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Background

Topic: Universal algebraic geometry
1997: B. Plotkin: Some concepts of algebraic geometry in univ. alg.
1999: G. Baumslag, A.Mjasnikov, V. Remeslennikov:
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2011/12: È. Danijarova, A.Mjasnikov, V. Remeslennikov:
Algebraic geometry over algebraic structures. II. Foundations
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Algebraic geometry over algebraic structures. IV. Equational
domains and codomains
2017: A. Pinus: Algebraic sets of universal algebras and algebraic
closure operator
2016: A. Pinus: On algebraically equivalent clones
2020: E. Aichinger, B. Rossi: A clonoid based approach to some
finiteness results in universal algebra
2021: E. Aichinger, B. Rossi: On the number of universal
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Basic concepts

Algebraic sets over clone F ≤ OA

(= solution sets of systems of equations over F )

ϱ ⊆ An algebraic ⇐⇒ ϱ = {x ∈ An | ∀i ∈ I : fi(x) = gi(x)}

for some fi , gi ∈ F (n) (i ∈ I , I any set).

ϱ12 = {(x1, x2, x3, x4) ∈ A4 | x1 = x2}
algebraic over any clone; solution set of 1 equation:

e(4)
1 (x1, x2, x3, x4) = e(4)

2 (x1, x2, x3, x4).

ϱ34 = {(x1, x2, x3, x4) ∈ A4 | x3 = x4}
algebraic over any clone; solution set of 1 equation:

e(4)
3 (x1, x2, x3, x4) = e(4)

4 (x1, x2, x3, x4).
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Equationally additive clones

Alg(n)F := {ϱ ⊆ An | ϱ algebraic over F} Alg F :=
⋃

n∈N+
Alg(n)F

Algebraic equivalence of clones F ,G ≤ OA

F ≡alg G algebraically equivalent ⇐⇒ Alg F = AlgG
(same algebraic geometry)

Theorem: for finite A: Pinus, 2016
|{F ≤ OA | F ‘equationally additive’}/ ≡alg| < ℵ0.

Clone F ≤ OA equationally additive

⇐⇒ ∀n ∈ N+ ∀ϱ, σ ∈ Alg(n)F : ϱ ∪ σ ∈ Alg(n)F
(algebraic sets closed under finite unions)
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Easy consequence

For a clone F ≤ OA

F equationally additive

=⇒ ∆
(4)
A = {(x1, x2, x3, x4) ∈ A4 | x1 = x2 or x3 = x4} ∈ Alg(4)F

We know
ϱ12 = {(x1, x2, x3, x4) ∈ A4 | x1 = x2} ∈ Alg(4)F
ϱ34 = {(x1, x2, x3, x4) ∈ A4 | x3 = x4} ∈ Alg(4)F

=⇒ ∆
(4)
A = ϱ12 ∪ ϱ34 ∈ Alg(4)F

since F is equationally additive
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A characterisation of equational additivity

Theorem Danijarova, Mjasnikov, Remeslennikov, 2010

A clone F ≤ OA is equationally additive ⇐⇒ ∆
(4)
A ∈ Alg F
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A characterisation of equational additivity

Theorem Danijarova, Mjasnikov, Remeslennikov, 2010

A clone F ≤ OA is equationally additive ⇐⇒ ∆
(4)
A ∈ Alg F

In a field
ϱ = {a ∈ An | ∀i ∈ I : fi(a) = 0} ∈ Alg F
σ = {a ∈ An | ∀j ∈ J : gj(a) = 0} ∈ Alg F
=⇒ ϱ ∪ σ = {a ∈ An | ∀i ∈ I ∀j ∈ J : fi(a) · gj(a) = 0}
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A characterisation of equational additivity

Theorem Danijarova, Mjasnikov, Remeslennikov, 2010

A clone F ≤ OA is equationally additive ⇐⇒ ∆
(4)
A ∈ Alg F

In general
ϱ = {a ∈ An | ∀i ∈ I : fi(a) = f ′

i (a)} ∈ Alg F
σ =

{
a ∈ An

∣∣ ∀j ∈ J : gj(a) = g ′
j (a)

}
∈ Alg F

∆
(4)
A = {a ∈ A4 | ∀k ∈ K : hk(a) = h′

k(a)} ∈ Alg F
=⇒ ϱ ∪ σ =

{
a ∈ An

∣∣ ∀k ∈ K ∀i ∈ I ∀j ∈ J :
hk(fi(a), f ′

i (a), gj(a), g ′
j (a)) = h′

k(fi(a), f
′
i (a), gj(a), g ′

j (a))
}
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Goal

Which clones in Post’s lattice are equationally additive?
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Exploiting the Boolean domain

On finite sets A
ϱ ⊆ An algebraic over F ⇐⇒ ϱ = {x ∈ An | ∀i ∈ I : fi(x) = gi(x)}

for some fi , gi ∈ F (n) (i ∈ I , I finite set).

Theorem Tóth, Waldhauser, 2017
. . . study solution sets of finitely many equations on finite sets

∀F ≤ O{0,1} : Alg F = InvA F ∗ F ∗. . . centraliser of F

With characterisation of eqn. additivity:

F ≤ O2 equationally additive ⇐⇒ ∆
(4)
2 ∈ Alg F = Inv2 F ∗

Consequence: Alg F = Alg F ∗∗

F ≤ O2 equationally additive ⇐⇒ F ∗∗ equationally additive
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Characterisation for Boolean clones part 1

Known fact e.g. Pöschel/Kalužnin, 1.3.1

PolA
{
∆

(4)
A

}
= PolA

{
∆

(3)
A

}
=

〈
O(1)

A

〉
OA

∆
(3)
A = {(x1, x2, x3) ∈ A3 | x1 = x2 or x2 = x3}

For F ≤ O2 Aichinger, Rossi, MB

F eqn. additive ⇐⇒ ∆
(4)
2 ∈ Inv2 F ∗

⇐⇒ ∆
(3)
2 ∈ Inv2 F ∗

⇐⇒ F ∗ ⊆ Pol2
{
∆

(4)
2

}
=

〈
O(1)

2

〉
O2

= (S ∩ T0 ∩ T1)
∗

⇐⇒

⟨{p}⟩O2
= ⟨{µ,m}⟩O2

=

S ∩ T0 ∩ T1 ⊆ F ∗∗

⇐⇒ F ∗∗ has majority µ & minority op. m
⇐⇒ F ∗∗ has Pixley op. p
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Boolean centraliser clones

S1

S3
1

S2
1

S12

S11

S10

S3
12

S2
12

S3
11

S2
11

S3
10

S2
10

S00

S3
00

S01

S3
01

S02

S3
02

S0

S3
0

S2
0

S2
00

S2
01

S2
02

J A

⟨{∧}⟩ ⟨{∨}⟩
⟨{c0}⟩ ⟨{c1}⟩⟨{¬}⟩

〈
O(1)

2

〉
⟨C⟩

L0 L1

⟨{m}⟩

L
⟨{µ}⟩

M2

T0 = {c0}∗ {c1}∗ = T1

O2

M1

M0

M
C∗

⟨{p}⟩
{¬}∗ = S

Kuznecov, 1979
Hermann, 2008

eqn. additive
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S2
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S3
00

S01
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S3
02

S0

S3
0

S2
0

S2
00
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2
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L0 L1

⟨{m}⟩

L
⟨{µ}⟩

M2

T0 = {c0}∗ {c1}∗ = T1

O2

M1

M0

M
C∗

⟨{p}⟩
{¬}∗ = S

Kuznecov, 1979
Hermann, 2008

F ≤ O2

eqn. add.
⇐⇒
⟨{p}⟩ ⊆ F ∗∗

centraliser
no centraliser
eqn. additive
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1: unary
2: vector space
3: Boolean
4: lattice
5: semilattice
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Characterisation for Boolean clones part 2

For F ≤ O2 Aichinger, Rossi, MB

F eqn. additive ⇐⇒ S00 ∈ F or S10 ∈ F or ⟨{µ}⟩O2
∈ F

⇐⇒ ((x , y , z) 7→ x ∨ (y ∧ z)) ∈ F or
((x , y , z) 7→ x ∧ (y ∨ z)) ∈ F or
majority µ ∈ F

⇐⇒ ∃f ∈ F (3)\
{
e(3)
1

}
: f (x , x , y) ≈ x ≈ f (x , y , x)

⇐⇒ F ̸⊆ ⟨{∧, c0, c1}⟩O2
and

F ̸⊆ ⟨{∨, c0, c1}⟩O2
and

F ̸⊆ L

⇐⇒ ⟨{0, 1};F ⟩ has TCT-type
3 (Boolean algebra) or
4 (lattice)
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Demonstrating equational additivity explicitly

S00 = ⟨{f }⟩O2
, f (x , y , z) = x ∨ (y ∧ z)

∆
(4)
2 =

{
(x1, x2, x3, x4) ∈ {0, 1}4

∣∣∣∣∣ f (x3, x4, x1) = f (x3, x4, x2)

f (x4, x3, x1) = f (x4, x3, x2)

}

S10 = ⟨{f }⟩O2
, f (x , y , z) = x ∧ (y ∨ z)

∆
(4)
2 =

{
(x1, x2, x3, x4) ∈ {0, 1}4

∣∣∣∣∣ f (x3, x4, x1) = f (x3, x4, x2)

f (x4, x3, x1) = f (x4, x3, x2)

}

⟨{µ}⟩O2
, µ Boolean majority

∆
(4)
2 =

{
(x1, x2, x3, x4) ∈ {0, 1}4

∣∣∣ µ(x3, x4, x1) = µ(x3, x4, x2)
}
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Putting results about TCT-types into perspective

Proposition Aichinger, Rossi, MB
F ≤ OA equationally additive
=⇒ ∀α, β ∈ Con⟨A;F ⟩ \ {∆A} : α ∩ β ⊋ ∆A.

Consequence:
A equationally additive, 2 ≤ |A| < ℵ0 =⇒ A subdirectly irreducible

For finite algebras A with Taylor term operation
A equationally additive, 2 ≤ |A| < ℵ0

=⇒ A subdirectly irreducible, monolith α non-Abelian, i.e.
[α, α] = α ⊋ ∆A

Boolean TCT-type results: F ≤ O2 eqn. add. ⇐⇒ F type 3 or 4
= results about monoliths of two-element s.i. algebras
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More TCT-related facts we can prove

|A| ≥ 2, F =
〈
F (1)

〉
OA

≤ OA (ess. at most unary)

=⇒ F not equationally additive

A finite minimal algebra
Clo(A) equationally additive ⇐⇒ typ(A) ∈ {3, 4}

A finite E-minimal algebra
Clo(A) equationally additive ⇐⇒ typ(A) ∈ {3, 4}
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The number of equationally additive clones on
finite sets

|A| |LA| |↑LA{C}| eqn. additive eqn. additive ⊇ C

2 ℵ0 7 ℵ0 2

3 2ℵ0 2ℵ0 2ℵ0 ?
≥ 4 2ℵ0 2ℵ0 2ℵ0 2ℵ0

2ℵ0 Janov, Mučnik, 1959
2ℵ0 Ágoston, Demetrovics, Hannák, 1983
2ℵ0 factoring to get Ágoston, Demetrovics, Hannák clones
2ℵ0 trivial
2ℵ0 great bunch of Zhuk’s clones of self-dual ops. on {0, 1, 2},

2015
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The end

Thank you. . .
. . . very much for listening

Questions, comments and remarks. . .
. . . most welcome
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