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A B S T R A C T

Concrete beams carrying flat roofs are subjected to daily temperature cycles. Thermal eigenstrains at different
scales of observation may be constrained or even prevented. This may apply to the entire beam and its support
conditions, to the cross-sections of the beam, the microstructure of concrete, consisting of coarse aggregates
embedded in a mortar matrix, and to the microstructure of mortar, consisting of fine aggregates embedded in
a cement paste matrix. Scale transitions from the entire beam to the cross-sectional scale and further down
to the microstructural scales of concrete and mortar are based on standard equations of the linear theory
of slender beams and on the concentration-influence relations between the macroscopic and the microscopic
strains, taken from continuum micromechanics. This multiscale approach is used for computing thermal stresses
of concrete and of its constituents. Sensitivity analyses are carried out w.r.t. the support conditions, the type
of coarse aggregates, the internal relative humidity, the speed of the temperature change, and the height of
the cross-section. It is demonstrated that even if thermal stresses appear to be reasonably small at the scale
of concrete, there may be significant microstructural stress fluctuations. They are the larger, the greater the
difference between the thermo-elastic properties of the individual microstructural constituents. It is concluded
that the thermal insulation of flat roofs, as promoted by the United Nations environment program to reduce
energy consumption in buildings, is also important to obtain smaller daily cycles of stresses of beams carrying
flat roofs.
1. Introduction

Concrete structures are frequently exposed to the ambient weather
and, thus, to recurrent cycles of temperature and humidity (Jeong
and Zollinger, 2005). It is well known that the corresponding stresses
may lead to cracking of concrete (Grasley, 2003; Belshe et al., 2010;
Wang et al., 2018a, 2019a), entailing the decrease of the durability of
such structures (ACI, 2016; Zhao et al., 2020). Experimental studies
have provided interesting insight into this topic. E.g., the effect of
environmental thermal fatigue on the modulus of elasticity and the
compressive strength was studied by Huang et al. (2019). Damage of
the material, resulting in the decrease of the elastic stiffness of concrete
under periodic temperature–humidity action, was investigated by Chen
et al. (2020). These studies have underlined that damage of concrete
originates from the microstructure. This provides the motivation for the
present study, which is devoted to multiscale stress analysis of concrete
beams subjected to thermal loading.

∗ Corresponding author.
E-mail address: Bernhard.Pichler@tuwien.ac.at (B.L.A. Pichler).

Changes of temperature result in eigenstrains. They are also referred
to as ‘‘stress-free strains’’, because thermal stresses will not be activated
if eigenstrains are free to develop. However, if they are constrained or
prevented, thermal stresses will be activated. It is a central aim of the
present paper to emphasize that thermal eigenstrains are constrained
or prevented at three different scales of observation of concrete beams,
namely, at the microstructural scale of concrete, the cross-sectional
scale of a beam, and at its macrostructural scale:

1. Constraints at the microstructural scale of concrete result from
the mismatch of the thermal expansion coefficients of the cement
paste, the fine aggregates (‘‘sand’’), and the coarse aggregates
(Fu et al., 2004; Wang et al., 2019b).

2. Constraints at the cross-sectional scale of a beam are the conse-
quence of the fact that cross-sections remain virtually plane even
if the beam is subjected to thermal loading.
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Fig. 1. Inspiration for the present multiscale analysis: flat roof, carried by rectangular
concrete beams, subjected to solar heating.

3. Constraints at the macrostructural scale of a beam follow from
the support conditions, provided that the beam is supported in
a statically indeterminate fashion.

Steel reinforcements of concrete beams have almost no influence on the
thermal stresses because the thermal expansion coefficient of concrete
is very similar to that of steel, see e.g. (Wang et al., 2018a). Therefore,
steel reinforcements are not explicitly considered in the present paper.

The multiscale nature of the described problem is addressed by
means of the following methods for scale transitions:

1. As for the scale transition from the cement paste, the fine
aggregates, and the coarse aggregates to the material scale of
concrete, methods from continuum micromechanics are used.
Phase strain concentration tensors and phase-pair eigenstrain
influence tensors are estimated according to the transformation
field analysis (Dvorak, 1992), using a generalized Mori–Tanaka–
Benveniste scheme (Pichler and Hellmich, 2010). Corresponding
analytical formulae for these estimates are taken from (Wang
et al., 2019b).

2. As for the transition from the material scale of concrete to the
cross-sectional scale of a beam, the kinematics of the Bernoulli
beam theory is combined with Hooke’s law and the stress re-
sultants ‘‘normal force’’ and ‘‘bending moment’’. This results
in analytical formulae, suggesting that the thermal eigenstrains
should be split up into eigenstretches and eigencurvatures of the
axis of the beam and into eigendistortions of the cross-sections,
for the purpose of accounting for constraints at different scales
of observation.

Combining the described methods allows for quantifying fluctuations
of microstructural stresses at the scale of the cement paste, the fine
aggregates, and the coarse aggregates.

In the present paper, the described mode of multiscale analysis
is applied to a rectangular concrete beam, heated at its top surface,
inspired by flat roofs of buildings, see Fig. 1. One aim of this analysis
is to demonstrate that adequate insulation of flat roofs, as promoted by
the United Nations environment program to reduce energy consump-
tion in buildings (Berardi, 2017), is also beneficial to the reduction
of the amplitude of daily stress cycles, resulting from diurnal changes
of the external temperature. In this context, four types of sensitivity
analyses are performed. They refer to different speeds of temperature
changes to which a concrete beam is subjected, to three types of
coarse aggregates with different thermoelastic properties (limestone,
granite, and quartzite), to different states of internal relative humidity,
resulting in different thermal expansion coefficients of the cement
paste (Wang et al., 2018b), see also Fig. 2, and to different heights of
2

Fig. 2. Coefficient of thermal expansion of the hardened cement paste as a function
of the internal relative humidity, see (Emanuel and Hulsey, 1977) and (Wang et al.,
2018b).

Fig. 3. Material organogram of concrete: (a) concrete consisting of coarse aggregates,
embedded in a mortar matrix, and (b) mortar consisting of fine aggregates, embedded
in a cement paste matrix; two-dimensional sketches of three-dimensional representative
volume elements; see (Wang et al., 2019b).

the cross-section of the concrete beam. Constraints resulting from the
monolithic connection between the beams and the slabs are important
for calculation of stresses resulting from dead load and service loads.
The thermoelastic analysis of the present study, focused on vertical heat
transfer from the top of the slab in the direction to the bottom of the
beam, however, is not influenced by these constraints.

The paper is structured as follows. In Section 2, analytical formulae
for scale transitions from the microstructural scale of concrete to the
cross-sectional scale of a beam are presented. Section 3 contains the
macrostructural part of the analysis. It includes the solution of the heat
transfer problem and leads to the thermal stresses at the cross-sectional
level. Section 4 refers to the microstructural part of the analysis, leading
to the thermal stresses experienced by the constituents of concrete. Sec-
tion 5 is devoted to sensitivity analyses. Section 6 contains a discussion
and the conclusions drawn from the analysis results.

2. Scale transitions regarding the thermoelastic behavior of con-
crete beams

2.1. Transition from the microstructural scale to the material scale of
concrete

Concrete is a hierarchically organized heterogeneous material con-
sisting of cement paste, fine aggregates, and coarse aggregates. Mod-
eling is focused on key features of the microstructure. Concrete is
modeled as spherical coarse aggregates embedded in a mortar matrix,
see Fig. 3(a). Mortar is modeled as spherical fine aggregates embedded
in a cement paste matrix, see Fig. 3(b). Representative volume elements
of mortar and concrete, 𝑉𝑅𝑉 𝐸 , are conceptually subdivided into the
matrix (index 𝑚) and the inclusions (index 𝑖), occupying the volumes 𝑉
𝑚
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and 𝑉𝑖, respectively. Both material phases, 𝑝 ∈ [𝑚 , 𝑖 ], exhibit specific
properties in terms of the elastic stiffness C𝑝, the eigenstrain 𝜺𝑒𝑝, and
the volume fraction 𝑓𝑝:

∀𝑥 ∈ 𝑉𝑝 ∶
{

C(𝑥) = C𝑝
𝜺𝑒(𝑥) = 𝜺𝑒𝑝

, 𝑓𝑝 =
𝑉𝑝

𝑉𝑅𝑉 𝐸
, 𝑝 ∈ [𝑚 , 𝑖 ] . (1)

All constituents are isotropic. Their elastic stiffness tensors C𝑝 de-
pend on their bulk moduli 𝑘𝑝 and shear moduli 𝜇𝑝:

C𝑝 = 3 𝑘𝑝 I𝑣𝑜𝑙 + 2𝜇𝑝 I𝑑𝑒𝑣 , 𝑝 ∈ [𝑚 , 𝑖 ] , (2)

where I𝑣𝑜𝑙 and I𝑑𝑒𝑣 stand for the volumetric and deviatoric part, respec-
tively, of the symmetric fourth-order identity tensor I. In the context of
thermoelasticity, the eigenstrains 𝜺𝑒𝑝 are proportional to the product of
their thermal expansion coefficient 𝛼𝑝 and the temperature change 𝛥𝑇 ,
i.e.

𝜺𝑒𝑝 = 𝛼𝑝 𝛥𝑇 𝟏 , 𝑝 ∈ [𝑚 , 𝑖 ] , (3)

where 𝟏 denotes the second-order identity tensor.
Scale transitions are based on the transformation field analysis of

ontinuum micromechanics (Dvorak, 1992), using a generalized Mori–
anaka–Benveniste scheme (Pichler and Hellmich, 2010). Bottom-up
cale transition yields estimates of the homogenized bulk modulus,
hom, the homogenized shear modulus, 𝜇hom, and the homogenized

coefficient of thermal expansion, 𝛼hom, as (Wang et al., 2019b)

𝑘hom =
𝑓𝑖 𝑘𝑖

[

1 + 3(𝑘𝑖−𝑘𝑚)
3 𝑘𝑚+4𝜇𝑚

]−1
+ 𝑓𝑚 𝑘𝑚

𝑓𝑖
[

1 + 3(𝑘𝑖−𝑘𝑚)
3 𝑘𝑚+4𝜇𝑚

]−1
+ 𝑓𝑚

, (4)

hom =
𝑓𝑖 𝜇𝑖

[

1 + 6 (𝑘𝑚+2𝜇𝑚) (𝜇𝑖−𝜇𝑚)
5𝜇𝑚(3 𝑘𝑚+4𝜇𝑚)

]−1
+ 𝑓𝑚 𝜇𝑚

𝑓𝑖
[

1 + 6 (𝑘𝑚+2𝜇𝑚) (𝜇𝑖−𝜇𝑚)
5𝜇𝑚(3 𝑘𝑚+4𝜇𝑚)

]−1
+ 𝑓𝑚

, (5)

hom =
3 𝑘𝑖 𝑘𝑚 (𝛼𝑚 𝑓𝑚 + 𝛼𝑖 𝑓𝑖) + 4𝜇𝑚 (𝛼𝑚 𝑓𝑚 𝑘𝑚 + 𝛼𝑖 𝑓𝑖 𝑘𝑖)

3 𝑘𝑖 𝑘𝑚 + 4𝜇𝑚 (𝑓𝑚 𝑘𝑚 + 𝑓𝑖 𝑘𝑖)
. (6)

Top-down scale transition provides access to volume-averaged strains
of the matrix and the inclusions, 𝜺𝑚 and 𝜺𝑖, respectively, based on the
concentration-influence relations (Dvorak, 1992; Pichler and Hellmich,
2010)

𝜺𝑝 = A𝑝 ∶ 𝐄hom +
∑

𝑞=𝑚,𝑖
D𝑝𝑞 ∶ 𝜺𝑒𝑞 , 𝑝 ∈ [𝑚 ; 𝑖 ] , (7)

where A𝑝 denotes the strain concentration tensor of material phase 𝑝
and D𝑝𝑞 stands for the influence tensor, allowing for quantification of
the influence of the eigenstrain in the material phase 𝑞 on the total
strain of phase 𝑝, see the Appendix for details. 𝐄hom denotes the
macrostrain of the composite, which is a function of the macrostress
𝜮hom and the temperature change 𝛥𝑇 :

𝐄hom = C−1
hom ∶ 𝜮hom + 𝛼hom 𝛥𝑇 𝟏 , (8)

where C−1
hom is the inverse of the homogenized stiffness tensor of the

composite, with Chom following from Eq. (2) specialized for 𝑝 = hom,
see also Eqs. (4) and (5). The volume-averaged stresses of the matrix
and the inclusions, 𝝈𝑚 and 𝝈𝑖, follow from the generalized Hooke’s law
as

𝝈𝑝 = C𝑝 ∶ (𝜺𝑝 − 𝜺𝑒𝑝) , 𝑝 ∈ [𝑚 , 𝑖 ] . (9)

Notably, the average stresses of the matrix and of the inclusions satisfy
the stress average rule:
3

𝜮hom = 𝑓𝑚 𝝈𝑚 + 𝑓𝑖 𝝈𝑖 . (10) v
2.2. Transition from the material scale of concrete to the cross-sectional
scale of a beam

If a concrete beam is subjected to transient heat conduction, changes
of temperature relative to a constant reference temperature will be
nonlinearly distributed across the cross-section. Related eigenstrains
are equal to the product of the thermal expansion coefficient, 𝛼𝑐𝑜𝑛, and
the temperature change 𝛥𝑇

𝜀𝑒𝑥𝑥 = 𝜀𝑒𝑦𝑦 = 𝜀𝑒𝑧𝑧 = 𝛼𝑐𝑜𝑛 𝛥𝑇 . (11)

Herein, the focus rests on heat conduction in the thickness direction,
characterized by the 𝑧-coordinate.

At the cross-sectional scale, the eigenstrains (11) are subdivided into
three parts: the eigenstretch and the eigencurvature of the axis of the
beam, and the eigendistortion of its cross-section. In this section, it
will be shown that rules for this decomposition follow from the Euler–
Bernoulli hypothesis, stating that cross-sections remain plane in the
deformed configuration:

𝑢 = 𝑢0 −
d𝑤0
d𝑥

𝑧 , (12)

where 𝑢 stands for the axial displacement field of the cross-section, 𝑢0
denotes the axial displacement of the center of gravity of the cross-
section, and 𝑤0 stands for its deflection, see Fig. 4 for the coordinate
system used. The axial normal stress reads as 𝜎𝑥𝑥 = 𝐸 (𝜀𝑥𝑥−𝜀𝑒𝑥𝑥), where
𝐸 stands for the modulus of elasticity, and 𝜀𝑥𝑥 denotes the axial normal
strain. Expressing the latter as the partial derivative of 𝑢 according to
Eq. (12) with respect to 𝑥, yields

𝜎𝑥𝑥 = 𝐸 (𝜀0 + 𝜅0 𝑧 − 𝜀𝑒𝑥𝑥) , (13)

with 𝜀0 = d𝑢0∕d𝑥 and 𝜅0 = −d2𝑤0∕d𝑥2. Insertion of Eq. (13) into
the expression for the normal force, 𝑁 = ∫𝐴 𝜎𝑥𝑥 d𝐴, yields both the
onstitutive law,

= 𝐸 𝐴
(

𝜀0 − 𝜀𝑒0
)

, (14)

nd the expression for the eigenstretch of the axis of the beam,

𝑒
0 ∶=

1
𝐴 ∫𝐴

𝜀𝑒𝑥𝑥 d𝐴 , (15)

with 𝐴 denoting the cross-sectional area. Similarly, insertion of Eq. (13)
into the expression for the bending moment, 𝑀 = ∫𝐴 𝜎𝑥𝑥 𝑧 d𝐴, yields
oth the constitutive law,

= 𝐸 𝐼
(

𝜅0 − 𝜅𝑒
0
)

, (16)

nd the expression for the eigencurvature of the axis of the beam,

𝑒
0 ∶= 1

𝐼 ∫𝐴
𝜀𝑒𝑥𝑥 𝑧 d𝐴 , (17)

with 𝐼 denoting the cross-sectional moment of inertia. Solving Eq. (14)
for 𝜀0 and Eq. (16) for 𝜅0 and inserting the resulting expressions into
Eq. (13), yields the following expression for the stresses:

𝜎𝑥𝑥 = 𝑁
𝐴

+ 𝑀
𝐼

𝑧 − 𝐸
(

𝜀𝑒𝑥𝑥 − 𝜀𝑒0 − 𝜅𝑒
0 𝑧

)

. (18)

qs. (15), (17), and (18) allow for the following interpretations. The
igenstretch of the beam is equal to the cross-sectional mean value of
he eigenstrain distribution, see Eq. (15). The eigencurvature of the
eam is equal to the cross-sectional first moment of the eigenstrain
istribution, see Eq. (17). Subtracting the constant eigenstretch part, 𝜀𝑒0,
nd the linear eigencurvature part, 𝜅𝑒

0 𝑧, from the total eigenstrains, 𝜀𝑒𝑥𝑥,
ields the spatially nonlinear cross-sectional eigendistortion part, see
he term in the parentheses in Eq. (18). It is prevented insofar as cross-
ections remain virtually plane, see Eq. (12). Thus, eigendistortions are
ullified by stress-related strains of identical size and opposite sign,
ee the minus sign in front of the third term on the right-hand-side
f Eq. (18). Multiplying the stress-related strains with the modulus of
lasticity yields eigenstresses resulting from prevented cross-sectional
igendistortions. They neither contribute to the normal force nor to the
ending moment, because both their mean values and first moments
anish.



European Journal of Mechanics / A Solids 93 (2022) 104495H. Wang et al.

1
w
T

𝐸

t

𝑇

s

a
𝑧

w
f
E
s
t

𝛥

w
h

Fig. 4. Coordinate system for rectangular concrete beams; Euler–Bernoulli hypothesis.

Fig. 5. Rectangular concrete beam subjected to one-dimensional heat conduction in
the thickness direction.

3. Macroscopic analysis of thermal stresses in rectangular con-
crete beams

The described mode of multiscale analysis is applied to rectangular
concrete beams (Fig. 5), subjected to heating at their top surfaces. The
height, ℎ, of the cross-section is equal to 30 cm. A sensitivity analysis,
addressing larger values of ℎ, is the topic of Section 5.4. Notably, the
width of the cross-section does not affect the quantification of the
thermal eigenstresses.

The analyzed beams consist of mature concrete with an initial
water-to-cement mass ratio of 0.40, coarse aggregates made of granite,
fine aggregates made of sandstone, and an internal relative humid-
ity of 100%. The material properties of the constituents of concrete
include volume fractions, elastic stiffness properties, and coefficients
of thermal expansion, see Table 1. They are taken from (Wang et al.,
2019b) for the purpose of analyzing a concrete equivalent to the one
considered in (Naik et al., 2011). Upscaling based on Eqs. (4)–(6) yields
homogenized thermoelastic properties of the concrete considered, see
Table 1. The coefficient of thermal expansion, 𝛼𝑐𝑜𝑛, amounts to 9.27 ×
0−6∕◦C, and the modulus of elasticity, 𝐸𝑐𝑜𝑛, to 31.07 GPa. The latter
as obtained from the homogenized bulk and shear moduli listed in
able 1, using the following standard relation for isotropic materials:

𝑐𝑜𝑛 =
9 𝑘𝑐𝑜𝑛 𝜇𝑐𝑜𝑛
3 𝑘𝑐𝑜𝑛 + 𝜇𝑐𝑜𝑛

. (19)

The value of the thermal diffusivity, 𝑎, of the concrete is equal to
0.85 × 10−6 m2∕s, see Bažant and Kaplan (1996).
4

o

Fig. 6. Prescribed temperature evolution at the top surface of the beam.

The remainder of this section is structured as follows. After solution
of the heat conduction problem, the thermal eigenstrains are computed.
The related thermal stresses are determined at the scale of the cross-
sections, accounting for constraints at this scale and of the entire beam
structure.

3.1. Temperature fields and thermal eigenstrains

The initial conditions and the boundary conditions of the investi-
gated problem of heat conduction read as follows. The initial configura-
tion is isothermal at 17 ◦C. At the bottom of the beam, the temperature
stays constant. For the sake of simplicity, it is assumed that there is no
heat flux across the lateral surfaces of the beam. The temperature at
the top surface is increased, during 12 h, by 13 ◦C, i.e. up to 30 ◦C, in
he form of an S-shaped function of time 𝑡:

𝑡𝑜𝑝(𝑡) = 17 ◦C + 13 ◦C ⋅
1
2

[

1 − cos
( 𝑡 𝜋
12 h

)]

, (20)

ee also Fig. 6.
The boundary conditions result in one-dimensional heat conduction

long the height of the beam. This direction is characterized by the
-coordinate, see Fig. 5. Thus, the heat equation takes the form

𝜕𝑇
𝜕𝑡

− 𝑎 𝜕2𝑇
𝜕𝑧2

= 0 , (21)

here 𝑇 = 𝑇 (𝑧, 𝑡) denotes the history of the temperature field. As
or the solution of Eq. (21), the prescribed temperature history, see
q. (20), is approximated in a step-wise fashion, with one temperature
tep per minute: 𝑡𝑖 = 𝑖× 1 min, with 𝑖 = 1, 2,… , 720 . The corresponding
emperature changes are obtained as

𝑇𝑡𝑜𝑝(𝑡𝑖) = 𝑇𝑡𝑜𝑝(𝑡𝑖) − 𝑇𝑡𝑜𝑝(𝑡𝑖−1) , 𝑖 = 1, 2,… , 720 , (22)

here 𝑇𝑡𝑜𝑝(𝑡𝑖) and 𝑇𝑡𝑜𝑝(𝑡𝑖−1) follow from Eq. (20). The solution of the
eat conduction problem reads as (Wang et al., 2019a)

𝑇 (𝑧, 𝑡) = 17 ◦C +
720
∑

𝑖=1
𝛥𝑇𝑡𝑜𝑝(𝑡𝑖)

{

( 1
2
− 𝑧

ℎ

)

−
∞
∑

𝑛=1

(−1)𝑛

𝑛 𝜋
sin

(

2 𝑛 𝜋 𝑧
ℎ

)

exp
[

−(2 𝑛 𝜋)2
𝑎 ⟨𝑡 − 𝑡𝑖⟩

ℎ2

]

+
∞
∑

𝑛=1

2 (−1)𝑛

(2 𝑛 − 1)𝜋
cos

[

(2 𝑛 − 1)𝜋 𝑧
ℎ

]

exp
[

−(2 𝑛 − 1)2 𝜋2 𝑎 ⟨𝑡 − 𝑡𝑖⟩
ℎ2

]

}

,

(23)

where ℎ denotes the height of the beam, and ⟨⋅⟩ denotes the Macaulay

perator. ⟨𝑡 − 𝑡𝑖⟩ is defined as (𝑡 − 𝑡𝑖 + |𝑡 − 𝑡𝑖|)∕2 . The infinite sums in
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Table 1
Upscaling of thermoelastic properties of mortar and concrete; computed by means to Eqs. (4)–(6); input values are printed in
bold face.

Material Volume Bulk Shear Thermal expansion
fraction [–] modulus [GPa] modulus[GPa] coefficient [10−6∕◦C]

Cement paste (𝑤∕𝑐 = 0.40) 0.545 13.11 9.83 10.50
Fine aggregate (sandstone) 0.455 23.33 14.00 11.25
Homogenized mortar – 16.94 11.53 10.89

Material Volume Bulk Shear Thermal expansion
fraction [–] modulus [GPa] modulus [GPa] coefficient [10−6∕◦C]

Mortar (homogenized) 0.55 16.94 11.53 10.89
Coarse aggregate (granite) 0.45 21.61 14.23 7.50
Homogenized concrete – 18.89 12.67 9.27
Fig. 7. Distribution of (a) the temperature and (b) the thermal eigenstrain across the height of the beam, at the end of heating of the top surface.
t
o

3

b
t
s

c
b
s
c
a
l
a
r
s

𝑁

C
T

4

t
a
e
s

Eq. (23) are truncated after the first 1000 summands. This provides a
well-converged solution.

A spatially nonlinear temperature distribution is obtained at the end
of the heating process of 12 h, see Fig. 7 (a). Thermal eigenstrains are
obtained by multiplying the temperature change, 𝛥𝑇 = 𝑇 (𝑧, 𝑡) − 17 ◦C,
by the thermal expansion coefficient of concrete, listed in Table 1, see
Fig. 7 (b).

3.2. Decomposition of the thermal eigenstrains

The thermal eigenstrain in Fig. 7 (b) is decomposed into contribu-
tions related to an eigenstretch and an eigencurvature of the axis of the
beam, and into an eigendistortion of its cross-sections. The eigenstretch
and the eigencurvature follow from Eqs. (15) and (17) as (Wang et al.,
2019a)

𝜀𝑒0 = +
720
∑

𝑖=1
𝛼𝑐𝑜𝑛 𝛥𝑇𝑡𝑜𝑝(𝑡𝑖)

{

1
2
−

∞
∑

𝑛=1

4
(2 𝑛 − 1)2 𝜋2

× exp
[

−
(2 𝑛 − 1)2 𝜋2 𝑎 ⟨𝑡 − 𝑡𝑖⟩

ℎ2

]

}

, (24)

𝑒
0 = −

720
∑

𝑖=1

𝛼𝑐𝑜𝑛 𝛥𝑇𝑡𝑜𝑝(𝑡𝑖)
ℎ

{

1 −
∞
∑

𝑛=1

6
𝑛2 𝜋2

× exp
[

−
(2 𝑛 𝜋)2 𝑎 ⟨𝑡 − 𝑡𝑖⟩

ℎ2

]

}

. (25)

The infinite sums in Eqs. (24) and (25) are truncated after the first
000 summands. This provides well-converged solutions. As for the
ime instant at the end of heating (𝑡 = 12 h), the numerical values of
he eigenstretch and the eigencurvature are obtained as 𝜀𝑒0 = 5.09×10−5

nd 𝜅𝑒
0 = −3.97 × 10−4 m−1, respectively. Subtracting the constant

igenstretch part, 𝜀𝑒 , and the linear eigencurvature part, 𝜅𝑒 𝑧, from the
5

0 0 c
otal eigenstrain, 𝜀𝑒𝑥𝑥, leads to the spatially nonlinear eigendistortions
f the cross-sections: 𝜀𝑒𝑥𝑥 − 𝜀𝑒0 − 𝜅𝑒

0 𝑧, see Fig. 8 (a).

.3. Thermal stresses at the cross-sectional level

Eigendistortions are prevented at the scale of the cross-sections
ecause, according to the Euler–Bernoulli hypothesis, they remain vir-
ually plane even under transient thermal loading. The corresponding
tresses are obtained from the last term in Eq. (18), see Fig. 8 (b).

Whether eigenstretches and eigendistortions are free to develop,
onstrained, or prevented depends on the support conditions of the
eam. They are free to develop in statically determinate beams, con-
trained in statically indeterminate beams, and prevented in beams
lamped at both ends. Thus, there are lower and upper bounds of the
bsolute values of the normal force 𝑁 and the bending moment 𝑀 . The
ower bounds (index ‘‘𝑙𝑏’’), referring to statically determinate beams,
re equal to zero: 𝑁𝑙𝑏 = 0 and 𝑀𝑙𝑏 = 0. The upper bounds (index ‘‘𝑢𝑏’’),
eferring to double-clamped beams, follow from Eqs. (14) and (16) by
etting 𝜀0 and 𝜅0 equal to zero:

𝑢𝑏 = −𝐸𝐴𝜀𝑒0 , 𝑀𝑢𝑏 = −𝐸𝐼 𝜅𝑒0 . (26)

orresponding cross-sectional normal stresses follow from Eq. (18).
hey are shown in Fig. 9.

. Multiscale analysis: microscopic thermal stresses

When concrete is subjected to temperature changes, microscopic
hermal stresses are activated because the coarse aggregates, the fine
ggregates, and the cement paste have different coefficients of thermal
xpansion. Also, when concrete is subjected to stresses, microscopic
tress fluctuations are activated, because the three microstructural
onstituents have different elastic stiffness properties. This provides the
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Fig. 8. Distribution of (a) the eigendistortions of the cross-sections and (b) the corresponding thermal stresses of concrete across the height of the beam, at the end of heating of
he top surface.
Fig. 9. Distribution of thermal stresses resulting from prevented (a) eigenstretches and (b) eigencurvatures in double-clamped beams across the height of the beam, at the end of
heating of the top surface.
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motivation to compute, in a step-by-step fashion, the microstresses re-
sulting from the temperature change, the prevented eigendistortions of
the cross-sections, and the prevented eigenstretch and eigencurvature
of the beam.

4.1. Flow of the calculation procedure

The procedure of the calculation of the thermal stresses is summa-
rized as follows:

1. Quantification of the elastic stiffness and the thermal expan-
sion coefficient of concrete based on thermoelastic properties
and volume fractions of the microstructural constituents, see
Eqs. (4)–(6) and (19).

2. Determination of the evolution of the temperature field accord-
ing to Eq. (23).

3. Computation of the thermal eigenstrains 𝜀𝑒𝑥𝑥 according to
Eq. (11).

4. Decomposition of the thermal eigenstrains: Calculation of

• the eigenstretch 𝜀𝑒0 according to Eq. (24),
• the eigencurvature 𝜅𝑒

0 according to Eq. (25), and
• the eigendistortions as 𝜀𝑒 − 𝜀𝑒 − 𝜅𝑒 𝑧 .
6

𝑥𝑥 0 0
5. Quantification of the thermal eigenstresses at the cross-sectional
level as: −𝐸 (𝜀𝑒𝑥𝑥 − 𝜀𝑒0 − 𝜅𝑒

0 𝑧).
6. Computation of the microscopic thermal stresses by means of

top-down scale transition, see Eqs. (7)–(9) and the Appendix.

he mentioned formulae can be evaluated simply, using software for
umerical calculus. In the present study, MATLAB (The Mathworks,
nc., 2020) is used.

.2. Microscopic stresses resulting from the temperature change

The first downscaling step leads from ‘‘macroscopic’’ or ‘‘homoge-
ized’’ concrete to the mortar matrix and the coarse aggregate inclu-
ions. Because of the focus on the influence of the temperature change,
he macrostresses of concrete are set equal to zero: 𝜮hom(= 𝜮𝑐𝑜𝑛) = 0.
he homogenized thermal expansion coefficient is the one of concrete:
hom = 𝛼𝑐𝑜𝑛, see Table 1, and the temperature change of concrete is
omputed as 𝛥𝑇 = 𝑇 (𝑧, 𝑡) − 17 ◦C, with 𝑇 (𝑧, 𝑡) taken from Fig. 7 (a).
he macrostrains 𝑬hom(= 𝑬𝑐𝑜𝑛) are obtained from Eq. (8), and the
igenstrains 𝜺𝑒𝑚(= 𝜺𝑒𝑚𝑜𝑟) and 𝜺𝑒𝑖 (= 𝜺𝑒𝑐𝑎𝑔𝑔) are obtained from Eq. (3).
nserting them into Eq. (7) yields the average strains 𝜺𝑚(= 𝜺𝑚𝑜𝑟) and
𝑖(= 𝜺𝑐𝑎𝑔𝑔). Finally, the average stresses 𝝈𝑚(= 𝝈𝑚𝑜𝑟) and 𝝈𝑖(= 𝝈𝑐𝑎𝑔𝑔)
re obtained from inserting the computed strains into Eq. (9). This
ownscaling yields isotropic tensile stresses of the coarse aggregates
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Fig. 10. Microstresses resulting from the temperature changes illustrated in Fig. 7(a)
across the height of the beam, at the end of heating of the top surface: con = concrete,

or = mortar, cagg = coarse aggregates, cp = cement paste, fagg = fine aggregates.

and isotropic compressive stresses of mortar, see Fig. 10, because the
larger expansion of the mortar matrix is constrained by the smaller ex-
pansion of the coarse aggregates (Table 1). No stresses are activated at
the bottom of the beam, noting that the temperature remains constant
there. The microscopic stresses increase from the bottom to the top
of the beam, since the temperature change increases with increasing
vertical distance from the bottom of the beam. Inserting the average
stresses of mortar and coarse aggregates together with their volume
fractions (Table 1) into the stress average rule, see Eq. (10), yields van-
ishing macrostresses of concrete 𝜮hom(= 𝜮𝑐𝑜𝑛) = 0. This underlines that
he microstresses of the mortar and the coarse aggregates ‘‘fluctuate’’
round the macrostresses of concrete.

The second downscaling step leads from ‘‘macroscopic’’ or ‘‘ho-
ogenized’’ mortar to the cement paste matrix and the fine aggregate

nclusions. This time, the macrostress is equal to average stress of
ortar obtained from the first downscaling step: 𝜮hom = 𝝈𝑚𝑜𝑟. The
omogenized thermal expansion coefficient is the one of mortar: 𝛼hom =

𝛼𝑚𝑜𝑟, see Table 1. The temperature changes are taken from above.
𝑬hom is equal to 𝜺𝑚𝑜𝑟 from the first downscaling step. The eigenstrains
𝜺𝑒𝑚(= 𝜺𝑒𝑐𝑝) and 𝜺𝑒𝑖 (= 𝜺𝑒𝑓𝑎𝑔𝑔) are computed according to Eq. (3). Inserting
hem into Eq. (7) yields the average strains 𝜺𝑚(= 𝜺𝑐𝑝) and 𝜺𝑖(= 𝜺𝑓𝑎𝑔𝑔).

Finally, the average stresses 𝝈𝑚(= 𝝈𝑐𝑝) and 𝝈𝑖(= 𝝈𝑓𝑎𝑔𝑔) are obtained
from inserting the computed strains into Eq. (9). This downscaling
yields isotropic compressive stresses of the fine aggregates and the
cement paste, which ‘‘fluctuate’’ around the macrostresses of mortar,
see Fig. 10. The compressive stresses of the fine aggregates are larger
than those of the cement paste, because their coefficients of thermal
expansion are almost the same, but the bulk modulus of the fine
aggregates is significantly larger than that of the cement paste. This is a
consequence of the statically indeterminate nature of the microstructure
of mortar. This expression implies that the computation of the micro-
scopic stresses must not be restricted to the equilibrium conditions,
but must also include conditions of strain compatibility. This leads
to the well known effect that stiffer (micro)structural elements, i.e.
fine aggregates, attract a larger share of the load than more compliant
(micro)structural elements, i.e. the cement paste matrix.

4.3. Microscopic stresses resulting from prevented eigendistortions of the
cross-sections of the beam

For computation of the microscopic stresses resulting from pre-
vented eigendistortions of the cross-sections, the macrostress of con-
crete is needed. It is given as 𝜮hom = −𝐸𝑐𝑜𝑛

(

𝛼𝑐𝑜𝑛𝛥𝑇 −𝜀𝑒0−𝜅𝑒
0 𝑧

)

(𝐞𝑥⊗ 𝐞𝑥),
𝑒 −5 𝑒 −4 −1
7

ith 𝐸𝑐𝑜𝑛 = 31.06 GPa, 𝜀0 = 5.09 × 10 , and 𝜅0 = −3.97 × 10 m ,
ee also Fig. 8 (b). Thermal eigenstrains were already analyzed in the
receding subsection. Therefore, they are equal to zero herein: 𝜺𝑒𝑐𝑜𝑛 =
𝑒
𝑐𝑎𝑔𝑔 = 𝜺𝑒𝑚𝑜𝑟 = 𝜺𝑒𝑓𝑎𝑔𝑔 = 𝜺𝑒𝑐𝑝 = 0.

Both downscaling steps are governed by contrasts of stiffness. Be-
cause the coarse aggregates are stiffer than the mortar, the absolute
values of the stresses of the coarse aggregates are slightly larger than
those of the mortar. The stresses of the concrete are in between.
Because the fine aggregates are stiffer than the cement paste, the
absolute values of their stresses are slightly larger than those of the
cement paste. The stresses of the mortar are in between. Notably, the
stress fluctuations resulting from the prevented eigendistortions of the
cross-sections are significantly smaller than those resulting from the
temperature change, compare Figs. 11 and 10.

4.4. Microscopic stresses resulting from the prevented eigenstretch and
eigencurvature of a double-clamped beam

For computation of the microscopic stresses resulting from the
prevented eigenstretch and eigencurvature of a beam clamped at both
ends, the macrostress of concrete is needed. It is given as 𝜮hom =
(

𝑁𝑢𝑏
𝐴 + 𝑀𝑢𝑏

𝐼 𝑧
)

(𝐞𝑥 ⊗ 𝐞𝑥), see Fig. 9. The thermal eigenstrains are equal
to zero: 𝜺𝑒𝑐𝑜𝑛 = 𝜺𝑒𝑐𝑎𝑔𝑔 = 𝜺𝑒𝑚𝑜𝑟 = 𝜺𝑒𝑓𝑎𝑔𝑔 = 𝜺𝑒𝑐𝑝 = 0. Again, both downscaling
steps are governed by contrasts of stiffness. For the results, see Fig. 12.

4.5. Bounding scenarios: statically determinate beam and double-clamped
beam

Microscopic stresses resulting from the temperature change (Fig. 10)
and from the prevented eigendistortions of the cross-sections (Fig. 11)
are inevitable. The superposition of these two contributions yields the
total effective stresses in statically determinate beams, see Fig. 13 (a).
The effective stresses in a (statically indeterminate) double-clamped
beam contain all of the three contributions, namely, the one from the
temperature change (Fig. 10), the prevented eigendistortions of the
cross-sections (Fig. 11), and the prevented eigenstretch and eigencur-
vature of the beam (Fig. 12), see Fig. 13 (b).

5. Sensitivity analyses

The results from multiscale analysis presented so far refer to mature
concrete with coarse aggregates made of granite and to an internal
relative humidity of 100%, resulting in thermoelastic properties listed
in Table 1. The duration of heating amounted to 12 h. Four types
of sensitivity analyses are carried out. One of them refers to the type
of the coarse aggregates. The other ones are related to the internal
relative humidity, the speed of the heating process, and the height of
the concrete beam. Without loss of generality, the discussion is limited
to stresses in statically determinate beams.

5.1. Sensitivity analysis regarding the type of coarse aggregates

In order to study the role of the coarse aggregates, granite is
replaced by limestone and quartzite, respectively, see Table 2. All
other properties of the problem at hand stay the same as in Section 4.
Limestone is stiffer and less expansive than granite. Quartzite is even
stiffer than limestone and more expansive than granite.

Macroscopic thermal stresses of concrete, resulting from the pre-
vented eigendistortions, given as 𝜮hom = −𝐸𝑐𝑜𝑛

(

𝛼𝑐𝑜𝑛𝛥𝑇 −𝜀𝑒0−𝜅𝑒
0 𝑧

)

(𝐞𝑥⊗
𝐞𝑥), are proportional to the product of the thermal expansion coefficient
of concrete and its modulus of elasticity, see also Eqs. (24) and (25) as
well as Table 2. As for granite, limestone, and quartzite, these products
amount to 288×10−6 GPa∕◦C, 268×10−6 GPa∕◦C, and 411×10−6 GPa∕◦C,
respectively. This explains why granite and limestone result in virtually
the same stresses at the level of concrete, while quartzite yields larger
stresses, see Fig. 14(a).
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Fig. 11. Microscopic normal stress resulting from prevented eigendistortions of the cross-sections of the beam, across the height of the beam, at the end of heating of the top
surface: con = concrete, mor = mortar, cagg = coarse aggregates, cp = cement paste, fagg = fine aggregates: (a) results presented in a stress interval allowing for direct comparison
with Figs. 10 and 12, (b) detail of the left diagram, with a smaller stress interval.

Fig. 12. Microscopic normal stress resulting from prevented (a) eigenstretches and (b) eigencurvatures in double-clamped beams across the height of the beam, at the end of
heating of the top surface: con = concrete, mor = mortar, cagg = coarse aggregates, cp = cement paste, fagg = fine aggregates.

Fig. 13. Effective microscopic normal stress of (a) statically determinate beams and (b) double-clamped beams across their heights, at the end of heating of the top surface: con
= concrete, mor = mortar, cagg = coarse aggregates, cp = cement paste, fagg = fine aggregates.
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Table 2
Sensitivity analysis regarding the type of coarse aggregates: thermoelastic properties of the three types of
coarse aggregates considered and of the corresponding concretes.

Coarse aggregate 𝑘𝑐𝑎𝑔𝑔 [GPa] 𝜇𝑐𝑎𝑔𝑔 [GPa] 𝛼𝑐𝑎𝑔𝑔 [10−6∕◦C] 𝐸𝑐𝑜𝑛 [GPa] 𝛼𝑐𝑜𝑛 [10−6∕◦C]

Limestone 32.61 17.72 4.75 34.71 7.73
Granite 21.61 14.23 7.50 31.07 9.27
Quartzite 24.51 21.55 11.75 36.33 11.31
Fig. 14. Results from sensitivity analysis regarding the type of coarse aggregates: normal stresses in (a) the concrete, (b) the mortar, (c) the coarse aggregates, (d) the cement
aste, and (e) the fine aggregates across the height of a statically determinate beam, at the end of twelve-hour heating of the top surface.
Stresses in the coarse aggregates and in the mortar, see Fig. 14(b)

nd (c), fluctuate around the stresses in the concrete. These fluctuations

re governed by the difference of stiffness and, more importantly, by
9

differences of the thermal expansion. Each one of the three types of

coarse aggregates is stiffer than the mortar matrix. Limestone and gran-

ite expand significantly less than mortar, while quartzite expands only
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Fig. 15. Results from sensitivity analysis regarding the internal relative humidity: normal stresses in (a) the concrete, (b) the mortar, (c) the coarse aggregates, (d) the cement
aste, and (e) fine aggregates across the height of a statically determinate beam, at the end of twelve-hour heating of the top surface.
lightly more than mortar, compare Tables 1 and 2. These properties
esult in differences between the stresses in quartzite and mortar, which
re significantly smaller than the differences between the stresses in
ranite and mortar. The differences between the stresses in limestone
nd mortar are the largest, because of the particularly large difference
f their coefficients of thermal expansion.

Stresses in the fine aggregates and the cement paste, see Fig. 14(d)
nd (e), fluctuate around the stresses in the mortar. Each one of the
hree concretes analyzed is made of the same types of small aggregates
nd cement paste. Therefore, the magnitude of the stress fluctuations

around the stresses of the mortar is similar in the three investigated
cases. Still, because the stresses of the mortar strongly depend on the
10
type of the coarse aggregates, see Fig. 14(b), also the stresses in the fine
aggregates and in the cement paste are different for different concretes.

5.2. Sensitivity analysis regarding the internal relative humidity

So far, the relative humidity was assumed to be equal to 100%. In
order to study its influence on the stresses in the investigated beam, it is
now set equal to 65% and to 30%, respectively, see Table 3. The other
input quantities remain the same as in Section 4. The thermal expansion
coefficient of the cement paste at 𝑅𝐻 = 65% is virtually twice as large
as that at 𝑅𝐻 = 100% (Emanuel and Hulsey, 1977; Wang et al., 2018b).
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Fig. 16. Results from sensitivity analysis regarding the speed of the heating process: (a) temperature field and (b) thermal eigendistortions, across the height of the beam, at the
end of three different heating processes, lasting for 12, 6, and 3 h, respectively.
Table 3
Sensitivity analysis regarding the internal relative humidity: thermal expansion coeffi-
cients of the cement paste, the mortar, and the concrete at internal relative humidities
𝑅𝐻 of 30%, 65%, and 100%, respectively.

Relative humidity 𝛼𝑐𝑝 [10−6∕◦C] 𝛼𝑚𝑜𝑟 [10−6∕◦C] 𝛼𝑐𝑜𝑛 [10−6∕◦C]

𝑅𝐻 = 30% 14.5 12.82 10.28
𝑅𝐻 = 65% 20.0 15.48 11.68
𝑅𝐻 = 100% 10.5 10.89 9.27

At 𝑅𝐻 = 30%, the thermal expansion coefficient of the cement paste is
approximately 1.5-times larger than that at 𝑅𝐻 = 100% (Emanuel and

ulsey, 1977; Wang et al., 2018b), see also Table 3.
A significant increase of the thermal expansion coefficient of the

ement paste results in a moderate increase of the thermal expansion
oefficient of mortar and in an even smaller increase of that of concrete,
ee Table 3. The elastic stiffness properties are independent of the 𝑅𝐻 .
n other words: they are constant, see Table 1. The products of the
odulus of elasticity and the thermal expansion coefficient of concrete

re quite similar. Thus, the macrostresses of concrete are also quite
imilar for the three investigated values of the 𝑅𝐻 , see Fig. 15(a).

Stresses in the coarse aggregates and mortar, see Fig. 15(b) and (c),
luctuate around the stresses in the concrete. These fluctuations are
he larger, the greater the difference between the thermal expansion
oefficients of the two constituents of concrete. The thermal expansion
oefficient of granite is smaller than that of mortar in the entire range
f the investigated values of the 𝑅𝐻 , compare the Tables 1 and 3. Thus,
he largest stress fluctuations are obtained for the largest coefficient of
hermal expansion of the mortar, related to 𝑅𝐻 = 65%.

Stresses in the fine aggregates and the cement paste, see Fig. 15(d)
nd (e), fluctuate around the stresses in the mortar. These fluctuations
re the larger, the greater the difference of the thermal expansion
oefficients of the two constituents of mortar. The thermal expansion
oefficient of the fine aggregates (limestone) is similar to that of the
ement paste at 𝑅𝐻 = 100%, compare Tables 1 and 3. This explains why
he smallest stress fluctuations are obtained for full saturation, compare
ig. 15(b), (d), and (e). The largest difference of the thermal expansion
oefficients occurs at 𝑅𝐻 = 65%, compare Tables 1 and 3. This results

in the largest stress fluctuations between the constituents of mortar.

5.3. Sensitivity analysis regarding the speed of the heating process

In order to study the significance of the speed of the temperature
change, the duration of the heating process at the top surface of the
beam is reduced from 12 to 6 and 3 h, respectively, see Fig. 16(a). The
other input quantities remain the same as in Section 4.
11
Table 4
Results from sensitivity analysis regarding the speed of the heating process: eigen-
stretches and eigencurvatures of the axis of the beam at the end of three different
heating processes, lasting for 12 h, 6 h, and 3 h, respectively.

Heating period 𝜀𝑒0 [–] 𝜅𝑒
0 [m−1]

3 h 2.98 × 10−5 −3.54 × 10−4

6 h 4.06 × 10−5 −3.85 × 10−4

12 h 5.09 × 10−5 −3.97 × 10−4

The faster the heating process, the larger the curvature of the tem-
perature profiles across the height of the beam (Fig. 16), the smaller the
value of the temperature averaged over the cross-sections, and, thus,
the smaller the thermal eigenstretch of the beam, see Table 4. Relative
to these significant differences, the absolute value of the eigencurvature
decreases only slightly with increasing speed of heating, see Table 4.
However, the eigenstretch and the eigencurvature do not result in
stresses in statically determinate beams.

The faster the heating process, the larger the eigendistortions of the
cross-sections of the beam, see Fig. 16(b), and the larger the stresses in
the concrete, see Fig. 17(a). Because these stresses are self-equilibrated,
compressive stresses are activated at the top and the bottom, and tensile
stresses in the central part of the beam, see Fig. 17(a). The stress
fluctuations at the two different scales of the microstructure are similar
to those discussed in Section 4, see Fig. 17(b)–(e).

5.4. Sensitivity analysis regarding the height of the beam

In order to study the thermoelastic response of concrete beams with
different geometric dimensions, the height of the beam is increased
from 30 cm to 40 cm and 50 cm, respectively. The other input quantities
remain the same as in Section 4.

The larger the height of the beam, the larger the curvature of the
temperature profile across the height of the beam after the twelve-hour
heating process, see Fig. 18(a). In order to facilitate a comparison, the
vertical coordinate is represented in dimensionless form, normalized
with respect to the height of the beam, i.e. 𝑧∕ℎ. With increasing
height of the beam, the eigenstretch and the eigencurvature of the
beam, according to Eqs. (15) and (17), respectively, are decreasing, see
Table 5. However, the eigenstretch and the eigencurvature do not result
in stresses in statically determinate beams.

The larger the height of the beam, the larger the eigendistortions
of the cross-section of the beam, see Fig. 18(b), and the larger the
macroscopic thermal stresses, see Fig. 19(a). The fluctuations of the
microstresses are also similar to those discussed in Section 4, see
Fig. 19(b)–(e).
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Fig. 17. Results from sensitivity analysis regarding the speed of the heating process: normal stresses in (a) the concrete, (b) the mortar, (c) the coarse aggregates, (d) the cement
paste, and (e) the fine aggregates across the height of a statically determinate beam, at the end of three different heating processes, lasting for 12, 6, and 3 h, respectively.
Table 5
Results from sensitivity analysis regarding the height of the beam: eigenstretches and
eigencurvatures of the axis of the beam at the end of twelve-hour heating of the top
surface.

Height [cm] 𝜀𝑒0 [–] 𝜅𝑒
0 [m−1]

30 5.09 × 10−5 −3.97 × 10−4

40 4.25 × 10−5 −2.91 × 10−4

50 3.53 × 10−5 −2.24 × 10−4
12
5.5. Implications for long-term durability

Durability of concrete requires the long-term integrity of its mi-
crostructure. Interfacial transition zones (ITZ) around the aggregates
(Scrivener et al., 2004) are the weakest regions of concrete (Königs-
berger et al., 2014b). Stresses in the these zones can be computed, using
aggregate-to-ITZ stress transfer tensors (Königsberger et al., 2014a),
provided that the stress states inside the aggregates are known. These
tensors are based on continuity conditions regarding the traction vec-
tors and the displacement vectors across the two-dimensional interface
between an aggregate and the surrounding ITZ (Königsberger et al.,
2014a).
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Fig. 18. Results from sensitivity analysis regarding the height of the beam: (a) temperature field and (b) thermal eigendistortions across the height of the beam, at the end of
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The following discussion refers to statically determinate beams,
where the computed thermal normal stresses 𝜎𝑥𝑥 at the height of the
eutral axis of the beam, 𝑧 = 0, are the total normal stresses even
fter superposition of the stresses from other load cases resulting in
ending, e.g. dead load of the flat roof. The discussion is focused
n the two points on the surface of a spherical aggregate, at which
he normal vector to the surface is pointing in the direction of 𝐞𝑥.

Because of the continuity of the components of the traction vector
acting at these surface points, the normal stress 𝜎𝑥𝑥 in the aggregate is
transferred also to the ITZ. Thus, the normal stresses 𝜎𝑥𝑥 in the coarse
and the fine aggregates, at 𝑧 = 0, are also acting in the ITZs, see the
diagrams (c) and (e) in Figs. 14, 15, and 16. The normal stresses in the
ITZs surrounding coarse aggregates are larger than those around fine
aggregates, and they are particularly large in case of coarse aggregates
made of limestone, see Fig. 14 (c), for an internal relative humidity of
65%, see Fig. 15 (c), and of fast heating of the beam, see Fig. 16 (c).
In each one of the three cases, the maximum normal stress is a tensile
stress, ranging from 0.60 MPa to 0.80 MPa. This is a significant tensile
stress, given that the tensile strength of the ITZ ranges usually from
0.78 MPa to 4.00 MPa (Zimbelmann, 1985; Ping and Beaudoin, 1992;
hang et al., 2019). It is concluded that daily temperature changes of
oncrete beams result in daily stress cycles representing a significant
atigue loading of ITZs, particularly in the mid-height region of the
eam.

. Discussion and conclusions

Nonlinear distributions of thermal eigenstrains across the height of
beam are characteristic results of transient heat conduction in the

hickness direction. The question whether the thermal eigenstrains are
ree to develop, constrained, or prevented must be answered at different
cales of observation: the scale of the entire beam and its specific
upport conditions, the cross-sectional scale, and the microstructural
cales of concrete. In this context, macroscopic thermal eigenstrains
f concrete are subdivided into three parts: the eigenstretch of the
xis of the beam, its eigencurvature, and the eigendistortion of the
ross-sections.

The question whether the eigenstretch and the eigencurvature are
ree to develop, constrained, or prevented refers to the largest scale
f observation. They are only free to develop in statically determinate
eams. They are at least constrained in statically indeterminate beams,
epending on the geometric boundary conditions at their supports. In
tatically indeterminate cases, normal forces and/or bending moments
ill be activated, leading to linear macroscopic stresses across the
eight of the beam.

Eigendistortions are prevented at the scale of the cross-sections,
ecause the latter remain virtually plane even if the beam is subjected
13
to transient thermal loading. Eigendistortions only vanish in case of
stationary heat conduction. Thus, transient heat conduction in the thick-
ess direction inevitably leads to macroscopic thermal eigenstresses of
oncrete, which are nonlinearly distributed across the height of the
eam.

Additional constraints refer to microstructural scales of concrete.
he mismatch of the thermal expansion coefficients of the constituents
f concrete is another source of inevitable thermal eigenstresses. Such
tresses are activated even in the seemingly simple case of statically
eterminate beams subjected to stationary heat conduction. In addition,
he mismatch of the elastic stiffness constants of the constituents of
oncrete results in stress fluctuations. Scale transition methods, taken
rom continuum micromechanics, were used to quantify microscopic
tresses resulting from macroscopic thermal loading.

Microstructural stresses in statically determinate concrete beams are
he larger, the faster and the larger the temperature change, and the
arger the mismatches of both the thermal expansion coefficients and
he elastic stiffness constants of the coarse aggregates, the fine aggre-
ates, and the cement paste matrix. Because the thermal expansion
oefficient of the cement paste is a bell-shaped function of the internal
elative humidity (Fig. 2), microstructural stresses also depend on the
ygral state of the beam.

Daily stress cycles, resulting from diurnal fluctuations of the tem-
erature, represent a recurrent type of loading. Thus, the durability of
oncrete is reduced, as underlined by thermal tensile stresses of the
TZ, reaching daily maxima ranging from 0.60 MPa to 0.80 MPa at
idheight of the beams, noting that the tensile strength of the ITZ

anges usually from 0.78 MPa to 4.00 MPa (Zimbelmann, 1985; Ping and
eaudoin, 1992; Zhang et al., 2019). In order to increase the service life
f concrete beams, it is desirable to reduce the amplitudes of the daily
ycles of the thermal microstresses. Based on the conclusions of this
ork, the following recommendations are made:

• It would be beneficial to reduce the difference of the stiffness
of the stiff aggregates and the less stiff cement paste matrix.
The stiffness of the hardened cement paste can be increased by
decreasing the initial water-to-cement mass ratio. This can be
achieved, e.g., by using water-reducing agents (= superplasticiz-
ers). Aggregates, in turn, are local products, meeting the require-
ment that transportation distances be reasonably short. Thus, the
question whether or not there is a choice between aggregates
of different stiffnesses, depends on the local geologic situation.
Provided that there is such a choice, it is recommended to use
those aggregates which reduce the difference of the stiffness to
the hardened cement paste as much as possible.

• It would be beneficial to reduce the difference between the ther-
mal expansion coefficients of the aggregates and the cement
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a

Fig. 19. Results from sensitivity analysis regarding the height of the beam: normal stresses in (a) the concrete, (b) the mortar, (c) the coarse aggregates, (d) the cement paste,
nd (e) the fine aggregates across the height of a statically determinate beam, at the end of twelve-hour heating of the top surface.
paste matrix. Usual thermal expansion coefficients of aggregates
amount to 10×10−6∕◦C or less. The thermal expansion coefficient
of the cement paste is close to 12 × 10−6∕◦C for 𝑅𝐻 = 0% and
𝑅𝐻 = 100%. As for relative humidities in the range of 40 to
80%, the thermal expansion coefficient of the cement paste is
significantly larger, see Fig. 2. Provided that a choice between
different types of aggregates is possible, it is recommended to use
those aggregates which reduce the difference of the coefficient of
thermal expansion to the cement paste matrix as much as possi-
ble. As for the cement paste, it is desirable to avoid 𝑅𝐻-values
from 40 to 80% e.g. by means of air conditioning systems.

• The best practical remedy for thermal stresses is to reduce the
speed and the amplitude of the diurnal thermal loading by means
14
of appropriate insulation. It is concluded that the thermal insula-
tion of flat roofs, as promoted by the United Nations environment
program to reduce energy consumption in buildings, is also ben-
eficial to increasing the service life of such roofs by decreasing
the amplitude of the daily stress cycles inside the concrete beams
that carry the roofs.

Finally, it is noted that the presented results are in good agreement
with the ones from previous theoretical, experimental, and numerical
studies. The decomposition of the thermal eigenstrains into three parts
which are associated with the eigenstretch, the eigencurvature, and the
eigendistortions agrees with the decomposition of a nonlinear temper-
ature distribution into a constant, a linear, and a nonlinear part, as
proposed in Thomlinson (1940). These theoretical developments have
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been used for quantification of thermal eigenstresses of pavement plates
based on temperature measurements obtained from in situ monitoring,
see e.g. (Choubane and Tia, 1995). Similarly, thermal eigenstresses of
pavement plates have also been analyzed by means of Finite Element
simulations, see e.g. (Pane et al., 1998; Wang et al., 2019a) and
references therein.
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ppendix. Concentration and influence tensors

The strain concentration tensor of the material phase 𝑝 reads as (Za-
ui, 2002)

𝑝 =
[

I + S ∶ C−1
𝑚 ∶ (C𝑝 − C𝑚)

]−1 ∶
{

∑

𝑗=𝑚,𝑖
𝑓𝑗

[

I + S ∶ C−1
𝑚 ∶ (C𝑗 − C𝑚)

]−1
}−1

, 𝑝 ∈ [𝑚 , 𝑖 ] , (A.1)

The phase-pair eigenstrain influence tensors are taken from (Wang
et al., 2019b):

D𝑝𝑝 =
[

I − 𝑓𝑝A𝑝
]

∶
[

I + S ∶ C−1
𝑚 ∶

(

C𝑝 − C𝑚
)]−1 ∶

(

S ∶ C−1
𝑚
)

∶ C𝑝 , (A.2)

D𝑝𝑞 = −A𝑝 ∶ 𝑓𝑞
[

I + S ∶ C−1
𝑚 ∶

(

C𝑞 − C𝑚
)]−1 ∶

(

S ∶ C−1
𝑚
)

∶ C𝑞 , 𝑝 ≠ 𝑞 .

(A.3)

S stands for the Eshelby tensor of a spherical inclusion embedded in an
infinite matrix of stiffness, C𝑚. It is given as

S = 𝑆𝑣𝑜𝑙 I𝑣𝑜𝑙 + 𝑆𝑑𝑒𝑣 I𝑑𝑒𝑣 , (A.4)

with the following expressions for the volumetric and the deviatoric
component, 𝑆𝑣𝑜𝑙 and 𝑆𝑑𝑒𝑣, respectively:

𝑆𝑣𝑜𝑙 =
3 𝑘𝑚

3 𝑘𝑚 + 4𝜇𝑚
, 𝑆𝑑𝑒𝑣 =

6 (𝑘𝑚 + 2𝜇𝑚)
5 (3 𝑘𝑚 + 4𝜇𝑚)

. (A.5)
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