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1. Introduction

Near a phase transition, a system is very sensitive to small perturbations. For instance, a small change in the temperature of a superconductor just below
transition can result in a giant leap of resistivity, a phenomenon which is exploited in state-of-the-art photon detectors. In this work, we combine ideas
from quantum metrology and quantum phase transitions, to show how the critical behavior of a bosonic system could be used for sensing. We study two
coupled bosonic in the so-called ultrastrong-coupling regime, a toy model whose effective phenomenology can describe a vast range of quantum optical
systems.
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4. Sensing protocol 6. Conclusions

e We showed that critical bosonic systems
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These results are not limited to two
bosonic modes, but apply to any fully-
connected systems.
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5. Results e
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Further studies: Increasing A with a continuous ramp instead of a sudden quench (2020)
'Finite-size" effects H' = H + x |(a'a)% + (bT)?




