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Abstract

The paper investigates stability properties of solutions of optimal control problems for semilinear parabolic
partial differential equations. Hölder or Lipschitz dependence of the optimal solution on perturbations are
obtained for problems in which the equation and the objective functional are affine with respect to the
control. The perturbations may appear in both the equation and in the objective functional and may non-
linearly depend on the state and control variables. The main results are based on an extension of recently
introduced assumptions on the joint growth of the first and second variation of the objective functional.
The stability of the optimal solution is obtained as a consequence of a more general result obtained in the
paper – the proved metric subregularity of the mapping associated with the system of first order necessary
optimality conditions. This property also enables error estimates for approximation methods. Lipschitz
estimate for the dependence of the optimal control on the Tikhonov regularization parameter is obtained as
a by-product.

1 Introduction

Let Ω ⊂ Rn, 1 ≤ n ≤ 3, be a bounded domain with Lipschitz boundary ∂Ω. For a finite T > 0, denote by
Q := Ω× (0, T ) the space-time cylinder and by Σ := ∂Ω× (0, T ) its lateral boundary. In the present paper, we
investigate the following optimal control problem:

(P) min
u∈U

{
J(u) :=

∫
Q

L(x, t, y(x, t), u(x, t)) dx dt

}
, (1.1)

subject to {
∂y
∂t +Ay + f(·, y) = u in Q,
y = 0 on Σ, y(·, 0) = y0 on Ω.

(1.2)

Denote by yu the unique solution to the semilinear parabolic equation (1.2) that corresponds to control u ∈
Lr(Q), where r is a fixed number satisfying the inequality r > 1 + n

2 . For functions ua, ub ∈ L∞(Q) such that
ua < ub a.e in Q, the set of feasible controls is given by

U := {u ∈ L∞(Q)| ua ≤ u ≤ ub for a.a. (x, t) ∈ Q}. (1.3)
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The objective integrand in (1.1) is defined as

L(x, t, y, u) := L0(x, t, y) + (my + g)u, (1.4)

where m is a number, g is a function in L∞(Q) and L0 satisfies appropriate smoothness condition (see Assump-
tion 2 in Subsection 1.1).

The goal of the present paper is to obtain stability results for the optimal solution of problem (1.1)–(1.3).
The meaning of “stability” we focus on, is as follows. Given a reference optimal control ū and the corresponding
solution yū, the goal is to estimate the distance (call it ∆) from the optimal solutions (u, yu) of a disturbed version
of problem (1.1)–(1.3) to the pair (ū, yū), in terms of the size of the perturbations (call it δ). The perturbations
may enter either in the objective integrand or in the state equation, and the meaning of “distance” and “size” in
the previous sentence will be clarified in the sequel in terms of appropriate norms. If an estimation ∆ ≤ const.δθ

holds with θ ∈ (0, 1), we talk about Hölder stability, while in the case θ = 1 we have Lipschitz stability.
A powerful technique for establishing stability properties of the solutions of optimization problems is based

on regularity properties of the system of first order necessary optimality conditions (see e.g. [18]). In the case of
problem (1.1)–(1.3), these are represented by a differential variational inequality (see e.g. [16, 24]), consisting of
two parabolic equations (the primal equation (1.1) and the corresponding adjoint equation) and one variational
inequality representing the condition for minimization of the Hamiltonian associated with the problem. The
Lipschitz or Hölder stability of the solution of problem (1.1)–(1.3) is then a consequence of the property of
metric subregularity (see [15, 18]) of the mapping defining this differential variational inequality. An advantage
of this approach is that it unifies in a compact way the study of stability of optimal solutions under a variety
of perturbations (linear or nonlinear). Therefore, the main result in the present paper focuses on conditions for
metric subregularity of the mapping associated with the first order optimality conditions for problem (1.1)–(1.3).
These conditions are related to appropriate second order sufficient optimality conditions, which are revisited
and extended in the paper. Several results for stability of the solutions are obtained as a consequence.

The commonly used second order sufficient optimality conditions for ODE or PDE optimal control problems
involve a coercivity condition, requiring strong positive definiteness of the objective functional as a function of
the control in a Hilbert space. We stress that problem (1.1)–(1.3) is affine with respect to the control variable
and such a coercivity condition is not fulfilled. The theory of sufficient optimality theory and the regularity
theory for affine optimal control of ODE systems have been developed in the past decade, see [23] and the
bibliography therein. Sufficient conditions for weak or strong local optimality for optimal control problems with
constraints given by elliptic or parabolic equations are developed in [2, 3, 4, 8, 10, 12, 17]. A detailed discussion
thereof is provided in Section 2.1. In contrast with the elliptic setting, there are only a few stability results for
semilinear parabolic optimal control problems. Progress in this regard for a tracking type objective functional
was made for instance in [9, 10] where stability with respect to perturbations in the objective functional was
studied, and in [11], where stability with respect to perturbations in the initial data was investigated. We
mention that for a linear state equation and a tracking type objective functional, Lipschitz estimates were
obtained in [29] under an additional assumption on the structure of the optimal control. More comprehensive
discussion about the sufficiency theory and stability can be found in Section 2.

The main novelty in the present paper is the study of the subregularity property of the optimality mapping
associated with problem (1.1)–(1.3). In contrast with the case of coercive problems, our assumptions in the
affine case jointly involve the first and the second order variations of the objective functional with respect to
the control. These assumptions are weaker than the ones in the existing literature in the context of sufficient
optimality conditions, however, they are strong enough to imply metric subregularity of the optimality mapping.
The subregularity result is used to obtain new Hölder- and Lipschitz estimates for the solution of the considered
optimal control problem. An error estimate for the Tikhonov regularization is obtained as a consequence.

The obtained subregularity result provides a base for convergence and error analysis for discretization meth-
ods applied to problem (1.1)–(1.3). The point is, that numerical solutions of the discretized versions of the
problem typically satisfy approximately first order optimality conditions for the discretized problem and after
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appropriate embedding in the continuous setting (1.1)–(1.3), satisfy the optimality conditions for the latter
problem with a residual depending on the approximation and the discretization error. Then the subregularity
property of the optimality mapping associated with (1.1)–(1.3) provides an error estimate. Notice that the (Lip-
schitz) stability of the solution alone is not enough for such a conclusion, and this is an important motivation
for studying subregularity of the optimality mapping rather than only stability of the solutions. However, we
do not go into this subject, postponing it to a later paper based on the present one.

The paper is organized as follows. The analysis of the optimal control problem (1.1)–(1.3) begins in Section 2.
We recall the state of the art regarding second order sufficient conditions for weak and strong (local) optimality,
as well as known sufficient conditions for stability of optimal controls and states under perturbations. In
Section 3 we formulate and discuss the assumptions on which our further analysis on sufficiency and stability
is based. The strong subregularity of the optimality mapping is proved in Section 4. In Section 5, we obtain
stability results for the optimal control problem under non-linear perturbations, postponing some technicalities
to Assumption A. Finally, we support the theoretical results with some examples.

1.1 Preliminaries

We begin with some basic notations and definitions. Given a non-empty, bounded and Lebesgue measurable
set X ⊂ Rn, we denote by Lp(X), 1 ≤ p ≤ ∞, the Banach spaces of all measurable functions f : X → R for
which the usual norm ∥f∥Lp(X) is finite. For a bounded Lipschitz domain X ⊂ Rn (that is, a set with Lipschitz
boundary), the Sobolev space H1

0 (X) consists of functions that vanish on the boundary (in the trace sense) and
that have weak first order derivatives in L2(X). The space H1

0 (X) is equipped with its usual norm denoted by
∥ · ∥H1

0 (X). By H
−1(X) we denote the topological dual of H1

0 (X), equipped with the standard norm ∥ · ∥H−1(X).
Given a real Banach space Z, the space Lp(0, T ; Z) consist of all strongly measurable functions y : [0, T ] → Z
that satisfy

∥y∥Lp(0,T ; Z) :=
(∫ T

0

∥y(t)∥pZ dt
) 1

p

<∞ if 1 ≤ p <∞,

or, for p = ∞,

∥y∥L∞(0,T ; Z) := inf{M ∈ R | ∥y(t)∥Z ≤M a.e t ∈ (0, T )} <∞.

The Hilbert space W (0, T ) consists of all of functions in L2(0, T ; H1
0 (Ω)) that have a distributional derivative

in L2(0, T ; H−1(Ω)), i.e.

W (0, T ) :=

{
y ∈ L2(0, T ;H1

0 (Ω))
∣∣∣ ∂y
∂t

∈ L2(0, T ;H−1(Ω))

}
,

which is endowed with the norm

∥y∥W (0,T ) := ∥y∥L2(0,T ;H1
0 (Ω)) + ∥∂y/∂t∥L2(0,T ;H−1(Ω)).

The Banach space C([0, T ]; L2(Ω)) consists of all continuous functions y : [0, T ] → L2(Ω) and is equipped with
the norm maxt∈[0,T ] ∥y(t)∥L2(Ω). It is well known that W (0, T ) is continuously embedded in C([0, T ]; L2(Ω))
and compactly embedded in L2(Q). For proofs and further details regarding spaces involving time, see
[14, 20, 27, 30, 31].

The following assumptions, close to those in [2, 5, 6, 8, 10, 11, 12, 13], are standing in all the paper, together
with the inequality

r > max
{
2, 1 +

n

2

}
(1.5)
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for the real number r that appears in some assumptions and many statements below (we also remind that
n ∈ {1, 2, 3}).

Assumption 1. The operator A : H1
0 (Ω) → H−1(Ω), is given by

A = −
n∑

i,j=1

∂xj
(ai,j(x)∂xi

),

where ai,j ∈ L∞(Ω) satisfy the uniform ellipticity condition

∃λA > 0 : λA|ξ|2 ≤
n∑

i,j=1

ai,j(x)ξiξj ∀ξ ∈ Rn and a.a. x ∈ Ω.

The matrix with components ai,j is denoted by A.

The functions f, L0 : Q× R −→ R of the variables (x, t, y), and the “initial” function y0 have the following
properties.

Assumption 2. For every y ∈ R, the functions f(·, ·, y) ∈ Lr(Q), L0(·, ·, y) ∈ L1(Q), and y0 ∈ L∞(Ω). For
a.e. (x, t) ∈ Q the first and the second derivatives of f and L0 with respect to y exist and are locally bounded and
locally Lipschitz continuous, uniformly with respect to (x, t) ∈ Q. Moreover, ∂f

∂y (x, t, y) ≥ 0 for a.e. (x, t) ∈ Q
and for all y ∈ R.

Remark 1. The last condition in Assumption 2 can be relaxed in the following way:

∃Cf ∈ R :
∂f

∂y
(x, t, y) ≥ Cf a.a. (x, t) ∈ Q and ∀y ∈ R, (1.6)

see [3, 8]. However, this leads to complications in the proofs.

1.2 Facts regarding the linear and the semilinear equation

Let 0 ≤ α ∈ L∞(Q) and u ∈ L2(Q). We first consider solutions of the following linear variational equality for
y ∈W (0, T ) with y(·, 0) = 0:∫ T

0

〈∂y
∂t
, ψ

〉
dt+

∫ T

0

⟨Ay, ψ⟩ dt =
∫ T

0

⟨u, ψ⟩ dt−
∫ T

0

⟨αy, ψ⟩ dt (1.7)

for all ψ ∈ L2(0, T,H1
0 (Ω)), that is, for weak solutions of the equation (1.2) with f(x, t, y) := α(x, t)y and

y0 = 0.

Theorem 1. Let 0 ≤ α ∈ L∞(Q) be given.

1. For each u ∈ L2(Q) the linear parabolic equation (1.7) has a unique weak solution yu ∈W (0, T ). Moreover,
there exists a constant Ĉ > 0 independent of u and α such that

∥yu∥L2(0,T,H1
0 (Ω)) ≤ Ĉ∥u∥L2(Q). (1.8)

2. If, additionally, u ∈ Lr(Q) (we remind (1.5)) then the weak solution yu of (1.7) belongs toW (0, T )∩C(Q̄).
Moreover, there exists a constant Cr > 0 independent of u and α such that

∥yu∥L2(0,T,H1
0 (Ω)) + ∥yu∥C(Q̄) ≤ Cr∥u∥Lr(Q). (1.9)
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Besides the independence of the constants Ĉ, and Cr on α all claims of the theorem are well known, see
[28, Theorem 3.13, Theorem 5.5]. A proof of a similar independence statement can be found in [2] for a linear
elliptic PDE of non-monotone type.

Proof. For convenience of the reader, we prove that the estimates are independent of α. This is done along the
lines of the proof of [2, Lemma 2.2]. By y0,u we denote a solution of (1.7) for α ≡ 0. It is well known that in

this case there exist constants Cr, Ĉ > 0 such that

∥y0,u∥C(Q̄) ≤ Cr∥u∥Lr(Q), ∥y0,u∥L2(Q) ≤ Ĉ∥u∥L2(Q).

To apply this, we decompose u in positive and negative parts, u = u+−u−, u+, u− ≥ 0. By the weak maximum
principle [14, Theorem 11.9], it follows that yα,u+ , yα,u− ≥ 0. Again by the weak maximum principle, the
equation

∂

∂t
(yα,u+ − y0,u+) +A(yα,u+ − y0,u+) + α(yα,u+ − y0,u+) = −αy0,u+

implies 0 ≤ yα,u+ ≤ y0,u+ , thus ∥yα,u+∥C(Q̄) ≤ ∥y0,u+∥C(Q̄). By the same reasoning, it follows that 0 ≤ yα,u− ≤
y0,u− and ∥yα,u−∥C(Q̄) ≤ ∥y0,u−∥C(Q̄). Hence,

∥yα,u∥C(Q̄) ≤ ∥yα,u+∥C(Q̄) + ∥yα,u−∥C(Q̄) ≤ ∥y0,u+∥C(Q̄) + ∥y0,u−∥C(Q̄)

≤ Cr(∥u+∥Lr(Q) + ∥u−∥Lr(Q)) ≤ 2Cr∥u∥Lr(Q).

The estimate for L2(0, T,H1
0 (Ω)) can be obtained by similar arguments as in [2].

The next lemma is motivated by an analogous result for linear elliptic equations [2, Lemma 2.3], although,
according to the nature of the parabolic setting, the interval of feasible numbers s, is smaller.

Lemma 2. Let u ∈ Lr(Q) and 0 ≤ α ∈ L∞(Q). Let yu be the unique solution of (1.7) and let pu be a solution
of the problem {

−∂p
∂t +A∗p+ αp = u in Q,

p = 0 on Σ, p(·, T ) = 0 on Ω.
(1.10)

Then, for any sn ∈ [1, n+2
n ) there exists a constant Cs′n

> 0 independent of u and α such that

max{∥yu∥Lsn (Q), ∥pu∥Lsn (Q)} ≤ Cs′n
∥u∥L1(Q). (1.11)

Here s′n denotes the Hölder conjugate of sn.

Proof. First we observe that by Theorem 1, yu ∈ C(Q̄) ∩W (0, T ) and as a consequence, |yu|sn−1sign(yu) ∈
Ls′n(Q). Moreover, sn <

n+2
n implies that s′n > 1+ n

2 . By change of variables, see for instance [28, Lemma 3.17],
a solution of equation (1.10) transforms into a solutions of (1.7). Thus according to Theorem 1, the solution q
of {

−∂q
∂t +A∗q + αq = |yu|sn−1sign(yu) in Q,

q = 0 on Σ, q(·, T ) = 0 on Ω.

belongs to W (0, T ) ∩ C(Q̄) and satisfies

∥q∥C(Q̄) ≤ Cs′n
∥|yu|sn−1sign(yu)∥Ls′n (Q)

= Cs′n
∥yu∥sn−1

Lsn (Q),

where Cs′n
is independent of a and v. Using these facts we derive the equalities

∥yu∥snLsn (Q) =

∫
Q

|yu|sn dx =
〈
− ∂q

∂t
+A∗q + αq, yu

〉
=

〈∂yu
∂t

+Ayu + αyu, q
〉

=

∫
Q

uq dx ≤ ∥u∥L1(Q)∥q∥C(Q̄) ≤ Cs′n
∥u∥L1(Q)∥yu∥sn−1

Lsn (Q).
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This proves (1.11) for yu. To obtain (1.11) for pu, one tests (1.10) with a weak solution of{
∂y
∂t +Ay + αy = |qu|sn−1sign(qu) in Q,
y = 0 on Σ, y(·, 0) = 0 on Ω,

and argues in an analogous way.

Below we remind several results for the semilinear equation (1.2), which will be used further. A proof of the
next theorem can be found in [5, Theorem 2.1] or [28, Theorem 2.1].

Theorem 3. For any u ∈ L2(Q) the semilinear parabolic initial-boundary value problem (1.2) has a unique
weak solution yu ∈ W (0, T ). If u ∈ Lr(Q) (see (1.5)) then yu ∈ W (0, T ) ∩ L∞(Q). If additionally y0 ∈ C(Ω̄),
then yu ∈ C(Q̄). Moreover, there exists a constant Dr > 0, independent of u, f, y0 such that

∥yu∥W (0,T ) + ∥yu∥L∞(Q) ≤ Dr

(
∥u∥Lr(Q) + ∥f(·, ·, 0)∥Lr(Q) + ∥y0∥

L∞(Ω
)). (1.12)

Finally, if uk ⇀ u weakly in Lr(Q), then

∥yuk
− yu∥L∞(Q) + ∥yuk

− yu∥L2(0,T ;H1
0 (Ω)) → 0. (1.13)

The differentiability of the control-to-state operator under the assumptions 1 and 2 is well known, see among
others [8, Theorem 2.4].

Theorem 4. The control-to-state operator G : Lr(Q) → W (0, T ) ∩ L∞(Q), defined as G(v) := yv, is of class
C2 and for every u, v, w ∈ Lr(Q), it holds that zu,v := G′(u)v is the solution of{

dz
dt +Az + fy(x, t, yu)z = v in Q,
z = 0 on Σ, z(·, 0) = 0 on Ω

(1.14)

and ωu,(v,w) := G′′(u)(v, w) is the solution of{
dz
dt +Az + fy(x, t, yu)z = −fyy(x, t, yu)zu,vzu,w in Q,
z = 0 on Σ, z(·, 0) = 0 on Ω.

(1.15)

In the case v = w, we will just write ωu,v instead of ωu,(v,v).

Remark 2. By the boundedness of U in L∞(Q) and by Theorem 3, there exists a constant MU > 0 such that

max{∥u∥L∞(Q), ∥yu∥C(Q̄)} ≤MU ∀u ∈ U . (1.16)

1.3 Estimates associated with differentiability

We employ results of the last subsection to derive estimates for the state equation (1.2) and its linearisation
(1.14). These estimates constitute a key ingredient to derive stability results in the later sections. The next
lemma extends [2, Lemma 2.7] from elliptic equations to parabolic ones.

Lemma 5. The following statements are fulfilled.

(i) There exists a positive constant M2 such that for every u, ū ∈ U and v ∈ Lr(Q)

∥zu,v − zū,v∥L2(Q) ≤M2∥yu − yū∥C(Q̄)∥zū,v∥L2(Q). (1.17)

(ii) Let X = C(Q̄) or X = L2(Q). Then there exists ε > 0 such that for every u, ū ∈ U with ∥yu−yū∥C(Q̄) < ε
the following inequalities are satisfied

∥yu − yū∥X ≤ 2∥zū,u−ū∥X ≤ 3∥yu − yū∥X , (1.18)

∥zū,v∥X ≤ 2∥zu,v∥X ≤ 3∥zū,v∥X . (1.19)

The proof, that is a consequence of Lemma 28, is given in Appendix A.
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2 The control problem

The optimal control problem (1.1)-(1.3) is well posed under assumptions 1 and 2. Using the direct method of
calculus of variations one can easily prove that there exists at least one global minimizer, see [28, Theorem 5.7].
On the other hand, the semilinear state equation makes the optimal control problem nonconvex, therefore we
allow global minimizers as well as local ones. In the literature, weak and strong local minimizers are considered.

Definition 1. We say that ū ∈ U is an Lr(Q)-weak local minimum of problem (1.1)-(1.3), if there exists some
ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ U with ∥u− ū∥Lr(Q) ≤ ε.

We say that ū ∈ U a strong local minimum of (P) if there exists ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ U with ∥yu − yū∥L∞(Q) ≤ ε.

We say that ū ∈ U is a strict (weak or strong) local minimum if the above inequalities are strict for u ̸= ū.

Relations between these types of optimality are obtained in [3, Lemma 2.8].
As a consequence of Theorem 4 and the chain rule, we obtain the differentiability of the objective functional

with respect to the control.

Theorem 6. The functional J : Lr(Q) −→ R is of class C2. Moreover, given u, v, v1, v2 ∈ Lr(Q) we have

J ′(u)v =

∫
Q

(dL0

dy
(x, t, yu) +mu

)
zu,v + (myu + g)v dx dt (2.1)

=

∫
Q

(pu +myu + g)v dx dt, (2.2)

J ′′(u)(v1, v2) =

∫
Q

[∂2L
∂y2

(x, t, yu, u)− pu
∂2f

∂y2
(x, t, yu)

]
zu,v1

zu,v2
dxdt (2.3)

+

∫
Q

m(zu,v1v2 + zu,v2v1) dxdt, (2.4)

Here, pu ∈W (0, T ) ∩ C(Q̄) is the unique solution of the adjoint equation −dp
dt

+A∗p+
∂f

∂y
(x, t, yu)p =

∂L

∂y
(x, t, yu, u) in Q,

p = 0 on Σ, p(·, T ) = 0 on Ω.
(2.5)

We introduce the Hamiltonian Q× R× R× R ∋ (x, t, y, p, u) 7→ H(x, t, y, p, u) ∈ R in the usual way:

H(x, t, y, p, u) := L(x, t, y, u) + p(u− f(x, t, y)).

The local form of the Pontryagin type necessary optimality conditions for problem (1.1)-(1.3) in the next theorem
is well known (see e.g. [3, 8, 28]).

Theorem 7. If ū is a weak local minimizer for problem (1.1)-(1.3), then there exist unique elements ȳ, p̄ ∈
W (0, T ) ∩ C(Q̄) such that {

dȳ
dt +Aȳ + f(x, t, ȳ) = ū in Q,
ȳ = 0 on Σ, ȳ(·, 0) = y0 on Ω.

(2.6)
dp̄

dt
+A∗p̄ =

∂H

∂y
(x, t, ȳ, p̄, ū) in Q,

p̄ = 0 on Σ, p̄(·, T ) = 0 on Ω.
(2.7)

∫
Q

∂H

∂u
(x, t, ȳ, p̄, ū)(u− ū) dx dt ≥ 0 ∀u ∈ U . (2.8)
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2.1 Sufficient conditions for optimality and stability

In this subsection we discuss the state of the art in the theory of sufficient second order optimality conditions
in PDE optimal control, as well as related stability results for the optimal solution. For this purpose, we recall
the definitions of several cones that are useful in the study of sufficient conditions. Given a triplet (ȳ, p̄, ū)

satisfying the optimality system in Theorem 7, and abbreviating ∂H̄
∂u (x, t) := ∂H

∂u (x, t, ȳ, p̄, ū), we have from
(2.8) that almost everywhere in Q

ū = ua if
∂H̄

∂u
> 0 and ū = ub if

∂H̄

∂u
< 0.

This motivates to consider the following set{
v ∈ L2(Q)

∣∣∣v ≥ 0 a.e. on [ū = ua] and v ≤ 0 a.e. on [ū = ub]
}
. (2.9)

Sufficient second order conditions for (local) optimality based on (2.9) are given in [8, 3, 10]. Following the
usual approach in mathematical programming, one can define the critical cone at ū as follows:

Cū :=
{
v ∈ L2(Q)

∣∣∣v satisfies (2.9) and v(x, t) = 0 if
∣∣∣∂H̄
∂u

(x, t)
∣∣∣ > 0

}
.

Obviously, this cone is trivial if ∂H̄
∂u (x, t) ̸= 0 for a.e. (x, t) (which implies bang-bang structure of ū) thus no

additional information can be gained based on Cū. To address this issue, it was proposed in [19, 21] to consider
larger cones on which second order conditions can be posed. Namely, for τ > 0 one defines

Dτ
ū :=

{
v ∈ L2(Q)

∣∣∣v satisfies (2.9) and v(x, t) = 0 if
∣∣∣∂H̄
∂u

(x, t)
∣∣∣ > τ

}
, (2.10)

Gτ
ū :=

{
v ∈ L2(Q)

∣∣∣v satisfies (2.9) and J ′(ū)(v) ≤ τ∥zū,v∥L1(Q)

}
, (2.11)

Eτ
ū :=

{
v ∈ L2(Q)

∣∣∣v satisfies (2.9) and J ′(ū)(v) ≤ τ∥zū,v∥L2(Q)

}
, (2.12)

Cτ
ū := Dτ

ū ∩Gτ
ū. (2.13)

The cones Dτ
ū, E

τ
ū and Gτ

ū were introduced in [4, 10] as extensions of the usual critical cone. It was proven in
[4, 9, 10] that the condition:

∃δ > 0, τ > 0 such that J ′′(ū)v2 ≥ δ∥zū,v∥2L2(Q) ∀v ∈ G (2.14)

is sufficient for weak (in the case G = Dτ
ū) or strong (in the case G = Eτ

ū) local optimality in the elliptic and
parabolic setting. Most recently, the cone Cτ

ū was defined in [3] and also used in [6]. It was proved in [3], that
(2.14) with C = Cτ

ū is sufficient for strong local optimality.
Under (2.14) it is possible to obtain some stability results. In [9] and [10] the authors obtain Lipschitz stability
in the (L2 − L∞)-sense for the states1, under perturbations appearing in a tracking type objective functional
and under the assumption that the perturbations are Lipschitz. Further they obtain Hölder stability for the
states under a Tikhonov type perturbation. Hölder stability under (2.14) with exponent 1/2 was proved in [11]
with respect to perturbations in the initial condition.

To improve the stability results an additional assumption is needed. This role is usually played by the
structural assumption on the adjoint state or generally on the derivative of the Hamiltonian with respect to the
control. In the case of an elliptic state equation, [25] uses the structural assumption

∃κ > 0 such that
∣∣∣{x ∈ Ω :

∣∣∣∂H̄
∂u

∣∣∣ ≤ ε
}∣∣∣ ≤ κε ∀ε > 0. (2.15)

1 For p, r ∈ [1,∞], we speak of stability in the Lp − Lr-sense for the optimal states ȳ with respect to perturbations (may
appear in the equation or the objective) ξ, if there exists a constant κ > 0 such that ∥yξ − ȳ∥Lp(Q) ≤ κ∥ξ∥Lr(Q), for all ξ that

are sufficiently small. Here, yξ denotes the state corresponding to the perturbation ξ. We use this expression analogously for the
optimal controls.
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In the parabolic case this assumption (with Ω replaced with Q) is used in [11]. We recall that the assumption
(2.15) implies that ū is of bang-bang type. Further, (2.15) implies the existence of a constant κ̃ > 0 such that
the following growth property holds:

J ′(ū)(u− ū) ≥ κ̃∥u− ū∥2L1(X) ∀u ∈ U . (2.16)

For a proof see [1], [22] or [26]. If the control constraints satisfy ua < ub almost everywhere onQ, both conditions,
(2.15) and (2.16) are equivalent, see [17, Proposition 6.4]. In [25], using (2.15) and (2.14) with G = Dτ

ū, the
authors proof L1-Lipschitz stability of the controls for an elliptic semilinear optimal control problem under
perturbations appearing simultaneously in the objective functional and the state equation. Assuming (2.15),
(2.14) may also be weakened to the case of negative curvature,

∃δ < κ̃, ∃τ > 0 such that J ′′(ū)v2 ≥ −δ∥v∥2L1(Ω) ∀v ∈ Cτ
ū . (2.17)

In [12], [13] it was proved that (2.15) together with (2.17) implies, for the semililnear elliptic case, weak local
optimality in L1(Ω). Lipschitz stability results were also obtained in [17] in the elliptic case. Finally, for a
semilinear parabolic equation with perturbed initial data, [11, Theorem 4.6] obtains, under (2.14) and (2.15),
L2 − L2 and L1 − L2-Hölder stability (see Footnote 1), with exponent 2

3 , for the optimal states and controls
respectively. Additionally, Lipschitz dependence is obtained on perturbations in L∞(Q).

3 A unified sufficiency condition

In this section, we introduce an assumption that unifies the first and second order conditions presented in the
previous section.

Assumption 3. For a number k ∈ {0, 1, 2}, at least one of the following conditions is fulfilled:

(Ak): There exist constants αk, γk > 0 such that

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ γk∥zū,u−ū∥kL2(Q)∥u− ū∥2−k
L1(Q) (3.1)

for all u ∈ U with ∥yu − ȳ∥C(Q̄) < αk.

(Bk): There exist constants α̃k, γ̃k > 0 such that (3.1) holds for all u ∈ U such that ∥u− ū∥L1(Q) < α̃k.

In the context of optimal control of PDE’s the assumptions (A0) and (B0) were first introduced in [17] and for
k = 1, 2 in [2]. Assumption 3(B0) originates from optimal control theory of ODE’s where it was first introduced
in [23] to deal with nonlinear affine optimal control problems. The cases k = 1, 2 are extensions, adapted to
the nature of the PDE setting, while the case k = 0 can be hard to verify if a structural assumption like (2.15)
is not imposed. The assumptions corresponding to k = 1, 2 are applicable for the case of optimal controls that
need not be bang-bang, especially the case k = 2 seems natural for obtaining state stability. Assumption (Ak)
implies strong (local) optimality, while Assumption (Bk) leads to weak (local) optimality. As seen below, in
some cases the two assumptions are equivalent.

For an optimal control problem subject to an semilinear elliptic equation the claim of the next proposition
with k = 0 was proven in [2, Proposition 5.2].

Proposition 8. For any k ∈ {0, 1, 2}, Assumption (Ak) implies (Bk). If ū is bang-bang (that is, ū(x, t) ∈
{ua(x, t), ub(x, t)} for a.e. (x, t) ∈ Q) then assumptions (Ak) and (Bk) are equivalent.

The proof is given in Appendix A.

Remark 3. We compare the items in Assumption 3 to the ones using (2.15) and (2.17) or (2.14).

1. Assumption 3(A0) is implied by the structural assumption (2.15) and also allows for negative curvature,
similar to (2.17). For details see [17, Theorem 6.3].
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2. Assumption 3(A1) is implied by the structural assumption (2.15) together with (2.14). This is clear by
(2.16) and by using v and w as defined in Lemma 13 and arguing as in Corollary 14, both presented below
in this section.

3. Assumption 3(A2) is implied by (2.14) together with the first order necessary condition.

3.1 Sufficiency for optimality of the unified condition

In this subsection we show that assumptions 3(Ak) and (Bk) are sufficient either for strict weak or strict strong
local optimality, correspondingly.

Theorem 9. The following holds.

1. Let m = 0 in (1.4). Let ū ∈ U satisfy the optimality conditions (2.6)–(2.8) and Assumption 3(Ak) with
some k ∈ {0, 1, 2}. Then, there exist εk, κk > 0 such that:

J(ū) +
κk
2
∥yu − ȳ∥kL2(Q)∥u− ū∥2−k

L1(Q) ≤ J(u) (3.2)

for all u ∈ U such that ∥yu − ȳ∥C(Q̄) < εk.

2. Let ū ∈ U satisfy the optimality conditions (2.6)–(2.8) and Assumption 3(Bk) with some k ∈ {0, 1, 2}.
Then, there exist εk, κk > 0 such that (3.2) holds for all u ∈ U such that ∥u− ū∥L1(Q) < εk.

Before presenting a proof of Theorem 9, we establish some technical results. The following lemma was proved
for various types of objective functionals, see e.g. [10, Lemma 6],[9, Lemma 3.11]. Nevertheless, our objective
functional is more general, therefore we present in Appendix A an adapted proof.

Lemma 10. Let ū ∈ U . The following holds.

1. Let m = 0 hold. For every ρ > 0 there exists ε > 0 such that

|[J ′′(ū+ θ(u− ū))− J ′′(ū)](u− ū)2| ≤ ρ∥zū,u−ū∥2L2(Q) (3.3)

for all u ∈ U with ∥yu − ȳ∥C(Q̄) < ε and θ ∈ [0, 1].

2. For every ρ > 0 there exists ε > 0 such that (3.3) holds for all u ∈ U with ∥u− ū∥L1(Q) < ε and θ ∈ [0, 1].

For the assumptions with k ∈ {0, 1}, we need the subsequent corollary, which is also given in Appendix A.

Corollary 11. Let ū ∈ U . The following holds for m = 0:

1. For every ρ > 0 there exists ε > 0 such that

|[J ′′(ū+ θ(u− ū))− J ′′(ū)](u− ū)2| ≤ ρ∥zū,u−ū∥L2(Q)∥u− ū∥L1(Q) (3.4)

for all u ∈ U with ∥yu − ȳ∥C(Q̄) < ε and for all θ ∈ [0, 1].

2. For every ρ > 0 there exists ε > 0 such that

|[J ′′(ū+ θ(u− ū))− J ′′(ū)](u− ū)2| ≤ ρ∥u− ū∥2L1(Q) (3.5)

for all u ∈ U with ∥yu − ȳ∥C(Q̄) < ε and for all θ ∈ [0, 1].

The same assertions hold for m ̸= 0 if one requires ∥u− ū∥L1(Q) to be small instead of ∥yu − ȳ∥C(Q̄).
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The next lemma clams that Assumption 3 implies a growth similar to (3.2) of the first derivative of the
objective functional in a neighborhood of ū.

Lemma 12. The following claims are fulfilled.

1. Let m = 0 and ū satisfy assumption (Ak), for some k ∈ {0, 1, 2}. Then, there exist ᾱk, γ̄k > 0 such that

J ′(u)(u− ū) ≥ γ̄k∥zū,u−ū∥kL2(Q)∥u− ū∥2−k
L1(Q) (3.6)

for every u ∈ U with ∥yu − ȳ∥C(Q̄) < ᾱk.

2. Let ū satisfy assumption (Bk) for some k ∈ {0, 1, 2}. Then, there exist ᾱk, γ̄k > 0 such that (3.6) holds
for every u ∈ U with ∥u− ū∥L1(Q) < ᾱk.

Proof. Since J is of class C2 we can use the mean value theorem to infer the existence of a function θ : Q→ [0, 1]
such that

J ′(u)(u− ū)− J ′(ū)(u− ū) = J ′′(ū+ θ(u− ū))(u− ū)2

and under (Ak) in Assumption 3, we infer the existence of positive constants γk and αk such that

J ′(u)(u− ū) = J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 + [J ′(u)(u− ū)− J ′(ū)(u− ū)− J ′′(ū)(u− ū)2]

≥ γk∥zū,u−ū∥kL2(Q)∥u− ū∥2−k
L1(Q) − |[J ′′(ū+ θ(u− ū))− J ′′(ū)](u− ū)2|,

for all u ∈ U with ∥yu − ȳ∥C(Q̄) < αk. Using Lemma 10, we obtain that

J ′(u)(u− ū) ≥ (γk − ρk)∥zū,u−ū∥kL2(Q)∥u− ū∥2−k
L1(Q)

for all u ∈ U with ∥yu− ȳ∥C(Q̄) < ᾱk and ᾱk := min{αk, εk}, where εk > 0 is chosen such that γ̄k := γk−ρk > 0

holds. Using Corollary 11 and the estimate ∥yu − ȳ∥L∞(Q) ≤ Cr(2MU )
r−1
r ∥u − ū∥

1
r

L1(Q), proves the case for

(3.6).

Finally, we conclude this subsection with the proof of Theorem 9.

Proof of Theorem 9. Using the Taylor expansion and the optimality condition J ′(ū)(u− ū) ≥ 0 we have

J(u) = J(ū) + J ′(ū)(u− ū) +
1

2
J ′′(uθ)(u− ū)2 ≥ J(ū) +

1

2
J ′(ū)(u− ū) +

1

2
J ′′(uθ)(u− ū)2

where uθ := ū + θ(u − ū), with θ : Q → [0, 1]. We continue this inequality, using that by Assumption 3 there
exist αk > 0 and γk > 0 such that (3.2) holds:

J(u) ≥ J(ū) +
1

2
[J ′(ū)(u− ū) + J ′′(ū)(u− ū)2] +

1

2
[J ′′(uθ)− J ′′(ū)](u− ū)2]

≥ J(ū) +
γk
2
∥zū,u−ū∥kL2(Q)∥u− ū∥2−k

L1(Q) −
1

2

∣∣[J ′′(uθ)− J ′′(ū)](u− ū)2
∣∣

for all u ∈ U with either ∥yu− ȳ∥L∞(Q) < αk or ∥u− ū∥L1(Q) < αk, depending on the chosen assumption (Ak) or
(Bk). Now, either by Lemma 10 or Corollary 11 (depending on the assumption) there exist ε > 0 and γ̄k < γk
such that

|[J ′′(uθ)− J ′′(ū)](u− ū)2| ≤ γ̄k∥zū,u−ū∥kL2(Q)∥u− ū∥2−k
L1(Q)
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for every u ∈ U with ∥yu − ȳ∥C(Q̄) < ε. We may choose ᾱk > 0 and γ̄k > 0 according to Lemma 12 and
depending on the chosen assumption therein. Inserting this estimate in the above expression and applying
(1.18) gives

J(u) ≥ J(ū) +
1

2
(γk − γ̄k)∥zū,u−ū∥kL2(Q)∥u− ū∥2−k

L1(Q) ≥ J(ū) +
3(γk − γ̄k)

4
∥yu − ȳ∥kL2(Q)∥u− ū∥2−k

L1(Q),

for all u ∈ U with either ∥yu − ū∥L∞(Q) < min{ε, ᾱk} or ∥u − ū∥L1(Q) < min{ εr

Cr
r (2MU )(r−1) , ᾱk} depending on

the selected k ∈ {0, 1, 2}. To complete the proof of the second claim of the theorem we use that

∥yu − ȳ∥L∞(Q) ≤ Cr(2MU )
r−1
r ∥u− ū∥

1
r

L1(Q)

to apply Lemma 10 or Corollary 11 depending on k ∈ {0, 1, 2}.

□

3.2 Some equivalence results for the assumptions on cones

In this subsection we show that some of the items in Assumption 3 can be formulated equivalently on the cones
Dτ

ū or Cτ
ū respectively. This applies to (Bk) or to (Ak) depending on whether the objective functional explicitly

depends on the control or not. We need the next lemma, the proof of which uses a result from [7].

Lemma 13. Let ū ∈ U satisfy the first order optimality condition (2.6)-(2.8) and let u ∈ U be given. For τ > 0,
we define

v :=

{
0 on [ |∂H̄∂u | > τ ],
u− ū else,

and w := u− ū− v. Let ε > 0 be given. Then there exists a constant C > 0 such that

max{∥zū,w∥L∞(Q), ∥zū,v∥L∞(Q)} < Cmax{ε, ε 1
r } (3.7)

for all u ∈ U with ∥u − ū∥L1(Q) < ε. Let ε0 > 0 be such that (1.18) holds. If the control does not appear
explicitly in (1.1) (that is, m = g = 0 in (1.4)), then (3.7) holds for all u ∈ U such that u − ū ∈ Gτ

ū and
∥zū,u−ū∥L∞(Q) < ε0.

Proof. We define ũ, û ∈ U by

ũ :=

{
ū on [ |∂H̄∂u | > τ ],
u else.

û :=

{
u on [ |∂H̄∂u | > τ ],
ū else.

Observe that v = ũ− ū, w = û− ū and u− ū = v + w. It is trivial by construction that ∥v∥L1(Q), ∥w∥L1(Q) ≤
∥u − ū∥L1(Q). On the other hand, by (1.18), ∥zū,u−ū∥L∞(Q) < ε implies ∥yu − yū∥L∞(Q) < 2ε. If m, g = 0, we
can argue as in [7] using u− ū ∈ Gτ

ū and the definition of w, to estimate

τ∥w∥L1(Q) ≤ J ′(ū)(u− ū) ≤ τ∥zū,u−ū∥L1(Q).

Thus by Theorem 1 and (1.16)

∥zū,w∥L∞(Q) ≤

{
C0∥zū,u−ū∥1/rL∞(Q) if m, g = 0, u− ū ∈ Gτ

ū,

C0∥u− ū∥1/rL1(Q) else,

with C0 := Cr(2MU )
r−1
r . For zū,v, we estimate with C := 2(C0 + 1)

∥zū,v∥L∞(Q) ≤ ∥zū,v+w∥L∞(Q) + ∥ − zū,w∥L∞(Q) ≤ Cmax{ε, ε 1
r }.

In the second case the estimate holds trivially.
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Now we continue with the equivalence properties.

Corollary 14. For k ∈ {0, 2}, Assumption 3(Bk) is equivalent to the following condition (B̄k): there exist
constants αk, γk, τ > 0 such that

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ γk∥zū,u−ū∥kL2(Q)∥u− ū∥2−k
L1(Q), (3.8)

for all u ∈ U for which (u− ū) ∈ Dτ
ū and ∥u− ū∥L1(Q) < αk.

Proof. Let k ∈ {0, 2}. If (Bk) holds then (B̄k) is obviously also fulfilled. Now let (B̄k) hold. The numbers α̃k

and γ̃k > 0 will be chosen later so that assumption (Bk) will hold with these numbers. For now we only require
that 0 < α̃k < αk. Choose an arbitrary u ∈ U with ∥u− ū∥L1(Q) < α̃k. We only need to prove (3.1) in the case
u − ū /∈ Dτ

ū. Take v and w as defined in Lemma 13. Clearly by definition v ∈ Dτ
ū. As a direct consequence of

(2.3)-(2.4) and Assumption 1 and 2 there exists a constant C0 > 0 such that

|J ′′(ū)(w)2| ≤ C0∥zū,w∥L∞(Q)∥w∥L1(Q), (3.9)

|J ′′(ū)(w, v)| ≤ C0∥zū,v∥L∞(Q)∥w∥L1(Q). (3.10)

We estimate ∣∣∣J ′′(ū)(w)2 + 2J ′′(ū)(w, v)
∣∣∣ ≤ 3C0(∥zū,w∥L∞(Q) + ∥zū,v∥L∞(Q))∥w∥L1(Q) (3.11)

Since α̃k < αk and v ∈ Dτ
ū we may apply (3.8) with v instead of u− ū. Using also (3.11), we estimate

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 = J ′(ū)(v + w) + J ′′(ū)(v + w)2

≥ J ′(ū)(v) + J ′(ū)(w) + J ′′(ū)(v)2 + J ′′(ū)(w)2 + 2J ′′(ū)(w, v) ≥ γk∥zū,v∥kL2(Q)∥v∥
2−k
L1(Q) + τ∥w∥L1(Q)

− 3C0(∥zū,w∥L∞(Q) + ∥zū,v∥L∞(Q))∥w∥L1(Q) ≥ γk∥zū,v∥kL2(Q)∥v∥
2−k
L1(Q) +

τ

2
∥w∥L1(Q).

In the last inequality we use that by choosing α̃k > 0 sufficiently small we may ensure that

τ − 3C0(∥zū,w∥L∞(Q) + ∥zū,v∥L∞(Q)) ≥ τ − 3C0Cmax{α̃, α̃ 1
r } ≥ τ

2
.

This is implied by the inequalities ∥zū,w∥L∞ , ∥zū,v∥L∞(Q) ≤ Crα̃
1
r

k resulting from Lemma 13. Further, we find

∥w∥L1(Q) ≥

{
1

2MU
∥w∥2L1(Q)
1

Cr(2MU )(1/r)
∥zū,w∥2L2(Q),

where we used that ∥u− ū∥L1(Q) < 2MU for all u ∈ U and

∥zū,w∥2L2(Q) ≤ ∥zū,w∥L1(Q)∥zū,w∥L∞(Q) ≤ ∥w∥L1(Q)Cr(2MU )
1/r.

For k = 0:

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ γ0∥v∥2L1(Q) +
τ

2MU
∥w∥2L1(Q) ≥ min

{
γ0,

τ

2MU

}
(∥v∥2L1(Q) + ∥w∥2L1(Q))

≥ 2

3
min

{
γ0,

τ

2MU

}
(∥u− ū∥2L1(Q).

For k = 2:

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ γ2∥zū,v∥2L2(Q) +
τ

2
∥w∥L1(Q)

≥ min
{
γ2,

τ

2Cr(2MU )(1/r)

}
(∥zū,v∥2L2(Q) + ∥zū,w∥2L2(Q)) ≥

2

3
min

{
γ2,

τ

2Cr(2MU )(1/r)

}
∥zū,u−ū∥2L2(Q).

This proves that (3.1) is satisfied with an appropriate number γ̃k.
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If the control does not appear explicitly in the objective functional, we obtain a stronger result.

Corollary 15. Let m, g = 0. Then Assumption 3(A2) is equivalent to the following condition (Ā2): there exist
constants α2, γ2, τ > 0 such that

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ γ2∥zū,u−ū∥2L2(Q) (3.12)

for all u ∈ U for which (u− ū) ∈ Cτ
ū and ∥yu − ȳ∥L∞(Q) < α2.

Proof. It is obvious that (A2) implies (Ā2). For the reverse, if u− ū ∈ Cτ
ū the estimate holds trivially. We need

to consider the cases u − ū /∈ Gτ
ū and u − ū /∈ Dτ

ū with u − ū ∈ Gτ
ū. For the first, we argue as follows. Since

u− ū /∈ Gτ
ū it holds

J ′(ū)(u− ū) + J ′′(ū)(u− ū) > τ∥zū,u−ū∥L1(Q) ≥
τ

2Cr|Q| 1rMU
∥zū,u−ū∥2L2(Q).

For the second case u− ū ∈ Gτ
ū and u− ū /∈ Dτ

ū, let α̃ > 0 be smaller than α2, so that (3.12) and the prerequisite
of Lemma 13 is satisfied. We define w, v as in Lemma 13. By the choice of α2, Lemma 13 gives the existence
of a constant C > 0 such that ∥zū,u−ū∥L∞ < α2 implies

max{∥zū,w∥L∞(Q), ∥zū,v∥L∞(Q)} < Cmax{α2, α
1
r
2 }.

Now we can proceed by the same arguments as in Corollary 14

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 = J ′(ū)(v + w) + J ′′(ū)(v + w)2 ≥ γ2∥zū,v∥2L2(Q) +
τ

2
∥w∥L1(Q).

Finally, we use the estimate

∥zū,w∥2L2(Q) ≤ ∥zū,w∥L1(Q)∥zū,w∥L∞(Q) ≤ ∥w∥L1(Q)Cr(2MU )
(1/r)

to find

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ γ2∥zū,v∥2L2(Q) +
τ

2Cr(2MU )(1/r)
∥w∥L1(Q)

≥ min
{
γ2,

τ

2Cr(2MU )(1/r)

}
(∥zū,v∥2L2(Q) + ∥zū,w∥2L2(Q))

≥ min
{
γ2,

τ

2Cr(2MU )(1/r)

}
(∥zū,u−ū∥2L2(Q),

for all (u− ū) ∈ Cτ
ū with ∥yu − ȳ∥L∞(Q) < α2.

4 Strong metric Hölder subregularity and auxiliary results

We study the strong metric Hölder subregularity property (SMHSr) of the optimality map. This is an extension
of the strong metric subregularity property (see, [18, Section 3I] or [15, Section 4]) dealing with Lipschitz
stability of set-valued mappings. The SMHSr property is especially relevant to the parabolic setting where
Lipschitz stability may fail.

4.1 The optimality mapping

We begin by defining some operators used to represent the optimality map in a more convenient way. This is
done analogously to [17, Section 2.1]. Given the initial data y0 in (1.2), we define the set

D(L) :=
{
y ∈W (0, T ) ∩ L∞(Q)

∣∣∣ ( d
dt

+A
)
y ∈ Lr(Q), y(·, 0) = y0

}
.
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To shorten notation, we define L : D(L) → Lr(Q) by L := d
dt + A. Additionally, we define the operator

L∗ : D(L∗) → Lr(Q) by L∗ := (− d
dt +A∗), where

D(L∗) :=
{
p ∈W (0, T ) ∩ L∞(Q)

∣∣∣(− d

dt
+A∗

)
p ∈ Lr(Q), p(·, T ) = 0

}
.

With the operators L and L∗, we recast the semilinear state equation (1.2) and the linear adjoint equation
(2.7) in a short way:

Ly = u− f(·, y)

L∗p = Ly(·, yu, u)− pfy(·, yu) =
∂H

∂y
(·, yu, p, u).

The normal cone to the set U at u ∈ L1(Q) is defined in the usual way:

NU (u) :=

{ {
ν ∈ L∞(Q)

∣∣ ∫
Q
ν(v − u) dx dt ≤ 0 ∀v ∈ U

}
if u ∈ U ,

∅ if u ̸∈ U .

The first order necessary optimality condition for problem (1.1)-(1.3) in Theorem 7 can be recast as
0 = Ly + f(·, y)− u,
0 = L∗p− ∂H

∂y (·, y, p, u),
0 ∈ Hu(·, y, p) +NU (u).

(4.1)

For (4.1) to make sense, a solution (y, p, u) must satisfy y ∈ D(L), p ∈ D(L∗) and u ∈ U . For a local solution
ū ∈ U of problem (1.1)-(1.3), by Theorem 7, the triple (yū, pū, ū) is a solution of (4.1). We define the sets

Y := D(L)×D(L∗)× U and Z := L2(Ω)× L2(Ω)× L∞(Ω), (4.2)

and consider the set-valued mapping Φ : Y ↠ Z given by

Φ

 y
p
u

 :=

 Ly + f(·, y)− u
L∗p− ∂H

∂y (·, y, p, u)
∂H
∂u (·, y, p, u) +NU (u)

 . (4.3)

With the abbreviation ψ := (y, p, u), the system (4.1) can be rewritten as the inclusion 0 ∈ Φ(ψ). Our goal is
to study the stability of system (4.1), or equivalently, the stability of the solutions of the inclusion 0 ∈ Φ(ψ)
under perturbations. For elements ξ, η ∈ Lr(Ω) and ρ ∈ L∞(Ω) we consider the perturbed system

ξ = −Ly + f(·, y)− u,
η = −Lp+ ∂H

∂y (·, y, p, u),
ρ ∈ ∂H

∂u (·, y, p) +NU (u),

(4.4)

which is equivalent to the inclusion ζ := (ξ, η, ρ) ∈ Φ(ψ).

Definition 2. The mapping Φ : Y ↠ Z is called the optimality mapping of the optimal control problem
(1.1)-(1.3).

Theorem 16. For any perturbation ζ := (ξ, η, ρ) ∈ Lr(Q)×Lr(Q)×L∞(Q) there exists a triple ψ := (y, p, u) ∈
Y such that ζ ∈ Φ(ψ).

Proof. We consider the optimal control problem

min
u∈U

{
J (u) +

∫
Q

ηy dxdt−
∫
Q

ρu dxdt
}
,
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subject to {
Ly + f(x, t, y) = u+ ξ in Q,
y = 0 on Σ, y(·, 0) = y0 in Ω.

Under assumptions 1 and 2, we have by standard arguments the existence of a global solution ũ. Then ũ and
the corresponding state yũ and adjoint state pũ satisfy (4.4).

The following extension of the previous theorem can be proved along the lines of [17, Theorem 4.12].

Theorem 17. Let Assumption 3(A0) hold. For each ε > 0 there exists δ > 0 such that for every ζ ∈ BZ(0; δ)
there exists ψ ∈ BY (ψ̄; ε) satisfying the inclusion ζ ∈ Φ(ψ).

4.2 Strong metric Hölder subregularity: main result

This subsection contains one of the main results in this paper: estimates of the difference between the solu-
tions of the perturbed system (4.4) and a reference solution of the unperturbed one, (4.1), by the size of the
perturbations. This will be done using the notion of strong metric Hölder subregularity introduced in the next
paragraphs.

Given a metric space (X , dX ), we denote by BX (c, α) the closed ball of center c ∈ X and radius α > 0. The
spaces Y and Z, introduced in (4.2), are endowed with the metrics

dY(ψ1, ψ2) := ∥y1 − y2∥L2(Q) + ∥p1 − p2∥L2(Q) + ∥u1 − u2∥L1(Q), (4.5)

dZ(ζ1, ζ2) := ∥ξ1 − ξ2∥L2(Q) + ∥η1 − η2∥L2(Q) + ∥ρ1 − ρ2∥L∞(Q),

where ψi = (yi, pi, ui) and ζi = (ξi, ηi, ρi), i ∈ {1, 2}. From now on, we denote ψ̄ := (yū, pū, ū) to simplify
notation.

Definition 3. Let ψ̄ satisfy 0 ∈ Φ(ψ̄). We say that the optimality mapping Φ : Y ↠ Z is strongly metrically
Hölder subregularity (SMHSr) at (ψ̄, 0) with exponent θ > 0 if there exist positive numbers α1, α2 and κ such
that

dY(ψ, ψ̄) ≤ κdZ(ζ, 0)
θ

for all ψ ∈ BY(ψ̄; α1) and ζ ∈ BZ(0; α2) satisfying ζ ∈ Φ(ψ).

Notice that applying the definition with ζ = 0 we obtain that ψ̄ is the unique solution of the inclusion
0 ∈ Φ(ψ) in BY(ψ̄; α1). In particular, ū is a strict local minimizer for problem (1.1)-(1.3).

In the next assumption we introduce a restriction on the set of admissible perturbations, call it Γ, which is
valid for the remaining part of this section.

Assumption 4. For a fixed positive constant Cpe, the admissible perturbation ζ = (ξ, η, ρ) ∈ Γ ⊂ Z satisfy the
restriction

∥ξ∥Lr(Q) ≤ Cpe. (4.6)

For any u ∈ U and ζ ∈ Γ we denote by (yζu, p
ζ
u, u) a solution of the first two equations in (4.4). Using (1.12)

in Theorem 3 we obtain the existence of a constant Ky such that

∥yζu∥L∞(Q̄) ≤ Ky ∀u ∈ U ∀ζ ∈ Γ. (4.7)

Then for every u ∈ U , every admissible disturbance ζ, and the corresponding solution y of the first equation in
(4.4) it holds that (yζu(x, t), u(x, t)) ∈ R := [−Ky,Ky]× [ua, ub].
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Remark 4. We apply the local properties in Assumption 2 to the interval [−Ky,Ky], and denote further by
C̄ a constant that majorates the bounds and the Lipschitz constants of f and L0 and their first and second
derivatives with respect to y ∈ [−Ky,Ky].

By increasing the constant Ky, if necessary, we may also estimate the adjoint state:

∥pζu∥L∞(Q̄) ≤ Ky(1 + ∥η∥Lr (Q)) ∀u ∈ U ∀ζ ∈ Γ.

This follows from Theorem 1 with α = −∂f
∂y (x, t, y

ζ
u) and with ∂L

∂y (x, t, y
ζ
u, u) at the place of u.

We need some technical lemmas before stating our main result.

Lemma 18. Let u ∈ U be given and v, η ∈ Lr(Q), ξ ∈ L∞(Q). Consider solutions yu, y
ξ
u, pu and pηu of the

equations {
Ly + f(·, y) = u+ ξ,
Ly + f(·, y) = u,

{
L∗p− ∂H

∂y (·, y
ξ
u, p, u) = η,

L∗p− ∂H
∂y (·, yu, p, u) = 0,

(4.8)

and solutions zξū,v, zū,v of {
Lz + fy(·, yξu)z = v,
Lz + fy(·, yu)z = v.

(4.9)

There exists constants βi > 0, i ∈ {1, 2}, independent of ζ ∈ Γ, such that the following inequalities hold

∥yξu − yu∥L2(Q) ≤ Ĉ∥ξ∥L2(Q), (4.10)

∥zξu,v − zu,v∥L2(Q) ≤ β1∥ξ∥Lr(Q)∥zu,v∥L2(Q), (4.11)

∥zξu,v − zu,v∥Ls(Q) ≤ β1∥ξ∥L2(Q)∥zu,v∥L2(Q), (4.12)

∥pηu − pu∥2 ≤ β2(∥ξ∥L2(Q) + ∥η∥L2(Q)), (4.13)

where Ĉ is the constant given in (1.8) and s ∈ [1, n+2
n ).

Proof. Subtracting the state equations in (4.8) and using the mean value theorem we obtain

d

dt
(yξu − yu) +A(yξu − yu) +

∂f

∂y
(x, t, yθ)(y

ξ
u − yu) = ξ.

Then, (1.8) implies (4.10). To prove (4.11) we subtract the equations (4.9) satisfied by zξu,v and zu,v to obtain

d

dt
(zξu,v − zu,v) +A(zξu,v − zu,v) +

∂f

∂y
(x, t, yξu)(z

ξ
u,v − zu,v) =

[∂f
∂y

(x, t, yu)−
∂f

∂y
(x, t, yξu)

]
zu,v.

Now, using (1.8), the mean value theorem, and (4.6) we obtain

∥zξu,v − zu,v∥L2(Q) ≤ Ĉ
∥∥∥[∂f
∂y

(x, t, yu)−
∂f

∂y
(x, t, yξu)

]
zu,v

∥∥∥
L2(Q)

≤ ĈC̄∥(yξu − yu)zu,v∥L2(Q)

≤ ĈC̄∥yξu − yu∥L∞(Q)∥zu,v∥L2(Q) ≤ CrĈC̄∥ξ∥Lr(Q)∥zu,v∥L2(Q).

The proof for estimate (4.12) follows by the same argumentation but using (1.11). We denote by β1 > the
maximum of the constants appearing in the estimate above and its analog for (4.12). Finally, we subtract the
adjoint states and employ the mean value theorem to find

− d

dt
(pηu − pu) +A∗(pηu − pu) +

∂f

∂y
(x, t, yξu)(p

η
u − pu)

=
∂2L

∂y2
(x, t, yθ)(y

ξ
u − yu) +

∂2f

∂y2
(x, t, yθ)(y

ξ
u − yu)pu + η.
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The claim follows using (1.8), (1.16), and (4.7) to estimate

∥pηu − pu∥L2(Q) ≤ (Ĉ2C̄ +MU Ĉ
2C̄ + Ĉ)(∥ξ∥L2(Q) + ∥η∥L2(Q)).

Lemma 19. Let s ∈ [1, n+2
n ) ∩ [1, 2]. Let u ∈ U and let yu, pu be the corresponding state and adjoint state.

Further, let yζu and pζu be solutions to the perturbed state and adjoint equation in (4.4) for the control u. There
exist constants C, C̃ > 0, independent of ζ ∈ Γ, such that for v ∈ U , the following estimates hold.

1. For m = 0 in (1.4): ∣∣∣ ∫
Q

(∂H
∂u

(x, t, yu, pu)−
∂H

∂u
(x, t, yζu, p

ζ
u)
)
(v − u) dxdt

∣∣∣
≤ C(∥ξ∥L2(Q) + ∥η∥L2(Q))∥zu,u−v∥L2(Q) (4.14)

≤ C̃(∥ξ∥L2(Q) + ∥η∥L2(Q))∥v − u∥
3s−2
2s

L1(Q). (4.15)

2. For a general m ∈ R:∣∣∣ ∫
Q

(∂H
∂u

(x, t, yu, pu)−
∂H

∂u
(x, t, yζu, p

ζ
u)
)
(v − u) dxdt

∣∣∣ ≤ C̃(∥ξ∥Lr(Q) + ∥η∥Lr(Q))∥v − u∥L1(Q). (4.16)

Proof. We consider the first case, m = 0. We begin with integrating by parts∣∣∣ ∫
Q

(∂H
∂u

(x, t, yu, pu)−
∂H

∂u
(x, t, yζu, p

ζ
u)
)
(v − u) dxdt

∣∣∣
≤

∣∣∣ ∫
Q

[∂L0

∂y
(x, t, yu)zu,u−v −

∂L0

∂y
(x, t, yζu)z

ζ
u,u−v

]
dx dt

∣∣∣+ ∣∣∣ ∫
Q

zζu,u−vη dxdt
∣∣∣

≤
∫
Q

∣∣∣∂L0

∂y
(x, t, yu)−

∂L0

∂y
(x, t, yζu)

∣∣∣∣∣∣zu,u−v

∣∣∣dx dt+ ∫
Q

∣∣∣∂L0

∂y
(x, t, yζu) + η

∣∣∣∣∣∣zu,u−v − zζu,u−v

∣∣∣ dx dt
+
∣∣∣ ∫

Q

ηzu,u−v dxdt
∣∣∣ = I1 + I2 + I3.

For the first term we use the Hölder inequality, the mean value theorem, (1.11), (1.16), and (4.10) to estimate

I1 ≤
∫
Q

∣∣∣∂L0

∂y
(x, t, yu)−

∂L0

∂y
(x, t, yζu)

∣∣∣|zu,u−v|dxdt

≤ C̄∥yζu − yu∥L2(Q)∥zu,u−v∥L2(Q) ≤ C̄Ĉ∥ξ∥L2(Q)∥zu,u−v∥L2(Q)

≤ C̄ĈC
1+ 2−s

2

s′ (2MU )
(s′−1)(2−s)

2s′ ∥ξ∥L2(Q)∥u− v∥1+
s−2
2s

L1(Q) .

Here we used that by Theorem 1 and Lemma 1.11 it holds

∥zu,u−v∥L2(Q) ≤ ∥zu,u−v∥
2−s
2

L∞(Q)∥zu,u−v∥
s
2

Ls(Q) ≤ C
1+ 2−s

2

s′ (2MU )
(s′−1)(2−s)

2s′ ∥u− v∥
2−s
2s′ + s

2

L1(Q) ,

and noticing that 2−s
2s′ + s

2 = 1 − 2−s
2s . The second term is estimated by using (1.16), Hölder’s inequality, and

(4.11):

I2 ≤
∫
Q

∣∣∣∂L0

∂y
(x, t, yζu) + η

∣∣∣∣∣∣zζu,u−v − zu,u−v

∣∣∣dxdt
≤ β1 max{d1, |Q| 1rCpe}(∥ξ∥L2(Q) + ∥η∥L2(Q))∥zu,u−v∥L2(Q)

≤ d2(∥ξ∥L2(Q) + ∥η∥L2(Q))∥u− v∥1+
s−2
2s

L1(Q) ,
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where d1 := ∥ψMU ∥Ls′ (Q) and d2 := β1 max{d1, |Q| 1rCpe}C
1+ 2−s

2

s′ (2MU )
(s′−1)(2−s)

2s′ . For last term we estimate

I3 ≤
∣∣∣ ∫

Q

ηzu,u−v dx dt
∣∣∣ ≤ ∥zu,u−v∥L2(Q)∥η∥L2(Q).

We prove the second case (4.16). By applying (1.9) and arguing as in the proof of (4.10) and (4.13) but for r,
we infer the existence of a constant, again denoted by C̃ > 0, such that:∣∣∣ ∫

Q

(∂H
∂u

(x, t, yu, pu)−
∂H

∂u
(x, t, yζu, p

η
u)
)
(v − u) dxdt

∣∣∣
=

∣∣∣ ∫
Q

[
pu − pηu +m(yu − yζu)

]
(v − u) dx dt

∣∣∣
≤ ∥pu − pηu +m(yu − yζu)∥L∞(Q)∥u− ū∥L1(Q)

≤ C̃(∥ξ∥Lr(Q) + ∥η∥Lr(Q))∥v − u∥L1(Q).

The main result in the paper follows.

Theorem 20. Let assumption 3(A0) be fulfilled for the reference solution ψ̄ = (ȳ, p̄, ū) of 0 ∈ Φ(ψ). Then the
mapping Φ is strongly metrically Hölder subregular at (ψ̄, 0). More precisely, for every ε ∈ (0, 1/2] there exist
αn > 0 and κn (with α1 and κ1 independent of ε) such that for all ψ ∈ Y with ∥u − ū∥L1(Q) ≤ αn and ζ ∈ Γ
satisfying ζ ∈ Φ(ψ), the following inequalities are satisfied.

1. In the case m = 0 in (1.4):

∥ū− u∥L1(Q) ≤ κn

(
∥ρ∥L∞(Q) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)θ0
, (4.17)

∥yū − yζu∥L2(Q) + ∥pū − pζu∥L2(Q) ≤ κn

(
∥ρ∥L∞(Q) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)θ

, (4.18)

where

θ0 = θ = 1 if n = 1, (4.19)

θ0 = θ = 1− ε if n = 2, (4.20)

θ0 =
10

11
− ε, θ =

9

11
− ε if n = 3. (4.21)

2. In the general case m ∈ R:

∥ū− u∥L1(Q) ≤ κn

(
∥ρ∥L∞(Q) + ∥ξ∥Lr(Q) + ∥η∥Lr(Q)

)
, (4.22)

∥yū − yζu∥L2(Q) + ∥pū − pζu∥L2(Q) ≤ κn

(
∥ρ∥L∞(Q) + ∥ξ∥Lr(Q) + ∥η∥Lr(Q)

)θ0
. (4.23)

Proof. We begin with the proof for m = 0. We select α1 < α̃0 according to Lemma 12. Let ζ = (ξ, η, ρ) ∈ Z
and ψ = (yζu, p

ζ
u, u) with ∥u− ū∥L1(Q) ≤ α1 such that ζ ∈ Φ(ψ), i.e.

ξ = Lyζu + f(·, ·, yζu)− u,
η = L∗pζu − ∂H

∂y (·, y
ζ
u, p

ζ
u, u),

ρ ∈ ∂H
∂u (·, y

ζ
u, p

ζ
u) +NU (u).
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Let yu and pu denote the solutions to the unperturbed problem with respect to u, i.e.

u = Lyu + f(·, ·, yu) and 0 = L∗pu − ∂H

∂y
(·, yu, pu, u).

By Lemma 18, there exists Ĉ, β2 > 0 independent of ψ and ζ such that

∥yζu − yu∥L2(Q) + ∥pζu − pu∥L2(Q) ≤ (Ĉ + β2)
(
∥ξ∥L2(Q) + ∥η∥L2(Q)

)
. (4.24)

By the definition of the normal cone, ρ ∈ ∂H
∂u (·, ·, y

ζ
u, p

ζ
u) +NU (u) is equivalent to

0 ≥
∫
Q

(ρ− ∂H

∂u
(·, ·, yζu, pζu))(w − u) ∀w ∈ U .

We conclude for w = ū,

0 ≥
∫
Q

∂H

∂u
(·, ·, yu, pu)(u− ū) +

∫
Q

(ρ+
∂H

∂u
(·, ·, yu, pu)−

∂H

∂u
(·, ·, yζu, pζu))(ū− u)

≥ J ′(u)(u− ū)− ∥ρ∥L∞(Q)∥ū− u∥L1(Q) −
∣∣∣ ∫

Q

(
∂H

∂u
(·, ·, yu, pu)−

∂H

∂u
(·, ·, yζu, pζu))(ū− u) dxdt

∣∣∣. (4.25)

By Lemma 19, we have an estimate on the third term. Since ∥u− ū∥L1(Q) < α̃0, we estimate by Lemma 12 and
Lemma 19

∥u− ū∥2L1(Q)γ̃ ≤ J ′(u)(u− ū) ≤ C̃
(
∥ξ∥L2(Q) + ∥η∥L2(Q)

)
∥u− ū∥1+(s−2)/(2s)

L1(Q) + ∥ρ∥L∞(Q)∥ū− u∥L1(Q)

and consequently for an adapted constant, denoted in the same way

∥ū− u∥L1(Q) ≤ C̃
(
∥ρ∥L∞(Q) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

) 2s
s+2

.

To estimate the states, we use the estimate for the controls. We notice that (2− s)/(2s′)+ s/2 = 1+(s−2)(2s)
and obtain

∥yū − yu∥L2(Q) ≤ ∥yū − yu∥
2−s
2

L∞(Q)∥yū − yu∥
s
2

Ls(Q) ≤ C
2−s
2

r ∥ū− u∥1+
s−2
2s

L1(Q) . (4.26)

Thus, for a constant again denoted by C̃ and with (1 + s−2
2s ) 2s

s+2 = 3s−2
2+s ,

∥yū − yu∥L2(Q) ≤ C̃
(
∥ξ∥L2(Q) + ∥η∥L2(Q) + ∥ρ∥L∞(Q)

) 3s−2
2+s

.

Next, we realize that by Lemma 18 and (4.2)

∥yū − yζu∥L2(Q) ≤ ∥yū − yu∥L2(Q) + ∥yu − yζu∥L2(Q) ≤ max{C̃, Ĉ}
(
∥ξ∥L2(Q) + ∥η∥L2(Q) + ∥ρ∥L∞(Q)

) 3s−2
2+s

.

Using ∥pū − pu∥L2(Q) ≤ Ĉ∥yū − yu∥L2(Q) and (4.13), the same estimate holds for the adjoint state

∥pū − pζu∥L2(Q) ≤ ∥pū − pu∥L2(Q) + ∥pu − pζu∥L2(Q) ≤ (ĈC̃ + β2)
(
∥ξ∥L2(Q) + ∥η∥L2(Q) + ∥ρ∥L∞(Q)

) 3s−2
2+s

,

subsequently we define κ := max{C̃, Ĉ}. Finally, we consider the case m ̸= 0. Using estimate 4.16 in (4.25)
and arguing from that as for the case m = 0, we infer the existence of a constant C̃ > 0 such that

∥u− ū∥L1(Q) ≤ C̃
(
∥ρ∥L∞(Q) + ∥ξ∥Lr(Q) + ∥η∥Lr(Q)

)
.
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This implies under (4.26) the estimate for the states and adjoint-states

∥yū − yζu∥L2(Q) + ∥pū − pζu∥L2(Q) ≤ max{C̃, ĈC̃ + β2}
(
∥ξ∥L2(Q) + ∥η∥L2(Q) + ∥ρ∥L∞(Q)

)1+(s−2)/(2s)

.

To determine θ and θ0 we notice that the functions s → s−2
2s and s → 3s−2

2+s are monotone. Inserting the value

for n+2
2 for each case n ∈ {1, 2, 3} completes the proof.

To obtain results under Assumption 3 for k ∈ {1, 2}, we need additional restrictions. We either don’t allow
perturbations ρ (appearing in the inclusion in (4.4)) or they need to satisfy

ρ ∈ D(L∗). (4.27)

Theorem 21. Let m = 0 and let some of the assumptions (A1), (B1) and (A2), (B2) be fulfilled for the reference
solution ψ̄ = (ȳ, p̄, ū) of 0 ∈ Φ(ψ). Let, in addition, the set Γ of feasible perturbations be restricted to such ζ ∈ Γ
for which the component ρ is either zero or satisfies (4.27). The numbers αn, κn and ε are as in Theorem 20.
Then the following statements hold for n ∈ {1, 2, 3}:

1. Under Assumption 3, cases (A1) and (B1), the estimations

∥ū− u∥L1(Q) ≤ κn

(
∥L∗ρ∥L∞(Q) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
,

∥yū − yζu∥L2(Q) + ∥pū − pζu∥L2(Q) ≤ κn

(
∥ρ∥L∞(Q) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)θ0
,

with θ0 as in Theorem 20, hold for all u ∈ U with ∥yu− ȳ∥L∞(Q) < αn, in the case of (A1), or ∥u− ū∥L1(Q) < αn

in the case (B1), and for all ζ ∈ Γ satisfying ζ ∈ Φ(ψ).
2. Under Assumption 3, cases (A2) and (B2), the estimation

∥ȳ − yζu∥L2(Q) + ∥p̄− pζu∥L2(Q) ≤ κn

(
∥ξ∥L2(Q) + ∥η∥L2(Q) + ∥L∗ρ∥L2(Q)

)
hold for all u ∈ U with ∥yu − ȳ∥L∞(Q) < αn, in the case of (A2), or ∥u− ū∥L1(Q) < αn in the cases (B2), and
for all ζ ∈ Γ satisfying ζ ∈ Φ(ψ).

Proof. We first notice that if the perturbation ρ satisfies (4.27), it holds∫
Q

ρ(u− ū) dx dt =

∫
Q

((
d

dt
+A)zū,u−ū + fy(x, t, yū)zū,u−ū)ρ dx dt

=

∫
Q

((− d

dt
+A∗)ρ+ fy(x, t, yū)ρ)zū,u−ū dxdt.

Thus ∣∣∣ ∫
Q

ρ(u− ū) dx dt
∣∣∣ ≤ ∥zū,u−ū∥L2(Q)(∥L∗ρ∥L2(Q) + ∥fy(x, t, yū)∥L∞(Q)∥ρ∥L2(Q)).

Under Assumption (A1), we can proceed as in the proof of Theorem 20 using Lemma 12 and (4.15) in Lemma
19, to infer the existence of constants α, κ1 > 0 such that

∥ū− u∥L1(Q) ≤ κ1

(
∥L∗ρ∥L2(Q) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
,

and by standard estimates the existence of a constant Ĉ > 0 and using (1.18)

∥yū − yu∥L2(Q) + ∥pū − pu∥L2(Q) ≤ Ĉ∥yū − yu∥L2(Q) ≤ 2Ĉ∥zu,u−ū∥L2(Q)

≤ 2Ĉκ
2s

s+2

1

(
∥L∗ρ∥L2(Q) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

) 2s
s+2

,
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for all u ∈ U with ∥yu − ȳ∥L∞(Q) < α or ∥u − ū∥L1(Q) < α depending on the assumption. From here on, one
can proceed as in the proof of Theorem 20 and define the final constant κ > 0 and the exponent θ0 accordingly.
Finally, by similar reasoning, under Assumption (A2) with Lemma 12 and Lemma 19, one obtains the existence
of a constant κ > 0 such that

∥yū − yu∥L2(Q) + ∥pū − pu∥L2(Q) ≤ κ
(
∥L∗ρ∥L2(Q) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
,

for all u ∈ U with ∥yu − ȳ∥L∞(Q) < α or ∥u− ū∥L1(Q) < α. Again, proceeding as in Theorem 20 and increasing
the constant κ if needed, proves the claim.

Remark 5. Theorems 20 and 21 concern perturbations which are functions of x and t only. On the other
hand, [15, Theorem ] suggests that SMHSr implies a similar stability property under classes of perturbations
that depend (in a non-linear way) on the state and control. This fact will be used and demonstrated in the next
section.

5 Stability of the optimal solution

In this section we obtain stability results for the optimal solution under non-linear perturbations in the objective
functional. Namely, we consider a disturbed problem

(Pζ) min
u∈U

Jζ(u) :=

∫
Q

[L(x, t, y(x, t), u(x, t)) + η(x, t, yu(x, t), u(x, t))] dxdt, (5.1)

subject to {
dy
dt +Ay + f(x, t, y) = u+ ξ in Q,
y = 0 on Σ, y(·, 0) = y0 in Ω,

(5.2)

where ζ := (ξ, η) is a perturbation. The corresponding solution will be denoted by yζu. In contrast with the
previous section, the perturbation η may be state and control dependent. For this reason, here we change the
notation of the set of admissible perturbations to Γ̂. However, Assumption 4 will still be valid for the set Γ̂.
We also use the notations Cpe, Ky and R with the same meaning as in Subsection 4.2.

In addition to Assumption 4 we require the following that holds through the reminder of the section.

Assumption 5. The perturbation η ∈ L1(Q × R) for every (ξ, η) ∈ Γ̂. For a.e. (x, t) ∈ Q the function

η(x, t, ·, ·) is of class C2 and is convex with respect to the last argument, u. Moreover, the functions ∂η
∂y and ∂2η

∂y2

are bounded on Q×R, and the second one is continuous in (y, u) ∈ R, uniformly with respect to (t, x) ∈ Q.

Due to the linearity of (5.2) and the convexity of the objective functional (5.1) with respect to u, the proof
of the next theorem is standard.

Theorem 22. For perturbations ζ ∈ Γ̂ satisfying Assumption 5, the perturbed problem (Pζ) has a global solution.

In the next two theorems, we consider sequences of problems {(Pζk)} with ζk ∈ Γ̂. The proofs repeat the
arguments in [2, Theorem 4.2, Theorem 4.3].

Theorem 23. Let a sequence {ζk ∈ Γ̂}k converge to zero in L2(Q)×L2(Q×R) and let uk be a local solution of
problem (Pζk), k = 1, 2, . . .. Then any control ū that is a weak* limit in L∞(Q) of this sequence is a week local
minimizer in problem (P), and for the corresponding solutions it holds that yuk

→ ȳ in L2(0, T ; H1
0 (Ω))∩L∞(Q).

Theorem 24. Let {ζk}k be as in Theorem 23. Let ū be a strict strong local minimizer of (P). Then there exists

a sequence of strong local minimizers {uk} of problems (Pζk) such that uk
∗
⇀ ū in L∞(Q) and yuk

converges
strongly in L2(0, T ; H1

0 (Ω)) ∩ L∞(Q).
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The next theorem is central in this section.

Theorem 25. Let assumption 3(A0) be fulfilled for the reference weakly optimal control ū in problem (P) and
the corresponding ȳ and p̄. Then there exist positive numbers α and C for which the following is fulfilled. For
every perturbation ζ ∈ Γ̂ and for every weak local solution uζ of problem (Pζ) with ∥uζ − ū∥L1(Q) ≤ α, the
following estimates hold:

1. If m = 0 in (1.4):

∥ū− uζ∥L1(Q) ≤ C
[
∥ξ∥L2(Q) + ∥∥ d

dy
η∥L∞(R)∥L2(Q) + ∥ d

du
η∥L∞(Q×R)

]θ0
,

∥ȳ − yuζ
∥L2(Q) ≤ C

[
∥ξ∥L2(Q) + ∥∥ d

dy
η∥L∞(R)∥L2(Q) + ∥ d

du
η∥L∞(Q×R)

]θ
.

2. For m ∈ R:

∥ū− uζ∥L1(Q) ≤ C
[
∥ξ∥Lr(Q) + ∥∥ d

dy
η∥L∞(R)∥Lr(Q) + ∥ d

du
η∥L∞(Q×R)

]
,

∥ȳ − yuζ
∥L2(Q) ≤ C

[
∥ξ∥Lr(Q) + ∥∥ d

dy
η∥L∞(R)∥Lr(Q) + ∥ d

du
η∥L∞(Q×R)

]θ0
.

Here θ0 and θ are defined as in Theorem 20.

Proof. The local solution (ȳ, ū) satisfies, together with the corresponding adjoint variable, the relations (4.1).
Similarly, (yuζ

, uζ) satisfies, together with the corresponding puζ
the perturbed optimality system (4.4) with

the left-hand side given by the triple  ξ(·)
d
dy (η(·, yuζ

(·), uζ(·))
d
du (η(·, yuζ

(·), uζ(·)).

 (5.3)

Since it is assumed that ∥uζ − ū∥L1(Q) ≤ α we may apply Theorem 20 (here we choose the same α as in this
theorem) to prove the inequalities in the theorem.

The proof of theorems 26 and 27 follows in the same spirit but using Theorem 21 instead of Theorem
20. We make an additional assumption for the perturbation η in the objective functional, namely, that ρ :=
d
du (η(·, yuζ

(·), uζ(·)) satisfies (4.27), i.e.

d

du
(η(·, yuζ

(·), uζ(·)) ∈ D(L∗). (5.4)

For an explanation of the condition (5.4), we refer to the proof of Theorem 21.

Theorem 26. Let m = 0 and Assumption 3(A1) be fulfilled for the reference strongly optimal control ū in
problem (P). Then there exist positive numbers α and C for which the following is fulfilled. For every perturbation
ζ ∈ Γ̂ and for every local solution uζ of problem (Pζ) with ∥yuζ

− ȳ∥L∞(Q) ≤ α, the following estimates hold.

∥ū− uζ∥L1(Q) ≤ C
(
∥L∗ d

du
(η(·, yuζ

(·), uζ(·))∥L2(Q) + ∥ξ∥L2(Q) + ∥∥ d
dy
η∥L∞(R)∥L2(Q)

)
and all together

∥ȳ − yuζ
∥L2(Q) ≤ C

(
∥L∗ d

du
(η(·, yuζ

(·), uζ(·))∥L2(Q) + ∥ξ∥L2(Q) + ∥∥ d
dy
η∥L∞(R)∥L2(Q)

)θ0
,

where θ0 is defined in Theorem 20.
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Theorem 27. Let m = 0 and let Assumption 3(A2) be fulfilled for the reference strongly optimal control ū
in problem (P). Then there exist positive numbers α and C for which the following is fulfilled. For every
perturbation ζ ∈ Γ̂ and for every local solution uζ of problem (Pζ) with ∥yuζ

− ū∥L∞(Q) ≤ α, the following
estimates hold:

∥ȳ − yuζ
∥L2(Q) ≤ C

(
∥L∗ d

du
(η(·, yuζ

(·), uζ(·))∥L2(Q) + ∥ξ∥L2(Q) + ∥∥ d
dy
η∥L∞(R)∥L2(Q)

)
.

Remark 6. The constraint that uζ needs to be close to the reference solution ū in the theorems above is not a
big restriction. This is clear, since Assumption 3 implies that ū satisfies (3.2). Hence, ū is a strict strong local
minimizer of (P) and, consequently, Theorem 24 ensures the existence of a family {uζk}, ζk ∈ Γ̂, of strong local
minimizers of problems (Pζ) satisfying the conditions of Theorem 20 or 21.

Example 1 (Tikhonov regularization). We consider the optimal control problem

(Pλ) min
u∈U

Jλ(u) :=

∫
Q

L(x, t, y(x, t), u(x, t)) +
λ

2

∫
Q

u(x, t)2 dxdt,

subject to (1.2) and (1.3). As before, ū denotes a strict strong solution of problem (P)≡ (P0). We assume that
ū satisfies Assumption 3(A0). From Theorem 24 we know that for every sequence λk > 0 converging to zero
there exists a sequence of strong local minimizer {uλk

}∞k=1 such that uk → ū in L1(Q) for k → ∞, thus for a
sufficiently large k0 we have that for all k > k0

∥yū − yuk
∥L2(Q) + ∥pū − puk

∥L2(Q) ≤ C
(
λk

)θ

,

∥ū− uk∥L1(Q) ≤ Cλk,

where θ is defined in Theorem 20.

6 Examples

Here we present two examples that show particular applications in which different assumptions are involved.

Example 2 (Negative curvature). We begin with an optimal control problem, that has negative curvature. The
parabolic equation has the form {

dy
dt +Ay + exp(y) = u in Q,
y = 0 on Σ, y(·, 0) = y0 on Ω.

(6.1)

Let 0 ≤ g ∈ L2(Q) be a function satisfying the structural assumption (2.15). We consider the optimal control
problem

min
u∈U

{
J(u) :=

∫
Q

(yu + gu) dx dt
}

subject to (6.1) and with control constraints

U := {u ∈ L∞(Q)| 0 ≤ ua ≤ u ≤ ub for a.a. (x, t) ∈ Q}. (6.2)

By the weak maximum principle yua
− yu ≤ 0 for all u ∈ U and ū := ua constitutes an optimal solution.

Further, by the weak maximum principle, the adjoint-state p̄ and the linearized states zū,u−ū for all u ∈ U , are
non-negative. Moreover, we have

J ′(ū)(u− ū) =

∫
Q

(p̄+ g)(u− ū) dxdt ≥ 0,
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J ′′(ū)(u− ū)2 =

∫
Q

wū,u−ū dxdt =

∫
Q

−p̄ exp(ȳ)z2ū,u−ū dx dt < 0,

for all u ∈ U . Since g satisfies the structural assumption, there exists a constant C > 0 such that∫
Q

g(u− ū) dx dt ≥ C∥u− ū∥2L1(Q) ∀u ∈ U .

On the other hand, integrating by parts we obtain∫
Q

p̄(u− ū) dx dt =

∫
Q

zū,u−ū dx dt. (6.3)

If for u ∈ U with ∥u− ū∥L1(Q) or ∥yu − ȳ∥L∞(Q) sufficiently small such that

1

2∥p̄ exp(ȳ)∥L∞(Q)
> ∥zū,u−ū∥L∞(Q),

we can absorb the term J ′′(ū)(u− ū)2 by estimating∫
Q

p̄(u− ū) dxdt+ J ′′(ū)(u− ū) =

∫
Q

zū,u−ū(1− p̄ exp(ȳ)zū,u−ū) dxdt (6.4)

≥ 1

2

∫
Q

zū,u−ū dx dt ≥
K

2
∥zū,u−ū∥2L2(Q), (6.5)

where the last inequality is a consequence of the boundedness of U ⊂ L∞(Q) that implies the existence of a
constant K > 0 such that ∥zū,u−ū∥L1(Q) ≥ K∥zū,u−ū∥2L2(Q) for all u ∈ U . Altogether, we find

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ C∥u− ū∥2L1(Q) +
K

2
∥zū,u−ū∥2L2(Q)

≥
√
CK

2
∥u− ū∥L1(Q)∥zū,u−ū∥L2(Q) ∀u ∈ U .

Thus, Assumption 3(A1) is fulfilled and we can apply Theorem 21 to obtain a stability result.

Example 3 (State stability). We consider a tracking type objective functional where the control does not
appear explicitly and for which we will verify (A2). As perturbations we consider functions ζ = (ξ, η, ρ) ∈
D(L∗) × Lr(Q) × Lr(Q) × D(L∗). Denote by yd the solution of this equation with u = ua and consider the
problem

min
u∈U

{
J(u) :=

1

2

∫
Q

(y(x, t)− yd(x, t))
2 dxdt+

∫
Q

ηy dxdt+

∫
Q

ρudxdt
}
,

subject to the same constraints as inn Example 2. For a local minimizer ū of the unperturbed problem (ζ = 0),
it holds

J ′(ū)(u− ū) =

∫
Q

(ȳ(x, t)− yd(x, t))zū,u−ū dxdt ≥ 0 ∀u ∈ U ,

J ′′(ū)(u− ū) =

∫
Q

(ȳ(x, t)− yd(x, t))wū,u−ū + z2ū,u−ū dxdt

=

∫
Q

(1− p̄ exp(ȳ))z2ū,u−ū dxdt ∀u ∈ U ,
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where p solves {
−dp̄

dt +A∗p̄+ exp(ȳ)p̄ = ȳ − yd in Q,
p̄ = 0 on Σ, p(·, T ) = 0 on Ω.

If the optimal state tracks yd such that ∥ȳ−yd∥Lr(Q) ≤ 1
2Cr∥ exp(ȳ)∥L∞(Q)

we find that (A2) holds. From Theorem

26 we obtain the existence of a constant κ > 0 such that

∥yū − yζ∥L2(Q) + ∥pū − pζ∥L2(Q) ≤ κ
(
∥ξ∥L2(Q) + ∥η∥L2(Q) + ∥L∗ρ∥L2(Q)

)
,

for every perturbation ζ ∈ Γ̂ and for every local solution uζ of problem (P) with ∥yuζ
− ū∥L∞(Q) ≤ α.

A Appendix

Lemma 28. Suppose r > 1 + n
2 and s ∈ [1, n+2

n ) ∩ [1, 2]. The following statement is fulfilled for all u, ū ∈ U .
There exist positive constants Kr, Ms and Nr,s depending on s and r such that

∥yu − yū − zū,u−ū∥C(Q̄) ≤ Kr∥yu − yū∥2L2r(Q), (A.1)

∥yu − yū − zū,u−ū∥Ls(Q) ≤Ms∥yu − yū∥2−s
C(Q̄)

∥yu − yū∥sLs(Q), (A.2)

∥yu − yū − zū,u−ū∥L2(Q) ≤ Nr,s∥yu − yū∥
2− s2

2

C(Q̄)
∥yu − yū∥

s
2

Ls(Q). (A.3)

Proof. Let us denote ϕ := yu − yū − zū,u−ū ∈ W (0, T ) ∩ C(Q̄). From the equations satisfied by the three
functions and by the mean value theorem ϕ satisfies

dϕ

dt
+Aϕ+

∂f

∂y
(x, t, yū)ϕ =

[∂f
∂y

(x, t, yū)−
∂f

∂y
(x, t, yθ)

]
(yu − yū),

where yθ(x, t) = yū(x, t) + θ(x, t)(yu(x, t)− yū(x, t)) with θ : Q −→ [0, 1] measurable. Applying again the mean
value theorem we obtain

dϕ

dt
+Aϕ+

∂f

∂y
(x, t, yū)ϕ =

∂2f

∂y2
(x, t, yϑ)(yu − yū)

2

with yϑ(x, t) = yū(x, t)+ϑ(x, t)(yθ(x, t)− yū(x, t)) and ϑ : Q −→ [0, 1] measurable. By Theorem 1 and Remark
4 we infer the existence of constants Cr, C̄ independent of u, ū ∈ U and ∂f

∂y (x, t, yū) such that

∥ϕ∥C(Q̄) ≤ CrC̄∥(yu − yū)
2∥Lr(Q) = CrC̄∥yu − yū∥2L2r(Q),

which proves (A.1) with Kr := CrC̄. To prove (A.2), we use Lemma 2, Remark 4 and (1.16) to obtain

∥ϕ∥Ls(Q) ≤ Cs′C̄∥(yu − yū)
2∥L1(Q) = Cs′C̄∥yu − yū∥2L2(Q) ≤ Cs′C̄∥yu − yū∥2−s

C(Q̄)
∥yu − yū∥sLs(Q). (A.4)

Taking Ms := Cs′C̄, (A.2) follows. The inequality, (A.3), follows from (A.2) and (A.1) of Lemma 28 by
estimating

∥ϕ∥L2(Q) ≤ ∥ϕ∥
2−s
2

C(Q̄)
∥ϕ∥

s
2

Ls(Q) ≤ K
2−s
2

r ∥yu − yū∥
2(2−s)

2

L2r(Q)

[
M

s
2
s ∥yu − yū∥

(2−s)s
2

C(Q̄)
∥yu − yū∥

s2

2

Ls(Q)

]
≤ K

(2−s)
2

r M
s
2
s |Q|

2−s
2r ∥yu − yū∥

2−s+
(2−s)s

2

C(Q̄)
∥yu − yū∥

s2

2

Ls(Q).

Defining Nr,s := K
(2−s)

2
r M

s
2
s |Q| 2−s

2r and noticing that 2− s+ (2−s)s
2 = 2− s2

2 proves the claim.



27

Proof. of Proposition 5. We prove (1.17) by applying Theorem 1 to ψ := zū,v − zuθ,v, that solves

dψ

dt
+Aψ +

∂f

∂y
(x, t, yū)ψ =

[∂f
∂y

(x, t, yuθ
)− ∂f

∂y
(x, t, yū)

]
zuθ,v =

∂2f

∂y2
(x, t, yϑ)(yū − yuθ

)zuθ,v. (A.5)

To prove (1.18), we use (A.3) with s =
√
2 to estimate

∥yu − yū∥L2(Q) ≤ ∥ϕ∥L2(Q) + ∥zū,u−ū∥L2(Q) ≤ Nr,
√
2∥yu − yū∥C(Q̄)∥yu − yū∥L√

2(Q) + ∥zū,u−ū∥L2(Q).

Using fact that by the Hölder inequality ∥yu − yū∥L√
2(Q) ≤ |Q|

1√
2
− 1

2 ∥yu − yū∥L2(Q), the claim follows. For the

other direction, we select again s =
√
2 in (A.3) and find

∥zū,u−ū∥L2(Q) ≤ ∥ϕ∥L2(Q) + ∥yu − yū∥L2(Q)

≤ Nr,
√
2∥yu − yū∥C(Q̄)∥yu − yū∥L√

2(Q) + ∥yu − yū∥L2(Q)

≤
(
Nr,

√
2|Q|

1√
2
− 1

2 ∥yu − yū∥C(Q̄) + 1

)
∥yu − yū∥L2(Q).

Finally, for (1.19) we use (1.17) and estimate

∥zū,v∥L2(Q) ≤ ∥zū,v − zu,v∥L2(Q) + ∥zu,v∥L2(Q) ≤ K2
2
√

|Q|∥yu − yū∥C(Q̄)∥zū,v∥L2(Q) + ∥zu,v∥L2(Q).

Choosing ε = [2K2
2
√
|Q|]−1 proves the first part. The second inequality follows in a similar way. The estimates

with respect to the ∥ · ∥L∞(Q) follow by similar reasoning, using (A.1).

Proof. of Proposition 8. Let us prove first the implication (Ak)⇒(Bk) for any k ∈ {0, 1, 2}. Given u ∈ U , by
the mean value theorem

d(yu − ȳ)

dt
+A(yu − ȳ) +

∂f

∂y
(x, ȳ + θ(yu − ȳ))(yu − ȳ) = u− ū.

Using (1.9) in Theorem 1 we obtain that

∥yu − ȳ∥C(Q̄) ≤ Cr∥u− ū∥Lr(Q) ≤ Cr(2MU )
r−1
r ∥u− ū∥

1
r

L1(Q).

Then, by α̃k :=
αr

k

Cr
r (2MU )r−1 , we obtain that (Ak) implies (Bk) with γk = γ̃k.

To prove the converse implication, (Bk)⇒(Ak), we assume that (Bk) holds, but (Ak) fails. Then for every
integer l ≥ 1 there exists an element ul ∈ U such that

J ′(ū)(ul − ū) + J ′′(ū)(ul − ū)2 <
1

l
∥ul − ū∥2−k

L1(Q)∥zū,ul−ū∥kL2(Q) and ∥yul
− ȳ∥C(Q̄) <

1

l
. (A.6)

Since {ul}∞l=1 ⊂ U is bounded in L∞(Q), we can extract a subsequence, denoted in the same way, such that

ul
∗
⇀ u in L∞(Q). On one side, (A.6) implies that yul

→ ȳ in L∞(Q). On the other side, ul
∗
⇀ u in L∞(Q)

implies weak convergence in Lr(Q). From (1.13), the convergence yul
→ yu in L∞(Q) follows. Then, yu = ȳ and,

consequently, u = ū holds. But Assumption(B0) implies that ū is bang-bang, and hence the weak convergence

ul
∗
⇀ ū in L∞(Q) yields the strong convergence ul → ū in L1(Q); see [17, Proposition 4.1 and Lemma 4.2].

Then, for k = 0, (A.6) contradicts (B0). The same argument holds for (B1) and (B2) under the additional
condition that ū is bang-bang and noticing that ∥zū,ul−ū∥C(Q̄) ≤ 3/2∥yul

− ȳ∥C(Q̄) by Lemma 5.

A proof of the following Lemma can be found in [2, Lemma 3.5] or [8, Lemma 3.5].
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Lemma 29. Given ū ∈ U with associated state ȳ. Then, the following estimate holds

∥yū+θ(u−ū) − ȳ∥C(Q̄) ≤ B∥yu − ȳ∥C(Q̄) ∀θ ∈ [0, 1] and ∀u ∈ U , (A.7)

where B := (2CrC̄
r
√

|Q|MU + 1), Cr is the constant of Lemma 2 and C̄ is the one from Remark 4.

We proof the analogous statement for the adjoint-state. For an elliptic state equation, it was also done in
[2, Lemma 3.7].

Lemma 30. Given ū ∈ U with associated state ȳ and adjoint-state p̄, there exists a constant B̃ > 0 such that

∥pū+θ(u−ū) − p̄∥C(Q̄) ≤ B̃(∥yu − ȳ∥C(Q̄) + |m|∥u− ū∥
1
r

L1(Q)), (A.8)

for all θ ∈ [0, 1] and u ∈ U .

Proof. Let us prove (A.8). Given u ∈ U and θ ∈ [0, 1], let us denote uθ = ū+ θ(u− ū), yθ = yuθ
, and pθ = puθ

.
Subtracting the equations satisfied by pθ and p̄ we get with the mean value theorem

− d

dt
(pθ − p̄) +A∗(pθ − p̄) +

∂f

∂y
(x, t, ȳ)(pθ − p̄) =

∂L

∂y
(x, t, yθ, uθ)−

∂L

∂y
(x, t, ȳ, ū)

+
[∂f
∂y

(x, t, ȳ)− ∂f

∂y
(x, t, yθ)

]
pθ

=
[∂2L
∂y2

(x, t, yϑ)− pθ
∂2f

∂y2
(x, t, yϑ)

]
(yθ − ȳ) +m(uθ − ū),

where yϑ = ȳ + ϑ(yθ − ȳ) for some measurable function ϑ : Q −→ [0, 1]. Now, we can apply again Theorem 1
and Remark 4 to conclude from the above equation

∥pθ − p̄∥C(Q̄) ≤ Cr(C̄ +MU C̄)
r
√
|Q|∥yθ − ȳ∥C(Q̄) + |m|θCr∥u− ū∥Lr(Q)

≤ B̃∥yu − ȳ∥C(Q̄) + |m|∥u− ū∥L1(Q),

where B̃ := Cr((C̄ +MU C̄)
r
√
|Q|B + (2MU )

r−1
r ), with B being the constant from Lemma 29. Then, (A.8)

follows by applying Lemma 29.

Proof. of Lemma 10. The second variation of the objective functional is given by Theorem 6. Let us denote uθ,
yθ, and φθ as in the proof of Lemma 30. From (2.4) we obtain

|[J ′′(ū+ θ(u− ū))− J ′′(ū)](u− ū)2|

≤
∫
Q

∣∣∣[∂2L0

∂y2
(x, t, yθ)−

∂2L0

∂y2
(x, t, ȳ)

]
z2uθ,u−ū

∣∣∣dxdt+ ∫
Q

∣∣∣(φ̄− φθ)
∂2f

∂y2
(x, t, yθ)z

2
uθ,u−ū

∣∣∣ dx dt
+

∫
Q

∣∣∣φ̄[∂2f
∂y2

(x, t, ȳ)− ∂2f

∂y2
(x, t, yθ)

]
z2uθ,u−ū

∣∣∣dxdt
+

∫
Q

∣∣∣[∂2L0

∂y2
(x, t, ȳ)− φ̄

∂2f

∂y2
(x, t, ȳ)

]
(z2uθ,u−ū − z2ū,u−ū)

∣∣∣dxdt+ 2
∣∣∣ ∫

Q

(u− ū)m
[
zuθ,u−ū − zū,u−ū

]
dxdt

∣∣∣
= I1 + I2 + I3 + I4 + I5.

We consider the case m = 0 first. Let us consider the terms Ii, i ∈ {1, .., 4}. For I1, we deduce from Remark 4,
(A.7), and (1.19) that for every ρ1 > 0 there exists ε1 > 0 such that

I1 ≤ ρ1∥zū,u−ū∥2L2(Q) if ∥yu − ȳ∥C(Q̄) < ε1.
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To deal with I2, we use Remark 4, (1.19), and (A.8) to obtain for every ρ2 > 0 the existence of a ε2 > 0 such
that

I2 ≤ ρ2∥zū,u−ū∥2L2(Q) if ∥yu − ȳ∥C(Q̄) < ε2.

The estimate for I3 follows from (1.19) and Remark 4. Thus for every ρ3 > 0, there exists ε3 > 0 with

I3 ≤ ρ3∥zū,u−ū∥2L2(Q) if ∥yu − ȳ∥C(Q̄) < ε3.

For I4 we infer by Remark 4, (A.3), (1.19) and (A.7) that for every ρ4 > 0 there exists ε4 > 0 such that

I4 ≤ (C̄ +MU C̄)∥zuθ,u−ū + zū,u−ū∥L2(Q)∥zuθ,u−ū − zū,u−ū∥L2(Q)

≤ C25

2
(C̄ +MU C̄)∥zū,u−ū∥L2(Q)∥yθ − ȳ∥C(Q̄)∥zū,u−ū∥L2(Q)

≤ ρ4∥zū,u−ū∥2L2(Q) if ∥yu − ȳ∥C(Q̄) < ε4.

Taking ρi small enough such that Ii <
ρ
4 for every i ∈ {1, .., 4} and setting ε = min1≤i≤4 εi, the first claim

follows.
For the case m ̸= 0, we need to additionally estimate I5 and reconsider the term I2. We recall that for the case
m ̸= 0, we assume that ∥u − ū∥L1(Q) is sufficiently small. To estimate I5 we use that zū,v satisfies equation
(1.14) and that ψ := zū,u−ū − zuθ,u−ū solves

dψ

dt
+Aψ +

∂f

∂y
(x, t, yū)ψ =

[∂f
∂y

(x, t, yuθ
)− ∂f

∂y
(x, t, yū)

]
zuθ,u−ū =

∂2f

∂y2
(x, t, yϑ)(yū − yuθ

)zuθ,u−ū, (A.9)

where we used the mean value theorem to infer the existence of a function ϑ such that (A.9) holds. We use
Remark 4, (1.19), Lemma 2 and (A.7) to estimate

2
∣∣∣ ∫

Q

(u− ū)m
[
zuθ,u−ū − zū,u−ū

]
dxdt

∣∣∣ ≤ 2|m|∥u− ū∥Ls′ (Q)∥zuθ,u−ū − zū,u−ū∥Ls(Q)

≤ 2|m|(2MU )
s′−1
s′ ∥u− ū∥

1
s′
L1(Q)∥zuθ,u−ū − zū,u−ū∥Ls(Q)

≤ |m|C̄Cs′B(2MU )
s′−1
s′ ∥u− ū∥

1
s′
L1(Q)∥yuθ

− ȳ∥L2(Q)∥zūθ,u−ū∥L2(Q)

≤ ρ5∥zū,u−ū∥2L2(Q) if ∥u− ū∥L1(Q) < ε5.

We remark, that to make the last step, we used that (A.7) holds also if the ∥ · ∥L∞(Q)-norm is exchanged with
the ∥ · ∥L2(Q)-norm. This can be seen in the proof of [2, Lemma 3.5]. The validity of the estimates for Ii for

i ∈ {1, 3, 4} holds, noticing that by (1.9), ∥u− ū∥L1(Q) <
εr

Cr
r (2MU )

r−1
2r

, implies ∥yu − ȳ∥C(Q̄) < ε. For the term

I2 we use Remark 4, (1.19), and (A.8), to find for any ρ2 > 0 a ε2 > 0 such that

I2 ≤ 9

4
C̄B̃(Cr(2MU )

r−1
r + |m|)∥u− ū∥

1
r

L1(Q)∥zū,u−ū∥2L2(Q) ≤ ρ2∥zū,u−ū∥2L2(Q) if ∥u− ū∥L1(Q) < ε2. (A.10)

Taking ε := min1≤i≤5 εi, completes the proof.

Proof. of Corollary 11. Let s ∈ [1, n+2
n ) ∩ [1, 2]. We first consider the case m = 0. Using that L0 and f satisfy

the assumption in Remark 4 and arguing as in the proof of Lemma 10, there exists ε > 0 and a constant P > 0
such that

|[J ′′(ū+ θ(u− ū))− J ′′(ū)](u− ū)2| < P∥yu − yū∥L∞(Q)∥zū,u−ū∥2L2(Q)

for all u ∈ U with ∥yu − yū∥L∞(Q) < ε. To prove (3.4), we select l1, l2 ≥ 0 with l1 + l2 = 1 and use the estimate

∥zū,u−ū∥L2(Q) ≤ ∥zū,u−ū∥
2−s
2

C(Q̄)
∥u− ū∥

s
2

L1(Q). (A.11)
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By (A.11), (1.9), (1.11) and (A.3), we find

∥yu − ȳ∥C(Q̄)∥zū,u−ū∥2L2(Q) ≤ ∥yu − ȳ∥C(Q̄)∥zū,u−ū∥L2(Q)∥zū,u−ū∥(2−s)/2

C(Q̄)
∥u− ū∥s/2L1(Q)

≤ Cs′ sup
U

∥u− ū∥(s−1)/(s′)
L∞(Q) ∥yu − ȳ∥l1+l2

C(Q̄)
∥zū,u−ū∥L2(Q)∥u− ū∥(2−s)/(2s′)+s/2

L1(Q)

≤ C2
s′M̃U∥yu − ȳ∥l1

C(Q̄)
∥zū,u−ū∥L2(Q)∥u− ū∥l2/s

′

L1(Q)∥u− ū∥(2−s)/(2s′)
L1(Q) ∥u− ū∥s/2L1(Q),

(A.12)

with M̃ :=M
s−1
s′ (l2+

2−s
2 )

U . We select l2 such that

l2
s′

+
2− s

2s′
+
s

2
= 1.

Using 1/s′ = 1− 1/s, this is equivalent to (1 + l2)(1− 1/s) + s/2(1− 1 + 1/s) = 1, thus we find

l2 = s′/2− 1.

Defining ε := 1
C2

s′M̃
ρ

1
l1 proves the first claim. For the proof of (3.5) we use (1.9), (1.11) and (A.3) to infer

∥yu − ȳ∥C(Q̄)∥zū,v∥2L2(Q) ≤ Cs′∥yu − ȳ∥C(Q̄)∥zū,v∥
(2−s)

C(Q̄)
∥u− ū∥sL1(Q)

≤ C2
s′M

s′−1
s′

U ∥yu − ȳ∥l1+l2
C(Q̄)

∥u− ū∥(2−s)/s′

L1(Q) ∥u− ū∥sL1(Q)

≤ C3
s′M̃∥yu − ȳ∥l1

C(Q̄)
∥u− ū∥l2/s

′

L1(Q)∥u− ū∥(2−s)/s′

L1(Q) ∥u− ū∥sL1(Q),

(A.13)

with M̃ :=M
s−1
s′ (l2+2−s)

U . Select l2 such that

l2
s′

+
2− s

s′
+ s = 2.

By 1
s′ = 1 − 1

s , this is equivalent to l2 = 2−s
s−1 . Defining ε := 1

C3
s′M̃

ρ
1
l1 proves the case for m = 0. For m ̸= 0,

we recall, that the L1(Q)-distance of the controls is assumed to be sufficiently small. But by the estimate (1.9),
this implies that the states are close and we proceed as displayed.
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Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2000.
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