Universal scaling laws for critical quantum sensing

Louis Garbe, TU Wien

IQFA'XII, ENS Lyon

Outline

• Introduction: active quantum metrology

• Critical fully-connected models

• Quench in the Gaussian regime

• Non-Gaussian effects

Outline

• Introduction: active quantum metrology

• Critical fully-connected models

• Quench in the Gaussian regime

• Non-Gaussian effects

Standard Quantum Limit:
$$
Q \sim nT^2
$$
 $n = \langle \hat{a}^\dagger \hat{a} \rangle$
 T : flight time

Heisenberg Limit:

Beyond Heisenberg scaling

 $Q \sim n^2T^2$

PHYSICAL REVIEW LETTERS

week ending 2 MARCH 2007

Generalized Limits for Single-Parameter Ouantum Estimation

Sergio Boixo, Steven T. Flammia, Carlton M. Caves, and JM Geremia

PHYSICAL REVIEW A 88, 013817 (2013)

Quantum metrology with $SU(1,1)$ coherent states in the presence of nonlinear phase shifts

K. Berrada

Sub-Heisenberg estimation of non-random phase shifts

Ángel Rivas¹ and Alfredo Luis^{2,3}

Passive interferometry

Excitation number and fluctuations profile remain constant in time

The parameter is encoded in the change of fluctuation profile

n changes in time

Given a number profile n(t), can we get a timescaling behavior beyond Heisenberg?

Given a number profile n(t), can we get a timescaling behavior beyond Heisenberg?

Which systems allow to implement these profiles?

For **active** protocols
with **Gaussian** states:
$$
Q \le \left[\int_0^T n(t) dt \right]^2
$$

For **active** protocols
with **Gaussian** states:
$$
Q \le \left[\int_0^T n(t) dt \right]^2
$$

$$
n(t) \sim cst \rightarrow Q \sim n^2T^2
$$

Sparaciari et al., JOSA B 32, 1354 (2015) Connects with previous results: Sparacian et al., JOSA B 32, 1354 (2015)
Safranek et Fuentes PRA 94, 062313 (2016)

 $n(t) \sim t^{\alpha} \rightarrow Q \sim T^{2\alpha+2}$

We can go beyond quadratic scaling in time

$$
n(t) \sim t^{\alpha} \to Q \sim T^{2\alpha+2}
$$

We can go beyond quadratic scaling in time

 \mathcal{D} evolves periodically between 0 and $\mathcal{D}_{max} \rightarrow Q \sim n_{max}^2 T^2$

Heisenberg scaling is restored

Outline

• Introduction: active quantum metrology

• Critical fully-connected models

• Quench in the Gaussian regime

• Non-Gaussian effects

Phase transitions for metrology

Near a phase transition, a system is very sensitive to perturbations

Phase transitions for metrology

Near a phase transition, a system is very sensitive to perturbations

Phase transitions for metrology

Near a phase transition, a system is very sensitive to perturbations

Small change of temperature -> Big leap in resistance

Critical quantum sensing

Quantum phase transitions

Driven by Q fluctuations, at zero T

Q correlations: squeezing, entanglement etc.

Critical quantum sensing

Quantum phase transitions

Driven by Q fluctuations, at zero T

Q correlations: squeezing, entanglement etc.

Quantum metrology

Use Q correlations for sensing

Ex: light squeezing in GW detectors, entanglement in atomic clock

Critical quantum sensing

Quantum phase transitions

Driven by Q fluctuations, at zero T

Q correlations: squeezing, entanglement etc.

Quantum metrology

Use Q correlations for sensing

Ex: light squeezing in GW detectors, entanglement in atomic clock

Critical Quantum sensing

Exploit the full quantum fluctuations near a critical point for sensing

Fully-connected models

 $\hat{H} = \omega \hat{a}^{\dagger} \hat{a} + \Omega \hat{\sigma}_z$ $+2\Lambda\hat{\sigma}_x(\hat{a}+\hat{a}^{\dagger})$

Fully-connected models

Hwang, Puebla and Plenio, PRL 115, 180404 (2015)

03/11/2021

Non-linear oscillator

The qubit can be adiabatically eliminated:

$$
\hat{H}=\frac{\omega}{2}\Bigl[\hat{p}^2+(1-g^2)\hat{x}^2\Bigr]+\frac{g^4}{\eta}\hat{x}^4
$$

$$
\hat{x} = \frac{\hat{a} + \hat{a}^{\dagger}}{\sqrt{2}} \qquad g = \frac{\Lambda}{\sqrt{\omega \Omega}}
$$

$$
\hat{p} = i \frac{(\hat{a}^{\dagger} - \hat{a})}{\sqrt{2}} \quad \eta = \frac{\Omega}{\omega} \gg 1
$$

 Δ

Non-linear oscillator

The qubit can be adiabatically eliminated: $\hat{x} = \frac{\hat{a} + \hat{a}^\dagger}{\hat{a}}$ $g = \frac{\Lambda}{\sqrt{\hat{a}}}$

$$
\hat{H} = \frac{\omega}{2} \left[\hat{p}^2 + (1 - g^2) \hat{x}^2 \right] + \frac{g^4}{\eta} \hat{x}^4 \quad \hat{p} = i \frac{(\hat{a}^\dagger - \hat{a})}{\sqrt{2}} \quad \eta = \frac{\Omega}{\omega} \gg 1
$$

Link with fully-connected models

In general: all fully-connected systems can be mapped to this non-linear oscillator

Rabi model: Trapped ions LMG model: Cold gases

Dicke model: Atoms in cavity

Coupled oscillators: Levitating nanosphere

Our results apply to all of these models

Outline

• Introduction: active quantum metrology

• Critical fully-connected models

• Quench in the Gaussian regime

• Non-Gaussian effects

Sensing Protocol

Sudden quench:

$$
g: 0 \to g_0 + \delta g
$$

Sensing Protocol

Sudden quench:

$$
g: 0 \to g_0 + \delta g
$$

With Rabi model:

 $\Lambda=\Lambda_0,\ \ \omega=\omega_0$ $\Omega = \Omega_0 + \delta \Omega$ $g = \frac{\Lambda}{\sqrt{\omega \Omega}} = g_0 + \delta g$

Sensing Protocol

By measuring the fluctuations at the end of the evolution, we can reconstruct δq

ᅐ

$$
g_0 = 1, \ \eta \to \infty \qquad \hat{H} = \frac{\omega}{2} \left[\hat{p}^2 + (1 - g^2) \hat{x}^2 \right] + \frac{g^4}{\eta} \hat{x}^4
$$

 $\overline{}$

↸

$$
g_0 = 1, \ \eta \to \infty \qquad \hat{H} = \frac{\omega}{2} \left[\hat{p}^2 + (1 - g^2) \hat{x}^2 \right] + \frac{g^4}{\eta} \hat{x}^4
$$

Flat potential, no gap.
Squeezing unbounded

 $\overline{}$

$$
g_0 = 1, \ \eta \to \infty \qquad \hat{H} = \frac{\omega}{2} \left[\hat{p}^2 + (1 - g^2) \hat{x}^2 + \frac{g^4}{\eta} \hat{x}^4 \right]
$$

Flat potential, no gap. Squeezing unbounded

⇁

$$
n(t) \sim (\omega t)^2 \to Q \sim \left[\int_0^T n(t) \right]^2 = (\omega T)^6
$$

Our bound is saturated for $\omega T > 1$

 $q\neq 1$: bounded fluctuations.

$$
\text{Finite gap} \quad \Delta \sim \omega \sqrt{1-g^2}
$$

 $q\neq 1$: bounded fluctuations.

$$
\text{Finite gap} \quad \Delta \sim \omega \sqrt{1-g^2}
$$

For
$$
T \ll 1/\Delta : n(t) \propto (\omega t)^2
$$

For $T \gg 1/\Delta$:periodic oscillations

 $g_0 < 1$: bounded fluctuations.

$$
\text{Finite gap} \quad \Delta \sim \omega \sqrt{1 - g^2}
$$

For
$$
T \ll 1/\Delta : n(t) \propto (\omega t)^2
$$

For $T \gg 1/\Delta$:periodic oscillations

Bound prediction: T^6 , then T^2

7

Outline

• Introduction: active quantum metrology

• Critical fully-connected models

• Quench in the Gaussian regime

• Non-Gaussian effects

Non-linear effects

So far: thermodynamic limit $\eta = \infty$ -> system exactly solvable

-The state is no longer Gaussian

-Dynamics not solvable exactly

-Our bound should no longer hold

In systems with short-range interaction: scale-invariance close to the critical point

The Hamiltonian is invariant under this transformation:

 \mathcal{E}

$$
\hat{p} \rightarrow \hat{p}' = \alpha \hat{p},
$$
\n
$$
\hat{x} \rightarrow \hat{x}' = \frac{1}{\alpha} \hat{x},
$$
\n
$$
\eta \rightarrow \eta' = \frac{1}{\alpha^6} \eta
$$
\n
$$
\omega \rightarrow \omega' = \frac{1}{\alpha^2} \omega
$$
\n
$$
1 - g^2 \rightarrow (1 - g'^2) = \alpha^4 (1 - g^2)
$$

We rescale *quadratures* instead of physical position.

We can map quantities for $g\sim 1,\;$ and $\eta\;$ finite with quantities $\;$ for $q\neq 1\;$ in the thermodynamic limit.

Same scaling regimes as before

We can apply a renormalisation-group-like approach in a 0-d system with no coherence length

 $\bullet~$ Critical systems allow complex dynamical evolution for $\,n(t)\,$

 $\bullet~$ Critical systems allow complex dynamical evolution for $\,n(t)$

• For periodic evolution, we retrieve quadratic scaling: more prevalent that we previously thought

 $\bullet~$ Critical systems allow complex dynamical evolution for $\,n(t)$

• For periodic evolution, we retrieve quadratic scaling: more prevalent that we previously thought

• These scaling laws are independent of the model

 $\bullet~$ Critical systems allow complex dynamical evolution for $\,n(t)$

• For periodic evolution, we retrieve quadratic scaling: more prevalent that we previously thought

• These scaling laws are independent of the model

• We can treat non-Gaussian corrections with a RG-like approach.

• Experimental implementation: cold atoms, levitating nanosphere

• Experimental implementation: cold atoms, levitating nanosphere

• Quench the system across the transition -> possible exponential increase in the number of photons

• Experimental implementation: cold atoms, levitating nanosphere

• Quench the system across the transition -> possible exponential increase in the number of photons

• Effects of decoherence

• Experimental implementation: cold atoms, levitating nanosphere

• Quench the system across the transition -> possible exponential increase in the number of photons

• Effects of decoherence

• General periodic evolutions

Thank you for your attention!

Ricardo Puebla (IFF Madrid)

Simone Felicetti (IFN Rome)

Obinna Abah (Newcastle University)

arXiv: 2110.04144

