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A B S T R A C T   

While ensuring food security worldwide, irrigation is altering the water cycle and generating numerous envi
ronmental side effects. As detailed knowledge about the timing and the amounts of water used for irrigation over 
large areas is still lacking, remotely sensed soil moisture has proved potential to fill this gap. However, the spatial 
resolution and revisit time of current satellite products represent a major limitation to accurately estimating 
irrigation. This work aims to systematically quantify their impact on the retrieved irrigation information, hence 
assessing the value of satellite soil moisture for estimating irrigation timing and water amounts. 

In a real-world experiment, we modeled soil moisture using actual irrigation and meteorological data, ob
tained from farmers and weather stations, respectively. Modeled soil moisture was compared against various 
remotely sensed products differing in terms of spatio-temporal resolution to test the hypothesis that high- 
resolution observations can disclose the irrigation signal from individual fields while coarse-scale satellite 
products cannot. Then, in a synthetic experiment, we systematically investigated the effect of soil moisture 
spatial and temporal resolution on the accuracy of irrigation estimates. The analysis was further elaborated by 
considering different irrigation scenarios and by adding realistic amounts of random errors in the soil moisture 
time series. 

We show that coarse-scale remotely sensed soil moisture products achieve higher correlations with rainfed 
simulations, while high-resolution satellite observations agree significantly better with irrigated simulations, 
suggesting that high-resolution satellite soil moisture can inform on field-scale (~40 ha) irrigation. A thorough 
analysis of the synthetic dataset showed that satisfactory results, both in terms of detection (F-score > 0.8) and 
quantification (Pearson’s correlation > 0.8), are found for noise-free soil moisture observations either with a 
temporal sampling up to 3 days or if at least one-third of the pixel covers the irrigated field(s). However, irri
gation water amounts are systematically underestimated for temporal samplings of more than one day, and 
decrease proportionally to the spatial resolution, i.e., coarsening the pixel size leads to larger irrigation un
derestimations. Although lower spatial and temporal resolutions decrease the detection and quantification ac
curacies (e.g., R between 0.6 and 1 depending on the irrigation rate and spatio-temporal resolution), random 
errors in the soil moisture time series have a stronger negative impact (Pearson R always smaller than 0.85). As 
expected, better performances are found for higher irrigation rates, i.e. when more water is supplied during an 
irrigation event. Despite the potentially large underestimations, our results suggest that high-resolution satellite 
soil moisture has the potential to track and quantify irrigation, especially over regions where large volumes of 
irrigation water are applied to the fields, and given that low errors affect the soil moisture observations.   
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1. Introduction 

Irrigation represents the single largest human intervention in the 
water cycle by accounting for around 70 % of freshwater withdrawals 
worldwide (Campbell et al., 2017; Dorigo et al., 2021). Currently, irri
gated agriculture ensures food security worldwide by providing 34 % of 
the agricultural production (Foley et al., 2011; Siebert and Döll, 2010) 
and an increase in irrigation demand is projected due to the concurrent 
effect of global warming, change of precipitation patterns, and rising 
living standards of a growing population (Eekhout et al., 2018; Kummu 
et al., 2016; Rockström et al., 2012; Vorosmarty, 2000). However, this 
extensive use of water is leading to several environmental problems, 
such as groundwater depletion (Famiglietti, 2014; Wada et al., 2012), 
soil salinization (Amezketa, 2006), and nitrogen emissions (Deng et al., 
2018). Hydrological models simulating the water cycle and the dynamic 
distribution of terrestrial water fluxes and storages are generally used for 
informing and driving sustainable management of agricultural water 
resources. However, despite recent advances in integrating human ac
tivities, e.g., irrigation, in such models, the anthropogenic impact on the 
water cycle remains poorly represented (Modanesi et al., 2022; Puy 
et al., 2022). Indeed, the vast majority of irrigation water abstractions is 
not monitored (Brocca et al., 2018; Lopez et al., 2020), hence the spatial 
and temporal distribution of irrigated fields, and even more notably, the 
timing of individual irrigation events and the associated amount of 
water allotted at the field scale, remain largely unknown (Dorigo et al., 
2021). 

Earth observation satellites provide a unique and convenient means 
to monitor key processes and state variables related to irrigation. 
Remote sensing observations from multispectral sensors have been 
assimilated into water and energy balance models to estimate evapo
transpiration (Anderson, 1997; Bastiaanssen et al., 1998; Corbari et al., 
2020; Fisher et al., 2017; McCabe et al., 2019, 2016; Miralles et al., 
2016). Through additional information, such as rainfall or evapotrans
piration modeled without any irrigation input, it is possible to subse
quently divide the total evapotranspiration into the rainfed and irrigated 
portions (Droogers et al., 2010; Peña-Arancibia et al., 2016; Romaguera 
et al., 2010; van Dijk et al., 2018; van Eekelen et al., 2015). One of the 
main benefits of optical and infrared sensors is their high spatial reso
lution (<1 km) and existence of long-term records (>20 years). How
ever, they are affected by cloud cover, which might limit the number of 
valid observations over certain periods and some regions of the world 
(Massari et al., 2021). Nonetheless, multispectral remote sensing has 
been widely adopted to map irrigated areas at national-, continental-, 
and global-scale (Ambika et al., 2016; Coleman et al., 2020; Deines 
et al., 2019; Meier et al., 2018; Ozdogan and Gutman, 2008; Thenkabail 
et al., 2009). In fact, optical and infrared sensors can detect the 
improved vegetation vigor and health induced by irrigation compared to 
non-irrigated vegetation, while satellite thermal infrared observations 
and land surface models can be used to pinpoint regions where 
anthropogenic activities have a considerable impact on latent heat 
fluxes (Hain et al., 2015). 

In recent years, soil moisture products derived from microwave 
sensors on board satellites have also been used to estimate irrigation 
water amounts. Compared to multispectral sensors, microwave obser
vations have the advantage of being mostly insensitive to weather 
conditions. Various remotely sensed soil moisture products can effec
tively detect the irrigation timing at the field- and regional- scale (Bazzi 
et al., 2020; Lawston et al., 2017; Le Page et al., 2020; Zappa et al., 
2021). The estimation of irrigation water amounts based on remotely 
sensed soil moisture has been carried out either by adapting the 
SM2RAIN algorithm (Brocca et al., 2014) or by quantifying the differ
ence between satellite and modeled soil moisture (Zaussinger et al., 
2019). The first approach has been tested initially over nine pilot sites 
throughout the United States (US), Europe, Africa, and Australia (Brocca 
et al., 2018) and has been applied to other regions (Dari et al., 2020; 
Jalilvand et al., 2019; Zhang et al., 2018). The second approach, based 

on the assumption that modeled soil moisture does not account for 
artificial water supply while satellite observations incorporate irrigation 
signals, has been tested over the contiguous US (CONUS) (Zaussinger 
et al., 2019) and subsequently expanded globally (Zohaib and Choi, 
2020). The same hypothesis has been extensively employed also for 
discriminating irrigated and non-irrigated areas (Escorihuela and 
Quintana-Seguí, 2016; Kumar et al., 2015; Qiu et al., 2016; Zhang et al., 
2018; Zohaib et al., 2019). Using high spatial resolution satellite soil 
moisture observations, Zappa et al. (2021) proposed a methodology for 
detecting individual irrigation events and estimating irrigation water 
amounts based on the different soil moisture dynamics of an irrigated 
field compared to its surrounding area. 

Notwithstanding the promising results obtained by microwave- 
derived soil moisture for detecting individual events and quantifying 
irrigation water amounts, satellite products are characterized by a trade- 
off between spatial and temporal resolution. Hence, detailed knowledge 
of irrigation features is often constrained by the coarse scale of most soil 
moisture products (10 to 40 km). Typically, only a limited number of 
irrigated fields is present within a coarse resolution pixel, which, mixed 
with non-irrigated fields, water bodies, urban areas, and other artifacts 
dampens the irrigation signal (Brocca et al., 2018; Zaussinger et al., 
2019). Conversely, (quasi-) field-scale soil moisture products, e.g., 
derived from Sentinel-1 (Bauer-Marschallinger et al., 2019; El Hajj et al., 
2017), have longer revisit time and irrigation-driven wetting events 
might not be captured (Filippucci et al., 2020; Zappa et al., 2021). 
Downscaling coarse-scale products could be further explored (Alemo
hammad et al., 2018; Malbéteau et al., 2018; Peng et al., 2017; Sabaghy 
et al., 2018; Zappa et al., 2019) to obtain soil moisture estimates at 
appropriate spatio-temporal resolution for irrigation monitoring. 

A better knowledge of irrigation practices, i.e., where, when and how 
much water is employed, can potentially provide valuable insights and 
actionable data to water managers, as well as offer the hydrological 
modelling community more realistic representations of human decisions 
(Massari et al., 2021). In this work, we aim to address the following 
questions: i) can current satellite soil moisture products observe field- 
scale irrigation? and ii) how accurate is the estimated irrigation infor
mation? To answer such questions, we tested the hypothesis that current 
high-resolution satellite soil moisture products can disclose the irriga
tion signal from individual fields using ground reference irrigation data. 
Furthermore, we quantitatively assessed not only the effect of spatial 
and temporal resolution, but also the impact of different irrigation rates 
and the presence of noise in the soil moisture data, on the accuracy of 
estimated irrigation timing and water amounts. 

2. Data & methods 

2.1. Test site 

Four center-pivot fields located in Germany (51.92◦ N, 13.07◦ E) 
were selected as pilot sites because of the availability of irrigation data 
(timing and volumes) for the period 2016–2019 (Fig. 1). According to 
the Koeppen-Geiger classification (Rubel et al., 2017), the site is char
acterized by a temperate oceanic climate (Cfb class) with mean annual 
temperature and precipitation of approximately 9 ◦C and 550 mm, 
respectively. Soil texture is classified as sandy loam (Ballabio et al., 
2016). The mean field size is 40 ha, and the amount of water distributed 
during each irrigation event was 15 mm. Cultivated crops were mostly 
potato, winter wheat, and maize. 

2.2. Real-world experiment 

Satellite products were compared against modeled soil moisture to 
test the hypothesis that high-resolution satellite observations can 
disclose the irrigation signal coming from individual fields while coarse- 
scale products cannot. We selected three satellite soil moisture products 
characterized by different spatio-temporal resolutions, observation 
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frequencies, and retrieval algorithms (Table 2). Specifically, we used the 
Copernicus Global Land Service surface soil moisture product (CGLS- 
SSM) obtained from Sentinel-1C-band SAR backscatter with the TU 
Wien change detection method, the ESA CCI combined soil moisture 
product (CCI version v05.2), which is a merged product of various active 
and passive microwave soil moisture products, and the SMAP L3 product 
obtained from an L-band radiometer using the single channel algorithm 
(SCA). Satellite soil moisture time series were extracted from the pixels 
whose center was closest to each test field. The irrigated fraction within 
the selected satellite pixels ranges between 20 % and 60 % for the CGLS- 
SSM, while it is considerably lower than 1 % for both CCI and SMAP 
products. The large contrast in irrigated fractions between CGLS-SSM 
and CCI/SMAP stems from the different spatial resolutions of the 
products (Table 1). 

Soil moisture for the top 10 cm of the soil was simulated over the test 
fields using the semi-analytical soil water balance model (SWBM) 
developed by Brocca et al. (2008; 2014). The SWBM model requires as 
input data only meteorological variables that are routinely measured, i. 
e., rainfall and air temperature, while model parameters are derived 
from soil texture information (Brocca et al., 2016). Soil moisture was 
simulated both with and without irrigation input, hence mimicking the 
actual status of the irrigated fields as well as rainfed conditions. The 
model proved to correctly represent soil moisture across different test 
sites over Europe with correlations higher than 0.8 and root mean square 
differences lower than 0.025 m3 m− 3 and has been used in numerous 
studies as reference dataset (Bauer-Marschallinger et al., 2019, 2018; 
Brocca et al., 2018, 2014, 2011; Jalilvand et al., 2019; Melone et al., 
2008; Morbidelli et al., 2011). Meteorological measurements at the test 
site were obtained from a nearby weather station, while irrigation data, 
i.e., timing and amount of water supplied, was provided by farmers. The 
comparison between satellite and model data was carried out on a yearly 
basis, after considering the model timestamps closest to satellite acqui
sitions and subsequently scaling satellite observations to match the 
mean and standard deviation of modeled soil moisture. 

2.3. Synthetic experiment 

2.3.1. Model simulations 
The SWBM was used to further investigate the effect of different 

variables on the accuracy of the retrieved irrigation information, 
namely: irrigation water input, spatial and temporal resolution (indi
vidually and combined), and noise. We considered scenarios with net 
irrigation rates of 5, 15, and 25 mm per event to simulate different 
irrigation systems and farmers’ decisions on how much water to supply 
to the field (Fig. 2). It should be underlined that the entire amount of 
water is supposed to enter the soil, hence water losses from canopy 
interception and efficiency of the irrigation system are implicitly 
accounted for. Therefore, only a portion of the entire amount of irriga
tion water abducted from water sources can be retrieved, while a more 
rigorous estimate of total irrigation water, i.e., including losses would 
require many additional information such as the irrigation system and 
its maintenance status, the meteorological conditions at the time of 
irrigation, the type of crop and its phenological status. High irrigation 
rates can be considered representative of sprinkler and gravity systems, 
which generally cause a considerable wetting of the topsoil, while low 
irrigation rates portray drip irrigation systems (Massari et al., 2021). 

Soil moisture dynamics mimicking a rainfed scenario were simulated 
without any irrigation input, while forcing the model with irrigation 
data provided time series representative of irrigated fields. The latter 
represents a scenario in which the entire satellite pixel is covered with 
irrigated land, i.e., the irrigated fraction of the satellite pixel would be 
100 %. It should be noted that considering the irrigated fraction allows 
us to ideally cover all possible combinations of pixel spatial resolution 
and irrigated area covered by the pixel. For instance, an irrigated area of 
50 % might exemplify a 1 km pixel encompassing an irrigated field of 50 
ha, as well as a 0.5 m pixel (obtained from, e.g., unmanned aerial ve
hicles) and the small-scale effects of irrigation, e.g., intra-row variability 
in a drip irrigation system (Reyes-Cabrera et al., 2016). However, given 
the constraint in terms of spatial resolution posed by satellite soil 
moisture products, the focus of this work is given to average field-scale 
dynamics rather than to within-field variability. Also, because of the 
minor effect of drip and micro- irrigation systems on field-scale surface 

Fig. 1. Location of the test fields in Germany and monthly meteorological parameters (cumulative precipitation and mean air temperature) recorded by a weather 
station in close proximity. 

Table 1 
Specifications of the satellite soil moisture products that have been compared to modeled soil moisture.  

Name Spatial sampling Temporal resolution Reference Source 

CGLS-SSM 1 km 1.5–4 days (over Europe) Bauer-Marschallinger et al., 2019 https://land.copernicus.eu/global/products/ssm 
CCI 0.25◦ 1 day Dorigo et al., 2017 https://www.esa-soilmoisture-cci.org/ 
SMAP 36 km 1–3 days Entekhabi et al., 2010 https://n5eil01u.ecs.nsidc.org/SMAP/  
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soil moisture, satellite observations are better suited for monitoring 
gravity and sprinkler irrigation systems (Zappa et al., 2021; Zaussinger 
et al., 2019). The simulated soil moisture time series have hourly reso
lution and are noise-free, representing an ideal scenario. Hence, we 
investigated the effect of a longer revisit time by downsampling hourly 
observations to 3, 6, 12, 24, 48, 72, and 144 h. Similarly, we mimicked 
different satellite pixel sizes by a weighted average of the non-irrigated 
and the irrigated soil moisture time series so that the latter’s contribu
tion, i.e., the irrigated fraction, would increase from 1 % to 100 %. 
Finally, we explored the combined effect of spatio-temporal resolutions 
representing current and upcoming high-resolution satellite missions by 
setting up four custom combinations. In particular, the temporal sam
pling was either daily (1d) or 3-daily (3d), while the irrigated fraction 
was either 30 % or 70 %. To obtain more realistic satellite soil moisture 
observations, we added Gaussian noise with a standard deviation of 
0.04 m3/m− 3(− |-), which is the target uncertainty of various missions 
(Gruber et al., 2020), to the irrigated soil moisture time series (Table 2). 
It is noteworthy that only the random component of the total error 
characterizing satellite soil moisture observations is taken into account. 
Systematic errors due to, e.g., the retrieval algorithm, and other auto- 
correlated errors driven by, e.g., the temporally varying effect of vege
tation on the observed signal, are not considered as they are product- 
specific and difficult to model rigorously (Dong and Crow, 2017; 
Zwieback et al., 2013). 

Overall, 72 combinations encompassing various spatio-temporal 
resolutions, irrigation scenarios, and random errors were tested. Note 
that whenever random noise was added to soil moisture time series, the 
analysis was repeated 100 times to obtain robust results. 

2.3.2. Irrigation detection and quantification 
For the detection of individual irrigation events and the subsequent 

quantification of net irrigation water amounts, we employed a modified 
version of the approach presented in Zappa et al. (2021). This method 
was preferred over alternative approaches because its reliability is not 
affected by the quality of ancillary data, such as precipitation in the 
SM2RAIN approach (Brocca et al., 2018) or land surface models (LSM) 
in the approach of Zaussinger et al. (2019). Furthermore, it is specif
ically tailored for high-resolution (satellite) soil moisture. The under
lying principle of this approach is that the soil moisture temporal 
behavior of an irrigated field is considerably different compared to its 
surrounding area, i.e., the regional scale, under the assumption that over 
a relatively large area most fields are not irrigated simultaneously 
(Zappa et al., 2021). It should be noted that in the regional soil moisture 
are included only agricultural fields with similar vegetation conditions 
as the irrigated field of interest, thus reducing the negative effect of 
landscape fragmentation. Hence, soil moisture temporal dynamics of an 
irrigated field should be distinguishable from the regional soil moisture 
evolution. Based on such a difference, it is possible to determine firstly 
individual irrigation events and subsequently estimate the amount of 
irrigation water applied. Here, the regional soil moisture was replaced 
by model simulations obtained without irrigation (w/o irr), while soil 
moisture of irrigated fields consisted of model simulations forced with 
irrigation (w/ irr). A soil moisture increase occurring at timestamp t was 
flagged as an irrigation event if two conditions were satisfied: i) soil 
moisture of the irrigated field increased between t-1 and t (Eq. (1)), and 
ii) the ratio between the relative soil moisture increase of the irrigated 
field and the regional variation (which could be either an increase or a 
decrease) was larger than a predefined threshold (Eq. (2)). Zappa et al. 
(2021) investigated the optimal threshold value for irrigation detection 

Fig. 2. Soil moisture time series simulated without irrigation (w/o irr) and with different irrigation forcing (w/ irr), i.e., 5, 15, and 25 mm/event, for a center pivot 
field in Germany. Time series of precipitation and irrigation input are also shown. 

Table 2 
Summary of the simulated soil moisture data tested in the synthetic experiment.  

Irrigation input (mm/event) Temporal sampling (Hours) Irrigated fraction (%) Random error (m3 m¡3) 

5, 15, 25 1, 3, 6, 12, 24, 48, 72, 144 100 0 
5, 15, 25 1 100, 90, 70, 50, 30, 10, 5, 1 0 
5, 15, 25 24 70 0, 0.04 
5, 15, 25 24 30 0, 0.04 
5, 15, 25 72 70 0, 0.04 
5, 15, 25 72 30 0, 0.04  
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and found that a threshold of 1.01 provided the best overall accuracy. 

SMw/ irr
t − SMw/ irr

t− 1 > 0 (1)  

ΔSMw/irr
t /SMw/irr

t− 1 > 1.01⋅ΔSMw/oirr
t /SMw/oirr

t− 1 (2)  

where the soil moisture difference at time t (ΔSMt), is obtained as follow: 

ΔSMt = SMt − SMt− 1 (3) 

We then considered the soil water balance equations of an irrigated 
field (Eq. (4)) and of its surrounding area (Eq. (5)): 

ΔSMw/irr
t = It +Pt − ETt − srt − gt (4)  

ΔSMw/oirr
t = Pt − ETt − srt − gt (5) 

assuming that the irrigation signal of individual fields is negligible in 
the regional soil moisture dynamics (Eq. (5)). It represents the net irri
gation, Pt is precipitation, ETt is the evapotranspiration, srt and gt 
describe surface runoff and drainage, respectively. Hence, the net 
amount of water employed for an individual irrigation event, It (Eq. (6)), 
is obtained by subtracting Eq. (5) from Eq. (4): 

It = ΔSMw/irr
t − ΔSMw/oirr

t (6) 

Two important aspects should be noted here. First, Eq. (6) implies 
that the outflow fluxes (ETt, srt and gt) are identical between irrigated 
and non-irrigated fields. This is a simplified representation of real-world 
conditions where these fluxes are affected, to some degree, by the 
amount of water in the soil, and hence by irrigation (Brombacher et al., 
2022). Second, the present method only accounts for the irrigation water 
entering the soil, i.e., the net irrigation, while water losses due to 
leakage, wind drift and canopy interception are not considered (Zappa 
et al., 2021). 

2.3.3. Accuracy assessment 
Correctly and wrongly detected events, i.e., true positive (TP) and 

false positive (FP), were identified. Then, the number of undetected 
irrigation events, i.e., false negatives (FN), was obtained as the differ
ence between the total number of actual irrigation events and TP. The 
detection accuracy was assessed considering precision, recall, and F- 
score. Precision is the ratio between TP and all detected events (TP +
FP), while recall is the ratio between TP and all the irrigation events 
occurring in a field (TP + FN). High precision scores indicate a low 
probability of false irrigation detection, while high recall values denote 
a low probability of missing actual irrigation events. For a balanced 
representation of precision and recall, we also considered the F-score, 
which is the harmonic mean of precision and recall. The quantification 
accuracy was evaluated in terms of Pearson’s correlation (R), normal
ized root mean square deviation (nRMSD), and normalized bias (nBIAS) 
between the reference and estimated yearly irrigation water amounts. 

nRMSD (nBIAS) was calculated as the ratio between RMSD (bias) and 
the average yearly irrigation. As both RMSD and bias are proportional to 
the amplitude of the irrigation forcing, a direct comparison would not be 
possible. Hence, normalized metrics allow us to compare and simplify 
the interpretation of results obtained from simulations forced with 
different irrigation inputs. 

3. Results and discussion 

3.1. Real-world experiment 

Here, we assess the consistency between satellite soil moisture 
products and model simulations, the latter forced with (w/ irr) and 
without irrigation (w/o irr) (Fig. 3). Note that actual irrigation data 
provided by farmers were used as input to the model. It should be 
emphasized that inherent differences characterize satellite-derived and 
modeled soil moisture. Model simulations are affected by the model 
structure, their parameterization, and the quality and representativeness 
of the forcing data, while remotely sensed products are characterized by 
errors and uncertainties due to, e.g., the radiometric accuracy of the 
sensor and the retrieval algorithm used. Furthermore, satellite obser
vations not only contain the irrigation signal from irrigated fields, but 
also carry information from, e.g., non-irrigated fields, forests, urban 
areas and water bodies. We found that coarse resolution soil moisture 
products, i.e., CCI and SMAP, have higher correlations with rainfed 
simulations. This was expected as the study region is not extensively 
irrigated (Wriedt et al., 2009), hence large-scale soil moisture dynamics 
have more resemblance to natural conditions. On the other hand, the 
CGLS-SSM product shows considerably better agreement with simula
tions including irrigation than with those without irrigation (median 
Pearson’s R equal to 0.47 and 0.21, respectively). These promising re
sults are obtained in a continental climate, generally characterized by 
moderate, but heterogeneously distributed precipitation during the 
growing season (Fig. 1). Hence, better performances are to be expected 
in arid and semi-arid regions, where the soil moisture difference be
tween irrigated fields and the non-irrigated surrounding area is even 
larger. 

3.2. Synthetic experiment 

3.2.1. Impact of temporal and spatial resolution 
Fig. 4 shows soil moisture simulated with and without irrigation, 

together with the actual and estimated irrigation water amounts. 
Temporally and spatially sub-sampled soil moisture time series are also 
displayed. Soil moisture observations with 24 h sampling do not show 
significant differences compared to the hourly dynamics, while with 72 
h sampling some irrigation-induced soil moisture increases are only 
partially captured. These findings suggest that drainage to deeper soil 
layers and evapotranspiration losses become non-negligible approxi
mately for sampling intervals longer than one day. Soil moisture dy
namics for irrigated fractions smaller than 100 % increasingly resemble 
the rainfed soil moisture time series. Individual events are correctly 
captured even if approximately 30 % of the pixel is irrigated. 

A quantitative assessment of the detection accuracy achievable with 
different temporal samplings and irrigated fractions is shown in Fig. 5. 
The detected irrigation events correspond to actual irrigation, i.e., the 
precision equals 1, with temporal samplings shorter than 144 h or with 
irrigated fractions>10 %. However, the number of undetected irrigation 
events increases, i.e., recall scores worsen, with 24 h revisit time or 
irrigated fractions smaller than 70 %. Furthermore, the number of un
detected events is inversely proportional to the irrigation water amount, 
i.e., lower irrigation rates cause a higher proportion of undetected irri
gation events. For instance, with 48 h (144 h) sampling, only 84 % (42 
%) of events are detected when irrigation input is 5 mm/event, 
compared to 94 % (82 %) when irrigation input is 25 mm/event. A low 
temporal resolution combined with low irrigation rates leads to a high 

Fig. 3. Pearson’s correlation between high-resolution (CGLS-SSM) and coarse- 
resolution (CCI and SMAP) remotely sensed soil moisture products against soil 
moisture modeled with (blue boxes) and without (orange boxes) irrigation. 
Results refer to the four test fields over the investigated period (2016–2019). 
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Fig. 4. Soil moisture time series simulated with 15 mm/event irrigation forcing, together with the retrieved irrigation water amounts. Temporally (24 and 72 h, red) 
and spatially (irrigated fraction of 50 % and 10 %, blue) sub-sampled soil moisture time series are also shown. 

Fig. 5. Detection accuracy expressed as precision, recall, and F-score depending on temporal sampling (top) and irrigated fraction (bottom) of simulated soil 
moisture. Results are shown for the three irrigation scenarios investigated. 
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number of missed events. Patterns of the F-score, which provides an 
overall measure of the detection skill by including false positives and 
undetected events, indicate good performances for temporal samplings 
up to 48–72 h. Concerning the irrigated fraction, all events are correctly 
discriminated (both precision and recall equal 1) when at least half of 
the pixel is irrigated. When the irrigated fraction lies between 50 % and 
10 %, the irrigation rate plays a decisive role in the accuracy scores, 
especially the recall. For example, with a 10 % irrigated fraction, 72 % of 
the events are still detected when the irrigation input is 25 mm/event, 
but recall drops to 19 % when the irrigation rate is 15 mm/event. 
Analogous results can be observed for the F-score, suggesting that a 
distinct irrigation-induced signal can be found if at least 30 % of the 
satellite pixel covers the irrigated field. However, when the irrigated 
fraction is lower than 10 %, it becomes almost impossible to discrimi
nate individual irrigation events (precision = 0). 

Our results corroborate the conclusion reported by various authors 
that the temporal sampling of most coarse-scale soil moisture products 
(up to 2–3 days) is suitable for irrigation detection (Brocca et al., 2018; 
Filippucci et al., 2020; Lawston et al., 2017; Zaussinger et al., 2019). 
However, coarse resolution products can provide information repre
sentative of regional-scale irrigation patterns only if the amount of 
irrigation water supplied to the soil is sufficient to induce apparent ef
fects on soil moisture, i.e., irrigation is applied extensively within the 
satellite pixel. On the other hand, field-scale irrigation events cannot be 
detected with coarse resolution products, as the irrigated fraction of a 
single field would be significantly lower than 1 %. 

Soil moisture products with sub-kilometric spatial resolution, such as 
those derived from Sentinel-1 (Bauer-Marschallinger et al., 2019; El Hajj 
et al., 2017), have the potential to provide accurate information about 
irrigation timing at (quasi) field-scale (Bazzi et al., 2020; Le Page et al., 
2020; Zappa et al., 2021). Despite the adequate temporal resolution 
ensured by the Sentinel-1 mission (1.5–4 days over Europe), low 
detection accuracy could be obtained because of low irrigation rates. If 
small amounts of water are supplied to the soil, resulting in a limited 
impact on the surface water content, satellite observations with high 
temporal resolution are required to detect irrigation. Furthermore, it is 
important to highlight that even high spatial resolution products might 
fail to track irrigation in areas where small fields dominate (e.g., < 5 ha) 
because of the resulting low irrigated fractions. For instance, with an 
irrigated field of 5 ha and a satellite pixel with 500 m resolution, the 
irrigated fraction would be 20 %, hence strongly limiting the detect
ability of irrigation. 

Scatter plots between yearly cumulative reference and estimated 
irrigation based on the 15 mm/event irrigation scenario are shown in 
Fig. 6 (similar patterns are found for the 5 and 25 mm/event scenarios). 
Included are results obtained from the optimal scenario, i.e., soil mois
ture with hourly resolution and 100 % irrigated fraction, as well as from 
suboptimal observations, i.e., either temporally sub-sampled or char
acterized by lower irrigated fractions. We find that with a temporal 
resolution of 72 h irrigation is largely underestimated, while no 

considerable differences are observed between hourly and daily sam
pling. When considering different irrigated fractions, the retrieved irri
gation decreases proportionally to the fractional cover of the irrigated 
area within a pixel. Interestingly, irrigation is underestimated also in the 
ideal scenario with hourly observations and fully irrigated pixels. This 
finding stems from the assumption that evapotranspiration and drainage 
are identical between irrigated and non-irrigated fields (Eq. (6)). How
ever, both fluxes are likely lower over non-irrigated fields, which are 
generally drier, compared to irrigated fields (Dari, 2021). Hence, esti
mated irrigation water amounts are expected to be affected by negative 
biases because differences between these fluxes are not accounted for. 

A strong linear relationship (Pearson’s R > 0.85) is found between 
estimated and reference irrigation amounts, even with a temporal 
sampling of 72 h and regardless of the irrigation rate (Fig. 7). With a 
temporal resolution of 144 h, however, the correlation drops. Extremely 
low values for both nRMSD and nBIAS are found for temporal samplings 
from hourly to daily, indicating low errors and low underestimations in 
the retrieved irrigation, respectively. With revisit times longer than one 
day, nRMSD and nBIAS deteriorate. In particular, temporal samplings of 
72 h (or longer) together with low irrigation rates (5 mm/event) 
strongly affect the nBIAS, highlighting significant underestimations of 
the irrigation water amounts. Both nRMSD and nBIAS worsen propor
tionally to decreasing the irrigated fraction from the optimal scenario, i. 
e., 100 %, while a good linear correlation between reference and esti
mated irrigation is also found for irrigated fractions as small as 10 %. 
This finding suggests that the quantification of irrigation water amounts 
is strongly limited if only a small portion of a satellite pixel (<10 %) 
contains the irrigation signal. 

Overall, soil moisture observations characterized either by temporal 
samplings longer than 24 h or irrigated fractions smaller than 50 % lead 
to sub-optimal irrigation estimates. Most notably, the amount of the 
retrieved irrigation is consistently lower than the reference irrigation 
input (nBIAS < 0). It should be noted that the estimation of irrigation 
water amounts is based on the assumption that the various terms of the 
soil water balance equations are identical at the local and regional scales 
(see Eqs. (4) and (5)). Despite being a pragmatic assumption simplifying 
the irrigation retrieval, it can lead to underestimations. In fact, evapo
transpiration and drainage are strongly related to the amount of water in 
the soil. Hence, irrigated fields are likely characterized by higher 
evapotranspiration and drainage losses compared to the regional dy
namics, i.e., rainfed simulations, and these differences are not included 
in the final irrigation estimates. Furthermore, our findings indicate that 
the retrieved irrigation water amounts are directly related to the irri
gated fraction, i.e., the ratio between the irrigated area within a pixel 
and the pixel area. Hence, by taking into account spatially explicit maps 
of irrigated fields (Bazzi et al., 2019; Bousbih et al., 2018; Deines et al., 
2019; Gao et al., 2018), systematic irrigation underestimations could be 
corrected for. 

Fig. 6. Comparison between reference and estimated annual irrigation based on different temporal samplings (left) and fractional irrigation coverages (right). 
Results are shown for the 15 mm/event irrigation scenario. 
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3.2.2. Combined impact of spatio-temporal resolution and random errors 
Fig. 8 shows soil moisture time series representative of CGLS-SSM- 

like observational capabilities, i.e., daily (1d) or 3-daily (3d) revisit 
time and irrigated fraction of 30 % or 70 %. The Sentinel-1 revisit time 
depends on the acquisition geometry and is location-specific (Bauer- 
Marschallinger et al., 2019), while the irrigated fraction is subject to the 
size of the irrigated field(s) covered by a single CGLS-SSM pixel 
(approximately 80 ha). Hence, an irrigated fraction of 30 % would result 
from a CGLS-SSM pixel observing an irrigated field of 25 ha, while a 70 
% irrigated fraction would translate in, e.g., a CGLS-SSM pixel covering 

a center pivot field (approximately 55 ha). Note that the soil moisture 
time series in Fig. 8 do not contain random noise. Only combinations 
with daily temporal sampling capture the actual soil moisture drying 
and wetting dynamics, allowing the detection of individual irrigation 
events. Overall, the concomitant effect of lower spatio-temporal reso
lution leads to a reduced ability to detect and retrieve irrigation 
compared to the individual impact of either sub-optimal temporal 
sampling or irrigated fraction. 

Fig. 9 shows the detection skill obtained by the four custom combi
nations of Fig. 8, without and with the presence of Gaussian noise in the 

Fig. 7. Quantification accuracy expressed as Pearson’s correlation (R), normalized root mean square deviation (nRMSD), and normalized bias (nBIAS) depending on 
temporal sampling (top) and irrigation fraction (bottom). Results are shown for the three irrigation scenarios investigated. 

Fig. 8. Soil moisture time series, and corresponding estimated irrigation, based on spatio-temporal resolutions representative of current high-resolution satellite 
products (1 day – 30 %, 1 day – 70 %, 3 days – 30 %, 3 days – 70 %). Results refer to the 15 mm/event irrigation scenario. 
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soil moisture time series. With noise-free data, high precision is found 
regardless of the spatio-temporal combination and irrigation scenario 
considered. On the other hand, except for the 1d-70 % combination, the 
recall is lower than 50 %, i.e., more than half of the irrigation events are 
not detected, when the irrigation is 5 mm/event. With higher irrigation 
rates, the number of undetected events decreases considerably also for 

the other combinations. After the addition of random noise, the detec
tion accuracy deteriorates. Interestingly, we find that the recall increases 
when considering noisy data and low irrigation rates, i.e., 5 mm/event. 
Such an improvement, however, is an artifact arising from the low 
detectability of irrigation when small amounts of water are added to the 
soil. The presence of noise leads to an over-detection of irrigation events, 

Fig. 9. Detection accuracy obtained with spatio-temporal resolutions representative of current high-resolution satellite products (1 day – 30 %, 1 day – 70 %, 3 days 
– 30 %, 3 days – 70 %) in the ideal scenario with noise-free observations and after the injection of random errors. The dotted lines are included to highlight the 
difference between noise-free and noisy observations. 

Fig. 10. Quantification accuracy based on spatio-temporal resolutions representative of current high-resolution satellite products (1 day – 30 %, 1 day – 70 %, 3 days 
– 30 %, 3 days – 70 %) with noise-free soil moisture observations and after the injection of random noise. 
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resulting on the one hand in a higher recall, i.e., less undetected events, 
but also lower precision, i.e., more false positive irrigation events. 
Overall, our results suggest that the presence of noise is particularly 
detrimental for the detection of irrigation events characterized by 
medium-to-high irrigation rates, i.e., in those circumstances where the 
soil moisture differences between irrigated and non-irrigated fields lead 
to distinct signals. 

Fig. 10 summarizes the quantification accuracy achieved by the four 
custom spatio-temporal combinations. In the ideal scenario with noise- 
free soil moisture observations, a strong linear relationship (Pearson’s 
R > 0.8) is found between reference and estimated irrigation regardless 
of the combination considered, when the irrigation rate is 15 mm/event 
or higher. For smaller irrigation volumes, i.e., 5 mm/event, only com
binations with daily sampling obtain high R. In terms of nRMSD and 
nBIAS, the 1d-70 % combination performs considerably better (i.e., 
nRMSD and nBIAS closer to 0) than all the other combinations. As ex
pected, all the metrics improve with increasing the irrigation rate. The 
presence of random noise, on the other hand, reduces the differences in 
quantification accuracy achieved by the four combinations, especially in 
terms of Pearson’s R and nRMSD. A positive nBIAS is found, i.e., irri
gation is overestimated, when the irrigation rate is 5 mm/event and the 
temporal sampling is daily. In these cases, a high number of false posi
tive events, i.e., low precision, were observed (see Fig. 9), leading to 
largely inflated irrigation estimates. It is noteworthy that nBIAS im
proves, i.e., becomes closer to 0, also for other scenarios (1d-30 % and 
3d-30 %, regardless of irrigation rate). Again, these results are an artifact 
arising from the stronger contrast between the non-irrigated and the 
noisy irrigated time series. 

Notwithstanding differences in the retrieval approach and test sites, 
our results agree with the conclusions of Brocca et al. (2018). The au
thors reported correlation values ranging between 0.78 and 0.95 (0.90 
and 0.97), depending on climate (semi-arid versus semi-humid), with an 
error level of 0.01 m3/m− 3(− |-) and considering a yearly irrigation of 
300 mm (600 mm). However, the performances degraded after adding 
random errors to the soil moisture time series. 

4. Conclusions 

The overall objective of this study was to systematically investigate 
the impact of soil moisture spatio-temporal resolution on the detection 
of individual irrigation events and the subsequent quantification of 
irrigation water amounts. First, satellite soil moisture products were 
compared to soil moisture simulations obtained using actual irrigation 
and meteorological data. Then, in a synthetic experiment we thoroughly 
investigated the effect of soil moisture spatial and temporal resolution, 
irrigation rate, and presence of noise in the observations, on the accu
racy of irrigation estimates. Despite our analysis being limited to a single 
test site, results obtained here can be generalized to some degree. In fact, 
we implicitly accounted for the effects of irrigation system, crop type 
and phenological stage by considering the net irrigation water amounts 
driving soil moisture dynamics. Also, because of the strong inter-annual 
climatic variability observed among the period under investigation 
(2016–2019), our results can be extrapolated to regions characterized by 
various climates. However, other factors such as individual decisions 
taken by farmers on, e.g., how often and how long to irrigate, could only 
be partially simulated as they are highly specific. 

The main conclusions that can be drawn based on our results are the 
following:  

● High-resolution satellite soil moisture (the Copernicus Global Land 
Service Surface Soil Moisture product, CGLS-SSM) agrees better with 
irrigated soil moisture compared to rainfed simulations, suggesting 
that CGLS-SSM can potentially be used to monitor irrigation.  

● Satisfactory detection skill is found with a temporal resolution of 3 
days at most, or if at least one-third of the pixel covers the irrigated 

field(s), given that soil moisture observations do not contain random 
errors.  

● The irrigation water amounts are systematically underestimated for 
temporal samplings longer than one day, and decrease proportion
ally to the irrigated fraction of the pixel, i.e., coarser spatial resolu
tions lead to larger underestimations.  

● The combined effect of lower spatio-temporal resolutions generally 
causes a decrease in the irrigation retrieval accuracy.  

● The detection and quantification accuracies are severely impacted by 
random noise in the soil moisture time series.  

● Performances in the irrigation retrieval are positively related to the 
amount of water added to the soil, as higher irrigation rates generate 
a more distinct response in the soil moisture signal. 

Overall, our findings indicate that current and upcoming high- 
resolution satellite soil moisture products only partially meet the 
spatio-temporal resolution needed for capturing field-scale irrigation 
signals. The irrigation detection becomes increasingly challenging when 
the irrigated fraction, i.e., the ratio between field size and satellite pixel 
resolution, decreases or if low irrigation water volumes are supplied to 
the field. Furthermore, the retrieval of irrigation information, i.e., 
timing and water amounts, might be ineffective if (satellite) soil mois
ture time series contain large errors. Finally, the availability of a more 
extensive set of in-situ irrigation data, covering a wider range of climatic 
and environmental conditions and different agricultural practices, is 
pivotal for the development and validation of irrigation retrieval ap
proaches. Hence, we stress the need for stronger efforts to collect and 
share in-situ irrigation data. 
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shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorol. Z. 
26 (2), 115–125. 

Sabaghy, S., Walker, J.P., Renzullo, L.J., Jackson, T.J., 2018. Spatially enhanced passive 
microwave derived soil moisture: Capabilities and opportunities. Remote Sens. 
Environ. 209, 551–580. https://doi.org/10.1016/j.rse.2018.02.065. 
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