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Abstract
For billiards in an ellipse e with an ellipse as caustic, there exist canonical coordinates
on e such that the billiard transformation from vertex to vertex is equivalent to a shift of
coordinates. A kinematic analysis of billiard motions offers a new approach to canon-
ical parametrizations of billiards and associated Poncelet grids. This parametrization
uses Jacobian elliptic functions with the modulus equal to the numerical eccentricity
of the caustic and is the basis for proving a few invariants of periodic billiards.
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1 Introduction

A billiard is the trajectory of a mass point within a domain with ideal physical
reflections in the boundary, which sometimes is called a billiard table. Already for
two centuries, billiards in ellipses and their projectively equivalent counterparts have
attracted the attention of mathematicians, beginning with Jean-Victor Poncelet and
Carl Gustav Jacob Jacobi. The assertion that one N -periodic billiard inscribed in an
ellipse e and tangent to a confocal ellipse c called caustic implies a one-parameter
family of such polygons, is known as the standard example of a Poncelet porism. It
was Arthur Cayley who derived general algebraic conditions for the existence of an
N -sided polygon with a circumscribed conic e and an inscribed conic c.

In 2005, Tabachnikov published the book on billiards [21] which covers a wide
variety of themes around this topic. Dragović and Radnović addressed billiards in
conics and quadrics, even in higher dimensions, within the framework of dynamical
systems (see the book [6] and various papers, e.g., [5,7]).
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On the motion of billiards in ellipses 1603

Recent computer animations carried out by Reznik, stimulated a new vivid interest
on this well studied topic, where algebraic and analytic methods are meeting. Origi-
nally, Reznik’s experiments focused on billiardmotions in ellipses, i.e., on the variation
of billiards with a fixed circumscribed ellipse e and inscribed caustic c. For periodic
billiards he published a list of more than 80 numerically detected invariants in [17]
and provided several proofs together with his coauthors Garcia, Koiller and Helman.
Also other authors like Akopyan, Bialy, Chavez-Caliz, Schwartz, and Tabachnikov
published proofs and found additional invariants (e.g., in [1,2,4]).

Related work. Since Jacobi’s proof of the Poncelet theorem on closed polygons with
a circumcircle and incircle in 1828 [14], it has been well known that there is a tight
connection between billiards and elliptic functions (see further references in [5, p. 320]
and note also [8]). These functions enable to parametrize the circumscribed conic such
that the billiard transformation from one vertex to the next one acts like a shift. We
call such parameters canonical. In 1994, King proved the existence of a canonical
parameter using measure theory; he presented an explicit formula in [15, (1.10)]. In
[21], Tabachnikov showed the existence of canonical parameters with the Arnold–
Liouville theorem from the theory of completely integrable systems (see also [13]).

Similarly, the caustic is said to have Poritsky property if there is a parametrization
such that the transition from one contact point of the billiard to the next one is a
shift. This is due to Poritsky [16] who proved in 1950, that this property characterizes
ellipses as boundary. In [16, (8.1)] he presented a formula for this parameter, which
we call the Poritzky string length. Glutsyuk, Izmestiev and Tabachnikov generalized
Poritzky’s result in [11] and proved equivalences between the Poritsky property, the
Graves property and the Ivory property of curves on Riemannian surfaces. Glutsyuk
presented in [10] an expression for the Poritsky string length for caustics which is
valid on all Riemannian surfaces of constant curvature.

Article structure. The main goal of this paper is to demonstrate that a velocity analysis
of the billiard motion paves the way to an explicit canonical representation of the said
billiards in terms of Jacobian elliptic functions.

In Sect. 2 we present a summary of relevant properties of confocal conics. A graph-
ical velocity analysis of the billiard motion and its continuation to the associated
Poncelet grid in Sect. 3 results in a new motion invariant. This is the basis for a new
approach to canonical coordinates on the ellipse e as presented in Sect. 4: The velocity
vectors define an infinitesimal transformation in the plane which preserves a family
of confocal ellipses while it permutes the confocal hyperbolas as well as the tangents
of the caustic.

The infinitesimal transformation generates a one-parameter Lie group. Its canonical
parametrization uses Jacobian elliptic functions with the numerical eccentricity of the
caustic c as modulus and yields canonical coordinates on each ellipse of the confocal
family and simultaneously a Poritzky string length on the caustic. Moreover, this
parametrization gives rise to a mapping that sends a square grid together with the
diagonals to a Poncelet grid. It is an extension of a mapping shown in [7, Figure 13],
which transforms a zig-zag polygon into a billiard.

Finally, in Sect. 5 the foregoing results are used to prove for periodic billiards the
numerically detected invariants k116 and k117 out of Reznik’s list [17] and to reveal
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two new invariants in the Theorems 5.2 and 5.4. These invariants deal mainly with the
distances on each billiards’ side between the endpoint and the contact point with the
caustic.

In the present paper, we confine ourselves on billiards in ellipses with an ellipse as
caustic. Similar results for cases with a hyperbola as caustic can be directly deduced
using the isometric correspondence between the two types as presented in [19, Theo-
rem 1].

2 Confocal conics and billiards

At the beginning, we recall a few properties of confocal conics. A family of confocal
central conics is given by

x2

a2 + k
+ y2

b2 + k
= 1, where k ∈ R\{−a2,−b2} (2.1)

serves as a parameter in the family. All these conics share the focal points F1,2 =
(±d, 0), where d2 ..= a2 − b2.

Given any confocal family of central conics, there is one ellipse and one hyperbola
containing any point P which is not placed on the axes [9, p. 38]. The parameters
(ke, kh) of these two conics define the elliptic coordinates of P with

− a2 < kh < − b2 < ke.

If (x, y) are the Cartesian coordinates of P , then (ke, kh) are the roots of the quadratic
equation

k2 + (a2 + b2 − x2 − y2)k + (a2b2 − b2x2 − a2y2) = 0, (2.2)

while conversely

x2 = (a2 + ke)(a2 + kh)

d2
, y2 = − (b2 + ke)(b2 + kh)

d2
. (2.3)

Suppose that (a, b) in (2.1) are the semiaxes (ac, bc) of the ellipse c with k = 0.
Then, for points P on a confocal ellipse e with semiaxes (ae, be) and k = ke > 0, i.e.,
exterior to c, the standard parametrization yields

P = (x, y) = (ae cos t, be sin t), 0 � t < 2π,

with a2e = a2c + ke, b2e = b2c + ke. For the elliptic coordinates (ke, kh) of P it follows
from (2.2) that

ke + kh = a2e cos
2t + b2e sin

2t − a2c − b2c .
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Fig. 1 The periodic billiard P1P2 . . . P5 inscribed in e with the caustic c along with the conjugate billiard
P ′
1P

′
2 . . . P ′

5

After introducing the respective tangent vectors of e and c, namely

te(t) ..= (−ae sin t, be cos t), tc(t) ..= (−ac sin t, bc cos t),

where ‖te‖2 = ‖tc‖2 + ke, we obtain

kh = kh(t) = − (a2c sin
2t + b2c cos

2t) = − ‖tc(t)‖2 = − ‖te(t)‖2 + ke (2.4)

and ‖te(t)‖2 = ke − kh(t). Note that points on the confocal ellipses e and c with
the same parameter t have the same coordinate kh . Consequently, they belong to the
same confocal hyperbola (Fig. 2). Conversely, points of e or c on this hyperbola have
a parameter out of {t,−t, π + t, π − t} modulo 2π .

Let θi/2 denote the angle between the tangents drawn from any point Pi ∈ e to c
and the tangent to e at Pi (Figs. 1 or 3). Then we obtain for Pi = (ae cos ti , be sin ti )
with elliptic coordinates (ke, kh(ti ))

sin2
θi

2
= ke

‖te(ti )‖2 = ke
ke − kh(ti )

, tan
θi

2
= ±

√
− ke
kh(ti )

and sin θi = ±2
√−kekh(ti )

ke − kh(ti )
= ±2‖tc(ti )‖√ke

‖te(ti )‖2 .

(2.5)

For a proof see [20]. We assume a counter-clockwise order of the billiard. Hence, all
exterior angles θi are positive.

From (2.4) it follows that

kh = − a2c tan
2 t + b2c

1 + tan2 t
, hence tan2 t(a2c + kh) = − b2c − kh
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Fig. 2 Periodic billiard P1P2 . . . P9 in ewith turning number τ =1, the caustic c and a part of the associated
Poncelet grid. The extended sides form a billiard with τ = 2 in e(1) and three triangles as billiards in e(2)

and furthermore

sin t cos t = tan t

1 + tan2 t
=

√−(b2c + kh)(a2c + kh)

a2c − b2c
= ah bh

d2
(2.6)

with ah and bh as semiaxes of the hyperbola corresponding to the parameter t , i.e.,
a2h = a2c + kh and b2h = −(b2c + kh).

Let . . . P1P2P3 . . . be a billiard in the ellipse ewith the confocal ellipse c as caustic.
Then the extended sides intersect at points

S( j)
i

..=
{

[Pi−k−1, Pi−k] ∩ [Pi+k, Pi+k+1] for j = 2k,

[Pi−k, Pi−k+1] ∩ [Pi+k, Pi+k+1] for j = 2k − 1,

where i = . . . , 1, 2, 3, . . . and j = 1, 2, . . . These points are distributed on different
confocal conics: For fixed j , there are ellipses e( j) passing through the points S( j)

i . On

the other hand, the points S(2)
i , S(4)

i , . . . are located on the confocal hyperbola through

Pi , while S
(1)
i , S(3)

i , . . . belong to the confocal hyperbola through the contact point Qi

between the side Pi Pi+1 and the caustic c. This configuration is called the associated
Poncelet grid (Fig. 2). For periodic billiards the sets of points S( j)

i and associated
conics are finite. The turning number τ of a periodic billiard in e with an ellipse as
caustic counts how often one period of the billiard surrounds the center O of e (note
Fig. 2).

For each billiard P1P2 . . . in e with caustic c there exists a conjugate billiard
P ′
1P

′
2 . . . in e with the same caustic (Fig. 1). An axial scaling c → e maps the contact

point Qi ∈ c of Pi Pi+1 to P ′
i while the inverse brings Pi to the contact point Q

′
i−1 of
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F2F1

P2
tP

Q1
Q2

r2
l2

e

c

vt1

vn1

vt2

vn2

v2

ω1

ω2

θ2
2

Fig. 3 Velocity analysis resulting from Graves’ string construction of the ellipse e

P ′
i−1P

′
i with the caustic. The relation between these billiards is symmetric and shows

that any canonical parameter of e serves also as Poritzky string length on c. In the sense
of canonical coordinates, the vertices P ′

1P
′
2 . . . are the midpoints between consecutive

vertices of the original billiard. For further details on the associated Poncelet grid see
[20, Section 3.2] and the references cited there.

3 Velocity analysis

Let the first vertex of a billiard P1P2 . . . move smoothly along the circumscribed
ellipse e. Then this induces a continuous variation of all other vertices along e and
also of the intersection points S( j)

i along e( j) (see [1] or [20]). We call this a billiard
motion, though it neither preserves angles or distances nor is an affine or projective
motion .

According to Graves’ construction [9, p. 47], we can assume that each vertex Pi ∈ e
keeps a string of fixed length taut which is wrapped around the caustic c without
slipping on c. We translate this in the language of kinematics.

Let us focus on the vertex P2 (see Fig. 3). The extended line [Q1, P2] of the
side Q1P2 rolls at Q1 on c (=fixed polode) while point P2 moves along this line
(=moving polode) with the velocity vector vt1 . The instantaneous rotation about Q1
with the angular velocity ω1 assigns to P2 a velocity vector vn1 orthogonal to Q1P2
in order to keep the vector of absolute velocity of P2, namely v2 = vt1+ vn1 , tangent
to the ellipse e.

Similarly,we have a second decomposition v2 = vt2+vn2 , since at the same time the
line [Q2, P2] rotates about Q2 with the angular velocity ω2, while P2 moves relative
to this line. Due to the constant length of the string, the tangential components in these
two decompositions must be of equal lengths ‖vt2‖ = ‖vt1‖. Since the tangent tP to
e at P2 bisects the exterior angle of Q1P2Q2, the second decomposition is symmetric
with respect to (w.r.t. in brief) tP to the first one. From ‖vn2‖ = ‖vn1‖ it follows for
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Fig. 4 Velocities of the vertices P1, P2, . . . , P5 of a periodic billiard in the ellipse e with the caustic c

the distances r2 ..= P2Q1 and l2 ..= P2Q2 that

l2 ω2 = r2 ω1, or
ω1

ω2
= l2

r2
, (3.1)

and similarly for all other vertices. If the billiard is N -periodic, then the product of all
ratios li/ri for i = 1, . . . , N yields

l1
r1

· l2
r2

· · · lN
rN

= ωN

ω1
· ω1

ω2
· · · ωN−1

ωN
= 1,

which results in the equation

l1l2 . . . lN = r1r2 . . . rN (3.2)

listed as k116 in [17, Table 2].
Figure 4 shows a graphical velocity analysis for the billiard motion of a 5-sided

periodic billiard. We can begin this analysis by choosing an arbitrary length for the
arrow representing the velocity vector v2 of P2. This defines the two components vt2
and vn2 , where the latter determines the angular velocity ω2 of the side P2P3 and
furtheron the absolute velocity v3 of P3. This can be continued. From now on, we
denote the norms ‖vt1‖ = ‖vt2‖ and ‖vn1‖ = ‖vn2‖ of the respective components of
the velocity vector vi of Pi with vt |i and vn|i .
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On the motion of billiards in ellipses 1609

In terms of the exterior angles θ1, θ2, . . . of the billiard, we obtain from (3.1)

sin
θ2

2
= l2 ω2

v2
= r2 ω1

v2
and cos

θ2

2
= vt |2

v2
, where v2

..= ‖v2‖. (3.3)

Let Ri denote the pole of the line [Pi , Pi+1] w.r.t. e. Since the poles of a line � w.r.t.
confocal conics lie on a line orthogonal to �, the side P1P2 is orthogonal to [Q1, R1]
(Fig. 4), which means

R1Q1 = l1 tan
θ1

2
= r2 tan

θ2

2
. (3.4)

From (3.4) and (3.3) it follows that

l1 tan
θ1

2
= l1

l1ω1

vt |1
= r2 tan

θ1

2
= r2

r2ω1

vt |2
and

vt |2
vt |1

= r22
l21

= tan2(θ1/2)

tan2(θ2/2)
.

This shows by virtue of (2.5), that the products

vt |1 tan2
θ1

2
= vt |2 tan2

θ2

2
= · · · = vt |i

ke
‖tc|i‖2

for i = 1, 2, . . . remain constant along the billiard.Wedenote this quantity temporarily
with C and recognize that this is a new invariant of the billiard motion.

Instead of a free choice of v2, it means no restriction of generality to set C = ke.
Then we obtain by (2.5) for the point Pi = (ae cos ti , be sin ti ) of the ellipse e,

vt |i = ‖tc‖2 = − kh, vn|i = vi sin
θi

2
= ‖tc‖

√
ke = √−kekh ,

vi = ‖tc‖2
cos(θi/2)

= ‖tc‖‖te‖ = √
kh(kh − ke) for t = ti and kh = kh(ti ).

(3.5)

4 Billiardmotion and the underlying Lie group

Our specification of the quantity C assigns to the vertex Pi ∈ e with parameter ti a
non-vanishing velocity vector vi = ‖tc(ti )‖ te(ti ). This assignment can immediately
be extended to all points of e as

v(t) = ‖tc(t)‖ te(t) =
√
a2c sin

2 t + b2c cos2 t te(t). (4.1)

There exists a parameter u on e such that the differentiation by u results in the said
velocity vector. If a dot indicates this differentiation, then

v(t) = ‖tc(t)‖ te(t) = ṫ te(t).
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c

e

Q

tQ

vn

vt

Fig. 5 The infinitesimal motion assigns to each point of the Poncelet grid a velocity vector such that on
each tangent tQ to the caustic c the points remain aligned

We can extend this to all confocal ellipses of the caustic. Then the assignment of a
velocity vector v(t) to each point P = (ae cos t, be sin t) with a2e − b2e = a2c − b2c
defines an instant motion of the plane, where

ṫ = dt

du
= ‖tc(t)‖ = √−kh(t) =

√
a2c sin

2 t + b2c cos
2 t . (4.2)

We prove below, that this instant motion is compatible with the billiard and the asso-
ciated Poncelet grid. This means in particular, that the velocities in (3.5) are also valid
for the induced movement of the grid points S( j)

i along e( j).
Figure 5 shows a portion of the Poncelet grid and the velocity vectors of a couple of

points, each represented by a scaled arrow. As indicated, for any point Q ∈ c all points
on the tangent tQ have velocity vectors v where the respective normal components
‖vn‖ are proportional to the distances to Q. On the other hand, all points on any
confocal hyperbola share the tangential component ‖vt‖ in accordance with (3.5).

Theorem 4.1 Let the billiard P1P2 . . . with the ellipse c as caustic be moving along
the circumscribed ellipse e. Then themotion is the action of a one-parameter Lie group
�. Each transformation γ (u) ∈ � preserves the confocal ellipses and permutes the
confocal hyperbolas as well as the tangents to c.
(1) If (ac, bc) are the semiaxes of the caustic c with the tangent vectors tc(t) =
(−ac sin t, bc cos t), then for all confocal ellipses e with semiaxes (ae, be) the � gen-
erating instant motion is defined, up to a scalar, by the vector field

(x, y) = (ae cos t, be sin t) �→ ‖tc‖ te = √−kh(t)

(
−ae y

be
,
bex

ae

)
(4.3)

with a2e − b2e = a2c − b2c = d2 and a2e − a2c � 0.
(2) If we parametrize the quadrant x, y > 0 by elliptic coordinates as X(ke, kh), then
the vector field can be expressed as

X(ke, kh) �→ − 2
√
kh(a2c + kh)(b2c + kh)

∂X
∂ kh

. (4.4)
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On the motion of billiards in ellipses 1611

Proof (1) The first derivative ṫ in (4.2) is independent of the choice of the ellipse e.
Therefore γ (u) permutes the confocal hyperbolas. On the other hand, the representa-
tion v = ‖tc‖ te reveals that all confocal ellipses remain fixed. Furthermore, we verify
that the position of any point P on the tangent tQ to c at Q (see Fig. 5) is preserved
under the infinitesimal motion:
Given P = (ae cos t, be sin t) ∈ e and Q = (ac cos t ′, bc sin t ′), the point P lies on tQ
if and only if

bcae cos t
′cos t + acbe sin t

′sin t = acbc. (4.5)

This is preserved under the infinitesimal motion if differentiation by u based on (4.2)
yields an identity, namely

‖tc(t ′)‖
(−bcae sin t

′cos t + acbe cos t
′sin t

)
= − ‖tc(t)‖

(−bcae cos t
′sin t + acbe sin t

′cos t
)
.

(4.6)

In order to verify this, we square both sides and substitute from the squared equation
(4.5) the mixed term 2acbcaebe sin t ′cos t ′sin t cos t . After some computations, this
yields for both sides

d2(sin2 t − sin2 t ′)
(
a2c b

2
e sin

2 t ′sin2 t + b2ca
2
e cos

2 t ′cos2 t − a2c b
2
c

)
.

The velocity analysis in (3.5) for the particular ellipse e confirms, that also the signs
of both sides in (4.6) are equal.

(2) From (2.3) it follows for (x, y) = X(ke, kh) that

2x
∂x

∂kh
= a2c + ke

d2
, 2y

∂ y

∂kh
= − b2c + ke

d2

and therefore

Xkh = ∂X
∂ kh

= 1

2d2

(
a2c + ke

x
, −b2c + ke

y

)
= −1

2d2 sin t cos t
te.

This implies by (2.4) and (2.6)

‖tc‖ te = λXkh with λ = − 2ahbh
√−kh = − 2

√
kh(a2c + kh)(b2c + kh),

which confirms the claim in (4.4). 	

The vector field (4.3) defines a canonical parameter u for the one-parameter Lie

group �, i.e., for transformations γ (u) ∈ � it holds γ (u2)◦γ (u1) = γ (u1 + u2).
At the same time, u provides canonical coordinates1 on each confocal ellipse: If the

1 Of course, canonical coordinates on the ellipses are uniqueonly up to additive andmultiplicative constants.
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coordinates of P2 and P1 differ by 2�u, then

γ (2�u) : Pi �→ Pi+1, Qi �→ Qi+1, S( j)
i �→ S( j)

i+1 for all i ∈ {1, 2, . . . }.

According to (4.1), the velocity v(t) of any point Q = (ac cos t, bc sin t) on the
caustic c is given as

v(t) = ‖tc(t)‖2 = a2c + b2c − OQ 2,

where OQ denotes the distance of Q to the center O .
On the other hand, from (4.2) it follows that ṫ = ‖tc(t)‖. This implies in combination

with the well-known formula κc(t) = acbc/‖tc(t)‖3 for the curvature of c at Q (see
[9, p. 79]) that the arc length sc of the caustic c satisfies

ṡc = dsc
du

= ‖tc(t)‖ ṫ = ‖tc(t)‖2 =
(
acbc
κc(t)

)2/3
.

Herewith we confirm for the Euclidean plane Glutsyuk’s formula for a Poritzky string
length in [10, (1.1)]. From (2.4) there follows another expression.

Corollary 4.2 In terms of elliptic coordinates (ke, kh) connected with the family of
confocal conics of the caustic c, the arc length sc of c and a Poritzky string length u
are related by

dsc
du

= − kh .

In order to express the action of the transformation γ (u) ∈ � on an initial point
(ae cos t, be sin t), we integrate (4.2)

ṫ = dt

du
=

√
a2c sin

2 t + (a2c − d2) cos2 t = ac
√
1 − m2 cos2 t

with m ..= d/ac < 1 as numerical eccentricity of the caustic c. The substitution

ϕ ..= t − π

2

results in

dϕ√
1 − m2 sin2 ϕ

= ac du.

The initial condition ϕ = 0 for u = 0 yields the unique solution

ac u(ϕ) = F(ϕ,m) =
∫ ϕ

0

dϕ√
1 − m2 sin2 ϕ

(4.7)
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On the motion of billiards in ellipses 1613

with F(ϕ,m) as the elliptic integral of the first kind with the modulus m. The equa-
tion (4.7) shows the canonical coordinate u in terms of ϕ with the quarter period

K ..= ac u

(
π

2

)
=

∫ π/2

0

dϕ√
1 − m2 sin2 ϕ

.

For the sake of simplicity, we introduce a new canonical coordinate by

ũ(ϕ) ..= acu(ϕ).

The inverse function of ũ = F(ϕ,m), namely the Jacobian amplitude ϕ = am(ũ)

leads to the Jacobian elliptic functions, the elliptic sine

sn ũ = sin(am(ũ)) = sin ϕ = − cos t

with sn(−ũ) = −sn ũ, the elliptic cosine

cn ũ = cos(am(ũ)) = cosϕ = sin t

with cn(−ũ) = cn ũ, and the delta amplitude

dn ũ =
√
1 − m2 sn2ũ

with dn(−ũ) = dn ũ as the third elliptic base function [12]. Moreover, for k ∈ Z,

sn(ũ + 2kK ) = (−1)ksn ũ,

cn(ũ + 2kK ) = (−1)kcn ũ,

dn(ũ + 2kK ) = (−1)kdn ũ.

This gives rise to the canonical parametrization of the ellipse e with semiaxes
(ae, be) as

(−aesn ũ, becn ũ
)

for 0 � ũ < 4K = 4ũ

(
π

2

)
.

As an alternative, we can proceed with elliptic coordinates. From (4.4) and

dX
du

= k̇e
∂X
∂ ke

+ k̇h
∂X
∂ kh

= − 2
√
kh(a2c + kh)(b2c + kh)

∂X
∂kh

it follows that for the orbits of the Lie group k̇e = 0 and

k̇h = − 2
√
kh(a2c + kh)(b2c + kh).
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Q1(Δũ )

P1(0)

P2(2Δũ)

y

c

e

Fig. 6 Dependence between the minor semiaxes be , bc and the interval �ũ

As expected, the orbits are confocal ellipses. Integration of

dkh√
kh(a2c + kh)(b2c + kh)

= − 2 du (4.8)

gives again an elliptic integral, this time in the so-called Riemannian form.

Theorem 4.3 (1) Let c be the ellipse c with semiaxes (ac, bc) and linear eccentric-
ity d = √

a2c − b2c . Then for all confocal ellipses e with semiaxes (ae, be), the
inscribed billiards with the caustic c can be canonically parametrized using the
Jacobian elliptic functions to the modulus m = d/ac (=numerical eccentricity of
c) as

(−aesn ũ, becn ũ).

If bc = becn(�ũ), then the vertices of the billiards in e with caustic c have the
canonical parameters ũ = (ũ1 + 2k�ũ) for k ∈ Z and any given initial ũ1 .

(2) Conversely, we obtain an ellipse e for which the billiards with caustic c are N-
periodic with turning number τ , where gcd(N , τ ) = 1, by the choice

�ũ = 2τK

N

with K as the complete elliptic integral of the first kind to the modulus m, provided
that

ae = acdn(�ũ)

cn(�ũ)
and be = bc

cn(�ũ)
. (4.9)

Remark 4.4 It needs to be noted that already in 1828 Jacobi presented an analogue
condition for the periodicity, when he treated a projectively equivalent case with e and
c as nested circles (see [14, p. 388]).

Proof If the first vertex P1 ∈ e of the billiard is chosen on the positive y-axis, i.e., with
canonical parameter ũ = 0 (see Fig. 6), then thefirst contact point Q1 has the parameter
�ũ, and the tangent to c at Q1 passes through P1 = (0, be). Hence, the points P1 and
Q1 are conjugate w.r.t. c, which means by (4.5) that the product of the respective y-
coordinates be and bccn(�ũ) equals b2c . Moreover, from dn2(�ũ) = 1−m2 sn2(�ũ)

and sn2(�ũ) + cn2(�ũ) = 1 it follows that dn(�ũ) = aecn(�ũ)/ac. 	
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Fig. 7 Canonical coordinates u (blue) for the confocal hyperbolas and v (red) for the confocal ellipses
exterior to the caustic c such that u ± v = const. represent the tangents of the caustic

Corollary 4.5 If in the ellipse e with semiaxes (ae, be) the billiard with caustic c is
N-periodic with turning number τ = 1 and �ũ = 2K/N, then the associated Pon-
celet grid contains the ellipses e(1), e(2), . . . , e(k), k = [(N − 3)/2], with respective
semiaxes

ae|1 = acdn(2�ũ)

cn(2�ũ)
, be|1 = bc

cn(2�ũ)
, ae|2 = acdn(3�ũ)

cn(3�ũ)
, be|2 = bc

cn(3�ũ)
,

. . . , ae|k−1 = acdn(k�ũ)

cn(k�ũ)
, be|k−1 = bc

cn(k�ũ)
.

As illustrated in Fig. 7, the Poncelet grid provides an intuitive approach to canonical
coordinates on the confocal ellipses c of e: Let us assign the coordinate 0 to Q0 and 2 to
Q1. Then the confocal hyperbolas through vertices of the grid and billiards inscribed
in confocal ellipses allow an iterated bisection and extension to further contact points.

Corollary 4.5 reveals that �ũ serves as a canonical coordinate for confocal ellipses
in the exterior of c. If �ũ corresponds by (4.9) to the ellipse e with semiaxes (ae, be),
then 2�ũ is the shift for the billiards in e with caustic c. If these billiards have the
turning number 1, then increasing the shift by�ũmeans to increase the turning number
of the billiard in a confocal ellipse by 1, while the caustic c remains fixed (Fig. 7). The
billiard P1P2 . . . and its conjugate P ′

1P
′
2 . . . in e (cf. [20, Section 3.2]) intersect each

other along the ellipse with the canonical coordinate �ũ/2. Note that for N -periodic
billiards the ellipses e( j) and e(N−2− j) coincide while the corresponding �ũ’s differ
in their signs. For even N , the points S(N/2−1)

i are at infinity, and the line at infinity
as a limit of a confocal ellipse corresponds to �ũ = K .

The following formulas express the elliptic coordinates (ke, kh) of the point P =
(−aesn ũ, becn ũ) of e in terms of the canonical coordinate ũ on e and the shift �ũ
corresponding to e.
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ke = ke(�ũ) = a2c sn
2�ũ

cn2�ũ
(1 − m2), kh = kh(ũ) = − a2c dn

2ũ. (4.10)

This follows from

ke = a2e − a2c = a2c
dn2�ũ − cn2�ũ

cn2�ũ
= a2c (1 − m2)

sn2�ũ

cn2�ũ

and

kh = − a2c cn
2 ũ − b2c sn

2 ũ = − a2c + d2 sn2 ũ = − a2c + m2a2c sn
2 ũ.

Note that kh = kh(ũ) is a solution of (4.8).
In [13], an unordered pair of coordinates (r , s) is proposed for each point P in the

exterior of c, namelywith r and s as canonical coordinates of the tangency points for the
tangent lines from P to c (see also [18, p. 358]). Thismeans for P = (−aesn ũ, becn ũ)

that

r = ũ − �ũ, s = ũ + �ũ,

where �ũ corresponds to e according to (4.9). If the sum ũ + �ũ remains constant
or the difference ũ − �ũ, then the corresponding point P runs along a tangent of the
caustic c (compare with [3, Proposition 8.3]).

The coordinates ũ = (r + s)/2 and ṽ ..= �ũ = (s − r)/2 give rise to a new
representation of a mapping from a zig-zag polygon to a billiard, which was already
studied in [7, Figure 13]. Below we extend it to a mapping from a square grid to a
Poncelet grid.2

Theorem 4.6 Referring to the notation in Theorem 4.3, the injective mapping

Y : U ×V → R
2, (ũ, ṽ) �→

(
− ac

sn ũ dn ṽ

cn ṽ
, bc

cn ũ

cn ṽ

)

for U ..= {ũ | 0 � ũ < 4K }, V ..= {ṽ | 0 � ũ < K }

parametrizes the exterior of the caustic c with semiaxes (ac, bc) in such a way, that
the lines ũ = const. are branches of confocal hyperbolas; ṽ = const. are confocal
ellipses and ũ ± ṽ = const. tangents of c.

The domain of the mapping Y can be extended to R2 and satisfies

Y((ũ + 4K ), ṽ) = Y(ũ, (ṽ + 2K )) = Y(ũ,−ṽ) = Y(ũ, ṽ)

and therefore Y(ũ, (K + ṽ)) = Y(ũ, (K − ṽ)) (Fig. 8). The Lie group � mentioned
in Theorem 4.1 is the Y-transform of the group of translations along the ũ-axis.

2 A similar mapping and its generalization to 3-space was used in [3] from the viewpoint of discrete
confocal coordinate systems.
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Fig. 8 The injective mappingY sends the square grid of points Qi , Pi and S
( j)
i , i = 1, . . . , 9, j = 1, . . . , 3,

to the vertices and the diagonals to the confocal conics of the Poncelet grid depicted in Fig. 2

5 More about invariants of periodic billiards

In this sectionwe study how the infinitesimalmotion induced by the vector field in (4.3)
affects distances and angles at the billiard. As before, the dot means differentiation by
the canonical parameter u.

Lemma 5.1 Let P1P2 . . . be a billiard in the ellipse e with Q1, Q2, . . . as con-
tact points with its caustic, the ellipse c. If Pi = (ae cos ti , be sin ti ) and Qi =
(ac cos t ′i , bc sin t ′i ), then the distances ri ..= Qi−1Pi and li ..= Pi Qi satisfy

ri = ‖tc(t ′i−1)‖‖tc(ti )‖
√
ke

acbc
, li = ‖tc(ti )‖‖tc(t ′i )‖

√
ke

acbc
.

The velocity vectors in (4.3) induce for Pi Pi+1 the angular velocity

ωi = acbc
‖tc(t ′i )‖

= acbc√
−kh(t ′i )

.

Proof Referring to Fig. 9, if the tangent [Q1, P2] rolls on c, then the vertex P2 receives
the velocity vector vn2 satisfying (3.5), while the point of contact Q1 moves with the
velocity vc(t ′1) along c. We can express this velocity in terms of the radius of curvature
ρc(t ′1) of c as

vc(t
′
1) = ω1 ρc(t

′
1),

where ρc(t) = ‖te(t)‖3/acbc by [9, p. 79]. On the other hand, from vc = ṫ tc and (4.2)
it follows that vc(t ′1) = ‖tc(t ′1)‖2. This yields in accordance with Corollary 4.2,

ω1 = vc(t ′1)
ρc(t ′1)

= ‖tc(t ′1)‖2 acbc
‖tc(t ′1)‖3

= acbc
‖tc(t ′1)‖

= acbc√
−kh(t ′1)
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Fig. 9 Velocity v2 of the vertex P2, v′
1 of the affine image Q′

1 with ‖v′
1‖ = ‖vn1‖ = ‖vn2‖, of the contact

points Qi (with Q∗
i as respective centers of curvature) for i = 1, 2 , and of vertices P ′

i of the conjugate
billiard

by (2.4). Thus, we obtain for the velocity vn|2 of P2 by (3.5),

r2 ω1 = vn|2 = ‖tc(t2)‖
√
ke, hence r2 = ‖tc(t2)‖√ke

acbc
‖tc(t ′1)‖.

Similarly, it follows from l2 ω2 = vn|2 the stated expression for the distance l2.
Note that t1, t ′1, t2, t ′2, t3, . . . is the sequence of consecutive parameters of the points
P1, Q1, P2, Q2, P3, . . . The formulas for ri and li as well as Ivory’s theorem reveal
that the same distances appear as l ′i−1 and r

′
i at the conjugate billiard. 	


The angular velocity of the tangent to e at P2 equals the arithmeticmean (ω1+ω2)/2
(Fig. 9). On the other hand, it is defined by the radius of curvature ρe of e at P2 and
the velocity v2 by (3.5), since

v2 = ρe(t2)
ω1 + ω2

2
.

This means by Lemma 5.1,

‖tc(t2)‖ ‖te(t2)‖ = ‖te(t2)‖3
aebe

acbc
2

(
1

‖tc(t ′1)‖
+ 1

‖tc(t ′2)‖
)

and results by (2.5) in

1

‖tc(t ′1)‖
+ 1

‖tc(t ′2)‖
= 2aebe

acbc

‖tc(t2)‖
‖te(t2)‖2 = aebe

acbc
√
ke

sin θ2. (5.1)

Theorem 5.2 The exterior angles θi of an N-periodic billiard in an ellipse and with
an ellipse as caustic satisfy for even N
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N∑
i=1

(−1)i sin θi = 0 and for N ≡ 0 (mod 4)
N/2∑
i=1

(−1)i sin θi = 0.

Proof By virtue of [20, Corollary 4.2], periodic billiards with even N = 2n are
centrally symmetric, which implies θi = θi+n . For N ≡ 2 (mod 4) the sum from 1 to
N must vanish since (−1)i = −(−1)(i+n).

In the remaining case N ≡ 0 (mod 4) it follows from (5.1) that

sin θi = acbc
√
ke

aebe

(
1

‖tc(t ′i−1)‖
+ 1

‖tc(t ′i )‖
)

and further

N/2∑
i=1

sin θi = acbc
√
ke

aebe

·
(

1

‖tc(t ′N )‖ + 1

‖tc(t ′1)‖
− 1

‖tc(t ′1)‖
− 1

‖tc(t ′2)‖
+ − · · · − 1

‖tc(t ′n)‖
)

.

This sum vanishes, since tc(t ′n) = −tc(t ′N ), due to the odd turning number τ because
of gcd(N , τ ) = 1. 	


At the same token, from

θ̇i = ωi − ωi−1 = acbc

(
1

‖tc(t ′i )‖
− 1

‖tc(t ′i−1)‖
)

and (5.1) it follows that

d

du
cos θi = − θ̇i sin θi = a2c b

2
c
√
ke

aebe

(
1

‖tc(t ′i−1)‖2
− 1

‖tc(t ′i )‖2
)

.

This shows that d
du

(∑N
1 cos θi

)
vanishes and, therefore,

∑N
1 cos θi is invariant against

billiard motions, which was first proved in [1].
For the variation of side lengths it follows that

d

du
Pi Pi+1 = vt |i+1 − vt |i

= ‖tc(ti+1)‖2 − ‖tc(ti )‖2 = d2(sin2 ti+1 − sin2 ti ).

The vanishing sum over all i confirms again the constant perimeter. We recall that
already in [2] some proofs for invariants were based on differentiation.

Finally we concentrate on the effects showing up when the vertex Pi traverses a
quarter of the full period along a periodic billiard.
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Lemma 5.3 As before, let t1, t ′1, t2, t ′2, . . . , t ′N be the sequence of parameters of an
N-periodic billiard in an ellipse e with an ellipse c as caustic. Then the following
equations hold for even N and n ∈ Z:

if N = 4n, then ‖tc(ti )‖‖tc(ti+n)‖ = √
kh(ti ) kh(ti+n)

if N = 4n + 2, then ‖tc(ti )‖‖tc(t ′i+n)‖ =
√
kh(ti ) kh(t ′i+n)

}
= ac bc ,

and the same after the parameter shift ti �→ t ′i and t ′i �→ ti+1.

Proof Based on the canonical parametrization by ũ, a quarter of the period 4K corre-
sponds to a shift by K . In the case N = 4n this shift effects ti �→ ti+n and t ′i �→ t ′i+n .
If N = 4n + 2, then ti �→ t ′i+n and t ′i �→ ti+n+1.

According to (4.10), kh = −a2c dn
2ũ and by (2.4), ‖tc(t)‖ = √−kh(t) = acdn ũ.

The identity

dn(ũ + K ) =
√
1 − m2

dn(ũ)

implies

dn(ũ) · dn(ũ + K ) = bc
ac

, hence
√
kh(ũ) · kh(ũ + K ) = ac bc.

This confirms the claim. 	

Theorem 5.4 If the billiard P1P2 . . . PN in the ellipse e is N-periodic and contacts
the ellipse c as caustic at Q1Q2 . . . QN , then for even N the distances ri = Qi−1Pi
and li = Pi Qi satisfy

for N = 4n : ri · ri+n = li · li+n

for N = 4n+2 : ri · li+n = li · ri+n+1

}
= ke .

Proof From the expressions for ri and li in Lemma 5.1, by virtue of Lemma 5.3, for
N = 4n,

ri · ri+n = ke
a2c b

2
c

‖tc(t ′i−1)‖‖tc(ti )‖‖tc(t ′i+n−1)‖ ‖tc(ti+n)‖ = ke

and the same result holds for li · li+n . In the case N = 4n + 2 we obtain similarly

ri · li+n = li · ri+n+1 = ke,

as stated. 	

The following corollary is an immediate consequence of Theorem 5.4.
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Corollary 5.5 Let si = Pi Pi+1 = li + ri+1 for i = 1, . . . , N be the side lengths of an
N-periodic billiard with even N and s′

i = P ′
i P

′
i+1 = ri+1 + li+1 that of the conjugate

billiard. Then,

for N = 4n : si+n

si
= li+n

ri+1
= ri+n+1

li
,

for N = 4n+2 : si+n

s′
i−1

= li+n

li
= ri+n+1

ri
.

Finally we prove the invariance of k117 in [17, Table 2].

Theorem 5.6 Referring to the notation in Lemma 5.1, for even N the products

r1r2 . . . rN = l1l2 . . . lN = kN/2
e

are invariant against billiard motions. For N ≡ 0 (mod 4) this is already true for the
products

r1r2 . . . rN/2 = l1l2 . . . lN/2 = kN/4
e .

Proof For N ≡ 0 (mod 4) the statements are a direct consequence of Theorem 5.4
and the central symmetry of the billiard which exchanges ri with ri+N/2 and li with
li+N/2. In the remaining case N = 2n+2 we note that by (3.2), R(u) ..= r1r2 . . . rN =
l1l2 . . . lN . Hence, by virtue of Theorem 5.4,

R2(u) =
N∏
i=1

(ri li+n) = kNe ,

which yields the stated result. 	
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