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Kurzfassung

Kühlfahrzeuge sind für die Kühlketten von Lebensmitteln und pharmazeutischen Pro-
dukten von großer Bedeutung und die Nichteinhaltung der Temperaturanforderungen
führt zu hohen finanziellen Verlusten. Aufgrund ihrer hohen Treibhausgasemissionen
tragen Kühlfahrzeuge aber auch erheblich zur globalen Erwärmung bei. Emissionsbe-
schränkungen und wirtschaftliche Aspekte legen daher die Entwicklung energieeffizien-
terer Kühlfahrzeuge nahe, die auch Temperaturbeschränkungen sehr genau einhalten
können. Hierfür ist nicht nur moderne Hardware wie hochwertige Kühlaggregate von
großer Bedeutung, sondern auch durchdachte Steuerungsalgorithmen. Vor allem Tür-
öffnungen haben einen großen Einfluss auf die Energieeffizienz und die Einhaltung der
Referenztemperatur. Speziell kleine Kühlfahrzeuge, die oft für den Nahtransport einge-
setzt werden, verzeichnen deutlich häufiger Türöffnungen als große Kühlfahrzeuge, die
für den Langstreckentransport verwendet werden. Daher beschäftigt sich diese Arbeit
mit einem modellprädiktiven Regelkonzept für kleine Kühlfahrzeuge, welches Türöff-
nungen explizit berücksichtigt. Um den Regler unter realen Bedingungen zu testen,
wurden experimentelle Untersuchungen an einem Prüfstand angestellt. Das mathema-
tische Modell der Reglelstrecke wurde daran identifiziert und validiert und zeigt eine
sehr gute Übereinstimmung mit den Messdaten. Da die Dynamik sowohl durch schal-
tende als auch kontinuierliche Größen beschrieben wird, handelt es sich um ein hybrides
Modell. Um die Leistungsfähigkeit des Reglers zu evaluieren wurde ein Vergleich mit
einem Proportional-Integral Regler angestellt, der den derzeitigen Stand der Technik
bei Temperaturreglern für Kühlfahrzeuge darstellt. Experimentelle Ergebnisse zeigen,
dass die modellprädiktive Regelung im Vergleich zur Proportional-Integral-Regelung
bis zu 34,2% der elektrischen Energie während einer Türöffnung einsparen kann, wenn
die Türöffnung im Voraus bekannt ist. Insgesamt konnte der Regler während eines 5,25
stündigen Versuchs mit 4 Türöffnungen 17,4% an Energie im Vergleich zum Referenz-
regler einsparen. Darüber hinaus wurde der Regler in dieser Arbeit mit einem weiteren
modellprädiktiven Ansatz verglichen. Die Arbeit zeigt, dass mit einem fortschrittlichen
Regelungssystem für ein Kühlfahrzeug, das das Öffnen der Türen explizit berücksich-
tigt, im Vergleich zu einem herkömmlichen Regler große Mengen an Energie eingespart
werden können.
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Abstract

Energy consumption of refrigerated road transport will rise significantly in the future.
In particular, frequent door openings, typical for small-scale refrigerated trucks, strain
the energy efficiency and compliance with temperature requirements of such trucks.
Numerous improvements have been made regarding the hardware in recent years, but
little was done in terms of advanced temperature controllers to take advantage of mod-
ern hardware. Especially refrigeration systems with a secondary storage loop show the
potential to benefit greatly from dedicated control schemes. This thesis proposes a so-
phisticated model-based predictive temperature controller for a small-scale refrigerated
truck, which explicitly considers door openings in the control action. Therefore, a low-
order model suitable for control application was developed. The switching behavior of
the components was described with a discrete hybrid automaton modeling approach,
resulting in a hybrid model. The proposed model and controller were evaluated using
experimental measurements on a test bench. Applied to the experimental setup, the
presented hybrid model has an excellent fit to the measurement data and consequently
provides accurate predictions to the controller. To evaluate the performance of the
proposed temperature controller, it is compared with a state-of-the-art proportional-
integral controller. Experimental results show that the predictive controller can reduce
energy consumption by up to 34.2% during a single door opening compared to the
reference controller, with similar performance in terms of temperature compliance. In
total, the model-based predictive controller saved 17.4% of energy during a 5.25 hour
experiment with 4 door openings. Moreover, another model-based predictive controller
is presented for reference. This thesis shows that a sophisticated predictive temperature
controller can exploit the full potential of modern refrigeration hardware and achieve
substantial energy savings.
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Chapter 1

Introduction

In total the global cold chain market was valued at 210 billion USD in 2020 and it is
expected to approximately triple its revenue until 2028 [1]. Cold chain systems are cru-
cial for food distribution and pharmaceutical products. Especially the cold chain of the
pharmaceutical industry has stringent requirements to maintain the efficacy and safety
of pharmaceuticals. But perishable food also benefits greatly from cold chains due to
reduced water, flavor, and nutrition loss and increased shelf-life [2]. Refrigerated road
transport plays a critical role in cold chains. Significant amounts of food and pharma-
ceutical products are lost due to temperature excursions during transportation [3, 4].
Therefore, it is essential that the cargo temperature can be regulated accurately to
adhere to temperature requirements regardless of disturbances such as door openings.
Especially small-scale refrigerated trucks that conduct multi-drop delivery face substan-
tial difficulties maintaining the temperature of the cargo since a single delivery run can
sometimes include up to 50 door openings [5]. Furthermore, it is also essential that the
refrigeration system operates with high energy efficiency since approximately 15% of
the world’s fossil fuel energy is used for refrigerated food transportation alone [6].
However, not much has been done in terms of temperature controllers that strive to
both, fulfilling temperature restrictions and gain high energy efficiency. Some au-
thors [7–9] proposed a model-based temperature controller but neglected door openings
in their model, which makes the controller unsuitable for use in a small-scale refrig-
erated truck. Others [10] included door openings in their model-based controller but
excluded the energy consumption from their control criterion.
Particularly elaborate refrigeration systems, such as those with a secondary cooling
loop, require dedicated control schemes to realize their full potential [11,12]. Fallmann
et al. [13] dealt with modeling a small-scale refrigerated truck with a secondary loop
refrigeration unit and included door openings as an actual connection between the air
inside the cooling chamber and the ambient air. Their system is schematized in Fig. 1.1.
Such a truck, which is frequently subject to door openings, can greatly benefit from
dedicated control schemes which can exploit the advantages of cooling units with stor-
age loops.
For the direct control of the cargo temperature, a model of the load is necessary, which
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1 Introduction 2

Expansion
valve

Compressor

Condenser Heat
exchanger

Pump Air
chiller

Cooling chamberEnvironment

Cooling
loop

Storage
loop

a) Cooling chamber scheme b) Cooling unit scheme

Figure 1.1: Schematic illustration of a small-scale refrigerated truck with a sec-
ondary loop refrigeration unit. The cooling unit comprises a conventional cooling
loop and a storage loop which acts as a reservoir for thermal energy. Figure adapted
from [13].

requires precise knowledge of the physical properties of the cargo. However, this ap-
proach is not practical for a small-scale refrigerated truck often loaded and unloaded
with various cargo. Even if the cargo with all its parameters is known exactly, the
initial temperature when loading new cargo must be estimated, which can also lead
to considerable uncertainties. Therefore, in many control applications for refrigerated
trucks, the temperature of the air is regulated rather than the cargo temperature [10].
This thesis proposes a sophisticated model-based temperature controller for the air
inside the cooling chamber of a small-scale refrigerated truck with a secondary loop
refrigeration unit. The controller explicitly considers the energy consumption and tem-
perature excursions in determining control variables. For reference, another model-
based controller, which is more limited in the selection of the control variables and has
a reduced model, and a state-of-the-art proportional-integral (PI) controller are intro-
duced. A specially designed test bed was used to examine the controllers in real world
conditions, since it is costly to perform tests with an actual refrigerated vehicle.
The remainder of this thesis is organized as follows: First, in Chapter 2, a model of the
test bed for small-scale refrigerated truck with a secondary loop refrigeration system
is derived. Then the different temperature control schemes are proposed in Chapter 3.
In Chapter 4, the model and the controller are evaluated on the experimental setup,
and the results are discussed in Chapter 5. Finally, a summary of the work and its
limitations is given in Chapter 6.
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Chapter 2

Modeling

This chapter describes the modeling of the cooling chamber and the cooling unit. First,
in Section 2.1, the system to be modeled is described in every detail. Subsequently, an
overview of the different modeling approaches of cooling chambers and cooling modules
in the literature is given (Section 2.2). Finally, in Section 2.3, a mathematical model
of the system is derived.

2.1 System description

The test bed of the small-scale refrigerated truck with a secondary loop refrigeration
unit comprises the cooling chamber with insulated walls, a door, and two cooling units
that generate the cooling capacity, see Fig. 2.1. In the further proceedings of this thesis,
the two identical cooling units are always operated in parallel. Therefore, to simplify
the notation, the cooling units in the system will be combined into a single cooling unit
with twice the cooling capacity, and from now on, only this combined cooling unit will
be referred to.
The cooling unit consists of a thermoelectric cooler (TEC) in the center with a heat
sink on each side of the module. By applying an electric current Itec ∈ R≥0 the TEC
can create a heat flow Q̇tec ∈ R that cools one side (cold side) and heats the other (hot
side). The status (off/on) of the TEC is described by scu ∈ {0, 1}, resulting in Itec = 0
when the TEC is turned off. A water-cooling block installed on the hot side of the TEC
is fed with water at temperature Twtr ∈ R. On the cold side of the TEC, an air-cooled
heat sink with temperature Ths ∈ R is used to store and transfer thermal energy to the
air inside the cooling chamber. A fan mounted to the air-cooled heat sink can evoke
a heat flow Q̇cu ∈ R by either natural or forced convection by switching the fan on or
off sf ∈ {0, 1}. The air-cooled heat sink is an analogy to the secondary storage loop of
the refrigerated truck’s cooling unit, as it can also store thermal energy. However, the
thermal storage of the heat sink with the TEC has significantly higher losses than the
storage loop of a refrigerated truck due to the large heat losses from thermal conduction
through the TEC. A subordinate controller is implemented to compensate for the heat
losses through the TEC when the cooling unit is turned off to achieve the same system

3
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2.2 Modeling approaches in the literature 4

Q̇w

Tw

Ths

Q̇cu

scu Twtr

Q̇
t
e
c

Itec

sf

Tcc

Tamb

Q̇amb

sdoor

Figure 2.1: Illustration of the cooling chamber and the cooling unit with im-
portant modeling variables. The temperature of the air inside the cooling
chamber Tcc, the ambient air Tamb, the wall Tw, the heat sink Ths, and the
water for the water-cooling Twtr are highlighted due to their importance for
modeling. The heat flows between the air inside the cooling chamber and the
wall Q̇w, the heat sink and the air inside the cooling chambers Q̇cu, the heat
sink and the water cooling Q̇tec, and the ambient air with the air inside the
cooling chamber Q̇amb are indicated by red arrows. The heat transfer in the
event of a door opening sdoor is especially highlighted. The fan mounted to the
heat sink can increase the airflow through the heat sink when it is active, indi-
cated by its status sf. The thermoelectric cooler is operated with a current Itec
and its status is defined by the variable scu.

dynamics [14].
The insulated walls act as a thermal mass with the temperature Tw ∈ R and can
exchange a heat flow Q̇w ∈ R with the air inside the cooling chamber. The heat flow
from the environment to the inside of the cooling chamber is described by Q̇amb ∈ R.
This heat flow depends strongly on the status of the door sdoor ∈ {0, 1}. The air inside
the cooling chamber has the temperature Tcc ∈ R.

2.2 Modeling approaches in the literature

There are many different models of varying complexity in the literature for model-
ing TECs. The most sophisticated models describe the TEC three-dimensional with
temperature-dependent material parameters [15, 16]. Those models achieve the high-
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2.3 Model description 5

est accuracy but require a lot of computational effort [17]. Reduced models assume
a thermal equilibrium and constant material parameters, which lead to an algebraic
equation for the heat flow on each side of the TEC [18–20]. In a steady state, the equi-
librium model with constant material parameters gives nearly the same results as the
three-dimensional model with temperature-dependent material properties. However,
the equilibrium model is significantly faster [21].
Various approaches exist for modeling the temperature of the air inside a cooling cham-
ber. Modeling the interior of the cooling chamber with distributed parameters using the
method of computational fluid dynamics leads to models with high resolution. These
models can describe the volume, mass, and energy flow during a door opening very well,
as shown by Ben Taher et al. [22]. Due to the high computational cost of computational
fluid dynamic models, reduced models with concentrated parameters are often used for
modeling the air temperature of a cooling chamber in control applications [8, 9].
To model the heat flow during a door opening Lafaye De Micheaux et al. [23] derived
a system of ordinary differential equations from first principles. Luchini et al. [10] used
a predefined heat flow profile to model the door opening for their control application.
In the literature, the insulated walls of the cooling chamber are usually modeled by
thermal capacities connected in series. This reproduces the slow dynamics of the heat
flow from the environment to the inside of the cooling chamber, but also the fast dy-
namics directly affecting the air temperature inside the cooling chamber [10,13,23].
The heat flow due to the absorption of solar radiation is included in some models in
the literature. However, the influence of thermal radiation on the inside of the cooling
chamber has comparably slow dynamics and is negligible if the vehicle moves, due to
the increased convective heat flow between the outer wall and the environment [24].

2.3 Model description

The derived model is based on above discussed modeling approaches in the literature,
the model of a small-scale refrigerated truck with a secondary loop cooling system
proposed by Fallmann et al. [13], and on open-loop experiments conducted on the
experimental setup. Care was taken to account for both, the slow dynamics of the
system when the door of the cooling chamber is closed and the fast dynamics when the
door is open. Moreover, with model-based control schemes, not only an accurate model
is of great importance, but also a low model order to reduce computational costs.
The model equations are presented in Section 2.3.1. Unknown model parameters were
estimated based on the conducted open-loop experiments described in Section 2.3.2.
Subsequently, the derived model was linearized and discretized for use in model-based
control schemes, see Section 2.3.3.
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2.3 Model description 6

2.3.1 Model equations

The system described above is a hybrid system, comprehending both continuous and
binary variables. This kind of system lends itself to a formulation using discrete hybrid
automatons (DHAs), as described by [25]. With this approach, the binary and con-
tinuous variables can be separated, which facilitates the description of the model and
the formulation of a control algorithm. Here, the binary variables appear only in the
inputs and disturbances, reducing the DHA to a switched affine system (SAS) and a
mode selector (MS). The task of the MS is to select the corresponding model of the
SAS based on the binary variables. All the SAS models use the same state, input,
and disturbance vector, so the transition from one mode to the other is done simply
by passing the recently calculated state vector to the next model. To formulate the
MS the nub = 2 binary control variables are summarized in the vector of controllable
inputs ub ∈ Rnub according to

ub(t) :=

│

scu(t)
sf(t)

│

, (2.1)

written in continuous time t ∈ R≥0. The status of the door is the only binary distur-
bance vb ∈ R in the model:

vb(t) := sdoor(t) (2.2)

Therefore, the MS must map the three binary variables to the resulting eight modes,
as shown in Table 2.1.

Table 2.1: Classification of model modes depending on the status of the cooling
unit scu, the status of the fan sf, and on door openings sdoor.

Mode m(t) scu(t) sf(t) sdoor(t)
1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

To determine the active mode m(t) ∈ M = {1, 2, . . . , 8} the function of the MS, fMS :
{0, 1}3 →M, is defined according to

m = m(t) = fMS (scu(t), sf(t), sdoor(t)) . (2.3)
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2.3 Model description 7

For brevity, the time dependency of the active mode is omitted from now on, and in-
stead the mode dependency is explicitly stated where appropriate.
Each mode has an associated model belonging to the SAS. The SAS describes the dy-
namics of the system by transforming the state vector xc ∈ Rnx with nx = 3 continuous
states given by

x(t;m) :=
˪

Ths(t;m), Tcc(t;m), Tw(t;m)
˩T

(2.4)

with the continuous input uc ∈ R according to

uc(t) := Itec(t), (2.5)

and the continuous disturbance vector vc ∈ Rnvc with nvc = 2 measurable disturbances
defined as

vc(t) :=
˪

Twtr(t), Tamb(t)
˩T
, (2.6)

into the vector of the model outputs y ∈ R4, defined as

y(t;m) :=
˪

Ths(t;m), Tcc(t;m), Ptec(t;m), Pf(m)
˩T
. (2.7)

Cooling unit

As described above, the cooling unit consists of a TEC and two heat sinks; one water-
cooled and one air-cooled. The water-cooled heat sink is fed with water at a constant
temperature and it is assumed that the TECs hot side can be held at the same temper-
ature as the water temperature. Furthermore, the temperature of the air-cooled heat
sink on the cold side of the TEC has significantly slower dynamics than the temperature
distribution in the comparatively thin TEC. Therefore, the equilibrium model described
by [18–20] is used to model the TEC. The heat flow from the cold side of the TEC to
the hot side is given by

Q̇tec(t;m) = α1 Itec(t)Ths(t;m)− α2 Itec(t)
2 − α3

˪

Twtr(t)− Ths(t;m)
˩

scu(t) (2.8)

with the unknown material parameters of the TEC αi ∈ R≥0, i ∈ {1, 2, 3}. In TEC
literature, α1 is usually referred to as the Seebeck coefficient, α2 and α3 as half the
electrical resistance and the thermal conductance of the TEC, respectively. Note that
the conductive heat flow through the TEC is zero when the cooling unit is off, which is
evoked by a subordinate controller as mentioned above, and elaborated in detail in [14].
The power consumption of the TEC, Ptec ∈ R, can be calculated by

Ptec(t;m) = α1
˪

Twtr(t)− Ths(t;m)
˩

Itec(t) + 2α2 Icu(t)
2. (2.9)

The dynamics of the heat sink temperature are modeled by the heat balance equation
yielding

β
d

dt
Ths(t;m) = −Q̇tec(t;m)− Q̇cu(t;m) (2.10)

with the unknown heat capacity of the air-cooled heat sink β ∈ R≥0.
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2.3 Model description 8

Cooling chamber

The heat transfer between the air inside the cooling chamber and the air-cooled heatsink
can be written as

Q̇cu(t;m) =γ1
˪

Ths(t;m)− Tcc(t;m)
˩

sf(t) + . . .

γ2
˪

Ths(t;m)− Tcc(t;m)
˩ ˪

1− sf(t)
˩

,
(2.11)

where the type of heat transfer - forced or natural convection - is determined by the
status of the fan with the respective unknown heat transfer coefficients γ1 ∈ R≥0

and γ2 ∈ R≥0. Since the fan can either be on or off, the power consumption of the
fan Pf ∈ R is modeled as

Pf(m) = ζ sf(t), (2.12)

where ζ ∈ R≥0 is the unknown parameter of the power demand of the fan. Another
essential dynamic of the system is the wall temperature, which is described by

κ1
d

dt
Tw(t;m) = κ2

˪

Tcc(t;m)− Tw(t;m)
˩

= Q̇w(t;m) (2.13)

with the unknown heat capacity and heat transfer coefficient of the wall κi ∈ R≥0, i ∈
{1, 2}. In this formulation, the wall temperature is affected only by the air inside
the cooling chamber and not by the ambient conditions, since these have much slower
dynamics. The wall temperature is modeled first order to reduce the computational
burden.
The heat transfer between the air inside the cooling chamber and the ambient air is
composed of a term for the steady heat transfer through the wall and a term for the
fast heat transfer due to an open door according to

Q̇amb(t;m) =ξ1
˪

Tamb(t)− Tcc(t;m)
˩

+ . . .

ξ2
˪

Tamb(t)− Tcc(t;m)
˩

sdoor(t),
(2.14)

where ξi ∈ R≥0, i ∈ {1, 2} are the unknown heat transfer coefficients. The influence
of other environmental factors, such as thermal radiation, was neglected here because
they are either difficult to measure or have a negligible impact on the cooling chamber
temperature.
The dynamics of the temperature of the air inside the cooling chamber are influenced by
the above defined heat flows Q̇amb, Q̇cu and, Q̇w. Additionally, the power consumption
of the fan act as a heat source that directly affects Tcc, yielding

χ
d

dt
Tcc(t;m) = Q̇cu(t;m) + Pf(m)− Q̇w(t;m) + Q̇amb(t;m) (2.15)

with the unknown heat capacity of the air χ ∈ R≥0.
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2.3 Model description 9

2.3.2 Parameter identification

The model proposed above has nθ = 12 unknown model parameters, that can be sum-
marized in the parameter vector θ ∈ Rnθ≥0 according to

θ =
˪

α1, α2, α3, β, γ1, γ2, ζ, κ1, κ2, ξ1, ξ2, χ
˩T
. (2.16)

To obtain a numerically well-posed estimation, the parameter vector is linearly trans-
formed so that all parameters have an similar order of magnitude, yielding the normal-
ized parameter vector θ′ defined by

θ′ := C−1
θ θ (2.17)

with all normalized parameter values between 0.1 and 1. The transformation ma-
trix Cθ ∈ R

nθ×nθ contains the normalization coefficients of each parameter cη ∈ R with
η ∈ θ in its diagonal according to

Cθ = diag
˪

cα1 , cα2 , . . . cχ
˩

. (2.18)

Then, the dynamics of the system can be described as

ẋ(t;m) = fx
 (

x(t;m), uc(t),vc(t);θ
′
)

(2.19a)

y(t;m) = fy
 (

x(t;m), uc(t),vc(t);θ
′
)

(2.19b)

with the state function fx : R
6+nθ → R

nx and the output function fy : R
6+nθ → R

4.
For the estimation of the parameter vector, nI experiment data sets Ij, j ∈ {1, . . . , nI}
with nk(Ij) samples each are used. With that data, the estimated normalized parameter
vector θ′∗ can be calculated by

θ′∗ = arg min
θ
′

JId
 (

θ′
)

(2.20)

with the objective function JId ∈ R≥0 defined as

JId
 (

θ′
)

=
nI
∑

j=1

nk(Ij)
∑

k=1

˪

y(k;m)− ymeas(k)
˩T ˪

y(k;m)− ymeas(k)
˩

. (2.21)

Thereby, the quadratic deviation between the simulated model output y and the mea-
sured output vector ymeas ∈ R4 is penalized at every sampling instance k ∈ R≥0.

2.3.3 Linearization and discretization

The model is linearized to be able to use the special formulation of DHAs. Note that
the nonlinear model is used to determine the unknown model parameters as described
above, and only then is the system linearized.
The only nonlinear terms in the derived model can be found in the first and second
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2.3 Model description 10

term of the heat flow equation of the TEC, see (2.8). The subordinate nonlinear heat
flow of the TEC, Q̇nonlin

sub ∈ R, is therefore defined as

Q̇nonlin
sub (Itec, Ths) = α1 Itec Ths − α2 I

2
tec. (2.22)

For easier readability, the time and mode dependencies of the subordinate heat flow
are omitted. The nonlinear model was linearized in two different manners, shown in
Fig. 2.2. With the first method, the linearized heat flow Q̇lin,1

sub ∈ R depends on both Itec
and Ths according to

Q̇
lin,1
sub (Itec, Ths) = λ1 Ths + λ2 Itec + λ3 (2.23)

with the fitting parameters λ1 ∈ R, λ2 ∈ R, and λ3 ∈ R. The unknown parameters were
fitted by least squares to the nonlinear heat flow to achieve the best fit in the current
interval between I lin,mintec ∈ R≥0 and I

lin,max
tec ∈ R≥0 and the heat sink temperature interval

between T lin,min
hs ∈ R≥0 and T

lin,max
hs ∈ R≥0.

The second linearized heat flow Q̇
lin,2
sub ∈ R is directly proportional to Itec and not

depending on the heat sink temperature, yielding

Q̇
lin,2
sub (Itec) = λ4 Itec, (2.24)

with a single fitting parameter λ4 ∈ R. This parameter is also determined using least
squares to fit to the intervals

˪

I
lin,min
tec , I lin,maxtec

˩

and
˪

T
lin,min
hs , T

lin,max
hs

˩

. The motivation
behind the two different linearization methods is that the first method approximates
the nonlinear heat flow very accurately over a limited current and temperature range.
In contrast, the second method is valid over a broader range. It must be noted that
the linearized heat flow with method one is generally not zero when the current is zero.
Thus, this linearization method performs very poorly for small currents. With the sec-
ond linearization method, it is always ensured that the heat flow vanishes when the
current is zero. However, the dependency on the heat sink temperature was neglected,
making this linearization generally less accurate.
The linearized model that the model-based control applications will use has a reduced
output vector that comprises only the temperature of the heat sink and the air tem-
perature inside the cooling chamber. The two linearized models can be written in a
state-space representation according to

ẋ(t;m, l) = A(m, l)x(t;m, l) +B(m, l)uc(t) +E(m, l)vc(t) + g(m, l) (2.25a)
│

Ths(t;m, l)
Tcc(t;m, l)

│

= C(m, l)x(t;m, l) +D(m, l)uc(t) + F (m, l)vc(t) + h(m, l), (2.25b)

with the system matrix A ∈ Rnx×nx , input vector B ∈ Rnx , system disturbance ma-
trix E ∈ Rnx×nvc , affine system vector g ∈ Rnx , output matrix C ∈ R2×nx , feedthrough
vectorD ∈ R2, output disturbance matrix F ∈ R2×nvc , and affine output vector h ∈ R2.
The dependency of the linearization method is denoted by parameter l ∈ {1, 2}.
Furthermore, the continuous state space system is discretized using zero-order hold
with sampling time Ts ∈ R≥0 to subsequently use the model in a digital controller. The
subscript d denotes the discretized matrices.
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2.3 Model description 11

Figure 2.2: Visualization of the two different linearization methods for the
subordinate heat flow of the TEC. The heat flows are plotted over the current
of the TEC Itec and at three different heat sink temperatures Ths. The current
interval for the fitting of the linearized heatflow is outlined with its lower and
upper bound, I lin,mintec and I lin,maxtec respectively.
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Chapter 3

Controller design

This chapter proposes a temperature control concept for a small-scale refrigerated truck

based on the model derived above. The conceptual architecture used for controlling the

temperature inside the cooling chamber is depicted in Fig. 3.1. For ease of reading, the

mode dependency is omitted from the notation in the following.

The plant (cooling chamber and cooling unit), the actuators, and the sensors form

the extended plant, further described in Section 3.1. In Section 3.2, three different

temperature controllers are described. For the model-based controllers, an accurate

estimate of the current state of the plant is critical to the performance of the controller.

Therefore, an observer is designed in Section 3.3.

3.1 Extended plant

The extended plant comprises the cooling chamber, the cooling unit, and all actuators

and sensors. The plant is influenced by controllable inputs u = [uc ub], measurable

disturbances v = [vc vb], and unknown disturbances d.

The actuators convert the digital target values given by the temperature controller uref

into physical signals. The current flowing through the TEC is controlled by a buck

converter, which steps down the constant input voltage from a voltage source to gain a

mandated current. The buck converter is specially designed to meet the requirements

of the TEC [26,27]. A relay switches the fan and the TEC on or off.

For the temperature control of the plant, measurements of the system are fundamental.

Therefore, various digital sensors are installed throughout the system to measure cur-

rent, temperature, and power values at regular time intervals Ts,meas ∈ R≥0. It should

be noted that the sampling time of the measurements is generally different from the

sampling time of the temperature controller Ts.

12
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3.1 Extended plant 13
replacements

T
w
t
r
(t
)

T
a
m
b
(t
)

s
d
o
o
r
(t
)

v(k) v(t)

Itec(t)

scu(t)

sf(t)

uref(k) u(t) [Ths(t) Tcc(t)]Ths(t)

Tcc(t)

[Ths(k) Tcc(k)]

└

x̂(k) d̂(k)
┘

[v(k) u(k)]

[v(k−1) u(k−1)]

Filtering and Filtering and

Filtering and

discretization discretization

discretization

Unit
delay

Actuators

d(t)

Temperature
controller

Observer

Extended plant

Figure 3.1: Conceptual architecture of the temperature controller for the cool-

ing chamber. The extended plant consists of the plant itself and various actu-

ators and sensors. The measurements of the plant are used by the observer to

estimate the current state of the plant, which is then adopted by the controller

to determine control variables.
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3.2 Temperature controller 14

3.2 Temperature controller

The purpose of the temperature controller is to regulate the temperature inside the

cooling chamber. As in real-world applications, the desired temperature is usually not

an exact temperature value but a temperature range [28]. The temperature controller

should also aim to minimize energy consumption while maintaining a certain tempera-

ture window.

In many cases, the cooling units installed in small-scale refrigerated trucks are over-

sized for steady state operation and have a much higher cooling capacity than needed

for holding the temperature at the desired value [24]. Manufacturers choose this design

to allow fast and efficient cooling to the desired temperature from ambient conditions.

In addition, the compressor is physically limited to a minimum and maximum speed

at which it can operate. Therefore, it is usually not possible to maintain the desired

temperature with a constant compressor speed, so the compressor must be turned on

and off to maintain the temperature inside the cooling chamber. Constraints on the

minimum and maximum current are introduced to obtain a similar behavior with the

cooling units used in the test bed. In actual refrigeration units, the compressor and

pumps cannot be turned on and off at will but must meet particular start-up and

shut-down times. These restrictions are also transferred to the test bed, by imposing

minimum up- and down-times on the fan and the cooling unit.

A total of three different temperature controllers is proposed, two model-based con-

trollers with knowledge of future disturbances and a rule-based PI controller. In Sec-

tion 3.2.1, a hybrid model predictive controller (HMPC) is described, which utilizes the

maximum flexibility of the system. A derivative of the HMPC with limited flexibility in

the choice of manipulated variables and reduced complexity of the model is presented

in Section 3.2.2. In Section 3.2.3, a rule-based PI controller, which is state-of-the-art

for temperature control, is defined.

3.2.1 Hybrid model predictive controller

The HMPC relies on a hybrid model for its predictions over a finite horizon with the

length Np ∈ N. The computation of the control inputs is based on an optimization

problem, schematized in Fig. 3.2. The optimization variables are the predicted states,

inputs and disturbances vectors over the prediction horizon. By stacking the respective
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3.2 Temperature controller 15

vectors, one gets

X(k) :=

│

.

.

.

.

.

└

x(k|k)

x(k+1|k)
...

x(k+Np|k)

│











┘

, Ub(k) :=

│

.

.

.

.

.

└

ub(k)

ub(k+1)
...

ub(k+Np-1)

│











┘

, U c(k) :=

│

.

.

.

.

.

└

uc(k)

uc(k+1)
...

uc(k+Np-1)

│











┘

V b(k) :=

│

.

.

.

.

.

└

vb(k)

vb(k+1)
...

vb(k+Np-1)

│











┘

, V c(k) :=

│

.

.

.

.

.

└

vc(k)

vc(k+1)
...

vc(k+Np-1)

│











┘

,

(3.1)

where X ∈ R(Np+1)nx is the prediction of the future state vectors at the current time

step, U b ∈ R
Npnub and U c ∈ R

Np the future binary and continuous inputs respectively,

and V b ∈ R
Np and V c ∈ R

Npnvc the prediction of the future binary and continuous

disturbances. At the current time step k, the model states, inputs, and disturbances

are known, so they represent a known input to the optimization problem. Furthermore,

predictions of the disturbances over the horizon are inputs to the optimization problem.

The prediction of the binary disturbance vector is based on a known door opening pro-

file. The continuous disturbances in water and ambient temperature over the horizon

are predicted to remain at the current measured value.

To reduce the computational effort of the optimization problem, a shorter horizon,

called control horizon Nc ∈ N≤Np , is introduced. Only during this horizon, the control

values can be freely chosen by the controller. In the remaining prediction horizon, the

inputs are fixed. Further, the profile of future door openings is incorporated into the

predictions only during the control horizon. During the rest of the prediction horizon,

it is assumed that the door is closed. This enables the controller to track a temperature

value at the end of the prediction horizon. For the same reason, the restriction on the

minimum current of the TEC is also relaxed for the last sample of the control horizon

and the remaining samples of the prediction horizon. The controller can thus select a

current that brings the cooling chamber temperature to a set point at the end of the

prediction horizon, even if the required current is below the minimum current.

Because of the two different current ranges used in the control and prediction horizon,

different linearizations of the model are used for each horizon. Throughout the control

horizon, the model obtained with linearization method l = 1 is used since this lineariza-

tion approximates the nonlinear model well in the limited current range allowed in the

control horizon. However, if the current is outside this narrow range, the linearization

method l = 1 fits the nonlinear model poorly. Therefore, after the control horizon, the

model obtained by the linearization method l = 2 is used.

In the following, the optimization problem is defined with all its constraints and its

objective function.
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3.2 Temperature controller 16

Figure 3.2: Illustration of HMPC prediction with a future door opening, highlighted

by a gray background shading. The resulting costs in the objective function and

the imposed constraints are depicted schematically. When the cooling chamber

temperature is outside the temperature window highlighted in blue, additional

costs are incurred in the objective function. The cost curve of the temperature

window and the cost of the individual temperature sample are marked in red in

the illustration. Furthermore, the selected future control variables of the HMPC

are presented with their restrictions.
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3.2 Temperature controller 17

Constraints

Due to the restrictions on the plant and to reduce the computational time of solving

the optimization problem, several constraints are imposed.

As explained above, the binary and continuous inputs are held at a fixed value after

the control horizon till the end of the prediction horizon. The current of the TEC is

held constant at the value of the last sample of the control horizon for the remainder of

the prediction horizon, see (3.2a). The cooling unit and fan are always active after the

control horizon to be able to track the reference temperature at the end of the predic-

tion horizon with a constant status and to reduce the complexity of the optimization

problem, yielding (3.2b) - (3.2c).

Itec(k+i) = Itec(k+Nc), ∀i ∈ {Nc+1, Nc+2, . . . , Np-1} (3.2a)

scu(k+i) = 1, ∀i ∈ {Nc, Nc+1, . . . , Np-1} (3.2b)

sf(k+i) = 1, ∀i ∈ {Nc, Nc+1, . . . , Np-1} (3.2c)

The water and ambient temperature are assumed constant at the currently measured

temperature over the whole prediction horizon, see (3.3a)-(3.3b). After the control

horizon, it is predicted that the door is closed, see (3.3c).

Twtr(k+i) = Twtr(k), ∀i ∈ {1, 2, . . . , Np-1} (3.3a)

Tamb(k+i) = Tamb(k), ∀i ∈ {1, 2, . . . , Np-1} (3.3b)

sdoor(k+i) = 0, ∀i ∈ {Nc, Nc+1, . . . , Np-1} (3.3c)

Within the control horizon, the TEC can either be operated with a current between Imin
tec ∈

R≥0 and I
max
tec ∈ R≥0 or with 0A, when the cooling unit is turned off. After the control

horizon, the current is limited between 0A and Imax
tec to be able to maintain the cooling

chamber temperature inside the temperature window since the cooling unit can not be

turned off in that interval. The constraints on the continuous inputs are given by:

Imin
tec scu(k+i) ≤ Itec(k+i) ≤ I

max
tec scu(k+i) ∀i ∈ {1, 2, . . . , Nc-1} (3.4a)

0 ≤ Itec(k+i) ≤ I
max
tec ∀i ∈ {Nc, Nc+1, . . . , Np-1} (3.4b)

To fulfill the minimal up ∆tupµ ∈ R≥0 and down time ∆tdownµ ∈ R≥0 of both the cooling

unit and the fan, constraints similarly to those proposed in [29] are enforced:

sµ(k+i)− sµ(k+i-1) ≤ sµ(τup), ∀i ∈
{

-∆tupµ , -∆t
up
µ +1, . . . , Nc-1

}

(3.5a)

sµ(k+i-1)− sµ(k+i) ≤ 1− sµ(τdown), ∀i ∈
{

-∆tdownµ , -∆tdownµ +1, . . . , Nc-1
}

(3.5b)

with τup ∈ {k+i, k+i+1, . . . ,min(k+Nc-1, k+i+∆t
up
µ -1)}, and τdown ∈ {k+i, k+i+1,. . . ,

min(k+Nc-1, k+i+∆t
up
µ -1)} and µ ∈ {cu,f}.

To reduce the computation complexity of the optimization problem, the binary in-

puts are fixed over a certain number of time steps. The formulation of the so-called
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3.2 Temperature controller 18

moveblocking constraints is adopted from [30]. Instead of solving for the optimal

binary inputs in the control horizon Ub,ctr :=
└

ub(k),ub(k+1), . . . ,ub(k+Nc)
┘T
∈

R
Ncnub the problem is reduced to solving for the reduced binary input vector U red

b,ctr :=
└

ured
b,1 ,u

red
b,2 , . . . ,u

red
b,M

┘T
∈ RMnub with M ∈ N≤Nc , yielding the constraint

Ub,ctr =
 (

Tmb ⊗ Inub
 )

U red
b,ctr, (3.6)

where Tmb ∈ R
(Nc−1)×M is the blocking matrix with only zeros and ones and exactly one

non-zero element in each row and ⊗ denotes the Kronecker product. The temperature

of the heat sink is limited by Ths,min ∈ R≥0 to prevent excessive freezing that could

damage the heat sink, yielding the constraint:

Ths(k+i|k) ≥ Ths,min ∀i ∈ {1, 2, . . . , Np} (3.7)

Objective function

The objective function of the optimization problem is defined by

J = JP + JT + JO + JF (3.8)

with the total cost over the horizon J ∈ R≥0, the cost of the power consumption JP ∈

R≥0, the cost of the deviation of the temperature window JT ∈ R≥0, other cost JO ∈

R≥0, and the terminal cost JF ∈ R≥0. For notational simplicity, the dependence of the

objective function on the optimization variables is omitted and only explicitly stated

in (3.23). The power consumption of the system comprises the power consumption of

the TEC and the fan. To obtain a convex objective function, the cost of the power

consumption was slightly modified, yielding

JP =





{



{

Np−1
∑

i=1

└

Itec(k+i)R1 Itec(k+i) +R2 sf(k+i)
┘

, Normal operation

0, Pull-down operation
(3.9)

with the weighting factors R1 ∈ R≥0 and R2 ∈ R≥0. During the initial cooling (pull-

down operation), the cost of the power consumption is zero to to focus on getting into

the temperature window as quickly as possible. When the temperature of the cooling

chamber reaches the temperature window for the first time, the cost of the power con-

sumption will become active (normal operation).

The temperature inside the cooling chamber should always obey a temperature window

described by the minimum and maximum temperature, Tmin
tw ∈ R≥0 and Tmax

tw ∈ R≥0.

While the door is open, the temperature window is not prescribed, because in these

modes it is not feasible to realize the temperature target. The violation of the temper-

ature window is penalized by a step cost term with the weighting factor Q1 ∈ R≥0 in

the objective function. This cost term leads to discontinuities in the objective function,
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3.2 Temperature controller 19

which can provoke irregular controller behavior near the boundary of the temperature

window. Therefore, the discontinuity was smoothed by introducing a soft tempera-

ture window, which is only applied near the maximum temperature of the temperature

window starting at Tmin
tw,soft ∈ R≥0. The cost of the soft temperature window increases

quadratically with factor Q2 ∈ R≥0 until the cost equals the step cost at the end of the

temperature window. Therefore, the cost of the temperature window can be written as

follows:

JT =
Np
∑

i=1

└

1− sdoor(k+i)
┘ └

Q1 s1(k+i|k) + s2(k+i|k)Q2 s2(k+i|k)
┘

(3.10)

with the helper variables s1 ∈ {0, 1} and s2 ∈ R≥0 to indicate if the cooling cham-

ber temperature is outside the temperature window and to show the deviation of the

temperature from the soft temperature boundary respectively, see (3.11) and (3.12).

s1(k+i|k) =



{

{

1, if Tmax
tw ≤ Tcc(k+i|k) ≤ T

min
tw

0, otherwise
(3.11)

s2(k+i|k) =



{

{

Tcc(k+i|k)− T
min
tw,soft, if Tmin

tw,soft ≤ Tcc(k+i|k) ≤ T
max
tw

0, otherwise
(3.12)

To obtain a continuous cost function at the maximum of the temperature window, Q2

must satisfy the following condition:

Q2 = Q1

 (

Tmax
tw − Tmin

tw,soft

 )−2
(3.13)

In the event of a door opening, an active fan is penalized with the weight S ∈ R≥0.

These modes are very unfavorable for energy efficiency because they increase the heat

transfer between the air in the cooling chamber and the ambient air. Therefore, these

dynamics were not accounted for in the formulation of the model. In order for the

controller to avoid these modes, high cost has been applied to them. The costs of the

inefficient modes over the horizon are summarized in the following cost term:

JO =
Np−1
∑

i=1

└

S sdoor(k+i) sf(k+i)
┘

(3.14)

Additionally, to the costs summarized over the whole horizon, terminal costs are added

to the objective function. A deviation from the reference temperature T ref
cc at the end

of the prediction horizon is penalized with linear and quadratic cost with the weighting

factors T1 ∈ R≥0 and T2 ∈ R≥0 respectively. Hence, the terminal costs are defined by

JF = s3(k+Np|k)T1 s3(k+Np|k) + T2 s3(k+Np|k) (3.15)

with the helper variable s3 ∈ R indicating the absolute deviation from the reference

temperature at the end of the prediction horizon:

s3(k+Np|t) =
 .

 .

 .Tcc(k+Np|k)− T
ref
cc

 .

 .

 . (3.16)
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3.2 Temperature controller 20

Offset-free formulation

For a control algorithm, offset-free tracking of a reference value is essential. If the

absolute value of input variables is penalized, as implemented in the proposed control

scheme, offset-free control is usually not possible. However, due to the step-like cost

and the much higher weighting of the violation of the temperature window compared

with the input cost, the HMPC formulation still allows offset-free control.

Besides the formulation of the cost function, model inaccuracies, be it non-modeled

parts or uncertainties in the model, can lead to an offset in the tracking of a reference

value. To account for these unmeasured disturbances, a method proposed by [31] is

adopted. The system state is augmented by nd ∈ R integrating disturbances d ∈ Rnd .

Those disturbances are driven by a white noise wd ∈ R
nd , yielding

d(k+1) = d(k) +wd(k). (3.17)

The augmented system can be written as

│

x(k+1)

d(k+1)

│

=

│

Ad βd

0nd×nx Ind

│ │

x(k)

d(k)

│

+ . . .

│

Bd

0nd×nu

│

uc(k) +

│

Ed

0nd×nvc

│

vc(k) +

│

gd
0nd

│

+

│

wx(k)

wd(k)

│ (3.18a)

│

Ths(k)

Tcc(k)

│

= [Cd δd]

│

x(k)

d(k)

│

+Dd uc(k) + F d vc(k) + hd(k) + vy(k) (3.18b)

with the process noise wx ∈ R
nx and the measurement noise vy ∈ R

2. It should be

noted that each model in the SAS and both linearization methods can have a separate

disturbance model. For the sake of simplicity, in this thesis, all models use the same

disturbance model. By the choice of the matrices βd ∈ R
nx×nd and δd ∈ R

2×nd the

influence of the disturbances on the states and outputs is modeled. The only restriction

on selecting these matrices is that the augmented system must be detectable so that an

observer can estimate the states and unknown disturbances. The detectability of the

system is given when the unaugmented system is detectable and the following condition

holds:

rank

(

(

│

Inx −Ad −βd

Cd δd

│

)

) = nx + nd (3.19)

Another condition follows from (3.19) and the formulation of the Kalman filter that

estimates the integrating disturbance:

nd = n
fb
y = 2 (3.20)

with nfby ∈ R being the number of outputs used for feedback, which is 2 in the case of

the proposed HMPC. The proof of this condition is given in [32].

To summarize, in the offset-free formulation of the HMPC, the augmented system given
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3.2 Temperature controller 21

in (3.18) is used by the controller to predict Np many steps into the future. A Kalman

filter, further described in Section 3.3, estimates the unknown disturbances along with

the state vector.

Example 3.2.1 (Offset-free formulation):

In the following, a short illustrative example is given to clarify the offset-free for-

mulation. For simplicity, we consider a SISO system without an integrating state

with the discrete state and output equations fx and fy, respectively:

x(k+1) = fx
 (

x(k), u(k)
 )

(3.21a)

y(k) = fy
 (

x(k), u(k)
 )

(3.21b)

Thereby, x is the state vector, u the input, and y the model output. The problem

with using this unaugmented model in a model predictive control scheme is de-

picted in Fig. 3.3. The controller determines the future inputs so that the output

trajectory y(k+i|k) tracks the reference. However, due to the unknown distur-

bances acting on the system, the actual output at the next time step does not

follow the predicted trajectory and remains at the same value in this example. If

we now repeat the calculation of the control inputs, we get the same results. In

this way, it proceeds forever, and the control system is not able to compensate for

the unknown disturbances.

When the model of the controller is augmented with an integrating disturbance d,

yielding

x(k+1) = f augx

 (

x(k), u(k), d(k)
 )

(3.22a)

y(k) = f augy

 (

x(k), u(k), d(k)
 )

(3.22b)

with the augmented state and output equations f augx and f augy , the controller is able

to track the reference offset-free. When the output does not follow the predicted

trajectory, the observer corrects for the model mismatch by adapting the estimation

of the unknown disturbance and the state vector. Therefore, in the next time

step, the controller determines different control variables and the predicted output

trajectory should better match the actual system. This formulation allows the

control scheme to compensate for the unknown disturbances and track a reference

value offset-free.

Note that in this example, the control variables are instantaneously applied to the

system.
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3.2 Temperature controller 22

Figure 3.3: Schematic illustration of control actions using the unaugumented

(left) and augmented model (right).

Implementation

Now the optimization problem can be constructed with all constraints, cost terms, and

the augmented system model, yielding

└

U
red,∗
b,ctr ,U

∗
c

┘

= arg min
U

red

b,ctr,U c

J
 (

X,U red
b,ctr,U c,V c,V b

 )

(3.23)

subject to (3.2)-(3.7) and (3.18) with the optimized binary and continuous inputs,U red,∗
b,ctr

and U ∗
c respectively, over the horizon.

However, only the optimized control variables at time step k+1 are implemented on the

plant. In the next sample, the optimization problem is solved again to calculate the

up-to-date sequence of optimized control variables, which leads to a receding horizon

control law. The optimization problem is set up in Matlab using the toolbox Yalmip [33].

The Gurobi solver [34] is used to solve the optimization problem. During the tuning of

the HMPC parameters special care has been taken to ensure that the HMPC can solve

the optimization problem in the sampling time Ts.

3.2.2 Model predictive controller

To explore the advantages of the HMPC regarding its flexibility in the choice of control

variables and the benefits of the model that explicitly considers door openings, a model

predictive controller (MPC) with a simpler structure is proposed. This MPC also has a
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3.2 Temperature controller 23

hybrid model but a reduced number of modes. For easier distinction from the HMPC,

this controller is referred to as MPC in the following. The MPC has almost the same

formulation as the HMPC but differs in two ways. Door openings are treated not

explicitly in the model formulation, but as a disturbance heat flow that directly affects

the air inside the cooling chamber. Therefore, the heat transfer from the environment

to the inside of the cooling chamber (2.14) is modified according to

Q̇MPC
amb (t) = ξ1 [Tamb(t)− Tcc(t)] + Q̇

MPC
door (t) (3.24)

with the disturbance heat flow Q̇MPC
door ∈ R part of the continuous disturbance vector of

the MPC vMPC
c (t):

vMPC
c (t) :=

└

Twtr(t), Tamb(t), Q̇
MPC
door (t)

┘T
. (3.25)

The disturbance heat flow is estimated in advance based on the current temperatures

and the length of the predicted door opening. The modified model makes the binary

disturbance vb obsolete in the formulation of MPC.

Another difference to the HMPC is that the MPC can only operate the TEC and the

fan in parallel, yielding the constraint:

sMPC
f (k+i) = sMPC

cu (k+i), ∀i ∈ {1, 2, . . . , Np-1} (3.26)

These two modifications significantly reduce the number of binary decision variables in

the optimization problems, which substantially shortens the computation time of the

MPC compared to the HMPC.

3.2.3 PI controller

A PI controller is constructed to compare HMPC and MPC with a state-of-the-art

temperature controller for refrigerated vehicles. The PI controller calculates the con-

tinuous control variable Itec(k) based on the deviation of the measured cooling chamber

temperature Tmeas
cc ∈ R from the set point T ref

cc . The control law is implemented in

discrete-time form, yielding

Itec(k) =Itec(k − 1) +Kp

└

Tmeas
cc (k)− T ref

cc

┘

+ . . .

Kp

└Ts

Tn
− 1

┘└

Tmeas
cc (k − 1)− T ref

cc

┘

,
(3.27)

with the controller parameters Kp ∈ R and Tn ∈ R. These parameters were later tuned

in simulations and experiments by the method of trial and error. Additional to this

simple control law, some additional rules are imposed to comply with the restrictions

on the plant (e.g minimum up and down time, . . . ) and to be able to set the binary

control variables:
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3.3 Observer 24

(i) Cooling unit and fan are switched off when the current of the TEC

is zero. The PI controller sets only the single continuous control variable and

does not include the other binary control variables of the plant in its formulation.

Therefore, the current value set by the controller must be used to infer the state

of the cooling unit and the fan. A straightforward approach has been taken,

where the cooling unit and the fan are always operated in parallel. They are both

switched off when the current value of the TEC is set to zero, otherwise both are

active.

(ii) Minimum up and down times are always obeyed. It must always be ensured

that minimum start-up and shut-down times of the cooling unit and the fan are

observed by the temperature controller.

(iii) The current of the TEC is set to zero when the door is opened at the

next possible time step. During a door opening, the fan should be turned off

due to the increased energy consumption of that operating mode. Setting the

current to zero will switch off the cooling unit and fan according to (i). However,

the minimum up and down time defined by rule (ii) must always be observed.

(iv) The current value calculated by the PI controller is limited by the

minimum and maximum current. The imposed limits of the minimum Imin
tec

and maximum current Imax
tec of the plant must be observed by the temperature

controller. These limits are not active when the current of the TEC is set to zero.

Hence, the cooling unit and the fan are turned off.

(v) The current of the TEC is set to zero when the temperature of the

cooling chamber is below the temperature window. Due to the restricted

current range of the TEC, it is not always feasible to obey the temperature window

with a constant current. Therefore, the current is set to zero and the cooling unit

and fan are turned off when Tcc is below T
min
tw . Cooling unit and fan are turned

on again when Tcc is greater than T
max
tw .

3.3 Observer

An extended Kalman filter estimates the current state x and disturbance vector d, as

described by [35]. The observer is necessary to overcome the lack of full-state mea-

surability. Due to the observer’s filtering of the possible noisy measurement data, the

estimated values are also more favorable as inputs to the controller. The extended

Kalman filter applies the nonlinear model of the plant for the estimation of both the

state and the disturbance vector of the offset-free formulation. Its dynamics are deter-

mined by the process noise and measurement covariance matrix, Qkf ∈ R
(nx+nd)×(nx+nd)

and Rkf ∈ R
2×2 respectively. Since the process and measurement noise covariances are

unknown, the specification of Qkf and Rkf is attempted in a trial and error approach.
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Chapter 4

Experimental results

In the following, the model and the controller are evaluated using an experimental

setup and the results are presented and discussed. First, the experimental structure is

explained in Section 4.1. Then, the model results with the identified parameters are

given and the model is experimentally validated (Section 4.2). In Section 4.3, closed-

loop experiments are performed with the three different temperature controllers and

the results are discussed.

4.1 Experimental structure

The test bed of the cooling chamber of a small-scale refrigerated truck with a secondary

loop refrigeration unit was built to evaluate the performance of the proposed tempera-

ture controllers experimentally. This test bed contains the cooling chamber, the cooling

unit, and various actuators and sensors, as shown in Fig. 4.1. From the outside, the

insulated walls and the door with its closing mechanism can be seen (Fig. 4.1.a). The

cooling unit is located on the top of the cooling chamber with the water-cooling block

on one side and the air-cooled heat sink on the other side of the TEC (Fig. 4.1.b). In

Fig. 4.1.c, the inside of the cooling chamber is shown. Several temperature sensors are

installed in the cooling chamber. However, only the temperature sensor on the back

wall is used to measure the cooling chamber temperature Tmeas
cc . An electric heater is

installed at the bottom of the cooling chamber, but it was never used in the conducted

experiments. The auxiliary components for the water-cooling of the cooling unit are

installed at the back of the cooling chamber (Fig. 4.1.d). The most important compo-

nents of the experimental setup are listed in Table 4.1.

In the following, measurement values are indicated with the superscript ’meas’.
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4.1 Experimental structure 26

a) b)

c) d)

Figure 4.1: Image of cooling chamber in front view (a), cooling unit (b), inside

of the cooling chamber (c), components of the water cooling at the back of the

cooling chamber (d).
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4.2 Model identification and validation 27

Table 4.1: Specifications of the experimental setup.

Condition Value

Cooling chamber

Dimensions 40 cmx 58.5 cmx 77 cm

Volume 180.2 liters

Cooling unit

TEC ET-161-12-08-E [36]

Heat Sink Fischer LA V 6-100-24 [37]

Fan ebmpapst 614 NHH-119 [38]

Buck-Converter

Supply Voltage 24V

Switching frequency 20 kHz

MOSFET BTS7960 High Current 43A H-Bridge Motor Driver [39]

Inductor NAC-15-0201 [40]

Capacitor 2x in parallel THT Elektrolyt Kondensator 22µF [41]

Diode onsemi SB1245 [42]

Relay Songle Relay SRD-05VDC-SL-C [43]

Data acquisition

Sampling time Ts,meas 2.5 s

Setup for Tmeas
hs , Tmeas

cc , Tmeas
wtr , T

meas
amb

Sensor Dallas DS18B20 [44]

Accuracy ±0.5 ◦C

Setup for Imeas
tec

Sensor Texas Instruments INA260 [45]

Accuracy ±0.035A

Setup for Pmeas
tec , Pmeas

f

Sensor Texas Instruments INA260 [45]

Accuracy ±3.4W

Setup for smeas
door

Sensor RS Pro AP5T31Z11 [46]

4.2 Model identification and validation

By using the methodology described in Section 2.3.2, the unknown model parame-

ters are identified and then the model is validated. The model is trained on nI = 2

experimental data sets and evaluated on nV = 1 validation data set V . For model

identification, appropriate data acquisition is essential to measure the system behavior

correctly. Uncertainties can be caused by many factors, such as sensor inaccuracies,

measurement equipment, and unknown disturbances. Due to the hybrid structure of
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4.2 Model identification and validation 28

Table 4.2: (Estimated) model parameter values.

Parameter
Normalization (Estimated)

Unit
coefficient normalized value

α1 0.24 0.471 (±0.14%) WA−1K−1

α2 4 0.568 (±0.02%) WA−2

α3 6 0.317 (±0.30%) WK−1

β 2000 0.566 (±0.33%) WsK−1

γ1 12 0.609 (±0.28%) WK−1

γ2 2 0.303 (±0.50%) WK−1

ζ 12 0.502 (±0.05%) W

κ1 15000 0.768 (±0.40%) WsK−1

κ2 24 0.221 (±0.67%) WK−1

ξ1 2 0.547 (±0.36%) WK−1

ξ2 60 0.257 (±0.46%) WK−1

χ 8000 0.528 (±0.47%) WsK−1

the model, it was important that the system is operated in all relevant modes in both,

the identification and validation, data sets. The same applies to the continuous inputs

of the system. The measurement data was collected in an open-loop fashion by man-

dating the controllable inputs.

Either measurement values are taken for the initial states of the model or, in case of

the non-measurable wall temperature Tw, the steady state evaluation of the model is

used.

By using the identification data sets, the unknown normalized parameter vector θ′∗

was estimated by applying the trust-region reflective Newton search algorithm. The

normalization coefficients were chosen by an iterative procedure so that all parameters

fit in the interval between 0.1 and 1. Figure 4.2 shows the estimated normalized pa-

rameters. All parameters possess a standard deviation below 0.75% of their respective

mean, indicating that the model structure fits the experimental setup very well. In

particular, the parameters α′2 and ζ ′ have a very low standard deviation, which can be

explained by their static influence on the outputs of the power consumption of the TEC

and the fan. This static behavior fits very well to the real conditions on the test bench

and in general the electrical system can be described very well by lumped parameters.

The numerical values of the parameters and their respective normalization coefficient

are given in Table 4.2.

Some of the estimated parameters can be compared with the parameters specified in

data sheets, which are listed in Table 4.3. Note that the TEC’s data sheet parame-

ters were converted to the parameters α1, α2, and α3 used in this thesis, as described
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4.2 Model identification and validation 29

Figure 4.2: Estimated normalized values and standard deviations of model

parameters. Figure adopted from [13].

in [18–20].

The estimated parameters show good agreement with those of the data sheet. The only

notable deviation is in the estimated value α2, which corresponds to the electrical re-

sistance of the TEC. The deviation can be explained by the experimental setup having

a greater resistance due to additional wires, which are not considered in the data sheet.

Since the Celsius scale is much more widespread in everyday use than the Kelvin scale,

temperature values will be expressed in degrees Celsius, with the conversion according

to

ϑρ = Tρ − 273.15 (4.1)

with ρ ∈ {hs, cc,wall,wtr, amb, tw}.

In Fig. 4.3, the time performance of the model is evaluated using the validation data

set V with nk(V) samples. Both the input and output data are presented. Due to their

strong influence on the model dynamics, the two door openings are highlighted by gray

background shading. The other two disturbances, ϑwtr and ϑamb, are about constant

throughout the validation dataset, being 15.2±0.1◦C and 22.1±0.2◦C respectively. The

controllable input of the current through the TEC is displayed in the plot at the bottom

of the figure. The status of the fan and the TEC can be concluded from the related

power consumption. The performance of the model can be quantitatively evaluated by
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4.2 Model identification and validation 30

Table 4.3: (Estimated) parameter values and parameters from the data sheet

Parameter
Estimated Data sheet

Unit
Difference

value value in %

α1 0.113 0.134 [36] WA−1K−1 15.6

α2 5.45 3.58 [36] WA−2 52.2

α3 1.90 1.82 [36] WK−1 4.4

β 1130 1026 [37] W sK−1 10.1

ζ 6.02 5.8 [38] W 3.8

the normalized root mean square error NRMSEi ∈ R of each output, given by

NRMSEi := 1−

┌

│

│

│

│

│

│

│

√

nk(V)
∑

k=1
ymeasi (tk)− yi(tk)

nk(V)
∑

k=1
ymeasi (tk)− ymeasi

(4.2)

with the mean of each measured output ymeasi ∈ R according to

ymeasi =
nk(V)
∑

k=1

ymeasi (tk), (4.3)

and the subscript i indicating the respective output. From a purely visual point of view,

the model outputs correspond very well to measurement data. This is also quantitatively

supported by the high values of the NRMSE. Especially the model outputs of the heat

sink temperature, ϑhs, and the power consumption of the TEC, Ptec, have an excellent fit

to the validation data. The model output of the cooling chamber temperature, ϑcc, has

the lowest NRMSE of all outputs and also deviates noticeably from the measurements,

particularly in the event of a door opening. The relatively simple model for a door

opening and subsequent cooling by the stored thermal energy in the wall and heat

sink has difficulty describing these complex dynamics because the dynamics on the

test bench are additionally influenced by other factors such as humidity and air flow

through the cooling chamber that are not explicitly considered in the model. In general,

however, the fit is very good even on this output, especially considering the low order

of the model. The power consumption of the fan, Pf, is also well represented by the

model. The noisy measurements explain the relatively low NRMSE of only 77.5% on

this output, which is due to the limited accuracy of the sensor in low power ranges.

To be able to bring the model into the chosen DHA formulation, the system is linearized

according to Section 2.3.3. Two different linearizations were conducted, l = 1 and l = 2.

The first linearization is valid only in a very restricted current interval, while the second
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4.2 Model identification and validation 31

Figure 4.3: Comparison of experimentally obtained measurement data and

model outputs on validation data set V . In the first two graphs, the heat

sink and cooling chamber temperature are displayed, followed by the power

consumption of the TEC and the fan. At the bottom of the figure, the cur-

rent of the TEC is plotted. The respective power consumption can be used to

infer the status of the cooling unit and the fan. Door openings are indicated

by gray background shading, while the other measurable disturbances of the

system are constant over time at ϑwtr = 15.2± 0.1◦C and ϑamb = 22.1± 0.2◦C.

Furthermore, the NRMSE is given for the respective outputs.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


4.3 Controller performance 32

should provide a good fit in a wider current range. The linearization parameters were

fitted to the nonlinear model in a limited current and heat sink temperature range. The

selected intervals and the fitted parameters are depicted in Table 4.4.

Table 4.4: Fitted linearization parameters

Linearization l = 1 Linearization l = 2

Fitting Intervals

I
lin,min
tec 3A 0A

I
lin,max
tec 7A 7A

ϑ
lin,min
hs -7.5◦C -7.5◦C

ϑ
lin,max
hs 17.5◦C 17.5◦C

Fitted Parameters

λ1 0.5646WK−1 -

λ2 8.684WA−1 -

λ3 -103.4W -

λ4 - 19.39WA−1

4.3 Controller performance

First, the parameters of the controller and the observer are tuned. Care was taken to

ensure that the controllers have similar dynamics to be comparable. The results of the

tuned parameters of the controllers and the observer are displayed in Table 4.5. The

blocking matrix Tmb is presented separately in Table 4.6.

The performance of the three controllers was evaluated on a 5.25 hours experiment

with four door openings, shown in Fig. 4.4. The two predictive controllers knew those

four door openings in advance and incorporated them into their predictions. The ex-

periment was divided in four intervals Sj, j ∈ {1, 2, 3, 4} with nk(Sj) samples each, to

evaluate each controller in those intervals. The first interval S1 has a total length of 1.5

hours, during which the cooling chamber temperature is cooled down from ambient tem-

perature to the reference temperature. It should be noted that during this pull-down

operation, the HMPC and MPC have a different objective function that does not take

the power consumption into account compared to the normal operation as described

in Section 3.2.1. The remaining 3.75 hours of the experiment were divided into three

intervals of equal length. Interval S2 has a single door opening with a duration of 3

minutes, starting 2 hours after the start of the experiment. The next two door openings

are included in the third interval S3. The second door opening starts at 3 hours with

a duration of 2 minutes, shortly followed by the third door opening at 3 hours and

5 minutes with a duration of 2 minutes as well. The last interval S4 has a long door
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4.3 Controller performance 33

Table 4.5: Tuned parameter values of controllers and observer

Parameter Value Unit

Ts 20 s

Np 1200 s

Nc 620 s

Imintec 3 A

Imaxtec 7 A

∆tupcu 100 s

∆tdowncu 100 s

∆t
up
f 100 s

∆tdownf 100 s

ϑhs,min -10 ◦C

ϑmintw 4.5 ◦C

ϑmaxtw 5.5 ◦C

ϑmintw,soft 5.3 ◦C

ϑrefcc 5 ◦C

Parameter Value Unit

R1 11.361 -

R2 30.169 -

Q1 400 -

Q2 10000 -

S 1000 -

T1 1000 -

T2 5000 -

βd 03×2 -

δd I2 -

Kp -2 -

Tn 200 -

Qkf diag [1, 1, 0.01, 1, 1] -

Rkf I2 -

Table 4.6: Blocking matrix Tmb of HMPC and MPC

Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Column 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

Value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Row 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Column 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13

Value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

opening (=5 minutes) at 4 hours and 20 minutes after the start of the experiment. This

experiment was repeated for the three different controllers. Care was taken to ensure

that the water temperature of the water-cooling and the ambient conditions were the

same for all controllers.

The water (=15.4 ± 0.2◦C) and ambient temperature (=22.0 ± 0.2◦C) were constant

throughout the experiment with all three controllers. Without door openings, it is

clearly visible that all three controllers are able to fulfill the temperature window.

Moreover, each of the controllers is able to cool down the temperature of the cooling

chamber in a reasonable time after a door opening. However, the total power consump-

tion Pmeastotal = Pmeastec + Pmeasf ∈ R differs significantly among the three controllers. This

results in energy savings with the two predictive controllers compared to the state-

of-the-art PI controller. The relative energy savings Esaving ∈ R of each controller
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4.3 Controller performance 34

Figure 4.4: Experimental evaluation of the three temperature controllers. The

closed-loop experiment with four door openings is divided into four intervals.

The three upper diagrams depict the cooling chamber temperature, the total

power consumption, and the energy savings in each interval over time. The

bar graphs at the bottom show the total energy consumption Econ and the

right Riemann sum of the temperature window violation in each interval Ctw,

respectively.
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compared to the PI controller in each interval are defined according to

Esaving(k,Sj, ctr) = Ts,meas

k
∑

k=1

[

Pmeastotal (k,PI)− Pmeastotal (k, ctr)
]

k
∑

k=1
Pmeastotal (k,PI)

(4.4)

with ctr ∈ {HMPC,MPC,PI} indicating the controller configuration.

The bar graph at the bottom left of Fig. 4.4 shows the total energy consumption Econ ∈

R according to

Econ(Sj, ctr) = Ts,meas

nk(Sj)
∑

k=1

Pmeastotal (k, ctr). (4.5)

The other bar graph shows the right Riemann sum of the temperature window viola-

tion Ctw ∈ R without the intervals of the door openings according to

Ctw(Sj, ctr) = Ts,meas

nk(Sj)
∑

k=1

(







{







{

Tmeascc (k)− Tmaxtw , if Tmeascc (k) ≥ Tmaxtw ∧ smeasdoor (k) = 0

Tmintw − Tmeascc (k), if Tmeascc (k) ≤ Tmintw ∧ smeasdoor (k) = 0

0, otherwise

.

(4.6)

In interval S1, the performance of the three controllers is almost identical. During the

pull-down operation, all three controllers operate with maximum power consumption

to cool down the cooling chamber as quickly as possible. Only small energy savings

are achievable for the HMPC and MPC by reducing the power consumption slightly

earlier than the PI controller. The HMPC and PI controller comply with the temper-

ature restrictions better than the MPC, as shown by the loweer Ctw values. However,

the energy savings and the Ctw value in this interval are strongly dependent on the

initial conditions of the system. In the second interval S2, the HMPC is able to save

23.2% of energy compared with the PI controller and at the same time maintain the

temperature window better. The MPC can also save 15.1% in this interval but cools

down the cooling chamber after the door opening significantly slower than the MPC

and PI controller. The same applies to interval S3 and S4 with energy saving with

the HMPC of 30% and 34% and with the MPC of 24.9% and 33.3% compared with

the PI controller. In S3, the PI controller has the best performance regarding the in-

dicator Ctw for the violation of the temperature window. That can be explained by

the increased cooling of the PI controller between the two door openings. However,

this behavior is very inefficient since the door is opened again and the cold air is lost

to the environment. Therefore, the two predictive controllers, knowing the next door

opening, reduce their cooling capacity between the successive door openings. Overall,

the HMPC saves 17.4% energy over the entire 5.25 hour experiment, while the MPC

saves 12.0% compared with the PI controller.

Since door openings of refrigerated trucks are not always precisely known, the three

controllers are evaluated on another experiment S5 with an unexpected door open-
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4.3 Controller performance 36

Figure 4.5: Controller evaluation on experiment S5 with an unexpected door

opening. The temperature of the cooling chamber, the total power consump-

tion, and the energy savings are plotted over time. Furthermore, the unan-

ticipated door opening is indicated by a gray background shading. The water

temperature and ambient temperature were constant throughout the experi-

ment at 15.3± 0.1◦C and 21.7± 0.1◦C respectively.

ing with a duration of two minutes. The two predictive controllers have no infor-

mation about the door opening during this interval, and only when the door opens,

the HMPC and MPC assume that the door will remain open for another two min-

utes. This predicted door opening interval is shifted forward until the door is closed

again. In Fig. 4.5 the results of the experiment with the unexpected door open-

ing are shown. Both water temperature and ambient temperature were again con-

stant for all three controllers at 15.3 ± 0.1◦C and 21.7 ± 0.1◦C, respectively. As in

the previous experiment, the two predictive controllers can achieve lower energy con-

sumption than the PI controller. The total power consumption with the HMPC and

MPC is 35.0Wh and 35.1Wh respectively, and with the PI controller is 40.3Wh, yield-

ing energy savings of 13.1% and 13.0% for the HMPC and MPC compared with the

PI controller. Though the performance of the MPC in terms of observing the tem-

perature window is significantly worse compared with the HMPC and PI controller

(Ctw(S5,HMPC) = 985Ks, Ctw(S5,MPC) = 1115Ks, Ctw(S5,PI) = 1073Ks).
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4.3 Controller performance 37

In general, it can be said that the two predictive controllers achieve the largest energy

savings when a door opening occurs. The two predictive controllers can save energy

by storing thermal energy in the cooling unit’s secondary loop prior to the expected

door opening and quickly releasing it to the air inside cooling chambers after the door

is closed. This allows the predictive controllers to reduce the cooling capacity after the

door is closed, thereby operating the cooling unit more efficiently while achieving the

same cooling of the air after the door is closed as with the PI controller. During the

pull-down operation the HMPC is able to achieve energy saving of 6.8% by reducing

the cooling capacity earlier than the PI controller. The MPC only achieves marginal

savings of 0.6%.

Furthermore, the computing time of the individual controllers must be considered. The

HMPC needs by far the longest time for the calculation of the controlled variables,

and occasionally reaches the limit of the sampling time. When the sampling time is

exceeded, a suboptimal solution is applied by the HMPC. The MPC and PI controller

require significantly less computing time to determine the control variables and never

come close to the limit of the sampling time.

Nevertheless, the experimental results show that the proposed HMPC can outperform

the other two controllers in terms of compliance to temperature requirements and

achieving high overall energy efficiency. The MPC may also achieve similar energy

savings as the HMPC compared to a state-of-the-art PI controller. However, it per-

formed the worst out of the three controllers in terms of maintaining the temperature

window. Adjusting the MPC’s weighting parameters may improve performance in terms

of maintaining the temperature window, but this would also result in increased energy

consumption of the MPC.
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Chapter 5

Discussion

The proposed HMPC shows exceptional results in meeting temperature restrictions

while achieving high overall energy efficiency. With respect to both objectives, the

HMPC has a significantly better performance than the other two controllers used for

comparison.

The advantages of the HMPC may be further enhanced by expanding the horizons and

generally relaxing some of the constraints imposed to reduce the computational time of

the controller. These restrictions to the optimization problem reduce the search space

of the optimizer, and more optimal solutions may be excluded. However, for the real-

time implementation of the controller on the experimental setup, these constraints were

necessary to find a solution of the optimization problem within the sampling time of

the controller.

While all controllers observe the minimum startup and shutdown times, it is apparent

that the two model-based controllers turn the cooling unit and fan on or off much more

frequently than the PI controller. The wear of the cooling unit’s compressor depends

mainly on the on-off cycles. Hence the number of cycles should be kept as low as pos-

sible to increase the lifetime of the cooling unit. For this reason, others [47] explicitly

considered the switching event in the objective function of the control scheme.

Direct control of the cargo temperature instead of regulating the air temperature inside

the cooling chamber would have obvious advantages. In the literature several authors

proposed models for estimating the cargo temperature [48–50]. However, for these mod-

els, accurate estimates of the cargo properties are necessary. In case the same goods

are repeatedly transported, the parameters of the goods could be estimated and the

model of the cargo could be integrated into the controller formulation. The additional

effort could be justified for transporting pharmaceutical products, which are costly and

subject to strict temperature restrictions.

The studies performed are limited to temperatures above the freezing point. However,

many refrigeration applications operate well below these temperatures, necessitating

the inclusion of mass infiltration and air humidity in the model formulation [51, 52].

Another aspect that must be considered in the model with temperatures below the

freezing point is the formation of frost on the components inside the cooling cham-
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5 Discussion 39

ber [53]. Frost can significantly reduce the cooling capacity and also increase energy

consumption, so a suitable strategy for defrosting should be considered in the control

scheme [54].

The model of the cooling chamber and cooling unit shows highly satisfactory results on

the experimental setup, especially when considering the low order of the model, which

is very beneficial for real-time control applications to reduce computational time. How-

ever, the model neglects some environmental factors that could affect the performance

of an actual refrigerated vehicle on the road, such as thermal radiation, vehicle speed,

and air humidity. Those influences could be subject to further research.
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Chapter 6

Conclusion

This work introduces a model predictive control scheme for a refrigerated truck with a

secondary loop cooling unit to control the air temperature inside its cooling chamber.

Experimental closed-loop results show that an advanced control scheme can achieve

energy savings compared to less sophisticated controllers while maintaining temperature

requirements by taking full advantage of the flexibility of the secondary refrigeration

unit. The benefits of the sophisticated control concept are particularly evident when

the door of the cooling chamber is opened, resulting in energy savings of up to 34.2%

during a single door opening compared with a state-of-the-art PI temperature controller

with similar performance in meeting the temperature requirements. During a 5.25 hour

long experiment, the advanced control concept consumed 17.4% less electrical energy

than the PI controller. The advantages of flexibility in the selection of control variables

and the explicit consideration of door openings are also apparent when compared to

another model-based predictive control concept.

The predictive control scheme relies on a dynamic model of the system, which has

an excellent fit on the experimental setup considering the low order of the model.

In the validation experiment, the important model outputs for the cooling chamber

temperature and the power consumption of the TEC have an NRMSE of 76.1% and

96.6%, respectively.

For a small-scale refrigerated truck under consideration, it can be justified that some

influences have been neglected in this thesis, such as solar radiation, vehicle speed, cargo

temperature, and frost formation. However, the results show that for a refrigerated

truck with a secondary loop refrigeration system, energy efficiency and compliance with

temperature requirements can be significantly improved with sophisticated predictive

control schemes.
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