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Abstract

This paper is dedicated to the stability analysis of the optimal solutions of a control problem associated
with a semilinear elliptic equation. The linear differential operator of the equation is neither monotone nor
coercive due to the presence of a convection term. The control appears only linearly, or even it can not
appear in a explicit form in the objective functional. Under new assumptions, we prove Lipschitz stability
of the optimal controls and associated states with respect to perturbations in the equation and the objective
functional as well as with respect to the Tikhonov regularization parameter.

1 Introduction

In this paper, we study the following optimal control problem

(P) min J(u) ::/QL(J:,yu(x),u(x))dx,

uEULq

where Uyqg = {u € L*(Q) : uq < u(z) < up foraa. v € Q}, —o00 < u, < up < +0o. Here, y, denotes the
solution of the semilinear elliptic equation:

y=0 on T. (1.1)

{ —div(A(2)Vy) + b(z) - Vy + f(z,y) =u in Q,

Assumptions on the data of the control problem (P) will be given below. The aim of this paper is to prove
stability results for the local minimizers of (P) with respect to perturbations in the data of the control problem.
There are quite a few previous papers devoted to this issue [14], [15], [16], [17], just to mention some of them. In
all these cases, the second derivative of L with respect to u is bounded from below by a positive constant. This
is the case where the Tikhonov term is involved in the objective functional. Under this condition and assuming
sufficient second order optimality conditions (SSOC), the Lipschitz stability of the optimal controls is proved.
Here, we assume that u appears linearly in L(z,y,u) or even it does not appear at all. Therefore, the previous
results do not apply. In this case, under (SSOC) for optimality, Lipschitz stability of the optimal states can
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be proved; see [7]. In Section 4, we obtain analogous estimates for the optimal states replacing (SSOC) by a
weaker condition; see (3.13). It is weaker because (SSOC) implies our assumption, but they are not equivalent.
In addition, our assumption implies strict local optimality of the control; see Theorem 3.5.

In order to prove stability of the optimal controls when they are not explicitly involved in the objective
functional, besides (SSOC) an additional structural hypothesis is usually assumed. This situation was studied
in [21], where the authors proved Lipschitz stability of the control with respect to linear perturbations simul-
taneously appearing in the state equation and the objective functional. The drawback is that the additional
hypothesis is satisfied only by bang-bang controls. Here, we obtain analogous estimates changing the mentioned
assumption by a weaker one, see (5.2). Though this second assumption (5.2) is stronger than (3.13), it can
be satisfied by optimal controls independently if they are bang-bang or not. Moreover our assumption (5.2) is
satisfied if the (SSOC) and the additional hypothesis are assumed.

Finally, under the assumption (5.2), Lipschitz stability is established for the optimal states with respect to
simultaneous perturbations in the equations and in the objective functional with respect to the state and the
control, and with respect to the Tikhonov regularization parameter. The stability with respect the Tikhonov
regularization has been studied in [7] and [20]. In [7], Holder stability of the states is proved. In [20], stability
of the control is proved under (SSOC) and the structural assumption. The reader is also referred to [23], [24],
[25] for the case of linear partial differential equations.

In this paper, besides providing some new sufficient conditions for Lipschitz stability for the optimal control
and associated states, we deal with a semilinear elliptic state equation that is neither monotone nor coercive.
Though some crucial results for this state equation are taken from [6], some estimates have been proved that
are not available in the literature.

The plan of this paper is as follows. In Section 2, we analyze the state equation. First, we establish some
properties of the linear differential operator of the state equation, and the full semilinear equation is analyzed in
the second part of the section. The control problem (P) is studied in Section 3. We prove that our assumption
(3.13) is a sufficient condition for strong local optimality. Session 4 is dedicated to the proof of Lipschitz stability
of the optimal states. In Section 5 we introduce the stronger condition (5.2) replacing (3.13) that allows us to
establish the Lipschitz stability of the optimal controls. Finally, in Section 6, the Tikhonov regularization is
considered.

2 Analysis of the partial differential equation

In this section we analyze the equation (1.1). We split the section in two parts. In the first part, we establish the
results concerning the linear operator of the elliptic equation. In the second subsection, the nonlinear equation
will be studied.

2.1 Analysis of the linear differential operator
We define the differential operator A : H}(Q) — H~1(Q) by
Ay = —div(A(z)Vy) + b(z) - Vy.

The following assumptions are supposed to hold throughout the paper. They ensure that the mathematical
objects under consideration are well defined.

Assumption 2.1. The following statements are fulfilled.

(i) The set Q C R™, n = 2,3, is a bounded domain with a Lipschitz boundary T'. The mapping A : Q — R™**™
is measurable and bounded in €2, and there exists Ay > 0 such that €T A(x)¢ > Aa|€|? for a.e. © € Q and
all £ € R™.

(i1) We assume that b € LP(R™) with p > 3 if n =3 and p > 2 arbitrary if n = 2.



Under these assumptions it is known that A : H}(Q) — H~1(£2) is an isomorphism despite the fact that the
operator is neither coercive nor monotone; see [6], [13, Theorem 8.3], [22]. The following identity is satisfied

<Ay,z>:/AVy~Vzdx+/b-Vyzdx Yy, z € H}(Q),
Q Q

where (-,-) denotes the duality pairing between H () and H} ().

Along this paper we will set
1
iy = ( [ (oot an) "

The next lemma states some properties of A that will be used later.
Lemma 2.2. The following statements are fulfilled:

i) There exists a constant Cy , p such that Garding’s inequality holds
A,
Ay
(Ay.9) 2“2yl @) — Crusllvlem Vo € HA(Q). (2.1)

(i) Let a € L*°(Q) be a nonnegative function and h € H=*(Q). If y € H}(Q) satisfies Ay + ay = h and h is
a nonnegative linear form, then y is a nonnegative function as well.

n

(i4) Let a be as above and h € L"(Q) with r > 5. Then, the solution y of the above equation belongs to
HL(Q) N C(Q). Moreover, there exists a constant C,. independent of a and h such that

yllzz2 @) + 1Ylle@) < Crllhllnr o) (2.2)

Proof. The proof of (2.1) can be found in [6]; see also [13, Lemma 8.4]. For the proof of (ii) the reader is
referred again to [6] and [13, Theorem 8.1]. The Hg(Q2) N C(Q) regularity of y for functions h € L"(Q) is well
known; see [13, Lemma 8.31]. It remains to prove the estimates (2.2) for a constant C, independent of h and
a. Let us denote by y,n € HL(Q) N C(Q) the solution of Ay + ay = h. With o, we denote the solution
corresponding to a = 0. Then, the estimate [|yo1l|c(q) < C|h| L) is well known for a constant C' depending
on r, but independent of h. Let us write h = h* — h™. From (ii) we know that y, ,+ > 0 and y, - > 0.
Now, since A(Yq n+ — Yo.n+) + a(Yan+ — Yo,n+) = —ayo n+, again by item (ii), we obtain 0 < y, p+ < Yo p+
and consequently [|yon+llc@) < Yot llo@)- Analogously, by the same argument 0 < y, - < yo,- and
consequently [|Ya,n-llc(@) < I1Yo,n- lo(a)- Therefore,

1Yanllc@ < lYantllc@) + 1Van-lle@ < von+lle@ + von-llc@)
< C(In ey + 107 lerey) < 2C llL (o,

where C is independent of a and h. To prove the corresponding estimate in H} () we use Garding’s inequality
(2.1) and the above estimate:
Aa
4

< (A o) + [ e+ ol o
Q

”ya,hH%{é(Q) < (AYa,h, Ya,n) + CAA;bHy(LhH%Q(Q)

_ / Bjan Az + Ci s g2
Q

1
< Q17 1Al @) 1va,nllo@) + CaanlQllyanllEgy

r—

§2C(|Q| v +QCCAA,b|Q|>||h”2LT(Q)7




where |Q| denotes the Lebesgue measure of . Since the above constants are independent of a and h, the
inequality completes the proof of (2.2). O

Now, we consider the adjoint operator A* : H}(Q) — H~1(Q) of A. Since A is an isomorphism, A* is
also an isomorphism as well. It is obvious that A*p = —div(AT V) — div(pb). The operator A* satisfies the
same properties established in Lemma 2.2. Indeed, the Garding’s inequality is consequence of (2.1) and the
identity (A*p, ©) = (Ap, p). The proof of the estimate (2.2) is the same for the operator A*. We only prove the
statement (ii). Let h € H~1(Q) be a nonnegative linear form. This means that (h,y) > 0 for every nonnegative
function y € H}(Q). Let ¢ € H}(Q) satisfy A*p + ap = h. Now, given a nonnegative function w € L?(2) we
take y € H}(Q) satisfying Ay + ay = w. By Lemma 2.2-(ii) we have that y > 0. Then, we obtain

/ wpdr = (Ay + ay, ) = (A 0 + ap,y) = (h,y) > 0.
Q
Since w is an arbitrary nonnegative function of L?(f2), this inequality yields ¢ > 0.

We finish this subsection by proving an L®(2) estimate.

Lemma 2.3. Assume that s € [1,5), s’ is its conjugate, and let a € L>(Q2) be a nonnegative function. Then,
there exists a constant Cy independent of a such that

{

where yp, and @p, satisfy the equations Ayp, + ayp, = h and A*pp + app = h, respectively, and Cs is given by
(2.2) withr =s'.

Q) < Cy bl L1 (),
@) < Csllhllzr ),

Yh e HH(Q) N LY(Q), (2.3)

Proof. We prove the estimate (2.3) for ¢, the proof being identical for y,. First we observe that Hg () C
L%(Q) C L72(Q), hence ¢, € L(Q). As a consequence we obtain that |¢p,|*~ sign(ep) € L* (€2). Moreover,
s < I implies that s’ > %. According to Lemma 2.2-(iii), the solution of Ay + ay = |¢5|*~ *sign(es) belongs
to H3(Q) N C(Q) and satisfies

Iylle@) < Colllenl™ sign(on)ll L o) =

where C/ is independent of a and h. Using these facts we infer
H%M@=AMWM=Mwawﬂﬁ%+ww>

=Awmsmm@mm

This proves (2.3) for ¢ O

2.2 Analysis of the semilinear equation

In this subsection, we formulate some results concerning the semilinear equation (1.1). For this purpose we
make the following assumptions on the nonlinear term of the equation.



Assumption 2.4. We assume that f : Q@ x R — R is a Carathéodory function of class C? with respect to the
second variable satisfying:

f(-,0) € L™(Q2) with r > g and g—;(x,y) >0Vy eR, (2.4)
of 0% f
VM >0 3C¢ m > 0 such that a—y(x,y) + a—yQ(x,y) < Cym Vy| <M, (2.5)
VM >0 and Ve > 0 36 > 0 such that
0% f o? (2.6)

<e if [yl |y2| <M and |y2 — 1| <6,

87y2($,92) - ng&x’yl)

for almost every x € Q.

Theorem 2.5. Let Assumptions 2.1 and 2.4 hold. If u belongs to L"() for some r > n/2, then there exists a
unique solution y,, € H}(Q) N C(Q) of (1.1). Moreover, there exists a constant K, independent of u such that

1ull 30y + Iulle@) < Kpr(lullr@) + 1£(0)]r@) + 1) (2.7)

Further, if {uy}32, is a sequence converging weakly to u in L"(2), then yu, — yu strongly in H}(Q) N C(Q).
The reader is referred to [6] for the proof of this result. As a consequence of (2.7) we get
3Ky > 0 such that ||yul| g1 ) + yullo@) < Kv Vu € Uag. (2.8)
For each r > n/2, we define the map G, : L"(Q) — H(Q) N C(Q) by G, (u) = yu.

Theorem 2.6. Let Assumptions 2.1 and 2.4 hold. For every r > % the map G, is of class C?, and the
first and second derivatives at w € L"()) in the directions v,vi,v2 € L"(Q), denoted by z,, = GL(u)v and
Zur we = G (u)(v1,v2), are the solutions of the equations

of B

Az + 8—y(x7yu)z =, (2.9)
of 0

Az + dy (T, yu)z = — dy? (xvyu)zu,vlzu,vgv (2.10)

respectively.
The proof of this theorem is an easy application of the implicit function theorem; see [6].
Lemma 2.7. The following statements are fulfilled.

(i) Suppose that r > 5 and s € [1, -"5). Then, there exist constants K, depending on r and M, depending
on s such that for every u,u € Uyq

1Yu — va — zau-allc@) < Krllyu — yaH%m-(Q), (2.11)
Lo@) < Millyu = yall72(q)- (2.12)

||?Ju — Yu — Zﬁ,u—ﬁ‘

(i) Taking Cx = Ko+/|Q| if X = C(Q) and Cx = My if X = L?(2), the following inequality holds

2w — 2zawllx < Oxlyu — valx||zavlx Yu,@ € Upg and Yo € L*(Q). (2.13)



(iii) There exists € > 0 such that for all 4, u € Uy with ||y, —yullc(a) < € the following inequalities are satisfied

1 3

Sl = yallx < lzmamallx < Slly - vallx, (214)
1 3

Slzaallx < lzuallx < Slzanllx Vo € IX(9). (215)
2 2

Proof. Let us set ¢ = yu, — ya — 2au—a € Hi(Q) N C(Q). From the equations satisfied by the three functions
and using the mean value theorem we get

of rof af

A(b + aiy(xayﬁ)(é - ay (xayﬁ) - Fy(xvye) (yu - yﬁ)a

where yp(z) = ya(z) +0(z) (yu(x) —ya(x)) with € : @ — [0, 1] measurable. Using again the mean value theorem
we deduce

2
Ao+ %(w,yaw = —9%(%%)(% ~va)’

with yg(x) = ya(z) + 9(x)(ye(z) — ya(z)) and ¥ : @ — [0, 1] measurable. By Lemma 2.2-(iii) and taking into
account (2.5) and (2.8) we infer the existence of C, independent of u, @ € U,q such that

16llc@y < CrCracp (yu — va)*llr@) = CrCr.iy lyu — vallier ),
which proves (2.11) with K, = C,Cy k. To prove (2.12) we use Lemma 2.3 to obtain
I6ll2s @) < CrCrieo |(Wu — wa)?ll 1) = CorCr i [Yu — yallZ2 (-

Taking My = CyCy iy, (2.12) follows.
Now we prove (2.13) for X = C(f2). Setting ¢ = z,,, — 2z,» and subtracting the corresponding equations
we infer with the mean value theorem

0 0 0 02
Ay + 6—£<x7yu)w = [af‘;(w,ya) - a—g(ﬂc,yu)}zﬁ,v = a—yf(ﬂc,ye)(ya ~ Yu)Zu,0-

Taking r = 2 in (2.2) and using (2.5) and (2.8) it follows from the above equation
[Ylle@) < C2Cf kv (Yo — yu)zawllzz) < KoV IQyu — vallc@)llzanlle@):
which proves (2.13) for X = C(Q). The proof for X = L?(f2) is analogous, we use the estimate (2.3) for s = 2
instead of (2.2). B
To prove (2.14) for X = C(£2) we use (2.11) with r = 2 to get
Y — ya||c(Q) < ||¢||C(Q) + ||Zﬁ,ufﬂ||c(§_2) < Kollyu — yﬂ||2L4(Q) + Hza,uwHC(f‘z)

< Ko/ 19llyu — vallg ) + 12a.u—allo@)-

Choosing e, = [2K2+/[Q[] 7" the first inequality of (2.14) follows if ||y — yallc@) < €1- To deal with the case
X = L?(Q) we use (2.12) with s = 2 and obtain

19w = vallz2 @) < 16llL2@) + lzau—all2@) < Mallyu — valli2 ) + lzau—allz2 @)
< Mo/ |9Qyu — valle@ lyu — vallLz @) + lza,u—allL2 @)

Hence, taking 5 = [2M2+/[Q]] ™" we obtain the first inequality of (2.14) with X = L*(Q) if [lyu — yallc@) < €2



To prove the second inequality of (2.14) for X = C(Q2), we proceed as follows
||Zﬂ,u—a||0((z)
<|¢lle@ + lyu — vallc@) < K /19y — ya||2c(9) + Yu — vallc@)
< v~ vale@ I~ vallo@ < e

Similarly the second inequality of (2.14) follows if X = L?(2) with &5 replacing e;.
Finally, we prove (2.15). Using (2.13) we obtain

zu0llx < ”Zu,v - Zﬂ,v”X + ||Zﬂ,v | < Cx|lyu — yﬁHX”Zﬂv”X + ||Zﬂ,vHX7
[2a,0llx < 2u,0 — 2a0llx + [2unll < Cxllyu — yallx 2zl x + 200l x-

1

Therefore, selecting € = 57—,

then (2.15) follows if ||y, — yallc@) < e. O

3 The Control Problem

In this section, we make assumptions on the objective functional J so that (P) has at least one solution and
the first and second order conditions for local optimality can be established. Since the problem is not convex,
we will consider not only global minimizers, but also local minimizers. Throughout this paper, we will say that
@ is local minimizer of (P) if 4 € U,q and there exists a ball B,(u) C L*(Q) such that J(u) < J(u) for every
U € Uqqg N B,(u). We will also say that @ is a strong local minimizer of (P) if & € U,q and there exists € > 0
such that J(u) < J(u) for every u € Uyq with ||y, — yallc(q) < €. If the previous inequalities are strict whenever
u # u, then we say that @ is a strict (strong) local minimizer. As far as we know, the notion of strong local
minimizers in the framework of control of partial differential equations was introduced for the first time in [1];
see also [2].
We make the following assumptions on L.

Assumption 3.1. The function L : Q x R?2 — R is Carathéodory and of class C? with respect to the second
variable. In addition, we assume that

L(z,y,u) = Lo(x,y) + g(x)u with Lo(-,0) € L*(Q) and g € L™=(Q), (3.1)
VM >0 3 € L*(Q) and Cpar > 0 such that

oL 9?L (3.2)
‘?y(:myvu)‘ S ’l/}M(x) and ‘Tyg(xayvu) S CL,M V|y| S Ma

VM >0 and Ve > 0 35 > 0 such that

9L 0%L ) (3.3)
S )~ G ana)| << il o] < M, e - < 5,

for almost every x € Q.

Using Theorem 2.5, the assumptions on L, and the boundedness of U, in L (), the existence of at least

one solution of (P) follows. Indeed, if we take a minimizing sequence {uj}2;, we can assume that uy X @ in
L>(9). Then Theorem 2.5 implies that y,, — yz strongly in H(2) N C(2). Further, using (2.8) and (3.2)
with M = Ky we infer with the mean value theorem

[ Lo(, yuy, (2))] < [Lo(@, 0)] + Yx, (2) K-

Then we can apply Lebesgue’s dominated convergence theorem to pass to the limit in the objective functional
and to obtain J(ug) — J(@).

In order to derive the first order optimality conditions satisfied by a local minimizer we address the issue of
the differentiability of the objective functional .J.



Theorem 3.2. Suppose that r > 5. Then, the functional J : L"(2) — R is of class C2. Moreover, given
u,v,v1,v2 € L"(Q) we have

J () = / (¢u +g)vdz, (3.4)
Q
0*L % f
1 — — —_—
‘] (u)(vh UQ) - /Q |:ay2 (1’7 Yus U) P ayg (1’7 yu) Zu,vl Zu,'ug dZE, (35)

where ¢, € H(Q) N C(Q) is the unique solution of the adjoint equation

i} aof oL ‘
A QD + Fy(%yu)ﬁp - 8:(/ (xﬂ yU7u) m Q’ (36)
(p:O on F.

This is a straightforward consequence of Theorem 2.6, Assumption 3.1, and the chain rule. The only critical
issue is the existence, uniqueness, and regularity of ¢,. But this an immediate consequence of Lemma 2.2-(iii)
that, as already mentioned, applies to the operator A* as well. From this theorem, the optimality conditions
follows in the classical way.

Theorem 3.3. Let @ be a (strong or not) local minimizer of (P), then there exist two unique elements 7, p €
HY Q)N C(Q) such that

Aj+ f(z,5) = in Q,
{ y=0onT, (3.7)
_of, _._ oL, _ _ .
* YJ _ 7= Q
A*p + ay(x,y)w 9y (z,,1u) in €, (3.8)
p=0o0onT,
/(@Jrg)(ufﬁ)darzo Yu € Ugg. (3.9)
Q

The derivation of sufficient second order conditions for local optimality is more delicate. First we introduce
the cone of critical directions on which we formulate the necessary second order conditions for optimality: if
U € Uyq is a local minimizer of (P) we define

Cu={ve L*Q):J(a)v=0 and v satisfies the sign conditions (3.10)},
>0 if a(z) = ug,
v(®) { <0 if a(z) = up. (3.10)

As usual, from (3.9) we deduce that (¢ + g)(x)v(xz) > 0 for almost all z € Q if v € L?() satisfies (3.10).
Therefore, the condition J'(@)v = 0 for v satisfying (3.10) is only possible if v(z) = 0 for almost every z € Q
such that (@ + g)(z) # 0. Therefore, Cy can be written

Cy = {v € L*(Q) : satisfying (3.10) and v(x) = 0 if |(¢ + g)(x)| > 0}.

It is well known that every local minimizer % satisfies the second order necessary optimality condition:
J"(@)v? > 0 for all v € Cy; see, for instance, [8]. However, based on Cj it is not possible to get sufficient
second order conditions for local optimality. The reader is referred to [12] for a counterexample. A procedure



suggested by several authors consists in extending the cone of critical directions Cy; see [10, 11, 18, 19]. Two
possible extensions of C; seem natural after the above comments: for 7 > 0 we define the extended cones

DI = {v € L*(Q) : satisfying (3.10) and v(x) = 0 if |(¢ + g)(z)| > 7},
Gy, = {v € L*(Q) : satisfying (3.10) and J'(@)v < 7|2, 11(0)}-

On any of these cones we can formulate sufficient second order conditions for local optimality. Obviously, both
are extensions of Cy. In [3], the authors introduced the cone CZ = DI N GL, which is also an extension of Cj.
They proved that the first order optimality conditions (3.7)—(3.9) along with the condition

38 > 0 such that J”(a@)v? > 6sz||2L2(Q) Vv e CF (3.11)
imply the existence of K > 0 and € > 0 such that
_ R _ _
T(@) + Sllyw = 9l72(0) < T (1) Yu € Uag such that gy — gllew) < e (3.12)

Actually, the proof of [3] was carried out for a parabolic control problem with g = 0. However, the same proof
works for the elliptic case and g # 0. Here, we formulate a new assumption leading to the same result (3.12) as
(3.11) does.

Assumption 3.4. There exist numbers a > 0 and ~v > 0 such that

J/(’CL)(U — ﬂ) + J”(ﬂ)(u — 17/)2 Z ’)/HZa’ufﬁH%z(Q) Yu € Z/[ad with ||yu — :UHC(Q) < Q. (313)

It was proved in [4] that (3.11) implies (3.13). Therefore, (3.13) appears as a weaker assumption. However,
the next theorem proves that it is sufficient to imply (3.12).

Theorem 3.5. Let @ € Uyq satisfy the optimality conditions (3.7)—(3.9) and Assumption 3.4. Then, there exists
e >0 and k > 0 such that (3.12) holds.

Before proving this theorem we establish some lemmas.

Lemma 3.6. Let @ € Uyq be fized with associated state §. Then, the following inequality holds for all 6 € [0, 1]
and u € Uyg

lYarou—a) = Ulle@) < (CoCfxp VIUY — Flle@) + Dllve — Fllc@)s (3.14)
where Cy is the constant of (2.2) with r =2 and Cy k,, is the one deduced from (2.5) and (2.8).

Proof. The proof of this lemma is based on the analogous result for parabolic control problems established in
[5]. We take 6 € [0,1] and u € Uyq. We set ¢ = yayou—a) — [§ + 0(yu — 7)]. Then, we have

Applying the mean value theorem, we obtain measurable functions 6; : Q@ — [0,1], i = 1,2, such that y; =
U+ 01(Yaro(u—a) — ) and

0
(@ yarow-n) — f(@,7) = 8%;(:[’ y1) Watow-a) — 1),

F@aye) — f(2.5) = %@,mxyu — ) with go = § + Oa(yu — 7).
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Inserting these identities in the above partial differential equation we infer
of _ of _
Ag + afy(aa y1) Watou-a) — ¥) — f)afy(fv, y2)(yu — y) = 0.

Noting that ¥z 46(u—a) —¥ = ¢ +0(y. — ¥), the above equality and a new application of the mean value theorem

lead to 9 5 P 92
A6+ G w06 =[G (0,) = B 0] 0 = ) =05 S ) 0~

where y3 = y1 + 03(y2 — y1). Using (2.2) with r = 2, (2.5), and (2.8) we infer
ol < CoCrroll(yu — 9)?22(0) < CoCf ey VIUIYu — 120y -
This implies

lYarocu—a) — Ullc@) = 16+ 0w — Dlc@)
< (CoCf ke VIQUYu — Fllca) + Dllye — Fllo@)-

O
Lemma 3.7. There exists a constant My > 0 such that
lpullo@ < My Vu € Uga- (3.15)
Moreover, given 4 € Uyq with associated state § and adjoint state ¢, we have
lparou-a) — Ple@ < Cllyu —lle@ V0 €[0,1] and Vu € Uaa, (3.16)

where C' depends only on f, L, Uyq, and .
Proof. For the proof of (3.15) we use (2.2) with r = 2, (2.8), and (3.2) as follows

oL
leullo@ < G| 5 @mon)] , o < Mo = Calline lzaqe.

L2(Q)

Let us prove (3.16). Given u € Y and 6 € [0,1] let us denote ug = @ + 0(u — @), Yo = Yu,, and Py = Qy,-
Subtracting the equations satisfied by ¢y and @ we get with the mean value theorem

0 oL oL
A*(L)OH - @) + 875(33737)(@0 - @) = @(xay97u9> - @(xaga ﬂ)
af . of oL o2

+ [ay (z,9) — afy(%ye)}po = {a?(x,yﬂ,w) - wea—yé(x,yﬂ)} (yo — 7)),

where y9 = § + ¥(yg — §) for some measurable function ¢ : Q@ — [0, 1]. Now, we apply (2.2) with r = 2, (2.8),
(3.15), (2.5), and (3.2) to get from the above equation

o — @lle@) < C2(CLky + MuCr )V IQUye — Yllow)-
Then, (3.16) follows from Lemma 3.6. O

Lemma 3.8. For every p > 0 there exists ¢ > 0 such that if u € Uua and ||y — Jllc(a) < € then

[ (@ + O(u — ) — J"(a)]v?] < p||zﬁ,,,|\%2(9) Yo € L*(R) and V6 € [0, 1]. (3.17)
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Proof. First, let us denote ug, yp, and @y as in the proof of Lemma 3.7. From (3.5) we get

dz

2
"+ 00— ) = @) < [ S5 ) — S 0]
a a9 ) 82]2 ' I Ug,v

dx

_ *f,
/‘ po —® 8 2 (w,y9)z UM d:c—i—/ ‘%’ z,Yp) a—yf(ﬂc,y)}zig,v

32L _ _O°f 2 2
/ ’ _Soayg ($7y)i|( Rug v _Zﬂ,v)

_h+h+g+u

dx

Let us estimate the terms I;. For I; we deduce from (3.3), (2.15), and (3.14) that for every p > 0 there exists
€ > 0 such that I} < PHZﬂ,v”iz(Q) if |yu — llc@) < e. The same estimate can be deduced for I5 using (2.5),
(2.8), (2.15), and (3.16). The estimate for I3 follows from (2.6), (2.8), (2.15), (3.14), and (3.15). Finally, we
estimate I, by using (2.5), (2.8), (2.13), (2.15), (3.2), (3.14), and (3.15) to infer that

Iy < (OL7KU + MUCvau)”Zue,v (Q)”Zue,v - Zﬂ,v||L2(Q)

5 )
< (Crky + MuCrky)5 lzalliz@)Crz@llye = dlle@llzalcz @

T2 i lyu —3llo@) <e
Hence, (3.17) is a straightforward consequence of the above estimates. O
Proof of Theorem 3.5. Let us take u € Uyq with ||y, — y||C(Q) < a. By performing a Taylor expansion and
using that J'(@)(u — @) > 0 we obtain
1
J(u) = J(@) + J'(@)(w = @) + 5" (ug) (u — u)?

> () + 5 () — )+ (@) — 0]+ 1 ) — T (@) )

L1 up) = T @) (u - 0)?).

B )
> J(u) + §||za,u7a||%2<m - 2”

Lemma 3.8 implies the existence of € € (0,a] such that |[J”(ug) — J" (@)](u — u)?| < g||zﬁ7u_aH%2(Q) for every
u € Ugg with [lyu — llcq) < €. Inserting this estimate in the above expression and taking e still smaller if
necessary, we can apply (2.14) to deduce

.0 i ) _
J(u) > J(u) + Z||za,ufa||%2(n) > J(u) + TGHyu — 0720

.. . . . 5
This inequality yields (3.12) with x = ¢.

4 Stability of the states

In this section, we consider the following perturbations of the control problem (P)

(P) min Je(u) := /Q[L(x,yi(w),U(af))+775(96)y2(96)} dz,

u€EUqq

where y;, is the solution of the equation

[ AT + ) Ty e =k i ) o
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Here we assume that {&.}.so and {n:}cso are bounded families in L2(f) satisfying that (¢.,7:) — (0,0)
in L?(Q)? as ¢ — 0. As a consequence of Theorem 2.5 we get the existence and uniqueness of a solution
ys € H(Q)NC(Q) of (4.1). Moreover, using (2.7) with r = 2 and the boundedness of {£.}.s0 in L?() we
infer that the set {y : u € Uyq and € > 0} is bounded in Hg () N C(2). Therefore, increasing the value of Ky,
if necessary, we can assume that (2.8) and the inequality

1Yallzz o) + lvallo@ < Ku Vu € Usg and Ve >0 (4.2)

hold. We will prove that the solutions of problems (P.) converge to the solutions of (P) in some sense to be
precised below. Conversely, we will also prove that any strict strong local minimizer of (P) can be approximated
by strong local minimizers of problems (P.). Finally, the Lipschitz stability of the optimal states with respect
to the perturbations is established. We start analyzing the difference between the solutions of (1.1) and (4.1).

Theorem 4.1. The following inequalities hold for every e > 0

1 = yullmz ) + 1 — vullo@) < Calléellzz ) Yu € LP(Q),
125 0 — zuwll2(0) < C3C k0 l1Eel L2(0) | Zuwll L2 () V(1 v) € Uaq X L (), (4.4)

where Cy is the constant given in (2.2) for r =2, Cj g, 1is the constant Cr p of (2.5) with M = Ky given in
(2.8) or (4.2), and 2, denotes the solution of (2.9) with y;, replacing y..

Proof. Subtracting the equations (4.1) and (1.1) and using the mean value theorem we obtain

0
AW — ya) + 8—5@, yo) (5 — ya) = ..

€
U,v

Then, (2.2) implies (4.3). To prove (4.4) we subtract the equations satisfied by z

0 0 0
S @) (G~ ) = [ 0) = B )

and z,,, to obtain
A(Zi,v — Zuw) +

Now, using (2.3) with s = 2, (2.5), (2.8), and (4.3) we obtain from the previous equation with the mean value
theorem

0 0
f - aiz(xayi)} RZu,v

o — w,v || L2 <C H|:7 s Yu
||Zu,'u Ru, ||L Q) =~ 2 ay(l‘ Y ) L)

< CoCr iy H(yzi - yu)zu,v”Ll(Q)
< CQCf,KUHyIEL - yu”LQ(Q)H’Z“v””Lz(Q) < CgcnyU||€€HL2(Q)||Zu,v||L2(Q)~

Now we analyze the convergence of problems (P.) to (P).

Theorem 4.2. Let {u.}eso be a family of solutions of problems (P.). Any control 4 that is a weak® limit in
L>(82) of a sequence {ue, }32, with e — 0 as k — oo is a solution of (P). Moreover, the strong convergence
Yok = Ya in HL(Q)NC(Q) holds.

Proof. The existence of the sequences {ug, }32, converging to 4 weakly* in L*°({2) is a consequence of the
boundedness of U,q in L>(Q2). From Theorem 2.5 and (4.3) we infer

||yi’§k —Yallmp ) + Hyiﬁk —Yalle@)

<k, = Yue, gy + Wt = vue, lo@) + 19u., —vallmg@) + v, —valle@)

< Colléellzz) + 1Yue, — vallap@) + 1Wu., —vallc@ — 0 as k — oo.
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Using this fact, the convergence n. — 0 as ¢ — 0, (3.2), the optimality of u,, for (P, ), and again (4.3), we get

J(@) = Tim Je, (ue,) < lm Jo (u) = J(u) Vi € Uag,

k—o0 —00
which proves that @ is a solution of (P). O
Now, we establish a kind of converse result.

Theorem 4.3. Let @ be a strict strong local minimizer of (P). Then, there exist £g > 0 and a family of strong
local minimizers {u:}-<c, of problems (P.) such that u. = @ in L>®() and y5_ — ya strongly in H3(Q)NC(Q)
ase — 0.

Proof. Since @ is a strict strong local minimizer of (P), there exists p > 0 such that @ is the unique solution of
the problem

(PP) 1{25}3 J(U),

where U, = {u € Uaa : |Yyu — Yallc@) < p}. Now, for every & > 0 we define the problems

(Ppe) min Je(u).

Using Theorem 2.5 we deduce that U, is weakly™ closed in L>°(2), hence the existence of a solution u. of
(Pp,e) can be proved as we indicated for (P). Moreover, arguing as in the proof of Theorem 4.2, we deduce the
existence of sequences {uc, }72; converging weakly* to a solution u of (P,) in L>°(€) and such that ik = Yu

strongly in Hg (2)NC(Q). Since @ is the unique solution of (P,), we conclude the convergence u. A in L°(Q)
and 5 — ya in Hy(Q) N C(Q) as e — 0. Therefore, there exists eo > 0 such that ||y — yallc@a) < p for every
€ < go. This implies that wu. is a strong local minimizer of (P.) for every £ < &g, which completes the proof.

O

Now we establish our main theorem of this section.

Theorem 4.4. Let @ be a local minimizer of (P) satisfying Assumption 3.4 and {uc}e<e, a family of local

solutions of problems (P.) such that ue — @ in L=°() as € — 0. Then, there exist ¢ € (0,e0) and a constant
C > 0 such that

Ivi. = Flez@) < C (I lraoy + Inelzaey) Ve <&, (4.5)
where § = Yg.

Let us observe that Assumption 3.4 implies that @ satisfies (3.12). Hence, @ is a strict strong local minimizer
of (P) and, consequently, Theorem 4.3 ensures the existence of a family {uc}e<e, of strong local minimizers
of problems (P.) satisfying the conditions of the above theorem. Before proving this theorem we establish the
following lemma.

Lemma 4.5. Let u satisfy the assumptions of Theorem 4.4. Then, there exists € > 0 such that
J'(u)(u —u) > %H%,u—ﬂ”%z(ﬂ) Vu € Uga with |lyu — Jllo@) <&, (4.6)

where vy is given in Assumption 3.4.

Proof. We denote by H : Q x R — R the Hamiltonian associated with the control problem (P):

H(ay,go,u) = L(mayvu) + gp[u - f(:my)}
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For every u € Uyq and v € L%(Q), we define 1, € H}(2) N C(Q) as the function satisfying

0’H

of
+ (2, Yu ¢u,v = 55 L Yu, Pu, U)Zu,w-
(5 = G )

A" By

We split the proof into two steps.
Step I.- Here we prove that for every p > 0 there exists e > 0 such that for every u € Uyq With ||y, —7llc@) < €

we have

| [ (=0 = vauadlu— 0 do] < pllzgmslacor (47)
Setting ™ = ¢, — @ — ¥g,4—q and subtracting their respective equations it follows with the mean value theorem
of oOH OH
-’4 y = a5 Ly Yuy Pus - a4 77 77 U
5, (@, 7)) ay(wy Pu,u) ay(wy @, 1)
o’H, 0’H _
- 3y2 (xayﬂpvu)zﬂ,ufﬂ - a a (aj y (P, )(90 - 90)
e 0*H

a .2 (3j y97<P0>U0)(y _g) ay (1‘ y 907 )Zuu m

[ )= 21 o560 (o — )
3y3<p €, Y9, Pe, U 8y8§0 Z,Y,p,u Pu ®

82
a a2 (‘rlj y078007u0)(y _g_zﬂ,ufﬂ)

0’H 0’H, _ _
|:a 2 ((E y078007u9) TyQ(x7yu<p7u):|Zﬁ,ufﬂ

0’°H 0’H o _
[aya(p(xuy07(p07u0) - aya(p ($7y7§07u)} (‘pu - ()0)

This implies
of
m(u—u)dx = / |\ Azgu—a + = (T, 9)zg,u—a ) dz
/Q ( ) Q ( ay( ) )

of
A+ —(x Zgu—z dT
A( a(y)),
82
= a a2 (fL' Yo, o, U@)(y - g - Z’L_L,U7’L_L)Zﬂ,u7ﬂ dx
0’H O?H, 7,
+\/ [8 2 (.T va‘POauﬁ) (‘3y2 (l'vya@au)}zﬁ,u—ﬁ dz

0’H 0*H o _
[aya@ (ma Yo, o, ’I,Lg) - aya(p (x7y’ (,O,U):| (@u - (,O)Zﬂ7u_ﬂ dz

=0+ I+ 1

We estimate every term I;. For the first term we use (2.5), (2.8), (2.12) with s = 2, (2.14) with X = L*(Q),
(3.2), and (3.15) as follows
|Il| < (CL Ky T MUCf KU)“yu — Y~ Rau— u”L2 Q)qu u— uHLz(Q
< (Crgy + MUCf,KU)Mzﬂyu — 11720 l17a,u—all L2 ()
< 2(CLky + MyCr iy ) Ma ‘Q|5H2ﬂyu*ﬂ”%2(§2)'
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The second term is estimated with (2.6), (2.8), (3.3), (3.14), (3.15), (3.16), leading to |I3| < pHZﬂfU«*ﬁH%?(Q) for
p arbitrarily small if € is taken according to p. Finally, for the last term we use the same inequalities as for I
and additionally (2.15) with X = L?(Q) to get

[I3] < pllpu — Pll2) l2a,u—allL2 @)
< pC2(Cr ky + MuCr )V — Fllo@lzau—allz2 ()
< 205(Cr ky + MuCr i )V 19200l 20,01l 72 ()
where again p is arbitrarily small if € is chosen according to it. Thus, (4.7) follows from the proved estimates.

Step II- Now, we prove (4.6). First, we observe that for every v € L?(Q)

of
a0 de = awl Azaw + = (,9)za., ) d
[ tnsvds = [ v (Asa, + Fmpz, ) do
_ " of, [ 0°H
_/Q(.A wﬁ7v+@($,y>wﬁ7v)2ﬁ)vdx— o 8y2

where the last inequality follows from (3.5) and the definition of the Hamiltonian. Let € > 0 be such that (4.7)
holds with p = 3. Then, using Assumption 3.4 and (4.7) we get for u € Uuq With [y, — Jllc@) <€

(x,7, @,a)z?w dr = J"(w)v?,

J(w)(u — ) = /Q(%Jrg)(u—@)dw
= / (‘pu —p— "/’ﬁ,ufﬂ)(u - ﬂ) dz + / (@ +g+ lﬂﬁﬂ,,fﬁ)(u — 11) dz
Q Q
> D zaualla + )@ @)+ 7" @)~ 97 > L za-alaq).

O

Remark 4.6. Let us notice that if @ is a local minimizer of (P) satisfying Assumption 3.4, then there exists
€ > 0 such that there is no stationary point @ of (P) different from u such that ||ya — yll ooy < . We say that
is a stationary point of (P) if it satisfies the first order optimality condition. In particular, if 4 is a stationary
point then J'(4)(u — @) > 0. This contradicts (4.6) if |lya — Yllo@) < e-

Proof of Theorem 4.4. Using the local optimality of u. we get
0> JL(ue)(ue — w)
_ oL - oL
= Jl(us)(us - u) + /Q [aiy(xa Yues us) - aiy(xv yueaus)} ZUg e —T dx

0L
+ | @y ue) (20, ue—a — Pucu.—a) d$+/ NeZu, o —a A2 (4.8)
Q ay € e le ’ Q e lUe

We estimate each one of these four terms. First, we observe that the convergence u. — @ in L?(Q) implies that
Yu. — ¥llc@) — 0; see Theorem 2.5. Hence, from Lemma 4.5 we deduce the existence of 1 > 0 such that

- gl
J' (ue) (ue —a) > §qug,ufﬂ||2L2(Q) Ve <eq, (4.9)
For the second term we use Schwarz’s inequality, the mean value theorem, (2.8) and (4.2), (3.2), and (4.3)
OL R oL
A LYy Ue) = 7Ty Yues Ue ) | [Ruc ue—u dx
| Gt = o)l

< Crxy Y. = Yull 2@ |2ue ue—allL2 (o)
< CL ko VIQColle L2020 uc —all2(0)- (4.10)
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Now we estimate the third term with (3.2) and (4.2), Schwarz’s inequality, and (4.4)

oL, .
T, u ; Ue
/sz‘ay( e Ue)

x| 2200 C3 ko 1€e 20 20 wu—a | 22 (0)- (4.11)
For the last term we use again (4.4) and the fact that {£.}.~0 is bounded in L?(Q)

122, u o — e —al dz < / N
Q

[ et ol < el (12 = 2l + sl

< (CRNE N2y + 1)l 2o 2uese—all 20 < Cllmellpaol2ue e —all - (4.12)

Inserting the estimates (4.9)—(4.12) in (4.8) we obtain for some constant C’ > 0 and every € < ¢;

e we-all @) < O (€l 2@y + Inellzze )-
Finally, using (2.14) and (4.3) we deduce the the existence of e2 € (0, 1] such that for every € < 5 we have

lva. = Ull2@) < lya, = vullz2@) + 1. = Fllr2(e)
< CovIUEel 2 @) + 2l 2ue ue—all L2 ()
< Cov/I9lIEe @) + 2C7 (IEellzaqoy + Incll ) ).

which proves (4.5).

5 Stability of the controls

In the previous section, we established Lipschitz stability for the optimal states with respect to state pertur-
bations in the objective functional and to the force in the state equation. In order to obtain stability on the
optimal controls an additional assumption is usually required. The reader is referred to [21] for the following
assumption

3C > 0 such that [{x € Q: (¢ +g)(z)| <e}| < Ce Ve >0. (5.1)

Using this assumption and sufficient second order optimality conditions they proved Lipschitz stability of the
controls in the L'(€2) norm. However, the assumption (5.1) implies that @ is bang-bang. As far as we know,
there is no proof for stability of the optimal controls when they are not bang-bang. Assumption 3.4 that we
have considered in the previous sections is applicable for the case of optimal controls that are not bang-bang.
Nevertheless, it leads only to Lipschitz stability of the optimal states. Here, we modify Assumption 3.4 as
follows

Assumption 5.1. There exist numbers a > 0 and v > 0 such that for all u € Uaa with ||y, — llc@) < a the
following inequality is fulfilled

J'(@)(w = @) + J"(@)(u — 9)* > yllzau-all 2@ llu — @l (5:2)

Under this assumption we will prove Lipschitz stability of the optimal controls. We remark that (5.2) does
not imply that @ is bang-bang. Moreover, it has been proved in [9] that the sufficient second order conditions
plus the structural assumption (5.1) imply the existence of positive numbers v and « such that

J'(@)(u —a) + J" (@) (u—1)* > yllu— ﬂH%l(Q) Vu € Uag with ||u — @l 1 o) < a. (5.3)

But we have the next equivalence:
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Proposition 5.2. The statement (5.3) is equivalent to the existence of positive numbers v' and o such that
J (@) (u—a) + J" (@) (u—a)* > +||u— ﬂ||%1(ﬂ) Vu € Uag with |yu — Fllc@ < o (5.4)

Proof. Let us assume that (5.3) holds, but (5.4) is false. Then, for every integer k > 1 there exists an element
ug € Uyq such that

_ _ _ _ 1 _ _ 1
(@) (e — @) + J" (@) (= 0)* < ke = @l7io) and [lyu, = gllo@) < 7 (5:5)

Since {ug}52, C Uyq is bounded in L (1), we can extract a subsequence, denoted in the same way, such that
up — u in L=(2). On one side, (5.5) implies that g, — 7 in C(€). On the other side, from Theorem 2.5 the
convergence y,, — ¥, in C(Q) follows. Then, y, = 7 and, consequently, u = % holds. But (5.3) implies that @
is bang-bang and, hence, the weak convergence uj, — @ yields the strong convergence uy, — @ in L' (Q); see [9,
Proposition 4.1 and Lemma 4.2]. Then, (5.5) contradicts (5.3).

Let us prove the converse implication. First we observe that given u € U,q; we get with the mean value
theorem 9

Al =)+ G @54 0l = D) =) =

Now, using (2.2) with r = 2 we get
1
19u = ¥lle@) < Callu —allp2@) < Covup — tallu — all} g

12

Then, taking o = m, we obtain that (5.4) implies (5.3) with v = ~+'. O
2 o

From (2.3) we infer that (5.4) implies (5.2). Hence, the combination of sufficient second order conditions
plus (5.1) is a stronger assumption than (5.2).

Theorem 5.3. Let 4 be a local minimizer of (P) satisfying Assumption 5.1 and {uc}e<ce, a family of local

solutions of problems (P.) such that u. = @ in L=() as ¢ — 0. Then, there exist ¢ € (0,¢0) and a constant
C > 0 such that

e = @llry < C Il iz + Inellzey) Ve <, (5.6)
where § = Yg.

The proof of this theorem follows the steps of the one of Theorem 4.4 with Lemma 4.5 replaced by the
following:

Lemma 5.4. Let u satisfy the assumptions of Theorem 5.3. Then, there exists € > 0 such that
_ Y _ . _
T (@) =) > Dz allioyll = all oy Vot € Una with e~ Floqay < <, (5.7)
where v is given in Assumption 5.1.

Proof. We use (4.7) with p = 34, Assumption 5.1, and (2.3) to deduce for € > 0 small enough

7' (u)(u — 1) = /Q(<Pu+9)(u—@)dx
:/(‘Pu_SZ’_1/1a,ufa)(u—ﬂ)dw-l-/(@+g+¢a,u,ﬁ)(u—@)dx
Q Q

v 2 _ _ _ \2
> *E”Zﬁ,u—ﬁum(n) + [ (@) (u —a) + J" (@) (u — a)°]
_l‘

2

Y

|zau—all 2@ llv — @llpy @) + Vza,u—allL2@)llv — @l L1 (@),

which proves (5.7). O
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Proof of Theorem 5.3. We follow the proof of Theorem 4.4 replacing the estimate (4.9) by (5.7) to deduce
with (4.8) and (4.10)—(4.12) the inequality

0> JL(u) (e = @) = 2wl 2oy e =l
= Cillzuce—all ey (6l 2@ + Incllzace) )

Then, dividing this inequality by ||zu. u. —allL2() we get

_ 2Ch
Hue - U||L1(Q) < T(”fEHLz(Q) + ||77€||L2(Q)>7

which proves (5.6) with C = %

6 Some final state stability results

In this section we see how Assumption 5.1 allows us to prove Lipschitz stability for the optimal states for more
general perturbations of (P). Here, we consider simultaneous perturbations on the control and state variables
of (P):

(Pe) min Je(u) ::ALE(x,yi(x),u(x))dz,

UEULq

where 5 is the solution of (4.1) and for every € > 0

E
Le(z,y,u) = Lo(z,y) + n-y + gu + §u2.

As in Section 4, we assume that {£. }.~0 and {7 }.~0 are bounded families in L?(Q) satisfying that (&, 7.) —
(0,0) in L?(2)? as € — 0. Moreover, we suppose that [g. — gllLe=(@) — 0 as € — 0. Under these assumptions,
it is immediate to check that (P.) is an approximation of (P) in the sense of Theorems 4.2 and 4.3. Moreover,
we have the following Lipschitz stability property for the optimal states:

Theorem 6.1. Let 4 be a local minimizer of (P) satisfying Assumption 5.1 and {us}e<ce, a family of local
solutions of problems (P.) such that u. = @ in L>®(Q) as ¢ — 0. Then, there exist ¢ € (0,¢) and a constant
C > 0 such that

e, —vllz2@) < C<||€EHL2(Q) +Imellz2 ) + l9e — 9l () Jré‘) Ve <€, (6.1)
where § = yg.

Proof. Similarly to (4.8) we have

0= Jl(ue)(ue —u) = J'(ue)(ue —u) + Q(€U5 +9: — 9)(ue —u)dz

oL oL

+/ [7 x,yi yUe ) — 7Ty Yu,  Ue }zui,uafﬂdx

A (9y( L5 Ue) 8y( )
aL £ £ £

+ 87(:177 yusaut‘)(zug,ue—ﬁ - Z"aﬂts—ﬁ) dz + nazug,us—ﬁ dz.

o oy Q
Then, using (5.7) and (4.10)-(4.12) we obtain with (2.3)
. ) _
02 Jllzu. u—allz2@)lue = allLie) — <€||ua||Loo(Q) + [lge — glle(Q)) e — a1 (q)
gl _
= Cillzuce—all e (6 2@) + Inellzzc@)) = Szl e = @l

(e 4 llge — gllzc@) + IEellzacey + Inellzac) ) e — a1 ey,
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where C' = max{1, |ug|, |up|, C1C>}. Dividing the above expression by |u. — @l|11(q) and using (2.14) we infer

/

4C
(e llge — gl + el ey + Ine e )

[Yu. = Ull2@) <

Now, the rest follows as in the proof of Theorem 4.4. O
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