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SQL and Heisenberg limit

State 
preparation Encoding Measurement

For optimal 
measurement: SNR:

Pezzè et al., Rev.Mod.
Phys. 90, 035005 (2018)
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SQL and Heisenberg limit

Standard Quantum Limit:
: flight time
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SQL and Heisenberg limit

Heisenberg Limit:
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Beyond Heisenberg scaling
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Metrology with active interferometry

Passive interferometry 

Excitation number and fluctuations 
profile remain constant in time
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Metrology with active interferometry

The parameter is 
encoded in the change 

of fluctuation profile

changes in time

5



03/11/2021  

Metrology with active interferometry

Given a number profile n(t), can we get a time-
scaling behavior beyond Heisenberg?  

6



03/11/2021  

Metrology with active interferometry

Given a number profile n(t), can we get a time-
scaling behavior beyond Heisenberg?  

Which systems allow to implement these profiles?
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Metrology with active interferometry

For active protocols 
with Gaussian states:

Sparaciari et al., JOSA B 32, 1354 (2015)
Safranek et Fuentes PRA 94, 062313 (2016)

Connects with previous results:
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Metrology with active interferometry

We can go beyond quadratic scaling in time
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Metrology with active interferometry

We can go beyond quadratic scaling in time

evolves periodically between 0 and   

Heisenberg scaling is restored
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very sensitive to perturbations
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Phase transitions for metrology

Near a phase transition, a system is 
very sensitive to perturbations

Small change of 
temperature -> Big 
leap in resistance
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Critical quantum sensing

Quantum phase 
transitions

Driven by Q fluctuations, at zero T

Q correlations: squeezing, 
entanglement etc.
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Critical quantum sensing

Quantum phase 
transitions

Driven by Q fluctuations, at zero T

Q correlations: squeezing, 
entanglement etc.

Quantum metrology

Use Q correlations for sensing

Ex: light squeezing in GW detectors, 
entanglement in atomic clock

Critical Quantum sensing

Exploit the full quantum fluctuations near a 
critical point for sensing
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Fully-connected models
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Fully-connected models

Hwang, Puebla and Plenio, PRL 115, 180404 (2015)
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Non-linear oscillator

The qubit can be adiabatically eliminated: 
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Non-linear oscillator

The qubit can be adiabatically eliminated: 
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Link with fully-connected models

In general: all fully-connected systems 
can be mapped to this non-linear oscillator

LMG model:
Cold gases

Rabi model:
Trapped ions

Dicke model:
Atoms in cavity

Coupled oscillators:
Levitating nanosphere

Our results apply to all of these models
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Sensing Protocol

Sudden quench:
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Sensing Protocol

Sudden quench:

With Rabi model:
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Sensing Protocol

By measuring the 
fluctuations at the end 

of the evolution, we can 
reconstruct 
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Quench at the critical point
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Flat potential, no gap. 
Squeezing unbounded
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Quench at the critical point

Flat potential, no gap. 
Squeezing unbounded
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Quench at the critical point
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Our bound is saturated for 
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Quench away from the critical point

: bounded fluctuations.

Finite gap
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Quench away from the critical point
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For
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Bound prediction:      , then
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Quench away from the critical point
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Non-linear effects

So far: thermodynamic limit                -> system exactly solvable 

    -The state is no longer Gaussian

 -Dynamics not solvable exactly

       -Our bound should no longer hold
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RG-like approach

In systems with short-range 
interaction: scale-invariance 

close to the critical point

21



03/11/2021  

RG-like approach

The Hamiltonian is invariant under this transformation: 

We rescale quadratures 
instead of physical position.

22



03/11/2021  

RG-like approach

We can map quantities for               and      finite with  quantities 
for             in the thermodynamic limit. 
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RG-like approach
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We can apply a renormalisation-group-like approach in a 0-d 
system with no coherence length

Minimal gap:

Same scaling regimes as before 
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Take-home messages

● Critical systems allow complex dynamical evolution for 

● For periodic evolution, we retrieve quadratic scaling: more 
prevalent that we previously thought

● These scaling laws are independent of the model

● We can treat non-Gaussian corrections with a RG-like approach.
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Outlook

● Experimental implementation: cold atoms, levitating nanosphere
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Outlook

● Experimental implementation: cold atoms, levitating nanosphere

● Quench the system across the transition -> possible exponential 
increase in the number of photons

● Effects of decoherence

● General periodic evolutions
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Thank you for your attention!

Ricardo Puebla
(IFF Madrid)

Simone Felicetti
(IFN Rome)

Obinna Abah
(Newcastle University)

 arXiv: 2110.04144
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