transaction fees for EthDKG at the time of writing
(2021-08-22; gas price: 50 GWei; exchange rate: 3 175 $ / ETH)

the likelihood of concurrent submission of transactions by continuously monitoring for
dispute transactions. In this case, dispute transactions are only issued on demand, i.e.
in case there was no dispute against the specific party submitted yet, at randomized
points in time within the bounds of the dispute phase. For many real world scenarios,
in particular when the DKG is run between known entities, we expect the number of
disputes to be very low if not zero. In this case, a high number of disputes would likely
be addressed at an organization level and not within the protocol itself.

In order to keep costs for the share distribution low, we minimize the amount of data
stored within the smart contract. In particular, we do not store the transaction data,
i.e. n − 1 encrypted shares and t + 1 commitments to the secret sharing polynomial, in
the smart contract. Instead, a cryptographic hash of the above information is stored,
whereas triggering a corresponding Ethereum event renders the full data easily accessible
to all clients. During the verification of a dispute, this cryptographic hash is recomputed
and compared to the stored value to ensure that the disputer’s information is correct.

To further illustrate the costs in practice, tables 3.1 and 3.2 provide a costs overview
for running our protocol on the Ethereum platform by converting the gas consumption
into USD. Hereby we group the estimated base costs (covering the registration, share
distribution and key share submission steps) each joining party has to cover, and list

67

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

transaction
size

number of
invocations

communication
complexity

(smart contract)

communication
complexity
(broadcast)

register O(1) O(n) O(n) O(n2)
sharing O(n) O(n) O(n2) O(n3)
dispute O(n) O(n) O(n2) O(n3)
key share submission O(1) O(n) O(n) O(n2)
key share recovery O(n) O(n) O(n2) O(n3)
recovered key share O(1) O(n) O(n) O(n2)
submission
master key submission O(n) O(1) O(n) O(n2)

Table 3.3: Communication complexity for the different interactions types with the
EthDKG smart contract

the costs for a dispute (per adversarial participant), a key share recovery (per failed
participant after successful key sharing), as well as one-time costs (per DKG execution)
for contract deployment and master key verification separately. Note that the costs are
highly depended on the current gas price and Ethereum to USD exchange rate.

To reduce transaction fees, aside from choosing an alternative EVM compatible ledger
with lower transaction fees, our protocol may also be adapted for layer 2 scaling solutions
such as Plasma [95] and Arbitrum [74]. As a concrete example, the Matic/Polygon
network [82] (an already deployed Plasma variant), reports current gas prices of 1 GWei
at the time of writing [83]. This leads to greatly reduced transaction fees compared to a
native execution on Ethereum.

3.7.2 Communication Complexity

Table 3.3 describes the size, the number of invocations, the total amount of data processed
within the Ethereum blockchain, as well as the total amount of data transferred trough
the network, for all the different transactions executed throughout a protocol execution.
The reported values consider the worst case scenario, where the adversary sends invalid
shares and fails to provide the required information during the key derivation phase.
Overall, the communication complexity of our protocol is O(n3), that is considering the
network traffic generated by broadcasted all transactions. For the smart contract this is
equivalent to a communication complexity of O(n2), as the Ethereum client transparently
handles the network communication. This distinction is crucial, as gas costs costs are
only paid for the smart contract execution and are not dependent on the actual network
traffic.

68

3.7. Evaluation of the EthDKG Protocol

number of participants 64 128 192 256

estimated lower bound 61 min 73 min 91 min 115 min
estimated upper bound 85 min 100 min 123 min 153 min

Table 3.4: EthDKG protocol execution times for different numbers of participants

3.7.3 Execution Time
In the following, we estimate the total (worst case) execution time required to run our
protocol. In practice, this execution time depends on a range of factors, including:

1. the number of confirmation required Δc, before a transaction is considered confirmed:
≈ 12 blocks [28]

2. Ethereum’s (average) time between two subsequent blocks Δb: 13 − 17 seconds
[55, 27]

3. Ethereum’s block gas limit cblock: ≈ 15 000 000 gas [55]

4. the current load on the Ethereum network

5. the gas price participants are willing to pay

6. the number of parties executing the DKG protocol

Since all three protocol phases are executed subsequently, the total time required to
execute the protocol T is the sum of the times required to execute each protocol phase.
We use br, bs, bd and bk to denote the number of blocks required to execute the protocol
phases, registration, sharing, dispute and key derivation respectively. Consequently, we
obtain T as follows:

T = Δb · (br + bs + bd + bk) (3.12)

To compute the number of blocks required for each protocol phase, in particular br, bs

and bd, we consider a consensus stabilization period at the end of each phase (Δc blocks),
a safe upper bound for the number of blocks to wait until a transaction is included in
the Ethereum blockchain (Δi), the capacity required to fit all transactions of the specific
phase (cr, cs, cd), as well as the maximum capacity cmax the DKG protocol should use
on the Ethereum platform during execution (e.g. 10% of the block gas limit).

bx = Δc + Δi +
�

cx

cmax

�
x ∈ {r, s, d} (3.13)

Here, the capacities cr, cs and cd are derived from the required gas for the specific
transaction type, as given in Section 3.7.1 and the number of transactions executed.

69

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

Similarly, the values ck1, ck2 and ck3 used below represent the capacities for the key
share submission, key share recovery, and recovered key share submission transactions,
respectively. As the key derivation phase requires multiple steps, bk is computed by
considering:

• the number of blocks required for the submission of key shares:
Δc + Δi +

�
ck1

cmax

�
• the number of blocks required for a potential key share recovery: ΔcΔi

�
ck2

cmax

�
• the number of blocks required for submission of the recovered key shares: ΔcΔi

�
ck2

cmax

�
• as well as the number of blocks required for publishing the resulting master public

key: ΔcΔi.

In the following, we distinguish between the optimal case (no recovery) and the worst
case (49% of all nodes need to be recovered) to get and lower and upper bound for bk:

bk,min = 2Δc + 2Δi +
�

ck1
cmax

�
(3.14)

bk,max = 4Δc + 4Δi +
�

ck1
cmax

�
+

�
ck2

cmax

�
+

�
ck3

cmax

�
(3.15)

If we consider a worst case scenario with n = 2t + 1 participants, and select conservative
values for the parameters above, i.e., we wait for Δc = 20 confirmations (≈ 4.4 minutes)
before considered a transaction confirmed, assume the latency for transaction inclusion in
a block is Δi = 30 blocks (≈ 6.6 minutes) and target a network load of 10% of Ethereum
capacity (cmax = 15 000 000), and use Ethereum current block interval of Δb = 13 seconds
[55] we obtain Table 3.4, summarizing the estimated execution times for different numbers
of nodes.

3.8 Discussion and Comparison of EthDKG and Existing
Distributed Key Generation Protocols

Model In our DKG protocol, we follow the model described in the theoretical works
of Gennaro et al. [63]. Consequently, we inherit three important characteristics for our
protocol: (i) the synchronous communication model, (ii) the separation of the underlying
consensus platform and the DKG protocol itself, (iii) the optimal threshold t, i.e. secrecy
and liveness for all t < n/2. These are in contrast to the properties of the more recent
works by Kate et al. [76, 77], which consider an asynchronous communication model.
While these works still require a weak synchrony assumption [39] to ensure liveness, the
protocol’s safety guarantees do not depend on timing assumptions of the underlying
message delivery network. To mitigate this risk in a synchronous protocol design, the

70

3.8. Discussion and Comparison of EthDKG and Existing Distributed Key Generation Protocols

corresponding timings, i.e. the number blocks in each protocol phase for our protocol,
have to be selected appropriately.

A drawback of moving to the asynchronous model, is a reduced resilience against Byzantine
adversaries. In the hybrid failure model (n = 3t + 2f + 1), described by Kate et al.,
the protocol can only tolerate less than 1/3 Byzantine parties (t), and less than 1/2
crashed participants (f). Here, our protocol design can prove advantageous as it ensures
the desired security properties, in particular secrecy and liveness, with up to n = 2t + 1
participants.

Secrecy / Liveness Trade-off Our protocol design enables the use of different values
for the parameter t, specifying the threshold for the underlying secret sharing protocol,
depending on the specific application scenario. The choice of t directly incurs a trade-off
between liveness and secrecy. If an adversary controls at most t nodes, secrecy is ensured,
whereas at least t+1 honest nodes are required to guarantee liveness. For example, setting
t = n, ensures that as long as there is at least one honest participant, the master secret
key msk cannot be learned by the adversary. On the contrary, even a single adversarial
node can prevent successful completion of the protocol. In practice the choice of t is
directly related to the application scenario. If we consider, for example, a synchronous
BFT protocol in a setting with n = 2f + 1 participants, t is set to equal f , whereas a
typical requirement in asynchronous or particularly synchronous BFT protocols, i.e. that
more than 2/3 of the parties have to sign a particular state or message, is supported by
setting t = �2/3n� − 1.

Uniform Key Distribution During the key derivation phase, we follow Neji et al. [87]
to implement a protection mechanism, which prevents the adversary from biasing bits of
the generated key pair. While the implemented countermeasure does not require a full
additional secret sharing round, it requires up to two12 additional transactions issued
by all participants. To save these costs and reduce the protocol’s complexity, one might
decide to omit the additional steps required to ensure uniform distribution of the key
pair. Instead, each party Pi publishes a commitment H(Ci0) to the value Ci0 prior to the
sharing phase. The values Ci0, published during the sharing phase, are only accepted if
they match the corresponding commitment. During the key derivation phase, the master
public key mpk is directly computed as described for the Joint-Feldman protocol (see
Equation 3.5). Such a design decision may be useful e.g. in a deployment scenario, where
we expect the DKG protocol to complete without any errors, i.e. in a scenario where we
assume that it is very likely that all participants follow the protocol accordingly. However,
as described in Section 3.7.1, the additional costs required to achieve uniformity do not
add much overhead to the overall protocol execution. Consequently, we recommend to
use our protocol design without this modification for most practical scenarios.

12one transaction for publishing the key share hsi and proof π(hsi), and potentially an additional
message for recovering any missing key shares

71

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

Ethereum as Communication Infrastructure As described in Section 3.3.1, a
key component necessary for the implementation of our DKG protocol is a suitable
communication layer. Using an existing distributed ledger that provides Byzantine fault
tolerance and agreed upon total ordering of exchanged messages. Although our approach
may also be used on top of traditional BFT protocols or other available blockchain
platforms, we decided to use an existing blockchain platform, namely Ethereum, instead
of deploying our own communication infrastructure. If we compare our solution to the
protocol described by Kate et al. we observe a key difference in the design approach:
whereas in our protocol, the core functions of the DKG protocol are separated from the
the underlying consensus mechanism, Kate et al. describe their protocol in a stand-alone
setting, intertwining a custom BFT protocol with the DKG logic. We see advantages
in both approaches, depending on the application scenario. While the technique we
present can benefit from an easier deployment and a simplified protocol design due to
the separation of concerns, the security of Kate et al.’s approach does not depend on an
external consensus mechanism and can hence operate in a stand-alone setting.

On-Chain Verification While on-chain verification is not required for the core func-
tionality of the protocol, it immediately provides a range of benefits: e.g. other ap-
plications on the Ethereum platform can be assured that the master public key was
correctly computed, and can thus safely use this key to verify threshold signatures issued
under the corresponding (shared) secret key. Furthermore, including monetary incentive
mechanisms allows us to define a wide range of interesting dynamic and possibly open
participation models. It is no longer required to define the set of parties P, executing
the protocol, prior to the protocol start. Instead, the smart contract logic can be used to
specify under which conditions a party is allowed to join the protocol. When on-chain
verification is not used, clients can still fully verify the protocol execution. However, the
lack of on-chain verification also comes with the disadvantage, that seizing a security
deposit becomes more difficult and potentially places honest clients at risk. It is no longer
possible to seize the deposit automatically during the submission process of a dispute,
as the smart contract does not perform the corresponding verification steps. A partial
mitigation strategy is that a majority of the participants of the DKG verify a dispute
off-chain and confirm its validity. However, this leads to the issue that an honest party’s
security deposit may be seized if the DKG protocol is run by an adversarial majority.
This is in contrast to the approach with on-chain verification, which always ensures that
the deposit of correct party remains safe.

Implementation and Scalability To the best of our knowledge, there exist no
implementations of a DKG protocol following Gennaro et al.’s design, despite the extensive
theoretical research in this direction. Our protocol can be seen as a first realization of
this theoretical line of research. It is implemented and evaluated using the Ethereum
platform as a communication layer. Consequently, the scalability of our approach is
limited by the computational capacities available and transaction fees required to execute
transactions on Ethereum. Our measurements (see Section 3.7.1) show that even in a

72

3.9. Summary of our Findings on the EthDKG Protocol

demanding scenario with 256 participants, all transactions can be executed well within
Ethereum’s current block gas limit. However, at the time of writing, the recent steep
increase in gas cost in Ethereum due to its rise in popularity and price speculation
has increased transaction the overall recommended network fees, introducing economic
limitations especially for scenarios with a large number of nodes. Nevertheless, we expect
fees to eventually return to lower levels as protocol improvements increase scalability and
furthermore outline that our solution can be deployed on other EVM compatible ledgers
with lower transaction fees.

The protocol design by Kate and Goldberg [76] was implemented and evaluated in
subsequent work [77], performing tests of their implementation with up to 70 nodes
on the PlanetLab platform. While in terms of execution time for small numbers of
nodes, our solution is one order of magnitude slower than the completion times reported
by Kate et al. [77], the parameters we use in our evaluation (see Section 3.7.3) are
selected conservatively, and only use 10% of Ethereum’s block capacity. Kate et al.’s
protocol execution time increases sharply with an increasing number of nodes as the
communication complexity of their protocol is O(n4). Our evaluation shows that the
communication complexity of our protocol is within O(n3), while the amount of data
processed on Ethereum is O(n2). This leads to an approximate doubling in execution
time when increasing the number of participants from 128 to 256.

3.9 Summary of our Findings on the EthDKG Protocol
In this chapter we present EthDKG, a new state of the art protocol for distributed
key generation, that demonstrates how to efficiently implement an improved variant of
Gennaro et al.’s [63] theoretical work. Our enhancements include a new mechanism to
resolve disputes, which arise if certain parties violate the protocol rules, as well as a
range of techniques improving the performance of our implementation in practice. We
outline that our tailored protocol design can readily be executed on existing blockchain
infrastructures. In particular, we show that all verification steps required during the
protocol execution can be performed efficiently within the constrained EVM environment
of the Ethereum platform. By leveraging the Ethereum blockchain, or an alternative
platforms with similar guarantees, we are able to decouple the implementation of the
underlying consensus protocol and the cryptographic components at the core of the DKG
protocol itself. This approach simplifies the protocol design and security analysis, while
at the same time enabling novel features, such as dynamic participation and support
for economic incentives, by utilizing the capabilities of the Ethereum smart contract
platform. As such, our protocol provides a versatile building block for a range of designs
within and beyond the Ethereum ecosystem.

73

3. EthDKG: Distributed Key Generation with Ethereum Smart Contracts

3.A Appendix: EthDKG Notation Reference

Table 3.5: EthDKG notation reference

Symbol Description

n total number of participants
t secret sharing threshold, t + 1 parties may recover the master secret key
P set of all parties P1, P2, ..., Pn

Q set of qualified parties, i.e., those how contribute to form the master key pair
R set of t + 1 parties collaborating in a recovery process

ski, pki� Pi’s keypair

gski, gpki� Pi’s group keypair, i.e., a share of the master key

msk, mpk� master keypair, output of the DKG protocol (typically msk is not computed)
kij shared key for symmetric encryption between parties Pi and Pj

Gq group of prime order q, discrete log is hard to compute in Gq

g, h two generators of the group Gq, dlogg(h) is unknown
G1,G2,GT groups of prime order q, for the use with BLS signatures
g1, g2, h1, h2 generators of the groups G1 and G2 respectively
e(·) bilinear pairing e : G1 × G2 → GT

si = ci0 Pi’s secret value shared with all parties in P
fi(·) Pi’s secret polynomial
cik coefficient of the polynomial fi(·), 0 ≤ k ≤ t

Cik commitment to the coefficient cik, 0 ≤ k ≤ t

si→j Pi’s share of si for Pj

si→j Pi’s encrypted share of si for Pj

H(·) cryptographic hashfunction
Enckij

(·) symmetric key encryption algorithm
Deckij

(·) symmetric key decryption algorithm
π(kij), π(hsi) non-interactive zero-knowledge proof for the correctness of kij or hsi respectively
T estimated protocol execution time in seconds
Δb block interval (average number of seconds between two blocks)
Δc number of confirmations (blocks) before a transaction is considered confirmed
Δi number of blocks to wait until a transaction is included in a block
br, bs, bd, bk number of blocks required for the registration (br), sharing (bs), dispute (bd) or

key derivation phase (bk) respectively
cmax maximum per block capacity (in units of gas) used by the protocol
cr, cs, cd, ck capacity (in units of gas) required to execute all the transactions in the registra-

tion (cr), sharing (cs), dispute (cd) or key derivation phase (ck) respectively

74

CHAPTER 4
RandRunner: Distributed

Randomness from Trapdoor
VDFs with Strong Uniqueness∗

As we have discussed in the prior chapters, generating randomness collectively has been
a long standing problem in distributed computing. It plays a critical role not only in
the design of state-of-the-art Byzantine fault-tolerant (BFT) and blockchain protocols,
but also for a range of applications far beyond this field. With our protocols HydRand
and EthDKG, we provide a standalone protocol to the provisioning of randomness in
a distributed setting, as well as a new practical distributed key generation protocol,
which among its many applications is essential for the setup of threshold signature based
randomness beacons.

In this chapter, we present RandRunner, our second novel random beacon protocol with
a unique set of guarantees. RandRunner shares the advantage of low communication
complexity provided by threshold signatures based randomness beacons compared to
HydRand, but does not introduce the trade-off they require. In particular, RandRunner
operates in the well studied RSA setting and does not require an interactive protocol
during setup. Our design also avoids the necessity of a (BFT) consensus protocol and
its accompanying complexity and communication overhead. This makes RandRunner
an excellent choice for deployment scenarios where low communication complexity, a
high number of nodes, or a highly dynamic set of nodes are key. To achieve these
properties, we introduce a novel extension to verifiable delay functions (VDFs) and
base our protocol design on this newly obtained cryptographic primitive. The extension

∗This chapter is an updated version of the equally-named research paper [103] Network and Distributed
System Security Symposium (NDSS) 2021. Large text passages from the original work are used in verbatim
form in this work.

75

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

ensures the uniqueness of the VDFs outputs against adversaries which are in possession of
a trapdoor for the used VDF. This novel design allows RandRunner to tolerate adversarial
or failed leaders while guaranteeing safety and liveness of the protocol despite possible
periods of asynchrony.

4.1 Revisiting the State-of-the-Art in Distributed
Randomness

Generating cryptographically secure randomness locally is essential for secure communi-
cation. While being a challenging topic in itself, there exists a range of well established
approaches to solve this problem. These range from direct support within modern oper-
ating systems, using a variety of different entropy sources, to dedicated CPU instructions
or external hardware devices. However, as soon as randomness is not required on an
individual basis but rather used collectively, local solutions fail to provide convincing
evidence that some claimed random value was indeed derived randomly. Still, as outlined
by the extensive body of prior works [106, 114, 38, 25], a broad range of applications
relies on collectively used randomness. This includes the design of BFT and blockchain
protocols, cryptographic parameter generation, e-voting, auditable selections, online
gaming and gambling, privacy enhancing technologies, as well as Smart Contracts and
other forms of multi-party computation. To address these scenarios, randomness from
trusted third parties, for example, the NIST random beacon or random.org, may be
used. However, the additional trust assumptions and reliance on a central randomness
provider, which may know the beacon values well in advance before publishing, or could
even manipulate the produced values without being detected, is undesirable. Fortunately,
there exists a range of distributed protocols which can be used instead to avoid trusting
centralized services.

The techniques used by modern protocols for distributed randomness generation have
advanced significantly since coin tossing protocols and the notion of a random beacon,
introduced by Blum [17] and Rabin [96] in 1983. As we compared in Section 2.7, modern
techniques include threshold cryptography, in particular publicly-verifiable secret sharing
(PVSS) [78, 38, 114, 106] and threshold signature schemes [33, 72], as well as verifiable
random functions (VRFs) as seen in Algorand [42] and Ouroboros Praos [78]. Additionally,
methods in which randomness is extracted from existing data sources such as the Bitcoin
blockchain [25, 12, 93] or published financial data [44] have been considered. Methods
based on delay functions (also known as slow-time functions) have been described [80] and
were later realized via the Ethereum Smart Contract platform [32]. Recently, methods
based on delay functions have received increased interest with the rise of verifiable
delay functions (VDFs) [18, 19, 94, 118]. Although the characteristics of VDFs make
them a promising candidate for their use in random beacon protocols, the number of
protocols utilizing VDFs to construct random beacons is rather limited. To the best of
our knowledge, there exists only RANDAO [30] which collects entropy from different
parties to be used as input for a VDF, as proposed by J. Drake and discussed in the

76

4.2. Introduction to RandRunner

online ethresear.ch forum [52]. Apart from this discussion, there has not been any formal
security analysis of the scheme.

4.2 Introduction to RandRunner
With RandRunner we take on the challenge of exploring the use of VDFs of the con-
struction of a modern distributed randomness beacon. Our results are positive. With
our protocol we can successfully demonstrate that VDFs, specifically strongly unique
trapdoor VDFs which we introduce in Section 4.3, can indeed be leveraged to construct
a random beacon protocol with a unique set of security guarantees that also offers
excellent scalability, performance and responsiveness. Our new protocol aims to fulfill
all desirable properties previously considered for randomness beacons. These include
the key properties of unpredictability, bias-resistance, availability/liveness as well as
public-verifiability. In other words, an adversary must neither be able to predict future
random beacons before they become publicly available, nor bias the distribution of the
produced randomness, nor prevent the protocol from making progress. Furthermore,
each produced protocol output must be efficiently verifiable even by third parties. As
an extension to liveness and bias-resistance, we also set out to achieve the property of
guaranteed output delivery [38, 106], ensuring that an adversary cannot even prevent the
protocol from producing an output in any protocol round. In addition, RandRunner’s
construction and protocol description remains both simple to understand, as well as
efficient (in terms of communication and verification complexity). To derive and prove
the correctness of a fresh protocol output, only a single message, around 10 KB in size1,
has to be disseminated throughout the network of nodes running the protocol. The under-
lying message distribution mechanism is decoupled from the core protocol, providing the
flexibility to adapt to a particular deployment scenario. For example, in large networks
gossip protocols with communication complexity of O(n log n) and higher latency may
be used, while reliable broadcast with lower latency and complexity O(n2) may suit
smaller networks. By construction, our protocol ensures predetermined agreement on the
sequence of random numbers produced without the necessity of continuous Byzantine
agreement (BA). This also guarantees bias-resistance and public-verifiability and even
allows for progress/liveness under periods of full asynchrony.

4.2.1 Contribution
Summarizing, the contributions of this chapter are as follows:

• We extend the concept of trapdoor verifiable delay functions (T-VDFs), as initially
defined by Wesolowski [118], by formally defining the strong uniqueness property.

• We show how to instantiate T-VDFs that achieve this property and prove the
security of our construction.

1This is essentially the proof size of the used VDF [94].

77

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

• Using a T-VDF with strong uniqueness as the main building block, we specify a
new randomness beacon protocol called RandRunner and prove that it provides
the desired security properties.

• We simulate the execution of our newly proposed protocol to demonstrate its
practical feasibility under various scenarios and protocol configurations.

• We discuss and compare our solution to other state-of-the-art protocol designs.

4.2.2 Structure of the Remainder of this Chapter
In Section 4.3, we introduce the required background information on the topic of verifiable
delay functions (VDFs), define trapdoor VDFs with the property of strong uniqueness,
and show how to construct this type of VDF in practice. We provide an example and
a first overview of the design of our randomness beacon, using the constructed VDF
as the main cryptographic component, in Section 4.4, describe our system and threat
model in Section 4.5, and give the details of our construction in Section 4.6. Section 4.7
presents our security proofs and simulation results for the protocol. Finally, we compare
our design with existing state-of-the-art protocols in Section 4.8 and summarize our
findings in Section 4.9. In Appendix 4.A at the end of this chapter, we provide additional
evaluation results for a wide range of possible protocol parameterizations and scenarios
to further highlight the feasibility of our approach in practice. A reference for the used
notation is found in Appendix 4.B.

4.3 Trapdoor VDFs with Strong Uniqueness
In this section, we summarize the original concept of verifiable delay functions (VDFs) and
define the exact requirements for a VDF serving as the main cryptographic component
in our random beacon protocol: a trapdoor VDF with the strong uniqueness property2.
We finally show how such a VDF can be constructed using standard cryptographic
assumptions and provide the corresponding security proofs.

4.3.1 Background
VDFs were first introduced by Boneh et al. [18] in 2018, and have since received increased
attention from other researchers (see, e.g., [18, 118, 94, 19, 57, 79, 111, 54, 51, 81]). As
introduced by Boneh et al. [18, 19], a VDF is a function f : X → Y which maps every
input x ∈ X to a unique output y ∈ Y. Computing the VDF is sequential in the sense
that it takes a prescribed amount of time, whether or not it is executed on multiple
processors. Verification, on the other hand, should be as quick as possible. Closely
following Boneh et al.’s definition [18], a VDF is described via a set of three algorithms:

2An interesting observation, noted by one anonymous reviewer, is that verifiable random functions
(VRFs) [85] and these T-VDFs share the strong uniqueness property. The main difference is that (T-)VDFs
are (slowly) publicly computable whereas VRFs are not.

78

4.3. Trapdoor VDFs with Strong Uniqueness

Setup(λ) → pp is a randomized algorithm that takes a security parameter λ as input
and outputs public parameters pp sampled from some parameter space PP.

Eval(pp, x, T) → (y, π) takes public parameters pp ∈ PP, an input x ∈ X and a time
parameter T ∈ N and outputs a y ∈ Y together with a proof π.

Verify(pp, x, T, y, π) → {accept, reject} takes public parameters pp ∈ PP , an input x ∈ X ,
a time parameter T ∈ N, the output y ∈ Y and the corresponding proof π and outputs
accept if y is the correct evaluation of the VDF on input (pp, x, T) and reject otherwise.

Setup may require secret randomness as input. This secret input must not be recoverable
by any party after Setup is completed, as knowledge of the secret randomness (depending
on the construction) can be used to break the uniqueness and/or sequentiality properties
of the VDF. In practice, e.g., in an RSA-based setting, this complicates the setup as
the generation of the parameters requires either the use of a trusted dealer who has to
delete the secret randomness after the process, or a rather complex secure multi-party
computation.3 As we will show, the trapdoor VDFs we use in RandRunner’s protocol
design avoid these disadvantages.

VDFs as introduced above have to satisfy certain properties, namely:

1. �-evaluation time: a runtime constraint for Eval,

2. sequentiality: Eval must not be parallelizable, and

3. uniqueness: Verify must accept a single output per input (except with negligible
probability).

We give the definition of these properties for the specific kind of VDF we require in
the following and refer the reader to the excellent works of Boneh et al. [18, 19] and
Pietrzak [94] for a formal definition of these properties in the general setting.

4.3.2 On Trapdoors and Strong Uniqueness
For our random beacon protocol, we require a special kind of VDF, namely a trapdoor
VDF which ensures strong uniqueness. Regarding the corresponding definitions we give
below, we closely follow Boneh et al.’s work [19] for the traditional setting. Whereas
their work only considered public parameters generated by Setup, our definition covers
all parameters from the parameter space PP. All valid parameters, in particular all
parameters generated by Setup, are part of PP. However, PP is defined in terms of

3In a recent result, Frederiksen et al. [60] provide an implementation for the malicious two-party
setting. Using server grade hardware connected via a 40.0 Gbps network link, they we able to achieve
average runtimes of 35 seconds. However, we are not aware of any practical solutions for the malicious
multi-party setting which would be desirable for the setup of VDFs.

79

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

the specific properties the parameters have to fulfill instead of being implicitly defined
via Setup. This also allows us to reason about VDFs for which the parameters are
generated by an adversary, and it is crucial for the definition of �-evaluation time and
strong uniqueness.
Trapdoor VDFs, as initially described by Wesolowski [118], are a modification and
extension to traditional VDFs such that the Setup algorithm, in addition to the public
parameters pp, outputs a secret key or trapdoor sk to the party invoking the setup
algorithm. This parameter sk is kept secret by the invoker, whereas pp is published.
Furthermore, the algorithm TrapdoorEval(pp, x, T, sk) → (y, π) provides an alternative
way to evaluate the VDF efficiently, i.e., within time O(poly(λ)), for parties which know
the trapdoor sk. Parties without this knowledge, as in the traditional VDF case, can
still compute the output by executing Eval. However, they require (1 + �)T sequential
computational steps to do so.

Definition 1. (�-evaluation time) For all inputs x ∈ X and all public parameters
pp ∈ PP, the algorithm Eval(pp, x, T) runs in time at most (1 + �)T .

Due to the introduction of the trapdoor, and in contrast to traditional VDFs, the
sequentiality property only holds for parties which do not know the trapdoor, a property
we make use of in the construction of our random beacon.

Definition 2. (Sequentiality without trapdoor) A parallel algorithm A, using at most
poly(λ) processors, that runs in time less than T cannot compute the function with-
out the knowledge of a secret trapdoor sk. Specifically, for a random x ∈ X and all
public parameters pp output by Setup(λ), if (y, π) is the output of Eval(pp, T, x), or
TrapdoorEval(pp, x, T, sk), then the probability that A can compute y in less than T steps
is negligible.

Strong uniqueness extends the requirement for uniqueness to a setting in which the
public parameters of the VDF may be generated by an adversary. This setting was not
considered in Wesolowski’s paper [118], and unfortunately, Wesolowski’s VDF also does
not achieve this property. In their case, both uniqueness and sequentiality can be broken
by an adversary knowing the trapdoor. We however envision a range of applications for
trapdoor VDFs where this property is crucial. This includes, e.g., scenarios in which
parties set up their VDF individually, as is the case with our randomness beacon.

Definition 3. (Strong Uniqueness) For each input x ∈ X , and all public parameters
pp ∈ PP, exactly one output y ∈ Y is accepted by Verify, with negligible error probability
(even if the public parameters pp have been adversarially generated). Specifically, let A be
an efficient algorithm that outputs (pp, x, T, y, π) such that Verify(pp, x, T, y, π) = accept.
Then Pr[Eval(pp, x, T) != y] is negligible.

Notice that we follow Boneh et al.’s most recent definition of uniqueness [19], whereas
uniqueness was previously implicitly defined by the properties of correctness and sound-
ness [18].

80

4.3. Trapdoor VDFs with Strong Uniqueness

4.3.3 Design Rationale
Efficient VDF designs, for example the protocols by Wesolowski [118] or Pietrzak [94],
operate in groups of unknown order, such as the well known RSA groups or class groups
of an imaginary quadratic field [26]. While the security of RSA groups has been studied
for decades, the parameter setup for the VDF (i.e., computing the modulus N as the
product of two safe primes) is considered difficult without requiring a trusted dealer.
Class groups of an imaginary quadratic field do not require this trust assumption, but
their security properties are less studied compared to the RSA case. With our protocol
design, however, we show how we can leverage RSA-based VDFs without the trusted
dealer requirements. This allows us to rely on well tested primitives, while avoiding
additional trust assumptions.

The key motivation for the VDF design we use is that the party that sets up the VDF
can always quickly compute it using the trapdoor generated during the setup. If this
party fails to do so when required, any other party can step in and eventually obtain the
same result by evaluating the VDF without the trapdoor. To construct a trapdoor VDF
with strong uniqueness as outlined in Section 4.3.2, we rely on two components:

1. the VDF design by Pietrzak [94] in the RSA setting and

2. the zero-knowledge proof techniques for safe primes by Camenisch and Michaels [34],
ensuring that an adversary cannot cheat during the VDF setup and consequently
cannot break the uniqueness of the scheme.

On a high level, Pietrzak’s VDF is based on the conjecture that for some random input
x ∈ Z∗

N and RSA modulus N = p · q, the computation of y = x2T (mod N) requires T
sequential squarings without knowledge of the factorization of N :

x → x2 → x22 → x23 → ... → x2T (mod N) , (4.1)

an idea originally described in the context of time-lock puzzles by Rivest et al. [102].
The tuple (p, q) can be used as a trapdoor, because the knowledge of the group order
φ(N) = (p − 1)(q − 1) enables one to efficiently compute y:

e = 2t (mod φ(N)), y = xe (mod N) . (4.2)

The construction of a trapdoor VDF from Pietrzak’s VDF follows naturally, as the
trapdoor is simply given by the primes p and q. In fact, the setup we use is actually
simpler than in the non-trapdoor case, in which one has to assume a trusted dealer that
generates N and later deletes p and q, or, alternatively, that N is generated without
anyone knowing the factors using a multi-party computation. In our approach, the
zero-knowledge proof techniques by Camenisch and Michaels [34] are used instead. They
ensure that the assumptions for the original security proof of the uniqueness property
of Pietrzak’s VDF ([94], Theorem 1) are fulfilled, even if N is generated adversarially.
Furthermore, these techniques only rely on common cryptographic assumptions, are quite
efficient [34], and can be made non-interactive using the Fiat-Shamir heuristic [34, 58].

81

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

4.3.4 Construction
In the following, we describe the complete construction of a trapdoor VDF with strong
uniqueness. We closely follow the definitions by Boneh et al. [18, 19] and Pietrzak [94]
to define our VDF, mapping inputs x ∈ X to outputs y ∈ Y, whereby X := QR+

N and
Y := QR+

N . Hereby, we use QR+
N to denote the group of signed quadratic residues modulo

N (see [94], Section 2.2), and λRSA to denote a security parameter, specifying the length
of the RSA modulus in bits, which offers at least λ bits of security4. The symbol π is
used to represent a correctness proof of the evaluation of the VDF. It contains a list
of intermediate values, which can be used to later check the result of the computation
efficiently. Furthermore, let PP := {pp | VerifySetup(λ, pp) = accept} denote the space
of all public parameters. Notice that Eval, TrapdoorEval and Verify are only defined for
parameters pp ∈ PP. In our random beacon protocol, we ensure that we only ever use
VDFs with parameters pp ∈ PP by checking all public parameters once at the start of
the protocol. The complete construction of our trapdoor VDF with strong uniqueness is
as follows:

Setup(λ) → (pp, sk)

1. Sample two random safe primes p = 2p� + 1 and q = 2q� + 1 of size λRSA/2, where
p� and q� are prime and fulfill the following side-conditions required for the used
proof techniques [34, 66]: p, q, p�, q� !≡ 1 (mod 8), p !≡ q (mod 8), p� !≡ q� (mod 8).

2. Run the zero-knowledge protocol for proving that a known N is the product of two
safe primes ([34], Section 5.2) and the protocol “proving the knowledge of a discrete
logarithm that lies in a given range” ([34], Section 2.2) to show that the prime
factors p and q are λRSA/2 bits each. Let πN denote the resulting proof obtained
by running both protocols non-interactively using the Fiat-Shamir heuristic.

3. Return pp := (N, πN) as the public parameters and sk := (p, q) as the secret key
(trapdoor).

VerifySetup(λ, pp) → {accept, reject}
Return accept if the validity of pp can be successfully checked by using the verification
procedures corresponding to the proof techniques used in step 2) of Setup as specified by
Camenisch and Michaels [34]. Return reject otherwise.

Eval(pp, x, T) → (y, π)
Run the evaluation algorithm VDF .Sol(N, (x, T)) → (y, π) as originally defined by
Pietrzak ([94], Section 6) and return its result.

4Typical choices for λRSA are between 2048 and 4096 bits. See e.g., https://www.keylength.com/ for
a comparison of different recommendations.

82

https://www.keylength.com/

4.3. Trapdoor VDFs with Strong Uniqueness

TrapdoorEval(pp, x, T, sk) → (y, π)
Derive the group order φ(N) = (p − 1)(q − 1) from the secret trapdoor sk := (p, q) and
execute the evaluation algorithm VDF .Sol(N, (x, T)) → (y, π) efficiently. As illustrated
in Equation 4.2, the result y = x2T as well as the values required for the proof π can be
computed efficiently by reducing large exponents in the computations modulo φ(N).

Verify(pp, x, T, y, π) → {accept, reject}
Return the result of the verification algorithm VDF .Ver(N, (x, T), (y, π)) as originally
defined by Pietrzak ([94], Section 6).

4.3.5 Security Assumptions
We inherit the security assumptions from (i) Pietrzak’s VDF [94] in the RSA setting as
well as (ii) for the proof techniques from Camenisch et al. [34]. Consequently, we assume:

• Factoring N is hard.

• Computing x2T is sequential in (QR+
N , x), where x is a generator5.

• The existence of groups G =
g� of large known order Q and a generator h, where
computing discrete logarithms is hard and the value of dlogg(h) is unknown.

• Hash functions are modeled as Random Oracles [10].

4.3.6 Security Proof
In this section we show that our construction of a trapdoor VDF with strong uniqueness
achieves the required security properties, i.e., �-evaluation time, sequentiality without
trapdoor, and strong uniqueness. Therefore, the security proof of our trapdoor VDF
construction extends the security proof provided by Pietrzak [94] for the underlying
VDF. As the properties of �-evaluation time and sequentiality (without trapdoor) are
not affected by our extension to the trapdoor setting, we focus on showing that our
construction indeed achieves strong uniqueness. We prove that this property is achieved
by first revisiting Pietrzak’s original security statement for uniqueness, and then show
how our construction ensures all preconditions required to apply the original proof in our
setting.

Theorem 6. As given in [94]. If the input (N, x, T) to the protocol satisfies

1. N = p · q is the product of two safe primes, i.e., p = 2p� + 1, q = 2q� + 1 for primes
p�, q�.

5As Pietrzak ([94], Section 2.2) shows, this assumption is essentially equal to the sequentiality
assumption of the RSA time-lock puzzle [102] in (Z∗

N , ·).

83

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

2.
x� = QR+
N .6

3. 2λ ≤ min{p�, q�}.

Then for any malicious prover P̃ who sends as first message y anything else than the
solution to the RSW time-lock puzzle, i.e., y != x2T [a verifier] V will finally output accept
with probability at most 3log(T)

2λ .

The security proof of the above statement ([94], Section 4) shows that Pietrzak’s VDF
achieves uniqueness. For uniqueness to hold in the original model, only the case in which
the public parameters pp (i.e., N in this setting) are generated by Setup have to be
considered. In this case, N and p�, q� satisfy conditions 1) by construction and 3) for
all reasonable choices of λRSA as λRSA � λ. Condition 2) is met because almost every
x ∈ QR+

N generates QR+
N . A trivial exception is 1, which can easily be checked for, and

some hard to find7 elements of order p� or q�.

For strong uniqueness, however, the uniqueness property needs to hold for all public
parameters pp ∈ PP. Consequently, we need to show that conditions 1), 2) and 3) still
hold, in particular without restricting pp to be generated by Setup.

Lemma 8. For all public parameters pp ∈ PP and random inputs x ∈ QR+
N the protocol

described in Section 4.3.4 ensures that conditions 1), 2) and 3) as required by Theorem 6
are satisfied.

Proof. Recall that PP := {pp | V erifySetup(λ, pp) = accept}. Since VerifySetup only
accepts pp after running the verification technique from Camenisch et al. [34], which
shows that (i) N is the product of two safe primes and (ii) p and q are of size λRSA/2
conditions 1) and 3) are satisfied. Since N = p · q is the product of two safe primes
p = 2p� + 1, q = 2q� + 1, the group QR+

N of size p�q� contains only 1 + (p� − 1) + (q� − 1)
elements which do not generate QR+

N . Consequently, the probability of picking such
a small order element at random, i.e., 1+(p�−1)+(q�−1)

p�q� , is negligible and thus satisfies
condition 2) for random inputs.

Regarding condition 2), we note that for the application within our randomness beacon we
only use random inputs, therefore the probability of randomly generating a problematic
value is negligible in this case. However, for applications in which the adversary can
freely select a particular value x, it can be a problem to ensure that condition 2) indeed
holds in all cases. An efficient procedure to check this property in this setting was stated

6That is, x generates QR+
N , the [signed] quadratic residues modulo N . For our choice of N we have

|QR+
N | = |QRN | = p�q�, so �x� := {x, x2, ..., xp�q� } = QR+

N . [94]

7The probability of finding such elements, without knowing the factors of N , is negligible since there
are only p� − 1 or q� − 1 elements of order p� or q� respectively, whereas QR+

N contains p�q� elements.

84

4.4. Conceptual Design of the RandRunner Protocol

as an open problem in Pietrzak’s work [94]. With the following formula, we provide an
efficient way to verify if x is indeed a generator of QR+

N , thereby describing a method to
check if condition 2) holds for all inputs instead of requiring random inputs:

x� = QR+
N if x ∈ QR+

N ∧ gcd(x2 − 1, N) = 1 . (4.3)

A short proof of the above statement is presented in the following.

Proof. We show the above statement by deriving a contradiction. Assume that x does not
generate the group QR+

N , i.e.,
x� != QR+
N . This means that the order of x in QR+

N is not
equal to p�q�. One easily verifies that we may write x = ap� mod N or x = aq� mod N
for some a. This implies x2 = 1 mod p or x2 = 1 mod q, hence the gcd(x2 − 1, N) in
statement 4.3 cannot be 1.

Note that membership in QR+
N is also efficiently decidable by computing the Jacobi

symbol of x modulo N (see Section 2.1 in [94]).

4.4 Conceptual Design of the RandRunner Protocol
RandRunner is a distributed randomness beacon which relies on trapdoor VDFs with
strong uniqueness, previously introduced in Section 4.3, as the key cryptographic building
block. These VDFs are set up prior to the start of the protocol. In particular, each party
running the protocol is responsible for the initialization of its individual VDF. It keeps
the trapdoor generated during setup secret, while making the verification parameters
and the cryptographic proof of the setup’s correctness publicly available.

Following this initial protocol setup, the main protocol execution can start. The execution
of the protocol proceeds in consecutive rounds. At the end of each round a fresh random
beacon output is produced. In the common case, the protocol is driven one step/round
forward, as a dedicated party – a leader which changes every round – uses its trapdoor
to evaluate its VDF based on the previous random beacon output. The leader initiates a
broadcast of the result together with a short correctness proof which enables all parties to
verify and complete the current round. In case of an attack, a malicious or failed leader,
or network issues, the protocol can still advance, as all parties are able to evaluate the
VDF of the current round without the trapdoor. This is further illustrated in Figure 4.1,
showing a protocol execution with three nodes. In this example, the sequence of leaders
(n1, n2, n3, n1, . . .) is derived in a round-robin fashion. In the rounds r1 and r2, the
respective leaders evaluate the VDFs and send the results to all parties – the protocol
progresses quickly. In the third round r3, the leader n3 fails to forward the result to
the other parties. Therefore, nodes n1 and n2 are slowed down as they are required to
evaluate this round’s VDF without the trapdoor. In the meantime, node n3 already starts
computing the result of the following rounds, but the other nodes catch up, because in
round r4 and r5 node n3 has to compute the VDFs without the trapdoors.

85

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

Figure 4.1: Schematic execution of the RandRunner protocol with three nodes n1, n2 and
n3, over a period of seven rounds r1, ..., r7

In any case, the strong uniqueness property of the used VDF ensures that the result
obtained via the trapdoor and by evaluation are equal. As the unique output of one
VDF serves as the input of the next VDF, the entire sequence of random beacon values
generated through these chained VDFs is deterministic and predetermined after the
initial protocol setup. By relying solely on the computation of the (chained) unique
VDF outputs, either with or without the trapdoor, as random beacon values, agreement
on the sequence of these values by all participants is trivially achieved. Therefore, our
protocol design avoids the necessity for a Byzantine consensus protocol during execution
to agree on random beacon values and the hereby associated requirements and overheads
such as high communication complexity. Further, as RandRunner’s beacon values are
deterministic, the protocol does not suffer from inconsistencies due to network partitions.
Hence, an adversary may only be able to influence the unpredictability guarantees of the
presented design, for which we show in Section 4.7.4 that it can be sufficiently bounded
within our protocol such that the desirable properties expected from a random beacon
are nevertheless achieved.

4.5 System and Threat Model of the RandRunner
Protocol

The adversary’s goals are to violate the security guarantees expected for a random
beacon protocol. In particular, the adversary might try to bias the produced randomness,
induce a liveness- or consistency failure, or trick a (third) party into accepting an invalid
random beacon. Another attack is to learn/predict future random beacon outputs before
other nodes obtain those values. We consider the following system model in which we
demonstrate the security of our protocol against all of these attacks:

86

4.5. System and Threat Model of the RandRunner Protocol

We assume a fixed set of n participants P = {1, 2, . . . , n} with corresponding public
parameters P = {ppi | i ∈ P ∧ VerifySetup(λ, ppi) = accept}. The validity of these
parameters can independently and non-interactively be verified by all parties, and only
valid participants with valid parameters form the set P . For our analysis, we consider a
static adversarial model where at most f nodes may be corrupted and exhibit Byzantine
behavior, i.e., deviate arbitrarily from the protocol. A node is termed correct or honest if
it does not engage in any incorrect behavior over the duration of the protocol execution,
otherwise it is considered Byzantine. Adaptive adversaries and their impact on security
are further discussed in Section 4.7.4.

Messages sent by correct participants are reliably delivered within a bounded network
delay of ΔNET seconds. However, within this work we also show that the unique
properties of our VDF-based construction provide an upper bound ΔVDF on the time it
takes any participant to learn of the next random beacon value independent of the actual
network delay, guaranteeing a notion of liveness to the protocol that is not captured
by more classical protocol designs. Specifically, we outline that only unpredictability is
affected by network asynchrony while all other properties are upheld regardless. After a
sufficient period of network stability where ΔNET holds, i.e., some global stabilization
time (GST) [53], unpredictability is again achieved quickly. Our additional simulation
results in Appendix 4.A.2 show that in practice the original unpredictability guarantees
are restored within a linear amount of time relative to the duration of network asynchrony.

To start the protocol, we assume an initial unpredictable value R0 which becomes available
or is computed by all parties after the setup is completed. This bootstrapping step is
further described in Section 4.6.2. We furthermore inherit the security assumptions for
the underlying trapdoor VDF with strong uniqueness, as described in Section 4.3, and
model cryptographic hash functions as random oracles. All VDFs are configured such
that correct nodes are able to evaluate them within ΔVDF time without knowledge of
the trapdoor. We grant the adversaries a computational advantage allowing them to
perform this computation α times faster, i.e., within ΔVDF/α seconds. The number T of
iterations used for evaluating the VDFs is empirically derived as it highly depends on
the speed of the actual implementation. It is set such that executing T iterations of the
VDF takes approximately ΔVDF seconds on the best hardware available.

In Section 4.7.4, we carefully analyze the interplay between the protocol parameters
ΔNET , ΔVDF , α and the assumption regarding the adversarial strength (f vs. n). For
example, if the adversary can compute a VDF as quickly as correct nodes, i.e., α = 1,
and the parameter ΔVDF and ΔNET are chosen such that ΔVDF � ΔNET , the protocol
achieves unpredictability (against all attacks) as long as the adversary controls less than
half of all nodes, i.e., f < n/2. If we consider a (weaker) covert adversary [5], which
secretly wants to predict future values, instead we show that our protocol can even
tolerate a majority of nodes under the adversary’s control (Section 4.7.4).

87

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

4.6 The RandRunner Protocol
In this section, we provide details on how to setup and execute the RandRunner protocol.
Throughout our description, we will reuse the Setup, VerifySetup, Eval, TrapdoorEval
and Verify algorithms introduced in Section 4.3.4.

4.6.1 Setup
Before the random beacon protocol can be started, each participant has to execute the
parameter generation, exchange and verification steps:

Parameter Generation: Regarding initialization, each participant i has to generate the
public parameters ppi used with its individual trapdoor VDF with strong uniqueness.
Each party i computes the public parameters ppi and the corresponding secret trapdoor
ski by executing Setup(λ). Note that λ (and λRSA in the specific case) are globally agreed
upon security parameters, i.e., they cannot be selected by the participant individually as
the produced parameters would be considered invalid by other participants.

Parameter Exchange: After all parties have completed the initialization, they have to
exchange their public parameters ppi, but keep their individual trapdoor ski secret. At
the end of this step, each participant should have the same set P∗ = {pp1, pp2, ..., ppn∗}
containing the public parameters of all participants. There are several options how to
realize this in practice, ranging from the use of a consensus protocol or public blockchain
used as a bulletin board, to an offline exchange where all parties come together in person.

Parameter Verification: Finally, each party verifies the set of exchanged parameters. For
the particular VDF we use, this is accomplished by running VerifySetup(λ, ppi) for all
ppi ∈ P∗. Since VerifySetup is a deterministic function, all honest participants implicitly
agree on the result for each ppi. All invalid parameters can be removed from the set P∗

to form P, the set of verified public parameters. The remaining parties which provided
the valid parameters form the set P of parties executing the protocol.

4.6.2 Bootstrapping
After all public parameters are set up, exchanged and verified, the protocol is ready to
be executed. Starting the protocol requires an initial random beacon value R0 which
becomes available to all parties running the protocol after the setup is completed at
approximately the same time. R0 is used to select the leader for the first protocol round
and serves as the input to the first (leader’s) VDF being evaluated.

One can of course use an output of another randomness beacon protocol as initial value R0.
Fortunately, there are a range of possible solutions which avoid this circular dependency,
because the properties required from R0 are less strict compared to the properties
expected from a random beacon. In particular, we require that R0 is unpredictable
at the time the public parameter are set up and that it is of high min-entropy. This
independence of the generated parameters and R0 then ensures that adversaries cannot

88

4.6. The RandRunner Protocol

tweak their public parameters in a way which would give them an unfair advantage at
protocol start. A rather simple, yet secure method to obtain R0 is to use the block hash
of some future block from an existing blockchain such as Bitcoin or Ethereum.8 Notice
that a miner-introduced bias is not a problem for bootstrapping our protocol because
bias-resistance is not required for R0, yet using an existing blockchain in this way does
not provide an efficient randomness beacon with strong guarantees, as among many
properties the missing bias-resistance is crucial for the latter purpose.

Algorithm 1: The RandRunner protocol as executed by each node i ∈ P
Input: ski, {pp1, pp2, ..., ppn}, T , R0
Output: R1, R2, R3, ...R∞
begin

set r ←− 1
repeat forever

derive the round’s leader lr
// details provided in Section 4.6.4

compute xr ←− Hin(Rr−1)
// maps Rr−1 to in input space of the VDF

if i = #r then
// in this case, this node (i) is the leader of round r, so the trapdoor ski

// is used to quickly compute the VDF
compute (yr, πr) ←− VDF .TrapdoorEval(ppi, xr, T, ski)
broadcast (yr, πr)

else
// otherwise we obtain the VDF output via the network or by evaluation
// without the trapdoor
start computing (yr, πr) ←− VDF .Eval(pp�r , xr, T)
while (yr, πr) is not yet computed/received do

listen for incoming messages (y, π)
if message (y, π) received and
VDF .Verify(pp�r , xr, T, y, π) = accept then

set (yr, πr) ←− (y, π)

compute and output Rr = Hout(yr)
// maps the VDF output yr to a 256 bit string

set r ←− r + 1 // move to the next round

8In the unlikely case that there is indeed a fork for the exact block used,the randomness beacon can
be executed in parallel until the fork is eventually resolvedand the initial value R0 becomes agreed upon.

89

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

4.6.3 Execution

After successful completion of the protocol setup and bootstrapping, the participants
are ready to start the protocol execution. The aim of this execution is to provide
a continuous sequence of publicly-verifiable, unpredictable and bias-resistant random
beacon values R1, R2, ..., R∞. We give the full protocol from the viewpoint of a node
i ∈ P in Algorithm 1 and describe the details for protocol execution as follows: Our
protocol proceeds in consecutive rounds. At the beginning of each round r ≥ 1, a unique
leader #r is selected. For this purpose we consider two different approaches: round-robin
selection (RandRunner-RR) and randomized sampling (RandRunner-RS) of a leader with
uniform probability from all nodes P , using the previous protocol output Rr−1 as seed for
the selection. We provide the details for both approaches in Section 4.6.4. Independent
of the method chosen, the protocol produces a new random beacon value Rr, i.e., a fresh
256 bit value as output of a cryptographic hash function at the end of each round.

Execution (common case): In each round r, it is the leader’s duty to advance the protocol
into the next round. It does so by first mapping the previous random beacon value Rr−1
to the input space of its VDF using a cryptographic hash function Hin : {0, 1}256 → X�r :

xr ←− Hin(Rr−1) . (4.4)

Here, the leaders public parameters pp�r define the input and output space X�r and Y�r

of #r’s VDF, whereas xr is used to denote the input to #r’s VDF in round r. Then, the
leader computes the output yr and corresponding proof πr of its VDF as follows:

(yr, πr) ←− TrapdoorEval(pp�r , xr, T, sk�r) . (4.5)

Finally, the values (yr, πr) are broadcast to all nodes. As soon as such a message is received,
a node checks the correctness of the received values using Verify(pp�r , xr, T, yr, πr). If
the values are valid, the node can compute the round’s random beacon output Rr by
applying a cryptographic hash function Hout : Y�r → {0, 1}256 to the output:

Rr ←− Hout(yr) . (4.6)

Execution (failure / adversarial case): In case the leader does not fulfill its duties as
described, independent of whether it failed or actively tried to attack the protocol, we
still want to ensure that each round r is completed and produces the same result. To
achieve this, at the beginning of round r each non-leader node immediately starts to
compute the round’s VDF output (yr, πr) ←− Eval(pp�r , xr, T) in the background. Due
to the sequentiality property of the VDF, this computation takes at least T sequential
steps. However, after completing those steps (or receiving the valid values from the
round’s leader) the values yr and πr are available and Rr can be derived as before (see
Formula 4.6). Here, the strong uniqueness property of the VDF ensures that the resulting
values are always equal to the ones computed by the leader.

90

4.6. The RandRunner Protocol

4.6.4 Leader Selection
In this section, we describe two possible leader selection strategies which can be used in
our protocol design, namely randomized round-robin and sampling uniformly at random.
Depending on the used strategy, the achievable unpredictability guarantees differ to some
extent. Random sampling bounds the predictability of the sequence of future leaders and
ensures a probabilistic guarantee for the unpredictability of the random beacon, whereas
the round-robin approach can provide an absolute bound for unpredictability but the
entire sequence of leaders is known after R0 has been published. For a detailed analysis
we refer to Section 4.7.4.

Randomized Round-Robin (RandRunner-RR): When employing randomized round-robin
as the leader selection method in our protocol, we rely on R0 to deterministically derive
a randomized sequence
P of the protocols participants P. In other words, R0 is used
as a seed to shuffle (a canonical representation of) the set of participants P to obtain
the list of participants in randomized order. Let
P[j] denote the jth element of this list
using 0-based indexing. Then, the leaders for all rounds r ≥ 1 are defined as follows:

#r :=
P[r mod n] . (4.7)

Randomized sampling (RandRunner-RS): In this case, the output from the previous
round, i.e., Rr−1, is used to sample the leader #r for round r uniformly at random from
the set of all parties P. Interpreting the 256-bit beacon outputs as numbers, a simple
approach which guarantees that each participant i, denoted by its index from 1 to n, is
selected with probability (very close to) 1/n, is to define #r as:

#r := (Rr−1 mod n) + 1 . (4.8)

4.6.5 Dissemination
As described in Section 4.6.3 and given in Algorithm 1 (line 8), the leader of each round
r is responsible for broadcasting the VDF’s unique output yr and the corresponding
proof πr. If all nodes follow the described protocol and the network is reliable, then
this broadcasting step is as simple as the leader sending the values (yr, πr) to the other
n − 1 participants directly. This would result in a communication complexity of O(n).
However, an adversarial leader might selectively send out this information to a subset
of all nodes. While any node can always derive (yr, πr) by computing the round’s VDF
eventually, a slowdown for the subset of nodes which did not receive the message from the
adversarial leader is introduced. A potential consequence is a violation of RandRunner’s
unpredictability guarantees (see Section 4.7.4): Some correct nodes, in inadvertent
collaboration with the adversary, may progress faster than the other correct nodes. The
root cause for this phenomenon is a combination of two events: (i) an adversary only
selectively sent information to some correct nodes and (ii) some correct nodes are not
yet able to verify the information received from other correct nodes, as they are missing
values from prior rounds (not sent to them by the adversary). Since there is no way to

91

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

influence the adversary’s actions, we focus on (ii) for our countermeasures. In particular,
we set out to ensure that after a correct leader broadcasts (yr, πr) all (correct) nodes
already have, or timely receive, the information required from prior rounds to verify these
values. Two possible strategies to accomplish this are given in the following:

Reliable Broadcast

A straightforward solution is to employ a reliable broadcast where every (correct) node
forwards any valid message (yr, πr) it received to all other nodes once. This results in
a communication complexity of O(n2) as each of n nodes sends O(n) bits per round,
minimizes latency (ΔNET is small) as message are not relayed over multiple hops, and is
practical as long as the number of nodes n is reasonably small.

Gossip Protocol

If n is large, one can use gossip/rumor spreading protocols instead. Here, one node,
in our case the leader of the current round, initiates the spreading of the information
(yr, πr) by sending it to a random subset of nodes. All nodes which have received a valid
message continue to forward the message to another subset of nodes until all nodes are
eventually informed with high probability.9 As messages are forwarded over multiple
hops, typically logarithmically many, latency increases compared to the prior approach
(ΔNET is higher). However, the communication complexity is significantly reduced to
(at least) O(n log n) in total or O(log n) per node respectively. We refer to the works of
Demers et al. [47], Karp et al. [75], and the large body of subsequent work for further
details on gossip protocols.

These approaches are provided exemplary as an optimization of the dissemination layer is
not the main focus of this work. Our security proofs presented in Section 4.7 are agnostic
to the selected information dissemination approach. Any optimization, which can reliably
disseminate our small and inherently verifiable message (yr, πr) in every round, is suitable.
The choice of the approach largely depends on the intended application scenario. As
a general guideline, we consider that reliable broadcast is best suited if the number of
participants n is small, as it minimizes latency and is straightforward to implement.
The larger the number of participants n, the more appropriate gossip-based approaches
become. Additionally, we note that one may actually use all available network bandwidth
in favor of a lower latency instead of minimizing the communication costs to achieve best
possible performance in practice. Either way, an expected higher latency ΔNET can be
compensated by increasing the ΔVDF parameter, which defines the number of iterations
T for the used VDFs.

9For the case of RandRunner, the unlikely delivery failures a probabilistic gossip protocol may produce
are not a problem, as the transmitted values are eventually obtained via evaluation of the VDFs after at
most ΔVDF time.

92

4.7. Analysis of RandRunner’s Security Guarantees

4.7 Analysis of RandRunner’s Security Guarantees
4.7.1 Liveness
Intuitively, a distributed protocol achieves the liveness property if an adversary cannot
prevent the protocol from making progress. A stronger form of liveness, specifically in the
context of random beacon protocols, is the property of guaranteed output delivery [38, 106].
A protocol which achieves this property additionally ensures that the adversary can not
even prevent the protocol from producing a fresh output in each round. As this stronger
form of liveness is also closely related to the bias-resistance property (see Section 4.7.2),
it is crucial for a randomness beacon protocol such as RandRunner which targets the
continuous provision of random numbers. As we outline in the following, our protocol
achieves liveness and its stronger form of guaranteed output delivery, independent of the
adversary’s actions and network conditions.

Theorem 7. (Liveness & Guaranteed Output Delivery) Each correct node which has
completed some round r ≥ 0, completes round r + 1 and outputs a new random beacon
Rr+1 within at most ΔVDF seconds.

Proof. Round r = 0 is completed by all nodes as soon as the protocol setup is finished
and the initial random beacon R0 becomes available. For all other rounds r ≥ 1, each
node can non-interactively derive the unique round leader #r using the specified leader
selection algorithm and use the hash function Hin to derive the input xr for #r’s VDF.
With the Eval function, each node can further compute the result (yr, πr) of the VDF
within ΔVDF seconds. Finally, Hout is used to map yr to Rr. Since both the time required
to compute the leader selection algorithm and the hash functions are negligible, each
node can output Rr within ΔVDF seconds after it completed the previous round.

4.7.2 Bias-Resistance
Bias-resistance ensures that an adversary cannot manipulate the produced random beacon
values to its advantage. Ideally, a protocol fully prevents that an adversary can influence
the distribution of the produced outputs. As adversaries can even benefit from just
withholding produced results after they become available to them, the strongest form of
bias-resistance can only be achieved by protocols which also guarantee that an output is
produced in every round.

Theorem 8. (Bias-Resistance) For any round r ≥ 1, the output Rr can not be influenced
in any way after the protocol setup is completed.

Proof. As discussed in the section on liveness, the result of round Rr is derived from Rr−1
by mapping Rr−1 to a value xr from the input space of the leader’s VDF, computing the
leader’s VDF to obtain (yr, πr), and finally mapping yr to Rr. The mapping steps just
use (deterministic) hash functions and are thus not prone to any manipulation by the
adversary. The VDF is computed using either the Eval or TrapdoorEval algorithm. Due

93

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

to the strong uniqueness property of the VDF the obtained result yr is equal, no matter
which of the two algorithms is used. Also, in case an adversarial leader sends out some
invalid message (y�

r, π�
r), all correct nodes check the values using the Verify algorithm

and only accept a single unique output per input. Consequently, also the VDF step is
deterministic and fully verifiable, and the full derivation step from Rr−1 to Rr cannot
be influenced by the adversary in any way. As the setup of the protocol is executed
and verified before the first input R0 becomes available, and each step is shown to be
deterministic, bias-resistance is ensured during the entire execution of the protocol.

4.7.3 Public-Verifiability
In order to verify the correctness of a random beacon output Rr, a (third-party) verifier
needs a transcript of the protocol’s execution. A valid transcript can be provided by any
correct party and consists of

1. the public parameters P of all protocol participants,

2. the initial random beacon value R0, and

3. the round’s VDF output (ys, πs) for all s ∈ {1, 2, ..., r}.

The setup of the protocol can be publicly verified, as specified in Section 4.6.1. The same
is true for each step in the protocol execution: As seen in the proofs for liveness and bias-
resistance, the random beacon output Rr of every round r ≥ 1 is derived cryptographically
from the previous output Rr−1. The only primitives used are cryptographic hash functions
for mapping in- and outputs, and trapdoor VDFs with strong uniqueness. In order (for a
third party) to verify the correctness of a protocol output Rr, given Rr−1, the involved
hash functions are recomputed and the correctness of the VDF computation is checked by
using the Verify algorithm. Essentially, a third party just follows the protocol as described
for a participant i in Algorithm 1, leaving out the evaluation and communication steps.

Regarding computation complexity, the verification of each round r requires the execution
of two hash functions and one Verify algorithm. The costs for the hash functions are
negligible, and also the Verify algorithm is efficient as it requires only around three
exponentiations for typical parameters of the VDF [94]. Furthermore, the verification
complexity does not depend on the number of parties executing the protocol.

4.7.4 Unpredictability
Unpredictability describes a security guarantee which ensures that the adversary’s ability
to predict future protocol outputs is bounded. Depending on the particular protocol, this
bound can be absolute or probabilistic. An absolute bound ensures that, for some fixed
d ≥ 1, the adversary cannot obtain the protocol output of round r + d, when correct
nodes only know the outputs up to round r. A probabilistic bound guarantees that the
likelihood that the adversary can successfully predict d future protocol outputs drops

94

4.7. Analysis of RandRunner’s Security Guarantees

exponentially as d increases linearly. For our protocol the achieved bound depends on
the chosen leader selection method. In the following, we prove that the round-robin
variant (RandRunner-RR) ensures an absolute unpredictability bound of d = f · α (see
Theorem 9), whereas our stochastic simulations show that random sampling of leaders
(RandRunner-RS) guarantees that predicting future values becomes exponentially less
likely when d increases.

The Adversary’s Strategy

In a leader-based protocol like RandRunner, the adversary can always predict future
random beacon outputs to some extent. This is possible because in every round the
corresponding leader knows the output before sending it to the other parties. In our
case, an adversarial leader can compute the round’s output by evaluating its VDF using
the trapdoor. Clearly, this is faster compared to correct nodes, which only obtain such
outputs after the adversary chooses to broadcast them, or if they compute the VDF
without the trapdoor, which takes ΔVDF seconds. In order to extend this advantage
to multiple rounds, the adversary must withhold the output of the VDF on purpose.
In case the adversary is lucky, and continues this strategy of withholding its outputs,
the adversary increases its advantage (i.e., the number of outputs it knows before the
correct nodes do) as long as a continuous sequence of adversarial nodes are selected as
leaders. However, due to the randomized leader selection, long sequences of this kind
quickly become unlikely. As soon as an honest node is selected as leader, the adversary’s
advantage decreases as the adversary is not in possession of the trapdoor for an honest
node’s VDF and consequently has to spend ΔVDF/α time to predict one additional step.
We recall that α ≥ 1 denotes the adversary’s VDF computation speed relative to correct
nodes. An α value of 1.5, for example, means that we assume that the adversary can
compute VDFs up to 50% faster. In the meantime, the honest nodes work on reducing
the adversary advantage. For each round in which the adversary was selected as leader,
honest nodes have to spend ΔVDF time to catch up one step. As soon as all adversarial
leaders’ outputs have been computed (and a correct leader is selected again) it takes
them only ΔNET seconds to compute and distribute a new random beacon output, thus
quickly diminishing the adversary’s advantage.

A first Glance at RandRunner’s Unpredictability Bounds

Rounds with an adversarial leader benefit the adversary in terms of its ability to predict
future protocol outputs, whereas rounds with a correct leader benefit the honest nodes.
This rather natural phenomenon can be observed in our stochastic simulations and
constitutes the basis for the security proof of Theorem 9. However, as it is so fundamental,
we want to provide further insights into why this is indeed the case: In each round r,
we either have an adversarial or correct leader. In case the leader is adversarial, the
adversary can immediately predict the outcome Rr of round r using the leader’s trapdoor
for the evaluation of the VDF. The correct node may be delayed by up to ΔVDF seconds
before they learn Rr if the adversary does not broadcast the round’s VDF output and

95

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

proof as specified by the protocol. Clearly, following the strategy of withholding this
information the adversary gains a (temporary) advantage in its ability to predict future
protocol outputs. In the other case, i.e., in rounds with an honest leader, all honest nodes
advance by one round within ΔNET time, whereas the adversary can only advance to the
next round after it received the round’s output from the leader or obtained the result by
computing the leader’s VDF without the trapdoor. If the adversary cannot finish this
computation before the message from the leader is received, all honest nodes catch up
and all the adversary’s advantage in diminished. Otherwise, the adversary loses some
of its advantage as it takes the adversary ΔVDF/α time to proceed to the next round,
whereas the honest nodes require at most ΔNET < ΔVDF/α seconds.

With this intuition at hand, we now have an informal look on the unpredictability
guarantees RandRunner-RR provides in a simplified scenario in which not only the
adversary, but also the honest nodes can communicate without a network delay (ΔNET =
0). In this setting, the protocol achieves absolute unpredictability for d = f · α as long as
the following inequality is fulfilled:

n > f + f · α . (4.9)

For the case that the adversary and the honest nodes can compute VDFs at the same
speed, i.e., α = 1, this is reduced to a standard majority assumption n > 2f . In
case the adversary can compute VDFs faster (α > 1), the fraction of honest nodes
compared to adversarial mode must increase accordingly. In cases where ΔNET > 0 and
ΔVDF � ΔNET , the simplified bound provided by the above inequality for the ΔNET = 0
case closely resembles the general bound we prove in Theorem 9. This more precise
bound carefully considers the interplay between the network delay ΔNET and the VDF
computation time ΔVDF .

Unpredictability for RandRunner-RR

If we use (randomized) round-robin as the leader selection method, our protocol achieves
an absolute unpredictability bound of d = f · α rounds for all configurations which satisfy
the following inequality:

f · α ≤ (n − f) ·
�

1 − ΔNET · α

ΔVDF

	
(4.10)

or, equivalently:

n ≥ f + f · α

1 − ΔNET ·α
ΔVDF

. (4.11)

To simplify the formulation of the following statements showing this claim, we formally
define two intuitive terms: the kth period of rounds and the adversary’s advantage:

Definition 4. For every natural number k, the kth period of rounds of the protocol is
defined by the n consecutive rounds (k − 1)n + 1, (k − 1)n + 2, ..., kn.

96

4.7. Analysis of RandRunner’s Security Guarantees

For example if n = 5, rounds 1 to 5 form the 1st period of rounds (k = 1), rounds 6 to 10
the 2nd period (k = 2) and so on.

Definition 5. The adversary has advantage v ≥ 0 with respect to round r if and only
if the following two conditions hold:

1. Some correct node knows the protocol output of round r, but no correct node knows
the output of round r + 1.

2. The adversary knows the protocol output of round r + v, but not of round r + v + 1.

In our proof of Theorem 9, we will show by induction on k that there is no kth period
of rounds of the protocol in which the advantage of the adversary with respect to any
round exceeds f · α. We start by showing the following Lemma 9, which will help us to
establish the induction base.

Lemma 9. For all protocol configurations which fulfill Inequality 4.10, the following
holds: If the adversary has advantage 0 with respect to some round r, its advantage with
respect to the rounds r + 1, r + 2, . . . , r + n is at most f · α.

Proof. We start by first considering rounds with a correct leader. In this case, the
time required for the adversary to predict a protocol output is bounded by the VDF
computation time of ΔVDF/α, whereas the correct nodes advance to the next round
within ΔNET seconds. Since ΔNET ≤ ΔVDF/α holds for all protocol configurations
fulfilling Inequality 4.10, the number of rounds the adversary can predict never increases
during periods with honest leaders. Consequently, to obtain an upper bound for the
number of predictable rounds, we only have to consider rounds with adversarial leaders.
Within a period of n consecutive rounds, there are exactly f such rounds, which are
consecutive in the worst case. Let us consider this worst case for our upper bound: At
the beginning of these f rounds, the adversary immediately obtains the results of all
of those rounds, as it can use the adversarial leaders’ VDF trapdoors to compute the
results. The honest nodes, on the other hand, have to compute f VDFs without the
trapdoor (assuming that the adversary withholds the results), requiring f · ΔVDF seconds
to complete. In the same time, the adversary may already try to compute the VDFs of
the honest leaders in the next few rounds. As it takes the adversary ΔVDF/α time to
compute one such VDF (without the trapdoor), it can compute at most

f · ΔVDF
ΔVDF/α

= f · α (4.12)

outputs during this time period. Consequently, as soon as the honest nodes finish the
computations for the f rounds of adversarial leaders and hence catch up by f rounds, the
adversary’s ability to predict future protocol outputs increases from f to f −f +f ·α = f ·α
rounds. From that point on, there are only rounds with correct leaders remaining, and as
the number of rounds the adversary can predict cannot increase in rounds with correct
leaders, the correctness of the lemma follows.

97

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

Next, we prove a claim that will be important for the induction step of the proof of
Theorem 9.

Lemma 10. For all protocol configurations which fulfill Inequality 4.10, the following
holds: If the adversary has advantage v ≤ f ·α with respect to some round r, its advantage
with respect to round r + n is at most v� ≤ f · α.

Proof. In the worst case, all correct nodes can complete n consecutive rounds within

Δw = f · ΔVDF + (n − f) · ΔNET (4.13)

seconds, because there are f rounds in which the adversarial leader may not broadcast
the result, requiring ΔVDF time each, and (n − f) rounds with correct leaders which
make progress immediately and broadcast the results within ΔNET seconds. If during
this time period the adversary obtains a round’s output by relying on a correct node’s
message, instead of obtaining it via computation by itself, the adversary could not predict
this value – its advantage with respect to this round is zero. Consequently, this lemma
immediately holds by Lemma 9. If, on the other hand, the adversary does not rely on
messages from correct nodes for its progress, it can compute the outputs of at most

w = f + Δw

ΔVDF/α
= f + f · ΔVDF + (n − f) · ΔNET

ΔVDF/α
(4.14)

rounds during the period of Δw seconds, because there are f steps in which the adversary
immediately obtains the result as an adversarial node is leader, whereas all other steps
rely on computing a VDF without a trapdoor, taking ΔVDF/α time each. In other words,
the adversary advances by w rounds, while, during the same period of time, the correct
nodes advance by n rounds. As w ≤ n follows directly from rearranging Inequality 4.10,
the adversary cannot increase its advantage (v� ≤ v) and the lemma holds.

Theorem 9. (Unpredictability): All protocol configurations satisfying Inequality 4.10
guarantee absolute unpredictability for d = f · α.

Proof. The statement is equivalent to the claim that the adversary’s advantage with
respect to any round never exceeds f · α. We give a proof by induction on the kth periods
of rounds and start with the induction base k = 1. Since the adversary cannot predict
the initial random beacon value R0, Lemma 9 implies that the adversary’s advantage
with respect to the rounds 1, 2, ..., n is bounded by f · α. This already proves that the
statement is true for the first period.

For the induction step, we have to show that if the adversary’s advantage with respect
to the rounds in the kth period is bounded by f · α, the same is true for the rounds in
the (k + 1)th period. Consider the rounds (k − 1)n + 1, (k − 1)n + 2, . . . , kn of the kth

period. We apply the induction assumption together with Lemma 10 and obtain that
the advantage of the adversary in the rounds kn + 1, kn + 2, ..., (k + 1)n is at most f · α,
which we wanted to prove.

98

4.7. Analysis of RandRunner’s Security Guarantees

We have shown that there is no kth period of the protocol containing a round in which
the adversary’s advantage exceeds f · α. This covers all rounds and hence concludes the
proof.

In order to simplify the exposition of the proof, Theorem 9 and definition 5 consider
the adversary’s ability to predict future protocol outputs relative to some honest node.
However, if one wants to consider the unpredictability guarantee relative to all / the
slowest honest node, a very similar result applies as all correct nodes synchronize within
ΔNET time in the broadcasting step of the protocol. Therefore, the same security bound
of f · α rounds holds for all nodes if we add an additive term of ΔNET , i.e., the adversary
does not have advantage f · α + 1 for longer than ΔNET time. The additional term of
ΔNET time is required as we assume that the adversary can send and receive messages
(also from the correct nodes) without any network delay, whereas messages between
correct nodes experience a network delay of up to ΔNET seconds.

Unpredictability for RandRunner-RS

As described in Section 4.6.4, the leaders in RandRunner can also be selected uniformly
at random (RandRunner-RS) as an alternative to the round-robin style leader selection
(RandRunner-RR) analyzed in the previous section. Due to the probabilistic nature of
selecting leaders, RandRunner-RS provides a probabilistic guarantee of unpredictability,
whereas RandRunner-RR guarantees an absolute bound for the adversary’s ability to
predict future outputs. The reason for this difference is that the round-robin leader
selection ensures that there cannot be more than f adversarial nodes within any period
of n rounds at any point in the protocol execution. When leaders are picked at random,
however, there can be up to u ≤ v adversarial leaders in any period of v rounds (for
an arbitrary number of rounds v), although the likelihood of having a high fraction of
adversarial leaders during such a period decreases exponentially for longer periods.

Similar to the round-robin case, the probabilistic guarantee for unpredictability can be
provided as long as the honest nodes make progress faster than the adversarial nodes.
Let pA := f/n and pH := 1 − pA denote the probability of selecting an adversarial or
honest leader respectively. Then the rates of progress, i.e., the average time required per
protocol round, λH for the correct nodes and λA for the adversary, are given as follows:

λH := 1
ΔNET · pH + ΔVDF · pA

(4.15)

λA := 1
ΔVDF/α · pH

. (4.16)

Intuitively, RandRunner-RS works as long as correct nodes progress faster than adversarial
nodes, i.e., if λH > λA, because any advantage an adversary has in some round will
disappear after a sufficient number of rounds. The more both rates differ, the quicker any
advantage disappears and the more unlikely a big advantage becomes. Obtaining a closed
form expression for the corresponding probability appears difficult, as the advantage of

99

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100
p
ro
b
ab

il
it
y
of

su
cc
es
sf
u
l
p
re
d
ic
ti
on pA = 0.25, α = 1.0

pA = 0.25, α = 1.25

pA = 0.33, α = 1.0

pA = 0.33, α = 1.25

pA = 0.41, α = 1.0

pA = 0.41, α = 1.25

Figure 4.2: Simulation of RandRunner-RS’ unpredictability guarantees, showing the
likelihood of adversaries with different strengths (pA, α) being able to predict future
protocol outputs at any particular point of the protocol’s execution, simulated over a
duration of 1010 rounds. (ΔNET /ΔVDF = 1/10)

the adversary in a particular round depends on the previous protocol state as well as
on the sequence of future leaders. However, by simulating protocol executions we can
derive these probabilities empirically. This is illustrated in Figure 4.2 which presents
our simulation results, considering different assumptions in regard to the fraction of
adversarial nodes (pA) and the adversary’s advantage in terms of sequential computation
speed for the VDF, denoted by α. For the parameters ΔNET and ΔVDF , we select a
fixed ratio of ΔNET /ΔVDF = 1/10, as we observe that the simulation is typically more
sensitive to a change of pA and α. For each of the exemplary parameters picked, we
simulate the protocol execution for 1010 rounds10. At any point in time where a state
change happens, i.e., when a new value is received or computed, we measure any potential
advantage the adversary has in comparison to the other nodes, and use this measurement
to derive the probabilities that it can predict a certain number of rounds at any particular
point in time. An extended evaluation is provided in Appendix 4.A. The source code
used to obtain the simulation results is publicly available on Github [104].

Unpredictability against a Covert Adversary

In the previous sections, we analyzed the unpredictability guarantees RandRunner
provides in regards to an adversary which actively attacks the protocol during execution.
However, in practice an adversary can hardly profit from any attack on unpredictability if

10For ΔNET = 5 seconds, this corresponds to more than 1500 years of protocol execution in real time.

100

https://github.com/PhilippSchindler/RandRunner

4.7. Analysis of RandRunner’s Security Guarantees

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro
b
ab

il
it
y
of

su
cc
es
sf
u
l
p
re
d
ic
ti
on pA = 0.33, α = 1.0

pA = 0.33, α = 1.25

pA = 0.50, α = 1.0

pA = 0.50, α = 1.25

pA = 0.66, α = 1.0

pA = 0.66, α = 1.25

pA = 0.75, α = 1.0

pA = 0.75, α = 1.25

Figure 4.3: Simulation of RandRunner-RS’ unpredictability guarantees against covert
adversaries. As in Figure 4.2, the simulation shows the likelihood of successful prediction
by adversaries of different strengths (pA, α) considering a simulation duration of 1010

rounds. (ΔNET /ΔVDF = 1/10)
the correct network participants are aware of the fact that the protocol is being attacked.
The base for the detection of ongoing attacks is that correct nodes expect new protocol
outputs in intervals of at most ΔNET seconds. There are only two reasons for protocol
outputs being delayed any further:

1. an adversarial leader withholds the next protocol output or

2. the network behaves asynchronously.

As the second case is unlikely if ΔNET is properly configured, any delay is a strong
indicator for an attack. This leads us to the notion of a covert adversary [5] which aims
to hide all traces that can be used for detecting the attack.

RandRunner is resilient against covert adversaries, because a covert adversary has to
broadcast new protocol outputs after at most ΔNET seconds to make sure the attack
stays invisible. Also, the computation time available to compute honest leaders’ VDFs is
reduced to ΔNET . Therefore, the bound of λH > λA for achieving unpredictability in
the general case is reduced to the following inequality considering the covert case:

ΔNET < ΔVDF/α · pH . (4.17)

The bigger the (relative) difference between both sides, the more the fraction of adversarial
nodes pA and their computational advantage can be increased. A particular distinguishing
advantage compared to other protocol designs is that RandRunner even works against

101

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

an attacker which controls a majority of nodes in the covert adversary model. This is
illustrated in Figure 4.3, where we, among others, consider an adversary which controls
75% of all nodes in the system. As for the non-covert case, we provide additional
simulation results for a range of different parameters in Appendix 4.A.

Unpredictability against an Adaptive Adversary

In the static adversary model, it is assumed that the adversary may control up to a
threshold of f nodes. Those nodes may behave Byzantine, however the set of nodes
controlled by the adversary is fixed and defined prior to the start of the protocol. Another
commonly encountered adversarial model is concerned with adaptive corruptions [33, 89].
Adaptive adversaries may decide which nodes to corrupt (take control of) based on
information collected during the execution of the protocol. As in the static case, the
adversary’s capabilities are bounded by the threshold f . A further distinction can be
made between fully adaptive and mildly adaptive adversaries [89], where the former
implies practically instantaneous corruptions, whereas the latter incurs some non-zero
delay before a corruption takes effect. In practice, a fully adaptive adversary is likely an
unrealistically strong assumption, in particular if we consider communication delay to be
non-zero. Nevertheless, we discuss the resilience of the RandRunner protocols against
both variants of adaptive adversaries.

We recall that the security proof provided for RandRunner-RR explicitly covers the worst
case of f consecutive adversarial nodes. Consequently, the absolute unpredictability
bound (see Theorem 9) remains unaffected even if an adaptive adversary of either
flavor is assumed. As we elaborate in Appendix 4.A.3, RandRunner-RR additionally
provides probabilistic unpredictability guarantees before this unpredictability bound is
reached, very similar to the probabilistic guarantee shown for RandRunner-RS. However,
because in essence this is achieved by randomizing the round-robin sequence of leaders
after (static) corruptions have taken place, these additional probabilistic guarantees in
RandRunner-RR do not hold for mildly or fully adaptive corruptions.

RandRunner-RS provides probabilistic guarantees regarding unpredictability. Intuitively,
the further into the future an adversary wishes to predict beacon values, the less likely
they are to succeed. Considering an adaptive adversary, RandRunner-RS’s probabilistic
guarantees degrade gracefully, depending on the number of corruptions and the time
required to corrupt the nodes. In the worst case, considering a fully adaptive adversary
which may instantaneously corrupt up to f nodes, our simulations show that the ad-
versary’s prediction capabilities are shifted by f rounds. In other words, in this case
the adversary can pick a single point in time at which it is able to once instantaneously
corrupt at most the sequence of the next f leaders, and thereby predict the outcome of
the next f protocol rounds. However, after that point the probability of predicting any
further rounds again start to drop exponentially. This is to be expected behavior and can
be seen as granting the adversary a one-time lead of f rounds. Fortunately, in practice
the worst case of a fully adaptive adversary is highly unrealistic. In a more realistic case,
corruptions would require a considerable amount of time, i.e., much longer than ΔNET

102

4.8. Comparing RandRunner to Existing Distributed Randomness Beacons

and ΔVDF . In this case however, by the time the adversary is able to successfully corrupt
the next leader it has already fulfilled its duty of broadcasting the next beacon value,
rendering the attack ineffective for gaining an additional advantage over static corruptions.
Thus, such mildly adaptive corruptions do not affect the guarantees provided.

The analysis of adaptive adversaries for both RandRunner-RR and RandRunner-RS
serves to further highlight their different properties and potential use cases. In particular,
if resilience against fully adaptive adversaries is deemed a necessity, utilizing RandRunner-
RR and waiting for the absolute unpredictability bound presents a solution. We point
out that for this scenario a smaller set of participants is advantageous in regard to the
required waiting periods before unpredictability can be guaranteed. On the other hand,
RandRunner-RS can offer unpredictability with probabilistic guarantees that incurs
shorter waiting periods, if mildly adaptive adversaries are assumed.

4.8 Comparing RandRunner to Existing Distributed
Randomness Beacons

In recent years, a wide range of possible approaches to obtain publicly-verifiable random-
ness have been presented. This includes solutions which extract randomness from existing
systems. In this regard, Clark and Hengartner [44] show how to collect (small amounts)
of entropy from closing prices of stocks. As noted by Pierrot and Wesolowski [93] this
approach relies on the assumption that the published financial data cannot be manip-
ulated. Similarly, the works of Bonneau et al. [25] and Bentov et al. [12] demonstrate
how to extract near-uniformly distributed bits from one or a sequence of Bitcoin blocks.
However, as stated by the authors and analyzed in later work [93], these approaches
cannot provide truly unbiased randomness.

The line of research on blockchain protocol designs, in particular Algorand [42] and
Ouroboros Praos [46], can also be used to obtain distributed randomness. Both protocols
internally use verifiable random functions [85] (VRFs) to produce a sequence of random
numbers. In this way, both designs can output randomness as a byproduct of their
operation without any significant additional communication cost. Using hashchains
instead of VRFs, Azouvi et al. [6] present a solution with similar characteristics as a
Smart Contract for the Ethereum blockchain. However, all of these approaches, where
the adversary might be responsible for computing and then revealing the next random
output, are not strictly bias-resistant, as the adversary can always decide to withhold the
next random output after gaining knowledge of it [106]. Strong bias-resistance, as also
provided by RandRunner, ensures that there is a guaranteed protocol output in every
round, regardless of the actions taken by the round’s leader.

Protocols which can provide strong bias-resistance have also been constructed by using
threshold cryptography, in particular using publicly-verifiable secret sharing ([78, 38, 114,
106]) or unique threshold signatures ([33, 72]). The proposal of running and combining
the results of n secret sharing instances, as seen in the Ouroboros [78] and Scrape [38]

103

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

protocols, has since been improved by Syta et al. [114] (RandHerd) and by our HydRand
protocol (see Chapter 2 of this dissertation or our corresponding publication [106]).
HydRand achieves a communication complexity of O(n2) in a synchronous system model
with n = 3f + 1 participants, without requiring a distributed key generation (DKG)
protocol or relying on pairing-based cryptography. As it is the case with RandRunner,
unpredictability for HydRand is achieved after a few rounds, whereas the approaches of
Cachin et al. [33] and Dfinity [72] ensure unpredictability after a single round. The two
latter approaches also achieve a communication complexity of O(n2). They, however, rely
on a trusted dealer or DKG protocol and, e.g., BLS [24, 23], as a unique pairing-based
threshold signature scheme. In comparison, RandRunner is built using an RSA-based VDF
and does not require a trusted dealer or DKG protocol for its setup. Its communication
complexity improves upon all the threshold cryptographic approaches, as a single leader
drives the protocol forward, whereas the interaction between all, or at least a large
subset of the participants, is required for the other protocols. Regarding the guaranteed
output delivery property, HydRand can output fresh randomness at regular intervals as it
operates in a fully synchronous system model, whereas RandRunner and other protocols
which are safe under asynchrony can only guarantee that an output is produced every
round. For RandRunner, the round duration may vary depending on network conditions
or if the protocol is attacked, but is upper bounded by the ΔVDF parameter. The delay
RandRunner introduces in these circumstances can be seen as an advantage, as any delay
serves as a strong indicator for an active attack (assuming network outages are rare) and
thus strengthens the confidence in the protocol if it progresses as fast as expected. Similar
to Cachin et al. [33], our protocol ensures consistency even under asynchronous network
conditions and proceeds at the network speed when not attacked, whereas HydRand
loses consistency if the synchrony assumption is violated and cannot progress faster than
the initially specified network delay, i.e., does not offer optimistic responsiveness [90].
Dfinity’s security proofs also rely on synchrony.

A different line of research focuses on the instantiation of a randomness beacon based on
delay functions (also known as slow-time functions), which can be seen as predecessor
to VDFs (as used in RandRunner) without an efficient verification procedure. Using
this primitive, Lenstra and Wesolowski [80] designed the Unicorn protocol, in which
in a first phase a set of distrusting parties collect a pool of inputs. In a second step
those inputs are hashed and fed into a delay function, the output of which forms the
randomness. As the delay parameter is picked such that no party can compute the
output during the time when changes to the inputs are allowed, the result is bias-resistant
and unpredictable as long as at least one party provides a random input with sufficient
entropy. A similar approach is later implemented by leveraging a Smart Contract on
the Ethereum platform for agreement on the inputs [32]. To circumvent the limitations
of the platform, the authors of this approach describe an interactive, incentive-based
game for verification. We believe that these systems and the underlying idea of first
agreeing on a set of inputs and then executing a long-running (verifiable) delay function
on these inputs are well suited for scenarios in which unpredictable and bias-resistant
randomness is required infrequently. In comparison, RandRunner does not require an

104

4.9. Summary of our Findings on the RandRunner Protocol

agreement protocol for the VDF inputs and can provide a sequence of random numbers
in short intervals and with much lower communication overhead. Moreover, RandRunner
can also ensure unpredictability in scenarios where the adversary can compute the VDF
faster than honest nodes.

4.9 Summary of our Findings on the RandRunner
Protocol

By extending the VDF introduced by Pietrzak [94] to a trapdoor VDF with strong
uniqueness, which may be of independent interest, we lay the foundation for our novel
randomness beacon protocol RandRunner. Our design and the properties we achieve
are unique in many ways. First, RandRunner is extremely simple: It is built on top
of cryptographic hash functions, and the introduced VDF is based on the well studied
RSA assumption. The setup of the protocol does not require a DKG protocol and can
be verified non-interactively. Instead of relying on a Byzantine or blockchain-based
agreement protocol to ensure consistency across all nodes, consistency is achieved by
leveraging the strong uniqueness property of the underlying VDF. Thereby, the protocol
essentially provides a predetermined, yet unpredictable sequence of random numbers.
This novel design has tremendous advantages in terms of efficiency and scalability, as
the removal of the agreement protocol reduces communication costs significantly. In our
case, only a single message of approximately 10 KB in size has to be propagated through
the network to produce a fresh random beacon output.

Additionally, our design is very resilient to temporary network delays or network outages.
Although being designed for practical deployment scenarios with bounded network delay,
RandRunner retains consistency and liveness even if the network connectivity between
correct nodes breaks down completely. We have proven that RandRunner achieves
unpredictability under a synchronous network model, and provided stochastic simulations
to analyze the protocol in case of temporary network failures. Under these circumstances,
we observed that the provided unpredictability guarantees degrade gradually, even when
we consider an adversary which is not affected by the network delays. Furthermore, our
results also show that the protocol can recover quickly, i.e., in a linear amount of time
respective to the duration of the network outage.

Whenever the network is in good condition, and the protocol is not under attack, the
protocol is responsive [90, 121] and proceeds at the speed of the network, i.e., it is
not slowed down by introducing artificial delays. Attacks introduce a (parameterizable)
slowdown of the protocol, serving as a strong indication for an ongoing attack. This leads
us to the additional evaluation of RandRunner in a covert adversary model [5], in which
the adversary wishes to hide its attack traces. Our results show that unpredictability is
achieved even if a majority of nodes is under adversarial control or the adversary can
evaluate VDFs significantly faster compared to the other nodes.

105

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

4.A Appendix: Additional Evaluation Results for the
RandRunner Protocol

4.A.1 Simulation Results for Additional Protocol Parameterizations

As outlined in Sections 4.5 and 4.7.4 the selection of the parameter ΔVDF , which
determines the time parameter T for the VDF, is crucial for the unpredictability guarantees
provided by RandRunner. In our simulation results presented in Section 4.7.4, we
considered setting ΔVDF such that ΔNET /ΔVDF = 1/10, a choice which works well
across a wide range of scenarios. To further support the process of picking a suitable
value for ΔVDF , we provide additional simulation results in Figures 4.4–4.7. As before, we
run our simulation over a period of 1010 rounds for each parameter set and consider both
types of adversaries, i.e., an attacker which (i) does and (ii) does not want to hide its traces.
We fix ΔNET = 1 and vary ΔVDF , as the simulation results only depend on the relation
ΔNET /ΔVDF of the parameters ΔNET and ΔVDF . In general, we observe that increasing
ΔVDF compared to ΔNET strengthens the protocol’s unpredictability guarantee, while at
the same time introducing longer delays whenever a leader fails or withholds an output
on purpose. The bigger the adversarial strength, i.e., the fraction of adversarial nodes
pA and their advantage in computation speed compared to the honest nodes α, the
more important is it to select higher values for ΔVDF . Regarding the covert adversary
model we analyzed in Section 4.7.4, Figure 4.8 further illustrates the correspondence
between the protocol parameters regarding the security bound ΔNET < ΔVDF/α · pH

(Inequality 4.17).

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro
b
ab

il
it
y
of

su
cc
es
sf
u
l
p
re
d
ic
ti
on pA = 0.25, ΔV DF = 5

pA = 0.25, ΔV DF = 10

pA = 0.25, ΔV DF = 20

pA = 0.33, ΔV DF = 5

pA = 0.33, ΔV DF = 10

pA = 0.33, ΔV DF = 20

pA = 0.41, ΔV DF = 5

pA = 0.41, ΔV DF = 10

pA = 0.41, ΔV DF = 20

Figure 4.4: Simulation of RandRunner-RS’ unpredictability guarantees for parameters
α = 1, ΔNET = 1 and different values of pA and ΔVDF

106

4.A. Appendix: Additional Evaluation Results for the RandRunner Protocol

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro
b
ab

il
it
y
of

su
cc
es
sf
u
l
p
re
d
ic
ti
on pA = 0.50, ΔV DF = 5

pA = 0.50, ΔV DF = 10

pA = 0.50, ΔV DF = 20

pA = 0.66, ΔV DF = 5

pA = 0.66, ΔV DF = 10

pA = 0.66, ΔV DF = 20

pA = 0.75, ΔV DF = 5

pA = 0.75, ΔV DF = 10

pA = 0.75, ΔV DF = 20

Figure 4.5: Simulation of RandRunner-RS’ unpredictability guarantees against a covert
adversary for parameters α = 1, ΔNET = 1 and different values of pA and ΔVDF

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro
b
ab

il
it
y
of

su
cc
es
sf
u
l
p
re
d
ic
ti
on α = 1.0, ΔV DF = 5

α = 1.0, ΔV DF = 10

α = 1.0, ΔV DF = 20

α = 1.25, ΔV DF = 5

α = 1.25, ΔV DF = 10

α = 1.25, ΔV DF = 20

Figure 4.6: Simulation of RandRunner-RS’ unpredictability guarantees for parameters
pA = 0.33, ΔNET = 1 and different values of α and ΔVDF

4.A.2 Recovery from Asynchronous Network Conditions

We recall that RandRunner relies on network synchrony to ensure the unpredictability
guarantees described in Section 4.7.4. Therefore, during periods of asynchrony, i.e., in

107

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100
p
ro
b
ab

il
it
y
of

su
cc
es
sf
u
l
p
re
d
ic
ti
on α = 1.0, ΔV DF = 5

α = 1.0, ΔV DF = 10

α = 1.0, ΔV DF = 20

α = 1.5, ΔV DF = 5

α = 1.5, ΔV DF = 10

α = 1.5, ΔV DF = 20

Figure 4.7: Simulation of RandRunner-RS’ unpredictability guarantees against a covert
adversary for parameters pA = 0.66, ΔNET = 1 and different values of α and ΔVDF

situations in which correct nodes cannot disseminate message within ΔNET seconds,
the protocol’s unpredictability guarantees are gradually weakened. However, by design,
RandRunner ensures liveness and consistency even during periods in which correct nodes
cannot communicate with each other at all. During periods of asynchrony an adversary
can increase its advantage (in terms the of number of random beacon output it can
predict), whereas honest nodes catch up and RandRunner regains its unpredictability
guarantees quickly once network connectivity is restored. In particular, this is the case
when we consider a perfectly coordinated adversary which is not affected by the network
delays or is itself responsible for the asynchronous network conditions. Considering
this worst case, our simulation results in Figures 4.9 and 4.10 show how quickly the
original unpredictability guarantees are restored after the network conditions normalize.
We observe that the recovery time required increases linearly with the duration of the
asynchronous period. Consequently, short periods of asynchrony have very little effect
on the provided guarantees, whereas the protocol can still recover rather quickly even
from long-lasting asynchronous network conditions. We note that in practice we only
expect long-lasting asynchronous periods in extremely unlikely circumstances. In any
case, a client using the produced random numbers is likely to notice the problem due
to the temporary slowdown of the protocol and can consequently take appropriate
countermeasures on the application layer, e.g., it may require a longer delay prior to the
use of future outputs.

For our simulations we consider different parameterizations of RandRunner-RS, vary
the duration of network outages (in multiples of the ΔNET parameter), and plot the
mean time until unpredictability guarantees are restored, with the standard deviation

108

4.A. Appendix: Additional Evaluation Results for the RandRunner Protocol

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro
b
ab

il
it
y
of

su
cc
es
sf
u
l
p
re
d
ic
ti
on pA = 0.50, α = 1.0, ΔV DF = 5

pA = 0.50, α = 2.0, ΔV DF = 10

pA = 0.50, α = 4.0, ΔV DF = 20

pA = 0.66, α = 1.0, ΔV DF = 5

pA = 0.66, α = 2.0, ΔV DF = 10

pA = 0.66, α = 4.0, ΔV DF = 20

pA = 0.75, α = 1.0, ΔV DF = 5

pA = 0.75, α = 2.0, ΔV DF = 10

pA = 0.75, α = 4.0, ΔV DF = 20

Figure 4.8: Simulation of RandRunner-RS’ unpredictability guarantees against a covert
adversary for parameter ΔNET = 1, highlighting the relations between pA, α and ΔVDF

highlighted. Concretely, we report the average recovery time (y-axis) of 100000 simulation
runs for each outage duration (x-axis). In in each run, we simulate a network outage for
the given duration at a random point in time. Considering the (theoretical) worst case,
we assume that during the network outage/attack correct nodes cannot communicate
with each other at all, yet the adversary can perfectly coordinate its actions and does
not mind being detected during the attack.

4.A.3 Comparison of Probabilistic Unpredictability Guarantees
We omitted to present simulation results for RandRunner-RR in the main part of this
chapter, as we have provided a formal proof for the provided unpredictability guarantees.
However, in addition to the bounds proven in Section 4.7.4, RandRunner-RR also
provides stochastic guarantees similar to RandRunner-RS. In general, we observe that the
probabilistic guarantees of RandRunner-RR approach the guarantees RandRunner-RS
provides with an increasing number of participants n considering equivalent scenarios. In
other words, the probabilistic guarantees of RandRunner-RS give an upper bound for
the (stronger) guarantees of RandRunner-RR. This is further illustrated in Figure 4.11,
which also highlights RandRunner-RR’s proven absolute bound of d = 8 rounds for the
given example with n = 24, f = 8 nodes.

109

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

0 200 400 600 800 1000

duration of network outage (in units of ΔNET)

0

500

1000

1500

2000

ex
p
ec
te
d
re
co
ve
ry

ti
m
e
(i
n
u
n
it
s
o
f
Δ

N
E
T
)

pA = 0.25

pA = 0.33

pA = 0.41

Figure 4.9: Mean time and standard deviation for recovery of RandRunner-RS’ unpre-
dictability after a network outage (ΔNET /ΔVDF = 1/10, α = 1.0)

0 200 400 600 800 1000

duration of network outage (in units of ΔNET)

0

500

1000

1500

2000

ex
p
ec
te
d
re
co
ve
ry

ti
m
e
(i
n
u
n
it
s
of

Δ
N

E
T
)

α = 1.0

α = 1.25

α = 1.5

Figure 4.10: Mean time and standard deviation for recovery of RandRunner-RS’ unpre-
dictability after a network outage (ΔNET /ΔVDF = 1/10, pA = 0.33)

110

4.A. Appendix: Additional Evaluation Results for the RandRunner Protocol

0 10 20 30 40 50 60 70 80

number of rounds to predict

10−6

10−5

10−4

10−3

10−2

10−1

100

p
ro
b
ab

il
it
y
of

su
cc
es
sf
u
l
p
re
d
ic
ti
on

RandRunner-RR(n = 24, f = 8)

RandRunner-RR(n = 100, f = 33)

RandRunner-RR(n = 1000, f = 333)

RandRunner-RS (pA = 0.33)

Figure 4.11: Comparison of RandRunner-RR/RS’s probabilistic unpredictability guaran-
tees (ΔNET /ΔVDF = 1/10, α = 1.0)

111

4. RandRunner: Distributed Randomness from T-VDFs with Strong Uniqueness

4.B Appendix: RandRunner Notation Reference

Table 4.1: RandRunner notation reference – symbols

Symbol Description

n number of nodes running the protocol
f number of adversarial / Byzantine nodes
α ≥ 1 adversaries VDF computation speed relative to the correct nodes
P set of participants running the protocol
P set of verified public parameters
P∗ set of public parameter prior to verification
r, s ≥ 1 some protocol round as specified by the context
d, v, w number of rounds as specified by the context
R0 initial random seed for the protocol
Rr protocol output at round r

i ∈ P some node running the protocol as specified by the context
#r ∈ P leader of round r

ppi public parameters for node i’s VDF
ski secret key / trapdoor for node i’s VDF
ΔNET network propagation delay (between correct nodes)
ΔVDF correct nodes’ upper bound for the computation time of Eval (the VDF parameter

T is set accordingly)
ΔVDF/α adversary’s lower bound for the computation time of Eval

pA fraction of adversarial nodes (f/n)
pH fraction of honest/correct nodes (1 − f/n)
λA, λH rate of progress for the adversarial and honest/correct nodes
Δw RandRunner-RR’s worst case completion time of n consecutive protocol rounds for

correct nodes
P̃ randomized sequence of the set of participants P
P̃ [j] jth element of P̃ using 0-based indexing
kth period the sequence of rounds (k − 1)n + 1, (k − 1)n + 2, ..., kn

112

4.B. Appendix: RandRunner Notation Reference

Table 4.2: RandRunner notation reference – algorithms

Algorithm Description

Setup(λ) → pp setup function for a (general) VDF
Setup(λ) → (pp, sk) setup function for a trapdoor VDF
VerifySetup(λ, pp) → {accept, reject} verification algorithm for the parameters generated by

Setup(·)
Eval(pp, x, T) → (y, π) VDF evaluation algorithm (without knowledge of the

trapdoor)
TrapdoorEval(pp, x, T, sk) → (y, π) VDF evaluation algorithm with knowledge of the trap-

door
Verify(pp, x, T, y, π) → {accept, reject} verification algorithm for the VDF evaluation
Hin : {0, 1}256 → X cryptographic hash function mapping a 256-bit string

to the input space of the VDF
Hout : Y → {0, 1}256 cryptographic hash function mapping a VDF output

to a 256-bit string

Table 4.3: RandRunner notation reference – VDFs

Symbol Description

X input space of the VDF, X = QR+
N in our case

Y output space of the VDF, Y = QR+
N in our case

PP public parameter space of the VDF
T ∈ N time parameter of the VDF (number of iterations)
x ∈ X input to the VDF
y ∈ Y output of the VDF
π correctness proof for the VDF output
pp ∈ PP public parameters of the VDF
p, q large safe primes
N RSA modulus
πN proof that N is a product of two safe primes of size λRSA/2
QR+

N group of signed quadratic residues modulo N

λ security parameter
λRSA security parameter for an RSA-based VDF

113

CHAPTER 5
Conclusion

In the last decade, we have observed a tremendous growth and interest in the field of
public distributed ledger platforms. The early ideas surrounding the cryptocurrency
Bitcoin led to a multi-trillion dollar field of platforms and projects that now reaches
far beyond the scope of a digital payment system. Inspired by these developments, this
thesis covers a wide range of existing, as well as newly developed, approaches for the
generation of distributed randomness – a crucial component used in the design of many
current and expected designs for distributed ledgers which do not rely on Proof-of-Work
as the underlying mechanism to drive consensus decisions.

5.1 Highlights of our Research Contributions
During the work on this thesis we developed two unique protocols for the secure provi-
sioning of randomness in a distributed setting as well as a protocol for distributed key
generation crucial for the setup of threshold signatures based randomness beacons and
other cryptographic protocols.

HydRand, our first protocol design presented at the 2020 IEEE Symposium on Security
and Privacy, follows and advances upon prior work [6, 38, 78, 114] on randomness beacons
based on publicly-verifiable secret sharing (PVSS). It operates in a stand-alone fashion
and continuously outputs fresh randomness at regular intervals. Although it is a leader
based protocol, a round’s leader can neither bias the randomness of a particular round,
nor prevent the randomness from becoming available to all parties by the end of that
round. Using a pipelined approach and by interleaving the developed Byzantine fault
tolerant (BFT) consensus algorithm with the distribution of the secret shares required
for the PVSS protocols, we can improve the communication complexity of the overall
protocol by an order of magnitude. This improvement allows us to obtain an efficient and
stand-alone design. Together with the minimal requirements for protocol setup as well

115

5. Conclusion

as excellent latency and throughput characteristics shown by performance testing our
prototype implementation, we see HydRand ready to support many interesting use cases.

Our second randomness beacon protocol, RandRunner, was accepted at the Network
and Distributed System Security Symposium (NDSS 2021). While aiming for the similar
security guarantees and properties (i.e., availability, unpredictability, bias-resistance,
public-verifiability, guaranteed output delivery and the avoidance of an initial trusted
setup) as HydRand, RandRunner’s design is based on a different cryptographic primitive,
namely trapdoor verifiable delay functions (T-VDFs) with strong uniqueness. Since VDFs
have been introduced by Boneh et al. [18] in 2018, they have sparked a tremendous
amount of interest within the various research communities, which has led to a range of
practical designs for VDFs with different properties. These designs include VDFs with
trapdoors, i.e., VDFs which can be efficiently evaluated by parties which are in possession
of a certain secret (similar to a private key used for digital signatures). Unfortunately,
we find that all such designs we are aware of cannot guarantee uniqueness of the VDF’s
output for a particular input against parties with knowledge of the trapdoor. In other
words, the trapdoor can be used to forge a proof which falsely asserts that a certain
output is the result of evaluating the VDF on a particular input. To prevent this kind
of attack, we introduce the notion of T-VDFs with the property of strong uniqueness
and give the first instantiation of such a T-VDF. Despite being of independent interest,
for example, as a commitment scheme with enforceable revealment as we discuss further
in Section 5.3, this advancement is of crucial importance for the construction of the
RandRunner protocol, in particular to ensure that its strong bias-resistance guarantees
hold. RandRanner also achieves the other main properties expected from a randomness
beacon. In particular, it is very communication efficient as a single message broadcasted
per round advances the protocol to the next round. This allows RandRunner to be scaled
to a large number of nodes. Inherited by the use of VDFs, RandRunner’s system model
requires network synchrony. In a period where this synchrony assumption is violated,
this leads to a degradation of the unpredictability guarantees (in particular considering
the worst case of a fully adversarially controlled network). However, periods of asyn-
chronous network communication are handled gracefully by the protocol, i.e., consistency
and bias-resistance are always guaranteed, and the protocol automatically regains its
unpredictability guarantees quickly after synchronous communication is reestablished.
Assuming synchrony and limiting the adversary to covert/stealthy attacks only, another
unique property RandRunner can provide is that unpredictability can even be ensured in
scenarios where a majority of nodes are under adversarial control.

Considering EthDKG, our third protocol designed within the scope of this dissertation,
we see our main contribution in bridging the gap between the theoretical research
results in the field of distributed key generation (DKG) and practical systems which
benefit from readily accessible implementations of DKG protocols. Building upon the
popular DKG protocol design by Gennaro et al. [63, 64], we implement a range of
optimizations which allows us to obtain an efficient, scalable and practical design. Our
protocol design consists of two main parts: a smart contract deployed on a platform

116

5.1. Highlights of our Research Contributions

like Ethereum and a client implementation interacting with this smart contract. One
of the key characteristics of our design is that all steps of the key generation process
can be verified within the smart contract itself. This removes another central point of
trust and enables easy interoperability with the applications using the DKG protocol.
Following the developments in the cryptocurrency ecosystems, we further find more and
more platforms have already adopted or are in the process of adopting the Ethereum
Virtual Machine (EVM) as the base layer for smart contract execution. Therefore, with
our protocol being designed for execution on the EVM, a range of other platforms beyond
Ethereum directly benefit from the availability of our DKG protocol.

With HydRand and RandRunner we added two novel protocols to the landscape of
solutions for generating distributed randomness, while EthDKG supports the setup of
existing threshold signature based approaches in this domain. To navigate the available
solutions and aid the selection process for a particular use case, we also see the broad
comparisons between existing solutions (among either other and compared to our protocol)
as additional important research contributions. Summarizing our findings in this regard,
we find that the underlying models, assumptions, and cryptographic techniques as well
as the achieved security properties vary greatly, depending on the design at hand. While
certain approaches clearly improve upon others, at the current state of the field, we
cannot identify a single approach which outperforms all other approaches in all aspects.
From the experience we gained during the work on this thesis, although of course
difficult to prove, it appears unlikely that such a universally superior approach can
exist at all. Hence, the decision on which approach is most suitable for a particular
use case of interest has to be taken on a case-by-case basis. For example, the designs
for distributed randomness based on verifiable random functions (VRFs), as employed
in AlgoRand [42] or Ouroboros Praos [46], can be added to existing systems with low
overhead, but fail to provide the property of bias-resistance, as there is always one
(last) party which may choose to withhold a VRF computation result. The studied
approaches using publicly-verifiable secret sharing (PVSS) generally achieve a wide range
of desirable properties using well established cryptographic assumptions at the cost of a
high, often cubic, communication complexity. Within this set of protocols, we improved
theoretical communication complexity to be quadratic with our design HydRand, and
demonstrate the practicability of the protocol with our prototypical implementation.
Designs using unique threshold signatures, typically BLS signatures [24], as described by
the early work of Cachin et al. [33] or later used in protocols such as Dfinity [72], are
bias-resistant, quite communication efficient and achieve unpredictability quickly. The
main drawbacks of these approaches are the reliance on less established cryptographic
assumptions (pairing-based cryptography), as well as the requirement for a trusted
dealer or distributed key generation (DKG) protocol, which complicates the setup and
reconfiguration of the protocol. In this context, our DKG protocol named EthDKG can
help the bootstrapping process, as it can readily be used on existing smart contract
platforms such as Ethereum. Finally, we designed RandRunner, a new distributed
randomness beacon based on the cryptographic primitive of a trapdoor verifiable delay
function (T-VDF) with strong uniqueness which we introduce alongside the protocol

117

5. Conclusion

itself. Compared to prior VDF-based designs, RandRunner does not rely on Proof-of-
Work or another separate approach for entropy collection and agreement, but rather
leverages the property of strong uniqueness of the used T-VDFs to generate an essentially
predetermined, yet unpredictable sequence of random numbers. Compared to threshold
cryptographic approaches which combine values from a majority of participants in each
protocol step, RandRunner produces a new output as a leader disseminates a single
message in the network. As a drawback, unpredictability considering a colluding adversary
is not achieved as quickly as in approaches using threshold signatures. On the other
hand, however, the design has major advantages in terms of communication complexity
and scalability, while remaining simple and based on well established cryptographic
assumptions. Another unique property that sets RandRunner apart from other designs
is the security considering a covert adversary [5]. Analyzing the protocol in this model,
where a covert adversary wishes to hide traces of any ongoing attacks, we show that
unpredictability can be guaranteed even under circumstances where a majority of the
participants are controlled by the adversary.

5.2 Research Impact
Observing the domain of distributed ledger technologies, in particular the different
cryptocurrency ecosystems, during the period of working on this dissertation, we already
observe a shift away from Proof-of-Work towards alternative protocol designs. We expect
this trend to continue with few (unfortunate) exceptions. The use of alternatives to
Proof-of-Work as a consensus mechanism is not only mandated by the avoidance of the
tremendous consumption of electrical energy used but also to improve upon the scalability,
reliability and security of these systems. From the theoretical needs for randomness in
the design of these protocols, towards a large body of deployed systems using distributed
randomness protocols at the core of their designs, e.g., the PVSS-based approach in the
early Ouroboros variant, VRF-based protocols such as Cardano or AlgoRand, threshold
signature based beacons as used in Dfinity and many permissioned BFT designs, or
VDFs as found in the cryptocurrency Chia, randomness beacons have already successfully
demonstrated their utility in this domain. Also Ethereum, the large smart contract
platform by market capitalization at the time of writing, is actively looking for suitable
primitives for their next generation Proof-of-Stake system. The Ethereum foundation,
as well as other large organizations such as Tezos or Protocol Labs, actively support
research efforts, in particular towards the design and implementation of VDF-based
systems. Considering these developments, while of course hard to predict, we believe
RandRunner, the design of our trapdoor VDF with strong uniqueness, or one of the
many ideas from the protocol’s design could well find its way into the next generation of
systems in this domain.
EthDKG, as well as other competing distributed key generation (DKG) protocols, are
vital for the setup of many threshold cryptographic protocols, the secure generation
of keys for the use with the BLS signature scheme being one of the prime use cases.
For this purpose, EthDKG is a particularly flexible protocol design. The threshold, i.e.,

118

5.2. Research Impact

the number of parties required to recover the generated secret or generate a threshold
signature, can be specified arbitrarily between one and all nodes. This allows the tradeoff
between liveness and safety to be set according to application specific requirements rather
than being limited to thresholds of 1/3, 1/2 or 2/3 of the nodes which are regularly used in
the context of consensus protocols. Additionally, EthDKG supports a large number of
participating nodes. Its smart contract capabilities can be used to, for example, specify
dynamic participation models as well as enforce the use of security deposits in a secure
way, i.e., our protocol can guarantee that an honest participant cannot wrongfully be
accused of misbehavior even if the protocol is executed by a dishonest majority. With its
smart contract based design, EthDKG is also a prime candidate for being used for the
setup of smart contracts which want to avoid a central controlling entity of the respective
contract. This is essential to circumvent the repeatedly found bad practice of using proxy
contracts, controlled by a single private key, to update the main contract functionally.
Similarly, decentralized autonomous organizations (DAOs) or other contracts which need
to hold crypto assets in shared custody, including protocol for cross-chain asset transfer,
are key examples for potential use case scenarios for EthDKG.

With HydRand our primary target application scenario is concerned with permissioned
systems, considering a range of use cases beyond the scope of public distributed ledgers.
In the following, we highlight a few selected use cases which we believe can benefit from
our randomness beacon protocols, in particular HydRand, with its rather simple design,
integrated Byzantine fault tolerant (BFT) protocol, and readily available prototypical
implementation. For a broader discussion of other use case scenarios we refer to Section 2.1
as well as a set of related works [114, 38, 25]. The first group of use cases we consider are
applications that require the fair allocation of a limited amount of resources. For example,
when 50 students register for a seminar limited to 30 participants, randomly assigning
the 30 spots among the students seems to be (at least somewhat) better than the typical
first-come-first-serve rule which comes to its limits when a large number of students try
to register at the same time as soon as the registration opens. In this particular case, one
may argue that trusting the university to make this random assignment in a fair manner
is reasonable, this argument is more difficult to make in other cases – opening the case for
distributed protocols like HydRand. Consider, for example, the assignment of a limited
set of preschool spots in a year with a high number of applicants or the allocation of
grants. While the governing bodies may claim the corresponding procedures are executed
fairly, a range of factors (e.g., political interest, personal involvement, or corruption) may
influence the discussions, which at least to some extent could benefit from a well defined
distributed process supported by a protocol like HydRand. Another potential use case
are common statistical methods where results observed from a randomly selected data
sample are extrapolated. Clearly, the results of this extrapolation can only be as good as
the initial selection process. Integrating randomness beacons into this process can help
to improve transparency and reduce trust assumptions. Closely related are use cases
in e-voting, for example, random-sample voting as recently described in a paper by D.
Chaum [40]. Here a publicly-verifiable source of randomness is used to verifiably select a
random subset of voters for polling on a particular issue.

119

5. Conclusion

5.3 Directions for Future Research
Regarding directions for future research, we observe that the overwhelming majority of
protocols designed for the provisioning of distributed randomness rely on cryptographic
assumptions which are considered insecure against adversaries that are in possession of
general purpose quantum computers. There exist rather simple post-quantum secure
solutions, for example, constructed using hash-chains where preimages of cryptographic
hash functions are revealed over time by the protocol participants. Unfortunately, these
simple solutions fail to achieve the key properties of bias-resistance and guaranteed output
delivery. A promising way to obtain a high performance design which is secure against
quantum computers would be to replace’s RandRunner’s RSA based construction for its
T-VDF with strong uniqueness with a new post-quantum secure alternative. Similarly,
approaches using BLS threshold signatures now could directly benefit from emerging
post-quantum secure alternatives for threshold signing.

The strong uniqueness property of our T-VDF design allows for interesting use cases
where the T-VDF is used as a commitment scheme with enforceable revealment. In this
scenario, a (potentially adversarial) party first sets up a T-VDF and uses it to create a
commitment to some value. At a later point in time, the committing party may choose
to open the commitment using the T-VDF’s trapdoor. In case the committing party
is obliged to open the commitment, but fails to do so, another party, which is not in
possession of the trapdoor, is nevertheless able to evaluate the VDF and thus recover the
unique previously committed value after a specified amount of time has passed. Given
a commitment which has been found to be valid initially, the success of the recovery
is guaranteed and independent of the original issuer, for example, the failure or the
deliberate adversarial behavior of the committing node. We see the discovery of new
application scenarios for such a commit-reveal protocol, for example, within the landscape
of smart contracts, as well as other use cases or improvements of T-VDFs with the strong
uniqueness property as exciting topics for further research.

Another particularly interesting use case for distributed randomness in the context of
distributed ledgers is leader selection. At the current state of the available practical
designs, there is a trade-off between the leader’s secrecy and the ability to guarantee leader
uniqueness. In this regard, secrecy refers to the ability that at first only the leader itself
is aware that it is indeed in the leader role in a particular protocol round, whereas it may
choose to prove this fact to other participants. A common implementation supporting
this notion of leader secrecy is based upon the use of verifiable random functions (VRFs),
executed independently by the protocol’s participants. A participant is then considered
the leader in a particular round, if the leader’s VRF, computed on some prescribed input,
leads to an output of a particular form, e.g., a number below a certain threshold. Due
to the independence of the VRF executions, using such an approach however frequently
leads to multiple or no leaders selected for a particular round – leader uniqueness cannot
be ensured. The opposite issue occurs for the many other approaches, first producing
a globally agreed unique random beacon value which is then used to uniquely select a
leader among the possible candidates. Here uniqueness is achieved, whereas the leader’s

120

5.3. Directions for Future Research

identity is immediately revealed and leader secrecy can consequently not be ensured.
While one may also find arguments opposing leader secrecy, for example, considering the
leader’s accountability to be more important than its secrecy, achieving leader secrecy
and uniqueness simultaneously is certainly an interesting future research challenge and
one where we can already observe the first results [21]. Similar to the recovery procedure
used in HydRand’s protocol design, the use of threshold cryptographic techniques may
allow for leader secrecy and accountability at the same time. In this case, a leader’s
identity remains secret until it fulfills its duties, or, if it fails to do so, it is revealed by a
collaborative effort of the other parties.

Finally, the quest of how to implement and further improve upon current state-of-the-art
designs for public distributed ledgers remains ongoing. With this thesis, we set out to
tackle the crucial aspect of distributed randomness within this larger domain. However,
with many open questions remaining, we are excited and look forward to discovering and
further supporting the many interesting current and future developments in this field.

121

List of Figures

2.1 Example execution of four rounds of the HydRand protocol 19
2.2 HydRand’s unpredictability guarantees . 29
2.3 Measured throughput for the HydRand protocol 31
2.4 Measured average per node network bandwidth for the HydRand protocol 32
2.5 Measured CPU utilization for the HydRand protocol 32

3.1 Computational costs, measured in gas per transaction, for the different types
of interactions with the EthDKG smart contract 66

4.1 Schematic execution of the RandRunner protocol 86
4.2 Simulation of RandRunner-RS’ unpredictability guarantees 100
4.3 Simulation of RandRunner-RS’ unpredictability guarantees against covert

adversaries . 101
4.4 Simulation of RandRunner-RS’ unpredictability guarantees for parameters

α = 1, ΔNET = 1 and different values of pA and ΔVDF 106
4.5 Simulation of RandRunner-RS’ unpredictability guarantees against a covert

adversary for parameters α = 1, ΔNET = 1 and different values of pA and
ΔVDF . 107

4.6 Simulation of RandRunner-RS’ unpredictability guarantees for parameters
pA = 0.33, ΔNET = 1 and different values of α and ΔVDF 107

4.7 Simulation of RandRunner-RS’ unpredictability guarantees against a covert
adversary for parameters pA = 0.66, ΔNET = 1 and different values of α and
ΔVDF . 108

4.8 Simulation of RandRunner-RS’ unpredictability guarantees against a covert
adversary for parameter ΔNET = 1, highlighting the relations between pA, α
and ΔVDF . 109

4.9 Mean time and standard deviation for recovery of RandRunner-RS’ unpre-
dictability after a network outage (ΔNET /ΔVDF = 1/10, α = 1.0) 110

4.10 Mean time and standard deviation for recovery of RandRunner-RS’ unpre-
dictability after a network outage (ΔNET /ΔVDF = 1/10, pA = 0.33) . . . 110

4.11 Comparison of RandRunner-RR/RS’s probabilistic unpredictability guarantees
(ΔNET /ΔVDF = 1/10, α = 1.0) . 111

123

List of Tables

2.1 Comparison of approaches for generating publicly-verifiable randomness . 35
2.2 HydRand notation reference – symbols . 44
2.3 HydRand notation reference – symbols continued 45
2.4 HydRand notation reference – message formats 45

3.1 Estimated transaction fees for EthDKG at the time of initial evaluation . 67
3.2 Estimated transaction fees for EthDKG at the time of writing 67
3.3 Communication complexity for the different interactions types with the

EthDKG smart contract . 68
3.4 EthDKG protocol execution times for different numbers of participants . 69
3.5 EthDKG notation reference . 74

4.1 RandRunner notation reference – symbols 112
4.2 RandRunner notation reference – algorithms 113
4.3 RandRunner notation reference – VDFs 113

125

Bibliography

[1] Ben Adida. Helios: Web-based open-audit voting. In 17th USENIX Security
Symposium (USENIX Security ’08), pages 335–348. USENIX Association, 2008.

[2] Mustafa Al-Bassam. Implementation of elliptic curve operations on G2 for
alt_bn128 in Solidity. Online at https://github.com/musalbas/solidity-BN256G2
(accessed: 2021-05-11), 2019.

[3] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and
Julio César López-Hernández. Faster explicit formulas for computing pairings
over ordinary curves. In 30th Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT ’11), pages 48–68.
Springer, 2011.

[4] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
ethereum smart contracts (SoK). In 6th International Conference on Principles of
Security and Trust (POST ’17), Held as Part of the European Joint Conferences
on Theory and Practice of Software (ETAPS ’17), pages 164–186. Springer, 2017.

[5] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. In 4th Theory of Cryptography Conference (TCC
’07), pages 137–156. Springer, 2007.

[6] Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. Winning the caucus race:
Continuous leader election via public randomness. arXiv preprint arXiv:1801.07965,
2018.

[7] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic
availability. In 25th ACM Conference on Computer and Communications Security
(CCS ’18), pages 913–930. ACM, 2018.

[8] Thomas Baignères, Cécile Delerablée, Matthieu Finiasz, Louis Goubin, Tancrède
Lepoint, and Matthieu Rivain. Trap me if you can – million dollar curve. Cryptology
ePrint Archive, Report 2015/1249, 2015.

127

https://github.com/musalbas/solidity-BN256G2

[9] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for
pairings. Journal of Cryptology, (4):1298–1336, 2019.

[10] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In 1st ACM Conference on Computer and Communi-
cations Security (CCS ’93), pages 62–73. ACM, 1993.

[11] Michael Ben-Or. Another advantage of free choice: Completely asynchronous
agreement protocols (extended abstract). In 2nd ACM Symposium on Principles
of Distributed Computing (PODC ’83), pages 27–30. ACM, 1983.

[12] Iddo Bentov, Ariel Gabizon, and David Zuckerman. Bitcoin beacon. arXiv preprint
arXiv:1605.04559, 2016.

[13] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of
stake. Cryptology ePrint Archive, Report 2016/919, 2016.

[14] Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen. Dual EC: A standardized
back door. In The New Codebreakers, pages 256–281. Springer, 2016.

[15] Jean-Luc Beuchat, Jorge Enrique González-Díaz, Shigeo Mitsunari, Eiji Okamoto,
Francisco Rodríguez-Henríquez, and Tadanori Teruya. High-speed software imple-
mentation of the optimal ate pairing over barreto-naehrig curves. In 4th Inter-
national Conference on Pairing-Based Cryptography (Pairing ’10), pages 21–39.
Springer, 2010.

[16] George Robert Blakley. Safeguarding cryptographic keys. In International Workshop
on Managing Requirements Knowledge, pages 313–318. IEEE Computer Society,
1979.

[17] Manuel Blum. Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News, (1):23–27, 1983.

[18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay
functions. In 38th Annual International Cryptology Conference (CRYPTO ’18),
pages 757–788. Springer, 2018.

[19] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable delay
functions. Cryptology ePrint Archive, Report 2018/712, 2018.

[20] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for
smaller blockchains. In 24th International Conference on the Theory and Application
of Cryptology and Information Security (ASIACRYPT ’18), pages 435–464. Springer,
2018.

[21] Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret
leader election. In 2nd ACM Conference on Advances in Financial Technologies
(AFT ’20), pages 12–24. ACM, 2020.

128

[22] Dan Boneh and Matthew K. Franklin. Efficient generation of shared RSA keys
(extended abstract). In 17th Annual International Cryptology Conference (CRYPTO
’97), pages 425–439. Springer, 1997.

[23] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In 22nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT ’03),
pages 416–432. Springer, 2003.

[24] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing.
In 7th International Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT ’01), pages 514–532. Springer, 2001.

[25] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public
randomness source. Cryptology ePrint Archive, Report 2015/1015, 2015.

[26] Johannes Buchmann and Hugh C. Williams. A key-exchange system based on
imaginary quadratic fields. Journal of Cryptology, (2):107–118, 1988.

[27] Vitalik Buterin. On slow and fast block times. Online at https://blog.ethereum.
org/2015/09/14/on-slow-and-fast-block-times/ (accessed: 2021-05-11), 2015.

[28] Vitalik Buterin. How should I handle blockchain forks in my
DApp? Online at https://ethereum.stackexchange.com/questions/183/
how-should-i-handle-blockchain-forks-in-my-dapp/203 (accessed: 2021-05-11),
2016.

[29] Vitalik Buterin. Validator ordering and randomness in PoS. Online at
https://vitalik.ca/files/randomness.html/ (accessed: 2018-04-24), 2016.

[30] Vitalik Buterin. Randao++. Online at https://redd.it/4mdkku (accessed: 2021-05-
11), 2017.

[31] Vitalik Buterin and Christian Reitwiessner. EIP 197: Precompiled contracts
for optimal ate pairing check on the elliptic curve alt_bn128. Online at https:
//github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md (accessed: 2021-05-11),
2017.

[32] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. Proofs-of-delay and
randomness beacons in ethereum. In 1st IEEE Security and Privacy on the
Blockchain Workshop (S&B ’17), 2017.

[33] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantino-
ple: Practical asynchronous byzantine agreement using cryptography. Journal of
Cryptology, (3):219–246, 2005.

129

https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/203
https://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/203
https://web.archive.org/web/20180723043716/https://vitalik.ca/files/randomness.html
https://redd.it/4mdkku
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md

[34] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is
the product of two safe primes. In 18th Annual International Conference on the
Theory and Application of Cryptographic Techniques (EUROCRYPT ’99), pages
107–122. Springer, 1999.

[35] Jan Camenisch and Markus Stadler. Proof systems for general statements about
discrete logarithms. Technical report/Dept. of Computer Science, ETH Zürich,
1997.

[36] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.
Adaptive security for threshold cryptosystems. In 19th Annual International
Cryptology Conference (CRYPTO ’99), pages 98–115. Springer, 1999.

[37] Antonio Salazar Cardozo and Zachary Williamson. EIP 1108: Reduce alt_bn128
precompile gas costs. Online at https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-1108.md (accessed: 2021-05-11), 2018.

[38] Ignacio Cascudo and Bernardo David. SCRAPE: scalable randomness attested
by public entities. In 15th International Conference Applied Cryptography and
Network Security (ACNS ’17), pages 537–556. Springer, 2017.

[39] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst., (4):398–461, 2002.

[40] David Chaum. Random-sample voting. Online at https://rsvoting.org/whitepaper/
white_paper.pdf (accessed: 2021-11-15), 2016.

[41] David Chaum and Torben P. Pedersen. Wallet databases with observers. In
12th Annual International Cryptology Conference (CRYPTO ’92), pages 89–105.
Springer, 1992.

[42] Jing Chen and Silvio Micali. Algorand. arXiv preprint arXiv:1607.01341, 2016.

[43] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and
Ian Miers. Fairness in an unfair world: Fair multiparty computation from public
bulletin boards. In 24th ACM Conference on Computer and Communications
Security (CCS ’17), pages 719–728. ACM, 2017.

[44] Jeremy Clark and Urs Hengartner. On the use of financial data as a random
beacon. In 9th Electronic Voting Technology Workshop / Workshop on Trustworthy
Elections (EVT/WOTE ’10). USENIX Association, 2010.

[45] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed E.
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song,
and Roger Wattenhofer. On scaling decentralized blockchains (A position paper).
In 3rd Workshop on Bitcoin and Blockchain Research (BITCOIN ’16), Held as part
of the 20th International Conference on Financial Cryptography and Data Security
(FC ’16), pages 106–125. Springer, 2016.

130

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md
https://rsvoting.org/whitepaper/white_paper.pdf
https://rsvoting.org/whitepaper/white_paper.pdf

[46] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In 37th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT ’18), pages 66–98. Springer, 2018.

[47] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. Epidemic
algorithms for replicated database maintenance. In 6th ACM Symposium on
Principles of Distributed Computing (PODC ’97), pages 1–12. ACM, 1987.

[48] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-
generation onion router. In 13th USENIX Security Symposium (USENIX Security
’04), pages 303–320. USENIX, 2004.

[49] Danny Dolev, Cynthia Dwork, and Larry J. Stockmeyer. On the minimal synchro-
nism needed for distributed consensus. Journal of the ACM (JACM), (1):77–97,
1987.

[50] Jason A. Donenfeld, Matt Mackall, and Theodore Ts’o. Linux source code
drivers/char/random.c – a strong random number generator. Online at https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/random.c
(accessed: 2021-11-20), 2017.

[51] Nico Döttling, Sanjam Garg, Giulio Malavolta, and Prashant Nalini Vasudevan.
Tight verifiable delay functions. In 12th International Conference on Security and
Cryptography for Networks (SCN ’20), pages 65–84. Springer, 2020.

[52] Justin Drake. Minimal VDF randomness beacon. Online at https://ethresear.ch/t/
minimal-vdf-randomness-beacon/3566 (accessed: 2020-07-08), 2018.

[53] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM), (2):288–323, 1988.

[54] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous
verifiable delay functions. In 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT ’20), pages 125–154.
Springer, 2020.

[55] Ethereum network status. Online at https://ethstats.net/ (accessed: 2021-08-22),
2021.

[56] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In
28th IEEE Symposium on Foundations of Computer Science (FOCS ’87), pages
427–437. IEEE Computer Society, 1987.

[57] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable
delay functions from supersingular isogenies and pairings. In 25th International

131

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/random.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/random.c
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethstats.net/

Conference on the Theory and Application of Cryptology and Information Security
(ASIACRYPT ’19), pages 248–277. Springer, 2019.

[58] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In 6th Annual International Cryptology Conference
(CRYPTO ’86), pages 186–194. Springer, 1986.

[59] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM (JACM),
32(2):374–382, 1985.

[60] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast
distributed RSA key generation for semi-honest and malicious adversaries. In
38th Annual International Cryptology Conference (CRYPTO ’18), pages 331–361.
Springer, 2018.

[61] Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, (4):469–472, 1985.

[62] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques (EUROCRYPT ’15),
pages 281–310. Springer, 2015.

[63] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. In 18th Annual In-
ternational Conference on the Theory and Application of Cryptographic Techniques
(EUROCRYPT ’99), pages 295–310. Springer, 1999.

[64] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Revisiting the
distributed key generation for discrete-log based cryptosystems. RSA Security’03,
pages 89–104, 2003.

[65] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure appli-
cations of pedersen’s distributed key generation protocol. In The Cryptographers’
Track at the RSA Conference, pages 373–390. Springer, 2003.

[66] Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-interactive
statistical zero-knowledge proof system for quasi-safe prime products. In 5th ACM
Conference on Computer and Communications Security (CCS ’98), pages 67–72.
ACM, 1998.

[67] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert
Ritzdorf, and Srdjan Capkun. On the security and performance of proof of work
blockchains. In 23rd ACM Conference on Computer and Communications Security
(CCS ’16), pages 3–16. ACM, 2016.

132

[68] Mainak Ghosh, Miles Richardson, Bryan Ford, and Rob Jansen. A torpath to
torcoin: Proof-of-bandwidth altcoins for compensating relays. In 7th Workshop on
Hot Topics in Privacy Enhancing Technologies (HotPETs ’14), 2014.

[69] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In 26th ACM Sym-
posium on Operating Systems Principles (SOSP ’17), pages 51–68. ACM, 2017.

[70] Sharad Goel, Mark Robson, Milo Polte, and Emin Sirer. Herbivore: A scalable
and efficient protocol for anonymous communication. Technical report, Cornell
University, 2003.

[71] David Goulet and George Kadianakis. Random number generation during tor
voting. Tor’s protocol specifications–Proposal, 2015.

[72] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology
overview series, consensus system. arXiv preprint arXiv:1805.04548, 2018.

[73] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science
in information systems research. MIS quarterly, pages 75–105, 2004.

[74] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and
Edward W. Felten. Arbitrum: Scalable, private smart contracts. In 27th USENIX
Security Symposium (USENIX Security ’18), pages 1353–1370. USENIX Association,
2018.

[75] Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöck-
ing. Randomized rumor spreading. In 41st IEEE Symposium on Foundations of
Computer Science (FOCS ’00), pages 565–574. IEEE Computer Society, 2000.

[76] Aniket Kate and Ian Goldberg. Distributed key generation for the internet. In
29th IEEE International Conference on Distributed Computing Systems (ICDCS
’09), 22-26 June 2009, Montreal, Québec, Canada, pages 119–128. IEEE Computer
Society, 2009.

[77] Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed key generation in the
wild. Cryptology ePrint Archive, Report 2012/377, 2012.

[78] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In 37th An-
nual International Cryptology Conference (CRYPTO ’17), pages 357–388. Springer,
2017.

[79] Esteban Landerreche, Marc Stevens, and Christian Schaffner. Non-interactive cryp-
tographic timestamping based on verifiable delay functions. In 24th International
Conference on Financial Cryptography and Data Security (FC ’20), pages 541–558.
Springer, 2020.

133

[80] Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and
trx. Cryptology ePrint Archive, Report 2015/366, 2015.

[81] Mohammad Mahmoody, Caleb Smith, and David J. Wu. A note on the
(im)possibility of verifiable delay functions in the random oracle model. Cryptology
ePrint Archive, Report 2019/663, 2019.

[82] Matic network – scalable and instant blockchain transactions. Online at
https://matic.network/ (accessed: 2021-05-11), 2021.

[83] Matic network | documentation | matic gas station. Online at
https://docs.matic.network/docs/develop/tools/matic-gas-station/ (accessed: 2021-
05-11), 2021.

[84] Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with assessing
the impact of NFS advances on the security of pairing-based cryptography. In
2nd International Conference on Cryptology and Malicious Security (Mycrypt ’16),
pages 83–108. Springer, 2016.

[85] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.
In 40th IEEE Symposium on Foundations of Computer Science (FOCS ’99), pages
120–130. IEEE Computer Society, 1999.

[86] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008.

[87] Wafa Neji, Kaouther Blibech Sinaoui, and Narjes Ben Rajeb. Distributed key
generation protocol with a new complaint management strategy. Security and
Communication Networks, (17):4585–4595, 2016.

[88] Orbs Network. DKG for BLS threshold signature scheme on the EVM using
solidity. Online at https://github.com/orbs-network/dkg-on-evm (accessed: 2021-05-
11), 2018.

[89] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permis-
sionless model. In 31st International Symposium on Distributed Computing (DISC
’17), pages 39:1–39:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[90] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant con-
firmation. In 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT ’18), pages 3–33. Springer, 2018.

[91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In 11th Annual International Cryptology Conference (CRYPTO
’91), pages 129–140. Springer, 1991.

[92] Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended
abstract). In 10th Workshop on the Theory and Application of of Cryptographic
Techniques (EUROCRYPT ’91), pages 522–526. Springer, 1991.

134

https://web.archive.org/web/20210508111246/https://matic.network/
https://web.archive.org/web/20201024195543/https://docs.matic.network/docs/develop/tools/matic-gas-station/
https://github.com/orbs-network/dkg-on-evm

[93] Cécile Pierrot and Benjamin Wesolowski. Malleability of the blockchain’s entropy.
Cryptography and Communications, (1):211–233, 2018.

[94] Krzysztof Pietrzak. Simple verifiable delay functions. In 10th Innovations in
Theoretical Computer Science Conference (ITCS ’19), pages 60:1–60:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[95] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts.
Online at https://plasma.io/plasma.pdf (accessed: 2018-04-24), 2017.

[96] Michael O. Rabin. Randomized byzantine generals. In 24th IEEE Symposium on
Foundations of Computer Science (FOCS ’83), pages 403–409. IEEE Computer
Society, 1983.

[97] Michael O. Rabin. Transaction protection by beacons. Journal of Computer and
System Sciences, (2):256–267, 1983.

[98] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In 21st Annual ACM Symposium on
Theory of Computing (STOC ’89), pages 73–85. ACM, 1989.

[99] randao.org. Randao: Verifiable random number generation. Online at https:
//randao.org/whitepaper/Randao_v0.85_en.pdf (accessed: 2021-11-25), 2017.

[100] Christian Reitwiessner. EIP 196: Precompiled contracts for addition and scalar
multiplication on the elliptic curve alt_bn128. Online at https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-196.md (accessed: 2021-11-25), 2017.

[101] Eric Rescorla. Diffie-hellman key agreement method. RFC 2631, pages 1–13, 1999.

[102] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and
timed-release crypto. 1996.

[103] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar
Weippl. RandRunner: distributed randomness from trapdoor VDFs with strong
uniqueness. In 28th Annual Network and Distributed System Security Symposium
(NDSS ’21). The Internet Society, 2021.

[104] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and
Edgar Weippl. RandRunner research artifacts. Online at https://github.com/
PhilippSchindler/RandRunner (accessed: 2021-11-10), 2021.

[105] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. EthDKG:
distributed key generation with ethereum smart contracts. Cryptology ePrint
Archive, Report 2019/985, 2019.

[106] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. HydRand:
efficient continuous distributed randomness. In 41st IEEE Symposium on Security
and Privacy (SP ’20), pages 73–89. IEEE, 2020.

135

https://plasma.io/plasma.pdf
https://randao.org/whitepaper/Randao_v0.85_en.pdf
https://randao.org/whitepaper/Randao_v0.85_en.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
https://github.com/PhilippSchindler/RandRunner
https://github.com/PhilippSchindler/RandRunner

[107] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl.
Python implementation of the HydRand protocol. Online at https://github.com/
PhilippSchindler/HydRand (accessed: 2021-11-10), 2020.

[108] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its
application to electronic. In 19th Annual International Cryptology Conference
(CRYPTO ’99), pages 148–164. Springer, 1999.

[109] David Schwartz, Noah Youngs, Arthur Britto, et al. The ripple protocol consensus
algorithm. Ripple Labs Inc White Paper, (8):151, 2014.

[110] Adi Shamir. How to share a secret. Communications of the ACM, (11):612–613,
1979.

[111] Barak Shani. A note on isogeny-based hybrid verifiable delay functions. Cryptology
ePrint Archive, Report 2019/205, 2019.

[112] Yonatan Sompolinsky and Aviv Zohar. Bitcoin’s security model revisited. arXiv
preprint arXiv:1605.09193, 2016.

[113] Mario Stipcevic and Çetin Kaya Koç. True random number generators. In Open
Problems in Mathematics and Computational Science, pages 275–315. Springer,
2014.

[114] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus
Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable bias-resistant
distributed randomness. In 38th IEEE Symposium on Security and Privacy (SP
’17), pages 444–460. IEEE Computer Society, 2017.

[115] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,
Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities
"honest or bust" with decentralized witness cosigning. In 37th IEEE Symposium on
Security and Privacy (SP ’16), pages 526–545. IEEE Computer Society, 2016.

[116] Carmela Troncoso, Marios Isaakidis, George Danezis, and Harry Halpin. Sys-
tematizing decentralization and privacy: Lessons from 15 years of research and
deployments. Proceedings on Privacy Enhancing Technologies, (4):404–426, 2017.

[117] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela:
scalable private messaging resistant to traffic analysis. In 25th ACM Symposium
on Operating Systems Principles (SOSP ’15), pages 137–152. ACM, 2015.

[118] Benjamin Wesolowski. Efficient verifiable delay functions. In 38th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT ’19), pages 379–407. Springer, 2019.

136

https://github.com/PhilippSchindler/HydRand
https://github.com/PhilippSchindler/HydRand

[119] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.
Dissent in numbers: Making strong anonymity scale. In 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’12), pages 179–182.
USENIX Association, 2012.

[120] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

[121] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai
Abraham. Hotstuff: BFT consensus with linearity and responsiveness. In 38th
ACM Symposium on Principles of Distributed Computing (PODC ’19), pages
347–356. ACM, 2019.

137

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Aims
	Results
	Methodology
	Structure

	HydRand: Efficient Continuous Distributed Randomness
	Introduction to Distributed Randomness
	System and Threat Model of the HydRand Protocol
	Overview of the HydRand Protocol
	The HydRand Protocol
	Analysis of HydRand's Protocol Properties
	Evaluation of the HydRand Protocol
	Comparison of Random Beacon Protocols
	Discussion of HydRand and Existing Approaches for Generating Distributed Randomness
	Summary of our Findings on the HydRand Protocol
	Appendix: HydRand Notation Reference

	EthDKG: Distributed Key Generation with Ethereum Smart Contracts
	Introduction to Distributed Key Generation Protocol
	Related Work in Distributed Key Generation
	System Model and Threat Model of the EthDKG Protocol
	The EthDKG Protocol
	Security Analysis of the EthDKG Protocol
	Implementation of the EthDKG Protocol
	Evaluation of the EthDKG Protocol
	Discussion and Comparison of EthDKG and Existing Distributed Key Generation Protocols
	Summary of our Findings on the EthDKG Protocol
	Appendix: EthDKG Notation Reference

	RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness
	Revisiting the State-of-the-Art in Distributed Randomness
	Introduction to RandRunner
	Trapdoor VDFs with Strong Uniqueness
	Conceptual Design of the RandRunner Protocol
	System and Threat Model of the RandRunner Protocol
	The RandRunner Protocol
	Analysis of RandRunner's Security Guarantees
	Comparing RandRunner to Existing Distributed Randomness Beacons
	Summary of our Findings on the RandRunner Protocol
	Appendix: Additional Evaluation Results for the RandRunner Protocol
	Appendix: RandRunner Notation Reference

	Conclusion
	Highlights of our Research Contributions
	Research Impact
	Directions for Future Research

	List of Figures
	List of Tables
	Bibliography

