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Abstract. Vegetation conditions can be monitored on a
global scale using remote sensing observations in various
wavelength domains. In the microwave domain, data from
various spaceborne microwave missions are available from
the late 1970s onwards. From these observations, vegetation
optical depth (VOD) can be estimated, which is an indicator
of the total canopy water content and hence of above-ground
biomass and its moisture state. Observations of VOD anoma-
lies would thus complement indicators based on visible and
near-infrared observations, which are primarily an indicator
of an ecosystem’s photosynthetic activity.

Reliable long-term vegetation state monitoring needs to
account for the varying number of available observations
over time caused by changes in the satellite constellation. To
overcome this, we introduce the standardized vegetation op-
tical depth index (SVODI), which is created by combining
VOD estimates from multiple passive microwave sensors and
frequencies. Different frequencies are sensitive to different
parts of the vegetation canopy. Thus, combining them into a
single index makes this index sensitive to deviations in any
of the vegetation parts represented. SSM/I-, TMI-, AMSR-E-
, WindSat- and AMSR2-derived C-, X- and Ku-band VODs
are merged in a probabilistic manner resulting in a vegetation
condition index spanning from 1987 to the present.

SVODI shows similar temporal patterns to the well-
established optical vegetation health index (VHI) derived
from optical and thermal data. In regions where water avail-
ability is the main control on vegetation growth, SVODI
also shows similar temporal patterns to the meteorological
drought index scPDSI (self-calibrating Palmer drought sever-

ity index) and soil moisture anomalies from ERA5-Land.
Temporal SVODI patterns relate to the climate oscillation
indices SOI (Southern Oscillation index) and DMI (dipole
mode index) in the relevant regions. It is further shown that
anomalies occur in VHI and soil moisture anomalies before
they occur in SVODI.

The results demonstrate the potential of VOD to monitor
the vegetation condition, supplementing existing optical in-
dices. It comes with the advantages and disadvantages inher-
ent to passive microwave remote sensing, such as being less
susceptible to cloud coverage and solar illumination but at
the cost of a lower spatial resolution.

The index generation is not specific to VOD and could
therefore find applications in other fields.

The SVODI products (Moesinger et al., 2022) are open-
access under Attribution 4.0 International and available at
Zenodo, https://doi.org/10.5281/zenodo.7114654.

1 Introduction

Monitoring vegetation conditions by remote sensing is im-
portant for a variety of purposes, such as agricultural yield
prediction (Petersen, 2018; Crocetti et al., 2020), forestry
(Pause et al., 2016) and fire ecology (Szpakowski and Jensen,
2019) and to track long-term ecosystem changes (Vogelmann
et al., 2012). On a global scale, observing vegetation con-
ditions from space allows for cost-effective, long-term and
spatially consistent analyses.
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Numerous variables and metrics have been developed to
monitor vegetation conditions from spaceborne observations.
Some use the spectral or radiometric information directly
to create a feature related to the vegetation. This includes
features such as the normalized difference vegetation index
(NDVI), which is widely used as a measure of live green
vegetation (Huang et al., 2021; Tucker et al., 2005), or the
cross-polarization ratio (CR), which is related to polarization
changes of active microwaves caused by vegetation structure
and moisture content (Vreugdenhil et al., 2020).

Often, radiometric information is translated into biogeo-
physical or chemical variables such as the leaf area index
(LAI) or the fraction of absorbed photosynthetic radiation
(Dorigo et al., 2007). An ecosystem’s condition can also be
observed through its response to stress, e.g. by measuring
changes in land surface temperature (Kogan, 1990) or evap-
oration (Martens et al., 2017).

All these features have in common that they show some
aspect of the vegetation at a given time and location.

To assess whether the state of the vegetation is unusual at
a given time and location, it is usually compared against the
expected value at that time of year, derived from long-term
observations. There are multiple ways to do this. The most
straightforward way is to calculate anomalies by subtracting
the multiyear seasonal average from the observation. This al-
lows one to directly see whether an observation is higher or
lower than usual. The drawback of such raw anomalies is
that their magnitude depends on the average conditions at a
given location. Therefore, the anomalies between different
locations cannot be compared against each other and it re-
quires expert knowledge to know whether an anomaly of a
certain magnitude is a very strong outlier or a minor devia-
tion (Katz and Glantz, 1986).

This can be solved by expressing the vegetation condition
as an index. While anomalies show deviations as absolute
differences to some mean, indices show the likelihood of ob-
serving a deviation of a certain magnitude. Indices are easier
to interpret as they follow a well-defined distribution which
allows one to discern quickly whether a value is relatively
high or low. Some well-known example indices are the veg-
etation condition index (VCI, computed from NDVI; Kogan,
1990, 1997, 2001), the temperature condition index (TCI,
computed from observations in the thermal domain; Kogan,
1990, 1997, 2001), and the standardized precipitation index
(SPI, from precipitation estimates; McKee et al., 1993).

Over the past 4 decades, various platforms carrying multi-
frequency microwave radiometers have been orbiting the
Earth. From these observations it is possible to derive the
vegetation optical depth (VOD), which describes the atten-
uation of microwave radiation by vegetation (Jackson and
Schmugge, 1991; Meesters et al., 2005). The higher the veg-
etation water content and the shorter the wavelength, the
more the vegetation attenuates the radiation (Jackson and
Schmugge, 1991; Owe et al., 2008). Each frequency band
is sensitive to slightly different parts of the vegetation, with

short wavelengths such as those measured by the Ku-band
being mostly related to the canopy top and leaves, while
longer wavelengths are also sensitive to the woody vegeta-
tion parts (Owe et al., 2008; Rodríguez-Pérez et al., 2018).
Compared to indices derived from optical data, VOD satu-
rates less quickly for dense canopies and is therefore more
sensitive to fluctuations in densely vegetated areas (Liu et al.,
2015; Frappart et al., 2020). Among many other things,
VOD has been used to analyse the vegetation’s response to
droughts in the Amazonian tropics (Liu et al., 2018) and in
the Pannonian Basin (Crocetti et al., 2020) to determine de-
forestation in the tropics (van Marle et al., 2016) and estimate
gross primary production (Teubner et al., 2019).

Long-term VOD datasets, such as VODCA (Moesinger
et al., 2020) or the dataset presented by Liu et al. (2015),
allow for monitoring vegetation conditions over decadal
timescales. It might seem trivial to create an index from any
of these datasets by calculating the seasonal anomalies and
standardizing them. However, these datasets are based on av-
eraging all available VOD values from different sensors. This
causes the merged data to be heteroscedastic, where periods
with fewer observations are noisier than periods with more
observations due to the law of large numbers. The noise level
of the sensors used also differs over time, where newer sen-
sors generally are less noisy. High noise levels increase the
probability of a value to be extreme, and therefore extreme
values are more likely to occur in periods with few observa-
tions or noisy sensors. This hampers comparisons of extreme
events over longer time periods.

To solve this issue, the standardized VOD index (SVODI)
is proposed, which uses a probabilistic merging method to
generate a long-term dataset for global vegetation condition
monitoring based on VOD. After a technical evaluation, its
relationship to other vegetation-related indices is explored.
This assures that SVODI behaves reasonably in the case of
an event affecting the vegetation and gives insight into how
it differs from the currently used indices for vegetation con-
dition monitoring.

2 Data

2.1 Vegetation optical depth datasets

2.1.1 The land parameter retrieval model (LPRM)

VOD estimates from various microwave radiometers and
frequencies have been obtained with LPRM v6.0 (van der
Schalie et al., 2017; Owe et al., 2008; Meesters et al., 2005),
which is a forward radiative transfer model based on the
work of Mo et al. (1982). It simulates the top-of-atmosphere
brightness temperature for a wide range of surface condi-
tions. It retrieves soil moisture and VOD analytically using
polarized microwave data and Ka-band surface temperature
estimations (Holmes et al., 2009) without relying on exter-
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nal information on the vegetation. LPRM assumes a thermal
equilibrium between the surface and vegetation (Owe et al.,
2008). Due to uneven solar heating during the day, daytime
LPRM retrievals are still very experimental with an unknown
error magnitude. In line with other studies using LPRM data
(Dorigo et al., 2017; Moesinger et al., 2020), only nighttime
VOD observations are used.

2.1.2 Sensor specifications

For this study, the exact same data as for VODCA
(Moesinger et al., 2020) are used, namely VOD data derived
from the radiometers SSM/I, TMI, AMSR-E, WindSat and
AMSR2. An overview of the specifications can be found in
Table 1. All sensors but TMI have a sun-synchronous circular
orbit, resulting in global coverage.

SSM/I (Special Sensor Microwave/Imager) F08, F11 and
F13 on board DMSP satellites are used for a total time span
of 1987 to 2015. VOD retrieved from the Ku-band with a
resolution of 69× 43 km is used (Wentz, 1997).

TMI, the TRMM Microwave Imager on board TRMM, is
used from 1997 to 2015. The VOD retrieved from the X-
and Ku-band are used. Flying in a non-near-polar orbit, it
only covered the area 35◦ N–35◦ S until 2001, when a boost
in altitude increased it to about 37◦ N–37◦ S. This also de-
creased the spatial resolution of the X-band from 63× 37 to
72× 43 km and of the Ku-band from 30× 18 to 35× 21 km
(Kummerow et al., 1998).

AMSR-E, the Advanced Microwave Scanning Radiome-
ter for EOS (the Earth Observing System) on board Aqua,
is used from 2002 to 2011. The VODs retrieved from the C-
, X- and Ku-band are used, which have a spatial footprint
of 75× 43, 51× 29 and 27× 16 km, respectively. Only the
descending overpass is used, which passes the Equator at
01:30 UTC (Knowles et al., 2006; Kawanishi et al., 2003).

WindSat on board Coriolis observes the C-, X- and Ku-
band with a spatial resolution of 39× 71, 25× 38 and 16×
27 km, respectively, and the retrieved VOD values from 2003
to 2012 are used (Gaiser et al., 2004). WindSat is still in or-
bit and functional, but no access to data past 2012 has been
given.

AMSR2, the Advanced Microwave Scanning Radiome-
ter 2 on board GCOM-W1, is used from June 2012 onwards.
It is the follow-up to AMSR-E and as such is very similar but
with slightly higher spatial resolution of 62×35, 42×24 and
22×14 km for the C-, X- and Ku-band, respectively. Another
improvement is the addition of a second C-band (7.3 GHz)
that can be used in case radio-frequency interference (RFI)
affects the primary C-band (6.9 GHz) (Markus et al., 2018).
For the C- and X-band, all retrieved daytime VODs are used.
For the Ku-band, preliminary analysis revealed that the VOD
retrievals after 1 August 2017 abruptly dropped globally,
possibly due to a calibration issue. While the exact reason
for the change is not known, the data are deemed unreliable
and are not used after that date.

2.2 Auxiliary data

Multiple auxiliary datasets are used to evaluate SVODI. Most
of these datasets do not follow a standard normal distribution,
either by design or because the preprocessing (regridding and
temporal resampling) changed their distribution. To facilitate
the comparison of all datasets, they are standardized using a
basic Z-score normalization:

xstandardized =
(x−µx)

σx
, (1)

where xstandardized is the standardized data; x is the original
data; and µx and σx are its mean and standard deviation, re-
spectively. This ensures that all datasets for the comparison
have a mean of 0 and a standard deviation of 1.

2.2.1 Vegetation health index, vegetation condition
index and temperature condition index

The vegetation health index (VHI) (Kogan,
1990, 1997, 2001) is derived from optical and thermal
observations. The general concept is to combine water and
temperature stress indices into a combined vegetation health
index (Kogan, 2001). As such, VHI is a weighted average
of the vegetation condition index (VCI) and temperature
condition index (TCI),

VHI= αVCI+ (1−α)TCI, (2)

where the weight α is traditionally set to 0.5 (Kogan, 1997).
VCI is derived from NDVI and as such contains information
about the greenness of the vegetation:

VCI= 100 ·
NDVI−NDVImin

NDVImax−NDVImin
(3)

where NDVI, NDVImin and NDVImax are the smoothed
weekly NDVI and its multiyear minimum and maximum
NDVI, respectively. VCI has been used successfully for
drought monitoring and assessing vegetation conditions (Ko-
gan, 1997) and in VHI is assumed to account for water stress.

The TCI is defined similarly but based on land surface
temperature (LST),

TCI= 100 ·
LSTmax−LST

LSTmax−LSTmin
, (4)

where LST, LSTmin and LSTmax are the smoothed weekly
land surface temperature, its multiyear minimum and its mul-
tiyear maximum, respectively. The TCI increased the accu-
racy of drought monitoring by accounting for temperature
stress and has been used to analyse the role of temperature
in droughts (Kogan, 1997). By combining it with VCI, both
water and temperature stress are accounted for.

VHI, VCI and TCI derived from AVHRR NDVI (Tucker
et al., 2005) and the thermal channel 4 are used. The data
are available at https://www.star.nesdis.noaa.gov (last access:
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30 October 2022). They are downsampled from the original
4 km resolution to match our 0.25◦ grid and are standardized
using Eq. (1). The data start in 1981, but only values after
1987, the start date of SVODI, are used in this study.

An alternative to AVHRR data might be the newer MODIS
data. However, the long-term availability of AVHRR allows
for comparisons over the whole duration of SVODI, while
MODIS is only available after 2000. Additionally, neither
MODIS’s higher spectral resolution (not relevant for VCI
calculation) nor its higher spatial resolution (the AVHRR res-
olution is already much higher than our 0.25◦ grid) is of
any benefit in our application. Further AVHRR NDVI and
MODIS NDVI correlate very strongly with each other (Bé-
dard et al., 2006; Gallo et al., 2005; Zeng et al., 2013), rein-
forcing that the results (in the overlapping periods) would not
change much by using MODIS instead of AVHRR. Overall
therefore AVHRR is more suitable for this study.

2.2.2 Self-calibrating Palmer drought severity index

The self-calibrating Palmer drought severity index (scPDSI)
(Wells et al., 2004; Van Der Schrier et al., 2013; Aldred
et al., 2021) is a widely used index to track meteorologi-
cal, agricultural and hydrological aspects of drought. It is
used to analyse the relation between SVODI and meteoro-
logical droughts. One of the main drawbacks of the origi-
nal PDSI (Palmer, 1965) was its lack of spatial comparabil-
ity due to fixed weights and factors, which was remedied in
scPDSI by adjusting them to the local climate. scPDSI mod-
els the soil moisture using a bucket model involving evap-
oration, recharge, runoff, loss and their complementary po-
tential values. This gives a measure of how extreme the wa-
ter conditions are at a certain time and place, which is use-
ful for monitoring water stress. The scPDSI data are avail-
able at https://crudata.uea.ac.uk/cru/data/drought/ (last ac-
cess: 30 October 2022).

2.2.3 ERA5-Land

ERA5-Land is a reanalysis of the global atmosphere, land
surface and ocean waves since 1950 (Muñoz-Sabater et al.,
2021; Hersbach et al., 2020). ERA5-Land models a plethora
of land variables on a sub-daily temporal resolution. Of in-
terest for our study is the modelled soil moisture at different
depths, which is used assess the relation between SVODI and
soil moisture at different depths (Sect. 4.2.2). ERA5-Land is
available from the Climate Data Store at https://doi.org/10.
24381/cds.e2161bac, last access: 30 October 2022.

2.2.4 SOI and DMI

The Southern Oscillation index (SOI) (Allan et al., 1991; Al-
lan, 1998) and dipole mode index (DMI) (Saji et al., 1999;
Saji and Yamagata, 2003) are useful to monitor large-scale
climate oscillations in the tropics. SOI is derived from the
sea-level atmospheric pressure difference between Tahiti and

Darwin, Australia, while DMI is calculated from the differ-
ence in the sea surface temperature anomaly between the
west and south-eastern tropical Indian Ocean. Among other
things, both of them are linked to precipitation anomalies in
Australia and north-eastern Africa, regions where the vege-
tation is water-limited and where they are therefore also ex-
pected to be linked to the vegetation condition (Hashimoto
et al., 2019; Martens et al., 2018).

Both are available at NOAA, at https://psl.noaa.gov/
gcos_wgsp/Timeseries/SOI (last access: 30 October 2022)
and https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI (last
access: 30 October 2022), respectively.

3 Methods

3.1 SVODI calculation

SVODI is computed from C-, X- and Ku-band VOD from
multiple sensors. It is assumed that all sensors and bands
are equally fit as an indicator of the vegetation condition
but show different aspects of it. Ku-band is mostly sensitive
to surface canopy leaves, while longer wavelengths are also
affected by the woody part (Owe et al., 2008; Rodríguez-
Pérez et al., 2018). Still, the seasonal VOD anomalies of
the three bands correlate strongly with each other (Fig. 1)
as established in previous studies (Moesinger et al., 2020),
which suggests that they behave similarly in case of a vegeta-
tion disturbance. To maximize the information contained in a
microwave-based vegetation condition index, it makes sense
to combine the information contained in all bands. Also, the
high number of observations per day available due to the
many sensors and bands is expected to yield an index robust
to noise. Additionally, none of the bands span the whole time
period (C-band VOD 2002 to present, X-band VOD 1997 to
present, Ku-band VOD 1987 to 2017), so by merging them
the longest possible time span is achieved.

L-band VOD is notably absent from the list of used fre-
quencies. It has very different temporal characteristics than
the other bands due to it being mostly sensitive to slow
structural changes in the vegetation (Konings et al., 2021),
while SVODI is only concerned with short-term fluctuations.
Therefore L-band VOD is not used.

3.1.1 Theory

Previous multivariate indices (Hao and AghaKouchak, 2013;
Guo et al., 2019) have been constructed by first fitting a
multivariate distribution with cumulative joint probability
P(X1 ≤ x1, . . .,Xn ≤ xn)= pcombined to n individual indices
Xi , where i ∈ 1, . . .,n. Then, the pcombined of each observa-
tion (x1, . . .,xn) is transformed to the index by applying the
standard normal percent point function (PPF, the inverse of
the cumulative distribution function) to it.

But there is an issue with this approach: pcombined is not
uniformly distributed between 0 and 1. Instead, it has a bias
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Figure 1. Exemplary correlation coefficients between C-, X-
and Ku-band VOD anomalies of AMSR-E, derived with LPRM
(Sect. 2.1.1). Similar results are obtained for other sensors (not
shown).

towards low values. This is illustrated for a theoretical bi-
variate case with a Gaussian copula in Fig. 2: if some x1, x2
pairs are drawn and p is calculated for them, the distribution
of pcombined is clearly not uniformly distributed. This causes
the final index to have a negative bias. For example, con-
sider the case x1 = x2 = 0, marked with red lines in Fig. 2.
Instinctively, since both input indices show usual conditions,
one would expect that the merged index should also show
usual conditions. However, as seen in the figure, P(X1 ≤

0,X2 ≤ 0) < 0.50, and therefore PPF(pcombined) < 0. There-

fore, even if all input indices are 0, the merged index will be
negative. For a higher number of concurrent indices used as
input, this effect is even stronger. In general, this would lead
to an index with many more extreme negative events than
positive ones (Fig. 2b).

The negative bias of multivariate indices computed as
above makes the index hard to interpret as the resulting index
is no longer normally distributed. Also, in the case that the in-
dividual indices have data gaps, the expected mean depends
on the available input indices, leading to a higher expected
value for periods where fewer sensors are available than for
periods with more sensors available. This issue is solved by
scaling pcombined to a uniform distribution whose properties
do not change depending on the number of available input
indices. Therefore SVODI has no bias and can also be calcu-
lated if not all input datasets are available.

3.1.2 Implementation

After some basic preprocessing (temporal resampling of
swath data to daily values and masking invalid values, the
same as in Moesinger et al., 2020), the VOD values of each
sensor and band, VODs,b, are transformed independently into
standard normally distributed indices using the following
workflow, which is independently applied for each band.

Long-term VOD changes are related to biomass changes
(Frappart et al., 2020). The input datasets are therefore lin-
early detrended causing anomalies to correspond to devia-
tions in the vegetation condition and not to long-term struc-
tural changes. Linear detrending might not be sufficient in
areas experiencing rapid vegetation changes over a short
time, such as deforestation, and climatologically unexpected
biomass fluctuations, such as out-of-season harvests, as both
of those cases would be registered by SVODI. However, a
mitigating factor in both cases is the low spatial resolution of
SVODI, which causes only very large-scale events to be reg-
istered. The main reason for using linear regression is that
its simplicity guarantees that no deviations of interest are re-
moved.

Then, all VOD values of the respective band, VODb, are
scaled to the values of the corresponding AMSR-E band to
correct for bias between the different VODb values using
improved piecewise linear cumulative distribution function
(CDF) matching as described in Moesinger et al. (2020).
AMSR-E is used as reference because of its high-quality
observations, global availability and temporal overlap with
most other sensors, a combination of features none of the
other sensors possess. In detail, SSM/I, TMI and WindSat
are matched to AMSR-E using temporally overlapping ob-
servations. AMSR2 does not have a temporal overlap with
AMSR-E, and therefore direct matching using overlapping
observations is not possible. Instead, between 37◦ N and
37◦ S AMSR2 is matched to TMI observations that were first
scaled to AMSR-E. Beyond 37◦ N and 37◦ S, AMSR2 is di-
rectly matched to AMSR-E using the last 2 years of AMSR-E

https://doi.org/10.5194/bg-19-5107-2022 Biogeosciences, 19, 5107–5123, 2022
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Figure 2. Bi-variate example of a probabilistic multivariate index as in Hao and AghaKouchak (2013) and Guo et al. (2019) without scaling
of p where X1,X2 ∼N(0,1) and the covariance between them is 0.5. PDF (a); distribution of the CDF of samples from it (b); the resulting
distribution of the index (c). The red lines mark an example case where x1 = x2 = 0 at different processing steps.

Table 1. Overview of VOD datasets used in this study with their temporal coverage, local ascending equatorial crossing times (AECT),
whether the ascending (A) or descending (D) overpass is used, and frequencies (GHz) used for each product. The C- and X-band retrievals
are based on van der Schalie et al. (2017) and the Ku-band retrievals on Owe et al. (2008).

Sensor Time period used AECT Overpass C-band X-band Ku-band

AMSR-E Jun 2002–Oct 2011 13:30 D 6.93 10.65 18.7
AMSR2 Jul 2012–Jan 2020 13:30 D 6.93 and 7.3 10.65 18.7
SSM/I F08 Jul 1987–Dec 1991 18:15 A 19.35
SSM/I F11 Dec 1991–May 1995 17:00–18:15 D 19.35
SSM/I F13 May 1995–Apr 2009 17:45–18:40 D 19.35
TMI Dec 1997–Apr 2015 Asynchronous Mix 10.65 19.35
WindSat Feb 2003–Jul 2012 18:00 D 6.8 10.7 18.7

and first 2 years of AMSR2 to determine the scaling param-
eters.

The scaled VOD values are standardized in the following
way: for a day of the year (DOYi , where i ∈ 1,2, . . .,366), all
VODb values from July 2002 to June 2017 that are less than
16 d from DOYi are used to build an empirical distribution.
This window size of 31 d was empirically chosen as a com-
promise between having enough values to build stable scal-
ing parameters and the values not being biased in respect to
the window centre due to the progressing seasonal VOD sig-
nal. The period July 2002 to June 2017 is chosen because all
three frequency bands have observations during this period.
Then, CDF scaling parameters are calculated to transform the
empirical distribution to an N(0,1) distribution. Using these
parameters, the VODb values at DOYi are scaled. This is re-
peated for all DOYs and done independently for each band,
resulting in individual indices Xs,b for each VODs,b.

The indices of the individual sensors and bands, Xs,b,
are then joined by constructing a multivariate normal dis-

tribution with a zero mean. As discussed before, if P(X1 ≤

x1, . . .,Xn ≤ xn)= pcombined, then pcombined is not uniformly
distributed but is biased towards low values. Therefore,
pcombined is scaled to a uniform distribution. Technically this
is done by drawing random samples from P and construct-
ing an empirical CDF, CDFP , from them. pcombined is then
scaled to a uniform distribution by CDFP (pcombined). The
PPF is then applied to the scaled pcombined, resulting in a
normally distributed index. The scaling of pcombined is nu-
merically slightly unstable and can lead in very rare cases to
extremely low SVODI values. Due to the computer’s limited
precision, these SVODI values always have the exact same
value, i.e. −8.14. Therefore, observations where SVODI is
lower than −8 are removed.

Since pcombined is always scaled to a uniform distribution,
the number of available indices at a given time and location
does not affect the distribution of SVODI and a continuous
index starting in 1987 to the present is generated. For each
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Figure 3. Temporal subset of an example time series at different processing stages in Western Australia (24.9◦ S, 125.625◦ E), located in the
Gibson Desert Nature Reserve. The vegetation is shrubland with sparse trees. (a) Original VOD time series. (b) The same VOD series after
bias correction. Note that only the bias within each band is corrected and not to a common reference for all bands. (c) The indices created
from each sensor and band as well as SVODI. (d) The number of observations contributing to a SVODI value for each day.

Figure 4. Fraction of pixels that are extreme of SVODI (a) and non-probabilistic merge of indices (b) over time.

SVODI value, a flag indicates which sensors and bands con-
tributed to the final value.

3.2 Evaluation methods

SVODI describes the vegetation condition with regard to ab-
normal vegetation water content. There is no absolute refer-
ence to compare SVODI to, and therefore it is evaluated by
comparing it to other well-established vegetation indicators.
This is mostly done by basic correlation analysis but also by

studying temporal shifts and the evolution of extreme values
over time. The latter is explained in more detail below.

3.2.1 Temporal shift determination

Is it of interest whether events can be seen first in the mi-
crowave or optical domain and how large their temporal dif-
ference is for a variety of applications, such as drought pre-
diction. For this purpose the temporal shifts between SVODI
and VHI and soil moisture anomalies are determined by find-
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Figure 5. Quantile–quantile (QQ) plots for different numbers of input observations. For example, 3 shows the quantiles of all SVODI values
where three input indices contributed. Any shows the quantiles for any number of observations. N(0,1), the diagonal, shows the theoretical
normal distribution for comparison. (a) The QQ plot of SVODI. (b) For comparison the quantiles of an index generated by simple averaging.

ing the temporal lag at which a dataset pair correlates most
strongly. This is done by grid search, calculating the correla-
tion coefficient for every shift within a± 8-week window and
selecting for each location the shift with the highest correla-
tion. An 8-week window was chosen because the shifts were
found to be almost always within that, even when searching
in a larger window. Then, all results are filtered for unreli-
able results: all locations where the correlation as a function
of temporal shift exhibits multiple local maxima, detected by
counting the number of sign changes of the first derivative, or
where the maximum correlation coefficient is less than zero
are masked out.

3.2.2 Extreme values over time

The plots showing the frequency of extreme values over time
are inspired by the plots in Van Der Schrier et al. (2013).
With these plots it is possible to visualize whether the tem-
poral abundance of extreme values is similar for the different
datasets.

For visualization, the data are first standardized to N(0,1)
using Eq. (1). For example, VHI, TCI and VCI are originally
scaled from 0 to 100, and even the N(0,1) distributed in-
dices (e.g. SVODI) are sometimes temporally downsampled,
which leads to a reduced variance and therefore requires re-
standardization. The percentage of extreme values is then
calculated as follows: for a geographical region, for each
time step, all pixels with a value greater than 1 and greater
than 2 are counted and divided by the total available data
points available for that time step.

4 Results and discussion

4.1 Technical analysis

4.1.1 Illustration of the methods by means of an
example time series

Figure 3 shows the creation of SVODI at various steps for
an exemplary location. The original series have a visible
bias between values of the same band (panel a), which is
corrected with the CDF matching (panel b). Note that the
scaling is done individually for each frequency band and
not to a common reference used for all together. For exam-
ple, AMSR2, WindSat and TMI Ku-band observations are
matched to AMSR-E Ku-band observations. Then, an index
is created for each sensor and band, and the multiple indices
are finally merged into SVODI (panel c). The prior distribu-
tion of SVODI is unaffected by the number of observations
available at a certain date as the number of available observa-
tions varies from two to eight (panel d), but the SVODI time
series shows no breaks between periods with different sensor
availability.

4.1.2 Extreme values over time

Prior to the SVODI calculation, all datasets are detrended.
On a global scale it is therefore expected that the percent-
age of extreme SVODI values, both positive and negative, is
more or less constant over time. Indeed, there seems to be
no drastic systematic increase or decrease in the percentage
of pixels with |SVODI| greater than 1 or 2 (Fig. 4a). This
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Figure 6. Spatial correlation coefficient of SVODI vs. VHI over time (a) and per season (b), based on weekly data.

indicates that even though the number of sensors contribut-
ing to SVODI changes over time, this does not lead to mas-
sively more or fewer extreme events in a given time period.
In contrast, Fig. 4b shows the percentage of extreme values
if SVODI were generated by simply averaging the individual
indices per band and sensor and standardizing the average
again. In this case, the periods with few sensors (pre-2002,
after 2017) are much more likely to be extreme than the pe-
riods with more sensors. This shows that our probabilistic
merging method is necessary to compare the frequency of
extreme events across different periods.

4.1.3 Impact of the number of input datasets on SVODI

If, compared to a simple VODCA standardization, the num-
ber of input sensors were to have no effect on the SVODI dis-
tribution, then this should be standard normally distributed,
irrespective of the number of input sensors. Figure 5a shows
the quantiles of SVODI with respect to the quantiles of a
standard normal distribution for different numbers of input
sensors. Note that this figure is based on a random 20 %
of all data as the whole dataset is too large to be loaded at
once. Also, each SVODI value can only be part of one group.
Hence, each group distribution is computed from values from
different dates.

Generally, SVODI is normally distributed regardless of the
number of input sensors used for its computation. Only for
extremely low values is a small difference observed. Very
low values that are also the result of many sensors have a
slight positive bias, while for very high values this discrep-
ancy does not occur. The cause for this problem is not fully
understood, but it is assumed to be related to numerical in-
stability of very low values as p for days with many obser-
vations can become very low. As a simplified numerical ex-
ample, if a SVODI value is the result of eight individual un-

correlated indices and all of them are 0 (indicating average
vegetation conditions for all sensors), then the resulting p is
CDF(0)8 = 0.58

= 0.004. This very low value has then to be
scaled back to 0.5, and therefore even minor deviations in
p can lead to a substantially different pscaled. This example
shows that the computation can involve very low values and
can therefore become unstable.

Figure 5b shows the quantiles if, rather than our proba-
bilistic merging method, the simple mean of each individual
index were used and the result were standardized. It shows
that the values of this aggregate index would strongly depend
on the number of input observations as it is much more likely
to be extreme if only a few input observations are available.
This shows that SVODI’s dependency on the number of ob-
servations is almost removed and a lot lower than if one were
to use a simple standardization.

4.1.4 Quality change over time

Of interest is whether the quality of SVODI changes over
time. There exist no ground-based validation data for VOD;
therefore a direct validation with some reference data is not
possible. Instead, the spatial correlation to VHI over time is
used as an indicator of whether SVODI is performing differ-
ently during different periods. For each time step, the corre-
lation between the global SVODI and VHI images is calcu-
lated. If the signal-to-noise ratio of any of the two datasets
were to change, so would the correlation between them.

The spatial correlation varies quite strongly over time
(Fig. 6a). This variance is likely due to the varying number of
events over time. There is a statistically significant positive
trend. This is expected as more and better sensors are pro-
gressively becoming available in later years for both SVODI
and VHI, resulting in higher-quality data for both. In the fu-
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Figure 7. Correlation coefficient without temporal shift between
SVODI and VCI (a), TCI (c) and VHI (e) and the temporal shift
at which a maximum correlation is obtained (b, d, f). All results are
based on weekly means; positive (green) values in the shift plots in-
dicate that anomalies are visible in VCI, TCI or VHI before SVODI.

ture, as more advanced sensors are launched into orbit, the
two datasets are expected to further converge.

There is no apparent seasonal dependency of the correla-
tion (Fig. 6b), indicating that the increase in correlation is not
an artefact of long-term seasonal surface changes.

4.2 Data analysis

4.2.1 Comparison of SVODI and VHI

SVODI is compared to VCI; TCI; and their composite, VHI,
to explore their similarities and differences. By comparing
SVODI to all three, it is possible to evaluate how it relates to
the impact of stress on either vegetation “greenness” (VCI)
or temperature (TCI) or a combination of both (VHI).

VCI and SVODI correlate quite strongly, especially in
semi-arid climates (Fig. 7a). This is in line with previous
studies comparing VOD anomalies with LAI, which is also
derived from optical data (Moesinger et al., 2020; Jones
et al., 2011). The pattern is at least partially due to the more
distinct inter- and intra-annual variability in vegetation ac-
tivity in semi-arid regions. Vegetation in semi-arid regions
is highly susceptible to increased or decreased precipitation,
and as such these regions experience stronger anomalies than
regions where water is abundant, leading to a higher signal-

Figure 8. Correlation (a, c, e, g) and temporal shift (b, d, f, h) be-
tween SVODI and soil moisture anomalies from ERA5, based on
weekly data. Positive (green) values in the shift plots indicate that
anomalies are earlier visible in soil moisture than in SVODI.

to-noise ratio. This then leads to higher correlations between
the two indices.

TCI and SVODI correlate positively in semi-arid regions
(Fig. 7c) because high temperatures lead to unfavourable
vegetation conditions and vice versa for low temperatures.
Likewise they correlate negatively in cold regions where pos-
itive temperature anomalies lead to favourable vegetation
conditions and vice versa for low-temperature anomalies.
(Papagiannopoulou et al., 2017). SVODI correlates more
strongly with VCI than with TCI. This makes sense as both
SVODI and VCI represent changes in biogeophysical prop-
erties of the canopy as a result of anomalous environmental
conditions, whereas TCI mirrors a cause of these changes.
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Figure 9. Mean correlation coefficient if no temporal shifting is done (a), maximum correlation obtained by temporal shifting (b) and the
corresponding temporal shift in weeks between SVODI and soil moisture anomalies (c) at different ERA5 depths. The depths are swvl1 0–7,
swvl2 7–28, swvl3 28–100 and swvl4 100–289 cm. Panel (a) also shows the correlation with the surface soil temperature, stl1.

Since VHI is the average of TCI and VCI, SVODI also
correlates more strongly with VCI than with VHI (Fig. 7e),
especially in cold regions.

Anomalies generally occur first in TCI followed by VCI
and SVODI (Fig. 7b, d, f), which is expected as there is a
causal relationship between prolonged high temperatures in
semi-arid regions and a subsequent reduction in vegetation
health and vice versa for low temperatures. VCI generally
leading SVODI indicates that changes in greenness occur be-
fore changes in vegetation water content. This is to be ex-
pected as reduced photosynthesis is one of the first responses
of plants to heat stress, in part due to decay of photosynthetic
pigments (Larcher, 2000; Zhao et al., 2020). The plant wa-

ter content drops more slowly as plants are able to regulate
the rate of transpiration and respiration to balance water loss
under transient or mild heat stress (Zhao et al., 2020).

4.2.2 Relation between SVODI and soil moisture at
different depths

Correlations between SVODI and soil moisture anomalies at
various depths were calculated to determine the connection
between the different depths and the vegetation condition.
SVODI and upper level soil moisture anomalies (0–7 and 7–
28 cm) correlate most strongly with each other in areas where
vegetation growth is limited by water availability (Fig. 8a, c).
This is in line with a previous study comparing soil moisture
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Figure 10. Percentage area of SVODI greater/smaller than 1/−1
and 2/−2 for central Australia together with the SOI (a), SVODI (b,
d) and standardized precipitation anomalies (c, e) for Novem-
ber 2010 and December 2019.

to VOD anomalies (Konings et al., 2021). In areas where veg-
etation growth is limited by temperature (e.g. see Hashimoto
et al., 2019; Papagiannopoulou et al., 2017), there is gener-
ally a negative correlation between SVODI and soil moisture
at all levels. This makes sense, as increased precipitation,
increased soil moisture and increased cloud coverage and
therefore lower temperatures are all linked to each other in
these regions. Additionally, increased soil moisture leads to
decreased LST by controlling the partitioning between sen-
sible and latent heat fluxes (Huang and van Den Dool, 1993).
The lower LST then leads to less favourable vegetation con-
ditions in cold regions. This can also be seen if the mean
correlation per land cover and depth is considered (Fig. 9a).
In land cover types that are generally found in cold regions,

Figure 11. Percentage area of SVODI (a), standardized VHI (b) and
scPDSI (c) greater/smaller than 1/−1 and 2/−2, respectively, over
time for the northern South America AR6 region (Iturbide et al.,
2020). All datasets are downsampled to the monthly resolution of
scPDSI.

such as needleleaf forests, surface soil moisture anomalies
correlate negatively with SVODI and slightly positively with
temperature anomalies. The opposite is the case for land
cover types generally found in warmer climates (broadleaf
forests, shrubs), where more water and lower temperatures
lead to more favourable vegetation conditions. Roughly the
same pattern is also visible if the analysis is repeated for each
season separately (DJF, MAM, JJA, SON1), but the pattern
shifts with the seasons (results not shown). For example, in

1December–January–February, March–April–May, etc.
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Europe, SVODI correlates negatively with soil moisture in
DJF due to the temperature being the limiting factor but pos-
itively in JJA when water is the limiting factor.

Correlation coefficients between SVODI and soil moisture
anomalies decrease with increasing depth when no lag opti-
mization is performed (Fig. 9a). However, by optimizing the
lag, the highest correlation coefficients are obtained for 7–
28 and 28–100 cm soil moisture (Fig. 9b), even though over-
all the differences are very small. This agrees with a study
showing 7–28 cm to be the most relevant water reservoir
for vegetation productivity, particularly in semi-arid regions
(Li et al., 2021). The optimized correlation coefficients are
highest for land cover types typically found in arid regions,
such as sparse vegetation and shrubs, while they are lowest
in needleleaf forests, which are more often found in regions
where temperature is usually more limiting than water.

There is a clear relationship between soil depth and tem-
poral shift (Fig. 9c), with soil moisture anomalies in layer 3
generally preceding SVODI and soil moisture anomalies in
layer 4 generally following SVODI. This is mostly likely
due to bottom-level soil moisture levels lagging behind the
top ones, which makes sense if moisture is modelled as a
“bucket” model where the top layers are filled and depleted
first before the lower layers.

4.2.3 Sensitivity of SVODI to Australian interannual
precipitation variability

The Australian summers of 2010 and 2019 were marked by
exceptionally high and low precipitation (Fig. 10c and e), re-
spectively. The year 2019 was also exceptionally hot, and
widespread wildfires occurred (Dunn et al., 2020). As the
Australian vegetation is strongly limited by water availabil-
ity, one would expect the vegetation moisture content in these
years to react similarly. Indeed, the SVODI of 2010 and 2019
was exceptionally high and low, respectively (Fig. 10a), and
the spatial patterns of SVODI and precipitation anomalies are
very similar in these periods (Fig. 10b and d). This illustrates
that SVODI in this water-limited region behaves as expected
and is useful to monitor the state of the vegetation.

4.2.4 Effects of drought on vegetation in the Amazon

In the Amazonian rainforest, the extreme values of SVODI,
VHI and scPDSI do not agree with each other (Fig. 11).
SVODI seems to have more high-frequency variability but
less low-frequency variability than VHI and scPDSI. One
possible explanation might be the originally higher spatial
resolution of the VHI and scPDSI products, which, after
downsampling to the spatial resolution of SVODI, lead to
very low noise levels in these products. Another possibility
is that SVODI reacts more quickly to surface changes than
the other two indices.

Figure 12. Correlation coefficients between SVODI, VHI and
scPDSI (top to bottom) vs. SOI (a, c, e) and DMI (b, d, f).

The effects of droughts in the Amazon forest is a highly
discussed topic and very challenging (Samanta et al., 2012).
Highly discussed droughts occurred in 2005, 2010 and 2015
(Panisset et al., 2018; Liu et al., 2018; Lewis et al., 2011;
Samanta et al., 2010; Janssen et al., 2021). Some studies ar-
gue that the tropical vegetation is light-limited, and as such a
decrease in precipitation, which corresponds to a decrease in
cloud cover, leads to greening during droughts (Huete et al.,
2006; Saleska et al., 2007). Others argue that the greening is
due to artefacts from atmospheric effects and changing sun-
sensor geometry (Samanta et al., 2010; Morton et al., 2014).
Our results do not give a definitive answer to this discussion
as the patterns are very ambiguous.

4.2.5 Climate oscillation relations to SVODI

The correlation between SVODI, VHI and scPDSI and the
Southern Oscillation index (SOI) (Fig. 12, left column) and
dipole mode index (DMI) (Fig. 12, right column) is calcu-
lated to study how global vegetation is affected by tropical
climate oscillations.

SVODI and VHI correlations show a similar pattern. The
highest correlation coefficients to SOI are found in eastern
Australia, where vegetation is heavily influenced by the El
Niño–Southern Oscillation (ENSO) (Liu et al., 2009; Mi-
ralles et al., 2014), with high SOI values being linked to in-
creased precipitation. While scPDSI also agrees with VHI
and scPDSI in Australia, it also has a high positive correla-
tion in northern South America and a negative correlation in
southern North America and western Asia.
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The correlations between SVODI and VHI and DMI are
similar and show the greatest magnitude in southern Aus-
tralia, while in most other regions they are close to zero.
Correlations between scPDSI and DMI show a more distin-
guished spatial pattern, including strong positive correlations
in north-western Russia. In this region, vegetation growth is
limited by temperature and not precipitation, and for this rea-
son no corresponding patterns can be found in the SVODI or
VHI plots.

5 Conclusions

SVODI is a microwave-based vegetation condition index that
shows similar patterns to existing optical indices and fol-
lows soil moisture in semi-arid regions. It extends the cur-
rent range of available remote sensing datasets that allow the
observation of anomalous vegetation states and increases our
understanding of global vegetation dynamics. SVODI pat-
terns are reasonable compared to patterns of VHI, TCI, VCI
and soil moisture, but anomalies occur later, which might be
an issue for near-real-time applications.

With the exception of extreme low values, the proposed
index generation method works well at combining different
indices. The merging method itself is not limited to VOD
and can potentially be applied to combine arbitrary normally
distributed indices. Therefore, this method might find appli-
cations in various disciplines. Further efforts will focus on
increased numerical stability of the calculations and updat-
ing SVODI with more recent observations.
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