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ABSTRACT

Every year, floods cause global socio-economic losses of more than US$100 billion with
an increasing trend due to growing economic activities in flood-prone zones and changes
in the climate patterns. Flood warning can assist in reducing these losses based on flood
forecasting models that simulate the physical rainfall-runoff-inundation processes in
river basins. These models have to be as accurate and reliable as possible. However,
the equations, the model parameters, the boundary conditions and the inputs are all
affected by inherent uncertainty. Data assimilation (DA) techniques integrate ground
based or satellite observations into the model in order to reduce the uncertainty associ-
ated with both model results and measurements. In this PhD study, flood extent maps
derived from Synthetic Aperture Radar (SAR) observations are assimilated into flood
forecasting models by using newly developed filtering techniques based on variants of
the Particle Filter.

The thesis is organised into three parts. In the first, as a proof of concept of a DA
framework previously introduced in the scientific literature, we evaluate a Sequential
Importance Sampling (SIS) variant of a Particle Filter in a controlled environment where
synthetically generated rainfall and SAR observations represent the only sources of un-
certainty. We show that DA indeed improves the model performances in terms of water
level, discharge and flood extent predictions. However, the state-of-the-art filter used in
part 1 shows a tendency for degeneracy issues, as the number of particles with a signifi-
cant weight reduces after the assimilation.

For that reason, in the second part of the thesis, we enhance the existing SIS to mit-
igate the degeneracy and sample impoverishment issues. We develop a DA framework
based on a Tempered Particle Filter (TPF) and evaluate it in a synthetic twin experiment,
where rainfall and SAR observations are known to be the only sources of uncertainties.
The analysis finds that the model results are improved and the degeneracy issue is miti-
gated.

In the third part of the PhD study, the TPF is applied in a real-world experiment,
where the uncertainties are no longer controlled. Three flood events of the River Sev-
ern in the UK are used as test cases. The filter performances differ depending on the
gauging stations considered as a reference for the evaluation. For the gauging stations
located downstream of the confluence of the three main rivers (i.e., Theme, Avon and
Severn) close to the downstream boundary of the hydraulic model, the model results in
terms of water level simulations are substantially improved. However, the improvements
are less significant in terms of inflows at the upstream boundaries of the model, due to
compensation effects between the contributing tributaries.

Overall, the study is considered an important step towards an enhanced Particle Fil-
ter by reducing degeneracy and sample impoverishment and improving predictions for
the downstream gauging stations. The comparison of the real-world test case with the
synthetic one shows that the assumption of the rainfall and SAR observations as the only
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sources on uncertainty could be too simple, given the complexity of the hydrological
processes involved, and it is suggested to take additional sources of uncertainty into ac-
count in future studies.



1
INTRODUCTION

Accurate, precise and timely forecasts are essential for reducing or mitigating the effects
of floods. Rainfall-runoff and shallow water models are used to forecast the dynamic out-
puts (e.g., inundation area, water depth, and/or discharge) for flood prevention, warn-
ing, emergency response, and risk reduction. Spatially and temporally distributed ob-
servations of key hydrologic variables are often used to improve the accuracy and re-
liability of flood forecasts. In this study we use Remote Sensing observations, namely
Synthetic Aperture Radar (SAR) data, for this purpose. The value of SAR data is linked to
the capacity of radar sensors to penetrate clouds, retrieve information regardless of light
conditions, and provide information over large areas. However, the SAR observations are
inherently uncertain (Moradkhani et al., 2005). SAR observations are not exempt from
errors in flood area detection, especially in densely vegetated areas and built-up envi-
ronments and when the acquisitions take place during challenging weather conditions
(strong wind or heavy rainfall) (Chen et al., 2018; Grimaldi et al., 2020; Zhao et al., 2021).
Moreover, depending on the flashiness of the flood events, the use of SAR observations
in near-real time can be still limited by the satellite revisit period, although this was re-
duced to 3 days over Europe with Sentinel-1. The latency (time between the acquisition
and the availability of the data for the user) has been substantially reduced recently and
reaches few hours, for example, for Sentinel-1. In addition, models can also present a
source of significant uncertainty due to simplified model structures, insufficiently well
determined or calibrated model parameters, erroneous input data, etc. Due to the un-
certainties of predicted and observational datasets, much research has focused on sta-
tistically combining observation with model simulations in a framework that merges the
knowledge of both datasets to yield a more accurate system state estimation, along with
the uncertainty of the prediction. This process is called Data Assimilation (DA).
Data assimilation methods are often split into two families: variational methods and
statistical methods. Variational methods (4D Var) are based on the definition of a cost
function J (x) which defines the discrepancy between the computational results and ob-
servations. 4D-Var can be considered as an unconstrained optimization problem that
seeks an optimal control vector x to minimize the cost function J (x). Statistical methods
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are based on the Bayes’ theorem and the uncertainty of the model, and the observations
are represented by probability distributions functions (pdfs). Bayes’ Theorem states that
the conditional probability of the model based on the observations (posterior proba-
bility), is equal to the likelihood of the observations given the model multiplied by the
probability of the model (prior probability) divided the marginal probability of the ob-
servations (i.e. normalising constant).

p(x | y) = p(y | x)

p(y)
p(x) = p(y | x)�

p(y | x)p(x)δx
p(x) (1.1)

Estimating these pdfs in large dimensional systems is impossible. Therefore, some meth-
ods use an ensemble of state vectors to represent a statistical sample of the forecast
or analysis uncertainty. Each ensemble member represents one possible realisation of
the true state of the system, given uncertainties in initial conditions and/or model pa-
rameters. The Ensemble Kalman Filter (EnKF), which is a variant of the Kalman Fil-
ter, is widely used in hydrological applications (Revilla-Romero et al., 2016; Cooper et
al., 2018a; Annis et al., 2021; Wongchuig-Correa et al., 2020). It is based on an ensem-
ble of N state vectors xi , (i = 1,2, ..., N ) that represents possible states of the system. 2
steps are performed, analysis and forecast. In the forecast step, the state vector is prop-
agated from time tk to time tk+1 using the model (M) such that: xi (tk+1) = M(xi (tk )).
The analysis step is performed when an observation is available and the state vector is
updated based on the observational information. The observation yobs can be described
by: yobs = H(x t )+ϵ where H maps the state vector into the observation space. The state
is updated according to:

xa = x f +K (yobs − y f ) (1.2)

where xa is the analysis state vector, x f is the forecast state vector, y f is the model equiv-
alent of the observation, K is the Kalman gain and it contains the weights assigned to the
(yobs − y f ) term to update the system. The EnKF solves the mean and covariance of the
posterior. Even though for the EnKF the evolution in time of the system is not linear,
when confronted with the prior and the observations, pdfs are assumed to be Gaussian
and the analysis step is linear. Hydrological problems are typically non linear and the
KF-like methods have problems in dealing with non-linear problems (Leeuwen et al.,
2019).
Particle Filters (PFs) have gained recent attention from the research community because
PFs hold promises for a fully non-linear DA and relax the assumption of Gaussian errors
(Leeuwen et al., 2019). In PFs, the prior pdf is represented by an ensemble of size N of
random model state xn , called particles.

p(x) = 1

N

N�
n=1

δ(x −xn) (1.3)

Particles are obtained by running the model forward in time until an observation is avail-
able. Then, inserting the prior into the Bayes’ theorem we find that:

p(x | y) ≈
N�

n=1
Wnδ(x −xn) (1.4)
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where δ is the Dirac delta function in which particle weights are given by Equation 1.5:

Wn = p(y | xn)

N ·p(y)
= p(y | xn)

N ·�p(y | x)p(x)d x
≈ p(y | xn)

n p(y | xn)
(1.5)

Since all the terms of Equation 1.5 are known, it is possible to assign the weights to the
particles. In the PFs, a potential issue in high-dimensional problems is that the weights
carried by the different particles may vary significantly across the ensemble so that some
particles gain higher weights than all the others (weight degeneracy). If the process of
forecast and analysis is repeated a number of times, only one particle with the larger
weight will remain and the statistical information of the ensemble is lost. In this case,
the ensemble is no longer representative of the uncertainty of the system (Moradkhani
et al., 2012). To avoid this issue, an enormous number of particles would be required
resulting in a very high computational cost. Therefore, some techniques have been im-
plemented to mitigate this issue without using a large amount of particles. The most re-
cent techniques combine PFs with other techniques such as Monte-Carlo Markov Chains
(MCMC) (Andrieu et al., 2010; Moradkhani et al., 2012), or combining PFs with Meta-
heuristic Algorithms (MA) from Computer Sciences (Kwok et al., 2005), Particle Swarm
Optimization (Wang et al., 2006; Li et al., 2005), Immune Genetic Algorithms (IGA) (Han
et al., 2011). Some recent developments, such as the Evolutionary PF-MCMC (EPFM)
(Abbaszadeh et al., 2018) or the Hybrid Ensemble and Variational Data Assimilation
framework for Environmental systems (HEAVEN) (Abbaszadeh et al., 2019), generate
more accurate and reliable results in spite of the (still unrealistic) assumption of a Gaus-
sian distribution of the pdfs.
In operational flood forecasting, a hydraulic model is used to compute water level and
velocity in the river network, and when the storage capacity of the river is exceeded, in
the floodplain. Some studies assimilate satellite data derived water levels to improve
flood model forecasts [e.g. Andreadis et al., 2007, García-Pintado et al., 2015, Matgen et
al., 2010, Revilla-Romero et al., 2016, Giustarini et al., 2011a, Hostache et al., 2010], but
only few of them directly assimilate flood extents [e.g. Lai et al., 2014, Revilla-Romero
et al., 2016, Cooper et al., 2018a, Cooper et al., 2018b, Hostache et al., 2018]. In this
thesis, flood extent maps derived from SAR data are assimilated into a flood forecasting
model via variants of the PFs following the study by Hostache et al., 2018. Hostache et
al., 2018 use Sequential Importance Sampling (a variant of the PF) to assimilate proba-
bilistic flood maps (a map where each pixel is assigned a probability to be flooded given
the SAR image backscatter value) into a flood forecasting model. The flood forecasting
model used in this study has 2 components. A hydrological (rainfal-runoff) model, fed
with meteorological predictions, computes the run-off over the river reaches contribut-
ing area. The run-off is used as a boundary condition of the hydraulic (shallow-water)
model. The main assumption in this case is that rainfall and SAR observations are the
main sources of uncertainty which seems to be reasonable in operational cases because
they are likely to be the major error sources (Koussis et al., 2003; Pappenberger et al.,
2005). Improvements of the model simulation after the assimilation were not system-
atic, probably due to the underlying assumptions of the rainfall as unique model-related
uncertainty (Hostache et al., 2018). As already mentioned, model uncertainty can derive
from several sources and to better estimate the predictions and to reduce the predictive
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uncertainty other sources of uncertainties should be considered to improve the quality
of the forecasts (Moradkhani et al., 2005).

The main objective of the present study is to assess the strengths and the limitations
of the DA framework proposed by Hostache et al., 2018 in a synthetic environment and to
develop, apply, and evaluate a more robust DA framework for the assimilation of satellite
Earth Observation data into flood forecasting systems. The main aim of this thesis is
thus to advance the knowledge on PF techniques in hydrological sciences and to achieve
higher accuracy and reliability of model forecasts.
In particular, this thesis addresses the following research questions:

• Is the Sequential Importance Sampling efficient in a synthetic experiment where
the only sources of uncertainty are the rainfall and the SAR observations?

• Does the enhanced Particle Filter (Tempered Particle Filter) improve the model
results while reducing the degeneracy and the sample impoverishment issues?

• Does the enhanced Tempered Particle Filter improve the prediction accuracy and
increase the persistence of the assimilation benefits when applied to a real case
study?

Each chapter of this thesis corresponds to a published or submitted scientific arti-
cle (Chapters 2-4). In Chapter 2, we evaluate a previously introduced state of the art
DA framework by the means of a synthetic experiment where sources of uncertainty are
tightly controlled. In Chapter 3, we introduce a new algorithm based on the Temper-
ing Particle Filter (TPF) technique in order to mitigate more effectively the still present
issue of degeneracy and sample impoverishment. In Chapter 4, the TPF is applied in
a real-world experiment (River Severn in the United Kingdom). Finally, Chapter 5 con-
cludes the thesis with a summary of its key findings and a discussion of potential future
extensions of the research work.



2
ASSIMILATION OF PROBABILISTIC

FLOOD MAPS FROM SAR DATA INTO

A COUPLED

HYDROLOGIC-HYDRAULIC

FORECASTING MODEL: A PROOF OF

CONCEPT.

The present chapter corresponds to the following scientific publication in its original
form: Concetta Di Mauro, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco
Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blösch. "Assimilation of
probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecast-
ing model: a proof of concept. Hydrol. Earth Syst. Sci., 25, 4081–4097, 2021. https:
//doi.org/10.5194/hess-25-4081-2021"

2.1. ABSTRACT
Coupled hydrologic and hydraulic models represent powerful tools for simulating stream-
flow and water levels along the riverbed and in the floodplain. However, input data,
model parameters, initial conditions and model structure represent sources of uncer-
tainty that affect the reliability and accuracy of flood forecasts. Assimilation of satellite-
based Synthetic Aperture Radar (SAR) observations into a flood forecasting model is
generally used to reduce such uncertainties. In this context, we have evaluated how
sequential assimilation of flood extent derived from SAR data can help improve flood
forecasts. In particular, we carried out twin experiments based on a synthetically gen-
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2. ASSIMILATION OF PROBABILISTIC FLOOD MAPS FROM SAR DATA INTO A COUPLED

HYDROLOGIC-HYDRAULIC FORECASTING MODEL: A PROOF OF CONCEPT.

erated data-set with controlled uncertainty. To this end, two assimilation methods are
explored and compared: the Sequential Importance Sampling (standard method) and
its enhanced method where a tempering coefficient is used to inflate the posterior prob-
ability (adapted method) and to reduce degeneracy. The experimental results show that
the assimilation of SAR probabilistic flood maps significantly improves the predictions of
streamflow and water elevation, thereby confirming the effectiveness of the data assim-
ilation framework. In addition, the assimilation method significantly reduces the spa-
tially averaged root mean square error of water levels with respect to the case without
assimilation. The critical success index of predicted flood extent maps is significantly
increased by the assimilation. While the standard method proves to be more accurate
in estimating the water levels and streamflow at the assimilation time step, the adapted
method enables a more persistent improvement of the forecasts. However, although the
use of a tempering coefficient reduces the degeneracy problem, the accuracy of model
simulation is lower than the one of the standard method at the assimilation time step.

2.2. INTRODUCTION
Floods represent one of the major natural disasters with a global annual average loss of
US $104 billion (UNISDR, 2015). Extent of flood damages have risen during the last years
due to climate-driven changes and an increase in the asset values of floodplains (Blöschl
et al., 2019a). This emphasizes the need for reliable and cost-effective flood forecasting
models to predict flood inundations in near real-time. Hydrologic and hydraulic mod-
els represent useful tools for simulating flood extent, discharge and water levels in the
river bed and on the floodplain. However, both the models and the observations used as
inputs for running, calibrating and evaluating the models are affected by uncertainty.

Data assimilation (DA) aims at improving model predictions by updating model states
and/or parameters based on observations (Moradkhani et al., 2005). It optimally com-
bines observations with the system state derived from a numerical model accounting for
both model and observation errors.

Ideally, in situ data are systematically assimilated into flood forecasting models, but
these observations are not always available (e.g. in un-gauged catchments) and only
provide space-limited information (Grimaldi et al., 2016). Therefore, satellite Earth Ob-
servation (EO) data, and in particular Synthetic Aperture Radar (SAR) images, represent
a valuable complementary dataset to in situ observations due to their capacities to pro-
vide frequent updates of flooded areas at a large scale. In addition, as the corresponding
EO data archives are growing fast, historical observational data spanning an extended
period of time can be assimilated into large scale hydrodynamic models.
SAR sensors are able to acquire images of flooded areas and permanent water bodies
during day and night almost regardless of weather conditions. The backscattered signal
depends on the dielectrical properties of the imaged objects. Smooth surfaces, such as
open water bodies, interact with the transmitted pulse so that a very limited part of the
signal is backscattered to the satellite resulting in dark areas in the acquired image.
Different information about water extent can be extracted from a SAR image and used
to improve the forecasts using DA techniques. Directly assimilating flood extent maps
is not straightforward because these do not correspond to a state variable of the model.
Therefore, some studies suggested to transform the SAR backscatter information into
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state variable prior to the assimilation. For instance, several studies have used EO-derived
water levels to improve flood forecasts [e.g. Andreadis et al., 2007, García-Pintado et al.,
2015, Matgen et al., 2010, Revilla-Romero et al., 2016, Giustarini et al., 2011a, Hostache
et al., 2010]. The water levels are estimated by merging pre-selected flood extent limits
extracted from the SAR satellite imagery with a digital elevation model (DEM). This step
requires precise flood contour maps and high resolution DEMs which are not always
available (Hostache et al., 2018).

In the existing literature only a few studies have used DA for directly assimilating
flood extent maps into flood forecasting models [e.g. Lai et al., 2014, Revilla-Romero
et al., 2016, Cooper et al., 2018a, Cooper et al., 2018b, Hostache et al., 2018]. Among
the advantages of a direct use of the SAR backscatter values is that it reduces the data
processing time that is a key-element in near-operational applications.

Cooper et al., 2018b have used an Ensemble Kalman Filter to update a 2D hydro-
dynamic model. In this case, the backscatter values are directly assimilated into the
model without being transformed into state variables of the flood forecasting system.
The dry and wet pixels of the simulated binary flood map are converted into equivalent
SAR backscatter values corresponding to the spatial mean of the SAR backscatter obser-
vations.

Cooper et al., 2018b showed that the SAR backscatter-based assimilation method
performs well compared to the assimilation method where the SAR backscatter is trans-
formed into water levels.
Hostache et al., 2018 used a variant of the Particle Filter (PF) with Sequential Importance
Sampling (SIS), to assimilate probabilistic flood maps (PFMs) derived from SAR data into
a coupled hydrologic-hydraulic model with the assumption that the rainfall is the main
source of uncertainty together with SAR observations.

Their study showed that the assimilation of PFMs is beneficial: the number of cor-
rectly predicted flooded pixels increases as compared to the case without any assimi-
lation, hereafter called Open Loop (OL). Forecast errors are reduced by a factor of 2 at
the assimilation time and improvements persist for subsequent time steps up to 2 days.
However, the improvements are not systematic: for some cases the updated hydraulic
output deviates from the observations. One of the reasons could be the assumption that
rainfall represents the dominating source of uncertainty together with satellite observa-
tion errors, thereby excluding other possible sources of uncertainty in the model sys-
tem such as input data, model parameters, initial conditions and model structure. Even
though the assumption seems to be rather realistic and suitable in operational cases,
given that rainfall uncertainty has been generally identified as one of the major causes
of poorly performing models (Koussis et al., 2003; Pappenberger et al., 2005), coupled
models may have additional sources of uncertainty affecting the results.
The present study is a follow up of the real world experiment by Hostache et al., 2018
and carries out a similar experiment in a controlled environment that considers the es-
timated rainfall together with SAR observations as the only sources of uncertainty.

Hostache et al., 2018 also highlighted that degeneracy may be a major issue of PFs:
after the assimilation, the number of particles with high weights reduces to a few or only
one particle so that the ensemble loses statistical significance. To overcome this issue,
Hostache et al., 2018 used a site-dependent tempering coefficient which inflates the pos-
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terior probability. In our study, we propose to adopt an enhanced tempering coefficient
as a function of the desired effective ensemble size (EES) after the assimilation.

Moreover, in Hostache et al., 2018 speckle errors in the SAR observations, are taken
into account through the Bayesian approach introduced by Giustarini et al., 2016. How-
ever, no conclusions are drawn concerning the effect of misclassified pixels. In fact, for
some particular cases such as densely vegetated areas, the detection of flood water from
SAR imagery is known to be prone to errors. Detecting and removing such errors rep-
resents one of the main scientific challenges of using SAR data for a systematic, fully
automated, large-scale flood monitoring (and prediction).
The main objective of the present study is to assess the strengths and the limitations of
the DA framework previously proposed by Hostache et al., 2018. To do that we evaluate
the DA framework in a fully controlled environment via synthetic twin experiments as
this shall allow us drawing unambiguous and comprehensive conclusions. In addition,
we conduct a sensitivity analysis of the DA framework with respect to the critical tem-
pering coefficient that was recently introduced for tackling degeneracy more efficiently.
We also aim to evaluate the effect of misclassified SAR pixels on DA. Therefore, errors are
artificially added within the SAR image with the aim of getting a better understanding on
how robust the proposed method is with respect to this type of errors. Results are evalu-
ated not only locally but also over the entire flood domain and for subsequent time steps
to the assimilation. To carry out the experimental study we apply the DA framework
to a forecasting system consisting of a loosely-coupled hydrologic model (SUPERFLEX)
and hydraulic model (LISFLOOD-FP). The meteorological data that are used to run the
experiments are derived from the ERA-5 archive with a spatial resolution of 25 km and
a temporal resolution of 1 hour. The SAR data are synthetically generated with a pixel
spacing of 75 m.

2.3. METHODS
The proposed methodology is based on numerical experiments conducted with synthet-
ically generated data as illustrated in the flow chart given in Figure 2.1. In this framework,
the following data inputs and models are employed:

1. True rainfall time series are used to generate the true hydrologic-hydraulic model
simulation.

2. Synthetic SAR observations are generated from the true model run (i.e. from the
simulated flood extent map).

3. The true rainfall time series are randomly perturbed and used as inputs of the hy-
drologic model. The simulated discharge data are then used as boundary condi-
tions to realize an ensemble of hydraulic model runs.

4. The synthetic SAR observations are assimilated into the coupled hydrologic-hydraulic
model via different variants of the Particle Filter (PF) .

The three conducted experiments are summarized as follows:
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(a) An application of the standard PF where degeneracy occurs;

(b) An application of the adapted PF where a tempering coefficient is used to reduce
degeneracy. We also investigated the sensitivity of the DA results to different values
for the tempering coefficient, corresponding to EES of 5, 10, 20 and 50%;

(c) An application of both proposed methods with artificially introduced known er-
rors into the SAR image classification in order to evaluate the impact of these er-
rors on the DA performance metrics.

Figure 2.1: Flow chart of the synthetic experiment. The true rainfall is perturbed. The same flood forecasting
model structure composed of a hydrologic model and a hydraulic model is used to obtain the probabilistic
flood map and the ensemble of binary flood maps. The probabilistic flood map is assimilated into the ensem-
ble of binary flood maps via the Particle Filter to obtain the weights with which the expectation of water levels,
streamflow and flood extents are computed.

2.3.1. COUPLED HYDROLOGIC-HYDRAULIC MODEL: SYNTHETIC TRUTH AND

ENSEMBLE
The coupled modelling system consists of a hydrologic model coupled with a hydraulic
model. The hydrologic model is used to compute the run-off at the upstream boundaries
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of the hydraulic model. The hydrologic model used in this study is SUPERFLEX which
is a framework for conceptual hydrologic modelling introduced by Fenicia et al., 2011.
The model structure is a combination of generic components: reservoirs, connection
elements and lag functions. In this study, a lumped conceptual model and its structure
as a combination of three reservoirs are used: an unsaturated soil reservoir with storage
SU R , a fast reacting reservoir with storage SF R , and a slow reacting reservoir with storage
SSR . A lag function has been added at the outlet of the slow and fast reacting reservoirs.

The hydraulic model is based on LISFLOOD-FP (Bates et al., 2000) and simulates
flood extent, water level and streamflow along the river and on the floodplain. The mod-
els solves the local inertial form of the shallow water equations using a finite difference
method on a 2D grid. A sub-grid channel routing is used for simulating the channel flow
(Neal et al., 2012).

The true meteorological data (i.e., temperature and rainfall) are used as input of the
hydrologic-hydraulic model to simulate streamflow and water level time series and to
provide binary flood maps, where each pixel is classified as flooded (with value 1) or
not flooded (with value 0), at each assimilation time step. These computational results
represent the synthetic truth that will be used to evaluate the performance of the pro-
posed assimilation framework. The true binary flood maps are also used to generate the
synthetic SAR observations as described in the next section.

2.3.2. SYNTHETIC OBSERVATIONS
In the proposed synthetic experiment, we generate synthetic SAR images at each assim-
ilation time step. The SAR images are generated with the same spatial resolution of the
LISFLOOD-FP maps. Similarly to the Van Wesemael, 2019 study, we make use of a real
SAR image, acquired during a flood event in the past, and of the LISFLOOD-FP model
to generate true binary flood maps. The histogram of the SAR image backscatter values
can be approximated with two Gaussian curves relative to the flooded and not flooded
pixel classes. Generally, the class of flooded pixels is often represented just by a fraction
of the SAR image scenes. Therefore, to identify and characterize areas where the flooded
and not flooded classes are more balanced, the hierarchical split based approach (HSBA,
Chini et al., 2017) is applied to the selected SAR image. The parameters of the Gaussian
pdfs are determined by fitting the histogram values of the HSBA selected areas.

Then random backscatter values, derived from the calibrated Gaussian pdfs, are as-
sociated to the pixels of the true binary flood map indicating the presence of water and
no-water areas. Once the synthetic SAR images are generated, the Giustarini et al., 2016
procedure is applied and synthetic PFMs are derived. The probability to be flooded given
the recorded backscatter values for each pixel of a SAR image p(F |σ0) is obtained via the
Bayes’ theorem:

p(F |σ0) = p(σ0|F )p(F )

p(σ0)
= p(σ0|F )p(F )

p(σ0|F )p(F )+p(σ0|F )p(F )
(2.1)

In the equation 2.1, p(σ0|F ) and p(σ0|F ) represent, respectively, the probability of
the backscatter σ0 values of the flooded and non-flooded pixels, p(F ) is the prior prob-
ability of a pixel being flooded and p(F ) is the prior probability of a pixel being non-
flooded before any backscatter information is taken into account. The conditional prob-
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abilities are derived from the histogram of the backscatter values estimated from the
synthetically generated SAR image. The prior probabilities can be estimated from the
flood extent model output or through visual interpretation of an aerial photography in
real cases. However, in general such information is not always available and the prior
probabilities are unknown. Consequently, Giustarini et al., 2016 set the prior probabil-
ity of equation 2.1 to 0.5 so that both flooded and non flooded pixels are equally likely.
While this study is based on a synthetic experiment, true binary flood extent maps are
available. Therefore, the assimilation is realized using both the estimated prior proba-
bility (as the ratio between the flooded area and the total area) and the prior probability
equal to 0.5. Given the similarity of the results for both cases, in the following sections
we only discuss the experiment using the estimated prior probability.

The method proposed by Giustarini et al., 2016 aims at characterizing the speckle-
induced uncertainty. However, it does not consider any other phenomena leading to a
wrong classification in SAR-based flood maps. Particular atmospheric conditions (e.g.
wind, snow, precipitation), water-look-a-like areas (e.g. asphalt, sand, shadow) or ob-
structing objects (e.g. dense canopy, buildings), as mentioned in Giustarini et al., 2015,
can lead to a wrong classification in the flood maps. Therefore, the areas where such
errors could occur should be masked out from the SAR-based flood maps in order to
provide a reliable flood detection.
In the first part of this study, SAR observations are considered without errors. In the sec-
ond part, these kinds of errors are integrated in the synthetic SAR observations to eval-
uate their effect on the DA. Specifically, the pixels along the flood edge of each particle
are selected. From this set, a given number of those pixels effectively flooded in the true
binary flood map are artificially corrupted so that they belong to dry pixels. The number
of corrupted pixels depends on the magnitude of the error that we want to introduce in
the SAR observations.

2.3.3. ENSEMBLE GENERATION
In a PF the prior and posterior pdfs are approximated by a set of particles. Here, we
hypothesize that the rainfall is the only source of uncertainty affecting the model-based
flood extent simulations. Due to this reason, an ensemble of rainfall time series is used
as input of the coupled hydrologic-hydraulic model. Each rainfall time series is obtained
by perturbing, with a multiplicative random noise from a log-normal error distribution,
the true rainfall time series following the approach proposed in Hostache et al., 2018.
128 rainfall time series are obtained and forwarded in time via the hydrologic model.

It is important to note that the same hydrologic-hydraulic model in terms of struc-
ture, initial conditions and parameters is used for all model runs. The reliability of the
rainfall ensemble is verified with the statistical metrics proposed by De Lannoy et al.,
2006. According to the verification measurement VM1 in equation 2.2:

V M1 = < ensk >
< ensp > ≈ 1 (2.2)

with<>meant as the average over available observations (in time). The ensemble spread
in the equation 2.5 (where xk,n represents the value of the variable x at time k for each
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pixel n)

ensp = 1

N

N�
n=1

(xk,n −xk )2 (2.3)

has to be close to the ensemble skill (equation 2.4)

ensk = (xk − yk )2 (2.4)

which is the difference between the mean xk over the N particles of the ensemble and
the observation yk at time k. VM1 given by the following Equation:

V M1 = < ensp >
< ensk > (2.5)

should be equal to 1, larger values would indicate a too small spread of the ensemble.
Another method to define the similarity of the observation to any of the ensemble mem-
bers is based on the calculation of expected value of the ratio of the time-averaged root
mean square (rms) error of the ensemble mean to the time-averaged mean rms error of
the ensemble members:

E(Ra) =
< ensk >< mse > ≈

�
(N +1)

2N
(2.6)

with mse estimated as:

mse = 1

N

N�
n=1

(xk,n − yk )2 (2.7)

If the observation is statistically indistinguishable from a particle of the ensemble,

the expected value E[Ra] is equal to



(N+1)
2N as shown by Murphy, 1988. VM2, also known

as the normalized error, which is a measure of the ensemble dispersion and it is given
by the ratio of Ra to the expected value E[Ra], should be equal to 1 (Anderson, 2001;
Moradkhani et al., 2005).

2.3.4. DATA ASSIMILATION FRAMEWORK
The DA framework consists of two main steps: prediction, i.e model simulations, and
analysis, i.e update of particle probabilities when an observation is available. The prior
probability of the model state x at a given time k is represented by a set of N independent
random particles xn sampled from the prior probability distribution p(x) (Equation 1.3).
where δ is the Dirac delta function. In this study, the prior probability distribution is as-
sumed to be uniform. The observations of flooded/not flooded pixels y are related to the
true state xt according to the Equation y = H [x t ]+ϵ where H is the observation operator
that maps the state vector into the observation space and ϵ represents the observation
errors. According to the Bayes’ theorem, the observations are assimilated by multiply-
ing the prior pdf p(x) and the likelihood p(y | x), which is the probability density of the
observation given the model state, and dividing by the total probability p(y), resulting
in Equation 1.1 where p(x | y) is the posterior probability, i.e. the probability density
function of the model state given the observations. By inserting the equation 1.3 into the
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equation 1.1 we obtain the Equation 1.4. where Wn represents the relative importance
in the probability density function (i.e. global weight) given by Equation 1.5.

In this study, the likelihood (global weight, Wn) is represented by the product of the
pixel-based likelihood (local weight, wi ), assuming the L pixel observation errors to be
independent from each other. At time k of the observation, local weights wi ,n are defined
for each particle n and for each pixel i according to Hostache et al., 2018:

wi ,n = pi (F |σ0)Mi ,n + [1−pi (F |σ0)](1−Mi ,n) (2.8)

wi,n is equal to the probability of a pixel being flooded as derived from the synthetically
generated SAR image. Mi ,n is equal to "1" if the model predicts the pixel as flooded,
whereas Mi ,n is equal to "0" if the model predicts the pixels as non-flooded. We convert
the model-based water depth maps into binary flood extent maps by considering that a
pixel is flooded if its water level is above 10 cm. pi(F |σ0) equals the probability of a pixel
being flooded according to the observations, viceversa 1−pi(F |σ0) equals the probabil-
ity of not being flooded. By applying the equation 2.8 we assign higher probabilities to
those pixels where model predictions and observations agree. Next, Wn is estimated for
each particle by the normalization of the product of the local weights ensuring that the
sum of the global weights is equal to 1 (equation 2.9, standard method).

Wn =
	L

i=1 wi ,nN
n=1

	L
i=1 wi ,n

(2.9)

The expectation of the OL is equivalent to the mean of the ensemble because the relative
importance of each particle is the same. The global weights are used to compute the
expectation of the streamflows (Q) and water levels (h) at time (k) and per pixel (i ) after
the assimilation ( see equations 2.10, 2.11).

hi =
N�

n=1
Wn ·hi ,n (2.10)

Q i =
N�

n=1
Wn ·Qi ,n (2.11)

The particles keep these global weights until the next assimilation time. The particles
are then set to the same equal weight before a new analysis step is performed.
Unless the number of particles increases exponentially with the dimension of the system-
state, the particle-filter is likely to degenerate because high probability is assigned to
a single particle while all other members will result in small weights (Leeuwen et al.,
2019). PFs are often subject to degeneracy issues when, due to computational reasons,
the number of particles is not sufficiently high (Zhu et al., 2016). After the application of
the standard PF, the variance of the weights tend to increase and only a few particles of
the ensemble have a non-negligible weight. To mitigate this problem, in Hostache et al.,
2018, the global weight defined in the equation 2.9 has been adapted using a tempering
coefficient (α, as described by the following equation 2.12).

Wn(α) =
	L

i=1 wi ,n
γN

n=1
	L

i=1 wi ,n
γ

(2.12)
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Since α and weights values are lower than one, adding the power of α in the weights
formula allows for shifting all weight values closer to one. This therefore decreases the
variance of the weights and inflates the posterior probability. After the assimilation, the
number of particles with significant weight depends on the α value. The smaller α, the
higher the variance of the posterior pdf. Consequently, as argued in Hostache et al.,
2018, when the α coefficient is small enough, this adaptation of the PF helps reduce the
degeneracy of the ensemble. While in the previous study by Hostache et al., 2018, the
α value was defined so that the worst model solution would have had a non-zero global
weight, in this study we propose to define α based on the desired effective ensemble
size (EES). The coefficient α in Hostache et al., 2018 is site-dependent as it relies on the
number of flooded pixels, whereas in this study α is a function of the EES which is a
measure of degeneracy based on the global weights (Arulampalam et al., 2002):

EES(α) = 1N
n=1(Wn(γ))2

· 1

N
·100 (2.13)

The EES is lower than N and its value indicates the level of degeneracy. α is equal to
one when the standard method is used. Decreasing the α coefficient leads to an increase
of the EES.

2.3.5. PERFORMANCE METRICS
To carry out the evaluation of the PFM statistics we have used the reliability plots. The
results of the different assimilation scenarios are evaluated on a spatio-temporal scale
with the following performance metrics:

• Contingency maps and the confusion matrix;

• Critical success index (CSI);

• Root mean square error (RMSE);

To evaluate the simulations of water level and discharge after the DA application the time
series of these variables will be also plotted.

RELIABILITY PLOTS

Reliability diagrams are employed to statistically evaluate the synthetically generated
PFMs. In such diagrams, the probability range [0;1] is subdivided into intervals of av-
erage probability Pi and width ∆Pi . We identify the pixels Ωi having a probability value
of Pi ±∆Pi in the PFM. The fraction of Ωi pixels effectively flooded in the binary truth
map are identified with Fi . The reliability diagram plots Pi on the x-axis and Fi on the
y-axis. A reliability diagram indicating an alignment of data points close to the 1:1 line
means that the PFM is statistically reliable.

CONTINGENCY MAPS AND CONFUSION MATRIX

First, we use contingency maps to graphically compare the expected flood map with the
synthetic truth map at each assimilation time step. Pixel classification errors can be of
two types: overprediction (type error I) when the pixels in the truth map are not flooded
but are predicted as flooded, and underprediction (type error II) in the opposite case.
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Then, the confusion matrix numerically summarizes the results of the contingency map.
It is a 2 rows by 2 columns matrix that reports the number of false positives (type I error),
false negatives (type II error), true positives and true negatives.

CSI
The CSI evaluates the goodness of fit between the truth map and the predicted flood
extent map (Bates et al., 2000):

C SI = A

A+B +C
(2.14)

It represents the ratio between the number of pixels correctly predicted as flooded (A)
over the sum of all the flooded pixels including the false positives (B, overdetection) and
false negatives (C, underdetection). CSI ranges between 0 and 1 (best score). We also
used it to evaluate the results at the assimilation time step and the effect of the assim-
ilation at subsequent time steps. It has been also used to evaluate performances when
errors are added in the SAR observations.

RMSE
The RMSE is considered an excellent error metric for numerical predictions. The RMSE
measures the square root of the average square error of the predicted water levels (hp

k )
against the truth (ht

k ) per pixel k over the total number of pixels L of the flood domain.

RMSE =
�L

i=1(hp
i −ht

i )

L

2

(2.15)

In this study, the RMSE is a measure of the global accuracy of the flood forecasting model
predictions of water levels allowing to compare prediction errors of the different assim-
ilation scenarios over the flood domain. The RMSE is evaluated at the assimilation time
and also at subsequent time steps. It has been also used to evaluate performances when
errors are added in the SAR observations.

2.4. STUDY AREA AND DATA
Our synthetic experiment is grounded on a real test site and an actual storm event: the
river Severn in the middle-west of UK (figure 2.2) and the July 2007 flood event, rispec-
tively. This area has experienced several floods along the river valleys (Environment
Agency, 2009) generally due to intense precipitation.

While seven upstream catchments contribute to the flow along the river Severn, in
our study only one upstream catchment is considered: the Severn at the Bewdley gaug-
ing station. Our first objective is to evaluate whether the model correctly predicts the
output in the simplest case, i.e. when a unique run-off input to the hydraulic model
determines the flood extent and no additional contributing tributaries interfere.

The ERA5 dataset (Hersbach et al., 2019) referring to the period of July 2007 has been
used in this experiment. ERA5 is a global atmospheric re-analysis dataset provided by
the European Centre for Medium-Range Weather Forecasts (ECMWF). Rainfall and 2 m
air temperature at a spatial resolution of approximately 25 km and a temporal resolution
of 1 hour are used as input to the hydrologic model. The true rainfall time series is used to
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generate the true run-off before being perturbed in order to obtain 128 different particles
as inputs to the hydrologic model. The boundary condition of the hydraulic model is
imposed in correspondence to the red dots in Figure 2.2. Channel width, channel depth,
slope of terrain, friction of the flood domain and channel bathymetry are defined in each
cell of the model domain as described in Wood et al., 2016. A uniform flow condition is
imposed downstream. No lateral inflow in the hydraulic model is assumed. Finally, at
each time step a stack of 128 wet/dry maps is obtained. Discharges and water levels

Figure 2.2: Study area: River Severn (UK). Only the boundary condition in Bewdley is taken into account.
Within the sub-catchment upstream of Bewdley (area of 4325 km2) a lumped hydrologic model is used to
determine the input of the hydraulic model along the river Severn downstream. The dots represent the existing
gauging stations where the performances of the DA framework are evaluated. The black square is the hydraulic
domain where LISFLOOD-FP runs.

recorded at different gauging stations (corresponding to the existing ones, dots in figure
2.2) along the river are used to evaluate the performance of the DA.

2.5. RESULTS

2.5.1. SYNTHETIC SAR AND ENSEMBLE GENERATION AND EVALUATION
The virtual satellite acquisition dates are aligned with the actual Sentinel-1 acquisition
frequency. The revisit time over Europe, considering both ascending and descending
orbits, is around 3-4 days meaning that on average 2 satellite images are available per
week. In order to adopt a realistic Sentinel-1-like observation scenario we chose to as-
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similate four synthetic observations over a period of 10 days.

In the Figures 2.3 and 2.4 , the area corresponds to the hydraulic model domain.
The hydrologic model, covering the upstream catchment, is used to compute the in-
put boundary conditions of the hydraulic model. Results are computed and compared
within the hydraulic model domain. The synthetic SAR observations are shown in Figure
2.3. The corresponding PFMs are shown in Figure 2.4 and reliability plots are provided
in Figure 2.5. In the reliability plots, the points aligned along the 1:1 line indicate a sta-
tistically reliable PFM.

Figure 2.3: A detail of the synthetic SAR images corresponding to the 4 assimilation time steps. Darker pixels
correspond to lower backscatter.

Figure 2.4: A detail of the synthetic probabilistic flood maps derived from synthetic SAR images. Probabilities
to be flooded knowing the backscatter go from low value (yellow) to high values (blue).
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Figure 2.5: Example of the reliability plots for the verification of the synthetic probabilistic flood maps of the
first two synthetic SAR images. On the x-axis probability range (Pi ), on the y-axis the fraction of pixels within
the probability range of the probabilistic flood map observed as flooded in the true binary flood map (Fi ). The
probabilistic flood maps are statistically reliable because the points align along the 1:1 line.

The verification measurements VM1 and VM2 (equations 2.2 and 2.6) of the ensem-
ble discharge in Bewdley (figure 2.6) are equal to 1.047 and 0.527, respectively. These
values are close to the ideal ones of 1 and 0.5.

Figure 2.6: Streamflow time series (left) and water elevation time series (right) at the gauge station in Bewdley.
Black lines represent the 128 particles while the red line corresponds to the synthetic truth.

2.5.2. EVALUATION OF THE FLOOD EXTENT MAP ESTIMATED AT THE ASSIM-
ILATION TIME

The CSI is computed over the entire hydraulic model domain at each assimilation time
step.

The general trend of the assimilation effect is positive, as errors tend to decrease at
all the assimilation steps with different assimilation methods. Even though the CSI is
already high with the OL, the assimilation further improves the results and this becomes
particularly clear at the last assimilation time step. From Table 2.1 it can be noticed that
the CSI, approximately equal to 0.80 with the OL in the worst case (assimilation of the IV
image), exceeds 0.96 for the different assimilation types and reaches the maximum value
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Table 2.1: Critical success index values at each assimilation time step. The Open Loop where no assimila-
tion is computed is compared with the standard method and the adapted method with an increasing effective
ensemble size (EES).

Assimilation times Open Loop Assimilation
standard 5% EES 10% EES 20% EES 50% EES

I image 0.9573 0.9887 0.9914 0.9866 0.9805 0.9779
II image 0.9202 0.9873 0.9800 0.9758 0.9658 0.9645
III image 0.9437 0.9921 0.9753 0.9690 0.9622 0.9636
IV image 0.7976 0.9881 0.9754 0.9638 0.9577 0.9610

of 0.99 with the standard method.
In Figure 2.7, we provide the contingency maps of the OL and of the 5% EES approach

(results of the standard method are similar to those of the 5% EES approach and there-
fore not shown). For each pair of images, we show on the left the results of the OL and
on the right the results obtained after the assimilation.

In this study, it can be observed that the OL has a tendency to over-detection; the
number of red pixels is higher than the black ones and after the assimilation the number
of over-detected pixels decreases confirming the results obtained with the CSI.

The confusion matrix given in Table 2.8 provides more details on the 4th assimilation
time step. On the one hand, the number of pixels wrongly predicted as flooded in the OL
is 1196 and more than 90% of these are correctly classified as non flooded after the assim-
ilation for both standard and 5% EES methods. On the other hand, a few pixels correctly
predicted as flooded in the OL are classified not flooded after the assimilation. However,
it can be argued that the number of 201 wrongly classified pixels after the assimilation is
rather low compared to the 1253 pixels of the OL.

2.5.3. EVALUATION OF THE FLOOD MAP ESTIMATED IN TIME
The flood is simulated using an hourly time step. Consequently, it is possible to evaluate
the evolution of the performance metrics CSI (Figure 2.9).

This figure shows that the OL’s performance is consistently poor and the standard as-
similation performs best compared to the other assimilation runs at all the assimilation
time steps.

The assimilation runs with different EES values lie within these two extremes. It can
be noted that the more particles are neglected, which is equivalent to say the lower is the
EES, the higher is the performance at the assimilation time step.
Moreover, markedly different CSI time series for the different assimilation experiments
are shown in Figure 2.9.

27 hours after the first assimilation, the performances of the standard and 5% EES
methods, which perform better than the other methods, start decreasing. The lowest
values are reached 54 hours after the assimilation. One explanation is that the weights
assigned to the particles at the 1st assimilation time are no longer valid when hydraulic
conditions change and need to be recomputed.
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Figure 2.7: Contingency maps before (open loop) and after assimilation at 5 % EES at each time step. Two types
of errors can be distinguished: overdetection (red pixels) when the model predicts the pixel as flooded but the
pixel is observed as not-flooded and underdetection (black pixels) when the contrary occurs. In case model
and observation agree pixels are correctly classified as not-flooded (white pixels) and flooded (blue pixels).

However, things change after the 2nd assimilation, when the performances of the
standard and the 5% EES assimilation methods remain stable until the end of the simu-
lation time.

The decrease of performances attributed to the standard and 5% assimilation meth-
ods after the 1st time step is due to a drastic change in the flood extent. The total number
of flooded pixels reduces from 8539 to 5494 because the flood started receding.

The spread of the posterior pdf with the standard and 5% EES methods is small,
meaning that only a few particles retain significant importance weight. Consequently,
when the flood extent changes and particles evolve in time, it may happen that the un-
certainty bounds of the posterior pdf do not encompass the true model state after several
time steps. On the contrary, when more particles are considered (higher EES), more par-
ticles are used to draw the posterior pdf. This gives more chances to the ensemble to
encompass the synthetic truth and increases the overall robustness of the method. This
becomes particularly relevant when the hydraulic boundary conditions change and no
new observation is available.
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Figure 2.8: Confusion matrix of the OL and of the 5% EES assimilation at the 4th assimilation time step:
OF=observed flooded pixels in the truth map, ON=observed non-flooded pixels in the truth map, PF= pre-
dicted flooded pixels, PN=predicted non-flooded pixels.
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Figure 2.9: Time series of CSI of flood extent values for the different assimilation methods: open loop (green),
standard assimilation (black), assimilations with 5% EES (blue), 10% EES (cyan), 20% EES (purple), 50% EES
(orange).

2.5.4. EVALUATION OF THE WATER LEVELS IN TIME OVER A GLOBAL SCALE
The RMSE, reported in Table 2.2. decrease by factors larger than 2 and 3 with the stan-
dard assimilation and the 5% EES assimilation, respectively.

After the 1st assimilation, carried out close to the flood peak in Saxons Lode, the
accuracy of the water level is improved by approximately 20 cm over the entire flood
domain. The assimilation of the 2nd and 4th images has a negative effect in case the
adapted method 50% EES of the assimilation particle filter is applied: the RMSE in-
creases compared to the OL. As already shown in the Table 2.2 the standard assimila-
tion and 5% EES predictions of water levels provide more accurate results (figure 2.10).
When moving away from the first assimilation, the RMSE of the best performing assimi-
lation methods increases. For instance, after 54 hours the RMSE of the standard method
is increased by 65% compared to the RMSE of the OL. In case different EES are consid-
ered, the RMSE values fluctuates significantly in between two assimilations and it be-
comes difficult to draw any general conclusions. As the number of important particles
increases, water levels vary significantly, especially in the area close to the flood edge
even though the flood extent does not change too much from a particle to another.
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Table 2.2: Root mean square error (RMSE [m]) of water levels at each assimilation time step. The Open Loop
(figure 2.6) where no assimilation is computed is compared with the standard method and the adapted method
with an increasing effective ensemble size (EES).

Assimilation times Open Loop Assimilation
standard 5% EES 10% EES 20% EES 50% EES

I image 0.2608 0.0742 0.0608 0.0785 0.1501 0.1762
II image 0.1246 0.0526 0.1046 0.1278 0.1553 0.1704
III image 0.1604 0.0645 0.1103 0.1665 0.2154 0.2270
IV image 0.1702 0.0541 0.0619 0.1084 0.1899 0.2205
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Figure 2.10: Time series of root mean square error (RMSE [m]) values for the different assimilation experi-
ments: open loop (green), standard assimilation (black), assimilations with 5% EES (blue), 10% EES (cyan),
20% EES (purple), 50% EES (orange).

2.5.5. EVALUATION OF DISCHARGE AND WATER LEVEL TIME SERIES
The different assimilation runs are also compared considering the discharges and water
levels at different gauge stations along the river Severn. In the right panels of Figures 2.11
and 2.12 the different assimilation experiments are compared against the synthetic truth
(red line). In the left panels of Figures 2.11 and 2.12 the standard method and the 5% EES
assimilation with the important particles and the synthetic truth are shown. The plot-
ted important particles represent the 5% of the ensemble with the largest weight. All the
128 particles are equally weighted until the first observation is assimilated. After the first
assimilation the number of important particles decreases. At the second assimilation
time step, weights are recomputed and the new important particles are selected again
and so on. The assimilation of the PFMs improves the predictions of water levels and
streamflow at specific points of the river Severn, as in Bewdley and in Saxons Lode (Fig-
ure 2.11, 2.12), for the majority of the assimilation time steps in both underprediction
and overprediction cases. The standard method and similarly the 5 % EES assimilation
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method are the most accurate in forecasting the values of water levels and streamflows.
The improvements due to the assimilation persist for a long time: up to 27 hours after
the first assimilation predictions are still close to the synthetic truth. The local results of
water levels suggest that the inaccuracy of the global RMSE values in time is likely due to
the evaluation over the entire flood domain.

Figure 2.11: Water level time series at Saxons Lode. Left: assimilation runs with an EES of 5% (blue), 20% (cyan)
and 50% (orange), OL (green), standard assimilation (black). Right: particles carrying significant weight after
the assimilation at 5% EES (grey). Dashed lines correspond to the assimilation times.

Figure 2.12: Streamflow time series at Bewdley. Left: assimilation runs with an EES of 5% (blue), 20% (cyan)
and 50% (orange), OL (green), standard assimilation (black). Right: particles carrying significant weight after
the assimilation at 5% EES (grey). Dashed lines correspond to the assimilation times.

2.5.6. IMPACT ASSESSMENT OF ERRORS IN SAR OBSERVATIONS
In the previous section, speckle uncertainty in SAR observations is considered. However,
in reality, SAR observations are also susceptible to errors due to the misclassification of
wet/dry pixels caused by features on the ground as already mentioned. Therefore, errors
are added to the synthetic SAR observations as described in the methodology to inves-
tigate the impact on the DA assimilation framework. Figure 2.13 shows the RMSE and
the CSI obtained at different assimilation time steps. The best performing assimilation
methods (i.e. standard and 5% EES) with no error in the observations are compared
with the ones where error is introduced. With the misclassification of 20% of the pixels,
the assimilation still has beneficial effects: the CSI increases at each assimilation time
step with respect to the OL. The RMSE values also tend to be satisfactory after each as-
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similation. With an increase in the error of 40% the performances of the DA framework
start decreasing. The assimilation of the first image still has a positive effect on the pre-
dictions. In fact, CSI and RMSE are improved with respect to the OL even through the
improvements are not as significant as in the previous cases. The explanation is arguably
to be found in the high number of flooded pixels. It is large enough to counterbalance
the misclassified pixels in the SAR image. Performances decrease with the assimilation
of the remaining SAR observations when the number of flooded pixels is reduced by half.

Figure 2.13: CSI values (on the left) and RMSE (on the rigth) after the standard assimilation of SAR observations
free of errors (black), with 20% of errors (grey), with 40% of errors (ligth grey) and after the 5% EES assimilation
free of errors (blue), with 20% of errors (ligth blue), with 40% of errors (cyan).

2.6. DISCUSSIONS
The results of our study confirm the effectiveness of the proposed DA framework when
the hypothesis of the rainfall as the main source of uncertainty is verified. Consequently,
for those cases where rainfall represents the main source of uncertainty, more obviously
but not only in poorly and un-gauged catchments and when using medium-range fore-
casting models, our study results indicate that the application of the approach described
in the manuscript may lead to improved results of the model simulations. For those
cases where the uncertainty of other sources becomes more relevant and may be even
dominant, it is clear that such sources need to be taken into account explicitly. However,
the required adaptations of the proposed DA framework still need to be developed. In
this context it is also worth mentioning that the limitations identified in the previously
published real case study by Hostache et al., 2018 were explained by additional sources
of uncertainties not taken into account.

Using probabilistic flood maps or backscatter values increases the number of obser-
vations to be assimilated when compared to a method that only derives the flood edge
from satellite observations as reported in Cooper et al., 2018b. Moreover, the nearly-
direct use of the SAR information enables a faster end-to-end processing from the acqui-
sition of the image to the assimilation of the SAR data into the model which is beneficial
for an operational usage.
In our experiments, the improvements of model forecasts of water level and streamflow
are significant at the assimilation time step and the improvements persist over subse-
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quent time steps (for example up to 27 hours after the first assimilation the model results
outperform the open loop simulation). The persistence of these improvements depends
on the flashiness of the flood event (i.e., the rapidity with which hydrologic conditions
change). More frequent image acquisitions could help keep model predictions on track,
especially when the system is highly dynamic. The update of a state variable of the fore-
casting model could as well increase the persistence of the improvements. In our study
none of the model state variables is updated as only the particle weights are computed,
based on the SAR observations and on the simulated flood extent maps and used to cal-
culate the expectation of water levels and streamflow. In previous studies (Andreadis
et al., 2007; Matgen et al., 2010; Cooper et al., 2018a), inflow updating was identified
as a condition leading to more persistent improvements. For instance, one of the con-
clusions from the study by Matgen et al., 2010 was that updating the fluxes at the up-
stream boundary conditions, rather than the water levels, is more effective because of
the high uncertainty of the inflow due to the poorly known rainfall distribution over the
catchment. Therefore, as a future perspective, we aim to update hydrologic model states
because it might have a positive impact on the long-term runoff simulations and conse-
quently on the persistence of DA benefits.
Some modifications of the DA framework are still required to fully overcome the issue of
degeneracy. Although the use of a smaller tempering coefficient leads to a larger effective
ensemble size (e.g. 50 %) and helps avoid degeneracy, the results are less accurate com-
pared to the standard method or the adapted method with 5% EES. As described in Neal,
1996 and in Leeuwen et al., 2019, the tempering procedure consists of several steps, but
in this study the tempering coefficient is applied only to flatten the likelihood, therefore
down weighting the observations. This most likely explains why the data assimilation
performs better when the effective ensemble size (the number of particles not negligi-
ble after the assimilation) is smaller. As already mentioned, the present study has the
aim of assessing and validating the method proposed by Hostache et al., 2018 in a syn-
thetic environment. Our DA framework can be applied to a variety of flood inundation
forecasting chains. In fact, the forecast updating is carried out via a sequential impor-
tance sampling only (i.e. importance weights). Only the particle weights are updated
based on the observations and used to compute the expectation (i.e. weighted mean)
of the augmented state vector including hydraulic state variables of water depth, plus
flood extent and boundary conditions. In this study the hydrologic and hydraulic mod-
els are loosely coupled with a one-way transfer of information as in many other studies
[e.g., Peckham et al., 2013, Hoch et al., 2017, Rajib et al., 2020]. The weights define the
relative importance of the particles and thus of the inherent streamflow and stage along
the entire river. We acknowledge that the observed flood extent is more closely linked to
the past boundary conditions rather than the boundary conditions corresponding to the
assimilation time steps. In spite of this limitation we argue that in this synthetic experi-
ment, the particles that performed best in the past are also those that reach the highest
performance level at the time of the assimilation. This is illustrated in the Figures 2.11
and 2.12 where the use of updated weights is shown to enable the correction of the state
variables of the hydraulic model both upstream and downstream. However, we recog-
nize that further improvements could be developed to address issues such as spurious
relations that may occur between SAR observations and model variables due to a rather
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small ensemble size. Enlarging the ensemble size could be necessary if this occurs.
We also argue that the method used in the manuscript has the potential to support EO-
based modelling at large scale. This potential is particularly high in large, natural flood-
plains where flood inundation remains present over long time periods. In spite of the
increased frequency of satellite observations, the persistence of a flood over many days
increases the chance of its detection and mapping by satellite sensors. Another con-
dition that needs to be satisfied is that there should be an unambiguous relationship
between the flood extent observed by the spaceborne sensors and river discharge. This
also means that areas where backscatter variations are not impacted by the appearance
of floodwater (e.g. densely vegetated floodplains) should be rather small. Indeed, these
constraints must be satisfied to enable a successful application of the proposed frame-
work and to take advantage of the analysis carried out in this manuscript. As a con-
clusion, based on the above elements, we argue that our approach is valid regardless of
the type of model coupling that is performed and is thus applicable to many different
forecasting systems. However, more research is needed to fully understand the role of
floodplain and water basin characteristics and SAR data properties on the DA perfor-
mance. In a future study it is envisaged that to avoid degeneracy and keep a larger effec-
tive ensemble size, the full tempering scheme will be applied. Possible ways to adapt and
advance the proposed DA framework are currently under development (e.g. updating a
state variable of the model, using an enhanced version of the adapted filter).

2.7. CONCLUSIONS
Satellite images provide valuable information about flood extent that can complement
or substitute in situ measurements. The fact that several space agencies provide free
access to high resolution satellite Earth Observation data paves the way for improving
Earth Observation-based flood forecasting and reanalyses worldwide. This study rep-
resents a follow-up of the previous real case study from Hostache et al., 2018 with the
objective to further proceed in the evaluation of the proposed DA framework once the
assumptions are effectively satisfied. This study has been set up in a controlled environ-
ment using a synthetically generated data-set in order to make sure that the rainfall and
SAR observations are the only source of uncertainty. A common issue in Particle filters is
degeneracy: the ensemble could collapse after the assimilation because higher probabil-
ities are assigned to a limited number of particles. The tempering coefficient can be used
to reduce degeneracy because it inflates the posterior probability and reduces the peak
of the likelihood. In this study, we have evaluated the effect of variations of the α tem-
pering coefficient on the DA performance. Different PFs are compared with the OL and
the synthetic truth: the SIS (with only a few particles from the ensemble potentially car-
rying non- negligible weights) and the adapted method with 5-10-20-50% EES (with the
number of particles with non-negligible weights increasing with the EES). This method-
ology leads to slightly biased estimates because the observation is down-weighted. In
addition, we investigated the impact of errors in the observations (i.e. errors in the SAR
derived pfms due to dry water-look alike pixels or emerging objects) on the assimilation.
Indeed, the main issue of using SAR observations in flood forecasting models is the diffi-
culty of detecting flooded area for specific cases (e.g. urban or vegetated areas). At first,
following the study from Hostache et al., 2018 only speckle uncertainty of the SAR image
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is taken into account in the pfms. In a second step, a error to reproduce misclassified
pixels is introduced in the synthetic SAR observations.
The following key conclusions can be drawn from our experiments:

1. The best performing method is the standard method (i.e. SIS). Importance weights
are assigned to a limited number of particles that better agree with the observa-
tions. At the time of the assimilation, results tend to be very accurate: the forecasts
move close to the synthetic truth. The main weakness of the standard filter is to
significantly suffer from degeneracy.

2. The 5% effective ensemble size assimilation (meaning that only the 5% of the en-
semble will have a not-negligible weight after the assimilation) is slightly less accu-
rate at the time of the assimilation but it has the advantage of reducing the degen-
eracy problem. Even though larger effective ensemble size prevents degeneracy,
water levels and discharge are less accurate and performances of the predictions
are degraded.

3. Our study further shows that it is important to characterize and mask out errors
in the SAR observations. A large number of misclassified pixels substantially de-
grades the DA performance. In our case study, results suggest that an improve-
ment of model simulations (i.e. water level and streamflow) in terms of CSI and
RMSE performance metrics is achieved as long as errors in the observations are
rather limited, i.e. when no more than 20% of the pixels are affected. However, if
the misclassification goes beyond 40% of affected pixels, the assimilation has no
effect and may even lead to a degradation of the model predictions.
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The present chapter corresponds to the following scientific publication in its original
form: Concetta Di Mauro, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco
Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blösch. "A tempered par-
ticle filter to enhance the assimilation of SAR derived flood extent maps into flood fore-
casting models. Water Resources Research, 2022, https://doi-org.proxy.bnl.lu/
10.1029/2022WR031940"

3.1. ABSTRACT
Data Assimilation (DA) is a powerful tool to optimally combine uncertain model sim-
ulations and observations. Among DA techniques, the Particle Filter (PF) has gained
attention for its capacity to deal with non-linear systems and for its relaxation of the
Gaussian assumption. However, the PF may suffer from degeneracy and sample im-
poverishment. In this study, we propose an innovative approach, based on a Tempered
Particle Filter (TPF), aiming at mitigating PFs issues, thus extending over time the assim-
ilation benefits. Probabilistic flood maps (PFMs) derived from Synthetic Aperture Radar
data are assimilated into a flood forecasting model through an iterative process includ-
ing a particle mutation in order to keep diversity within the ensemble. Results show an
improvement of the model forecasts accuracy, with respect to the Open Loop (OL): on
average the RMSE of water levels decrease by 80% at the assimilation time and by 60%
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two days after the assimilation. A comparison with the Sequential Importance Sampling
(SIS), is carried out showing that although SIS performances are generally comparable to
the TPF ones at the assimilation time, they tend to decrease more quickly. For instance,
on average TPF-based RMSE are by 20% lower compared to the SIS-based ones two days
after the assimilation. The application of the TPF determines higher CSI values com-
pared to the SIS. On average the increase in performances lasts for almost 3 days after
the assimilation. Our study provides evidence that the application of the variant of the
TPF enables more persistent benefits compared to the SIS.

3.2. INTRODUCTION
Every year, floods cause important social and economic losses and the trend is increas-
ing. Tellman et al., 2021 show that worldwide the population exposed to floods has in-
creased by 20%–24% from 2000 to 2015, thereby highlighting the need for accurate and
timely forecasts of water depth, discharge, flood wave propagation, and flood extent to
help reducing or preventing the adverse effects of floods. Flood forecasting models are
commonly used to generate short- to mid-term predictions. However the accuracy of
such predictions can be affected by multiple factors contributing to the overall model
uncertainty. This challenge represents one of the major unsolved scientific problems
(Blöschl et al., 2019b). The assimilation of independent observations, such as field gaug-
ing data or satellite observations, can help reducing these uncertainties (Liu et al., 2007).
The last decade has seen a substantial increase in the number of Earth Observation (EO)
satellites providing a synoptic overview of the flooding situation at increasingly high fre-
quency. Despite possible errors in the interpretation of the Synthetic Aperture Radar
(SAR) data (Chen et al., 2018; Grimaldi et al., 2020; Zhao et al., 2021) that should be
masked out before any use of these data, frequent observations of flood extent and wa-
ter depth represent substantial added value, especially over poorly gauged or ungauged
catchments. For example, SAR data are relevant for observing inundation extent because
of their day-night and quasi all-weather capability. As a consequence, several methods
enabling an effective assimilation of such observations [e.g., Revilla-Romero et al., 2016;
Hostache et al., 2018; Andreadis et al., 2014; Garcia-Pintado et al., 2015] for improving
the predictive capability of flood models have been introduced and investigated in re-
cent years. The most widely used methods are based on the Kalman Filter and its vari-
ants [e.g. Revilla-Romero et al., 2016; Annis et al., 2021; Wongchuig-Correa et al., 2020]
and they assume that the distributions of observation and model errors are Gaussian,
which is not often the case when dealing with real word data (Leeuwen et al., 2019).

Particle Filters (PFs) have gained attention within the research community because
of their ability to handle non-linear and non-Gaussian systems (Leeuwen et al., 2019).
PFs approximate the prior and the posterior probability distribution functions (pdfs)
with an ensemble of model states also called particles. An equal weight is assigned to
each particle a priori. Next, as a result of the assimilation, weights are updated to repre-
sent the posterior probability given the observations. The principal limitation of PFs is
the difficulty to deal with high-dimensional systems. The weights may vary significantly
across particles and in the ultimate case only one particle will have a weight close to unity
while the other particles will have negligible weight. As a result the ensemble may col-
lapse. This well-known issue in PFs is often referred to as degeneracy. Degeneracy could
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lead to an erroneous approximation of the posterior distribution (García-Pintado et al.,
2013) and a sub-optimal use of the assimilation filter. Resampling methods [e.g Gordon
et al., 1993] have been used to prevent the collapse of the ensemble: particles with sig-
nificant weights are replicated and non-significant particles are discarded. Even though
resampling is powerful in reducing degeneracy, it often comes with a sample impover-
ishment and a poor representation of the actual uncertainty of the system (Moradkhani
et al., 2012). After few iterations, replicated particles will hardly diversify and particles
will again collapse into a single or few particles. According to Snyder et al., 2008, the
number of particles should grow exponentially with the dimension of the system, other-
wise the PF may suffer from degeneracy. Of course, a higher number of particles implies
an increased computational cost which may hamper the use of DA in near real-time ap-
plication. As a consequence, it is important to minimize the weight variance so that each
particle keeps a significant weight.

In Chapter 2 and in the study by Hostache et al., 2018, a data assimilation framework
based on Sequential Importance Sampling (a variant of PFs) has been developed follow-
ing a similar previous work by Giustarini et al., 2011b, that enables an efficient assimila-
tion of SAR data into a hydrodynamic model. In their experiment, the rainfall forcing and
the SAR data are assumed to represent the only sources of uncertainty. While in Chapter
2 is shown that the SIS method provides good results when the assumptions are indeed
satisfied, they also highlight the need for a method to mitigate degeneracy and sample
impoverishment. The assimilation via a SIS tends to degenerate with only a few particles
getting significant weights as a result of the assimilation. A preliminary attempt to mit-
igate the degeneracy consisted in using a tempering coefficient for the inflation of the
posterior probability. The likelihood was raised to the power of a coefficient whose value
enables a substantial increase of the likelihood variance. However, using this coefficient
to inflate the likelihood only partially solved the degeneracy issue, and sometimes at the
cost of a decrease in prediction accuracy.

To mitigate the mentioned PF-related issues, the following approaches have been
introduced in the literature:

1. Using a one-step proposal density to steer particles in such a way that they obtain
similar weights (Doucet et al., 2001; Van Leeuwen, 2009);

2. Moving the particles from the prior to the posterior by applying a smooth iterative
transition process using model transitional densities (Beskos et al., 2014).

3. Using particles filters within Monte-Carlo Markov Chains (PMCMC) (Andrieu et
al., 2010)

These methodologies are exact in the limit of an infinite ensemble size. Many approx-
imate algorithms exist that have been used in hydrological sciences such as: localizing
PFs, in which observations are only allowed to influence nearby elements of the state
vector (Van Leeuwen, 2009; Reich, 2013), bringing in approximate elements of Ensem-
ble Kalman Filters into the PF (Potthast et al., 2019; Frei et al., 2013), using approximate
MCMC steps within the PF proposal step (PF-MCMC) (Moradkhani et al., 2012), combin-
ing the PF with Metaheuristic-Algorithms (MA) from Computer Science, such as Genetic
Algorithm (GA) (Park et al., 2010; Kwok et al., 2005), Particle Swarm Optimization (PSO)
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(Wang et al., 2006; Li et al., 2005), and the Immune Genetic Algorithm (IGA) (Han et al.,
2011), combining the MCMC with GA algorithms and use it within the importance sam-
pling step of the PF-MCMC, known as Evolutionary Particle Filter with Markov Chain
Monte Carlo (EPFM) (Abbaszadeh et al., 2018), using 4DVar as an extra proposal density
in an EPFM, known as Hybrid Ensemble and Variational Data Assimilation framework
for Environmental systems method (HEAVEN) (Abbaszadeh et al., 2019). The evolu-
tional swarm-like PFs contain several steps and assumptions for mutation and cross-
over without guaranteeing convergence to the full posterior pdf in the limit of an infi-
nite ensemble size. Less significant approximations are needed in the Evolutionary PF-
MCMC (EPFM) method described in Abbaszadeh et al., 2018 where GA-MCMC is used
to define the importance sampling step. EPFM outperforms the PF-MCMC providing
more accurate and reliable results and overcomes the limitations of the recent standard
PF-GA algorithm where parameters of crossover and mutation steps need to be tuned.
The EPFM method uses crossover and mutation step to generate new proposal model
states. The crossover step consists in a linear combination of parent particles. The mu-
tation process is carried out to increase the diversity among the particles. Afterwards,
the proposal particles are further refined with the MCMC approach. A Gaussian distri-
bution of the proposal state is assumed to calculate metropolis acceptance ratio in the
MCMC step. The HEAVEN (Abbaszadeh et al., 2019) integrates the EPFM algorithm and
the 4D-VAR to also account for model structure uncertainty other than model parame-
ters and input uncertainties. Abbaszadeh et al., 2019 show that HEAVEN outperforms
EPFM and better simulates streamflow in high flow regimes. In this study, we adopt and
evaluate an enhanced PF following the results of the previous studies in Chapter 2 and
Hostache et al., 2018. The DA approach, hereafter called Tempered Particle Filter (TPF),
applies tempering coefficients to inflate the likelihood within an iterative process so that
the Bayes’ formula is respected (Beskos et al., 2014). The method is based on the method
first proposed by Neal, 1996, combined with ideas from Herbst et al., 2019. The iterative
assimilation approach is based on successive Sequential Importance Resamplings (SIRs)
and particle mutations (Han et al., 2011; Li et al., 2005; Abbaszadeh et al., 2018). The
mutations enable the ensemble to regain diversity after each resampling step in each it-
eration and are based on a Metropolis Hasting (MH) algorithm. We hypothesize that the
proposed DA methodology enables the mitigation of some PF limitations, sample de-
generacy and sample impoverishment, while preserving the assimilation performances
in terms of flood extent, discharge and water level simulations.

In this study, we also further investigate additional benefits that come from this new
approach. According to Dasgupta et al., 2021, degeneracy plays a crucial role in the per-
sistence of the assimilation benefits over several time steps. Therefore the TPF approach
could also help with improving the persistence of the assimilation benefits. Moreover,
DA algorithms often assume that the observations as well as the model predictions are
unbiased. Many authors pointed out the importance of bias removal before the DA, but
it is not a straightforward procedure, especially in model forecasts (De Lannoy et al.,
2007). Bias can depend on the model structure or parameters, on the initial conditions,
or on forcing errors (especially when the forcings are derived from a forecast model, as
in this study). In this context, we hypothesize that the new approach based on a TPF
enables the reduction of bias in the model predictions and we test this hypothesis. To
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enable a meaningful evaluation and to verify whether the new approach outperforms
the previous one, the TPF performance is compared to that of the SIS.

We carry out twin experiments based on a synthetically generated data-set with con-
trolled uncertainty. The SAR observations are synthetically generated from the simu-
lated flood extent maps and assimilated into a coupled hydrologic-hydraulic model. Two
different background ensembles, i.e., Open Loops, are drawn and used: in the first case
the ensemble encompasses the synthetic truth most of the time, in the second case the
ensemble is most of the time outside the ensemble range.

The objectives of this study are therefore i) to evaluate whether a principled method,
in which the only approximation is the finite ensemble size, can mitigate degeneracy,
ii) to evaluate whether the proposed framework improves the prediction accuracy and
increases the persistence of the assimilation benefits, iii) to evaluate the efficiency of
the method in reducing forecast bias. The paper is structured as follows: section 3.3
describes the materials and methods, section 3.4 showcases and discusses the results
and 3.5 draws the conclusions of the study.

3.3. MATERIALS AND METHODS
The first part of this section presents the structure of the flood forecasting system. The
second part describes the proposed assimilation framework based on a TPF. The experi-
mental design, case study, and the performance metrics used within this experiment are
introduced in the last part.

3.3.1. THE FLOOD FORECASTING MODEL
We use the ERA5 data-set (Hersbach et al., 2019) to derive the forcing of the flood fore-
casting system. Rainfall and 2 m air temperature at a spatial resolution of approximately
25 km and a temporal resolution of 1 hour are used as inputs to the flood forecasting
system. A conceptual hydrological modelling framework (SUPERFLEX) coupled with
a hydraulic model (LISFLOOD-FP) approach has been adopted: the run-off estimated
with the hydrological model is used as input to the shallow water hydraulic model. In
this study, the rainfall-runoff model SUPERFLEX (Fenicia et al., 2011) is a lumped con-
ceptual model. The state variables and the parameters used are listed in Figure 3.1. The
conceptualization model is composed of three reservoirs: an unsaturated soil reservoir
with a storage SU R representing the root zone, a fast reservoir with storage SF R represent-
ing the fast responding components (e.g., the riparian zone and preferential flow paths),
and a slow reservoir with storage SSR representing slow responding components (e.g.,
deep groundwater). A lag function is used at the outlet of the unsaturated soil reservoir
to enable a delayed hydrological response of the basin under intense rainfall conditions.
The hydraulic model is based on LISFLOOD-FP (Bates et al., 2000; Neal et al., 2012) and
simulates flood extent, water level, and discharge within the hydraulic model domain.
The roughness coefficient and the bathymetry of the hydraulic model have been previ-
ously calibrated (Wood et al., 2016)

ERA5 rainfall time series are used to generate the synthetic truth and are also per-
turbed to generate an Open Loop (OL) simulations consisting in 32 particles. These 32
particles are then used as input to the flood forecasting model to obtain the ensemble
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Figure 3.1: Scheme of the SUPERFLEX model used in this study. The hydrological model is based on three
reservoirs: an unsaturated soil reservoir (SU R ), a fast run-off reservoir (SF R ), and a slow run-off reservoir (SSR ).
The discharge deriving from the 3 reservoirs are: QU R , QF R , QSR . A triangular lag function with a base length
equal to 2 · t r i se is applied at the outflow of the unsaturated soil reservoir. EU and P represents the potential
evaporation and rainfall respectively.

of flood extent maps. We adopt the method proposed and detailed in Chapter 2 to gen-
erate synthetic observations from model results. The flood extent map of the synthetic
truth together with a real SAR observation are used to compute Probabilistic Flood Maps
(PFMs) where each pixel represents the probability to be flooded given the recorded
backscatter values (Giustarini et al., 2016). During the analysis (i.e., assimilation) step,
the generated PFMs are assimilated into the ensemble of wet-dry maps via the TPF to ob-
tain the updated particles. The following section describes the data assimilation frame-
work.

3.3.2. DATA ASSIMILATION FRAMEWORK
PFs are based on Bayes’ theorem (Equation 1.1)

The observation y at a given time k, which is the probability to be flooded given the
SAR backscatter value, is combined with the forecasts of the numerical model x at a given
time k. The posterior probability p(x | y) is computed by multiplying the prior probabil-
ity density function p(x), which is the probability of the model before any observation
is taken into account, with the likelihood p(y | x) that is the probability density that the
model state xn produces the observation. In PFs the prior Pdf is drawn from an ensem-
ble of model states of size N called particles. Equation 1.3 represents the computation
of the prior probability. Inserting Eq. 1.3 into Eq. 1.1 leads to the posterior probability
formula (Equation 1.4).

The weights Wn , hereafter called global weights, were computed by the multiplica-
tion of the pixel-based local weights wn

i , according to the formula 2.8, assuming that
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observation errors are independent across space. The set of particles tends to degener-
ate: after the assimilation, the number of particles with significant weight is reduced to
a few and the posterior distribution is poorly approximated. In Chapter 2, a first attempt
is made to reduce degeneracy, within this DA framework, using a tempering coefficient
γ according to the formula:

p(x | y) =
�

p(y | x)

p(y)

�γ
p(x) wi th γ ∈ [0,1] (3.1)

This technical solution enables inflating the posterior variance so that several parti-
cles keep significant weight. However, it is an approximate solution as not all informa-
tion from the observations is taken into account.

In the current study we aim to further improve the application of the likelihood tem-
pering. The proposed method relies on the factorisation of the likelihood through an
iterative approach according to the following formula:

p(y | x)

p(y)
=

S�
s=1

�
p(y | x)

p(y)

�γs

(3.2)

where 0 < γs < 1 for each iteration, s and
S

s=1γs = 1.

Figure 3.2: Flow chart of the DA framework where synthetic probabilistic flood maps are generated from flood
extents, derived from a truth run, and assimilated within the same flood forecasting model. The flood forecast-
ing model is represented with a gray rectangle, mathematical operations with a white rectangle, state variables,
input, and observations with a blue ellipse.

This factorization enables application of the Bayes’ theorem iteratively so that the
transition from the prior to the posterior probability is smoothly processed. The iterative
methodology leads to the following equation after one iteration:
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p(y | x) =
S�

s=2

�
p(y | x)

p(y)

�γs
�

p(y | x)

p(y)

�γ1

p(x) (3.3)

leading to

p(y | x) =
S�

s=2

�
p(y | x)

p(y)

�γs

p1(x | y)p(x) (3.4)

and:

p1(x | y) ≈
N�

n=1
W (1)

n δ(x −xn) with W(1)
n =

�
p(y | x)

p(y)

�γ1

(3.5)

At each iteration s, the tempering coefficient γs enables inflation of the likelihood vari-
ance and reduction of the weight variance, therefore reducing degeneracy. The exponent
γs allows to keep a substantial number of particles with significant weights. At each iter-
ation s, the γs value is increased and represents the solution to Equation 3.6:

InE f f (γs ) = r∗ (3.6)

where the ensemble inefficiency ratio (InE f f ) is given by Equation 3.7:

InE f f (γs ) = 1

N

N�
n=1

(W s
n (γs ))2 (3.7)

and a target value r∗ of the InE f f is previously defined. Iterations are stopped when
InE f f (1) < r∗ and γS = 1−S−1

s=1 γs , where S is the total number of iterations.
After each iteration s, the particles with high weights are resampled using the SIR

algorithm proposed by Gordon et al. (1993). Particles are replicated proportionally with
their weights: those with an associated low importance weight are replaced with replicas
of those having higher weight. After resampling, particles are equally weighted.

Next, a mutation is applied to the fast run-off reservoir level (SF R ), a variable of the
hydrological model, 24 hours prior to the assimilation to regain diversity within the par-
ticle ensemble and the mutated value is used as initial condition for a subsequent model
simulation over the 24 hours preceding the assimilation time. Mutating the hydrological
state variable 24 hours prior to the assimilation time and carrying out the related model
simulations is done in order to update the hydrological and hydraulic models in a more
consistent way since the water depths simulated by the hydraulic model at a certain time
are the result not only of the current but also of the past upstream streamflow conditions.

This mutation is carried out using a MH algorithm, based on a random perturbation
via the steps of Markov chain Monte Carlo (MCMC) methods. Since the model is deter-
ministic a mutation of the state 24-hours back in time leads to a corresponding unique
mutation at present time. This allows us to write p(yk | xk

n) = p(yk | xk−1
n ) for each par-

ticle j . Hence, the MH is based on two steps: first, draw a new particle from a proposal
density as x∗ ∼ q(x|xk−1

n ), and then calculate the MH acceptance ratio:

α= min

�
1,

�
p(yk | x∗) p(x∗)

p(yk | xk−1
n ) p(xk−1

n )

q(xk−1
n | x∗)

q(x∗ | xk−1
n )

��
(3.8)
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Many possibilities are available for choosing the proposal density q(). As detailed below,
a symmetric proposal density cancel the proposal density ratio leading to the so-called
MH. Furthermore, since the prior 24 hours back is much wider than the likelihood, we
can safely ignore the ratio p(x∗)/p(xk−1

n ), and in this case the acceptance ratio becomes:

α= min

�
1,

�
p(yk | x∗)

p(yk | xk
n)

��
(3.9)

where xk
n represents the particles with high weight that have been resampled. A random

variable u ∼U [0,1] is drawn and the mutated particle is accepted if α> u, otherwise we
keep the particle as before its mutation.

As proposed by Herbst et al., 2019, the mutation is carried out based on a proposed
innovation p(x∗ | xk−1) = N (xk−1,c2

s ·σ2) , with cs being a scaling factor given by the
following equation:

cs = cs−1

�
0.95+0.10 · e20·(α−0.4)

1+e20·(α−0.4)

�
(3.10)

cs at the first iteration is set to 0.2. The mutation step is repeated for l = 1, .., N M H . In our
study N M H = 2.
In detail, the method is structured according to the following steps (Figure 3.2):

• Ensemble forcing are used as input to the flood forecasting model;

• The hydrodynamic simulations are carried out over the 24 hours prior to the as-
similation.

• Calculate p(y |xi ) for each particle i and find γ1 such that InE f f (γ1) = r∗.

• Particles are resampled using the tempered weights. The particles after resampling
that are duplicates of particles with high weights are perturbed at time ta-24 hours.

• New hydrodynamic simulations with the mutated levels of the SF R are carried out
during the 24 hours prior to the assimilation.

• The likelihood of the mutated particles pmu(y | x) is compared to the likelihood of
the resampled particles pr e (y | x).

• The resampled particles are replaced by the mutated particles if the ratio of the
two is larger than a value randomly taken from the interval [0, 1].

• The mutation step is repeated twice.

• The iteration with a new tempering coefficient is realized.

• The entire process is repeated until the sum of the tempering coefficients is equal
to unity.
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Figure 3.3: Study area of the synthetic experiment (left). Black dots correspond to the points where evaluation
of the DA performances is carried out ("Severn at Bewdley" and "Severn at Saxons Lode"). Ensemble time
series of discharge in Saxons Lode and assimilation times (right). Gray lines correspond to the Open Loop (OL),
the red line corresponds to the synthetic truth, the green line corresponds to the mean of the OL. The dashed
lines correspond to the different assimilation time steps performed independently every 24 hours from 19/07
00:00 to 28/07 00:00.

3.3.3. EXPERIMENTAL DESIGN, CASE STUDY, AND PERFORMANCE METRICS
The study area is the lower river Severn located in the United Kingdom (Figure 3.3, on the
left). To analyze the filter performances at different assimilation times, SAR images have
been synthetically generated (see Chapter 2) every 24 hours from 07/19 00:00 to 07/28
00:00 (Figure 3.3, on the right) and the 10 corresponding independent assimilations are
carried out and evaluated.

The flood event has been simulated using the rainfall and temperature (ERA-5 dataset)
time series corresponding to the July 2007 event as input data to the flood forecasting
system.

Further details concerning the hydrological and hydraulic model set-up as well as the
study area of the synthetic experiment, are provided in our previous study (Chapter 2).
In this study, the ensemble contains 32 particles. The proposed TPF is characterised by a
particle mutation at each iteration. The mutation step could have a key-role, especially
when the ensemble is biased with respect to the observations. On the one hand, in the
SIS case the weighted mean (also called expectation) is based on the initial particles of
the ensemble meaning that if the truth falls outside the ensemble range the expectation
cannot reach the synthetic truth. On the other hand, in the TPF case the particles can
mutate and move outside the initial ensemble range. This way the expectation can po-
tentially reach the synthetic truth. For evaluating the capability of the TPF to compen-
sate for bias within the ensemble, two different cases are investigated. The difference
between the OL and the synthetic truth (O) rainfall time series averaged over the flood
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event period (K) represents the mean bias error (MBE, equation 3.11) and it is used to
estimate the bias. For a "markedly" biased case MBE is 0.92 mm

h while for a "limited"
bias case the MBE is 0.14 mm

h , meaning that the error of the markedly biased case is 6.56
times larger than for the other case.

MBE = 1

K

K�
k=1

(OLk −Ok ) (3.11)

In the limited case the synthetic truth is most of the time within the ensemble range;
in the other case the ensemble is conspicuously biased and the synthetic truth falls out-
side the ensemble range most of the time. The assimilation steps are performed at the
same time for both cases and the same observations are used.
Results are analyzed according to different spatial (global and local) and temporal scales
(at the assimilation time and for the subsequent time steps). The filter performances
are evaluated in terms of predicted flood extent and water depth maps, as well as local
discharge and water levels time series. The performance metrics are assessed by com-
paring the results of the TPF with those of the OL. Moreover, the TPF is compared with
the SIS method applied in our previous study (Chapter 2 ). The local evaluation of the
prediction accuracy of water levels and discharge is performed by comparing the simu-
lated discharge and water level time series with respect to the synthetic truth.
The following performance metrics are used:

• Confusion matrices: a matrix providing the number of false negatives (under-prediction)
and false positives (over-prediction), together with correct positives and negatives;

• Contingency maps: maps comparing the simulated flood map with the synthetic
truth map;

• Critical success index (CSI): a metric that evaluates the accuracy of the flood map
predictions and is defined as the ratio between the number of pixels correctly pre-
dicted as flooded over the sum of predicted flooded pixels (correct positives, false
positives and false negatives). It ranges from 0, complete disagreement, to 1, per-
fect match;

• Root mean square error (RMSE): it is given by the square root of the mean of the
squares of the deviations of the predicted water levels against the synthetic truth
over the hydraulic model domain. It evaluates the prediction errors of a state vari-
able, in our case the water levels.

• 95% Exceedance Ratio (ER95): it measures the reliability of the ensemble predic-
tion quantiles and it is given by the formula: (Nexceedence /T )·100, where Nexceedence

is the number of times during the total simulation T where observations fall out-
side the 95% predictive bounds. The ideal ensemble should fall outside the 95%
predictive bounds only the 5% of the time (Moradkhani et al., 2006).

• Normalized RMSE Ratio (NRR): it is a normalized measure of the ensemble disper-
sion. It is defined as the ratio of the time-averaged RMSE of the ensemble mean
to the time averaged RMSE of the single members of the ensemble over the value
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(N +1)/2N and it should be equal to one. N RR > 1 indicates an insufficient

spread, while N RR < 1 indicates the opposite. (Anderson, 2001; Moradkhani et al.,
2005).

3.4. RESULTS AND DISCUSSIONS

3.4.1. TPF-BASED ASSIMILATION PERFORMANCES

FLOOD EXTENT MAP PREDICTIONS

The flood extent maps are evaluated via different performance metrics: the contingency
maps, the CSI and the confusion matrix. The contingency map is derived from the com-
parison between the simulated flood extent map ( i.e. expectation) and the validation
map which is derived from the synthetic truth simulation in our case. The contingency
maps, corresponding to 3 different assimilation time steps (rising limb, peak, falling
limb), are shown in Figure 3.4.

Figure 3.4: Contingency maps of the Open Loop (left) and after the assimilation (right) for three different assim-
ilations at time 07/23 00:00, 07/24 00:00, 07/25 00:00. Red pixels correspond to over-prediction (false positives)
errors, yellow pixels to under-prediction (false negatives) errors, pixels correctly classified as not-flooded are
in gray and when the contrary occurs pixels are in blue.

Yellow and red pixels correspond to errors of under-prediction (when the model wrongly
predicts the pixels as not-flooded) and over-prediction (the opposite case), respectively.
In Figure 3.4, the reported images for each assimilation time correspond to the OL (on
the left) and the TPF analysis (on the right). Over-prediction represents the most fre-
quent type of error and it is significantly reduced as a result of the TPF-based assimila-
tion.

The decrease of wrongly predicted pixels is quantified in the confusion matrix re-
ported in Table 3.1. In line with Figure 3.4, after any of the three assimilation time steps,
the number of over-prediction errors is reduced by 90% or more, while the number of
under-predicted pixels increases in the upstream part of the river. However, they repre-
sent only 0.3% or less of the total number of flooded pixels.

Time series of CSI are also used to evaluate the TPF performances (Figure 3.5). They
allow to evaluate the predicted flood extent maps not only at the assimilation time step
(as for the contingency maps and the confusion matrices) but also for subsequent time
steps. Time series of CSI provide an assessment of the persistence of the improvements
over longer lead times after the assimilation. Figure 3.5 shows the time series of CSI
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Method 07/23 00:00 07/24 00:00 07/25 00:00

PF PN PF PN PF PN

Open TF 7497 0 9374 0 8390 1
Loop TN 2441 260974 1356 260182 1219 261302

TPF
TF 7475 22 9374 22 8378 13
TN 204 263211 78 261460 30 262491

Table 3.1: Confusion matrix of the Open Loop and Tempered Particle Filter analysis for three different time
steps (07/23 00:00, 07/24 00:00, 07/25 00:00): TF= flooded pixels in the truth map, TN= not-flooded pixels in
the truth map, PF= predicted flooded pixels, PN=predicted non-flooded pixels.

before (black line) and after (blue line) the assimilation of SAR images taken during the
rising limb (07/23 00:00), at the peak (07/24 00:00) and during the falling limb (07/25
00:00) of the flood event. This figure shows an improvement of the analysis compared to

Figure 3.5: Hourly time series of the Critical Success Index of the Open Loop (black line) and Tempered Particle
Filter analysis (blue line) due to the assimilation of 3 different images: during the rising limb (07/23 00:00), at
the peak (07/24 00:00) and during the falling limb (07/25 00:00).

the OL not only at the assimilation time but also over subsequent time steps: on average,
CSI improvements persist for more than 3 days after the TPF application.

WATER LEVEL AND DISCHARGE PREDICTIONS

To further investigate the TPF assimilation performance we evaluate water level and dis-
charge predictions. This evaluation is carried out first at specific points along the river
Severn: in Bewdley (the gauge station located at the upstream boundary of the hydraulic
model domain), and in Saxons Lode (within the hydraulic domain). In Figures 3.6, the
discharge at Bewdley (on the left) and at Saxons Lode (on the right) are plotted. The anal-
ysis expectation of discharge (blue line) moves closer to the synthetic truth (red line) at
the two stations as a result of the assimilation showing a substantial improvement of the
predictions. Here we show the results from the assimilation on July 23th 00:00 as an il-
lustrative example since the other assimilations produce similar effects. In Figure 3.6, it
can be observed that the degeneracy is mitigated. At the assimilation time, the analysis
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particles are very similar and close to the synthetic truth, but rapidly regain diversity,
thereby avoiding degeneracy. After more than 3 days, the particles returns to their initial
trajectories (i.e. the OL) mainly because precipitation uncertainty seems to prevail in the
forecasts from that moment on.

Figure 3.6: Time series of discharge at the peak at Bewdley and at Saxons Lode with the assimilation of an
image at 07/23 00:00. The vertical dashed lines indicate the time of the assimilation. The gray lines correspond
to the OL particles, the green line to the OL mean, the light blue lines to the analysis particles and the blue line
to the analysis expectation. The synthetic truth is represented by a red line.

To generalize the evaluation made for the gauging stations, we evaluate the accuracy
of water level predictions globally, using time series of RMSE computed over the entire
hydraulic model domain. This index has been calculated at the assimilation time and for
subsequent time steps, in order to assess if the assimilation benefits persist in time. In
Figure 3.7, the RMSE of the analysis is lower than the OL and this improvement lasts for
more than 3 days following the assimilation. The accuracy of the results is higher when
assimilation is performed after the flood peak, when rainfall has stopped, and inflow
errors are dominating. Flood extents during the falling limb become more sensitive to
changes in water depth due to the connectivity between the river channel and its flood-
plain (Dasgupta et al., 2021). Because of this high sensitivity, during the falling limb,
flood extents change faster and weights should be updated more frequently to be con-
sistent with the new hydraulic conditions. This could explain the reason why, as for the
CSI plots (Figure 3.5), DA performances start dropping more quickly for the assimilation
at the falling limb. The performances of the TPF experiment have been compared to
those of the OL for lead time up to 7 days. After one week, we observe that the TPF-CSI
is 10% greater than the OL-CSI whereas the TPF-RMSE is 20% lower than the OL-RMSE.
These results show that the TPF still outperforms the OL after one week. The standard
deviation of the errors has also been computed in order to evaluate the dispersion of the
errors (given as the difference between the expectation and the true water levels) and it
is shown in Figure 3.8. Results show that the TPF application determines less dispersed
and more clustered results around the synthetic truth.
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Figure 3.7: Hourly time series of the RMSE of water levels. Black line refers to the OL and blue line to the
analysis results after the assimilations of 3 different images (07/23 00:00, 07/24 00:00, and 07/25 00:00).

Figure 3.8: Hourly time series of the standard deviation of the errors due to the assimilation of 3 different
images: 07/24 00:00, 07/25 00:00, and 07/26 00:00. The standard deviation of the errors as difference between
the OL and the true water levels (black line) and as difference between the analysis expectation and the true
water levels (blue line).

3.4.2. COMPARISON BETWEEN TPF- AND SIS-BASED ASSIMILATION EXPER-
IMENTS WITH UNBIASED BACKGROUND

We showed in section 3.4.1 that the TPF improves the predictions of water levels and
discharge, as well as flood extent. In this section, the new TPF-based DA framework is
compared with the SIS approach previously proposed in Chapter 2 . To do so, we apply
the SIS method as proposed Chapter 2 on the same 32 background particles (i.e., OL)
and the same synthetically generated flood extent observations. The choice of compar-
ing the TPF with this SIS is related to the fact that other methods reported in Chapter
2 were providing comparable performances, and therefore, SIS has been chosen as a
benchmark. In terms of flood extent, the comparison is realized using the hourly time
series of the CSI index (Figure 3.9).

In Figure 3.9, the blue line corresponds to the CSI of the forecast obtained from the
TPF-based case, the orange line to the one obtained from the SIS-based case and the
black line to the one of the OL. The 3 plots correspond respectively to the assimilation on
July 23 00:00, July 24 00:00 and July 25 00:00. The CSI values obtained when assimilating
an image during the rising limb are systematically higher for the TPF. When the image
is assimilated close to the peak and during the falling limb, CSI values of the TPF and
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Figure 3.9: Comparison of the hourly time series of the Critical Success Index of the OL (black line), TPF anal-
ysis (blue line) and SIS analysis (orange line) due to the assimilation of 3 different images: 07/23 00:00, 07/24
00:00, and 07/25 00:00.

SIS-based assimilation are very similar at the assimilation time and for subsequent time
steps. After 2 days, the performance of the SIS becomes substantially worse than that of
the TPF. SIS suffers from degeneracy, the number of particles with a significant weight as
a result of the assimilation is very limited. These particles produce accurate results at the
assimilation time, but are not necessarily efficient after a few hours or days, especially
when hydraulic conditions have changed in the meantime.

We have also compared the performances of the SIS and the TPF using time series of
RMSE (Figure 3.10). As expected, the RMSE time series exhibit very similar trend to the
CSI: the RMSE is lower with the TPF experiment when assimilating an image during the
rising limb. For the other two assimilation steps RMSE values are comparable, but per-
formances of the SIS decrease more rapidly, especially after 2 days. Overall, Figures 3.9
and 3.10 clearly show the beneficial effects of the TPF assimilation on the long-term.

Figure 3.10: Hourly Root Mean Square Error (RMSE) time series. The black line represents the RMSE of the OL,
the blue line the TPF-based RMSE and the orange line the SIS-based RMSE. 3 different assimilation cases are
plotted: 07/23 00:00, 07/24 00:00, and 07/25 00:00.

Table 3.2 reports the ratios between the analysis-RMSE and the OL-RMSE for each
assimilated SAR image and for different lead times. These ratios were calculated at each
hour and for all the different assimilation dates. In the table the values at the assimilation
time and for lead times of 6 hours, 1 day, 2 days, 3 days, and 4 days are reported. The
ratios obtained with the TPF method are shown in the gray cells. The cyan cells contain
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the ratios obtained with the SIS experiment. The last row of the table shows the mean of
the RMSE ratios over the different assimilation times at given prediction lead times. The
lower the RMSE ratio values, the better the performance. Ratios of RMSEs lower than
unity indicate that the assimilation improves forecasts. Table 3.2 shows that the TPF-
based ratios are most of the time substantially lower than those of the SIS-based ones.
For instance, the SIS-based mean ratios for 3 and 4 days of lead times are almost twice
that of the TPF-based one. The benefit of the TPF-based assimilation persists for more
than 4 days after the assimilation time. Moreover, the TPF-based ratios are always lower
than unity, whereas the SIS-based ratios get also values higher than unity.

Table 3.2: Ratios between the analysis and Open Loop RMSE for each assimilation date and for various lead
times. Gray cells refer to the TPF-based method, cyan cells to the SIS-based method.

Image Lead time
date 0 6 hours 1 day 2 days 3 days 4 days

TPF SIS TPF SIS TPF SIS TPF SIS TPF SIS TPF SIS
07/19 0.25 0.24 0.25 0.24 0.23 0.26 0.20 0.22 0.59 0.57 0.80 0.83
07/20 0.23 0.26 0.22 0.26 0.19 0.22 0.60 0.57 0.83 0.85 0.90 1.08
07/21 0.19 0.22 0.28 0.24 0.62 0.57 0.77 0.85 0.79 1.10 0.76 1.26
07/22 0.27 0.25 0.30 0.29 0.35 0.35 0.31 0.36 0.23 0.39 0.27 0.67
07/23 0.16 0.35 0.15 0.36 0.05 0.36 0.18 0.39 0.27 0.70 0.43 0.84
07/24 0.15 0.09 0.19 0.09 0.31 0.13 0.25 0.42 0.08 1.58 0.41 2.52
07/25 0.08 0.13 0.11 0.16 0.29 0.42 0.63 1.58 0.78 2.57 0.78 2.96
07/26 0.17 0.23 0.17 0.25 0.25 0.20 0.54 0.24 0.63 0.38 0.64 0.72
07/27 0.11 0.18 0.12 0.16 0.26 0.24 0.38 0.41 0.49 0.69 0.56 1.20
07/28 0.15 0.24 0.23 0.29 0.36 0.41 0.54 0.69 0.63 1.26 - -

Mean 0.17 0.21 0.19 0.22 0.25 0.29 0.39 0.48 0.44 0.85 0.58 1.1

Model performances have also been statistically evaluated using the 95% Exceedance
Ratio (ER95) and the Normalized Root Mean Square Error Ratio (NRR). Both metrics have
been used to evaluate the water level ensemble at two different gauge stations (Bewdley
and Saxons Lode). ER95 evaluates the ensemble spread by quantifying the percentage of
time the observation falls outside the 95% confidence interval derived from the ensem-
ble. ER95 values should be ideally around 5%, meaning that the observation falls outside
of the 95% predictive bounds only 5% of the time. NRR also evaluates the spread of the
ensemble, ideal values should be around the unity and lower or higher values indicate a
too narrow or too wide ensemble, respectively. Table 3.3 reports these statistical perfor-
mances for the SIS and TPF experiments. While TPF- and SIS-NRR are both close to the
unity for the different assimilation time steps, ER95 varies with the different assimilation
time steps. In particular, we found that on average, over the different assimilations, the
value of ER95 for the TPF is around 7% in Bewdley and 9% in Saxons Lode, which are
values close to the target values (5%). Moreover, if we compare these values with those
of the SIS that are around 25%, it is clear that TPF substantially outperforms SIS. This
highlights a marked degeneracy in the SIS, that is substantially reduced by TPF.
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Table 3.3: NRR and ER95 of water levels at the different assimilation times and at two different gauge stations
(Bewdley and Saxons Lode). SIS statistical performance measures are shown in the cyan column and TPF
performance measures in the gray column. The average of the measures over the different assimilation time is
also reported in the last row of the table.

Image Bewdley Saxons Lode
date ER95 [%] NRR ER95 [%] NRR

TPF SIS TPF SIS TPF SIS TPF SIS
07/19 4.97 26.98 0.88 0.93 5.77 26.58 0.94 0.95
07/20 2.42 36.64 0.88 0.95 2.82 36.24 0.88 0.95
07/21 12.21 33.42 0.9 0.95 15.44 33.02 0.91 0.94
07/22 7.5 30.20 0.85 0.95 10.1 29.80 0.86 0.95
07/23 6.85 26.98 0.88 0.94 8.19 26.58 0.89 0.95
07/24 7.92 23.76 0.87 0.95 8.99 23.36 0.88 0.94
07/25 7.11 20.54 0.88 0.95 9.53 20.13 0.89 0.94
07/26 3.62 17.32 0.88 0.93 5.37 16.91 0.89 0.93
07/27 9.8 14.09 0.72 0.93 13.15 13.69 0.77 0.93
07/28 7.11 10.87 0.92 0.98 10.34 10.47 0.93 0.98
Mean 6.94 24.08 0.87 0.95 8.97 23.68 0.88 0.95

3.4.3. COMPARISON BETWEEN TPF- AND SIS-BASED ASSIMILATION EXPER-
IMENTS WITH BIASED BACKGROUND

In this last experiment, we use the same set-up as in the previous experiment but with
the exception of a modified OL. We have introduced a perturbation error to the ERA-5
rainfall time series so that the bias in the ensemble is 6.56 times larger than in the previ-
ous case. The ensemble has significant bias and the synthetic truth is most of the time
located outside of the ensemble range as can be see in Figure 3.11. For the evaluation
of the results, the same performance indices and the same plots are used. The ratios
between the analysis-RMSE and the OL-RMSE for each assimilated SAR image and for
different lead times are reported in the Table 3.4. At the assimilation time and for more
than one day after that, the TPF-based assimilation is capable of substantially reducing
the forecast bias. The SIS is less efficient in that respect, as RMSE ratios are larger for
the SIS-based assimilation. For longer lead times, the error in water levels increases due
to the bias in the rainfall ensemble and the RMSE ratios of the TPF-based and the SIS-
based assimilation become similar. This is clearly visible in Figure 3.12 that shows the
RMSE time series on July 23th , 24th , and 25th at 00:00. When the bias is limited and the
synthetic truth falls inside the ensemble range most of the time, as in the previous case
(Figure 3.7), the forecast improvement lasts for longer lead times. However, when the
ensemble is markedly biased (Figure 3.12), the TPF improves the results at the assimila-
tion time but the level of improvement degrades more quickly compared to the limited
biased case.

At the assimilation time, the TPF always improves the accuracy of the results of the
flood forecasts (in terms of flood extent, water levels, discharge) with respect to the OL
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Figure 3.11: Discharge time series ensemble at Bewdley (on the left) and at Saxons Lode (on the right). The OL
particles are represented with gray lines, the synthetic truth is represented by the red line. The OL expectation
is in green. In this case, the ensemble is markedly biased; the synthetic truth falls outside the ensemble range
most of the time.

Figure 3.12: Hourly RMSE time series for a markedly biased ensemble case. The black line represents the
RMSE of the OL, the blue line the RMSE after the TPF application and the orange line the RMSE after the SIS
application. Assimilation at 07/23 00:00, 07/24 00:00, and 07/25 00:00 are plotted.

and it is comparable to the SIS performances. An important aspect that emerges from
the results is the persistence of the assimilation benefits. They remain significant even
3 days after the TPF assimilation when compared to the SIS performances; nonetheless,
performances start degrading with the onset of rainfall over the headwater catchment
and rainfall uncertainty prevails in the forecast uncertainty. We argue that the marked
improvement in the forecast skill of the TPF, compared to the SIS, is due to the update of
the initial conditions of the hydrological model including SF R 24 h prior to the assimila-
tion time. In the TPF, better initial conditions of the model forecast are defined at each
assimilation time via the different iteration and mutation steps, whereas the SIS only de-
fines the relative importance of each particle, without carrying out any better definition
of the initial conditions of the model. The runoff that is used as upstream boundaries of
the hydraulic model is a function of the storage SF R of the hydrological model. Updating
the SF R , and consequently the fast run-off, represents an effective way to increase the
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Table 3.4: Ratio between the analysis and Open Loop of the the RMSE for each assimilation date and for various
lead times for a markedly biased case. Gray cells refer to the TPF-based method, cyan cells to the SIS-based
method.

Image Lead time
date 0 6 hours 1 day 2 days 3 days 4 days

TPF SIS TPF SIS TPF SIS TPF SIS TPF SIS TPF SIS

07/19 0.19 0.42 0.13 0.42 0.10 0.44 0.26 0.52 0.82 0.53 0.94 0.58
07/20 0.29 0.44 0.25 0.46 0.21 0.52 0.72 0.53 0.88 0.59 0.91 0.67
07/21 0.47 0.52 0.49 0.53 0.54 0.53 0.70 0.59 0.82 0.68 0.71 0.82
07/22 0.47 0.53 0.49 0.52 0.53 0.59 0.70 0.68 0.82 0.83 0.88 0.95
07/23 0.32 0.31 0.31 0.29 0.30 0.26 0.47 0.38 0.71 0.57 0.81 0.64
07/24 0.17 0.26 0.20 0.27 0.39 0.38 0.61 0.57 0.71 0.64 0.78 0.70
07/25 0.15 0.38 0.21 0.43 0.41 0.57 0.55 0.64 0.65 0.71 0.76 0.80
07/26 0.16 0.57 0.18 0.59 0.28 0.64 0.44 0.71 0.61 0.81 0.68 0.87
07/27 0.24 0.52 0.16 0.55 0.34 0.70 0.68 0.96 0.83 1.05 0.78 1.04
07/28 0.34 0.70 0.36 0.77 0.51 0.96 0.65 1.05 0.58 1.04 - -

Mean 0.26 0.46 0.24 0.48 0.34 0.56 0.55 0.66 0.72 0.74 0.81 0.79

long-lasting effects of DA since runoff has the highest uncertainty deriving from poorly
known rainfall as already pointed out by Matgen et al., 2010. This aspect, together with
the mitigation of degeneracy, as hypothesized by Dasgupta et al., 2021, could explain the
longer-term persistence of DA benefits via the TPF.

After the TPF application, particles move towards the synthetic truth also in the case
the truth falls outside the predictive bounds of the OL ensemble. Despite the improve-
ments due to the TPF, performances are not as good as in the previous case. As a con-
sequence, results obtained using the TPF are sometimes similar to those obtained using
the SIS, or even slightly less satisfying when rainfall uncertainty dominates the system.
The improvements resulting from the update of the initial conditions are vanished af-
ter a few days because of the bias in the ensemble and the model moves back to the OL
state. The update of the state level of the reservoir has a time–limited benefit. It is a state
variable highly influenced by the inputs, and thus by the rainfall. In our experiment,
the rainfall ensemble is obtained by perturbing the deterministic ERA-5 product using
a multiplicative noise. Therefore, when there is low intensity rainfall simulated in ERA5
the uncertainty is very limited. Moreover, as the rainfall ensemble is not updated, the
ensemble analysis goes back to the OL trajectory after a while. This return of the analysis
back to the OL is even more rapid when higher rainfall intensity is imposed to the model:
the influence of the initial conditions is rapidly overruled by the forcing uncertainty. To
increase the time window of the assimilation benefits, the update of hydrological model
state variable could be completed by a forcing update or by a parameter update, as in
Cooper et al., 2018b where channel friction is updated together with a state variable, but
with the consequent risk of multiple acceptable solutions of the system according to the
equifinality concept (Beven et al., 2001).
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3.5. CONCLUSIONS
In this paper, we have proposed a new approach based on a Tempered Particle Filter
(TPF) to assimilate flood extent maps into a flood forecasting system. The objective of
this new data assimilation framework is to mitigate degeneracy and sample impoverish-
ment, well known issues in particle filtering. In the proposed TPF method, the number
of tuning parameters is small with respect to methods such as PF-MCMC (Andrieu et al.,
2010; Moradkhani et al., 2012) thus rendering the TPF easily transferable to other situa-
tions. We also argue that this makes the approach potentially robust. Moreover, the TPF
does not need cross-over steps or assumptions on the prior pdf used in the MH accep-
tance ratio as in the Evolutionary PF-MCMC (Abbaszadeh et al., 2018) or in the HEAVEN
(Abbaszadeh et al., 2019).

We have evaluated the performances of the filter in two different cases: with a lim-
ited forecast bias and with a more important forecast bias. The TPF has been compared
against the standard Particle Filter, namely the Sequential Importance Sampling (SIS) as
used in previous studies such as Hostache et al., 2018 and Chapter 2 of this thesis. The
following key conclusions are drawn from our experiments:

1. At the time of the assimilation, forecasts are very accurate locally: the forecast
overlaps the synthetic truth for all the different assimilation cases and for both
analysed locations. Results are very satisfying evaluating the performances over
the entire hydraulic domain: RMSE and CSI improve systematically as a result of
the assimilation. On average, RMSE values decrease by 80% whereas CSI values
increase by 30% as a result of the assimilation;

2. Results are also satisfying across time: the CSI and RMSE are improved up to 3
days after the assimilation;

3. Performances are improved compared to the OL and the SIS filter. The benefits
of the newly introduced TPF-based assimilation are longer persisting when com-
pared to the effects obtained with assimilation techniques used in the previous
studies;

4. The new assimilation framework significantly outperforms the SIS. SIS performance
indices are generally comparable to the TPF ones at the assimilation time, but they
tend to drop more rapidly, in general 2 days after the assimilation. For example,
TPF-based RMSE are 20% lower compared to the SIS-based ones, 2 days after the
assimilation;

5. When the ensemble is markedly biased results are significantly improved by the
TPF at the assimilation times and for few days after. Afterwards, TPF and SIS based
results are similar because the model state update cannot compensate for a too
large bias in the precipitation ensemble.

The proposed data assimilation framework based on a TPF holds promise for im-
proving prediction accuracy for longer lead times. In this study, we have shown a syn-
thetic experiment where rainfall and SAR observations are the only sources of uncer-
tainty. In a future study, it will be interesting to apply and evaluate this enhanced ap-
proach on a real test case in a weakly controlled environment.
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The present chapter corresponds to the following scientific publication in its original
form: Concetta Di Mauro, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco
Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blösch. "Application of
the tempered particle filter to a real case study." Submitted to "Advances in Water Re-
sources", 2022.

4.1. ABSTRACT
Predicting and mitigating floods is fundamental to prevent or reduce the socio-economic
consequences of them. Data assimilation (DA) can help in improving the flood forecast
accuracy by reducing the uncertainties stemming from the observations and the model.
In a previous study a DA technique, namely Tempered Particle filter (TPF), has been
tested in a synthetic experiment with controlled uncertainty. This study aims to evalu-
ate the TPF in a real world experiment. 3 different flood events of the River Severn (UK)
are used as a test case. Results show that the errors are decreased by 60%-70% at the as-
similation time at some gauging stations. Improvements in water levels accuracy persist
also for several hours to days after the assimilation. In addition, the flood extent map is
improved, unless the flood extent map of the Open Loop is already good. The main ac-
tual limitation of the TPF is linked to the poor predictions of the boundary inflows. This
could be due to the fact that other possible sources of uncertainty, other than the rainfall
and the satellite data, need to be taken into account.
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4.2. INTRODUCTION
Early warning and prediction of flood events are crucial in river basin management strate-
gies. In this context hydrodynamic models are fundamental to estimate water level and
flood extent that represent necessary information to prevent and/or mitigate devastat-
ing consequences of floods. However flood models are subject to several concurring
sources of uncertainties (e.g. boundary conditions, model parameters, observations,
model structure) that often lead to inaccurate predictions. DA can help in reducing the
predictive uncertainty via regular and frequent updates of model states and/or parame-
ters based on observations (Moradkhani et al., 2005).

Ideally, DA in flood models should exploit observed data from distributed gauge net-
works measuring for example water level and/or discharge. However this type of infor-
mation is not always available either because of a lack of gauging station data or be-
cause of measurements made during high flood events being unreliable (Grimaldi et al.,
2016). Satellite data represent valuable sources of information, especially in data-scarce
regions. In particular, Synthetic Aperture Radar (SAR) sensors have the capacity to cap-
ture flooded area, to penetrate clouds, and to produce observations during day and night
due to their active microwave sensing technique.

The Ensemble Kalman Filter (EnKF) and its variants are currently the most widely
used DA techniques in flood prediction (e.g., Revilla-Romero et al., 2016; Cooper et al.,
2018b; Annis et al., 2021). However, EnKFs make strong hypotheses regarding model
and observation error distributions (i.e., Gaussian errors), linear analysis and do not
necessarily conserve the water balance (Matgen et al., 2010; Noh et al., 2011; Plaza et
al., 2012). DeChant et al., 2012 show that EnKF limitations can potentially lead to filter
divergence and can produce overconfident results. Given these limitations, Particle Fil-
ters (PFs) have gained interest in the research community especially because they relax
the assumption of normally distributed errors. PFs represent the prior and the posterior
Probability Density Functions (pdfs) by a set of model states called particles. While rep-
resenting a valuable alternative in non-linear and non-Gaussian systems, PFs have some
important limitations such as degeneracy. The degeneracy occurs when the number of
particles with significant weight as a result of the assimilation is very limited, the ensem-
ble could collapse and may lead to wrong approximation of the posterior distribution.
Gordon et al., 1993 proposed a resampling of the particles to mitigate the degeneracy
but this was generating a loss of diversity among particles, a problem known as sample
impoverishment. Various additional techniques have been proposed in the literature
to mitigate these PF-related issues. Van Leeuwen, 2009 provided an extensive review of
recent developments in PFs. For instance, some recent techniques combine a PF with
a Markov Chain Monte Carlo method (MCMC) (Andrieu et al., 2010; Moradkhani et al.,
2012), with Metaheuristic techniques derived from Computer Sciences such as Genetic
Algorithms (GA) (Kwok et al., 2005), Particle Swarm Optimization (Wang et al., 2006; Li
et al., 2005), Immune Genetic Algorithms (IGA) (Han et al., 2011). From the combined
use of GA and PFs, Evolutionary Particle Filters (EPFs) have been developed. EPFs are
inspired by Darwin’s evolution theory: particles with high weights are more likely to be
selected. Degeneracy and sample impoverishment are tackled with crossover and mu-
tation operators. This approach requires a tuning of parameters for cross-over and mu-
tations. In a recent study, Abbaszadeh et al., 2018 evolved the evolutionary PF based



4.3. MATERIAL AND METHODS

4

65

on the combination of GA with MCMC (EPFM). In Abbaszadeh et al., 2018 study, EPFM
is applied to hydrological problems without any tuning of the parameters for steps like
cross over or mutations. In Chapter 3, it has been introduced a DA framework based
on a Tempered Particle Filter (TPF) where a smooth transition trough consecutive tem-
pering steps is performed. The proposed methodology appears to be more general and
transferable given that no parameters need to be tuned and physically realistic states
are obtained by design. Differently from other studies on DA applied to hydrological
problems, in the studies introduced in Chapters 2 and 3, the SAR-derived probabilistic
flood maps (PFMs) are assimilated into a hydraulic model. The maps attribute to each
pixel its probability to be flooded given the recorded SAR backscatter value (Giustarini
et al., 2015). The proposed approach showed promising results in a synthetic twin ex-
periment: estimates of water levels and discharge were improved when compared to
the Open Loop (i.e., when no observation is assimilated) and to a standard state-of-the-
art Sequential Importance Sampling (SIS) particle filter. Moreover the predictions were
improved for prediction lead times up to 3 days following the time step of the actual
assimilation. However, this method has been exclusively applied in a synthetic exper-
iment where the multiple sources of uncertainty affecting the prediction system were
fully controlled by the users (i.e. rainfall and SAR observations were assumed to be the
only sources of known uncertainty).

In this study, we would like to investigate the limitations and the advantages of TPF-
based approach in a real world experiment and we would like to compare it with the
synthetic experiment previously applied in Chapter 3 . We would like to evaluate if, in
a real world experiment where sources of uncertainty are not tightly controlled, the hy-
pothesis of rainfall and SAR observations as the only sources of uncertainty is still valid
when the TPF is applied. For the sake of consistency with the previously published syn-
thetic experiment, in this real case experiment, rainfall and SAR observations are still
considered as the dominating sources of uncertainty. We argue that in operational flood
forecasting the amount of precipitation tends to be a dominant source of uncertainty
(Koussis et al., 2003; Pappenberger et al., 2005) but we acknowledge that, in a real-world
experiment, uncertainties arise from different sources and we want to investigate what
are the implications of not considering these uncertainties. The PFMs derived from SAR
data are assimilated into a flood forecasting chain composed of a cascade of coupled
hydrological and hydraulic models. Three flood events of markedly different magnitude
which were observed by different satellites are considered as test cases in order to get
more insights on the potential and limitations of the newly proposed TPF.

4.3. MATERIAL AND METHODS

4.3.1. THE TEMPERED PARTICLE FILTER
The TPF is a variant of Particle Filters which use a set of particles to approximate a prob-
ability distribution function. Likewise many other Data Assimilation (DA) methods, TPF
is based on the Bayes’ formula which states that the probability of an event given an
observation y at time k is given by Equation 1.1. In this study, the information derived
from the SAR observations y and the forecasts of the hydraulic model x at time k can be
combined to reduce the uncertainties of both. PFs do not make any assumptions on the
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prior probability distribution (pdf) that is drawn from an ensemble of model states of
size N (called particles). In this study, the number of particles is N = 32. The particles
are generated from the perturbation of the rainfall time series, assuming that uncertainty
only stems from rainfall estimates and SAR-based observations. The prior pdf,at time k,
is defined according to the Equation 1.3. where δ is the Dirac delta function. Replac-
ing prior probability in Equation 1.1, we obtain the Equation 1.4. where Wn is given by
Equation 2.9. Wn represents the particle weight and p(yk | xk ) the likelihood. In our ex-
periment, we sequentially assimilate probabilistic flood maps (PFMs) derived from SAR
observations into a flood forecasting model. SAR-based observations of flood extent are
resampled in order to have a resolution that is equal to the one of the mesh of the hy-
draulic model (i.e. 75 m). Global weights Wn , at time k are calculated according to the
Equation 2.9 where L is the total number of pixels of the flood domain assuming that
observational errors are spatially independent. The global weight Wn assigned to each
particle is calculated with the multiplication of the likelihoods w defined for each pixel
i of the hydraulic domain according to the Equation 2.8 by Hostache et al., 2018. The
water depth maps derived from the hydraulic model simulations of the 32 particles are
converted into binary maps. If the water depth is above the threshold of 10 cm the pixel
is considered as flooded and a value of 1 is assigned to Mi ,n . In the opposite case, the
pixel is not considered as flooded and Mi ,n is equal to 0. pi (F |σ0) represents the prob-
ability of a pixel being flooded (F) according to the SAR observations (backscatter value
σ0), while 1−pi (F |σ0) represents the probability of it not being flooded.
Degeneracy consists in only a few particles gaining significant weight with respect to
others and it is a common issue in PFs. To mitigate degeneracy issues, a tempering co-
efficient is used in the TPF to inflate the likelihood, thereby increasing the number of
particles with significant weight. The TPF relies on the factorisation of the likelihood of
Equation 1.1 using small tempering factors γ trough consecutive iterations s enabling

the inflation of the likelihood in order to reduce degeneracy. Therefore, the ratio p(y |x)
p(y)

of the equation 1.1, at time k, becomes the Equation 3.2
where 0 < γs < 1 for each iteration s. This process is consecutively repeated so that

the
S

s=1γs = 1 in order to respect the Bayes’ formula. Each γs is chosen such that the
so-called inefficiency (InEff, Equation 3.7) is smaller than a threshold value r*, where r*
is chosen of the order 2/N.

After each iteration s, particles are resampled (and duplicated) according to their
weights meaning that particles with higher weights are replicated several times. After re-
sampling, particles are equally weighted. At this stage, the ensemble of particles contains
duplicates and a mutation is performed, in order to regain diversity in the ensemble. In
this DA framework, we decided to perturb the fast run-off reservoir level (SF R ) of each
particle, which is a state variable of the hydrological model, 24 hours prior to the assim-
ilation and re-run the model cascade for the 24 h preceding the assimilation time. Each
resampled particles is replaced by the related mutated particle if the ratio of the mutated
and resampled particle likelihoods is larger than a value randomly taken from the inter-
val [0,1]. A more detailed description of the the methodology is proposed in Chapter 3
.
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4.3.2. FLOOD FORECASTING SYSTEM
The model cascade is composed of a hydrological model coupled to a hydraulic model.
The hydrological model (SUPERFLEX) is used to estimate the run-off within the 3 main
catchments with the outlets in Bewdley, Evesham and Knightsford, respectively (Fig-
ure 4.1). The runoff is then used as boundary conditions of to the hydraulic model
(LISFLOOD-FP) to estimate the flood extent, the streamflow and the water level in the
floodplain located downstream.

We use a lumped version of SUPERFLEX (Fenicia et al., 2007). The structure is com-
posed of three reservoirs (Figure 4.2): an unsaturated soil reservoir with a storage SU R

representing the root zone, a fast reservoir with storage SF R representing the fast re-
sponding components (e.g., the riparian zone and preferential flow paths), and a slow
reservoir with storage SSR representing slow responding components (e.g., deep ground-
water). A triangular lag function is used ahead of the SF R and SSR reservoirs to enable
a delayed hydrological response of the basin. Precipitation P infiltrates in the soil RU

whereas the amount in excess RF directly contributes to the SF R reservoir (Equations 4.1
and 4.2).

RF =Cr ·R and RU = (1−Cr ) ·R (4.1)

Cr = 1

1+exp(
SU R

Sc
+0.5

β )

(4.2)

The U R reservoir linearly percolates into the SR reservoir according to Eq. 4.3:

PS = Pmax · SU R

Smax
(4.3)

The potential evapotranspiration is converted into actual evapotranspiration using Eq. 4.4:

TP = Ta ·mi n(1,
SU R

Smax

1

LP
) (4.4)

where LP is the fraction of Smax below which TP is constrained by SU R .
QSR is given by Equation 4.5:

QSR = SSR /KSR (4.5)

QF R is given by Equation 4.6:
QF R = SF R /KF R (4.6)

The 8 parameters of the SUPERFLEX model are listed in Table 4.1.
The inputs to the hydrological model are downloaded from the ERA5 dataset (Hers-

bach et al., 2019). In this study, rainfall and 2 m air temperature at a spatial resolution
of 25 km and a temporal resolution of 1 hour have been used. The temperature is trans-
formed into potential evapotranspiration using the Hamon formula (Hamon, 1963). The
parameters of the hydrological model were calibrated for each catchment using in situ
measured river discharge over the period of 2013-2019 years. The results were validated
over the period 2019-2020. 5000 different parameter sets have been randomly generated
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Table 4.1: SUPERFLEX parameters.

Parameter Unit Definition
Smax mm maximum SU R storage

LP - limit for potential transpiration
β - runoff shape parameter

Pmax - limit for percolation
l agF R - maximum time of triangular lag function FR
l agSR - maximum time of triangular lag function SR
KF R - FR time scale
KSR - SR time scale

Table 4.2: Nash-Suthcliffe and Kling-Gupta efficiencies for the different catchments within the calibration and
validation period.

Catchment outlet Calibration Validation
KGE NSE KGE NSE

Knightsford 0.73 0.65 0.55 0.60
Evesham 0.79 0.76 0.86 0.78
Bewdley 0.83 0.77 0.7 0.78

from uniform distributions with predefined interval of plausible values for each param-
eter to carry out the calibration. These resulted in 5000 simulations of the hydrological
model. The selected parameter set is the one corresponding to the highest values of the
KGE with respect to hourly discharge measurements.
For the calibration and the validation, the simulations were compared to the gauge data
at the outlet of each of the 3 catchments. Gauge data have been provided by the Envi-
ronment Agency of England and Wales (https://www.gov.uk/government/organi
sations/environment-agency). Performances are reported in Table 4.2.

The hydraulic model used in this study is the LISFLOOD-FP model (Bates et al., 2000;
Neal et al., 2012). The model domain footprint is shown in Figure 4.1. LISFLOOD-FP sim-
ulates flood extent, water level and streamflow along the river and in the floodplain. A
sub-grid is used for the channel flow. When the storage capacity of the river is exceeded,
the water spills into the floodplain and a 2D shallow water model neglecting the con-
vective acceleration (Almeida et al., 2013; Bates et al., 2010) is used for the floodplain
flow simulation. The upstream boundary conditions in Bewdley, Evesham and Knights-
ford are defined as the runoff (Qt ) simulated by the hydrological models. Downstream at
Haw Bridge, a “free” downstream boundary condition is applied with an average slope of
0.00007. The riverbed geometry and the roughness coefficient were calibrated in a pre-
vious study (Wood et al., 2016). The model computational grid has a spatial resolution
of 75 m.

4.3.3. EVALUATION OF THE DA FRAMEWORK
In our experiment, the rainfall ensemble is obtained by perturbing the deterministic
ERA-5 product with a multiplicative random noise from a log-normal error distribution.

https://www.gov.uk/government/organisations/environment-agency
https://www.gov.uk/government/organisations/environment-agency
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The rainfall was considered spatially uniform over the catchment. The reliability of the
rainfall ensemble is verified with the statistical metrics proposed by De Lannoy et al.,
2006: VM1 and VM2 and described in section 2.3.3.

Several metrics are used to evaluate the performance of the DA during the three flood
events.

Observations of water level and discharge were available at the different gauging sta-
tions shown with black dots in Figure 4.1. To estimate the effect of the assimilation on the
forecast skill, the model expectation of water levels and discharge, before (background
or OL, when particles are equally weighted) and after (analysis, when the particles are
weighted based on the information contained in the observations) the assimilation, is
compared against the observations. Discharge simulation accuracy was evaluated at the
boundaries of the hydraulic model, i.e. Bewdley, Knightsford, and Evesham. The back-
ground and the analysis of water levels are also plotted to evaluate the quality of water
levels forecasts at the following locations: Saxons Lode, Mythe Bridge, and Haw Bridge.

In addition, errors were estimated, before and after the assimilation, as the deviation
of the predicted water levels and discharge against the observations and plotted over
time for each gauging station located further downstream (Saxons Lode, Mythe Bridge,
and Haw Bridge).
In order to evaluate the accuracy of the flood extent map before and after the assimi-
lation, simulated flood extent maps have been compared against the flood extent map
derived from optical images. This evaluation has been performed using the CSI (Equa-
tion 2.14).

In Equation 2.14, A represents the Correct water (hits), B the Over-prediction (false
alarms) and C the Under-prediction (misses). The Correct no-water (correct rejections,
D) are not taken into account because the number of non-flooded pixels in a SAR image
is comparatively large and considering them would lead to extremely optimistic results.
Contingency maps are plotted so that the location of the different predicted pixels is ex-
plored (A, B, C, and D).

4.3.4. STUDY AREA AND AVAILABLE DATA
The study focuses on the area of the lower Severn in the South-West of the United King-
dom covering a 30.6 x 49.8 km (1524 km2) domain.

The PFMs are derived from SAR observations attributing to each pixel a probability
of being flooded knowing the backscatter value. The histogram of the backscatter values
is approximated with two overlapping Gaussian probability distribution functions asso-
ciated with flooded and non-flooded pixels.
In this study, 3 flooding events are considered. During the first event in July 2007, two

Envisat images with 150 m spatial resolution were acquired on 23/07/2007 at 10:30 and
at 22:00. One TerraSAR-X image with 3 m spatial resolution, was obtained on 25/07/2007
at 06:30. For the second event that occurred in 2012, 6 COSMO-SkyMed images with a
spatial resolution of 5 m are available. The satellite images have been acquired at the fol-
lowing times: 27/11/2012 at 19:20, 28/11/2012 at 18:00, 29/11/2012 at 18:20, 30/11/2012
at 19:30, 1/12/2012 at 5:40, 2/12/2012 at 6:00 and 4/12/2012 at 18:15. The third event
considered in this analysis occurred in February 2020. In this case 5 Sentinel-1 images
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Figure 4.1: Study area: the downstream part of the river Severn (hydraulic domain borders are represented with
a black frame). The 3 catchments are represented as colored polygons; their outlets are located at the gauging
stations in Bewdley, Evesham and Knightsford. The gauging stations are represented as black dots.

with a spatial resolution of 20 m were acquired at the following times: 17/2/2022 at
6:20, 20/2/2022 at 18:00, 26/2/2022 at 18:00, 29/2/2022 at 6:20, 3/3/2020 at 18:00, and
6/3/2020 at 18:00.

For an independent evaluation of the flood model maps, an aerial photograph of
3 m spatial resolution on 24th July 2007 was used to manually extract binary flood maps.
Additionally, a Sentinel-2 image on 29th of February at 11:20 was used to generatea flood
binary map busing the "AUTOWADE On Demand S2" algorithm (Pulvirenti et al., 2020).

4.4. RESULTS
Table 4.3 reports the values of the verification measures of the ensemble precipitation
for the 3 catchments and for the 3 flood events. The values of VM1 and VM2 are around
the unity meaning that the ensemble spread is correct and that the observed precipita-
tion is statistically indistinguishable from a member of the ensemble). The ensemble of
discharge simulations, generated using the ensemble of precipitation, are mostly satis-
factory. In Figure 4.3 the in situ measured data are well encompassed by the background
ensemble, for instance the observations in Bewdley (red line falls within the ensemble
for each one of the 3 flood events. For the event 2007, the ensemble has a peak that
does not correspond to the observations whose discharge are constant during the entire
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Figure 4.2: SUPERFLEX scheme. P=precipitation, Ta= actual transpiration, SU R = storage unsaturated reservoir,
PS = percolation, SSR =Storage Slow Run-Off, SF R = Storage Fast Run-Off, Ru = rainfall infiltrating into the soil,
RF = rainfall excess, QF R =Fast Run-Off, QSR = Slow Run-Off, QT =Total run-off

period. This is probably due to the fact that the 2007 event was a summer flood due to
local rainfall falling mostly over the floodplain. However, for some experiments there are
observations close to the ensemble bounds and even sometimes outside the ensemble
for the gauging stations located further downstream. Indeed, the observed water levels
at Haw Bridge, Mythe Bridge, Saxons Lode or Deerhurst are outside or on the edge of the
ensemble (Figure 4.4). This behaviour seems to be systematic and therefore could be
due to a possible bias caused, for example, by an incorrect river bed geometry or lateral
inflows along the river that the model does not account for.

Figure 4.3: Background ensemble of discharge at Bewdley gauge station for the 3 flood events. Black lines
represent the particles, red line the observed discharge and green line the Open Loop. Vertical dashed lines
correspond to the assimilation time steps. The dates reported on the x-axis correspond to the time 00:00.

4.4.1. JULY 2007
Figure 4.4 shows the water levels at 3 gauging stations after the assimilation of the SAR
images on 25th July at 10:27 and 21:53, and on 25th July at 06:34. In Figure 4.4, the analy-
sis expectation (blue line) moves closer to the the observations (red line) with respect to
the background (green line) especially in Mythe Bridge and Haw Bridge after the assim-
ilation of the two SAR images on 23r d of July at 10:27 and 21:53. These plots show that
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Table 4.3: Verification Measures of the ensemble precipitation.

Catchment outlet 07-2007 11-2012 02-2020
VM1 VM2 VM1 VM2 VM1 VM2

Knightsford 1.03 1.02 1.03 1.02 0.92 0.98
Evesham 1 0.89 1 0.89 1 1
Bewdley 1.07 0.96 1.07 0.96 0.92 1

there is an improvement of the water level estimation following the assimilation.

Figure 4.4: Flood event, July 2007. Water level time series plots for 3 gauging stations downstream. Black lines
correspond to the Open Loop particles, green line to the Open Loop, the grey lines to the particles after the
assimilation, the blue line to the expectation after the assimilation. Red line corresponds to the gauge data.
Vertical dashed line correspond to the assimilation time steps. The dates reported on the x-axis correspond to
midnight. On the y-axis, the water levels in mAOD is reported.

The DA improves the water level results but there is no spread left after the assimila-
tion. The analysis particle collapse so that they will be all equal to the analysis expecta-
tion.

In Figure 4.5 for all of the 3 gauges there is a significant improvement of the predicted
water levels as a result of the assimilation. For instance, for the first assimilation in Haw
Bridge the analysis errors are decreased by 60% when compared to the errors of the OL.
Moreover, the analysis errors are consistently lower than the background errors at the
gauging stations of Haw Bridge, Mythe Bridge, and Deerhurst meaning that the benefits
of the assimilation persist for several hours after the assimilation.

In the upper part of the river network (i.e. gauging stations at Bewdley, Evesham
and Knightsford), there is no improvement after the assimilation. For instance, in Bewd-
ley the discharge is underestimated whereas discharge is overestimated in Knightsford
Bridge and Evesham.

A comparison of the simulated flood extent map before and after the assimilation
with an aerial photograph acquired on 24th of July shows that the assimilation has lim-
ited effect on the predicted flood extent since the OL flood extent is already quite accu-
rate. There is no significant variation of the CSI between the background and the anal-
ysis. The contingency maps (Figure 4.6) show that the number of false negative pixels
(yellow pixels) increases after the assimilation in the upstream part of the river Severn
slightly reducing the CSI from 0.68 to 0.63.
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Figure 4.5: Background (black line) error of water level against analysis error (blue line) for 3 gauging stations
for the 2007 flood event. Vertical dashed lines indicate the assimilation time steps. The dates reported on the
x-axis correspond to the time 00:00.

4.4.2. NOVEMBER 2012
Figure 4.7 shows that the expectation of water levels after the assimilation (blue line) is
closer to the observation (red line) and for some cases observations and simulations are
overlapping. The water levels at Haw Bridge, Mythe Bridge, Saxons Lode, and Deerhurst
are improved after the assimilation. The improvement is more significant than in the
2007 flood event possibly due to the fact that in this case the observed gauge data fall
within the background ensemble (Figure 4.3).

However, the discharge in Evesham is consistently overestimated and, to compen-
sate for this error, we observe that the assimilation leads to an underestimation of dis-
charge in Bewdley. The discharge boundary conditions are not improved as in the 2007
flood event. The error of water levels of the background and the analysis is plotted in
the Figure 4.8. After each assimilation, the results consistently improve for the gauging
stations located downstream of the confluence of the rivers Theme, Avon and Severn.
For some assimilations, there is a decrease of the errors of up to 68%. In addition, the
analysis errors are lower than the OL most of the times, meaning that the improvements
of forecast accuracy of water levels due to the assimilation persist for several hours after
the assimilation. The results in Figure 4.8 show that assimilation improves the accuracy
of the predicted water levels.

4.4.3. FEBRUARY 2020
Figure 4.9 shows that, for all the 5 assimilations carried out, there is an improvement
of the analysis compared to the background and the improvements persist over time as
confirmed also in the error times series in Figure 4.10. We observe that the water levels
simulated at Haw Bridge, Mythe Bridge, Saxons Lode, and Deerhurst are improved for a
majority of time steps when compared to the Open Loop simulations.

The error time series at the gauging stations of Saxons Lode, Mythe Bridge, Haw
Bridge and Deerhurst can provide a numerical idea of the improvement achieved via the
assimilation (Figure 4.10). There is a substantial decrease of errors at each assimilation
time step. For some assimilation time steps and for some gauging station the errors de-
crease by around 70%. As in the previous cases, the analysis errors are improved not only
at the assimilation times but also for the following hours. The degradation of the forecast
performance in between the 02/20 and the 02/26 is likely due to the rapid change in the
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Figure 4.6: 24th July 2007 at 12:00 flood event. Contingency map and Critical Success Index (Equation 2.14)
before and after the assimilation. True positive pixels (blue) occur when both the flood simulation and the
aerial photograph observe the pixel as flooded, true negative when both the flood simulation and the aerial
photograph observe the pixel as not-flooded (grey). When the simulation predicts the pixel as flooded but the
pixel is observed as not-flooded a false positive occurs (red), when the contrary takes place a false negative
occurs (yellow). The aerial photograph is cut therefore white areas correspond to elements where no observed
value is available.

Figure 4.7: Flood event, November 2012. Water levels time series plots for 3 different gauge stations down-
stream. Black lines correspond to the OL particles, green line to the OL, the grey lines to the particles after the
assimilation, the blue line to the expectation after the assimilation. Red line corresponds to the gauge data.
Black dashed line correspond to the assimilation time steps.The dates reported on the x-axis correspond to the
time 00:00. On the y-axis, the water levels in mAOD is reported.

hydrological conditions. The upstream discharge values are not correctly predicted and
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Figure 4.8: Background (black line) error of water level against analysis error (blue line) for 4 gauge stations
for the 2012 flood event. Vertical dashed lines indicate the assimilation time steps. The dates reported on the
x-axis correspond to the time 00:00.

Figure 4.9: Flood event, February 2020. Water levels time series plots for 3 different gauge stations downstream.
Black lines correspond to the Open Loop particles, green line to the Open Loop, the grey lines to the particles
after the assimilation, the blue line to the expectation after the assimilation. Red line corresponds to the ob-
served gauge data. Vertical dashed lines correspond to the assimilation time steps. The dates reported on the
x-axis correspond to the time 00:00. On the y-axis, the water levels in mAOD is reported.

a compensation effect seems to occur: discharge in Evesham is over-estimated while
discharge in Bewdley is under-estimated, similarly to the other flood events.

In Figure 4.11, the comparison of the background and analysis flood extent map with
an aerial Sentinel-2 image acquired on February 29th at 11:20 shows that the number of
false negatives (yellow pixels) decreases after the assimilation while the number of the
correctly predicted flood pixels (blue pixels) increases not only in the floodplain but also
in the upstream part of the rivers Avon and Severn. This result is also confirmed by the
CSI value that goes from 0.37 before the assimilation to 0.52 after the assimilation. The
contingency maps show that there is an improvement of the flood extent map accuracy
after the assimilation (Figure 4.11).

4.5. DISCUSSION
Our results show that for all 3 flood events the assimilation consistently improves the
performances of the forecast water levels, in particular in the area located around the
confluence of the 3 main rivers. However, the simulation of discharge at the boundary of
the model domain is not always correctly updated. In the literature, different DA meth-
ods have been applied and evaluated on the same test site (i.e. River Severn floodplain).
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Figure 4.10: Time series of background (black line) error against analysis error (blue line) for 3 gauge stations
downstream for the 2020 flood event. Vertical dashed line correspond to the assimilation time steps. The dates
reported on the x-axis correspond to the time 00:00.

Hostache et al., 2018 evaluates the performances of a SIS-PF assimilating SAR-derived
flood extent into a flood forecasting model including the July 2007 flood event. Similar-
ities can be found between their and this study: the assimilation in 2007 has a limited
effect on the improvement of the contingency maps, and the forecast quality of the up-
stream discharge in Bewdley and Evesham is not always satisfactory. For instance, the
discharge is overestimated in Evesham and Knightsford Bridge and this is counterbal-
anced by discharge underestimation in Bewdley. We believe that errors in discharge will
not largely affect the flooding, being this watershed a big valley filling event. The slightly
limited effect of the DA in the current study and in the one by Hostache et al., 2018, could
be explained with the simplified riverbed geometry of the Avon used in the hydraulic
model or with errors in the rating curves (Bates et al., 2006, Bermúdez et al., 2017, Neal
et al., 2011). Another explanation provided by Hostache et al., 2018 is that there could
be a substantial amount of rainfall falling on the floodplain and causing some flood-
ing. This effect is not taken into account in the hydraulic models. Indeed, the study by
Bermúdez et al., 2017 reported that the storm in July 2007 was mostly occurring over the
hydraulic domain. To correctly predict the flood peak, such direct rainfall should have
been taken into account as it may be a the origin of at least part of the flooding observed
by the satellites.
García-Pintado et al., 2015 examined the performances of an EnKF where water level
observations obtained during the flood event in November 2012 are assimilated into a
hydrodynamic model. As in our study, the assimilation is not improving the estimation
of the gauged inflows on the upstream boundary of the hydraulic model. According to
the authors, this might be due to unaccounted inflows/outflows that can be related to
the neglecting of lateral inflows from small tributaries inflows and due to the resurgence
of groundwater. García-Pintado et al., 2015 claim that the results at the boundaries can-
not be interpreted as a failure of the assimilation filter but rather as a way of the DA of
improving the estimation of the total inflows using satellite observations. In our exper-
iment, the flood extents provide information mainly in the downstream area and there-
fore on the amount of water that should have entered the riverine system over a given
period before the time of the assimilation. García-Pintado et al., 2015 shows that spatial
localization is recommended to avoid spurious correlations leading to filter divergence.
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Figure 4.11: 29th of February at 11:20 flood event. Contingency map and Critical Success Index (Equation
2.14) before and after the assimilation. True positive pixels (blue) occur when both the flood simulation and
the aerial photograph observe the pixel as flooded, true negative when both the flood simulation and the aerial
photograph observe the pixel as not-flooded (grey). When the simulation predicts the pixel as flooded but the
pixel is observed as not-flooded a false positive occurs (red), when the contrary takes place a false negative
occurs (yellow).

In the previous synthetic study described in Chapter 3, the flood forecasting system was
simplified, given that only Bewdley was considered as the contributing upstream catch-
ment, and forecasts were moved towards the observations for both gauges upstream and
downstream. In this real case, a new level of complexity is added: input discharge enters
the hydraulic model domain from 3 different catchments. Therefore, since no filter lo-
calization was applied and weights are globally calculated, the reason for unsatisfactory
performances on the boundaries of the hydraulic model after the application of the TPF
filter could be due to a compensation effects between the various inflow boundaries.
This real world experiment follows a synthetic case experiment defined in Chapter 3 .
The main hypothesis in the synthetic experiment was that rainfall and SAR observations
were the only sources of uncertainty. The hypothesis seems to be realistic for operational
flood forecasting but applying the TPF in a real world experiment shows performances
levels lower than that of a the synthetic experiment. Reasons could be found in addi-
tional sources of uncertainty not taken into account, for instance such as the geometry
of the river bed.
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4.6. CONCLUSION
This study is the follow-up of the study in Chapter 3, where a TPF has been validated
in a synthetic environment with rainfall as the only source of uncertainty besides SAR
observations of flood extent. In this study, the TPF has been applied to 3 flood events
occurring along the River Severn (UK) in 2007, 2012 and 2020. The key conclusions that
can be drawn from our experiment can be formalized as follows:

• TPF represents a valuable methodology for improving the forecast quality. Indeed
the DA experiment shows a substantial and systematic improvement of the pre-
dicted water levels when compared to the OL. The flood extent map is correctly
updated for the flood event in 2020, the number of flooded pixels corrected after
the assimilation increases with respect to the OL, especially along the floodplain.

• Improvements of the water level forecast accuracy persist for several hours and in
some cases for several days after the assimilation unless hydrological conditions
do not change too rapidly.

• Poor performances of the TPF are shown for the estimation of the inflows at the
upstream gauges. The inflow estimation is not correct because of several factors
possibly affecting model simulations and consequently DA performances such as
erroneous river bed geometries, neglecting lateral inflows, and erroneous rating
curves. Moreover, satellite observations can represent another possible cause of
this issue.

• The TPF applied in this study computes global weights which are then used to
independently update the hydrological model variables. Global weights are calcu-
lated based on the flood extent which is the product of the combination of the hy-
drological conditions of the 3 independent upstream catchment. Given the com-
plexity of the fluvial system the update of the variables based on global weights
may lead to errors and inaccurate estimations of inflows at the boundaries of the
river because different set of particles can generate very similar flood extent maps.

• The TPF has been previously validated in a synthetic experiment with the under-
lying hypothesis that rainfall and SAR observations are the only sources of uncer-
tainty. This real-world experiment proves that the TPF improves the performances
compared to the Open Loop but with some limitations probably due to several
sources of uncertainty not taken into account such as the river bed geometry.

We argue that it is realistic to consider the precipitation as the principal source of un-
certainty in most flood forecasting systems. However it seems that other sources of un-
certainties can effectively play a decisive role and may have to be taken into account
through a more advanced joint parameter-state estimation procedure. In our study, the
DA does not specifically take into account these potential sources of uncertainty gener-
ating unrealistic inflows. In this study, the application of the TPF to some actual case
studies leads to substantial improvements in terms of accuracy of the generated flood
extent maps and simulations of water levels at the gauging stations located downstream
of the confluence of the 3 rivers Avon, Theme and Severn. However, the method needs to
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be tested and refined before being used operationally in near-real time applications. The
main limitation remains the unsatisfactory update of the inflows on the boundaries. Fur-
ther investigations should be conducted, for example developing a joint parameter/state
variable estimation for this DA framework, and including new sources of uncertainty
such as the river bed geometry. Moreover, an interesting perspective could be to test our
DA framework while integrating localization.





5
SUMMARY AND CONCLUSIONS

Accurate, reliable and timely forecasts of flood extent, water level, and discharge are fun-
damental for mitigating and/or preventing the damaging effects of floods. Data Assimi-
lation (DA) helps in reducing the predictive uncertainty of flood forecasting systems. DA
thus represents a useful tool not only for the research community but also for opera-
tional water management and emergency response.

The aim of this thesis is to investigate advantages and limitations of integrating flood
extent maps derived from SAR data into a hydrologic-hydraulic model using a state-of-
the-art Particle Filter. A second objective is to develop, test and evaluate a DA framework
that allows mitigating the degeneracy and sample impoverishment issues. Degeneracy
and sample impoverishment issues were identified as major limiting factors in state-of-
the-art filters that are applied for similar purposes because of poor approximation of the
posterior distribution and the loss of diversity among particles, respectively.

In Chapter 2 , we have validated a DA framework previously proposed in Hostache et
al., 2018 by applying it in a synthetic experiment where uncertainty is tightly controlled.
Hostache et al., 2018 demonstrates that the DA of SAR-derived flood extents improves
the prediction accuracy of flood forecast outputs. However, these improvements were
not obtained systematically, possibly because of a simplified modelling system with the
assumption that observations and rainfall are the only sources of uncertainty. There-
fore, a similar experiment has been conducted here in a synthetic environment. A new
framework has been developed to convert a real SAR backscatter image into a synthetic
probabilistic flood map and to assimilate it into a flood forecasting model in order to
carry out the synthetic experiment. In addition, we implement a first procedure to re-
duce the degeneracy with the use of an inflation coefficient that depends on the size of
the ensemble to be retained after the assimilation. Results were extremely satisfactory
for the time of the assimilation, both for the enhanced method and for the Sequential
Importance Sampling (standard PF). Improvements persist for several days after the as-
similation when applying an inflation coefficient with the enhanced method. However
degeneracy still represents an issue that undermines the correct use of the Particle Fil-
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ter because a limited number of particles cannot be representative of the uncertainty of
the model. Degeneracy is the main limitation of the PFs and it occurs when most of the
particles have negligible weight, such that the variance of importance weights increases
over time and the particles lose their ability to correctly approximate the posterior dis-
tribution. In the research community, there exist several techniques to overcome the
degeneracy and the loss of the sample diversity (Andrieu et al., 2010; Moradkhani et al.,
2012; Kwok et al., 2005; Abbaszadeh et al., 2018; Abbaszadeh et al., 2019).

Chapter 3 therefore explores a newly developed DA technique based on the Temper-
ing Particle Filter (TPF). To overcome the degeneracy the TPF relies on successive ap-
plications of tempering coefficients to inflate the likelihood and to reduce the variance
among the particle weights. Moreover, at each step, mutation and resampling are ap-
plied. The main objective of the chapter is to evaluate whether a method with finite
ensemble size can mitigate degeneracy without losing prediction accuracy. The TPF
is again applied in a synthetic environment with rainfall and observations as the only
sources of uncertainty. The results show that the forecasts are very accurate for the time
of the assimilation (e.g., RMSE values decrease by 80% whereas CSI values increase by
30%) and also for subsequent time steps up to 3 days after the assimilation. The TPF
outperforms the standard PF (SIS) by Hostache et al., 2018, especially when the perfor-
mances are compared over time. The improvements achieved with the TPF tend to be
more persistent than those obtained with the original SIS and the results show that de-
generacy is mitigated. It is rather pragmatic to assume that rainfall is the only source of
uncertainty in operational flood forecasting models (Pappenberger et al., 2005; Koussis
et al., 2003). In reality, in a flood forecasting model there are several sources of uncer-
tainty such as model parameters, model structure and input (Moradkhani et al., 2005).

In Chapter 4, the TPF is applied to a real-world case where uncertainties are no longer
controlled by the user. The aim is to to evaluate its validity when assumptions are not
respected and to understand how the different sources of uncertainty could affect the
model simulations. Three flood events are considered for the River Severn in the UK to
evaluate the performance of the DA framework. The probabilistic flood maps are derived
from the satellite images acquired during the flood events in 2007, 2012 and 2020. The
results show that there is a consistent improvement of the water level estimation at the
gauging stations located in the downstream part of the floodplain. Moreover, improve-
ments are persistent for several hours after the assimilation when compared to the Open
Loop (OL, i.e., no assimilation). The Critical Success Index (CSI) tends to be improved by
the assimilation, unless the CSI of the OL was already very high before the assimilation
was carried out. We noted that the discharge estimation at the gauging station in the
upstream part of the river is not satisfactory and the estimation of inflows at the bound-
aries of the hydraulic model is inaccurate. This could be due to the fact that the flood
extent is the result of inflow from three independent catchment areas. The observation
of flood extent does not allow an unambiguous determination of the run-off contributed
by each tributary and this may explain why the updates are not correct in some parts of
the modelled river system. In the synthetic experiment described in Chapter 3, a single
contributing catchment upstream of the modelled river reach is taken into account and
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this explains that there is a tight connection in the hydraulic conditions between the up-
stream and downstream parts of the river. In the real world experiment, on the other
hand, compensation effects may arise due to the topography of the area. An additional
explanation can be that performances tend to decrease in the real-world experiment
probably because the assumption of the rainfall as the only source of uncertainty is too
simplistic and other sources of uncertainty might be taken into account in order to im-
prove the model predictions. Indeed, other studies show that through the inclusion of
parameter uncertainty in the data assimilation process the total uncertainty in the pre-
diction can be more accurately characterized (Moradkhani et al., 2005; Peter et al., 2009;
Abbaszadeh et al., 2019; Karthik et al., 2011; Smith et al., n.d.). For instance, the joint es-
timation of the uncertainty of the parameter of the forecasting model together with the
state variable can provide more accurate predictions (Moradkhani et al., 2005; DeChant
et al., 2011; Peter et al., 2009; Cooper et al., 2018a). Moreover, the results of the the-
sis show that, in the real world experiment, degeneracy is mitigated but not completely
avoided. According to Peter et al., 2009, considering parameter uncertainty besides pre-
cipitation uncertainty could increase the spread of the posterior distribution.

We suggest that the introduction of some filter localization can help preventing the
DA framework from having this compensation effect. Moreover, further investigations
should be conducted to understand if a joint parameter-state estimation can effectively
improve the accuracy and the persistence of the model simulations. The study of this
thesis contributes to a further understanding of the PF applications. It has been real-
ized with the aim of improving the existing DA framework, of validating the DA frame-
work when the assumptions are met (synthetic case) and when they are not fully met
(real-world case), and of better understanding the advantages and limitations of the DA
framework application. This DA framework is generalizable and therefore applicable to
other regions, particularly in data-scarce areas, to more accurately estimate floods and
to contribute to better define management strategies in a probabilistic context.
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