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Abstract: Urban traffic can naturally be modeled as a distributed and heterogeneous multi-
agent dynamic system. To allow a scalable solution for simulation, control and information
management, a simple but powerful generic model architecture is proposed in this work,
supporting various different traffic participant types. It is shown that even though the agent
actions can be restricted to a fairly small set of basic operations, a remarkably rich global system
functionality and complex information flow can be modeled. The resulting traffic dynamics and
information model is inherently flexible and agile with respect to participating agents and their
evolution of system dynamics while enabling efficient and parallelizable simulation, control, and
prediction computations. Selected use cases for traffic monitoring, management, and control are
outlined, and the model capabilities are demonstrated.
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1. INTRODUCTION

Increasing traffic in inner-city areas aggravates the conflict
between safety, efficiency, and environmental impact. In
particular, intersections are critical nodes in any urban
traffic network, so modeling their traffic dynamics accu-
rately is needed to enable real-time simulation, optimiza-
tion, and advanced control to improve the traffic system as
a whole. In principle, modern information and communi-
cations technology (ICT), communication and control con-
cepts offer the potential to comprehensively manage and
optimize intersection traffic in a fine resolution in real time,
considering the requirements of all road users, interpret
the situations in the best possible way and implementing
individual, coordinated, cooperative control strategies to
realize a holistic optimum. Currently, however, intersection
management is largely simplified in practice, mostly only
controlled via fixed, pre-defined traffic light phase sched-
ules. Inflexible, sub-optimal traffic light control can lead
to unnecessary traffic jams and emissions.

A broad body of research has developed with respect to
traffic modeling, control, and optimization. Microscopic
traffic models represent each traffic participant as an indi-
vidual particle. Such a model provides high resolution and
allows to directly integrate control schemes and behavioral
models while simulating interactions between individual
participants. The main drawbacks are the significant com-
putational cost (scaling with the number of considered
traffic participants) and the necessity to provide valid
and calibrated behavior models for all participants. Such
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models allow offline traffic signal optimization tasks (Chao
et al., 2015) with a limited number of traffic participants.
Commercial and open-source traffic simulation software is
available, such as PTV Vissim (Fellendorf and Vortisch,
2010), SUMO (Lopez et al., 2018) or CARLA (Dosovit-
skiy et al., 2017). Large-scale traffic systems are typically
modeled via traffic flow and density fields in a distributed-
parameter approach (“macroscopic model”), instead of
resolving individual particles.

Centralized control architectures rely on the central collec-
tion and availability of all system data in real-time, on hav-
ing a complete system model, and on being able to solve
the associated (massive) global optimization problem. This
theoretically allows network-wide traffic optimization (Ye
et al., 2019) with globally optimal performance, but gen-
erally does not scale well as systems grow larger and
more complex. In turn, hierarchical, decentralized and
distributed control concepts Christofides et al. (2013) have
been proposed which divide the large-scale problem into
smaller subsystems of manageable size. These concepts
typically achieve sub-optimal performance but scale bet-
ter and come with reduced communication requirements
and improved robustness properties. Often, cooperation-
establishing methods are put forward to improve stability,
convergence, and performance in the large-scale system
perspective (Killian et al., 2016).

Multi-agent traffic simulation approaches have been pro-
posed in the literature: Doniec et al. (2008) investigate
behavioral modeling of each agent (instead of classical
car-following models) to realize realistic decision-making,
including norm violations, in intersection traffic situations.
Wei et al. (2019) provide a survey on recent multi-agent-
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based traffic signal control methods, particularly covering
approaches based on Reinforcement Learning.

To minimize the design complexity in multi-agent traffic
models, such model framework should provide each agent
with simple access to the relevant neighborhood informa-
tion, including neighbor motion prediction functionality, as
well as efficiently incorporate the relevant agent dynamics,
both for simple models as well as for heterogeneous types
of traffic participants or high-fidelity models. To the best
of the authors’ knowledge, no multi-agent traffic model
is available which provides these features efficiently in a
control-related software environment such as MATLAB®.
In contrast to full micro-simulation tools, it is desirable to
obtain a lean model structure that can easily be integrated
into optimization and model-based control tasks. It is
this research gap that we attempt to close by the model
proposed in this work.

The main contribution of this work is an agile multi-
agent model that allows the simple and flexible treatment
of typical simulation cases and control decisions in a
distributed traffic context. Agile refers to the fact that,
by design, the model architecture allows to incorporate
heterogeneous agents in a time-varying system structure.

One core feature of the proposed model architecture is to
organize real-time access to the set of current, relevant
neighbor agents, so that any ego agent can directly im-
plement basic control with respect to this environment.
This structure facilitates advanced control designs such as
obstacle-avoidance model-predictive vehicle control. Also,
it aids the implementation of social-force pedestrian dy-
namics.

2. METHODOLOGY

As main contribution of this work, a fundamentally simple
but versatile multi-agent system architecture for traffic
management is proposed in the context of heterogeneous
road traffic. Therein, the agents represent individual traffic
participants (such as motorized human-driven vehicles,
automated vehicles, bicycles, or even pedestrians). Also,
control entities such as classical or advanced (adaptive)
traffic lights can be regarded as agents. The overarching
modeling goal is to obtain a well-defined traffic model suit-
able for microscopic simulation, short-term prediction, as
well as control design and optimization. Thereby the pre-
diction horizon should cover at least the time-to-standstill
to enable safe control/driving decisions. It becomes evident
in the following that all these agents share a common
set of generic tasks that have to be carried out by each
agent repetitively. For simplicity, a uniform sampling time
Ts P R` is utilized for all considered agents in this work.

Besides defining these generic agent tasks, global topo-
logical information (such as road or intersection topol-
ogy, global traffic rules, predefined routes, and system
boundary conditions) are defined and managed through
a global model, corresponding to the modeled “world”.
The set of all considered agents A can grow or shrink
over time as agents are created (i.e., spawned) or removed,
respectively. We indicate superscript indices to identify
individual agents where helpful for clarity, such as denot-
ing the state vector of agent i P A at time tk “ Ts k as

xi
k. The subscripted index k indicates discrete time step

k P N Y t0u.

2.1 Generic agent tasks

The following generic agent tasks are found to provide
the necessary functionality to model reasonable traffic
interactions for each traffic participant. These are executed
in sequential order in each model time step, for each agent
in the model. This realizes a so-called “parallel” multi-
agent system architecture, as the actions of each agent
depend on the current state of itself and a specific set
of neighboring agents at that time. The tasks carried out
in the agents’ time step (step() method) are listed in
Algorithm 1. By carrying out the last step after all agents
have evaluated their control laws in the current time step,
the sequence in which the agent actions are computed
does not affect the results. This evaluation can easily be
parallelized, but a synchronization is required within each
time step.

Algorithm 1 Generic Agent Tasks

T1) getEgoStateEstimate():
Retrieve/estimate ego state, e.g. through communi-
cation, sensor fusion or an observer.

T2) getEgoReferences():
Retrieve control goals/references.

T3) getNearbyAgents():
Retrieve set of relevant neighbor agents, e.g. inside of
detection radius.

T4) collectObstaclePredictions():
Retrieve/measure/estimate neighbor state and mo-
tion predictions or create proxy predictions. Identify
nearest relevant agent for car-following control via
getNearestObstacle().

T5) [u] = AgentController.step():
compute control law

T6) setInput(u):
apply control law

T7) EOMstep(obj.GroundTruth.x, obj.Input):
compute ego EOMs / evolve time step

Fig. 1 sketches an exemplary situation of an ego agent
instance (agent 1, blue box) of a connected automated
vehicle (CAV), as well as several spatially nearby other
agents (2-9) of various types. The most relevant neighbors,
defined by suitable detection criteria, are considered as
potential obstacles or interaction partners for the ego agent
(inside the dashed-bounded region), whereas some agents
lie outside and are not considered further in determining
the ego agent behavior. In Section 3, some typical imple-
mentations of specific agent types are illustrated, showing
that the proposed generic agent tasks indeed allow to cover
a considerable variety of traffic participant behavior.

2.2 Agent states and dynamics

In the scope of this work, we consider each agent i, i P A,
as a particle that performs horizontal planar motion. The
agent position pi “ rXi, Y isT , together with heading
(attitude) in terms of a yaw angle ψi (right-hand-side con-
vention) form the pose πi “ rXi, Y i, ψisT . The position
pi is defined in a cartesian global reference frame (X,Y )
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(“world frame”). The agent velocities vi “ rvix, viysT (longi-
tudinal and lateral, respectively) are expressed in a body-
fixed frame (xi, yi) related to the world frame (X,Y ) by

the rotation matrixRpψiq “
„

cosψi ´ sinψi

sinψi cosψi

ȷ

. Hence, this

transformation enters the system equations:

9pi “ Rpψiqvi (1)

In the scope of this work only planar motion is considered.
Altitude variation and line-of-sight-based obstacle detec-
tion is a potential future research topic.

To allow heterogeneous agent dynamics, but also to enable
a common understanding of pose and velocity information
across all agents, each agent must be able to express its
pose and velocity vectors as functions of the agent state
vector in the form

pi “ pipxiq respectively πi “ πipxiq (2)

vi “ vipxiq, (3)

and also define its system equation ODE in the form

9xi “ f ipxi,uiq. (4)

The state vector xi P Rni

represents the agent i’s “ground
truth” and may be chosen freely according to the agent
type and its specific dynamics, provided (2)–(3) can be

expressed. The flexible choice of the input vector ui P Rni
u

allows for kinematic or dynamic mechanical models of
varying complexity and structure. As (4) is nonlinear, a
numerical discretization in time is adopted. Here, a simple
forward-Euler scheme is applied,

xi
k`1 “ xi

k ` Ts 9xi
k. (5)

After all agent’s control laws have been evaluated in task
T5 (which utilized current, consistent information of its
ego and neighbor agents’ states or predictions), the agent
inputs ui

k, i P A are defined and all system states are
evolved in task T7 according to (4) and (5), providing the
new states xi

k`1. In the following selected agent tasks are
described in more detail.

2.3 Ego state estimation

The first task in Algorithm 1 is for an agent i P A to
obtain its current state estimate pxi. Trivially, for example

in simple simulations, this can directly depict the ground
truth of the agent states (pxi “ xi), but in more realistic
settings this step would perform state estimation and/or

sensor fusion actions. The estimated state pxi, respectively
the extracted estimated pose pπi “ πippxiq and estimated

velocities pvi “ vippxiq will then be utilized for prediction,
communication to other agents, and control.

2.4 Selection of nearby neighbor agents

A crucial functionality, being highly valuable to each
agent, is to obtain the subset of nearby neighbor agents
which are close, relevant, or critical due to their proximity,
type, or motion. Utilizing this information actually realizes
feedback coupling between agents.

We define the exemplary set Oi of relevant neighbors, i.e.
potential obstacles for agent i as

Oi “
␣

j P pAziq : |pj ´ pi| ă dmax ^ (6)

>peix,pj ´ piq P r´π{2, π{2s
(

Ă A .

These exemplary criteria select those neighbor agents
closer to agent i than a specified detection radius dmax P
R` and located in the forward-halfspace of agent i. The

unit vector eix “ Rpψiq r1, 0sT points into agent i’s
forward direction, and the operator >pa, bq P p´π, πs
represents the angle of vector b with respect to a, wrapped
into the indicated interval.

Note that the selection criteria can easily be adapted with
respect to the desired simulation output, e.g. when sim-
ulating lane change dynamics also agents in the negative
half space of the ego vehicle may be of relevance.

If the subset Oi (constructed only from the (estimated)
pose information of the agents) is much smaller thanA, i.e.
ˇ

ˇOi
ˇ

ˇ ! |A|, the number of considered interaction partners
and evaluation effort is significantly reduced. In large-
scale multi-agent systems, advanced data structures such
as binary space partitioning trees could be utilized to avoid
the need to iterate through all agents in the neighbor
selection process, see Dong et al. (2019) and references
therein for an overview.

2.5 Obstacle predictions

At time index k, the set Oi now contains all potential
obstacles for agent i. For further use of information on
these obstacles for the ego control decisions, it is vital
to collect both a current state estimate as well as the
predicted trajectories of the pose and velocity of agent
j P Oi over a specified prediction horizon Np P N.
Depending on the communication capabilities of agent i
and j P Oi, the following cases can be distinguished:

‚ no communication: Agent i estimates the current

state pxj|i of agent j and an exogenous prediction

of agent j’s pose and velocity pp
pred,j|i
k`l|k , pv

pred,j|i
k`l|k , l “

1, .., Np.
‚ communication of state estimates: Agent i retrieves
the current state (pose, velocity) from agent j, but
no predicted trajectory. Then, agent i estimates an
exogenous prediction of agent j’s pose and velocity
as above.
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and also define its system equation ODE in the form
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represents the agent i’s “ground
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type and its specific dynamics, provided (2)–(3) can be
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varying complexity and structure. As (4) is nonlinear, a
numerical discretization in time is adopted. Here, a simple
forward-Euler scheme is applied,
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k. (5)

After all agent’s control laws have been evaluated in task
T5 (which utilized current, consistent information of its
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inputs ui

k, i P A are defined and all system states are
evolved in task T7 according to (4) and (5), providing the
new states xi
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settings this step would perform state estimation and/or
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communication to other agents, and control.
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A crucial functionality, being highly valuable to each
agent, is to obtain the subset of nearby neighbor agents
which are close, relevant, or critical due to their proximity,
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R` and located in the forward-halfspace of agent i. The

unit vector eix “ Rpψiq r1, 0sT points into agent i’s
forward direction, and the operator >pa, bq P p´π, πs
represents the angle of vector b with respect to a, wrapped
into the indicated interval.

Note that the selection criteria can easily be adapted with
respect to the desired simulation output, e.g. when sim-
ulating lane change dynamics also agents in the negative
half space of the ego vehicle may be of relevance.

If the subset Oi (constructed only from the (estimated)
pose information of the agents) is much smaller thanA, i.e.
ˇ
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ˇ ! |A|, the number of considered interaction partners
and evaluation effort is significantly reduced. In large-
scale multi-agent systems, advanced data structures such
as binary space partitioning trees could be utilized to avoid
the need to iterate through all agents in the neighbor
selection process, see Dong et al. (2019) and references
therein for an overview.

2.5 Obstacle predictions

At time index k, the set Oi now contains all potential
obstacles for agent i. For further use of information on
these obstacles for the ego control decisions, it is vital
to collect both a current state estimate as well as the
predicted trajectories of the pose and velocity of agent
j P Oi over a specified prediction horizon Np P N.
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and j P Oi, the following cases can be distinguished:

‚ no communication: Agent i estimates the current

state pxj|i of agent j and an exogenous prediction

of agent j’s pose and velocity pp
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the current state (pose, velocity) from agent j, but
no predicted trajectory. Then, agent i estimates an
exogenous prediction of agent j’s pose and velocity
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‚ full communication: Agent i retrieves both the cur-
rent state estimate and predicted trajectory from
agent j via communication. These data are utilized,
assuming that they contain “first-hand” model infor-
mation of agent j.

Note that the motion predictions of the agents in Oi

are inherently uncertain which needs to be considered for
traffic safety as discussed in Gratzer et al. (2022a).

2.6 Ranking and selecting the critical obstacle

To transform the obstacle information into a simple and
usable form for the agent’s control laws, it is useful to
establish some criticality ranking of the set of potential
obstacles Oi, eventually providing one “most critical”
obstacle which is regarded by the control law in a suitable
way. As another contribution of this work this approach
allows to directly implement classical car-following models
which will be discussed later.

Formally, we can define a quantitative criticality criterion
Ci,j ą 0 where obstacles with smaller values are consid-
ered more critical (closer, or more imminent) than those
with larger values.

The authors propose, for an obstacle j P Oi, the following
simplified method to evaluate criticality Ci,j based on the
ego state pxi, the ego reference path pref,ipsq (arc length

parameter s), and obstacle motion predictions pp
pred,j|i
k`l

(l “ 1, .., Np). The ego vehicle is assumed to be close to
its reference path, and the arc length parameter s P R
increases continuously in ego forward direction. Let σjKi “
argmins |pref,ipsq ´ ppj | denote the arc length parameter
obtained when projecting agent j onto the ego reference
path. Consequently, σiKi is the arc length parameter of the
projected ego position.

‚ If the current obstacle position pp
j|i
k lies sufficiently

close to the ego reference path pref,i, set Ci,j “ σjKi´
σiKi.

‚ Otherwise, if the obstacle prediction pp
pred,j|i
k`l lies

sufficiently close to the ego reference path pref,i and

>peref,i, pvj|iq ą 0, set Ci,j “ σjKi ´ σiKi. The angle
condition (reference path orientation vector eref,i at
the intersection point vs. obstacle velocity vector)
tests whether the obstacle is coming from the right
(right-of-way in right-lane-traffic systems).

Finally, obstacles with Ci,j ď 0 are disregarded as they
correspond to obstacles behind the ego agent, and the most
critical obstacle j˚ “ argminj C

i,j is chosen and provided
as relevant obstacle to the control law. The typical car-
following quantities (such as projected relative velocity
∆v, projected distance d, projected time-to-collision TTC)
can be evaluated accordingly and are utilized in evaluating
the control law.

The proposed criterion could also be formulated with time-
to-collision instead of longitudinal distance, or extended to
include the predictions more accurately.

When employing more advanced control schemes it can be
useful to identify and consider multiple critical obstacles.

3. IMPLEMENTATION

3.1 Human-driven vehicle (HDV)

As an exemplary implementation of a powered human-
driven vehicle, a basic single-track model is employed to
define the uncontrolled vehicle equations of motion. Their
inputs are chosen as the steering angle and the longitudinal
acceleration, so lateral and longitudinal control is required.
This is accomplished here by suitable, well-known surro-
gate controllers taken from literature. Obstacle detection
and information is processed and fed to the longitudinal
control so that it can react accordingly. Lateral obstacle
avoidance capabilities can be added in the same fashion,
but are out of scope of this work.

Vehicle model Choosing the agent dynamics according to
a kinematic single-track model leads to the following equa-
tions of motion (EOM), whereby the index i is dropped:

9x “

»

—

—

—

—

–

9X
9Y
9ψ

9vx
9vy

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

–

„

cosψ ´ sinψ
sinψ cosψ

ȷ „

vx
vy

ȷ

vx tan pδq{Lwb

ax
0

fi

ffi

ffi

ffi

fl

, (7)

with state vector x “ rX, Y, ψ, vx, vysT and input vector

u “ rδ, axsT (steering angle and longitudinal acceleration,
respectively). The parameter Lwb represents the wheel
base distance. First order dynamics for the lower level
controller vx “ f paxq can be implemented for more
realistic vehicle dynamics.

Driver model The driver model comprises a longitudinal
and a lateral surrogate controller. The driver controls the
speed of the ego vehicle in relation to the vehicle ahead of
it. We identify the traffic participant “in front” of the ego
agent here by the obstacle detection and selection criteria
outlined in Sections 2.4–2.6. The identified nearest or most
critical obstacle is considered as predecessor and could be
an actual vehicle preceding the ego vehicle, an obstacle
(such as another vehicle crossing the ego path), or the
stopping line corresponding to a traffic light that soon
turns red or already shows red. This unified treatment
allows simple car-following models to be used and react
plausibly in the presence of obstacles or traffic lights. For
longitudinal control we implement the Intelligent Driver
Model (IDM) (Treiber and Kesting, 2013) in this example
agent, which results in the acceleration given by

a “ amax

˜

1 ´
ˆ

v

vref

˙δIDM

´
ˆ

s˚ pv,∆vq
∆s

˙2
¸

(8)

with the reference velocity vref , the bumper-to-bumper
distance ∆s and relative velocity ∆v to the predecessor
vehicle, the acceleration exponent δIDM and the desired
distance

s˚ pv,∆vq “ s0 ` max

ˆ

0, h v ` v∆v

2
?
b amax

˙

(9)

with the standstill distance s0 and the comfortable brak-
ing deceleration b. Of course any of the well known car-
following models can be used, e.g. the psycho-physical
Wiedemann99 model (Wiedemann, 1974), the Human
Driver Model (HDM) (Treiber and Kesting, 2013) or the

Krauß car-following model (Krauß, 1998). The lateral po-
sition of the ego vehicle is controlled with respect to its
current velocity and yaw angle ψ via the geometrical path-
tracking Stanley controller (Hoffmann et al., 2007):

δ “

$

&

%

ψ ` arctan K e
v if |ψ ` arctanK e{v| ă δmax

δmax if ψ ` arctanK e{v ě δmax

´δmax if ψ ` arctanK e{v ď ´δmax

(10)

with saturation at ˘δmax, the cross-track error e of the
front wheels to the nearest point on the ego reference path
pref,i, and the position gain K.

3.2 Connected automated vehicle (CAV)

Using the same vehicle model as in Section 3.1 and de-
pending on the connectivity of the vehicle, adaptive cruise
control (ACC) or cooperative ACC (CACC) strategies are
used for longitudinal and lateral control. The fact that the
proposed system model architecture provides each agent
with a pre-processed real-time environment of relevant
obstacles with their motion predictions greatly simplifies
the design of advanced, distributed model-predictive con-
trol. One such control approach has been proposed in
Thormann et al. (2020) and extended in Gratzer et al.
(2022b), in which a distributed model-predictive platoon
control law is augmented by collision safety constraints and
additionally designed to provide robust string stability.
Such a control concept can be realized in the present model
architecture in a straightforward way, which is subject of
ongoing research work.

3.3 Pedestrian

To model pedestrian behavior, the well-known social force
model (Helbing and Molnár, 1995) can be implemented in
the proposed generic agent structure in a straightforward
manner. The social force model is founded on the idea
that pedestrians move as a result of various “social force”
terms that act repulsive or attractive versus/towards other
nearby pedestrians or obstacles. As such, the outlined
mechanism of finding and providing access to neighboring
agents in each time step enables an elegant way to evaluate
these social force terms, which can be understood as the
control law of such pedestrian agents. The EOM are the
free-mass double integrators in X and Y (ψ ” 0).

3.4 Traffic light

A traffic light with predetermined static signal phase plan
is an example of an (immobile) infrastructure agent. The
EOM are irrelevant, i.e. p “ const.,v ” 0. A red traffic
light is considered as a static obstacle. All other functional-
ity (such as obstacle detection and communication) can be
utilized beneficially in the present setting. We introduce an
additional state in traffic light agents, the so-called Time
to Activate TTActivate which indicates when the traffic
light next turns red and thus becomes an obstacle. For
traditional traffic lights with a green-yellow-red switch-
ing sequence, this state is utilized to convey the remain-
ing time to red during the yellow-phase to other agents
without further communication requirements. TTActivate
carries the information whether the traffic light is red
(TTActivate “ 0), green (TTActivate “ 8, then the

traffic light is not considered as an obstacle by other
agents) or yellow/green flashing (0 ă TTActivate ă 8).
Other agents which utilize traffic light timing predictions
can thus interpret the TTActivate state accordingly to
decide about braking or still passing the intersection.

4. RESULTS & DISCUSSION

To illustrate the descriptive power of the proposed multi-
agent architecture, a synthetic intersection traffic test
problem is simulated. The proposed model structures have
been implemented in the MATLAB® software environ-
ment because it allows for efficient implementation of
various control laws and strategies for the agents.

Fig. 2 depicts several time instances of this simulated
scenario. It includes eight traffic light agents and 11
HDV agents with implemented detection radius dmax “
40m. The perspective of agent 10 is highlighted. All
vehicles spawn at a distance of 100m from the intersection
center with initial longitudinal velocity v0 “ 50 km{h and
follow their predetermined routes. These routes define the
reference paths of the vehicles pref,i and are considered
known a priori only to the assigned agents. The route of
agent 10 is displayed as a grey-dotted line. The control
inputs and the longitudinal velocity of agent 10 are shown
in Fig. 3. The simulation runs until t “ 20 s and each
agent i utilizes a constant-velocity prediction to predict
the trajectories of its detected obstacles in Oi since in this
example the case of no communication is considered.

Table 1. Control and simulation parameters

Global Simulation Settings
Ts 0.05 s sampling time
dmax 40 m detection radius
Np 30 samples prediction horizon
v0 50 50 km{h initial velocity after spawning

Lateral Control Parameters (Stanley, (10))
δmax 35 ° steering angle saturation
K 2.5 s´1 position gain

Longitudinal Control Parameters (IDM, (8), (9))
vref 55 km{h reference velocity
amax 2 m{s2 maximum acceleration
b 1.5 m{s2 comfortable braking deceleration
δIDM 4 { acceleration exponent
h 1 s time gap
s0 1 m standstill distance

At t “ 5.4 s, agent 10 has not yet entered the drawing
area, but already detects agents 1,2,7,8 and its predecessor
vehicle 9, for which a constant velocity prediction is dis-
played (red circles). The (ego) constant velocity prediction
of agent 10 is displayed in green. Note that the agents
outside the detection range of vehicle 10 are not visible
to the agent, i.e. they are not in Op10q. At t “ 6.8 s
agent 9 reduces its velocity to give agent 11 right of
way. Vehicles 12 and 13 approach the red traffic lights
with reduced velocity. At t “ 9.5 s agent 9 leaves the
intersection while agent 10 predicts the collision point with
agent 15 on its path (blue hexagram) and brakes to give
right of way. As soon as agent 15 cleared 1.5m from agent
10’s path after crossing it, agent 10 disregards agent 15
as nearest relevant obstacle, identifies again agent 9 as its
relevant predecessor (t “ 11.5 s) and starts to accelerate.
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additionally designed to provide robust string stability.
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terms that act repulsive or attractive versus/towards other
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these social force terms, which can be understood as the
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Other agents which utilize traffic light timing predictions
can thus interpret the TTActivate state accordingly to
decide about braking or still passing the intersection.

4. RESULTS & DISCUSSION

To illustrate the descriptive power of the proposed multi-
agent architecture, a synthetic intersection traffic test
problem is simulated. The proposed model structures have
been implemented in the MATLAB® software environ-
ment because it allows for efficient implementation of
various control laws and strategies for the agents.

Fig. 2 depicts several time instances of this simulated
scenario. It includes eight traffic light agents and 11
HDV agents with implemented detection radius dmax “
40m. The perspective of agent 10 is highlighted. All
vehicles spawn at a distance of 100m from the intersection
center with initial longitudinal velocity v0 “ 50 km{h and
follow their predetermined routes. These routes define the
reference paths of the vehicles pref,i and are considered
known a priori only to the assigned agents. The route of
agent 10 is displayed as a grey-dotted line. The control
inputs and the longitudinal velocity of agent 10 are shown
in Fig. 3. The simulation runs until t “ 20 s and each
agent i utilizes a constant-velocity prediction to predict
the trajectories of its detected obstacles in Oi since in this
example the case of no communication is considered.
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At t “ 5.4 s, agent 10 has not yet entered the drawing
area, but already detects agents 1,2,7,8 and its predecessor
vehicle 9, for which a constant velocity prediction is dis-
played (red circles). The (ego) constant velocity prediction
of agent 10 is displayed in green. Note that the agents
outside the detection range of vehicle 10 are not visible
to the agent, i.e. they are not in Op10q. At t “ 6.8 s
agent 9 reduces its velocity to give agent 11 right of
way. Vehicles 12 and 13 approach the red traffic lights
with reduced velocity. At t “ 9.5 s agent 9 leaves the
intersection while agent 10 predicts the collision point with
agent 15 on its path (blue hexagram) and brakes to give
right of way. As soon as agent 15 cleared 1.5m from agent
10’s path after crossing it, agent 10 disregards agent 15
as nearest relevant obstacle, identifies again agent 9 as its
relevant predecessor (t “ 11.5 s) and starts to accelerate.
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Fig. 2. Simulated intersection scenario: Left turns and passing a traffic light. The perspective of agent 10 is highlighted.
Agents inside the blue dotted detection cone are detected and predicted (red circles) while the ego prediction is
displayed in green. The blue hexagram indicates the predicted collision point with the most critical obstacle.

At t “ 12 s traffic light agents 1,2,5,6 switch to yellow
(3 s yellow-phase). Agent 17 calculates its clearing-time
tclear “ p∆s ` dbufferq {vego and enters the intersection

since tclear ą TTActivatep17q. The buffer distance dbuffer
ensures that the intersection is (mostly) cleared when
switched to red light (TTActivate “ 0 s). Agent 18 starts
reducing its velocity since it will not be able to pass the
traffic light. At t “ 15 s the traffic light agents switch while
agent 17 has already cleared the collision-safety relevant
part of the intersection. Agents 12,13,14,16 start to accel-
erate. After completing the left turn maneuver, agent 10
is about to reach its reference velocity vref “ 55 kmh´1.

Summing up, this example showed a considerable variety
of behavior (obeying red lights, turning left with correct
prioritization, reasonable car-following) and is resilient by
design. If new agents (such as pedestrians) are added that
interfere with existing agents, or if unexpected behavior
(such as red-light or priority violations) occurs, the sys-
tem has been seen to react resiliently and efficiently. By
resilient, we refer to robustness against communication
(prediction) losses, traffic rule violations, and uncertainties
in the evolution of the system dynamics or the composition
of agents, which has been observed in simulations. Nominal
traffic priority rules are implemented by simple decisions in
the way obstacles are regarded or disregarded. The model
architecture proves to be inherently agile with respect
to participating agents and the evolution of their system

Fig. 3. Control inputs and longitudinal velocity of agent 10.
The snapshot times of Fig. 2 are marked with vertical
red dotted lines.

dynamics. An analysis of more complex phenomena, e.g.
deadlocks, is out of scope here and part of future work.

Finally, the computational effort for the conducted (ar-
guably small-scale) simulation remains insignificant. The
above mentioned simulation can be conducted in near real-
time (tcalcsim “ 22 s) with a mean step() evaluation time
t̄calcstep per agent of 5.8ms. A comparison with a second

simulation run, see Table 2, shows that t̄calcstep per agent
scales linearly with the maximum amount of considered
agents Amax.

Table 2. Comparison of simulation times

Amax tcalcsim step() calls t̄calcstep/agent

Sim 1 19 22 s 3821 5.8ms
Sim 2 26 48 s 6095 8ms

∆12 +37% +118% +60% +38%

The simulations were carried out in a prototype MATLAB
implementation by computing each agent step sequentially
using an 2.3GHz Intel® Core™ i7 CPU. Since the model
structure allows simple parallelization of the computing
tasks, significant reduction in simulation time is expected
after further development.

Note that when increasing the complexity and size of an
intersection the set of relevant neighbors Oi of an agent
eventually saturates at a point of maximum neighbor
agent density. Further increase of the overall number of
simulated agents then does not increase the agent’s step()
computation time any further.

4.1 Outlook

With the successful implementation of the proposed multi-
agent traffic model, a flexible tool is available for traf-
fic simulation, optimization and control. In particular,
the implementation is, albeit having nonlinear dynamics,
straightforward to utilize in model-predictive control or
optimization tasks. An indicative list of features that can
potentially be implemented with small additional effort
are:

‚ pedestrian recognition and prediction
‚ modeling the individual trust in legal and reasonable
behavior of other road users (since the ranking and
criticality decisions of potential obstacles lies in the
responsibility of each agent)

‚ intelligent traffic light agents which perform optimal
control / optimization tasks

‚ further aggregating agents such as intersection man-
ager agents

‚ co-simulation use case (i.e., defer agent EOM evolu-
tion to dedicated simulation codes)

‚ linearization along predicted trajectory which allows
efficient optimization via SQP approaches

These features are currently under development by uti-
lizing the straightforward expandability of the proposed
model architecture.
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