

MASTER'S THESIS

Analyses of LASI (Light Absorbing Snow Impurities) within samples of snow pits collected in an high alpine environment

Conducted at the Institute of Chemical Technologies and Analytics At the TU Wien

In the research group Environmental Analytics

Under the supervision of ao. Univ. Prof. Dipl.-Ing. Dr. techn. Anne Kasper-Giebl

and

Projektass. Dipl.-Ing. Daniela Kau, BSc.

By Jakub Bielecki, BSc.

Date

Jakub Bielecki, BSc.

TU **Bibliothek**, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar WIEN Vourknowledgehub The approved original version of this thesis is available in print at TU Wien Bibliothek.

Acknowledgements

I would like to express my sincere thanks to Ao. Univ. Prof. Dr. Anne Kasper – Giebl for the supervision and facilitation of this thesis. Additionally, I am very thankful to Daniela Kau, Michaela Zuckerhut and Hong Huang who taught me the appropriate techniques, regarding the handling of various instruments. I also wish to thank the ZAMG (Central Institution for Meteorology and Geodynamics) for the taking and providing of the samples for this thesis.

I am also equally grateful to my other colleagues; Bernadette Kirchsteiger, Karoline Rieger, Christine Hochwartner, Thomas Riedlberger, Felix Happenhofer, Andjela Vukicevic, Gurpreet Gill, Thomas Rosa-Steinkogler, Clea Danlos and Peter Redl. Their support and creation of a positive work environment helped me through a lot while working on my master's thesis.

Special thanks go to the research group of Univ. Prof. Dr. Andreas Limbeck for making it possible to perform the elemental analysis, their enduring support and help. I am also very thankful to Andjela for providing data from her bachelor's thesis.

I would also like to thank my parents, brother and friends for the permanent support during my education.

Table of Contents

Acknowledgements
List of FiguresIV
List of TablesVI
AbstractIX
1. Introduction
1.1 LASI (Light Absorbing Snow Impurities)1
1.2 Aim of this work4
2. Experimental
2.1 Sampling5
2.2 Preparation of quartz fiber filters and filtration6
2.3 Thermal-optical analysis (TOA)8
2.3.1 Thermal protocol EUSAAR.29
2.3.2 TOA - quality assurance11
2.3.3 Correction of the split point11
2.4 Cation chromatography13
2.4.1 Cation chromatography quality assurance14
2.5 Elemental analysis (ICP-OES)15
2.5.1 ICP – OES measurements
2.5.2 Microwave assisted chemical digestion16
3. Results
3.1 EC, WIOC and WITC depth profiles17
3.1.1 Comparison of corrected and not corrected carbon values
3.1.2 Comparison of the obtained WIOC and EC values28
3.1.3 Correlations between EC fractions and the positioning of the OC/EC split
3.2 Determination of mineral dust34
3.2.1 Comparison of 10 cm and 20 cm increments
3.2.2 Comparison of water-insoluble and water-soluble Calcium
3.2.3 Gravimetric Analysis43
3.2.4 Elemental analysis45
3.2.5 Evaluation of the presence of mineral dust49
3.2.6 Mass balance
4. Conclusion
5. Appendix
5.1 Obtained TOA values61
5.2 Used ammonium and calcium values72

	5.3 Used pH and Ca2+ values	.81
	5.4 Used mineral dust values	.90
	5.5 Sample and filter weight	.91
6.	References	.95

List of Figures

Figure 1: Location of the glaciers Kleinfleißkees and Goldbergkees (source: Marion Greilinger))5
Figure 2: Filtration setup	6
Figure 3: Schematic diagram of the OC/EC Analyzer [13]	8
Figure 4: Desired temperature of EUSAAR.2 as a function of time	
Figure 5: TOA thermogram (source: Daniela Kau)	
Figure 6: Depth profile 2017 GOK EC	18
Figure 7: Depth profile 2017 FLK EC	
Figure 8: Depth profile 2017 GOK WIOC	
Figure 9: Depth profile 2017 FLK WIOC	
Figure 10: Depth profile 2017 GOK WITC	18
Figure 11: Depth profile 2017 FLK WITC	
Figure 12: Depth profile 2018 GOK EC	
Figure 13: Depth profile 2018 GOK WIOC	19
Figure 14: Depth profile 2018 GOK WITC	19
Figure 15: Depth profile 2019 GOK EC	20
Figure 16: Depth profile 2019 GOK WIOC	20
Figure 17: Depth profile 2019 GOK WITC	20
Figure 18: Depth profile 2020 GOK EC	
Figure 19: Depth profile 2020 GOK WIOC	21
Figure 20: Depth profile 2020 GOK WITC	21
Figure 21: Depth profile 2021 GOK EC	22
Figure 22: Depth profile 2021 FLK EC	22
Figure 23: Depth profile 2021 GOK WIOC	22
Figure 24: Depth profile 2021 FLK WIOC	22
Figure 25: Depth profile 2021 GOK WITC	22
Figure 26: Depth profile 2021 FLK WITC	22
Figure 27: Depth profile 2022 GOK EC	23
Figure 28: Depth profile 2022 FLK EC	23
Figure 29: Depth profile 2022 GOK WIOC	
Figure 30: Depth profile 2022 FLK WIOC	
Figure 31: Depth profile 2022 GOK WITC	23
Figure 32: Depth profile 2022 FLK WITC	23
Figure 33: Example of a thermogram with the split point in EC3	
Figure 34: Example of a thermogram with the split point between EC3 and EC4	
Figure 35: Example of a thermogram with the split point in EC4	
Figure 36: 2017 FLK Ammonium concentrations	
Figure 37: 2017 FLK Calcium concentrations	
Figure 38: 2017 GOK Ammonium concentrations	
Figure 39: 2017 FLK Calcium concentrations	
Figure 40: 2018 GOK Ammonium concentrations	
Figure 41: 2018 GOK Calcium concentrations	
Figure 42: 2019 GOK Ammonium concentrations	
Figure 43:2019 GOK Calcium concentrations	
Figure 44: 2020 GOK Ammonium concentrations	
Figure 45: 2020 GOK Calcium concentrations	
Figure 46: 2021 GOK Ammonium concentrations	
-	

Figure 47: 2021 GOK Calcium concentrations	36
Figure 48: 2021 FLK Ammonium concentrations	37
Figure 49: 2021 FLK Calcium concentrations	
Figure 50: 2022 GOK Ammonium concentrations	
Figure 51: 2022 GOK Calcium concentrations	37
Figure 52: 2022 FLK Ammonium concentrations	
Figure 53: 2022 GOK Calcium concentrations	
Figure 54: Calcium comparison	42
Figure 55: Mass balance	58

List of Tables

Table 1: Gases and gas flow rates used by the Sunset OC/EC Analyzer	
Table 2: Parameters of cation chromatography	13
Table 3: Concentrations of the cation standards used for calibration	14
Table 4: ICP-OES standard solutions	
Table 5: Corrected and not corrected EC and WIOC values	26
Table 6: Minimum, maximum, median and mean values of WIOC and EC	28
Table 7: Summary of WIOC and EC data taken from literature	
Table 8: Typical BC content of snow samples from different regions [2]	31
Table 9: Comparison of water-insoluble and water-soluble Calcium and Magnesium	40
Table 10: Calcium comparison of water-insoluble and water-insoluble Calcium above the LOD	41
Table 11: Blank values of the gravimetric analysis	43
Table 12: Corrected sample weight	44
Table 13: ICP-OES blank values	45
Table 14: Results of the elemental analysis	46
Table 15: FLK and GOK 2017 mineral dust criteria and Fe loadings (More explanations about VIS a	nd
TM are given in the text)	
Table 16: GOK 2018 mineral dust criteria and Fe loadings	51
Table 17: GOK 2019 mineral dust criteria and Fe loadings	52
Table 18: GOK 2020 mineral dust criteria and Fe loadings	53
Table 19: GOK 2021 mineral dust criteria and Fe loadings	54
Table 20: FLK and GOK 2022 mineral dust criteria and Fe loadings	
Table 21: Mass balance percentages	
Table 22: Mass balance values in mg	
Table 23: Depth profile 2017 EC values	
Table 24: Depth profile 2017 WIOC values	61
Table 25: Depth profile 2017 WITC values	62
Table 26: Depth profile 2018 EC values	
Table 27: Depth profile 2018 WIOC values	
Table 28: Depth profile 2018 WITC values	65
Table 29: Depth profile 2019 EC values	65
Table 30: Depth profile 2019 WIOC values	66
Table 31: Depth profile 2019 WITC values	
Table 32: Depth profile 2020 EC values	67
Table 33: Depth profile 2020 WIOC values	
Table 34: Depth profile 2020 WITC values	
Table 35: Depth profile 2021 EC values	68
Table 36: Depth profile 2021 WIOC values	69
Table 37: Depth profile 2021 WITC values	70
Table 38: Depth profile 2022 EC values	70
Table 39: Depth profile 2022 WIOC values	71
Table 40: Depth profile 2022 WITC values	
Table 41: Used 20 cm 2017 profile ammonium and calcium values	
Table 42: Used 10 cm 2017 profile ammonium and calcium values	
Table 43: Used 2018 GOK ammonium and calcium values	74
Table 44: Used 2019 GOK ammonium and calcium values	
Table 45: Used 2020 GOK ammonium and calcium values	76

77
78
79
80
81
83
84
85
86
88
90
91

VIII

Abstract

Global warming is impacting the earth way faster than expected. Several processes take part in global warming and thus may enhance or reduce the impacts. One of them is the Albedo, which is the fraction of solar light that is reflected by a surface and therefore contributes to the prevention of further warming. Fresh snow shows a high albedo, but the presence of Light Absorbing Snow Impurities (LASI) leads to faster melting snow, because the impurities heat up. This leads to less snow and therefore to less albedo.

This thesis is dedicated to analyzing three different groups of LASI. Water Insoluble Organic Carbon (WIOC), Elemental Carbon (EC) and Mineral Dust (MD). The analysis of carbon is achieved through a thermal - optical analyzer (TOA). For MD, Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP – OES) was applied. To compare the samples taken from different positions at the glacier, cation - chromatography was used.

Based on the calcium and especially the ammonium concentrations, a comparison of the snow samples investigated within this thesis with earlier samples collected nearby was possible. The data showed good agreement, regarding the seasonal trend as well as absolute concentration values. Therefore, the two data sets can be merged for future investigations. A comparison of the WITC (Water Insoluble Total Carbon), WIOC and EC data with studies conducted in other regions, allowed to discuss agreement and differences regarding elevation, vicinity of emission sources and remoteness of the site. Except of 2020, all carbon depth profiles do not show a seasonal trend. For all other years elevated concentrations could be seen at different times, throughout the year. Besides carbon parameters, data for thirteen elements was analyzed. With those concentrations, a mass balance of fifteen MD samples was done.

With the data gathered in this thesis, WITC, WIOC, EC and MD concentrations representing the accumulation periods of the years 2017 - 2022 from the Austrian Alps are available and can be used for comparison and modeling. Additionally, a method for the correction of the TOA for samples containing MD has been elaborated and looks very promising. Three criteria for the determination whether a sample contains MD or not, were tested and evaluated. MD accounts for the majority of the mass of insoluble particles, being much more prominent than organic matter.

1. Introduction

1.1 LASI (Light Absorbing Snow Impurities)

LASI (Light Absorbing Snow Impurities) summarize several compounds which decrease snow albedo. Albedo is the fraction of solar light that is reflected by a surface and therefore contributes to the prevention of further warming. Fresh snow has a high albedo (~ 80 % reflection),[10] but the presence of Light Absorbing Snow Impurities (LASI) leads to faster snow melt, because the impurities heat up. This leads to less snow and therefore to less albedo. [11] There are many different impurities that can have this effect on the snow albedo. Examples are black carbon (BC), mineral dust (MD), volcanic ash, soil organics, algae, and other biological organisms. [1] In literature several additional terms to characterize LASI exist like light-absorbing impurities (LAIs) [1] or light-absorbing particles (LAPs) [2].

A carbonaceous material in aerosol particles is often classified as black carbon (BC) and organic carbon (OC). BC itself was already introduced as an important contributor as LASI. Regarding OC a number of constituents have also been mentioned before as part of LASI, i.e. soil organics, algae and other biological organisms. Still, not all of OC is light absorbing. The source of BC is mainly the combustion of fuel and biomass, while OC has various sources and can either be emitted or is formed in the atmosphere. [4]

The amount of these impurities in the snowpacks depends on different factors. The first one is wet deposition, which is the input via snowfall. Concentrations in precipitation and the snowfall rate determine the deposition load. The second one is the amount deposited on the surface through dry deposition, i.e. the direct input of particulates or gaseous compounds without the aid of precipitation. The third one is the redistribution of these impurities through post-depositional processes. Examples for these processes are wind driven drifting, wind pumping, snow sublimation and scavenging during snowmelt, which leads to a lower amount of LASI at melt time. [1] But impurities are not the only factor which influences snow albedo, also the physical properties of the snow microstructure are important, especially in the near infrared. These properties are highly relevant for the density and specific surface area, which means that it is very important to take them into account.

Because of the global occurrence of LASI, their effects on snow albedo and therefore snowpack evolution and melt are global problems. The impact on the presence of snow cover varies on a local scale, which means that local LASI observations are recommended. [3] It is also important to not only focus on BC when looking at the radiative impact of LASI, because other constituents are responsible for up to 50 % of the absorption. Other studies have shown that dust is also a very important factor for snow radiative forcing which can lead to a total melt out by up to 50 days. [1] BC and mineral dust

are suspected to have the biggest influence on snowpack evolution in the European Alps. It is even so big, that BC was probably one of the causes why the Little Ice Age in the Alps ended. [1]

Saharan dust depositions in the Alps mostly happen between April and August and give snow layers a reddish or yellowish color. These events, i.e. the time when dust particles are airborne lasts only a few hours but they lead to a significant amount of mineral dust in the snowpacks, which influence snow melt and eventually snowpack stability. [2]

Typical regions where measurements of LASI concentrations have been done are the Himalaya, North America and the Artic, while just a few investigations were performed in the French Alps. [4, 2, 17, 22] There have been less measurements of LASI concentrations in seasonal snow in the European Alps than in long-term measurements from ice cores. Still, measurements of seasonal snow are very important for the research of the seasonal evolution of LASIs at lower altitudes. [2]

There are two ways to gather information regarding the radiative impact of LASIs in seasonal snow. The first one is to determine the concentrations of various snow impurities in the samples with different chemical measurement techniques. Afterwards the relation between the concentration and the LASI absorption is determined using the mass absorption efficiency (MAE), which is the absorption efficiency of the LASI. Another method to determine the radiative impact of LASIs in snow samples, is spectral measurements of the snow reflectance. [2] As this work will contribute to the first approach, the analytical methods available for analyses of snow samples will be discussed a bit further.

To determine black carbon (BC), methods like the thermal-optical analysis (TOA) and the single particle soot photometer (SP2) are common. [2, 19] Use of TOA allows to evaluate the concentrations of water insoluble OC (WIOC) as well. It has to be noted, that the presence of MD in the samples leads to issues during the determination of OC and EC. The optical properties of hematite change during the temperature program of the thermal – optical analysis (TOA). This leads to a change in the transmittance and reflectance of the laser and therefore to wrong EC and OC values, because of the wrong positioning of the OC / EC split point. [9]

There are a few methods to determine the concentration of dust in snow, for example, particle counters, gravimetry or analysis based on dust mineralogical properties. However, measuring uncertainties of dust concentrations are still a problem because research on mineral dust is not getting as much attention as on BC. [2] Going back to the analysis of the major elements this approach needs a calculation via a mass balance. For this purpose, Ca, Fe, Al, Si and Ti concentrations are used in the following equation to evaluate the concentrations of MD in the collected samples.

MD = (1.41 x Ca + 2.09 x Fe + 1.9 x Al + 2.15 x Si + 1.67 x Ti) x 1.16

Equation 1: Calculation of the mineral dust (MD) content [12]

If not all elements are analyzed other relationships need to be used. A common problem is, that Si cannot be determined since the quartz fiber filters contain silicon. Therefore, the average ratio of Si/AI = 2.5 can be used to calculate the Si in the collected sample. [12]

Analyzing the chemical composition of MD is also a way to determine its origin. The average composition of Saharan dust samples, which have been sampled in Spain, is: 64 % silicate, 14 % sulfates, 6 % quartz, 5 % calcium – rich particles, 1 % hematite, 1 % soot and 9 % other carbonaceous material. [7]

While the analyses of metals is a quite straightforward method, there are additional ways to find out if there is MD in the snow sample. Three possibilities which will be used within this work are explained in the following. The first one is visual inspection of the water insoluble material filtrated from the molten snow sample. The reddish color of the sampled filters, due to hematite, becomes visible. This is most evident after TOA, when all carbonaceous compounds have already been removed.

The second one is the rising transmissions signal at the end of the TOA, which happens due to the cooling of the hematite and the change of its' optical properties and was already mentioned above as an interference for TOA.[9]

The third one is described in Greilinger et al. (2018) and refers to analyses of the liquid samples. The criterion for a marked MD content is defined by a pH > 5.6 and a Ca²⁺ concentration > 10 μ eq/l. [8]

Since no pH measurements were conducted, it was necessary to use data of a series of samples taken parallel but analyzed already earlier. The comparability of the data sets had to be shown via the analyzes of the cations using ion chromatography. If the values are similar, the pH values can be used for the samples examined in this thesis.

1.2 Aim of this work

This thesis is dedicated to analyzing two groups of LASI (light absorbing snow impurities) in snow samples collected from 2017 until 2022 at two glaciers near the Sonnblick Observatory. These two groups are Elemental Carbon (EC) and Mineral Dust (MD). Furthermore, Water Insoluble Organic Carbon (WIOC) is evaluated. Part of WIOC will also contribute to LASI, but no clear correlation is possible. The snow profiles evaluated here complement and extend an independent data set of snow profiles obtained annually for soluble inorganic anions and cations, pH and conductivity since more than 30 years. The profiles for the determination of LASI were taken in close vicinity to the profiles of the long-term monitoring. To ensure, that the data of both profiles is well comparable the analysis of soluble cations was repeated for the samples analyzed within this thesis. The results obtained for EC; WIOC and MD will allow further investigations concerning the deposition flux of LASI and their impact on the surface albedo.

The analysis of carbon (EC and WIOC) is achieved by thermal – optical analysis. The identification and quantification of MD was done via the combination of several methods including thermal-optical analysis, Inductively Coupled Plasma – Optical Emissions Spectroscopy (ICP – OES) and based on the results obtained for inorganic ions and pH.

2. Experimental

2.1 Sampling

Every year at the end of the winter accumulation period, usually in April, snow samples are taken at the Glaciers. For this purpose, a snow pit is dug and samples, with a vertical resolution of 20 cm, are taken by the ZAMG (Central Institution for Meteorology and Geodynamics). To do this a stainlesssteel cylinder with a length of 20 cm is pushed into the snowpack vertically to collect the respective snow segments. Masks and gloves were used to avoid contamination of the samples during this process. Then the samples are stored in PE bags (WhirlPak). The samples are transported frozen to TU Wien, where they were stored in a deep freezer until analysis.

In parallel to these samples with a vertical resolution of 20 cm, additional snow profiles with a vertical resolution of 10 cm were obtained every year to analyze pH, conductivity and inorganic ions. This time series was actually started already in the 1980s. Sampling of the 20 cm increments to additionally analyze LASI, was started in 2017. As both profiles were sampled within one snow pit it can be expected that the chemical composition of the profiles is well comparable. Still the layering of the snow can show some variation spatially already at small distances. To evaluate possible differences and to prove the agreement of the profiles part of the analysis of the 10-cm profile, i.e., the analysis of inorganic cations, was repeated for the 20 cm profile.

The snow samples, which are analyzed in this work, were collected at two different glaciers. They are called Kleinfleißkees (FLK) and Goldbergkees (GOK), near the Hoher Sonnblick (SBK). Both are located in the Austrian National Park "Hohe Tauern" in the Eastern Alps at about 3100 m a.s.l.. Figure 1 shows the exact locations.

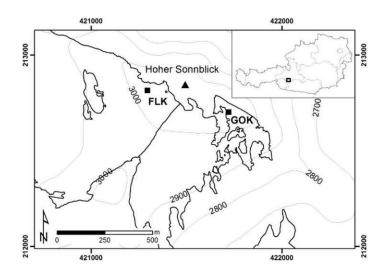


Figure 1: Location of the glaciers Kleinfleißkees and Goldbergkees (source: Marion Greilinger)

2.2 Preparation of quartz fiber filters and filtration

Before the snow samples are filtered through quartz fiber filters (PALLFLEX Membrane Filters), the filters must be prepared. Firstly, circular punches with a diameter of 27 mm are cut and then placed in a muffle furnace for 24 hours to be cleaned. Afterwards they are put in a desiccator above demineralized water to cool off. This saturates the reactive surface of the filter material with water vapor, instead of carbon containing vapors. Then the weight of the filters was determined using an analytical balance (Sartorius MC 210 P).

The snow samples are melted in a glass beaker using a microwave (600 W) and weight after extracting 1 mL for the cation chromatography measurement with a pipette. The following Figure 2 shows the used filtration setup.

Figure 2: Filtration setup

The actual filtration setup consists of a side-arm flask, a frit, a clamp and a funnel. It is connected to a manometer, a T-piece and a vacuum pump. The filter is placed between the frit and the funnel, and the clamp is holding everything in place.

Firstly 5 mL of Milli-Q water are poured onto the filter in order to moisten it, so the particles, contained in the actual sample, are distributed more evenly on the filter. The molten snow sample is poured into

the funnel and the sample flow is regulated by adjusting the vacuum by closing the T-piece. Additionally, it was important to apply a slight vacuum only. Pressures between 0.1 and 0.7 bar showed in a previous master's thesis the best results. [9] After the whole sample volume was filtered, the beaker was rinsed with 25 mL of Milli-Q water to remove residues of the sample from its walls. This water was filtrated as well, and the filter is dried by drawing some air at a lower pressure for about 10 seconds.

Then the loaded filters are dried in a desiccator above silica gel, for at least 24 hours. Afterwards the weight of the loaded filters was determined again.

Even though the filters have a diameter of 27 mm, only an area of 16 mm was loaded. For subsequent analysis, a punch of 17 mm was made which comprised the whole loaded area. This punch was cut in two halves to fit onto the glass spoon of the thermal-optical analysis. Consequently, two analytical runs had to be performed for every sample. The overall load was determined as the sum of both runs. Therefore, it was not necessary to guarantee a correct separation of the loaded area in two halves of equal area.

2.3 Thermal-optical analysis (TOA)

The Sunset Laboratory Inc. OC/EC instrument is used for the thermal-optical analysis of OC/EC and is a recognized and widely used method to determine elemental and organic carbon collected on quartz fiber filters. The whole instrument is made of three sectors which are connected to each other. The first one is the main oven box, which contains the motherboard, the front oven and the back oven, which is filled with an oxidizing agent called MnO₂. The combination of front and back oven is called main oven. The second sector contains the methanator oven, which is filled with a heated nickel catalyst, and the flame ionization detector (FID). The third and last sector is the computer for data processing.

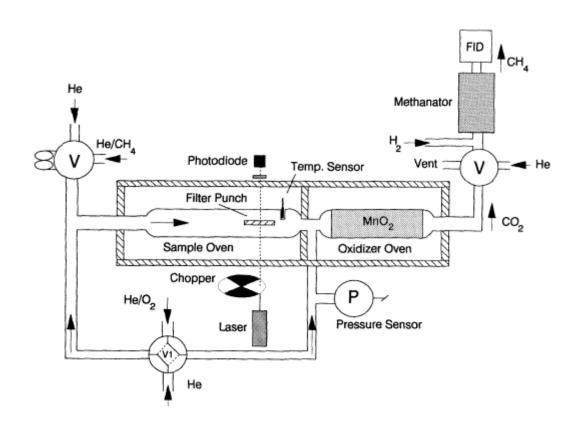


Figure 3: Schematic diagram of the OC/EC Analyzer [13]

For the thermal-optical analysis seven different gas flows, with different flow rates, are used. They are set in the range of possible flow rates, which are shown in Table 1. In the inert atmosphere He is used as the carrier gas and in the oxidizing atmosphere it is a He/O_2 -mixture (10 vol % O_2). The calibration gas is a mixture of He and 5 vol % CH₄ and is measured at the very end of every measurement. For the

detection via FID H_2 and synthetic air is used. The same gas bottle is used for He1, He2 and He3 but they have different gas lines and are introduced at different positions.

Gas	Lowest flow rate (cc/min)	Highest flow rate (cc/min)		
Synthetic air	280	300		
H ₂	50	54		
He1	48	52		
He2	7	9		
He3	63	67		
He / O ₂	7	9		
Calibration gas	10	15		

Table 1: Gases and gas flow rates used by the Sunset OC/EC Analyzer

The results were obtained in μ gC/cm² for each measured filter half. These values were added up and converted to the loading of the entire filter area (i.e. divided by two and multiplied by 2.01 to get the result in μ g on the sampled area). In the last step, the value was divided by the sample weight (g of snow filtrated onto the filter) and then multiplied by 1000 to obtain the end result in ng/g.

2.3.1 Thermal protocol EUSAAR.2

The thermal protocol used for the measurements is EUSAAR.2. Even though it is optimized for the analysis of carbonaceous aerosols at European regional background sites [14], it has proven to be applicable for the analysis of water insoluble carbonaceous compounds in snow samples as well [17,18] Figure 4 shows the desired temperature of EUSAAR.2 as a function of time.

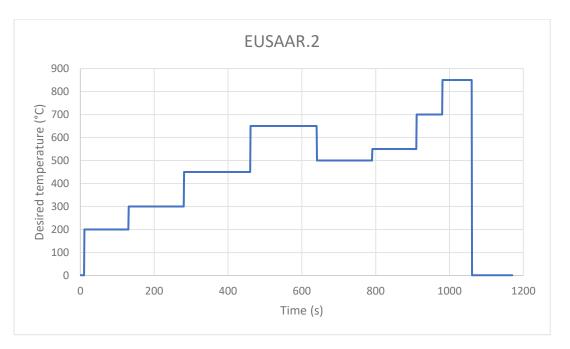


Figure 4: Desired temperature of EUSAAR.2 as a function of time

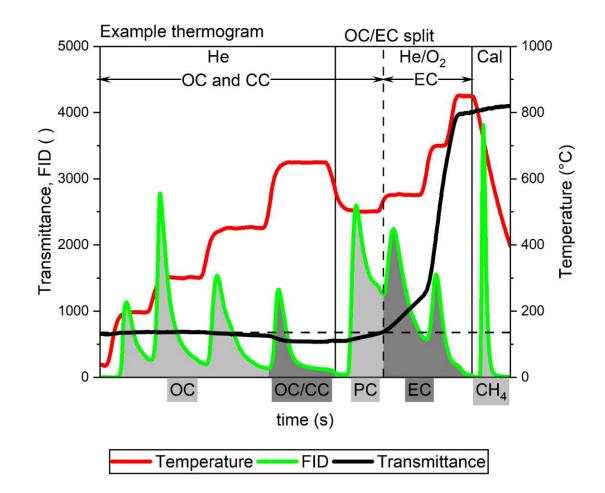


Figure 5: TOA thermogram (source: Daniela Kau)

The FID signal, temperature and transmittance are shown. Additionally, to the obtained measurement data, the used carrier gas (He and $2\% O_2$ /He) and the OC-EC split (split point), which separates the OC and EC values, are given in the diagram. The four different carbon fractions OC (organic carbon), CC (carbonate carbon), PC (pyrolytic carbon) and EC (elemental carbon) and the calibration gas (CH₄) are shown.

The back-oven is heated to 870 °C and the methanator oven to 500 °C. The filter punch is placed on a quartz spoon in the front oven, so that it is in the path of the laser (λ = 658 nm). Photodiodes record the initial transmittance and reflectance of the filter sample and the changes during the whole measurement so that pyrolytic and elemental carbon can be distinguished. The measurement is started and the temperature of the front-oven increases according to the thermal protocol. Then the organic compounds are thermally desorbed, combusted and / or pyrolyzed. They are transported with He as the carrier gas and pass the main oven, where they are quantitatively converted to CO₂. The CO₂

is transported further with the carrier gas, which is now mixed with H₂, until it reaches the methanator oven. It is now quantitatively converted to CH₄ and is measured when it reaches the FID.

When the maximum temperature in the front oven is reached, the oven is cooled according to the temperature program and the carrier gas is changed to a helium / oxygen mixture. Another temperature ramp is initiated, and the elemental and pyrolytic carbon is oxidized and transported further through the instrument.

2.3.2 TOA - quality assurance

For quality assurance purposes, a sucrose solution with a concentration of 5 gC/l is analyzed. A clean run must be done beforehand, so that no carbon residues are left from the last analysis. After that, 10 μ L of the sucrose solution are pipetted on a clean filter punch and a method is selected, that dries the filter in the front oven at a maximum temperature of 123 °C. Then the right thermal protocol is selected, which is the one that is used for the upcoming sample measurements. EUSAAR2 was used for the sucrose and sample measurements. The acceptable range of the sucrose measurements is $50 \pm 2 \mu$ gC. After the measurement, the calibration area and the result are added to a control chart, which is used to get a quick overview of possible malfunctions of the instrument.

According to Sunset Laboratory Inc., 2020 the limit of detection (LOD) of the Sunset Laboratory OC / EC instrument is 0.2 μ gC/cm². To get values for the limit of detection (LOD) and limit of quantification (LOQ) of this specific instrument, and the use of the quartz fiber filter, measurements of filter blanks have been performed by Daniela Kau for her master's thesis "Determination of elemental carbon and mineral dust in snow and ice samples". [9] The results are 2.49 μ gC/cm² for the LOD and 7.48 μ gC/cm² for the LOQ of OC or TC. For EC the LOD is 0.14 μ gC/cm² and 0.42 μ gC/cm² for the LOQ.

2.3.3 Correction of the split point

The mineral dust, especially the hematite, leads to issues during the placement of the OC / EC split point, as already mentioned before. Due to the presence of MD, the transmittance and reflectance of the laser are changed, this leads to wrong EC and OC values, because of the wrong position of the OC / EC split point. To correct this error, two different ways were used. The first one was used for the samples of 2017 – 2020, the transmittance at 700 °C was noted and the difference between this transmittance and the one at the very end of the cooling phase was calculated. The obtained difference was added to every transmittance data point of the oxidizing phase. The same procedure was done with the transmittance at 800 °C instead of 700 °C. To do a manual positioning of the new split point, the highest transmittance during the first 250 seconds was noted and compared to the corrected transmittance signals. The time when both values were the same or almost the same was used as the new split point. To decide whether to use the difference calculated for 700 °C or 800 °C,

the temperature at the new split point was looked at. If the temperature at the split point was closer to 700 °C, the difference calculated for 700 °C was used, the same applies to 800 °C.

The difference for the samples of 2021 and 2022 is that the values from a second measurement of the same sample filter punch are used to correct the transmittance of the first measurement. These evaluations are discussed in detail within the bachelor's thesis of Andjela Vukicevic [23].

2.4 Cation chromatography

A cation exchanger is used to separate selected mono- and divalent cations. The exchanger is a part of the solid phase in the separator column and retains the cations due to their different electrostatic interactions with the anionic anchor groups in the cation exchanger. [5] A 38 mM methanesulfonic acid (MSA) solution is used as the eluent and is transported through the separator column and the suppressor until it reaches the conductivity detector. The cations in the sample interact with the anchor groups in the exchanger, thereby combining with the ions of the MSA eluent. Because of the different strengths of the electrostatic interactions, the cations with the weakest interaction leave the column first and the strongest as last. The purpose of the suppressor is to exchange the counterions of the eluent, which has the advantage of a lower background conductivity which leads to increased sensitivity.

In the following Table 2 the parameters of the cation chromatography are shown. The following cations were analyzed: Na^+ , NH_4^+ , Mg^{2+} , K^+ , Ca^+ .

Instrument	Dionex-Aquion		
Column	Dionex Ion Pac CS16A		
Guard column	Dionex Ion Pac CG16A		
Eluent	38 mM MSA		
Flow rate	1 mL/min		
Suppressor	Dionex CSRS 500 – 4mm (electrochemical)		
Regenerant	Eluent		
Sample loop	150 μL		
Detection	Conductivity detector		
Integrationsystem	Chromeleon 7.2.9		

Table 2: Parameters of cation chromatography

2.4.1 Cation chromatography quality assurance

In the following Table 3, the seven calibration standards (STD1 – STD7) and three control standards (CSTD1 – CSTD3) for quality assurance purposes are shown.

Cationstandards (µg/ml)											
StandardNa ⁺ NH4 ⁺ K ⁺ Mg2 ⁺ Ca2 ⁺											
STD1	0.05	0.05	0.05	0.04	0.05						
STD2	0.10	0.10	0.075	0.08	0.10						
STD3	0.50	0.50	0.10	0.12	0.50						
STD4	0.75	0.75	0.50	0.40	0.75						
STD5	1.00	1.00	0.75	0.70	1.00						
STD6	2.00	3.00	1.00	1.00	3.00						
STD7	5.00	4.50	2.00	2.00	7.00						
CSTD1	0.04	0.05	0.10	0.05	0.10						
CSTD2	0.20	0.25	0.50	0.25	0.50						
CSTD3	2.00	2.50	5.00	2.50	5.00						

Table 3: Concentrations of the cation standards used for calibration

After the analyses the results are added to a control chart. To get a quick overview of possible malfunctions of the instrument, the curve and the slope of the calibration function of each ion are recorded. Furthermore, the calculated concentrations of the control standards are registered in the control chart and checked with the respective target values. The target value of the measurements is the average concentration μ and respective deviations of ± 5 % are considered as acceptable.

The LODs for all the cations mentioned above are 0.01 μ g/ml. They are determined by conducting at least 10 measurements of a low concentrated standard (0.01 μ g/ml) and evaluation of the standard deviation of these measurement series. The LOD is three times the standard deviation. For quality assurance such measurements are repeated yearly within the research group and were not performed within this thesis.

As already mentioned in chapter 2.2 cation analysis was performed from liquid snow sample, prior to filtration. To do so, aliquots of 1 ml of the molten snow sample are pipetted into a 1.5 mL vial. This vial is centrifuged and 800 μ L are transferred carefully into an autosampler vial. After that, the sample is ready for the measurement.

2.5 Elemental analysis (ICP-OES)

Inductively coupled plasma (ICP) is used to produce excited atoms and ions, which emit electromagnetic radiation (Optical Emission Spectroscopy – OES) at certain wavelengths, which are characteristic of different elements.

The plasma reaches temperatures between 6000 and 8000 K and is typically made of ionized Argon. It is produced in the high frequency field of an induction coil, which surrounds a quartz tube. A peristaltic pump transports the liquid sample into a nebulizer, where droplets are formed and are transported further into the plasma torch. To achieve a high stability of the excitation source and thereby the resulting signals, it is important to get rid of bigger droplets.

There are a few different designs, but basically the emitted electromagnetic radiation is focused by one or more lenses on a diffraction grating, where it is diffracted to give an emission spectrum. Afterwards the light intensity of the characteristic wavelength is measured by a photomultiplier. [6]

2.5.1 ICP – OES measurements

To gather quantitative information, seven standard solutions with an elemental concentration in the range of 0.05 to mg/L and are shown in **Fehler! Verweisquelle konnte nicht gefunden werden**. The analyzed elements are Ca, Mn, Co, P, Ti, Ni, Sr, Mg, Cr, Fe, Pb, Al and K. The following stock solutions were used in this process: ICP multi-element standard solution VIII (100 mg/L, certipur©); Indium ICP standard (1000 mg/L, certipur©); Phosphorus, plasma standard solution 1000 mg/L (specpure[™]).

Standard	Std. 1	Std. 2	Std. 3	Std. 4	Std. 5	Std. 6	Std. 7
Concentration (mg/L)	0.05	0.1	0.2	0.5	1	2	5

Table 4: ICP-OES standard solutions

The ICP-OES instrument used for these samples is the iCAP 6500 ICP-OES spectrometer, Thermo Scientific.

The measured values determined by the ICP-OES were in μ g/ml. After multiplying them with the dilution factor and the sample weight, they were expressed in μ g/filter. At this point the values were corrected with the blank average. Afterwards, the end result (μ g/g snow) was calculated by dividing them by the weight of the snow sample.

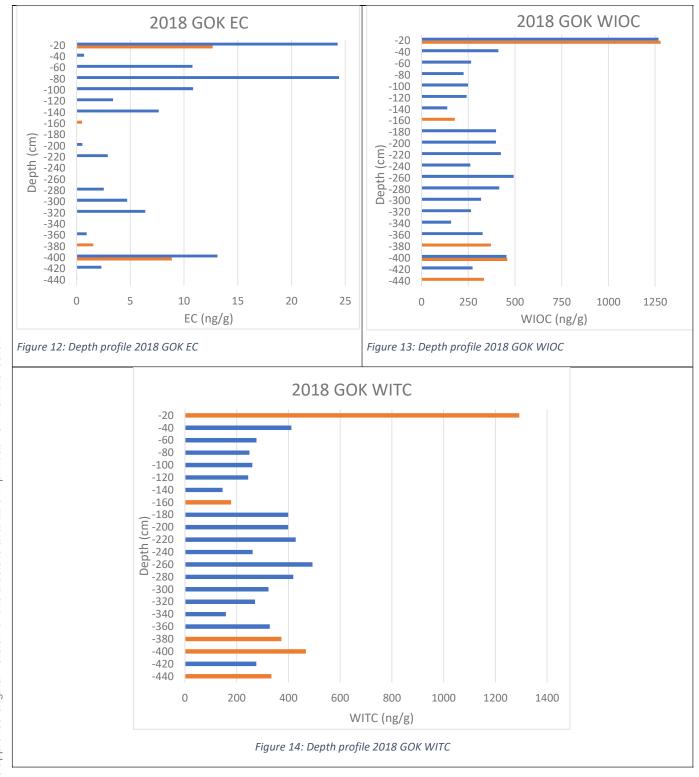
2.5.2 Microwave assisted chemical digestion

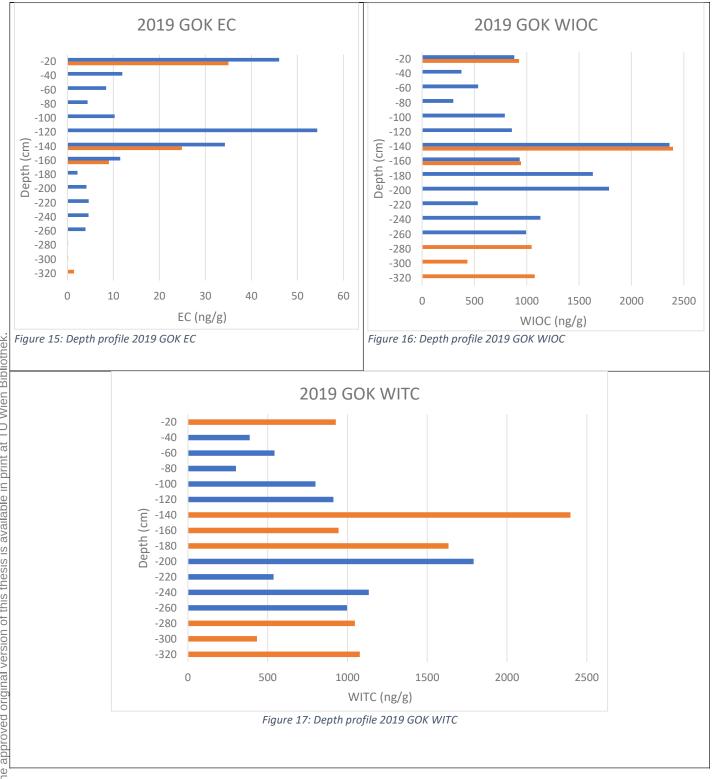
The filters probably loaded with mineral dust, are chemically digested using a microwave system (Multiwave 5000, Anton Paar). For this purpose, filters, which have already been analysed with TOA are used. They are put in teflon vessels and 3 mL HNO₃ (65 % for analysis, EMSURE[®], Supelco), 1.684 mL Milli-Q water and 1.315 mL HBF₄ (38 %, ultra-pure, Chemlab NV) are added. The used temperature program is called "Characterization of waste – Digestion for subsequent determination of aqua regia soluble portion of elements" (EN 13657) and is commonly used in environmental chemistry. After the digestion, the solution is transferred in tared vials and the teflon vessels are rinsed with Milli-Q water, which leads to a final solution volume of about 15 mL. The obtained digestion solution is then diluted 1:10 for the ICP – OES measurement.

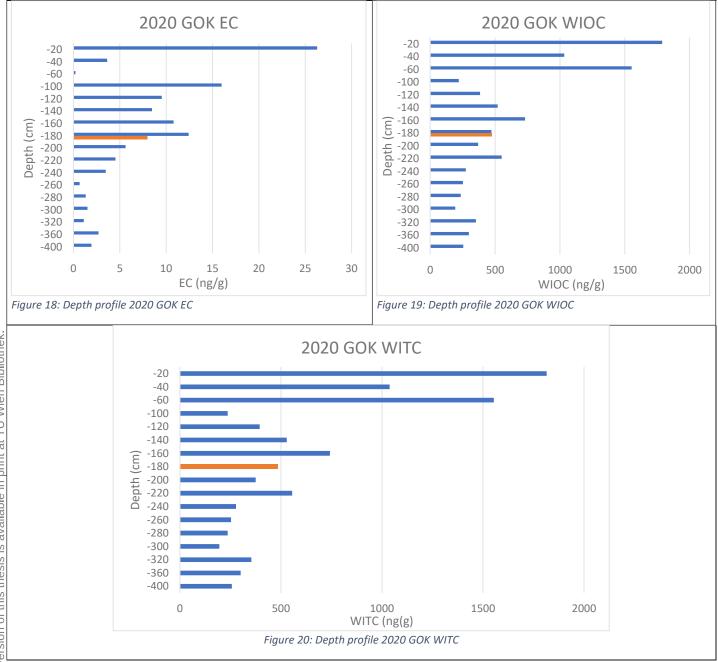
Due to a contaminated HBF_4 -solution (50%, Apollo Scientific), the samples from 2019 and 2020 couldn't be measured with the ICP-OES.

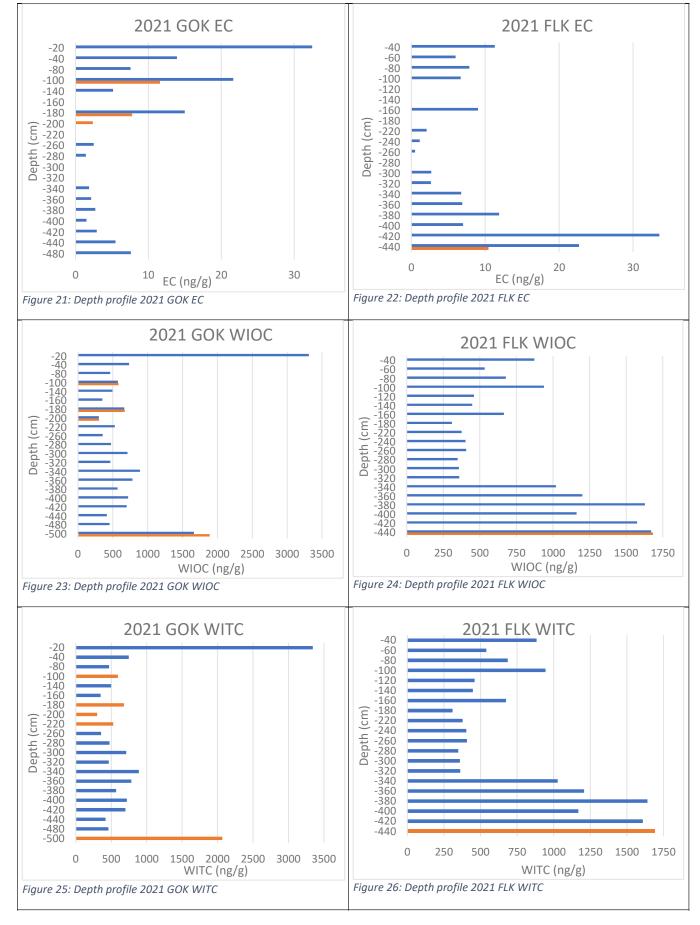
3. Results

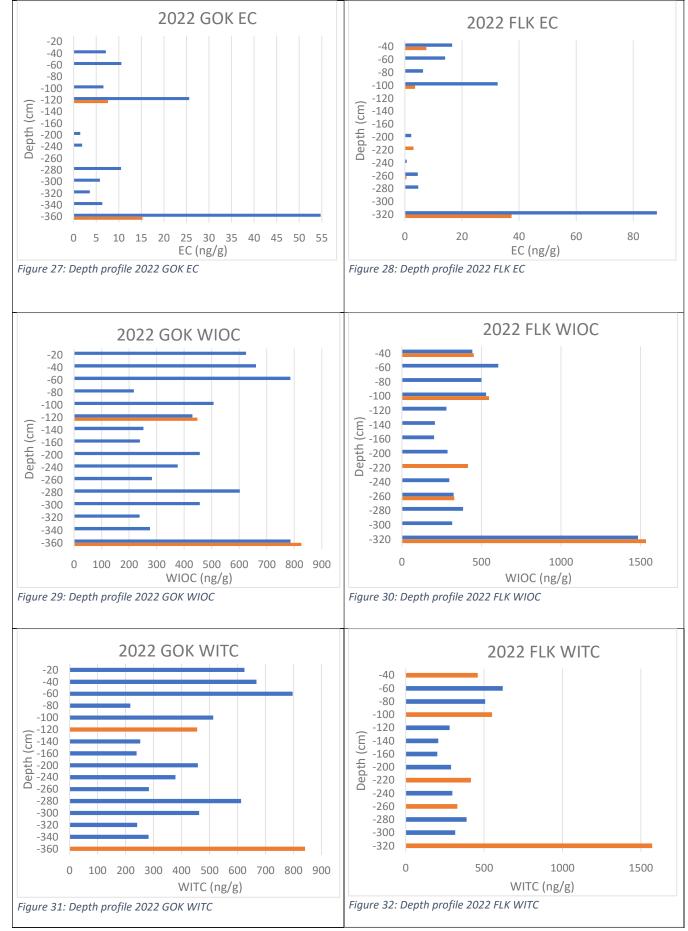
3.1 EC, WIOC and WITC depth profiles


The following figures Figure 6 to Figure 32 show the yearly depth profiles of WIOC, EC and WITC of both glaciers.


Due to a very high carbon content, some samples are not displayed in the following figures. This applies to (2017) FLK 20 and (2021) GOK 25 (only EC). Sample (2021) GOK 25 contained stones, as it was at the deepest point of the sampling site. Thus a correct analyses is not feasible. In case of (2017) FLK an insect was found in the sample. It was removed, but still the sample showed very high carbon values, which are regarded as contaminated. As both samples are at the bottom of the respective profiles, no gaps become visible in the respective graphs. The numbering of the samples starts at the surface. Thus sample FLK 20 refers to the profile at Kleinfleißkees and a depth of 380 to 400 cm. Some samples were missing ((2020) GOK4, (2021) FLK1, (2022) FLK 9) therefore no data is shown in the figures.


Samples containing mineral dust show a reddish to brownish color on the filter, as was already mentioned before. To identify these samples in the depth profiles the respective bars are plotted in orange. As deposits or iron oxides like hematite introduce an artefact to TOA, a correction of the split point was performed according to the procedure given in the chapter 2.3.3. The blue bars adjacent to the orange ones represent the corrected value. As expected, the correction leads to an increase of EC concentrations and a corresponding decrease of OC values. It is just the different scaling of the graphs and the fact that the OC concentrations are usually higher than EC concentrations, which give the impression of higher differences for EC than for OC. The correction could not be performed for all samples. If there is only one orange bar shown, no correction was performed, because it was either not necessary or not possible. Note that a correction is only necessary for OC and EC values, as just the position of the split point is concerned. WITC values remain unaffected and thus just one (orange) bar is given in the graphs for WITC.


The samples were taken from 2017 to 2022, but only in 2017, 2021 and 2022 both glaciers were chosen as sample locations. The number of samples taken was in the range between 16 and 25 and the depth of the snow pits was between 320 and 500 centimeters. Note that in 2019, the snow pits could have been deeper, but due to the weather, the sampling had to be stopped before the surface of the glaciers, i.e. the ice, was reached.



22

Every sample series contained at least one sample with visual MD in it. The most MD horizons occurred in 2018 GOK, namely 4. The sample year with the most mineral dust samples is 2019, with seven samples that contained mineral dust. It is important to note, that in this case samples are called MD samples, when the reddish or brownish coloration of the filters was visually perceptible.

Not every TOA measurement could be corrected. Some samples showed a transmission increase in the cooling phase, but the corrected transmission signal still couldn't reach the highest signal of the first 250 seconds. Therefore, no correction could be performed. Samples that showed these issues are: (2018) GOK 22, (2019) GOK 14, 15 and 16. Even if the transmission signal in the oxidizing phase was corrected, the value was not high enough to match the highest signal in the first 250 seconds of the measurement. Another reason to not to correct the TOA measurement is, that no correction was needed. In some cases ((2018) GOK 8 and 19, (2021) GOK 11 and GOK 23+24), there was a coloration of the filter, but no increase of the transmission signal in the cooling phase took place.

In 2017, 2021 and 2022 samples from both glaciers were taken and this allowed us to compare them with each other. In 2017 mineral dust samples were found at the deepest two points of the GOK and the second last of the FLK glacier. This points to a MD event at the start of the accumulation period which is visible at both glaciers. Most samples contained less than 10 ng EC/g, only one sample at GOK at -120 cm exceeded these values and was almost at 20 ng/g. Although the maximum value was found at GOK, the samples taken at FLK showed generally slightly higher concentrations for EC, but also WIOC. This is especially visible for snow samples in a depth of 200 cm and below. The samples with the highest WIOC and WITC values, were both taken at the FLK in 2017. In 2022 at both glaciers, the samples from the deepest position, contained most EC and WIOC and there were more mineral dust samples from FLK, five, than from GOK, two. Most GOK samples contained less than 11 ng/g EC, only two samples at -120 and -360 cm, exceeded this value and were 25.62 and 54.74 ng/g EC. At FLK 2022 the EC values were generally higher than at GOK 2022 and most samples contained less than 17 ng/g EC, only two samples at -100 and -320 cm at FLK contained 32.50 and 88.29 ng/g EC. Interestingly, the samples from the bottom of both snow pits contained most EC and WIOC. The 2021 samples were contaminated with hammer debris; this led to unreliable carbon values. Due to an increase in the transmission during the TOA, it is still possible to determine whether mineral dust is in the sample or not. Between -100 and -220 cm there are four GOK samples with a red coloration, but only three of them showed a transmission increase in the cooling phase during the TOA. At the deepest positions, both glaciers contained a mineral dust sample.

Except for 2020, there is no seasonal trend of the carbon values visible in the depth profiles. A slight trend is also visible in 2022 FLK when the highest value at -300 cm is not displayed. The trend of

elevated concentrations during spring time, which is visible for the inorganic ions nitrate, ammonium and sulfate arises from the better mixing of the atmosphere in springtime. [24] One possibility why it is not seen in every year's samples is that the values of EC and WIOC are not only driven by an increase of the mixing layer height, but by other transport processes as well.

As WIOC values are much higher than EC data, EC/WIOC ratios and EC/WITC ratios are quite similar. Overall EC/WITC ratios range between 0.007 and 0.017. The mean is 0.014 and the median is 0.015.

3.1.1 Comparison of corrected and not corrected carbon values

To obtain an overview of the impact of the split point correction on WIOC and EC concentrations, the corrected and not corrected values as well as the percentage increases are summarized in the following Table 5.

Sample name	EC not cor.	EC cor.	Increase	WIOC not	WIOC cor.	Decrease
	(ng/g)	(ng/g)	(%)	cor. (ng/g)	(ng/g)	(%)
(2017) GOK 15	3.71	6.99	88	239	237	1
(2017) GOK 16	4.17	6.47	55	200	198	1
(2017) FLK 18	5.61	8.86	58	168	164	2
(2017) FLK 20	107	185	73	4183	4106	2
(2018) GOK 1	12.7	24.3	92	1280	1268	1
(2018) GOK 20	8.86	13.1	48	459	454	1
(2019) GOK 1	35.0	46.0	32	927	881	5
(2019) GOK 7	24.9	34.2	38	2398	2364	1
(2019) GOK 8	9.02	11.5	27	944 933		1
(2020) GOK 9	7.95	12.4	56	476 472		1
(2021) GOK 5	11.6	21.6	87	583	573	2
(2021) GOK 9	7.78	15.0	93	671	664	1
(2021) GOK 10	0.01	2.38	Х	301	299	1
(2021) GOK 25*	177	427	141	1889	1662	12
(2021) FLK 22	10.4	22.7	118	1682	1671	1
(2022) GOK 6	7.59	25.6	238	448	430	4
(2022) GOK 18	15.3	54.7	259	826	787	5
(2022) FLK 1 + 2	7.55	16.6	120	452	444	2
(2022) FLK 5	3.55	32.5	815	815 548 530		3
(2022) FLK 13	0.53	4.54	760	329	325	1
(2022) FLK 16	37.4	88.3	136	1535	1484	3

Table 5: Corrected and not corrected EC and WIOC values

*The sample (2021) GOK 25 contained stones.

It becomes very obvious that changes in the split-point mainly effects EC concentrations and that the effect can be severe. The highest relative increase in EC would occur for (2021) GOK 10. Still, this value was not calculated, as no EC was detected without correction (i.e. the transmittance signal never

reached the initial value during the analysis and thus no split point be set). As the initial value was below the limit of detection no percentage increase could be calculated.

For all MD samples the correction of the TOA led to an EC increase of at least 27%. Considering the whole data set, this percentage increase can also be up to 259%, with two samples reaching even higher up (760% and 815%). The median value is 92%, but this value definitely can not be generalized as being typical, as the effect is driven by the iron loadings of the filter which will be independent of EC concentrations. The EC increase was greater the more Fe was on the filters. Above of an Fe loading of 20 μ g/filter the increase was mostly at least 100%. Just one filter, which contained a lot more Fe than the others, showed different behavior. This could be an indication that above of a certain Fe value, the correction cannot be applied, similar to the findings by Kau et al. [17]

Based on absolute concentrations the corrections led to an increase of BC concentration ranging from no effect up to 78 ng/g ((2017) FLK 20).

No correlation between EC concentrations and percentage increase could be found. The increase was mostly related to the position of the automatic split point. If the not corrected split point was at the very end of the thermogram, the correction led to a very large EC increase.

Due to the high OC values, the correction of the split point results in a little change of the OC concentrations in percentage terms. The sample with the highest decrease is (2021) GOK 25, with 12% which is a lot lower than the largest effects seen for EC. Apart from this maximum value of 12%, changes observed for OC are in the range of 1 to 5%.

3.1.2 Comparison of the obtained WIOC and EC values

Table 6 summarizes the WIOC and EC concentrations determined within this thesis. Note that in 2021 some gross errors which occurred during sampling (abrasion from the hammer) led to non-reliable values. The data of the two profiles sampled in 2021 has to be interpreted cautiously and is actually just listed for completeness. In one of the samples from SBK FLK 2017 an insect was found and removed before the filtration. Though the values were still very high and therefore not included in the calculations of the median and mean. Both maximum values are shown for completeness in parentheses.

	SBK	SBK	SBK	SBK	SBK	SBK	SBK	SBK	SBK
	GOK	FLK	GOK	GOK	GOK	GOK	FLK	GOK	FLK
	2017	2017	2018	2019	2020	2021	2021	2022	2022
			E	C (ng/g)					
Minimum	0.07	0.07	0.07	0.15	0.22	0.07*	0.07*	0.07	0.07
Maximum	19.7	9.12 (184.6)	24.4	54.3	26.3	427*	33.6*	54.7	88.3
Median	2.79	5.19	2.4	4.6	3.64	2.71*	6.34*	4.71	3.76
Mean	4.13	4.38	5.3	12.6	6.48	26.3*	6.94*	8.40	12.4
			W	OC (ng/g	<u>;</u>)				
Minimum	132	40	138	297	193	299*	309*	217	202
Maximum	556	774 (4106)	1268	2364	1789	3311*	1671*	787	1484
Median	233	329	323	907	370	567*	600*	443	355
Mean	268	401	357	979	558	743*	771*	450	449

Table 6: Minimum, maximum, median and mean values of WIOC and EC

*Data obtained in 2021 was contaminated during sampling and is not included in further evaluations.

According to the median value, the sample series with the highest EC content is SBK FLK 2017, while the lowest is SBK GOK 2018. Overall the EC medians ranges between 2.42 and 5.19 ng/g. In 2017 the median is 2.4 ng/g higher at the FLK than at the GOK. While in 2022 the difference between both glaciers is only 0.95 ng/g. Obviously the differences between the two sites are comparable to the changes determined at a single site during the five year period. For WIOC the medians range is between 233 and 907 ng/g. The highest value is found for SBK GOK 2019 and the lowest for SBK GOK 2017. Again, the median WIOC values between the two glaciers in one year differ more in 2017 (96 ng/g) and less in 2022 (88 ng/g). Thus for WIOC the year to year variability at one site is higher than the differences between the two sites, observed within one year.

According to the mean value, the sample series with the highest EC content is SBK GOK 2019 with 12.64 ng/g. While the lowest EC mean value, 4.13 ng/g, belongs to SBK GOK 17. Mean EC values are only slightly different between both glaciers in 2017, but in 2022 the mean EC values differ almost 4 ng/g. Still, the interannual variability can be slightly higher. For WIOC median values range between 268 and 979 ng/g. The difference between GOK and FLK is the biggest in 2017 with 133 ng/g and the

lowest in 2022 with only 1 ng/g. As it was already noticed for the median values, for WIOC the interannual variability is higher than the spatial differences observed with one year.

For completeness a comparison of minimum and maximum values is given as well. Note that the differences of maximum values are more difficult to interpret, as these values can be influenced accidentally.

Most of the profiles showed at least one sample with an EC concentration below the limit of detection. Thus, minimum concentrations reach down to this value, i.e. 0.07 ng/g. In every year, when both glaciers were investigated, these minimum EC values were the same. Regarding WIOC all values were above the LOD. The lowest WIOC value was measured at FLK in the year 2017. Evaluating the minimum values of all years with sampling at FLK and GOK, the minimum values differ only slightly in 2021 and 2022 (10 and 15 ng/g, respectively) while a larger difference was obtained in 2017 (92 ng/g).

The samples series that contained the sample with the highest EC value is SBK FLK 22, additionally the GOK samples from the same year show the second highest EC content. Disregarding the data from 2021 (abrasion from sampling equipment), the sample with the highest WIOC content occurred in 2019, whereby the median and mean were higher than in all the other years as well. In terms of the maximum EC value from both glaciers, 2022 showed the biggest difference, though the mean values differed not as much from each other. Note that the maximum values are difficult to interpret and the median and mean show a better overlook.

To compare the obtained values with other regions, values from other sample locations are shown in the Table 7. SV stands for Svalbard, which is an archipelago in the arctic ocean. The values are taken from Zdanowicz et al. (2021). [16] H stands for Himalaya and the source of these values is Chaman Gul et al. (2018). [4] The values for 2003/2004 Schauinsland (SIL) and Sonnblick (SBK) are taken from Mário Cerqueira et al. (2009). [20] Jonas Svensson et al. (2018) provides comparative EC values for the Finnish Arctic. [21]

	SV Spring 2016	H Gulkin Oct 2016	H S1-Sost Dec 15 /	SIL Feb 03 /	SBK Mar 03/	Finnish Arctic [21]			
	[16]	[4]	Jan 16 [4]	Aug 04 [20]	Jul 04 [20]	Pallas 2015	Sodankylä 2013/14		
Elevation (m a.s.l.)	102 - 1193	2741 - 3319	2873 - 3092	1205	3106	450	179		
Sample type	All layers	Surface	Surface	All layers	All layers	Surface			
		-	EC (ng	(/g)					
Minimum	< 1.0	125	482	< 0.1	< 0.1	6	5.2		
Maximum	22.7	1028	5957	192	12	1	.02		
Median	1.9	/	/	/	/	31	13.1		
Mean	2.9	451	2506	28	5.2	40	23.7		
			WIOC (I	ng/g)					
Minimum	12	266	378	9.6	33	/			
Maximum	550	3574	2934	1400	785	/			
Median	49	/	/	/	/	/			
Mean	88	1276	1039	205	145		/		

Table 7: Summary of WIOC and EC data taken from literature

As already mentioned, the maximum value is difficult to interpret, so the mean and median value are used for the comparison.

Only two out of seven (nine) sample series from SBK 2017 – 2022 fell below the mean EC value of SBK 2003/2004 and both were in 2017 (GOK and FLK). The WIOC mean value is exceeded by the samples from 2017-2022 by a lot in every case. The same study also investigated samples from SIL 2003/2004, and the EC mean value, 28 ng/g, is a lot higher than highest value for the samples from SBK. Note, that at SIL the samples were taken at a lower altitude and there is a city called Freiburg, not far from it. Both facts lead to higher EC values at SIL. Interestingly, the WIOC mean values from SBK 2017-2022 are higher in every sample series than from SIL 2003/2004.

There are also more recent values, but unfortunately only from other regions than the Austrian Alps.

The samples from the Himalaya were taken at about the same altitude, but generally the carbon values in the snow are a lot higher in the Himalaya than in the Alps. They exceeded the WIOC and especially the EC maximum values of the samples analyzed for this work by a lot. This was expected, as regions with high emission densities can be found in the vicinity. Also keep in mind that the samples are surface samples and are not taken from all layers.

The Svalbard samples were not taken at a comparable altitude, but due to the remote location of the archipelago and the sample type, it was interesting to compare them to the samples analyzed for this

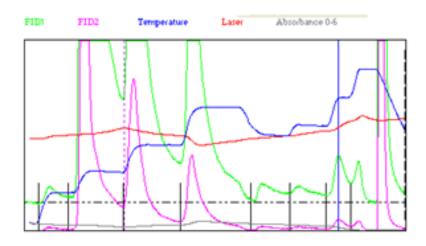
thesis. Both, median and mean of EC and especially for WIOC, are in all cases higher for the SBK samples, than for the Svalbard samples.

In recent years, snow samples were also taken in the Finnish Arctic. They are surface snow samples taken from a lot lower altitude. The median and mean of EC from the Finnish Arctic exceed the SBK 2017-2022 values in every case.

The following Table 8 is taken from Tuzet et al. (2020) and contains typical BC contents of snow samples from different regions, but no time periods are given. [2]

Sample region	Typical BC content (ng/g)
Antarctic Plateau	0.2 – 0.6
Arctic	8 - 60
Greenland	0.8 - 4.5
China	20 - 2000
North America (including melt)	5 – 70
French Alps (including melt)	0 - 80
Swiss Alps (including melt)	0 - 50

Table 8: Typical BC content of snow samples from different regions [2]


Even if the obtained median and mean EC values from 2017-2022 match the typical BC content of the French (0-80 ng/g) and Swiss Alps (0-50) very well, it is important to note, that the maximum EC value of a single snow sample may exceed the values given in Table 8. SBK FLK 2017 contained a sample with an EC value of 185 ng/g and SBK FLK 2022 with 88.3 ng/g. It is noteworthy that there was an insect in the mentioned SBK FLK 2017 sample and the second highest EC value of this sample series was only 8,84 ng/g. As excepted the analyzed SBK samples exceeded the comparative values from Greenland and the Antarctic Plateau and were also a lot lower than in China.

3.1.3 Correlations between EC fractions and the positioning of the OC/EC split

If no MD was present, the split point was usually set in EC3 or EC4. The numbering of the EC fractions refers to the different temperature levels in the oxidizing phase.

Out of 338 sample measurements, 35 split points were positioned automatically in the range of EC3, 269 in the range of EC4 and 33 in between EC3 and EC4. It was checked if there is a correlation between the size of the different EC fractions, especially EC3 and EC4, and the positioning of the automatic split point. For the 35 samples with an automatic split point set in the range of EC3, the EC3 was in 30 out of those 35 cases bigger than EC4. But there is probably no correlation between the size of EC3 and the positioning of the automatic split point in EC3, because the split point was positioned mostly in the range of EC4, even though the EC3 fractions was bigger. This leads to the conclusion that there is no correlation between the position of the automatic split point and the size of the EC3 and EC4 fraction.

Three thermograms are shown exemplarily in Figure 33, Figure 34 and Figure 35. The figures are screenshots from the calculation software of the TOA (Calc415), therefore no axis labels are shown. The split point is the vertical blue line in the right half of the thermogram.

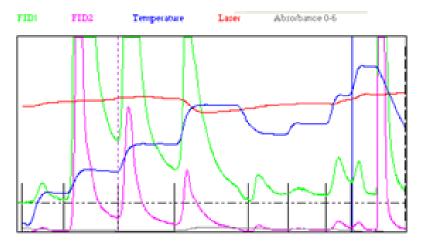
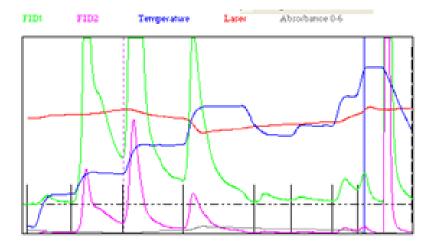
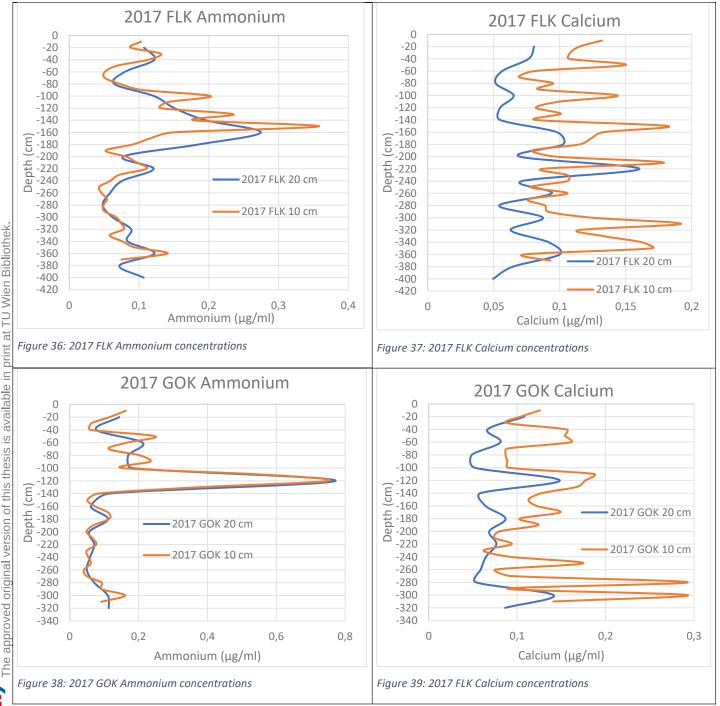
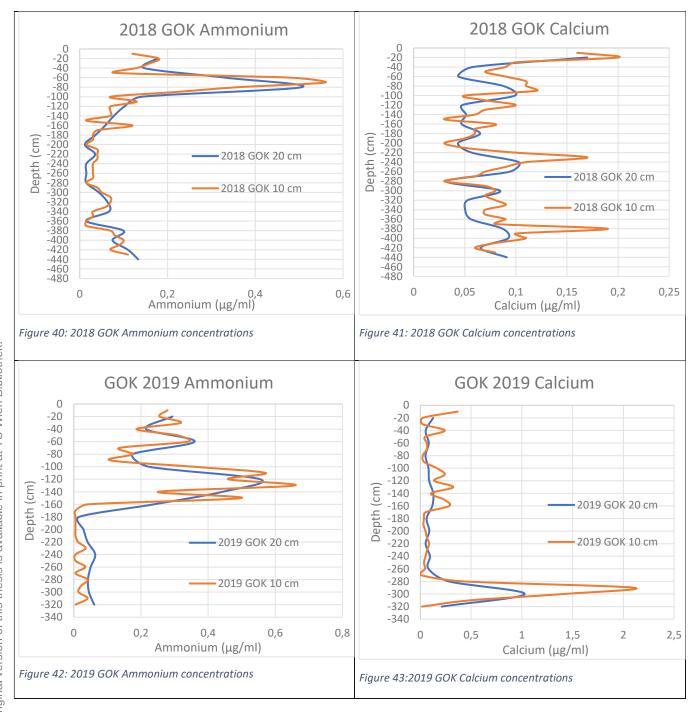
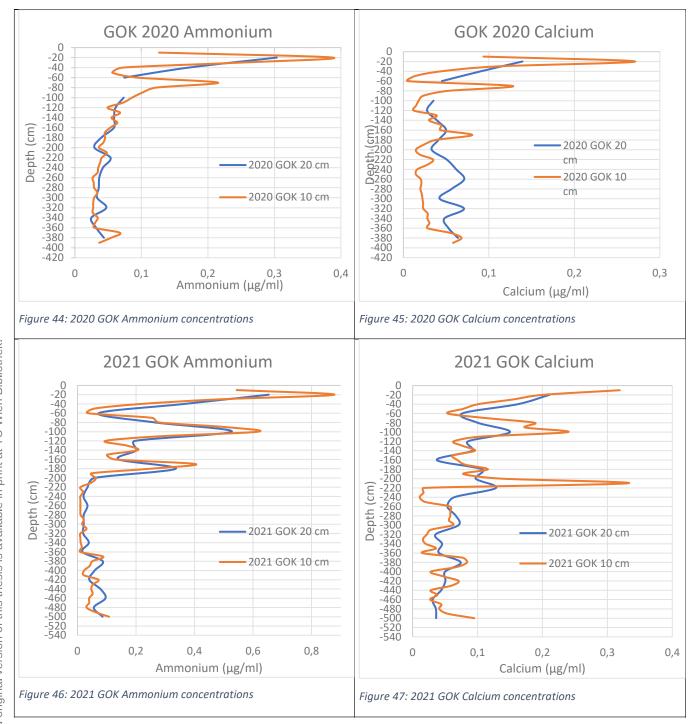


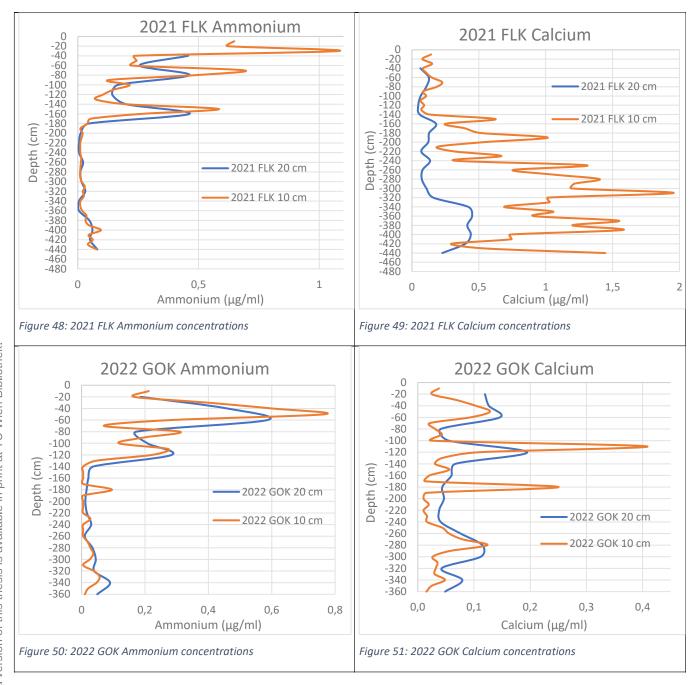
Figure 34: Example of a thermogram with the split point between EC3 and EC4

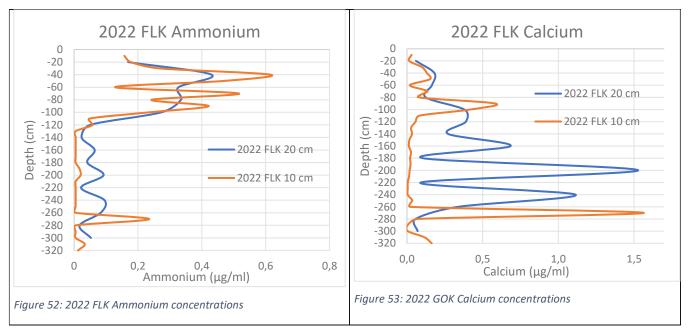



Figure 35: Example of a thermogram with the split point in EC4


3.2 Determination of mineral dust


3.2.1 Comparison of 10 cm and 20 cm increments


 $\rm NH_4{}^+$ and $\rm Ca^{2+}$ are best suited for the comparison of 10 cm and 20 cm increments, because most results


are above the LOD. The following Figure 36 to Figure 53 show the obtained values.

The obtained values show that especially ammonium shows a very good correlation. The concentrations obtained for the 10 cm and the 20 cm profiles are almost identical. As expected, larger variations of the concentration values are determined for the 10 cm profiles. This is due to the fact, that the 20 cm increments already present averaging. Single deposition events might lead to thin layers in the snow pit representing rather polluted or clean conditions. Taking samples in a vertical resolution of 10 cm can account for this fact better, than larger increments.

The results obtained for calcium are more difficult to interpret. Very good agreement and similar results, as discussed for ammonium, were obtained in 2018, 2019, 2020 (GOK) and overall, also in 2020. The marked differences found in 2021 can be attributed to problems during sampling, which led to contamination of part of the samples with debris of the sampling equipment (mainly the plastic hammer), which influenced the calcium concentrations markedly and rather randomly. Another phenomenon is found in 2017, when at least some of the overall features can be determined in both profiles, but overall concentrations are consistently lower for the 20 cm samples. No reason for this effect can be given presently.

3.2.2 Comparison of water-insoluble and water-soluble Calcium

This chapter deals with the comparison of the concentrations of water-soluble (WS) calcium, measured with the cation chromatography system, and the concentration of calcium contained in the water-insoluble (WIS) particles, measured with the ICP-OES after the micro-wave digestion. Note that the sample for the analysis via ion chromatography was taken right before the filtration. Sometimes two different samples were filtrated onto one filter to get a higher filter loading. To obtain a correct intercomparison, the respective concentrations of water-soluble calcium were multiplied with the amount of snow filtrated, then added together and divided by the sum of the sample weights of both snow samples. No comparison will be given for magnesium, as out of forty samples only eight samples are above the limit of detection for WS Mg. For the WIS Mg, it is a little bit different. Out of forty samples, twelve were above the LOD.

The obtained values are provided in the following Table 9. The used LODs are shown in chapter 2.4.1 and 3.2.4.

Sample	Cation - ch	romatography	IC	P - OES	
name	Calcium (µg/ml) Magnesium (µg/ml)		Calcium (µg/g)	Magnesium (µg/g)	
(2017) GOK 15	0.14	<lod< td=""><td>0.04</td><td>0.04</td></lod<>	0.04	0.04	
(2017) GOK 16	0.09	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2017) FLK 18	0.10	<lod< td=""><td>0.01</td><td>0.02</td></lod<>	0.01	0.02	
(2017) FLK 20	0.05	<lod< td=""><td>0.32</td><td>0.70</td></lod<>	0.32	0.70	
(2018) GOK1	0.17	0.02	0.07	0.11	
(2018) GOK2	0.06	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK3	0.04	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK4	0.09	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK5	0.10	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK6	0.05	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK7	0.05	0,01	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK8	0.05	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK9	0.07	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK10	0.04	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK11	0.06	0,01	0.01	<lod< td=""></lod<>	
(2018) GOK12	0.10	<lod< td=""><td>0.01</td><td>0.02</td></lod<>	0.01	0.02	
(2018) GOK13	0.09	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK14	0.03	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK15	0.08	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK16	0.05	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK17	0.05	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK18	0.06	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK19	0.09	<lod< td=""><td>0.02</td><td>0.01</td></lod<>	0.02	0.01	
(2018) GOK20	0.09	<lod< td=""><td>0.02</td><td>0.02</td></lod<>	0.02	0.02	
(2018) GOK21	0.07	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2018) GOK22	0.09	<lod< td=""><td>0.19</td><td>0.12</td></lod<>	0.19	0.12	
(2021) GOK5	0.15	0.02	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2021) GOK9	0.11	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2021) GOK10	0.10	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2021) GOK11	0.13	<lod< td=""><td>0.01</td><td><lod< td=""></lod<></td></lod<>	0.01	<lod< td=""></lod<>	
(2021) GOK23+24	0.04	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
(2021) GOK25	0.04	<lod< td=""><td>0.13</td><td>0.12</td></lod<>	0.13	0.12	
(2021) FLK22	0.23	<lod< td=""><td>0.20</td><td><lod< td=""></lod<></td></lod<>	0.20	<lod< td=""></lod<>	
(2022) GOK6	0.20	0.02	0.08	<lod< td=""></lod<>	
(2022) GOK18	0.05	<lod< td=""><td>0.05</td><td>0.08</td></lod<>	0.05	0.08	
(2022) FLK1+2	0.14	0.01	0.01	<lod< td=""></lod<>	
(2022) FLK5	0.38	0.02	0.27	0.05	
(2022) FLK11	1.53	0.04	0.21	<lod< td=""></lod<>	
(2022) FLK13	1.11	<lod< td=""><td>0.27</td><td><lod< td=""></lod<></td></lod<>	0.27	<lod< td=""></lod<>	
(2022) FLK16	0.07	<lod< td=""><td>0.06</td><td>0.13</td></lod<>	0.06	0.13	

Table 9: Comparison of water-insoluble and water-soluble Calcium and Magnesium

Only samples with values above the LOD are shown in the following Table 10 and Figure 54. Some samples are marked orange, because of the visible coloration of the filter. In this case μ g/g is compared to μ g/ml, as this was the way as results were reported for the two methods, and the error of the density of water at room temperature is neglected.

Sample name	Cation - chromatography	ICP - OES
	Calcium (µg/ml)	Calcium (µg/g)
(2017) GOK 15	0.14	0.04
(2017) FLK 18	0.10	0.01
(2017) FLK 20	0.05	0.32
(2018) GOK1	0.17	0.07
(2018) GOK11	0.06	0.01
(2018) GOK12	0.10	0.01
(2018) GOK19	0.09	0.02
(2018) GOK20	0.09	0.02
(2018) GOK22	0.09	0.19
(2021) GOK11	0.13	0.01
(2021) GOK25	0.04	0.13
(2021) FLK22	0.23	0.20
(2022) GOK6	0.20	0.08
(2022) GOK18	0.05	0.05
(2022) FLK1+2	0.14	0.01
(2022) FLK5	0.38	0.27
(2022) FLK11	1.53	0.21
(2022) FLK13	1.11	0.27
(2022) FLK16	0.07	0.06

Table 10: Calcium comparison of water-insoluble and water-insoluble Calcium above the LOD

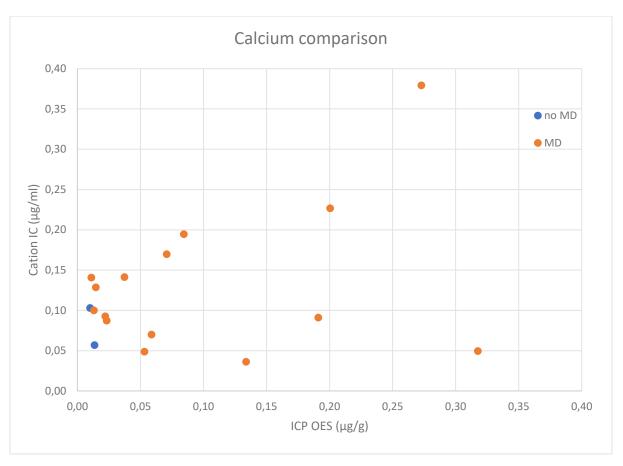


Figure 54: Calcium comparison

Just three out of nineteen samples have a higher WIS Ca^{2+} value than WS Ca^{2+} concentrations. Disregarding these three samples a weak linkage between WIS Ca^{2+} values and WS Ca^{2+} concentrations can be found in Figure 54.

Note that (2022) FLK11 and FLK13 are not displayed in this figure, due to their high value.

3.2.3 Gravimetric Analysis

During the filtration, parts of the filters were worn away, which led to a lower sampled filter weight than expected. To correct this error, a number of filters was loaded with demineralized water, i.e. with samples containing no insoluble material. Determining the resulting 'load' allowed to correct for possible losses of filter material. The following values in Table 11 were used to obtain an average loss and its' standard deviation (SD), which was necessary to evaluate the possible variation of the expected loss.

Name	Original filter weight	Sampled filter weight	Difference
	(mg)	(mg)	(mg)
Blank 1	39.7	39.5	-0.15
Blank 2	39.8	39.0	-0.81
Blank 3	39.0	38.9	-0.17
Blank 4	38.8	38.5	-0.33
Blank 5	38.8	38.5	-0.26
Blank 6	39.1	38.8	-0.36
Blank 7	39.1	38.9	-0.25
Blank 8	39.0	38.7	-0.31
	Blank average (mg)	SD (mg)	3 * SD (mg)
Blank average	-0.29	0.18	0.53

Table 11: Blank values	of the	gravimetric	analysis
------------------------	--------	-------------	----------

The blank average represents the average loss and was added to the sampled filter weight of the loaded filters. If the difference between loaded and unloaded filters remains below 3 * SD, the samples were not taken into consideration for the determination of the mass of insoluble particles, which will be further used for a mass balance. Seventeen out of forty filters showed mass loading which were above 3 * SD and could be evaluated further. The obtained values, which mainly refers to filters where a possible influence of mineral dust was also obvious by visual inspection (amount, color and structure of the residues on the quartz filters), are shown in Table 12 and if they are below the already mentioned value, they are marked red.

Sample name	Weight (mg)	Sample name	Weight (mg)
(2018) GOK 1	1.58	(2021) GOK 25	13.1
(2018) GOK 2	0.53	(2021) FLK 22	1.64
(2018) GOK 3	0.53	(2022) GOK 6	0.77
(2018) GOK 4	0.53	(2022) GOK 18	3.38
(2018) GOK 5	0.53	(2022) FLK 1 + 2	0.75
(2018) GOK 6	0.53	(2022) FLK 5	1.77
(2018) GOK 7	0.53	(2022) FLK 11	0.94
(2018) GOK 8	0.53	(2022) FLK 13	0.63
(2018) GOK 9	0.53	(2022) FLK 16	3.63
(2018) GOK 10	0.53		
(2018) GOK 11	0.54		
(2018) GOK 12	0.53		
(2018) GOK 13	0.53		
(2018) GOK 14	0.53		
(2018) GOK 15	0.53		
(2018) GOK 16	0.53		
(2018) GOK 17	0.53		
(2018) GOK 18	0.53		
(2018) GOK 19	0.53		
(2018) GOK 20	0.80		
(2018) GOK 21	0.53		
(2018) GOK 22	3.86		
(2017) GOK 15	0.53		
(2017) GOK 16	0.53		
(2017) FLK 18	0.53		
(2017) FLK 20	3.79		
(2021) GOK 5	0.57		
(2021) GOK 9	0.53		
(2021) GOK 10	0.53		
(2021) GOK 11	0.61		
(2021) GOK 23 + 24	0.67		

Table 12: Corrected sample weight

Out of 40 samples, 17 are above 3 * SD, which is slightly less than half of the filters.

3.2.4 Elemental analysis

The obtained averages of the blank values and standard deviations are shown in the Table 13. The average was used for the blank correction and SD was used as the LOD. Only one value was obtained for AI, therefore no standard deviation could be determined.

Element	Average (µg/filter)	SD (µg/filter)	3SD (µg/filter)
Са	7.99	1.88	5.64
Mg	15.0	2.07	6.21
К	7.12	2.84	8.52
AI	5.10	-	-
Р	9.44	0.89	2.67
Ti	0.42	0.04	0.12
Cr	0.92	0.09	0.27
Mn	0.27	0.27	0.81
Fe	2.03	0.90	2.70
Со	0.74	0.07	0.21
Sr	0.21	0.32	0.96
Ni	1.59	0.76	2.28
Pb	4.36	2.80	8.40

Table 13: ICP-OES blank values

Co, Ni, Cr, Pb and P were below the LOD and therefore are not mentioned in the following Table 14, which contains the end results (μ g/g snow). Every filter that had an orange or red coloration is mentioned in the following table. Additionally, the whole (2018) GOK profile is shown. Samples that show a red or orange coloration are marked orange.

Table 14: Results of the elemental analysis	5
---	---

Sample	Mg	К	Fe	Mn	Sr	Са	Ti	AI	Si
name	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)
(2018)	1,05E-	1,1E-01	2,7E-01	<lod< td=""><td><lod< td=""><td>7,1E-02</td><td>3,0E-02</td><td>9,1E-01</td><td>2,3E+00</td></lod<></td></lod<>	<lod< td=""><td>7,1E-02</td><td>3,0E-02</td><td>9,1E-01</td><td>2,3E+00</td></lod<>	7,1E-02	3,0E-02	9,1E-01	2,3E+00
GOK1	01								
(2018)	<lod< td=""><td><lod< td=""><td>1,3E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,9E-03</td><td>6,9E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1,3E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,9E-03</td><td>6,9E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<></td></lod<>	1,3E-02	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2,9E-03</td><td>6,9E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2,9E-03</td><td>6,9E-02</td><td>1,7E-01</td></lod<></td></lod<>	<lod< td=""><td>2,9E-03</td><td>6,9E-02</td><td>1,7E-01</td></lod<>	2,9E-03	6,9E-02	1,7E-01
GOK2									
(2018)	<lod< td=""><td><lod< td=""><td>5,0E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,1E-03</td><td>5,5E-02</td><td>1,4E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5,0E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,1E-03</td><td>5,5E-02</td><td>1,4E-01</td></lod<></td></lod<></td></lod<></td></lod<>	5,0E-03	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2,1E-03</td><td>5,5E-02</td><td>1,4E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2,1E-03</td><td>5,5E-02</td><td>1,4E-01</td></lod<></td></lod<>	<lod< td=""><td>2,1E-03</td><td>5,5E-02</td><td>1,4E-01</td></lod<>	2,1E-03	5,5E-02	1,4E-01
GOK3									
(2018)	<lod< td=""><td><lod< td=""><td>1,4E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,1E-03</td><td>7,0E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1,4E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,1E-03</td><td>7,0E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<></td></lod<>	1,4E-02	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2,1E-03</td><td>7,0E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2,1E-03</td><td>7,0E-02</td><td>1,7E-01</td></lod<></td></lod<>	<lod< td=""><td>2,1E-03</td><td>7,0E-02</td><td>1,7E-01</td></lod<>	2,1E-03	7,0E-02	1,7E-01
GOK4									
(2018)	<lod< td=""><td><lod< td=""><td>7,0E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4,6E-02</td><td>1,2E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7,0E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4,6E-02</td><td>1,2E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	7,0E-03	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4,6E-02</td><td>1,2E-01</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4,6E-02</td><td>1,2E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4,6E-02</td><td>1,2E-01</td></lod<></td></lod<>	<lod< td=""><td>4,6E-02</td><td>1,2E-01</td></lod<>	4,6E-02	1,2E-01
GOK5									
(2018)	<lod< td=""><td><lod< td=""><td>1,1E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4,5E-03</td><td>7,0E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1,1E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4,5E-03</td><td>7,0E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<></td></lod<>	1,1E-02	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4,5E-03</td><td>7,0E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4,5E-03</td><td>7,0E-02</td><td>1,7E-01</td></lod<></td></lod<>	<lod< td=""><td>4,5E-03</td><td>7,0E-02</td><td>1,7E-01</td></lod<>	4,5E-03	7,0E-02	1,7E-01
GOK6									
(2018)	<lod< td=""><td><lod< td=""><td>1,1E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1,1E-01</td><td>2,7E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1,1E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1,1E-01</td><td>2,7E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1,1E-02	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1,1E-01</td><td>2,7E-01</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1,1E-01</td><td>2,7E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1,1E-01</td><td>2,7E-01</td></lod<></td></lod<>	<lod< td=""><td>1,1E-01</td><td>2,7E-01</td></lod<>	1,1E-01	2,7E-01
GOK7									
(2018)	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8,6E-02</td><td>2,1E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8,6E-02</td><td>2,1E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8,6E-02</td><td>2,1E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8,6E-02</td><td>2,1E-01</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>8,6E-02</td><td>2,1E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>8,6E-02</td><td>2,1E-01</td></lod<></td></lod<>	<lod< td=""><td>8,6E-02</td><td>2,1E-01</td></lod<>	8,6E-02	2,1E-01
GOK8									
(2018)	<lod< td=""><td><lod< td=""><td>8,8E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3,0E-03</td><td>9,9E-02</td><td>2,5E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>8,8E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3,0E-03</td><td>9,9E-02</td><td>2,5E-01</td></lod<></td></lod<></td></lod<></td></lod<>	8,8E-03	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3,0E-03</td><td>9,9E-02</td><td>2,5E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3,0E-03</td><td>9,9E-02</td><td>2,5E-01</td></lod<></td></lod<>	<lod< td=""><td>3,0E-03</td><td>9,9E-02</td><td>2,5E-01</td></lod<>	3,0E-03	9,9E-02	2,5E-01
GOK9									
(2018)	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3,6E-03</td><td>4,9E-02</td><td>1,2E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3,6E-03</td><td>4,9E-02</td><td>1,2E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3,6E-03</td><td>4,9E-02</td><td>1,2E-01</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3,6E-03</td><td>4,9E-02</td><td>1,2E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3,6E-03</td><td>4,9E-02</td><td>1,2E-01</td></lod<></td></lod<>	<lod< td=""><td>3,6E-03</td><td>4,9E-02</td><td>1,2E-01</td></lod<>	3,6E-03	4,9E-02	1,2E-01
GOK10									
(2018)	<lod< td=""><td><lod< td=""><td>2,4E-02</td><td><lod< td=""><td><lod< td=""><td>1,4E-02</td><td>3,6E-03</td><td>1,0E-01</td><td>2,5E-01</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,4E-02</td><td><lod< td=""><td><lod< td=""><td>1,4E-02</td><td>3,6E-03</td><td>1,0E-01</td><td>2,5E-01</td></lod<></td></lod<></td></lod<>	2,4E-02	<lod< td=""><td><lod< td=""><td>1,4E-02</td><td>3,6E-03</td><td>1,0E-01</td><td>2,5E-01</td></lod<></td></lod<>	<lod< td=""><td>1,4E-02</td><td>3,6E-03</td><td>1,0E-01</td><td>2,5E-01</td></lod<>	1,4E-02	3,6E-03	1,0E-01	2,5E-01
GOK11									
(2018)	2,0E-02	<lod< td=""><td>5,8E-02</td><td><lod< td=""><td><lod< td=""><td>1,0E-02</td><td>7,8E-03</td><td>2,0E-01</td><td>5,0E-01</td></lod<></td></lod<></td></lod<>	5,8E-02	<lod< td=""><td><lod< td=""><td>1,0E-02</td><td>7,8E-03</td><td>2,0E-01</td><td>5,0E-01</td></lod<></td></lod<>	<lod< td=""><td>1,0E-02</td><td>7,8E-03</td><td>2,0E-01</td><td>5,0E-01</td></lod<>	1,0E-02	7,8E-03	2,0E-01	5,0E-01
GOK12									
(2018)	<lod< td=""><td><lod< td=""><td>9,4E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,7E-03</td><td>7,2E-02</td><td>1,8E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>9,4E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,7E-03</td><td>7,2E-02</td><td>1,8E-01</td></lod<></td></lod<></td></lod<></td></lod<>	9,4E-03	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2,7E-03</td><td>7,2E-02</td><td>1,8E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2,7E-03</td><td>7,2E-02</td><td>1,8E-01</td></lod<></td></lod<>	<lod< td=""><td>2,7E-03</td><td>7,2E-02</td><td>1,8E-01</td></lod<>	2,7E-03	7,2E-02	1,8E-01
GOK13									
(2018)	<lod< td=""><td><lod< td=""><td>6,2E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,9E-03</td><td>6,6E-02</td><td>1,6E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6,2E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,9E-03</td><td>6,6E-02</td><td>1,6E-01</td></lod<></td></lod<></td></lod<></td></lod<>	6,2E-03	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2,9E-03</td><td>6,6E-02</td><td>1,6E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2,9E-03</td><td>6,6E-02</td><td>1,6E-01</td></lod<></td></lod<>	<lod< td=""><td>2,9E-03</td><td>6,6E-02</td><td>1,6E-01</td></lod<>	2,9E-03	6,6E-02	1,6E-01
GOK14									
(2018)	<lod< td=""><td><lod< td=""><td>7,2E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,8E-03</td><td>9,6E-02</td><td>2,4E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7,2E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,8E-03</td><td>9,6E-02</td><td>2,4E-01</td></lod<></td></lod<></td></lod<></td></lod<>	7,2E-03	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2,8E-03</td><td>9,6E-02</td><td>2,4E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2,8E-03</td><td>9,6E-02</td><td>2,4E-01</td></lod<></td></lod<>	<lod< td=""><td>2,8E-03</td><td>9,6E-02</td><td>2,4E-01</td></lod<>	2,8E-03	9,6E-02	2,4E-01
GOK15									

46

Table 14 continued

Sample	Mg	к	Fe	Mn	Sr	Са	Ti	AI	Si
name	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)
(2018)	<lod< td=""><td><lod< td=""><td>4,5E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3,2E-03</td><td>6,2E-02</td><td>1,5E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4,5E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3,2E-03</td><td>6,2E-02</td><td>1,5E-01</td></lod<></td></lod<></td></lod<></td></lod<>	4,5E-03	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3,2E-03</td><td>6,2E-02</td><td>1,5E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3,2E-03</td><td>6,2E-02</td><td>1,5E-01</td></lod<></td></lod<>	<lod< td=""><td>3,2E-03</td><td>6,2E-02</td><td>1,5E-01</td></lod<>	3,2E-03	6,2E-02	1,5E-01
GOK16									
(2018)	<lod< td=""><td><lod< td=""><td>4,3E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4,0E-02</td><td>9,9E-02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4,3E-03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4,0E-02</td><td>9,9E-02</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4,3E-03	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4,0E-02</td><td>9,9E-02</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4,0E-02</td><td>9,9E-02</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4,0E-02</td><td>9,9E-02</td></lod<></td></lod<>	<lod< td=""><td>4,0E-02</td><td>9,9E-02</td></lod<>	4,0E-02	9,9E-02
GOK17									
(2018)	<lod< td=""><td><lod< td=""><td>1,9E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,6E-03</td><td>6,9E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1,9E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,6E-03</td><td>6,9E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<></td></lod<>	1,9E-02	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2,6E-03</td><td>6,9E-02</td><td>1,7E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2,6E-03</td><td>6,9E-02</td><td>1,7E-01</td></lod<></td></lod<>	<lod< td=""><td>2,6E-03</td><td>6,9E-02</td><td>1,7E-01</td></lod<>	2,6E-03	6,9E-02	1,7E-01
GOK18									
(2018)	1,1E-02	<lod< td=""><td>5,1E-02</td><td><lod< td=""><td><lod< td=""><td>2,3E-02</td><td>7,0E-03</td><td>1,9E-01</td><td>4,7E-01</td></lod<></td></lod<></td></lod<>	5,1E-02	<lod< td=""><td><lod< td=""><td>2,3E-02</td><td>7,0E-03</td><td>1,9E-01</td><td>4,7E-01</td></lod<></td></lod<>	<lod< td=""><td>2,3E-02</td><td>7,0E-03</td><td>1,9E-01</td><td>4,7E-01</td></lod<>	2,3E-02	7,0E-03	1,9E-01	4,7E-01
GOK19									
(2018)	2,0E-02	<lod< td=""><td>6,9E-02</td><td><lod< td=""><td><lod< td=""><td>2,2E-02</td><td>6,3E-03</td><td>2,2E-01</td><td>5,4E-01</td></lod<></td></lod<></td></lod<>	6,9E-02	<lod< td=""><td><lod< td=""><td>2,2E-02</td><td>6,3E-03</td><td>2,2E-01</td><td>5,4E-01</td></lod<></td></lod<>	<lod< td=""><td>2,2E-02</td><td>6,3E-03</td><td>2,2E-01</td><td>5,4E-01</td></lod<>	2,2E-02	6,3E-03	2,2E-01	5,4E-01
GOK20									
(2018)	<lod< td=""><td><lod< td=""><td>2,9E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3,9E-03</td><td>9,1E-02</td><td>2,3E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,9E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3,9E-03</td><td>9,1E-02</td><td>2,3E-01</td></lod<></td></lod<></td></lod<></td></lod<>	2,9E-02	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3,9E-03</td><td>9,1E-02</td><td>2,3E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3,9E-03</td><td>9,1E-02</td><td>2,3E-01</td></lod<></td></lod<>	<lod< td=""><td>3,9E-03</td><td>9,1E-02</td><td>2,3E-01</td></lod<>	3,9E-03	9,1E-02	2,3E-01
GOK21									
(2018)	1,1E-01	5,7E-01	4,0E-01	<lod< td=""><td>5,7E-03</td><td>1,9E-01</td><td>5,5E-02</td><td>2,9E+00</td><td>7,3E+00</td></lod<>	5,7E-03	1,9E-01	5,5E-02	2,9E+00	7,3E+00
GOK22									
(2017)	4,0E-02	<lod< td=""><td>1,0E-01</td><td><lod< td=""><td><lod< td=""><td>3,7E-02</td><td>1,5E-02</td><td>3,7E-01</td><td>9,3E-01</td></lod<></td></lod<></td></lod<>	1,0E-01	<lod< td=""><td><lod< td=""><td>3,7E-02</td><td>1,5E-02</td><td>3,7E-01</td><td>9,3E-01</td></lod<></td></lod<>	<lod< td=""><td>3,7E-02</td><td>1,5E-02</td><td>3,7E-01</td><td>9,3E-01</td></lod<>	3,7E-02	1,5E-02	3,7E-01	9,3E-01
GOK 15									
(2017)	<lod< td=""><td><lod< td=""><td>4,8E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7,0E-03</td><td>2,0E-01</td><td>5,1E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4,8E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7,0E-03</td><td>2,0E-01</td><td>5,1E-01</td></lod<></td></lod<></td></lod<></td></lod<>	4,8E-02	<lod< td=""><td><lod< td=""><td><lod< td=""><td>7,0E-03</td><td>2,0E-01</td><td>5,1E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>7,0E-03</td><td>2,0E-01</td><td>5,1E-01</td></lod<></td></lod<>	<lod< td=""><td>7,0E-03</td><td>2,0E-01</td><td>5,1E-01</td></lod<>	7,0E-03	2,0E-01	5,1E-01
GOK 16									
(2017)	2,2E-02	<lod< td=""><td>5,9E-02</td><td><lod< td=""><td><lod< td=""><td>1,3E-02</td><td>8,0E-03</td><td>2,4E-01</td><td>5,9E-01</td></lod<></td></lod<></td></lod<>	5,9E-02	<lod< td=""><td><lod< td=""><td>1,3E-02</td><td>8,0E-03</td><td>2,4E-01</td><td>5,9E-01</td></lod<></td></lod<>	<lod< td=""><td>1,3E-02</td><td>8,0E-03</td><td>2,4E-01</td><td>5,9E-01</td></lod<>	1,3E-02	8,0E-03	2,4E-01	5,9E-01
FLK 18									
(2017)	7,0E-01	1,1E+00	2,1E+00	1,0E-02	<lod< td=""><td>3,2E-01</td><td>1,9E-01</td><td>6,7E+00</td><td>1,7E+01</td></lod<>	3,2E-01	1,9E-01	6,7E+00	1,7E+01
FLK 20									
(2021)	<lod< td=""><td><lod< td=""><td>6,3E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>9,4E-03</td><td>2,1E-01</td><td>5,1E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6,3E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>9,4E-03</td><td>2,1E-01</td><td>5,1E-01</td></lod<></td></lod<></td></lod<></td></lod<>	6,3E-02	<lod< td=""><td><lod< td=""><td><lod< td=""><td>9,4E-03</td><td>2,1E-01</td><td>5,1E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>9,4E-03</td><td>2,1E-01</td><td>5,1E-01</td></lod<></td></lod<>	<lod< td=""><td>9,4E-03</td><td>2,1E-01</td><td>5,1E-01</td></lod<>	9,4E-03	2,1E-01	5,1E-01
GOK 5									
(2021)	<lod< td=""><td><lod< td=""><td>5,1E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8,5E-03</td><td>2,5E-01</td><td>6,1E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5,1E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8,5E-03</td><td>2,5E-01</td><td>6,1E-01</td></lod<></td></lod<></td></lod<></td></lod<>	5,1E-02	<lod< td=""><td><lod< td=""><td><lod< td=""><td>8,5E-03</td><td>2,5E-01</td><td>6,1E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>8,5E-03</td><td>2,5E-01</td><td>6,1E-01</td></lod<></td></lod<>	<lod< td=""><td>8,5E-03</td><td>2,5E-01</td><td>6,1E-01</td></lod<>	8,5E-03	2,5E-01	6,1E-01
GOK 9									
(2021)	<lod< td=""><td><lod< td=""><td>3,8E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7,2E-03</td><td>1,8E-01</td><td>4,6E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3,8E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7,2E-03</td><td>1,8E-01</td><td>4,6E-01</td></lod<></td></lod<></td></lod<></td></lod<>	3,8E-02	<lod< td=""><td><lod< td=""><td><lod< td=""><td>7,2E-03</td><td>1,8E-01</td><td>4,6E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>7,2E-03</td><td>1,8E-01</td><td>4,6E-01</td></lod<></td></lod<>	<lod< td=""><td>7,2E-03</td><td>1,8E-01</td><td>4,6E-01</td></lod<>	7,2E-03	1,8E-01	4,6E-01
GOK 10									
(2021)	<lod< td=""><td><lod< td=""><td>5,7E-02</td><td><lod< td=""><td><lod< td=""><td>1,5E-02</td><td>8,4E-03</td><td>3,1E-01</td><td>7,7E-01</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5,7E-02</td><td><lod< td=""><td><lod< td=""><td>1,5E-02</td><td>8,4E-03</td><td>3,1E-01</td><td>7,7E-01</td></lod<></td></lod<></td></lod<>	5,7E-02	<lod< td=""><td><lod< td=""><td>1,5E-02</td><td>8,4E-03</td><td>3,1E-01</td><td>7,7E-01</td></lod<></td></lod<>	<lod< td=""><td>1,5E-02</td><td>8,4E-03</td><td>3,1E-01</td><td>7,7E-01</td></lod<>	1,5E-02	8,4E-03	3,1E-01	7,7E-01
GOK 11									

Sample	Mg	K	Fe	Mn	Sr	Са	Ti	AI	Si
name	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)
(2021)	<lod< td=""><td><lod< td=""><td>3,7E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5,0E-03</td><td>1,5E-01</td><td>3,7E-01</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3,7E-02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5,0E-03</td><td>1,5E-01</td><td>3,7E-01</td></lod<></td></lod<></td></lod<></td></lod<>	3,7E-02	<lod< td=""><td><lod< td=""><td><lod< td=""><td>5,0E-03</td><td>1,5E-01</td><td>3,7E-01</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>5,0E-03</td><td>1,5E-01</td><td>3,7E-01</td></lod<></td></lod<>	<lod< td=""><td>5,0E-03</td><td>1,5E-01</td><td>3,7E-01</td></lod<>	5,0E-03	1,5E-01	3,7E-01
GOK 23+24									
(2021)	1,2E-01	5,1E-01	6,8E-01	<lod< td=""><td><lod< td=""><td>1,3E-01</td><td>7,1E-02</td><td>2,4E+00</td><td>6,0E+00</td></lod<></td></lod<>	<lod< td=""><td>1,3E-01</td><td>7,1E-02</td><td>2,4E+00</td><td>6,0E+00</td></lod<>	1,3E-01	7,1E-02	2,4E+00	6,0E+00
GOK 25									
(2021)	<lod< td=""><td>6,3E-02</td><td>1,8E-01</td><td><lod< td=""><td><lod< td=""><td>2,0E-01</td><td>1,7E-02</td><td>5,1E-01</td><td>1,3E+00</td></lod<></td></lod<></td></lod<>	6,3E-02	1,8E-01	<lod< td=""><td><lod< td=""><td>2,0E-01</td><td>1,7E-02</td><td>5,1E-01</td><td>1,3E+00</td></lod<></td></lod<>	<lod< td=""><td>2,0E-01</td><td>1,7E-02</td><td>5,1E-01</td><td>1,3E+00</td></lod<>	2,0E-01	1,7E-02	5,1E-01	1,3E+00
FLK 22									
(2022)	<lod< td=""><td>8,9E-02</td><td>1,8E-01</td><td><lod< td=""><td><lod< td=""><td>8,4E-02</td><td>1,7E-02</td><td>5,5E-01</td><td>1,4E+00</td></lod<></td></lod<></td></lod<>	8,9E-02	1,8E-01	<lod< td=""><td><lod< td=""><td>8,4E-02</td><td>1,7E-02</td><td>5,5E-01</td><td>1,4E+00</td></lod<></td></lod<>	<lod< td=""><td>8,4E-02</td><td>1,7E-02</td><td>5,5E-01</td><td>1,4E+00</td></lod<>	8,4E-02	1,7E-02	5,5E-01	1,4E+00
GOK 6									
(2022)	8,3E-02	3,4E-01	4,6E-01	<lod< td=""><td><lod< td=""><td>5,3E-02</td><td>5,0E-02</td><td>1,5E+00</td><td>3,7E+00</td></lod<></td></lod<>	<lod< td=""><td>5,3E-02</td><td>5,0E-02</td><td>1,5E+00</td><td>3,7E+00</td></lod<>	5,3E-02	5,0E-02	1,5E+00	3,7E+00
GOK 18									
(2022)	<lod< td=""><td><lod< td=""><td>5,8E-02</td><td><lod< td=""><td><lod< td=""><td>1,1E-02</td><td>8,1E-03</td><td>1,9E-01</td><td>4,8E-01</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5,8E-02</td><td><lod< td=""><td><lod< td=""><td>1,1E-02</td><td>8,1E-03</td><td>1,9E-01</td><td>4,8E-01</td></lod<></td></lod<></td></lod<>	5,8E-02	<lod< td=""><td><lod< td=""><td>1,1E-02</td><td>8,1E-03</td><td>1,9E-01</td><td>4,8E-01</td></lod<></td></lod<>	<lod< td=""><td>1,1E-02</td><td>8,1E-03</td><td>1,9E-01</td><td>4,8E-01</td></lod<>	1,1E-02	8,1E-03	1,9E-01	4,8E-01
GOK 18 (2022) FLK 1+2 (2022)									
(2022)	5,3E-02	1,2E-01	2,9E-01	<lod< td=""><td><lod< td=""><td>2,7E-01</td><td>3,1E-02</td><td>8,5E-01</td><td>2,1E+00</td></lod<></td></lod<>	<lod< td=""><td>2,7E-01</td><td>3,1E-02</td><td>8,5E-01</td><td>2,1E+00</td></lod<>	2,7E-01	3,1E-02	8,5E-01	2,1E+00
FLK 5									
(2022)	<lod< td=""><td><lod< td=""><td>4,6E-02</td><td><lod< td=""><td><lod< td=""><td>2,1E-01</td><td>5,6E-03</td><td>3,8E-01</td><td>9,5E-01</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4,6E-02</td><td><lod< td=""><td><lod< td=""><td>2,1E-01</td><td>5,6E-03</td><td>3,8E-01</td><td>9,5E-01</td></lod<></td></lod<></td></lod<>	4,6E-02	<lod< td=""><td><lod< td=""><td>2,1E-01</td><td>5,6E-03</td><td>3,8E-01</td><td>9,5E-01</td></lod<></td></lod<>	<lod< td=""><td>2,1E-01</td><td>5,6E-03</td><td>3,8E-01</td><td>9,5E-01</td></lod<>	2,1E-01	5,6E-03	3,8E-01	9,5E-01
FLK 11									
(2022)	<lod< td=""><td><lod< td=""><td>3,4E-02</td><td><lod< td=""><td><lod< td=""><td>2,7E-01</td><td>3,7E-03</td><td>1,5E-01</td><td>3,8E-01</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3,4E-02</td><td><lod< td=""><td><lod< td=""><td>2,7E-01</td><td>3,7E-03</td><td>1,5E-01</td><td>3,8E-01</td></lod<></td></lod<></td></lod<>	3,4E-02	<lod< td=""><td><lod< td=""><td>2,7E-01</td><td>3,7E-03</td><td>1,5E-01</td><td>3,8E-01</td></lod<></td></lod<>	<lod< td=""><td>2,7E-01</td><td>3,7E-03</td><td>1,5E-01</td><td>3,8E-01</td></lod<>	2,7E-01	3,7E-03	1,5E-01	3,8E-01
FLK 13									
(2022)	1,3E-01	4,1E-01	7,1E-01	<lod< td=""><td><lod< td=""><td>5,9E-02</td><td>7,1E-02</td><td>2,1E+00</td><td>5,3E+00</td></lod<></td></lod<>	<lod< td=""><td>5,9E-02</td><td>7,1E-02</td><td>2,1E+00</td><td>5,3E+00</td></lod<>	5,9E-02	7,1E-02	2,1E+00	5,3E+00
FLK 5 (2022) FLK 11 (2022) FLK 13 (2022) FLK 16									

3.2.5 Evaluation of the presence of mineral dust

The following Table 15 to Table 20 show which samples match the mentioned criteria. Due to the incident with the hammer in 2021, no information about (2021) FLK is shown. The tables contain the results of (2021) GOK, because only few samples were visually contaminated. Nevertheless, the results have to be interpreted cautiously.

After showing in chapter 3.2.1 that the samples show a very good correlation between the 10 cm and 20 cm increments, the pH and Ca²⁺ values of the 10 cm samples can be used for this evaluation. It is important to note that both mentioned criteria must be fulfilled. If there is an X in the VIS column, it means that there is a reddish or yellowish color of the filter. The TM column refers to the increase of the transmission signal in the cooling phase of the TOA, so if there is a transmission increase, an X is in the corresponding cell. Additionally, note that the samples from 2019 and 2020 couldn't be analyzed with ICP-OES, due to a contaminated HBF4-solution. Therefore, no Fe value is shown for these samples.

Table 15: FLK and GOK 2017 mineral dust criteria and Fe loadings (More explanations about VIS and TM are given in the text)

		FLK 20	017			GOK 2017					
VIS	ТМ	рН	Ca ²⁺	Fe	Depth	VIS	ТМ	рН	Ca ²⁺	Fe	
			(µev/l)	(µg/filter)	(cm)				(µev/l)	(µg/filter)	
					-20						
					-40					-	
		- / 5.63			-60					-	
					-80					-	
					-100						
					-120						
					-140						
					-160						
					-180						
					-200						
					-220						
					-240						
					-260						
					-280			- / 5.84	- / 14.6		
					-300	Х	Х		- / 14.6	17.8	
					-320	Х	Х			7.38	
		5.62 / -			-340						
Х	Х	- / 5.76		11.3	-360						
					-380						
Х	Х			163	-400						

		GC	DK 2018		
VIS	ТМ	рН	Ca ²⁺ (µev/l)	Fe (µg/filter)	Depth (cm)
Х	Х	5.76 / 5.77		50.8	-20
		5.61 / 5.61			-40
		- / 5.64			-60
		5.73 / -			-80
					-100
					-120
					-140
Х				<lod< td=""><td>-160</td></lod<>	-160
					-180
					-200
					-220
		5.62 / -			-240
					-260
					-280
					-300
					-320
					-340
					-360
Х		- / 5.76		13.7	-380
Х	Х	5.62 / -		15.8	-400
					-420
Х	Х	5.62 / -		52.5	-440

Table 16: GOK 2018 mineral dust criteria and Fe loadings

	GOK 2019								
VIS	ТМ	рН	Ca ²⁺ (µev/l)	Fe (µg/filter)	Depth (cm)				
Х	Х		18.3 / -		-20				
			- / 12.0		-40				
		- / 5.62			-60				
					-80				
					-100				
					-120				
Х	Х	5.61 / 5.66	16.2 / -		-140				
Х	Х	- / 5.71	11.8 / 14.2		-160				
		5.61/-			-180				
					-200				
					-220				
					-240				
					-260				
Х	Х	5.63 / 6.16	- / 21.3		-280				
Х	Х	6.76 / 6.68	105 / 70.4		-300				
Х	Х	6.28 / 5.76	24.8/-		-320				

Table 17: GOK 2019 mineral dust criteria and Fe loadings

	GOK 2020									
VIS	ТМ	рН	Са ²⁺ (µev/l)	Fe (µg/filters)	Depth (cm)					
		- / 5.80	- / 13.5		-20					
		5.82 / 5.71			-40					
		5.62 / 5.64			-60					
		5.70 / 5.70			-80					
		5.65 / -			-100					
					-120					
		- / 5.61			-140					
		5.64 / -			-160					
Х	Х	- / 5.64			-180					
					-200					
					-220					
					-240					
					-260					
					-280					
					-300					
					-320					
					-360					
					-400					

Table 18: GOK 2020 mineral dust criteria and Fe loadings

	GOK 2021								
VIS	тм	рН	Ca ²⁺ (µev/l)	Fe (µg/filter)	Depth (cm)				
		5.79/-	15.9/-		-20				
					-40				
					-60				
		- / 5.73			-80				
Х	Х	- / 5.64	- / 11.9	10.3	-100				
					-120				
					-140				
					-160				
Х	Х			9.43	-180				
Х	Х	- / 5.74		7.70	-200				
Х		5.92 / -	16.6 / -	11.1	-220				
					-240				
					-260				
			_		-280				
			_		-300				
			_		-320				
			_		-340				
			_		-360				
			_		-380				
					-400				
					-420				
					-440				
					-460				
Х				16.7	-480				
Х	Х			138	-500				

Table 19: GOK 2021 mineral dust criteria and Fe loadings

		FLK	2022					GOK 2	022	
VIS	ТМ	рН	Ca ²⁺	Fe	Depth	VIS	ТМ	рН	Ca ²⁺	Fe
			(µev/l)	(µg/filter)	(cm)				(µev/l)	(µg/filter)
Х	Х			13.0	-20					
		5.86 / 5.75			-40			5.66 /5.70		
		5.71/-			-60			5.67 / 5.62		
		5.77 / -			-80					
Х	Х	6.24 / 6.26	29.1 / 20.7	53.0	-100					
		- / 5.61			-120	Х	Х	6.10 / 5.68	20.4 / -	31.5
		- / 5.63			-140			5.62 / -		
					-160					
					-180			- / 5.73	-/12.5	
					-200					
Х	Х			10.3	-220			- / 5.72		
					-240					
Х	Х			7.39	-260			- / 5.62		
		6.45 / -	78.1/-		-280					
					-300					
Х	Х	5.86 / 5.87		126	-320					
					-340					
					-360	Х	Х			98.0

Table 20: FLK and GOK 2022 mineral dust criteria and Fe loadings

Most samples, twenty-five out of twenty-nine, that show a visible reddish or brownish coloration, also show the noticeable increase in the transmission in the cooling phase at the end of the TOA. Less agreement is found when the coloration of the filter is compared with the pH and Ca^{2+} concentrations. Out of twenty-nine colored filters, only nine match the required pH and Ca^{2+} values. One possible explanation would be, that the required pH and Ca^{2+} values were identified based on 10 cm increments. The increments evaluated here are 20 cm and thus a dilution of dust layers can take place. On the other hand, there are also five samples that match the pH and Ca^{2+} criteria, but no coloration was found. It could be that it indicated the presence of MD, but the iron content is not high enough to lead to issues during the placement of the OC/EC split. Interestingly, some samples with a rather low Fe loading (7.39 and 7.38 µg/filter) show a transmission increase in the cooling phase, but some with a higher content (11.1, 13.7 and 16.7 µg/filter) don't. Only one colored sample contained less Fe than the LOD and also showed no noticeable transmission increase. Keep in mind, that there are no Fe values for the samples from 2019 and 2020, due to the contaminated HBF₄-solution.

3.2.6 Mass balance

Every sample that showed a visible coloration and / or a transmission increase in the cooling phase is further described in this chapter. The Si values were obtained by calculating the Al values as described in chapter 1.1. Equation 1 is used to calculate the mineral dust content of these samples, except (2021) GOK5 and (2021) GOK23+24, because the calcium value is below the LOD. After that, the WITC values from chapter 3.1 and the obtained MD values are compared with the sample weight. The gathered data is shown in Table 21 and Table 22.

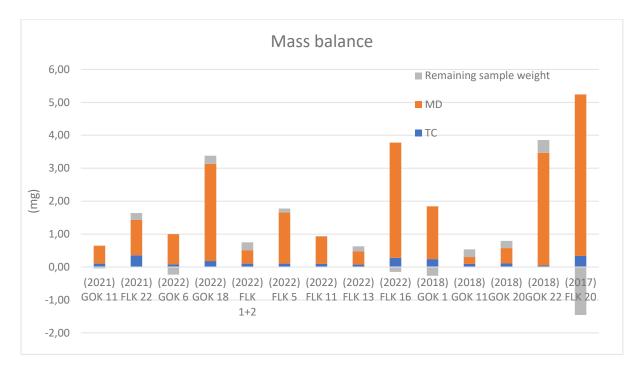

Sample name	MD fraction (%)	WITC fraction (%)	WITC+MD fraction (%)
(2021) GOK 11	90	17	107
(2021) GOK 25	35	3	38
(2021) FLK 22	66	22	88
(2022) GOK 6	120	10	130
(2022) GOK 18	87	5	92
(2022) FLK 1+2	53	14	67
(2022) FLK 5	88	6	94
(2022) FLK 11	89	10	99
(2022) FLK 13	64	12	76
(2022) FLK 16	96	8	104
(2018) GOK 1	102	15	117
(2018) GOK 11	39	18	57
(2018) GOK 20	59	14	73
(2018) GOK 22	89	1	90
(2017) FLK 20	130	9	139

Table 21: Mass balance percentages

Sample name	Sample weight (mg)	Mineral dust (mg)	WITC (mg)	Remaining sample
				weight (mg)
(2021) GOK 11	0.61	0.55	0.10	-0.04
(2021) GOK 25	13.1	4.52	0.42	8.19
(2021) FLK 22	1.64	1.07	0.36	0.21
(2022) GOK 6	0.77	0.92	0.08	-0.23
(2022) GOK 18	3.38	2.95	0.18	0.25
(2022) FLK 1+2	0.75	0.40	0.10	0.25
(2022) FLK 5	1.77	1.55	0.10	0.12
(2022) FLK 11	0.93	0.83	0.09	0.01
(2022) FLK 13	0.62	0.40	0.07	0.16
(2022) FLK 16	3.63	3.50	0.28	-0.15
(2018) GOK 1	1.58	1.60	0.24	-0.27
(2018) GOK 11	0.53	0.21	0.10	0.23
(2018) GOK 20	0.80	0.47	0.11	0.22
(2018) GOK 22	3.86	3.42	0.04	0.39
(2017) FLK 20	3.79	4.91	0.34	-1.46

Table 22: Mass balance values in mg

All mass balance values are shown in Figure 55, except (2021) GOK 25, because its' values are a lot higher than the others so it can't be displayed properly.

Figure 55: Mass balance

The sum of the mass of WITC and mass of MD of five out of fifteen samples is higher than the actual sample weight. There are a few reasons why this could happen. One of the main reasons is that there is a high potential error in the gravimetrical analysis. Additionally, there is a potential error in the elemental and thermal-optical analysis.

There is also probably biological material in the samples and there is a way to correct this error. Usually, the WITC is converted to organic matter (OM). This is achieved by multiplying the WITC value with a factor accounting for heteroatoms, with 1.5 being a factor commonly applied [15]. This is a possibility to find out what the unaccounted sample weight could consist of.

4. Conclusion

Every sample from the investigated years, except of GOK and FLK 2017, contained more EC and WIOC than samples from 2003/2004 from the same location. Another sample location from the same time period, is located in Germany at the SIL. Regarding the mean value, the EC was higher than in every SBK sample series, but for the WIOC it was the other way around. The samples, analyzed for this thesis, were also compared to other regions and more recent values. These regions were Himalaya, Finnish Arctic, Svalbard (Arctic Ocean). As expected, the EC and WIOC values of the samples from the Himalaya exceeded the values from the SBK 2017-2022. In all cases, the EC and WIOC values from the Svalbard samples were below the ones from SBK 2017-2022. Samples from the Finnish Arctic exceeded the EC and WIOC values from SBK 2017-2022 in every case. Additionally, the typical BC content of the Antarctic Plateau, North America, French Alps, Greenland and Swiss Alps was compared with the SBK samples from the analyzed SBK samples. The typical BC content of the samples from the French and Swiss Alps matches the SBK values well. Due to the remote location of Greenland and the Antarctic Plateau, it is not surprising that the SBK values are higher than theirs.

The method used for the correction of the TOA split point of the samples from 2017-2020 worked for most measurements, but not for all. Therefore, the second method, using the transmission signal from an additional measurement, should be used. This led to a split point correction of every mineral dust sample from 2021 and 2022. Due to the correction, the EC and WIOC values were more realistic and the EC increased by at least 27%.

Additionally, there is no correlation between the content of the different EC fractions and the positioning of the automatic split point.

There was at least one sample in every snow profile with visual MD in it. Out of the six years of sampling, only in three years, 2017, 2021 and 2022, both glaciers were investigated. The comparison between the FLK and GOK show that in 2017 both MD horizons are at or near the deepest sampling positions. Interestingly, in 2022 there are five MD horizons at the FLK and only two at the GOK, but both are at matching depths. No comparison was done for 2021, due to problems and contaminations during sampling

Different criteria have been defined to identify the presence of MD. Most samples, twenty-five out of twenty-nine, that showed a visual reddish or brownish coloration of the filter, also showed a transmission signal increase in the cooling phase, which led to the conclusion that the automatic EC/OC split point is at the wrong position. The main reason for that, is the hematite and therefore the Fe in the sample. Interestingly, some samples with a rather low Fe content, 7.38 and 7.39 μ g/filter,

showed the increase in the cooling phase, but some samples with a higher content, 11.1, 13.7 and 16.7 µg/filter, didn't. Note, that for the samples from 2019 and 2020 no elemental analysis could be performed, due to the contaminated HBF₄-solution. Several discrepancies have been found in regard to identifying the presence of MD, via certain pH and Ca²⁺ content. The calcium and especially the ammonium values show a very good correlation, this enabled the usage of data obtained for the 10 cm increments. This allowed us to use another way to determine whether there is mineral dust in the sample or not. After evaluating the obtained data, we concluded that using the pH and calcium content of the sample is not a good way for this determination, because only nine out of twenty-nine colored samples match this criterion. When it is used additionally to other methods, it can be helpful, but it should not be used on its own. Furthermore, a red coloration of the filter does not always indicate that there will be issues during the positioning of the split point. In some cases, the iron content is not high enough to lead to this kind of issues.

Initially, the comparison of water-soluble (WS) and water-insoluble (WIS) magnesium and calcium should have been performed. But WS and WIS magnesium was mostly below the LOD, so only calcium was compared. While all WS calcium values were above the LOD, only 19 out of 40 WIS calcium values were above the LOD. Three out of nine-teen samples have a higher WIS calcium value and there is some relationship between WS and WIS calcium.

The obtained mass balances of the mineral dust samples were below 100% for most samples. One possibility to correct these values would be to multiply the TC value with a factor to gather the organic matter (OM) content. Another one is to use other equations for the calculation of the MD content. Note that five out of fifteen samples were above 100%, these methods would lead to an even further overestimation.

5. Appendix

5.1 Obtained TOA values

GOK 2017				FLK 2017		
Sample	not cor. EC	EC	Depth	not cor. EC	EC	Sample
name	(ng/g)	(ng/g)	(cm)	(ng/g)	(ng/g)	name
GOK 1	/	1.84	-20	/	0.03	FLK 1
GOK 2	/	1.45	-40	/	0.02	FLK 2
GOK 3	/	5.40	-60	/	0.01	FLK 3
GOK 4	/	0.02	-80	/	0.01	FLK 4
GOK 5	/	0.01	-100	/	9.02	FLK 5
GOK 6	/	19.7	-120	/	6.67	FLK 6
GOK 7	/	3.75	-140	/	0.01	FLK 7
GOK 8	/	0.01	-160	/	6.93	FLK 8
GOK 9	/	4.96	-180	/	4.72	FLK 9
GOK 10	/	0.01	-200	/	2.25	FLK 10
GOK 11	/	9.04	-220	/	6.89	FLK 11
GOK 12	/	6.42	-240	/	9.12	FLK 12
GOK 13	/	0.03	-260	/	6.39	FLK 13
GOK 14	/	0.02	-280	/	5.91	FLK 14
GOK 15	3.71	6.99	-300	/	2.48	FLK 15
GOK 16	4.17	6.47	-320	/	6.64	FLK 16
			-340	/	2.17	FLK 17
			-360	5.61	8.86	FLK 18
			-380	/	5.19	FLK 19
			-400	107	185	FLK 20

Table 23: Depth profile 2017 EC values

Table 24: Depth profile 2017 WIOC values

	GOK 2017			FLK 2017		
Sample	not cor.	WIOC	Depth	not cor.	WIOC	Sample
name	WIOC (ng/g)	(ng/g)	(cm)	WIOC (ng/g)	(ng/g)	name
GOK 1	/	495	-20	/	476	FLK 1
GOK 2	/	556	-40	/	555	FLK 2
GOK 3	/	327	-60	/	253	FLK 3
GOK 4	/	165	-80	/	252	FLK 4
GOK 5	/	144	-100	/	329	FLK 5
GOK 6	/	507	-120	/	254	FLK 6
GOK 7	/	265	-140	/	39.8	FLK 7
GOK 8	/	214	-160	/	321	FLK 8
GOK 9	/	248	-180	/	295	FLK 9
GOK 10	/	177	-200	/	402	FLK 10
GOK 11	/	132	-220	/	774	FLK 11
GOK 12	/	230	-240	/	650	FLK 12
GOK 13	/	146	-260	/	709	FLK 13
GOK 14	/	248	-280	/	563	FLK 14

Table 24 continued

GOK 2017					FLK 2017	
Sample name	not cor. WIOC (ng/g)	WIOC (ng/g)	Depth (cm)	not cor. WIOC (ng/g)	WIOC (ng/g)	Sample name
GOK 15	239	237	-300	/	569	FLK 15
GOK 16	200	198	-320	/	284	FLK 16
			-340	/	518	FLK 17
			-360	168	164	FLK 18
			-380	/	216	FLK 19
			-400	4183	4106	FLK 20

Table 25: Depth profile 2017 WITC values

GOK 2	GOK 2017		FLK 2	2017
Sample name	WITC (ng/g)	Depth (cm)	WITC (ng/g)	Sample name
GOK 1	497	-20	476	FLK 1
GOK 2	558	-40	555	FLK 2
GOK 3	333	-60	253	FLK 3
GOK 4	165	-80	252	FLK 4
GOK 5	144	-100	338	FLK 5
GOK 6	527	-120	261	FLK 6
GOK 7	269	-140	39.8	FLK 7
GOK 8	214	-160	328	FLK 8
GOK 9	253	-180	300	FLK 9
GOK 10	177	-200	404	FLK 10
GOK 11	141	-220	781	FLK 11
GOK 12	236	-240	659	FLK 12
GOK 13	146	-260	715	FLK 13
GOK 14	248	-280	569	FLK 14
GOK 15	244	-300	572	FLK 15
GOK 16	204	-320	291	FLK 16
		-340	521	FLK 17
		-360	173	FLK 18
		-380	221	FLK 19
		-400	4290	FLK 20

	GOK 2018			
Sample name	not cor. EC (ng/g)	EC (ng/g)	Depth (cm)	
GOK 1	12.7	24.3	-20	
GOK 2	/	0.70	-40	
GOK 3	/	10.8	-60	
GOK 4	/	24.4	-80	
GOK 5	/	10.9	-100	
GOK 6	/	3.40	-120	
GOK 7	/	7.64	-140	
GOK 8	/	0.50	-160	
GOK 9	/	0.01	-180	
GOK 10	/	0.53	-200	
GOK 11	/	2.90	-220	
GOK 12	/	0.01	-240	
GOK 13	/	0.01	-260	
GOK 14	/	2.53	-280	
GOK 15	/	4.71	-300	
GOK 16	/	6.39	-320	
GOK 17	/	0.00	-340	
GOK 18	/	0.93	-360	
GOK 19	/	1.55	-380	
GOK 20	8.86	13.1	-400	
GOK 21	/	2.31	-420	
GOK 22	/	0.05	-440	

Table 26: Depth profile 2018 EC values

	GOK 2018			
Sample name	not cor. WIOC (ng/g)	WIOC (ng/g)	Depth (cm)	
GOK 1	1280	1268	-20	
GOK 2	/	411	-40	
GOK 3	/	266	-60	
GOK 4	/	225	-80	
GOK 5	/	250	-100	
GOK 6	/	241	-120	
GOK 7	/	138	-140	
GOK 8	/	178	-160	
GOK 9	/	399	-180	
GOK 10	/	399	-200	
GOK 11	/	425	-220	
GOK 12	/	261	-240	
GOK 13	/	493	-260	
GOK 14	/	416	-280	
GOK 15	/	318	-300	
GOK 16	/	265	-320	
GOK 17	/	159	-340	
GOK 18	/	327	-360	
GOK 19	/	371	-380	
GOK 20	459	454	-400	
GOK 21	/	274	-420	
GOK 22	/	334	-440	

GOK 2018			
Sample name	WITC (ng/g)	Depth (cm)	
GOK 1	1293	-20	
GOK 2	411	-40	
GOK 3	277	-60	
GOK 4	250	-80	
GOK 5	260	-100	
GOK 6	245	-120	
GOK 7	146	-140	
GOK 8	178	-160	
GOK 9	399	-180	
GOK 10	399	-200	
GOK 11	428	-220	
GOK 12	261	-240	
GOK 13	493	-260	
GOK 14	419	-280	
GOK 15	323	-300	
GOK 16	271	-320	
GOK 17	159	-340	
GOK 18	328	-360	
GOK 19	373	-380	
GOK 20	468	-400	
GOK 21	276	-420	
GOK 22	334	-440	

Table 28: Depth profile 2018 WITC values

Table 29: Depth profile 2019 EC values

GOK 2019			
Sample name	not cor. EC (ng/g)	EC (ng/g)	Depth (cm)
(2019) GOK1	35.0	46.0	-20
(2019) GOK2	/	11.9	-40
(2019) GOK3	/	8.41	-60
(2019) GOK4	/	4.39	-80
(2019) GOK5	/	10.3	-100
(2019) GOK6	/	54.3	-120
(2019) GOK7	24.9	34.2	-140
(2019) GOK8	9.02	11.5	-160
(2019) GOK9	/	2.20	-180
(2019) GOK10	/	4.15	-200
(2019) GOK11	/	4.62	-220
(2019) GOK12	/	4.59	-240
(2019) GOK13	/	3.94	-260
(2019) GOK14	/	0.15	-280
(2019) GOK15	/	0.16	-300
(2019) GOK16	/	1.44	-320

	GOK 2019			
Sample name	not cor. WIOC (ng/g)	WIOC (ng/g)	Depth (cm)	
(2019) GOK1	927	881	-20	
(2019) GOK2	/	375	-40	
(2019) GOK3	/	534	-60	
(2019) GOK4	/	297	-80	
(2019) GOK5	/	790	-100	
(2019) GOK6	/	858	-120	
(2019) GOK7	2398	2364	-140	
(2019) GOK8	944	933	-160	
(2019) GOK9	/	1631	-180	
(2019) GOK10	/	1787	-200	
(2019) GOK11	/	532	-220	
(2019) GOK12	/	1130	-240	
(2019) GOK13	/	993	-260	
(2019) GOK14	/	1047	-280	
(2019) GOK15	/	433	-300	
(2019) GOK16	/	1076	-320	

Table 30: Depth profile 2019 WIOC values

Table 31: Depth profile 2019 WITC values

GOK 2019			
Sample name	WITC (ng/g)	Depth (cm)	
(2019) GOK1	927	-20	
(2019) GOK2	387	-40	
(2019) GOK3	543	-60	
(2019) GOK4	302	-80	
(2019) GOK5	800	-100	
(2019) GOK6	912	-120	
(2019) GOK7	2398	-140	
(2019) GOK8	944	-160	
(2019) GOK9	1633	-180	
(2019) GOK10	1791	-200	
(2019) GOK11	537	-220	
(2019) GOK12	1134	-240	
(2019) GOK13	997	-260	
(2019) GOK14	1047	-280	
(2019) GOK15	433	-300	
(2019) GOK16	1078	-320	

GOK 2020				
Sample name	not cor. EC (ng/g)	EC (ng/g)	Depth (cm)	
GOK1	/	26.3	-20	
GOK2	/	3.64	-40	
GOK3	/	0.22	-60	
GOK5	/	16.0	-100	
GOK6	/	9.52	-120	
GOK7	/	8.47	-140	
GOK8	/	10.8	-160	
GOK9	7.95	12.4	-180	
GOK10	/	5.61	-200	
GOK11	/	4.53	-220	
GOK12	/	3.48	-240	
GOK13	/	0.66	-260	
GOK14	/	1.32	-280	
GOK15	/	1.51	-300	
GOK16	/	1.11	-320	
GOK17+18	/	2.70	-360	
GOK19+20	/	1.94	-400	

Table 32: Depth profile 2020 EC values

Table 33: Depth profile 2020 WIOC values

	GOK 2020			
Sample name	not cor. WIOC (ng/g)	WIOC (ng/g)	Depth (cm)	
GOK1	/	1789	-20	
GOK2	/	1034	-40	
GOK3	/	1553	-60	
GOK5	/	220	-100	
GOK6	/	385	-120	
GOK7	/	520	-140	
GOK8	/	731	-160	
GOK9	476	472	-180	
GOK10	/	370	-200	
GOK11	/	551	-220	
GOK12	/	274	-240	
GOK13	/	252	-260	
GOK14	/	235	-280	
GOK15	/	193	-300	
GOK16	/	352	-320	
GOK17+18	/	298	-360	
GOK19+20	/	255	-400	

GOK 2020			
Sample	WITC	Depth (cm)	
name	(ng/g)		
GOK1	1815	-20	
GOK2	1038	-40	
GOK3	1553	-60	
GOK5	236	-100	
GOK6	395	-120	
GOK7	528	-140	
GOK8	742	-160	
GOK9	484	-180	
GOK10	375	-200	
GOK11	555	-220	
GOK12	278	-240	
GOK13	252	-260	
GOK14	236	-280	
GOK15	195	-300	
GOK16	353	-320	
GOK17+18	301	-360	
GOK19+20	257	-400	

Table 34: Depth profile 2020 WITC values

Table 35: Depth profile 2021 EC values

	GOK 202	1			FLK 20)21	
Sample	not cor. EC	EC	Depth	not cor. EC	EC	Sample	Depth
name	(ng/g)	(ng/g)	(cm)	(ng/g)	(ng/g)	name	(cm)
GOK 1	/	32.5	-20	/	11.3	FLK 2	-40
GOK 2	/	13.9	-40	/	5.99	FLK 3	-60
GOK 3 + 4	/	7.55	-80	/	7.86	FLK 4	-80
GOK 5	11.6	21.6	-100	/	6.68	FLK 5	-100
GOK 6 + 7	/	5.16	-140	/	0.01	FLK 6	-120
GOK 8	/	0.02	-160	/	0.02	FLK 7	-140
GOK 9	7.78	15.0	-180	/	9.01	FLK 8	-160
GOK 10	0.01	2.38	-200	/	0.01	FLK 9	-180
GOK 11	/	0.01	-220	/	2.07	FLK 10	-220
GOK 12 + 13	/	2.51	-260	/	1.15	FLK 11+12	-240
GOK 14	/	1.42	-280	/	0.52	FLK 13	-260
GOK 15	/	0.02	-300	/	0.01	FLK 14	-280
GOK 16	/	0.02	-320	/	2.69	FLK 15	-300
GOK 17	/	1.87	-340	/	2.66	FLK 16	-320
GOK 18	/	2.15	-360	/	6.74	FLK 17	-340
GOK 19	/	2.71	-380	/	6.89	FLK 18	-360
GOK 20	/	1.50	-400	/	11.9	FLK 19	-380
GOK 21	/	2.91	-420	/	7.00	FLK 20	-400
GOK 22	/	5.47	-440	/	33.6	FLK 21	-420
GOK 23 + 24	/	7.60	-480	10.4	22.7	FLK 22	-440
GOK 25	177	427	-500				

	GOK 202	1			FLK 2	021	
Sample	not cor.	WIOC	Depth	not cor.	WIOC	Sample	Depth
name	WIOC (ng/g)	(ng/g)	(cm)	WIOC (ng/g)	(ng/g)	name	(cm)
GOK 1	/	3311	-20	/	872	FLK 2	-40
GOK 2	/	734	-40	/	534	FLK 3	-60
GOK 3+4	/	463	-80	/	678	FLK 4	-80
GOK 5	583	573	-100	/	938	FLK 5	-100
GOK 6+7	/	494	-140	/	460	FLK 6	-120
GOK 8	/	350	-160	/	448	FLK 7	-140
GOK 9	671	664	-180	/	665	FLK 8	-160
GOK 10	301	299	-200	/	309	FLK 9	-180
GOK 11	/	529	-220	/	376	FLK 10	-220
GOK 12+13	/	355	-260	/	402	FLK 11+12	-240
GOK 14	/	475	-280	/	407	FLK 13	-260
GOK 15	/	710	-300	/	349	FLK 14	-280
GOK 16	/	465	-320	/	357	FLK 15	-300
GOK 17	/	888	-340	/	359	FLK 16	-320
GOK 18	/	781	-360	/	1021	FLK 17	-340
GOK 19	/	567	-380	/	1201	FLK 18	-360
GOK 20	/	719	-400	/	1629	FLK 19	-380
GOK 21	/	698	-420	/	1162	FLK 20	-400
GOK 22	/	415	-440	/	1575	FLK 21	-420
GOK 23+24	/	453	-480	1682	1671	FLK 22	-440
GOK 25	1889	1662	-500				

Table 36: Depth profile 2021 WIOC values

G	OK 2021			FLK 2021	
Sample	WITC	Depth	WITC	Sample	Depth
name	(ng/g)	(cm)	(ng/g)	name	(cm)
GOK 1	3343	-20	884	FLK 2	-40
GOK 2	747	-40	540	FLK 3	-60
GOK 3 + 4	470	-80	686	FLK 4	-80
GOK 5	594	-100	944	FLK 5	-100
GOK 6 + 7	499	-140	460	FLK 6	-120
GOK 8	350	-160	448	FLK 7	-140
GOK 9	679	-180	674	FLK 8	-160
GOK 10	301	-200	309	FLK 9	-180
GOK 11	529	-220	378	FLK 10	-220
GOK 12+13	357	-260	403	FLK 11+12	-240
GOK 14	476	-280	407	FLK 13	-260
GOK 15	710	-300	349	FLK 14	-280
GOK 16	465	-320	360	FLK 15	-300
GOK 17	890	-340	362	FLK 16	-320
GOK 18	783	-360	1027	FLK 17	-340
GOK 19	570	-380	1208	FLK 18	-360
GOK 20	720	-400	1640	FLK 19	-380
GOK 21	701	-420	1169	FLK 20	-400
GOK 22	421	-440	1609	FLK 21	-420
GOK 23+24	460	-480	1692	FLK 22	-440
GOK 25	2067	-500			

Table 37: Depth profile 2021 WITC values

Table 38: Depth profile 2022 EC values

	GOK 202	2			FLK 20	22	
Sample	not cor. EC	EC	Depth	not cor. EC	EC	Sample	Depth
name	(ng/g)	(ng/g)	(cm)	(ng/g)	(ng/g)	name	(cm)
GOK 1	/	0.02	-20	7.55	16.6	FLK 1 + 2	-40
GOK 2	/	7.15	-40	/	14.1	FLK 3	-60
GOK 3	/	10.6	-60	/	6.40	FLK 4	-80
GOK 4	/	0.02	-80	3.55	32.5	FLK 5	-100
GOK 5	/	6.59	-100	/	0.04	FLK 6	-120
GOK 6	7.59	25.6	-120	/	0.03	FLK 7	-140
GOK 7	/	0.01	-140	/	0.01	FLK 8	-160
GOK 8	/	0.01	-160	/	2.25	FLK 10	-200
GOK 9+10	/	1.47	-200	/	2.98	FLK 11	-220
GOK 11+12	/	1.89	-240	/	0.67	FLK 12	-240
GOK 13	/	0.02	-260	0.53	4.54	FLK 13	-260
GOK 14	/	10.5	-280	/	4.70	FLK 14	-280
GOK 15	/	5.81	-300	/	0.02	FLK 15	-300
GOK 16	/	3.60	-320	37.4	88.3	FLK 16	-320
GOK 17	/	6.35	-340				
GOK 18	15.3	54.7	-360				

	GOK 2022				FLK 20	22	
Sample name	not cor. WIOC (ng/g)	WIOC (ng/g)	Depth (cm)	not cor. WIOC (ng/g)	WIOC (ng/g)	Sample name	Depth (cm)
GOK 1	/	625	-20	452.44	443	FLK 1 + 2	-40
GOK 2	/	661	-40	/	606	FLK 3	-60
GOK 3	/	786	-60	/	500	FLK 4	-80
GOK 4	/	217	-80	547.50	529	FLK 5	-100
GOK 5	/	507	-100	/	280	FLK 6	-120
GOK 6	448	430	-120	/	208	FLK 7	-140
GOK 7	/	252	-140	/	202	FLK 8	-160
GOK 8	/	239	-160	/	287	FLK 10	-200
GOK 9+10	/	457	-200	/	413	FLK 11	-220
GOK 11+12	/	376	-240	/	298	FLK 12	-240
GOK 13	/	283	-260	329	325	FLK 13	-260
GOK 14	/	602	-280	/	384	FLK 14	-280
GOK 15	/	457	-300	/	317	FLK 15	-300
GOK 16	/	238	-320	1535	1484	FLK 16	-320
GOK 17	/	276	-340				
GOK 18	826	787	-360				

Table 39: Depth profile 2022 WIOC values

Table 40: Depth profile 2022 WITC values

G	OK 2022			FLK 2022	
Sample	WITC	Depth	WITC	Sample	Depth
name	(ng/g)	(cm)	(ng/g)	name	(cm)
GOK 1	625	-20	460	FLK 1 + 2	-40
GOK 2	668	-40	620	FLK 3	-60
GOK 3	797	-60	507	FLK 4	-80
GOK 4	217	-80	551	FLK 5	-100
GOK 5	513	-100	280	FLK 6	-120
GOK 6	456	-120	208	FLK 7	-140
GOK 7	252	-140	202	FLK 8	-160
GOK 8	239	-160	290	FLK 10	-200
GOK 9+10	458	-200	416	FLK 11	-220
GOK 11+12	378	-240	298	FLK 12	-240
GOK 13	283	-260	330	FLK 13	-260
GOK 14	613	-280	389	FLK 14	-280
GOK 15	463	-300	317	FLK 15	-300
GOK 16	242	-320	1572	FLK 16	-320
GOK 17	282	-340			
GOK 18	841	-360			

5.2 Used ammonium and calcium values

Table 41: Used 20 cm 2017 profile ammonium and calcium values

	2017 20) cm	
Sample name	NH₄⁺ (µg/ml)	Ca ²⁺ (µg/ml)	Depth (cm)
FLK 1	0.11	0.08	-20
FLK 2	0.12	0.08	-40
FLK 3	0.08	0.06	-60
FLK 4	0.07	0.05	-80
FLK 5	0.12	0.07	-100
FLK 6	0.15	0.06	-120
FLK 7	0.20	0.06	-140
FLK 8	0.28	0.10	-160
FLK 9	0.19	0.10	-180
FLK 10	0.08	0.07	-200
FLK 11	0.12	0.16	-220
FLK 12	0.08	0.07	-240
FLK 13	0.06	0.09	-260
FLK 14	0.05	0.05	-280
FLK 15	0.06	0.09	-300
FLK 16	0.09	0.06	-320
FLK 17	0.08	0.09	-340
FLK 18	0.12	0.10	-360
FLK 19	0.08	0.07	-380
FLK 20	0.11	0.05	-400
Sample name	NH₄⁺ (µg/ml)	Ca ²⁺ (µg/ml)	Depth (cm)
GOK 1	0.14	0.11	-20
GOK 2	0.07	0.07	-40
GOK 3	0.21	0.08	-60
GOK 4	0.17	0.05	-80
GOK 5	0.18	0.05	-100
GOK 6	0.77	0.15	-120
GOK 7	0.12	0.06	-140
GOK 8	0.06	0.06	-160
GOK 9	0.11	0.09	-180
GOK 10	0.06	0.07	-200
GOK 11	0.07	0.08	-220
GOK 12	0.06	0.07	-240
GOK 13	0.05	0.06	-260
GOK 14	0.07	0.05	-280
GOK 15	0.11	0.14	-300
GOK 16	0.11	0.09	-320
	•	•	

20)17 FLK 10 cr	n		20	17 GOK 10	cm
Sample	NH4 ⁺	Ca ²⁺	Depth	Sample	NH4 ⁺	Ca ²⁺
name	(µg/ml)	(µg/ml)	(cm)	name	(µg/ml)	(µg/ml)
FLK 1	0.10	0.13	-10	GOK 1	0.16	0.13
FLK 2	0.09	0.12	-20	GOK 2	0.12	0.10
FLK 3	0.13	0.11	-30	GOK 3	0.06	0.09
FLK 4	0.11	0.11	-40	GOK 4	0.06	0.16
FLK 5	0.07	0.15	-50	GOK 5	0.25	0.15
FLK 6	0.05	0.08	-60	GOK 6	0.17	0.16
FLK 7	0.05	0.07	-70	GOK 7	0.11	0.09
FLK 8	0.07	0.10	-80	GOK 8	0.20	0.09
FLK 9	0.12	0.08	-90	GOK 9	0.23	0.09
FLK 10	0.20	0.14	-100	GOK 10	0.15	0.09
FLK 11	0.14	0.10	-110	GOK 11	0.55	0.19
FLK 12	0.13	0.08	-120	GOK 12	0.75	0.18
FLK 13	0.24	0.10	-130	GOK 13	0.38	0.17
FLK 14	0.18	0.08	-140	GOK 14	0.08	0.13
FLK 15	0.36	0.18	-150	GOK 15	0.05	0.11
FLK 16	0.15	0.13	-160	GOK 16	0.07	0.12
FLK 17	0.12	0.12	-170	GOK 17	0.11	0.15
FLK 18	0.09	0.12	-180	GOK 18	0.11	0.10
FLK 19	0.05	0.08	-190	GOK 19	0.07	0.12
FLK 20	0.08	0.10	-200	GOK 20	0.05	0.08
FLK 21	0.10	0.18	-210	GOK 21	0.07	0.07
FLK 22	0.11	0.09	-220	GOK 22	0.08	0.09
FLK 23	0.07	0.11	-230	GOK 23	0.05	0.06
FLK 24	0.06	0.11	-240	GOK 24	0.05	0.09
FLK 25	0.04	0.08	-250	GOK 25	0.06	0.18
FLK 26	0.05	0.11	-260	GOK 26	0.04	0.08
FLK 27	0.05	0.08	-270	GOK 27	0.05	0.09
FLK 28	0.05	0.09	-280	GOK 28	0.09	0.29
FLK 29	0.05	0.09	-290	GOK 29	0.09	0.09
FLK 30	0.07	0.13	-300	GOK 30	0.16	0.29
FLK 31	0.07	0.19	-310	GOK 31	0.09	0.14
FLK 32	0.08	0.12	-320			
FLK 33	0.06	0.13	-330			
FLK 34	0.08	0.16	-340			
FLK 35	0.09	0.17	-350			
FLK 36	0.14	0.07	-360			
FLK 37	0.08	0.09	-370			
FLK 38	/	/	-380			
FLK 39	0.11	0.09	-390			

Table 42: Used 10 cm 2017 profile ammonium and calcium values

	2018 G	iOK 20 cm			2018 G	OK 10 cm	
Sample	NH₄⁺ (μg/ml)	Ca ²⁺ (µg/ml)	Depth (cm)	Sample	NH₄⁺ (µg/ml)	Ca ²⁺ (µg/ml)	Depth (cm)
GOK 1	0.18	0.17	-20	GOK 1	0.12	0.16	-10
GOK 2	0.15	0.06	-40	GOK 2	0.18	0.20	-20
GOK 3	0.33	0.04	-60	GOK 3	0.16	0.10	-30
GOK 4	0.51	0.09	-80	GOK 4	0.13	0.09	-40
GOK 5	0.14	0.10	-100	GOK 5	0.08	0.07	-50
GOK 6	0.10	0.05	-120	GOK 6	0.48	0.09	-60
GOK 7	0.08	0.05	-140	GOK 7	0.56	0.11	-70
GOK 8	0.06	0.05	-160	GOK 8	0.36	0.11	-80
GOK 9	0.04	0.07	-180	GOK 9	0.22	0.12	-90
GOK 10	0.01	0.04	-200	GOK 10	0.07	0.05	-100
GOK 11	0.04	0.06	-220	GOK 11	0.13	0.07	-110
GOK 12	0.02	0.10	-240	GOK 12	0.07	0.10	-120
GOK 13	0.02	0.10	-260	GOK 13	0.07	0.07	-130
GOK 14	0.02	0.03	-280	GOK 14	0.07	0.06	-140
GOK 15	0.04	0.09	-300	GOK 15	0.02	0.03	-150
GOK 16	0.06	0.05	-320	GOK 16	0.12	0.08	-160
GOK 17	0.07	0.05	-340	GOK 17	0.04	0.06	-170
GOK 18	0.02	0.06	-360	GOK 18	0.03	0.06	-180
GOK 19	0.10	0.09	-380	GOK 19	0.03	0.05	-190
GOK 20	0.08	0.09	-400	GOK 20	0.02	0.03	-200
GOK 21	0.11	0.07	-420	GOK 21	0.04	0.05	-210
GOK 22	0.13	0.09	-440	GOK 22	0.04	0.10	-220
				GOK 23	0.04	0.17	-230
				GOK 24	0.03	0.11	-240
				GOK 25	0.03	0.09	-250
				GOK 26	0.03	0.07	-260
				GOK 27	0.03	0.06	-270
				GOK 28	0.02	0.03	-280
				GOK 29	0.04	0.07	-290
				GOK 30	0.05	0.08	-300
				GOK 31	0.07	0.07	-310
				GOK 32	0.07	0.08	-320
				GOK 33	0.06	0.09	-330
				GOK 34	0.03	0.07	-340
				GOK 35	0.03	0.07	-350
				GOK 36	0.02	0.09	-360
				GOK 37	0.02	0.08	-370
				GOK 38	0.07	0.19	-380
				GOK 39	0.08	0.10	-390
				GOK 40	0.10	0.11	-400
				GOK 41	0.09	0.08	-410
				GOK 42	0.07	0.06	-420
				GOK 43	0.11	0.08	-430

	2019 GOK	20 cm			2019 GOK	10 cm	
Sample	NH_4^+	Ca ²⁺	Depth	Sample	NH_4^+	Ca ²⁺	Depth
name	(µg/ml)	(µg/ml)	(cm)	name	(µg/ml)	(µg/ml)	(cm)
GOK 1	0.29	0.13	-20	GOK 1	0.28	0.37	-10
GOK 2	0.22	0.05	-40	GOK 2	0.26	0.03	-20
GOK 3	0.36	0.09	-60	GOK 3	0.32	0.02	-30
GOK 4	0.18	0.05	-80	GOK 4	0.19	0.24	-40
GOK 5	0.22	0.08	-100	GOK 5	0.31	0.05	-50
GOK 6	0.56	0.09	-120	GOK 6	0.34	0.07	-60
GOK 7	0.44	0.13	-140	GOK 7	0.14	0.06	-70
GOK 8	0.24	0.12	-160	GOK 8	0.18	0.03	-80
GOK 9	0.02	0.06	-180	GOK 9	0.11	0.04	-90
GOK 10	0.03	0.09	-200	GOK 10	0.36	0.16	-100
GOK 11	0.04	0.05	-220	GOK 11	0.57	0.24	-110
GOK 12	0.06	0.10	-240	GOK 12	0.46	0.136	-120
GOK 13	0.05	0.08	-260	GOK 13	0.66	0.32	-130
GOK 14	0.04	0.28	-280	GOK 14	0.25	0.11	-140
GOK 15	0.05	1.03	-300	GOK 15	0.50	0.24	-150
GOK 16	0.06	0.21	-320	GOK 16	0.04	0.29	-160
				GOK 17	<lod< td=""><td>0.05</td><td>-170</td></lod<>	0.05	-170
				GOK 18	<lod< td=""><td>0.04</td><td>-180</td></lod<>	0.04	-180
				GOK 19	<lod< td=""><td>0.03</td><td>-190</td></lod<>	0.03	-190
				GOK 20	<lod< td=""><td>0.05</td><td>-200</td></lod<>	0.05	-200
				GOK 21	<lod< td=""><td>0.06</td><td>-210</td></lod<>	0.06	-210
				GOK 22	0.01	0.09	-220
				GOK 23	0.04	0.07	-230
				GOK 24	<lod< td=""><td>0.05</td><td>-240</td></lod<>	0.05	-240
				GOK 25	<lod< td=""><td>0.04</td><td>-250</td></lod<>	0.04	-250
				GOK 26	0.03	0.05	-260
				GOK 27	<lod< td=""><td><lod< td=""><td>-270</td></lod<></td></lod<>	<lod< td=""><td>-270</td></lod<>	-270
				GOK 28	0.04	0.43	-280
				GOK 29	0.02	2.10	-290
				GOK 30	0.01	1.41	-300
				GOK 31	0.04	0.50	-310
				GOK 32	<lod< td=""><td>0.02</td><td>-320</td></lod<>	0.02	-320

Table 44: Used 2019 GOK ammonium and calcium values

	2020 GOH	< 20 cm		2020 GOK 10 cm				
Sample	NH_4^+	Ca ²⁺	Depth	Sample	NH4 ⁺	Ca ²⁺	Depth	
name	(µg/ml)	(µg/ml)	(cm)	name	(µg/ml)	(µg/ml)	(cm)	
GOK 1	0.31	0.14	-20	GOK 1	0.13	0.09	-10	
GOK 2	0.17	0.09	-40	GOK 2	0.39	0.27	-20	
GOK 3	0.07	0.05	-60	GOK 3	0.25	0.11	-30	
GOK 4	/	/	-80	GOK 4	0.07	0.05	-40	
GOK 5	0.07	0.04	-100	GOK 5	0.06	0.01	-50	
GOK 6	0.06	0.03	-120	GOK 6	0.09	0.01	-60	
GOK 7	0.06	0.04	-140	GOK 7	0.22	0.13	-70	
GOK 8	0.06	0.05	-160	GOK 8	0.12	0.05	-80	
GOK 9	0.04	0.04	-180	GOK 9	0.10	0.02	-90	
GOK 10	0.03	0.03	-200	GOK 10	0.09	0.02	-100	
GOK 11	0.05	0.05	-220	GOK 11	0.07	0.02	-110	
GOK 12	0.04	0.06	-240	GOK 12	0.05	0.01	-120	
GOK 13	0.04	0.07	-260	GOK 13	0.07	0.04	-130	
GOK 14	0.04	0.06	-280	GOK 14	0.06	0.03	-140	
GOK 15	0.03	0.04	-300	GOK 15	0.06	0.05	-150	
GOK 16	0.05	0.07	-320	GOK 16	0.05	0.04	-160	
GOK 17	0.02	0.05	-340	GOK 17	0.05	0.08	-170	
GOK 18	0.03	0.05	-360	GOK 18	0.05	0.04	-180	
GOK 19	0.04	0.06	-380	GOK 19	0.04	0.02	-190	
				GOK 20	0.04	0.02	-200	
				GOK 21	0.05	0.02	-210	
				GOK 22	0.04	0.04	-220	
				GOK 23	0.04	0.03	-230	
				GOK 24	0.04	0.02	-240	
				GOK 25	0.03	0.02	-250	
				GOK 26	0.07	0.02	-260	
				GOK 27	0.03	0.02	-270	
				GOK 28	0.03	0.02	-280	
				GOK 29	0.04	0.02	-290	
				GOK 30	0.03	0.02	-300	
				GOK 31	0.03	0.02	-310	
				GOK 32	0.03	0.02	-320	
				GOK 33	0.03	0.03	-330	
			GOK 34	0.03	0.03	-340		
				GOK 35	0.03	0.03	-350	
				GOK 36	0.03	0.03	-360	
			GOK 37	0.07	0.06	-370		
				GOK 38	0.05	0.07	-380	
				GOK 30 GOK 39	0.03	0.06	-390	

Table 45: Used 2020 GOK ammonium and calcium values

	2021 GOI	(20 cm			2021 FLK	20 cm	
Sample	NH_4^+	Ca ²⁺	Depth	Sample	NH4 ⁺	Ca ²⁺	Depth
name	(µg/ml)	(µg/ml)	(cm)	name	(µg/ml)	(µg/ml)	(cm)
GOK 1	0.65	0.21	-20	FLK 2	0.46	0.06	-40
GOK 2	0.37	0.16	-40	FLK 3	0.26	0.13	-60
GOK 3	0.07	0.08	-60	FLK 4	0.46	0.11	-80
GOK 4	0.27	0.10	-80	FLK 5	0.17	0.07	-100
GOK 5	0.53	0.15	-100	FLK 6	0.14	0.05	-120
GOK 6	0.20	0.09	-120	FLK 7	0.20	0.06	-140
GOK 7	0.20	0.09	-140	FLK 8	0.46	0.18	-160
GOK 8	0.14	0.04	-160	FLK 9	0.04	0.13	-180
GOK 9	0.34	0.11	-180	FLK 10	0.01	0.12	-200
GOK 10	0.06	0.10	-200	FLK 11	<lod< td=""><td>0.07</td><td>-220</td></lod<>	0.07	-220
GOK 11	0.04	0.13	-220	FLK 12	<lod< td=""><td>0.14</td><td>-240</td></lod<>	0.14	-240
GOK 12	0.02	0.06	-240	FLK 13	0.02	0.08	-260
GOK 13	0.03	0.05	-260	FLK 14	0.01	0.07	-280
GOK 14	0.02	0.07	-280	FLK 15	0.01	0.11	-300
GOK 15	0.02	0.07	-300	FLK 16	0.03	0.16	-320
GOK 16	0.02	0.04	-320	FLK 17	<lod< td=""><td>0.42</td><td>-340</td></lod<>	0.42	-340
GOK 17	0.04	0.05	-340	FLK 18	<lod< td=""><td>0.45</td><td>-360</td></lod<>	0.45	-360
GOK 18	0.02	0.04	-360	FLK 19	0.05	0.41	-380
GOK 19	0.09	0.07	-380	FLK 20	0.06	0.44	-400
GOK 20	0.06	0.05	-400	FLK 21	0.05	0.40	-420
GOK 21	0.04	0.05	-420	FLK 22	0.08	0.23	-440
GOK 22	0.08	0.04	-440				
GOK 23	0.10	0.03	-460				
GOK 24	0.06	0.04	-480				
GOK 25	0.09	0.04	-500				

2	021 GOK 10 cm	ו		2021 FLK 10 cm			
Sample	NH4 ⁺	Ca ²⁺	Depth	Sample	NH4 ⁺	Ca ²⁺	
name	(µg/ml)	(µg/ml)	(cm)	name	(µg/ml)	(µg/ml)	
GOK 1	0.54	0.32	-10	FLK 1	0.65	0.14	
GOK 2	0.88	0.20	-20	FLK 2	0.62	0.08	
GOK 3	0.49	0.15	-30	FLK 3	1.08	0.15	
GOK 4	0.22	0.10	-40	FLK 4	0.23	0.08	
GOK 5	0.06	0.08	-50	FLK 5	0.24	0.11	
GOK 6	0.04	0.05	-60	FLK 6	0.22	0.15	
GOK 7	0.25	0.11	-70	FLK 7	0.69	0.23	
GOK 8	0.28	0.19	-80	FLK 8	0.49	0.19	
GOK 9	0.51	0.17	-90	FLK 9	0.13	0.08	
GOK 10	0.62	0.24	-100	FLK 10	0.22	0.11	
GOK 11	0.28	0.10	-110	FLK 11	0.15	0.06	
GOK 12	0.10	0.06	-120	FLK 12	0.11	0.09	
GOK 13	0.17	0.08	-130	FLK 13	0.07	0.07	
GOK 14	0.21	0.10	-140	FLK 14	0.20	0.13	
GOK 15	0.10	0.06	-150	FLK 15	0.59	0.63	
GOK 16	0.13	0.07	-160	FLK 16	0.26	0.25	
GOK 17	0.40	0.08	-170	FLK 17	0.05	0.40	
GOK 18	0.25	0.12	-180	FLK 18	0.04	0.51	
GOK 19	0.05	0.08	-190	FLK 19	0.01	1.02	
GOK 20	0.06	0.14	-200	FLK 20	0.02	0.53	
GOK 21	0.05	0.33	-210	FLK 21	0.02	0.19	
GOK 22	0.01	0.02	-220	FLK 22	0.01	0.32	
GOK 23	0.02	0.02	-230	FLK 23	0.01	0.67	
GOK 24	0.01	0.01	-240	FLK 24	0.01	0.32	
GOK 25	0.01	0.02	-250	FLK 25	0.01	1.31	
GOK 26	0.01	0.06	-260	FLK 26	0.01	0.76	
GOK 27	0.01	0.06	-270	FLK 27	0.01	1.05	
GOK 28	0.01	0.06	-280	FLK 28	0.01	1.40	
GOK 29	0.02	0.06	-290	FLK 29	0.01	1.21	
GOK 30	0.02	0.06	-300	FLK 30	0.02	1.19	
GOK 31	0.03	0.03	-310	FLK 31	0.03	1.96	
GOK 32	0.01	0.02	-320	FLK 32	0.02	1.016	
GOK 33	0.01	0.02	-330	FLK 33	0.03	1.029	
GOK 34	0.01	0.02	-340	FLK 34	0.01	0.689	
GOK 35	0.02	0.04	-350	FLK 35	0.01	1.055	
GOK 36	0.01	0.02	-360	FLK 36	0.02	0.912	
GOK 37	0.09	0.08	-370	FLK 37	0.04	1.547	
GOK 38	0.05	0.08	-380	FLK 38	0.03	1.199	
GOK 39	0.04	0.07	-390	FLK 39	0.05	1.576	
GOK 40	0.02	0.03	-400	FLK 40	0.10	0.733	
GOK 41	0.02	0.05	-410	FLK 41	0.05	0.744	
GOK 42	0.07	0.07	-420	FLK 42	0.06	0.293	

Table 47 cont	inued
---------------	-------

2	2021 GOK 10 cm			2	2021 FLK 10 cm	1
Sample name	NH₄⁺ (μg/ml)	Ca ²⁺ (µg/ml)	Depth (cm)	Sample name	NH₄⁺ (μg/ml)	Ca ²⁺ (µg/ml)
GOK 43	0.05	0.06	-430	FLK 43	0.04	0.54
GOK 44	0.05	0.03	-440	FLK 44	0.08	1.45
GOK 45	0.05	0.04	-450			
GOK 46	0.04	0.03	-460			
GOK 47	0.04	0.04	-470			
GOK 48	0.03	0.04	-480			
GOK 49	0.06	0.05	-490			
GOK 50	0.11	0.10	-500			

Table 48: Used 2022 20 cm ammonium and calcium values

	2022 20) cm	
Sample name	NH₄⁺ (µg/ml)	Ca ²⁺ (µg/ml)	Depth (cm)
GOK 1	0.19	0.12	-20
GOK 2	0.46	0.13	-40
GOK 3	0.59	0.15	-60
GOK 4	0.17	0.04	-80
GOK 5	0.21	0.06	-100
GOK 6	0.28	0.20	-120
GOK 7	0.04	0.07	-140
GOK 8	0.02	0.06	-160
GOK 9	0.02	0.04	-180
GOK 10	0.01	0.05	-200
GOK 11	0.02	0.04	-220
GOK 12	0.03	0.04	-240
GOK 13	0.01	0.08	-260
GOK 14	0.03	0.12	-280
GOK 15	0.05	0.11	-300
GOK 16	0.04	0.04	-320
GOK 17	0.09	0.08	-340
GOK 18	0.05	0.05	-360
Sample name	NH₄⁺ (µg/ml)	Ca ²⁺ (µg/ml)	Depth (cm)
FLK 1	0.17	0.06	-20
FLK 2	0.43	0.18	-40
FLK 3	0.33	0.17	-60
FLK 4	0.34	0.12	-80
FLK 5	0.27	0.38	-100
FLK 6	0.05	0.39	-120
FLK 7	0.02	0.27	-140
FLK 8	0.06	0.69	-160
FLK 9	0.04	0.11	-180
FLK 10	0.09	1.52	-200

Table 48	continued
----------	-----------

2022 20 cm							
Sample name	Depth (cm)						
FLK 11	0.02	0.09	-220				
FLK 12	0.10	1.11	-240				
FLK 13	0.08	0.34	-260				
FLK 14	0.02	0.06	-280				
FLK 15	0.05	0.07	-300				

	2022 GOK 10 c	m			2022 FLK 10 cr	n
Sample	NH₄⁺ (μg/ml)	Ca²+ (µg/ml)	Depth (cm)	Sample	NH₄⁺ (µg/ml)	Ca²⁺ (µg/ml)
name	0.01			name	0.10	
GOK 1	0.21	0.04	-10	FLK 1	0.16	0.03
GOK 2	0.17	0.03	-20	FLK 2	0.18	0.02
GOK 3	0.40	0.07	-30	FLK 3	0.27	0.10
GOK 4	0.60	0.10	-40	FLK 4	0.62	0.13
GOK 5	0.77	0.13	-50	FLK 5	0.47	0.15
GOK 6	0.28	0.09	-60	FLK 6	0.13	0.02
GOK 7	0.07	0.02	-70	FLK 7	0.52	0.14
GOK 8	0.31	0.03	-80	FLK 8	0.24	0.08
GOK 9	0.20	0.04	-90	FLK 9	0.42	0.59
GOK 10	0.12	0.02	-100	FLK 10	0.23	0.42
GOK 11	0.27	0.41	-110	FLK 11	0.05	0.08
GOK 12	0.22	0.11	-120	FLK 12	0.06	0.06
GOK 13	0.05	0.04	-130	FLK 13	<lod< td=""><td>0.03</td></lod<>	0.03
GOK 14	<lod< td=""><td>0.03</td><td>-140</td><td>FLK 14</td><td><lod< td=""><td>0.03</td></lod<></td></lod<>	0.03	-140	FLK 14	<lod< td=""><td>0.03</td></lod<>	0.03
GOK 15	<lod< td=""><td>0.06</td><td>-150</td><td>FLK 15</td><td><lod< td=""><td>0.02</td></lod<></td></lod<>	0.06	-150	FLK 15	<lod< td=""><td>0.02</td></lod<>	0.02
GOK 16	<lod< td=""><td>0.02</td><td>-160</td><td>FLK 16</td><td><lod< td=""><td>0.01</td></lod<></td></lod<>	0.02	-160	FLK 16	<lod< td=""><td>0.01</td></lod<>	0.01
GOK 17	<lod< td=""><td>0.01</td><td>-170</td><td>FLK 17</td><td><lod< td=""><td>0.03</td></lod<></td></lod<>	0.01	-170	FLK 17	<lod< td=""><td>0.03</td></lod<>	0.03
GOK 18	0.10	0.25	-180	FLK 18	<lod< td=""><td>0.02</td></lod<>	0.02
GOK 19	<lod< td=""><td>0.02</td><td>-190</td><td>FLK 19</td><td>0.02</td><td>0.02</td></lod<>	0.02	-190	FLK 19	0.02	0.02
GOK 20	<lod< td=""><td>0.01</td><td>-200</td><td>FLK 20</td><td>0.02</td><td>0.02</td></lod<>	0.01	-200	FLK 20	0.02	0.02
GOK 21	<lod< td=""><td>0.02</td><td>-210</td><td>FLK 21</td><td><lod< td=""><td>0.01</td></lod<></td></lod<>	0.02	-210	FLK 21	<lod< td=""><td>0.01</td></lod<>	0.01
GOK 22	<lod< td=""><td>0.01</td><td>-220</td><td>FLK 22</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.01	-220	FLK 22	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
GOK 23	0.03	0.02	-230	FLK 23	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
GOK 24	<lod< td=""><td>0.02</td><td>-240</td><td>FLK 24</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.02	-240	FLK 24	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
GOK 25	<lod< td=""><td>0.04</td><td>-250</td><td>FLK 25</td><td><lod< td=""><td>0.04</td></lod<></td></lod<>	0.04	-250	FLK 25	<lod< td=""><td>0.04</td></lod<>	0.04
GOK 26	<lod< td=""><td>0.06</td><td>-260</td><td>FLK 26</td><td><lod< td=""><td>0.02</td></lod<></td></lod<>	0.06	-260	FLK 26	<lod< td=""><td>0.02</td></lod<>	0.02
GOK 27	0.02	0.08	-270	FLK 27	0.24	1.57
GOK 28	0.03	0.12	-280	FLK 28	<lod< td=""><td>0.07</td></lod<>	0.07
GOK 29	0.04	0.06	-290	FLK 29	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
GOK 30	0.03	0.03	-300	FLK 30	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
GOK 31	<lod< td=""><td>0.04</td><td>-310</td><td>FLK 31</td><td>0.03</td><td>0.12</td></lod<>	0.04	-310	FLK 31	0.03	0.12
GOK 32	0.04	0.03	-320	FLK 32	0.01	0.16

Table 49: Used 2022 10 cm ammonium and calcium values

Table 49 continued

2022 GOK 10 cm					2022 FLK 10 cm	
Sample name	NH₄⁺ (µg/ml)	Ca ²⁺ (µg/ml)	Depth (cm)	Sample name	NH₄⁺ (µg/ml)	Ca ²⁺ (µg/ml)
GOK 33	0.06	0.03	-330			
GOK 34	0.05	0.05	-340			
GOK 35	0.02	0.03	-350			
GOK 36	0.01	0.02	-360			

5.3 Used pH and Ca2+ values

Table 50: Used 2017 pH and Calcium values

2	017 FLK		2	017 GOK
рН	Ca ²⁺ (µev/L)	Depth (cm)	рН	Ca ²⁺ (µev/L)
5.25	6.59	-10	5.26	6.29
5.27	5.74	-20	5.15	5.19
5.12	5.39	-30	5.19	4.44
5.15	5.34	-40	5.33	7.78
5.42	7.49	-50	5.60	7.68
5.63	4.04	-60	5.22	8.03
5.43	3.44	-70	5.09	4.44
5.44	4.74	-80	5.48	4.34
5.75	4.19	-90	5.44	4.44
5.17	7.19	-100	5.29	4.49
5.38	4.99	-110	5.47	9.33
5.51	4.09	-120	5.48	8.83
5.63	5.04	-130	5.60	8.38
5.50	4.09	-140	5.35	6.39
5.78	9.08	-150	5.28	5.64
5.51	6.64	-160	5.01	6.09
5.40	6.19	-170	5.09	7.44
5.30	5.74	-180	5.36	5.14
5.28	3.94	-190	5.27	6.19
5.07	4.84	-200	5.10	3.99
5.37	8.93	-210	5.24	3.69
5.48	4.34	-220	5.10	4.69
5.33	5.29	-230	5.18	3.09
5.30	5.29	-240	5.27	4.64

2	017 FLK		2	017 GOK
рН	Ca ²⁺ (µev/L)	Depth (cm)	рН	Ca ²⁺ (μev/L)
5.35	3.89	-250	5.29	8.73
5.4	5.29	-260	5.26	3.74
5.23	3.79	-270	5.38	4.64
5.39	4.44	-280	5.84	14.6
5.3	4.54	-290	5.14	4.44
5.47	6.24	-300	5.36	14.6
5.56	9.58	-310	5.07	7.04
5.38	5.74	-320		
5.62	6.64	-330		
5.53	8.08	-340		
5.58	8.48	-350		
5.76	3.64	-360		
5.33	4.64	-370		
-	-	-380		
5.4	4.44	-390		

2018 GOK						
рН	Са ²⁺ (µev/L)	depth (cm)	рН	Ca ²⁺ (µev/L)	depth (cm)	
5.76	7.77	-10	5.36	3.45	-310	
5.77	10.0	-20	5.19	4.15	-320	
5.61	5.15	-30	5.20	4.57	-330	
5.61	4.73	-40	5.20	3.49	-340	
5.55	3.43	-50	5.38	3.48	-350	
5.64	4.66	-60	5.54	4.41	-360	
5.73	5.49	-70	5.55	3.91	-370	
5.48	5.38	-80	5.76	9.36	-380	
5.32	5.94	-90	5.62	5.21	-390	
5.39	2.71	-100	5.56	5.49	-400	
5.44	3.45	-110	5.57	3.97	-410	
5.48	4.84	-120	5.58	2.99	-420	
4.92	3.28	-130	5.62	3.91	-430	
5.21	3.14	-140				
5.33	1.25	-150				
5.16	4.17	-160				
5.29	2.81	-170				
5.27	3.08	-180				
5.35	2.61	-190				
5.40	1.25	-200				
5.43	2.57	-210				
5.43	5.16	-220				
5.62	8.72	-230				
5.56	5.31	-240				
5.46	4.45	-250				
4.81	3.53	-260				
5.34	3.02	-270				
5.47	1.25	-280				
5.23	3.57	-290				
5.15	3.77	-300				

Table 51: Used 2018 pH and Calcium values

2019 GOK						
рН	Ca ²⁺ (µev/L)	depth (cm)	рН	Ca ²⁺ (µev/L)	depth (cm)	
5.40	18.3	-10	6.68	70.4	-300	
5.22	1.27	-20	6.28	24.8	-310	
5.15	1.05	-30	5.76	0.82	-320	
5.41	12.0	-40				
5.40	2.39	-50				
5.62	3.25	-60				
5.50	3.16	-70				
5.56	1.24	-80				
5.31	1.85	-90				
5.15	8.09	-100				
5.33	12.1	-110				
5.36	6.77	-120				
5.61	16.2	-130				
5.66	5.23	-140				
5.54	11.8	-150				
5.71	14.2	-160				
5.61	2.65	-170				
5.55	1.83	-180				
5.47	1.55	-190				
5.45	2.55	-200				
5.48	3.20	-210				
5.44	4.34	-220				
5.37	3.29	-230				
5.56	2.58	-240				
5.58	1.79	-250	<u> </u>			
5.55	2.32	-260				
5.63	0.36	-270	<u> </u>			
6.16	21.3	-280				
6.76	105	-290	<u> </u>			

Table 52: Used 2019 pH and calcium values

	2020 GOK						
рН	Ca ²⁺ (µev/L)	depth (cm)	рН	Ca ²⁺ (µev/L)	depth (cm)		
5.44	4.68	-10	5.48	1.07	-290		
5.80	13.5	-20	5.50	1.11	-300		
5.82	5.48	-30	5.46	1.15	-310		
5.71	2.22	-40	5.52	1.16	-320		
5.62	0.65	-50	5.46	1.42	-330		
5.64	0.27	-60	5.47	1.40	-340		
5.70	6.34	-70	5.45	1.52	-350		
5.70	2.59	-80	5.44	1.41	-360		
5.65	1.15	-90	5.44	2.77	-370		
5.55	0.89	-100	5.34	3.39	-380		
5.53	0.74	-110	5.39	2.90	-390		
5.50	0.60	-120					
5.59	1.94	-130					
5.61	1.49	-140					
5.64	2.22	-150					
5.56	2.17	-160					
5.59	4.02	-170					
5.64	1.89	-180					
5.57	1.18	-190					
5.56	0.73	-200					
5.60	0.96	-210					
5.55	1.73	-220	<u> </u>				
5.59	1.43	-230					
5.58	0.81	-240					
5.55	0.73	-250	<u> </u>				
5.55	1.01	-260	<u> </u>				
5.54	1.05	-270					
5.49	0.99	-280	<u> </u>				

Table 53: Used 2020 pH and calcium values

2021 GOK			2	021 FLK
рН	Ca ²⁺ (µev/L)	Depth (cm)	рН	Ca ²⁺ (µev/L)
5.79	15.9	-10	5.50	7.13
5.60	9.98	-20	5.51	3.89
5.54	7.66	-30	5.42	7.51
5.35	5.04	-40	5.43	4.07
5.34	3.90	-50	5.58	5.42
5.38	2.70	-60	5.75	7.44
5.54	5.68	-70	5.83	11.3
5.73	9.36	-80	5.73	9.27
5.55	8.62	-90	5.47	4.19
5.64	11.9	-100	5.34	5.26
5.51	5.11	-110	5.34	3.17
5.26	3.12	-120	5.57	4.54
5.26	3.88	-130	5.55	3.51
5.28	4.80	-140	5.67	6.53
5.42	3.11	-150	6.17	31.2
5.43	3.43	-160	5.86	12.5
5.52	4.04	-170	6.05	19.8
5.57	5.77	-180	6.15	25.5
5.55	3.90	-190	6.35	50.7
5.74	6.80	-200	6.01	26.6
5.92	16.6	-210	5.79	9.44
5.38	0.84	-220	5.87	15.8
5.24	0.85	-230	6.19	33.4
5.28	0.52	-240	5.90	16.0
5.43	0.96	-250	6.51	65.3
5.36	2.88	-260	6.29	37.8
5.36	2.89	-270	6.12	52.5
5.41	2.88	-280	6.95	70.0
5.41	2.81	-290	6.37	60.5
5.41	3.09	-300	6.57	59.4

Table 54: Used 2021 pH and calcium values

202	2021 GOK		2	021 FLK
рН	Ca ²⁺ (µev/L)	Depth (cm)	рН	Ca ²⁺ (µev/L)
5.59	1.39	-310	6.67	97.6
5.53	1.10	-320	6.38	50.7
5.38	0.77	-330	6.47	51.4
5.46	1.00	-340	6.18	34.4
5.56	1.80	-350	6.29	52.6
5.49	0.77	-360	6.08	45.5
5.47	3.86	-370	6.37	77.2
5.41	4.17	-380	6.42	59.9
5.48	3.40	-390	6.50	78.7
5.54	1.39	-400	6.16	36.6
5.5	2.34	-410	5.95	37.1
5.25	3.52	-420	5.85	14.6
5.29	2.98	-430	6.06	27.0
5.45	1.39	-440	6.36	72.2
5.47	1.92	-450		
5.56	1.35	-460		
5.58	2.21	-470		
5.40	2.03	-480		
5.40	2.63	-490		
5.41	4.76	-500		

Table 54 continued

2022 GOK			2	022 FLK
рН	Ca ²⁺ (µev/L)	Depth (cm)	рН	Ca ²⁺ (µev/L)
5.44	1.88	-10	5.49	1.50
5.55	1.25	-20	5.54	0.72
5.66	3.42	-30	5.86	4.90
5.70	5.15	-40	5.75	6.59
5.67	6.42	-50	5.71	7.54
5.62	4.66	-60	5.50	0.95
5.55	1.05	-70	5.77	6.74
5.59	1.56	-80	5.60	3.95
5.49	2.15	-90	6.24	29.1
5.27	1.19	-100	6.26	20.7
6.10	20.4	-110	5.56	4.11
5.68	5.41	-120	5.61	2.82
5.61	2.16	-130	5.44	1.36
5.53	1.53	-140	5.63	1.65
5.53	2.79	-150	5.47	0.80
5.41	1.04	-160	5.32	0.63
5.44	0.67	-170	5.43	1.31
5.73	12.5	-180	5.39	1.04
5.43	0.76	-190	5.11	1.17
5.50	0.51	-200	5.03	0.87
5.55	0.98	-210	5.40	0.69
5.72	0.51	-220	5.52	0.48
5.35	0.82	-230	5.58	0.35
5.48	0.82	-240	5.49	0.37
5.58	2.18	-250	5.57	1.76
5.62	2.78	-260	5.41	1.05
5.47	3.97	-270	6.45	78.1
5.48	6.18	-280	5.52	3.40
5.30	2.87	-290	5.57	0.38
5.39	1.33	-300	5.49	0.47

Table 55: Used 2022 pH and calcium values

2022 GOK			2	022 FLK
рН	Ca ²⁺ (µev/L)	Depth (cm)	рН	Ca ²⁺ (µev/L)
5.44	1.75	-310	5.86	5.71
5.46	1.60	-320	5.87	8.15
5.55	1.51	-330		
5.59	2.42	-340		
5.46	1.25	-350		
5.54	0.77	-360		

Table 55 continued

5.4 Used mineral dust values

Table 56: Mineral	dust weight an	d sample weight

Sample name	MD (µg/g)	Sample weight (g)	MD (µg)
(2021) GOK 5	1.91	164	313
(2021) GOK 11	2.79	196	546
(2021) GOK23+24	1.33	447	595
(2021) GOK25	22.2	204	4523
(2021) FLK22	5.09	211	1075
(2022) GOK6	5.24	175	917
(2022) GOK18	13.8	214	2950
(2022) FLK1+2	1.78	224	399
(2022) FLK5	8.41	185	1553
(2022) FLK11	3.68	226	832
(2022) FLK13	1.83	219	401
(2022) FLK16	19.8	177	3499
(2018) GOK1	8.54	187	1600
(2018) GOK11	0.93	222	207
(2018) GOK12	1.85	221	409
(2018) GOK19	1.78	267	474
(2018) GOK20	2.04	230	469
(2018) GOK22	25.9	132	3423
(2017) GOK 15	3.48	176	611
(2017) FLK 18	2.19	190	415
(2017) FLK 20	62.8	78.2	4906

5.5 Sample and filter weight

Table 57: Sample and filter weight

Sample name	Sample weight (g)	Filter weight (mg)	Sampled filter weight (mg)	Weight difference (mg)
(2017) GOK 1	84.2	39.0	38.9	-0.07
(2017) GOK 2	127	39.7	39.6	-0.07
(2017) GOK 3	147	38.7	38.6	-0.12
(2017) GOK 4	143	39.1	38.9	-0.20
(2017) GOK 5	135	39.6	39.4	-0.14
(2017) GOK 6	185	39.0	39.7	0.65
(2017) GOK 7	130	38.7	38.8	0.11
(2017) GOK 8	158	39.6	39.6	0.00
(2017) GOK 9	183	39.4	39.4	0.02
(2017) GOK 10	202	38.6	38.4	-0.10
(2017) GOK 11	219	39.3	39.1	-0.21
(2017) GOK 12	215	40.4	40.0	-0.37
(2017) GOK 13	183	38.7	38.4	-0.26
(2017) GOK 14	196	38.6	38.4	-0.17
(2017) GOK 15	176	39.2	39.3	0.23
(2017) GOK 16	155	39.9	40.0	0.14
(2017) FLK 1	82.8	39.3	39.2	-0.05
(2017) FLK 2	99.5	39.4	39.5	0.03
(2017) FLK 3	115	39.4	39.3	-0.05
(2017) FLK 4	116	39.6	39.6	-0.02
(2017) FLK 5	149	37.9	37.9	-0.04
(2017) FLK 6	148	39.7	39.7	-0.09
(2017) FLK 7	135	39.2	39.0	-0.08
(2017) FLK 8	182	39.1	39.3	0.21
(2017) FLK 9	218	39.8	39.7	-0.08
(2017) FLK 10	183	39.2	39.1	-0.03
(2017) FLK 11	212	39.3	39.5	0.17
(2017) FLK 12	250	39.7	39.9	0.25
(2017) FLK 13	243	39.4	39.8	0.33
(2017) FLK 14	238	39.7	39.8	0.10
(2017) FLK 15	251	39.2	39.2	-0.01
(2017) FLK 16	206	39.7	39.6	-0.12
(2017) FLK 17	185	39.0	39.0	0.01
(2017) FLK 13 (2017) FLK 14 (2017) FLK 15 (2017) FLK 16 (2017) FLK 17 (2017) FLK 18 (2017) FLK 19	190	39.0	39.0	0.08
(2017) FLK 19	206	39.9	39.7	-0.20
(2017) FLK 20	78.2	39.6	43.1	3.49
(2018) GOK1	187	38.6	39.8	1.28
(2018) GOK2	184	38.9	39.0	0.08
(2018) GOK3	201	39.7	39.5	-0.18
(2018) GOK4	216	39.7	39.3	-0.38
(2018) GOK5	226	38.5	38.3	-0.24
(2018) GOK3 (2018) GOK4 (2018) GOK5 (2018) GOK6	216	39.4	39.0	-0.40

Sample name	Sample weight (g)	Filter weight (mg)	Sampled filter weight (mg)	Weight difference (mg)
(2018) GOK7	192	39.5	39.4	-0.11
(2018) GOK8	198	39.4	39.4	-0.03
(2018) GOK9	203	39.7	39.6	-0.12
(2018) GOK10	212	39.6	39.5	-0.15
(2018) GOK11	222	39.3	39.5	0.24
(2018) GOK12	221	38.6	38.6	-0.02
(2018) GOK13	221	39.7	39.7	-0.02
(2018) GOK14	231	39.6	39.5	-0.09
(2018) GOK15	221	39.3	39.1	-0.15
(2018) GOK16	232	39.8	39.6	-0.27
(2018) GOK17	240	39.1	39.0	-0.17
(2018) GOK18	232	38.6	38.5	-0.10
(2018) GOK19	267	38.6	38.8	0.18
(2018) GOK20	230	33.9	34.4	0.50
(2018) GOK21	265	36.0	35.9	-0.01
(2018) GOK22	132	35.8	39.4	3.56
(2019) GOK1	458	36.1	37.4	1.27
(2019) GOK2	419	35.0	36.2	0.22
(2019) GOK3	574	36.1	36.7	0.58
(2019) GOK4	528	36.1	36.0	-0.10
(2019) GOK5	621	36.0	36.7	0.65
(2019) GOK6	416	36.1	37.0	0.91
(2019) GOK7	410	35.2	37.5	2.32
(2019) GOK8	412	36.1	37.1	1.01
(2019) GOK9	440	35.5	36.6	1.06
(2019) GOK10	450	35.5	37.1	1.61
(2019) GOK11	468	36.0	36.5	0.49
(2018) GOK21 (2018) GOK22 (2019) GOK1 (2019) GOK2 (2019) GOK3 (2019) GOK4 (2019) GOK4 (2019) GOK6 (2019) GOK7 (2019) GOK8 (2019) GOK8 (2019) GOK10 (2019) GOK11 (2019) GOK12	430	34.7	36.1	1.38
(2019) GOK13	424	35.5	36.2	0.70
(2019) GOK14	459	34.7	37.1	2.44
(2019) GOK14 (2019) GOK15 (2019) GOK16 (2020) GOK1 (2020) GOK2 (2020) GOK3 (2020) GOK4	448	34.6	39.3	4.67
(2019) GOK16	376	35.8	36.6	0.79
(2020) GOK1	86.5	35.1	35.4	0.28
(2020) GOK2	114	34.5	34.5	0.04
(2020) GOK3	113	35.7	35.8	0.09
(2020) GOK4	216	35.5	35.5	0.00
(2020) GOK5	218	34.3	34.3	0.02
(2020) GOK6	249	34.2	35.7	1.46
(2020) GOK7	233	35.4	35.9	0.50
(2020) GOK8	246	35.6	36.1	0.57
(2020) GOK9	239	35.1	35.2	0.11
(2020) GOK10	247	36.2	36.2	0.03
(2020) GOK11	251	35.5	35.4	-0.12
(2020) GOK8 (2020) GOK9 (2020) GOK10 (2020) GOK11 (2020) GOK12	252	35.7	35.6	-0.10

Table 57 continued

Sample name	Sample weight (g)	Filter weight (mg)	Sampled filter weight (mg)	Weight difference (mg)
(2020) GOK13	253	36.0	35.9	-0.18
(2020) GOK14	259	35.7	35.5	-0.21
(2020) GOK15	257	35.9	35.9	-0.05
(2020) GOK17+18	536	36.2	36.3	0.05
(2020) GOK19+20	378	35.7	35.7	-0.05
(2021) GOK 1	109	39.3	39.7	0.44
(2021) GOK 2	144	39.1	39.0	-0.06
(2021) GOK 3	129	39.4	39.6	0.20
(2021) GOK 4	158	/	/	/
(2021) GOK 5	164	39.2	39.5	0.28
(2021) GOK 6	175	39.0	39.2	0.20
(2021) GOK 7	197	/	/	/
(2021) GOK 8	198	39.2	38.4	-0.79
(2021) GOK 9	186	39.6	39.7	0.11
(2021) GOK 10	203	39.7	39.7	-0.01
(2021) GOK 11	196	39.5	39.8	0.31
(2021) GOK 12	223	40.7	40.4	-0.25
(2021) GOK 13	227	/	/	/
(2021) GOK 14	217	39.1	39.6	0.50
(2021) GOK 15	217	38.9	39.1	0.16
(2021) GOK 16	229	39.3	39.4	0.04
(2021) GOK 17	230	38.7	38.9	0.16
	228	40.0	39.2	-0.77
(2021) GOK 18 (2021) GOK 19	222	39.1	39.3	0.16
(2021) GOK 20	210	38.7	38.7	0.03
(2021) GOK 21	200	38.6	38.7	0.03
(2021) GOK 22	214	39.3	39.1	-0.21
(2021) GOK 23	209	38.7	39.1	0.37
(2021) GOK 24	237	/	/	/
	204	39.5	52.3	12.8
(2021) FLK 2	107	39.8	39.7	-0.09
(2021) FLK 3	147	39.1	39.3	0.14
(2021) FLK 4	152	39.0	39.2	0.11
(2021) FLK 5	172	39.1	39.2	0.13
(2021) GOK 25 (2021) FLK 2 (2021) FLK 3 (2021) FLK 4 (2021) FLK 5 (2021) FLK 6 (2021) FLK 7	181	39.0	38.9	-0.07
(2021) FLK 7	181	39.7	39.4	-0.25
(2021) FLK 8	187	40.3	39.8	-0.49
(2021) FLK 9	185	39.3	39.4	0.11
(2021) FLK 10	209	40.2	39.9	-0.24
(2021) FLK 11	204	38.6	38.7	0.16
(2021) FLK 12	204	/	/	/
(2021) FLK 13	225	39.5	39.4	-0.09
(2021) FLK 14	220	39.6	39.6	-0.04
	230	38.6	38.9	0.23
(2021) FLK 15				

Table 57 continued

Sample name	Sample weight (g)	Filter weight (mg)	Sampled filter weight (mg)	Weight difference (mg)
(2021) FLK 16	235	39.2	39.2	0.04
(2021) FLK 17	231	38.7	39.2	0.54
(2021) FLK 18	240	39.1	40.0	0.86
(2021) FLK 19	212	38.7	39.5	0.88
(2021) FLK 20	202	39.7	40.2	0.50
(2021) FLK 21	303	39.0	40.1	1.16
(2021) FLK 22	211	39.4	40.7	1.35
(2022) GOK 1	70.7	37.9	37.9	-0.02
(2022) GOK 2	129	39.7	39.8	0.09
(2022) GOK 3	146	38.6	38.9	0.22
(2022) GOK 4	175	39.7	39.3	-0.34
(2022) GOK 5	178	39.1	39.2	0.10
(2022) GOK 6	175	39.0	39.4	0.47
(2022) GOK 7	183	39.78	39.8	-0.02
<u>;</u> (2022) GOK 8	203	38.6	38.7	0.06
(2022) GOK 8 (2022) GOK 9 (2022) GOK 10	177	38.8	39.5	0.68
🚆 (2022) GOK 10	203	/	/	/
(2022) GOK 11 (2022) GOK 12	201	39.5	39.5	-0.02
	220	/	/	/
(2022) GOK 13	217	39.0	39.2	0.22
	205	38.23	38.8	0.58
(2022) GOK 14 (2022) GOK 15 (2022) GOK 16 (2022) GOK 17 (2022) GOK 17 (2022) GOK 18	242	38.7	39.0	0.28
🕘 (2022) GOK 16	221	38.9	39.0	0.12
ଅଟ୍ଟ (2022) GOK 17	193	39.4	39.9	0.54
	214	38.9	42.0	3.08
ທີ່ (2022) FLK 1	74.5	34.4	34.9	0.46
ຍັ <u>ຼ</u> (2022) FLK 2	150	/	/	/
(2022) FLK 1 (2022) FLK 2 (2022) FLK 3 (2022) FLK 3 (2022) FLK 4	149	34.3	34.6	0.29
	188	35.2	35.5	0.28
<u>โอร</u> (2022) FLK 5	185	34.9	36.4	1.48
) (2022) FLK 6	189	33.6	33.9	0.25
e (2022) FLK 7	186	35.0	35.2	0.19
010 (2022) FLK 8	203	34.5	34.7	0.18
(2022) FLK 9	195	34.9	35.0	0.10
(2022) FLK 5 (2022) FLK 6 (2022) FLK 7 (2022) FLK 8 (2022) FLK 9 (2022) FLK 10 (2022) FLK 11	226	34.1	34.7	0.64
ਿ (2022) FLK 11	210	34.6	34.4	-0.17
(2022) FLK 12	219	35.5	35.8	0.33
(2022) FLK 13	216	35.7	35.7	-0.02
(2022) FLK 14	220	34.7	34.8	0.11
g (2022) FLK 15	177	35.8	39.2	3.33

Table 57 continued

6. References

[1] Francois Tuzet, et al., A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow, The Cryosphere, 2017, 11, 2633–2653

[2] Francois Tuzet et al., *Quantification of the radiative impact of light-absorbing particles during two contrasted snow seasons at Col du Lautaret (2058 m a.s.l., French Alps),* The Cryosphere, 2020, 14, 4553–4579

[3] Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M., and Painter, T. H.: *Radiative forcing by light-absorbing particles in snow*, Nature Climate Change, 8, 964–971

[4] Chaman Gul, et al., *Concentrations and source regions of light-absorbing particles in snow/ice in northern Pakistan and their impact on snow albedo*, Atmos. Chem. Phys., 2018, 18, 4981–5000

[5] Heinz H., Kunze W, Umweltanalytik mit Spektrometrie und Chromatographie, 3. Auflage, Wiley-VCH, 2004, 249

[6] Heinz H., Kunze W, *Umweltanalytik mit Spektrometrie und Chromatographie*, 3. Auflage, Wiley-VCH, 2004, 196 – 201

[7] Kandler K. et al., Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy, Atmospheric Environment, 41(37), 8058-8074

[8] Greilinger M. et al., Contribution of Saharan Dust to Ion Deposition Loads of High Alpine Snow Packs in Austria (1987–2017), Front. Earth Sci., 2018, 6

[9] Kau D. et al., *Thermal-optical analysis of snow samples – challenges and perspectives introduced via the occurrence of mineral dust,* Diploma thesis, TU Wien, 2021

[10] Wang W. et al., *Characterizing Surface Albedo of Shallow Fresh Snow and Its Importance for Snow Ablation on the Interior of the Tibetan Plateau,* Journal of Hydrometeorology Vol. 21, 2020, 815–827

[11] Ales Hall, The Role of Surface Albedo Feedback in Climate, journal of Climate, Vol. 17, 2004, 1550–1568

[12] Chaoliu Li et al., *Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition,* Atmos. Chem. Phys., 17, 2017, 11899–11912

[13] M. E. Birch & R. A. Cary, Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust, Aerosol Science and Technology, 2007, 226 [14] F. Cavalli et al., *Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 2010, 79–89*

[15] Kirchsteiger B. et al., *Combination of Different Approaches to Infer Local or Regional Contributions to PM*_{2.5} *Burdens in Graz, Austria,* Applied Sciences, 2020, 4

[16] Zdanowicz C. et al., *Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007-2018, Atmospheric Chemistry and Physics*, 21, 2021, 3035-3057

[17] Kau D. et al., *Thermal-optical analysis of quartz fiber filters loaded with snow-samples determination of iron based on interferences caused by mineral dust*, Atmospheric Measurement Techniques, 15, 2022, 5207-5217

[18] Meinander O. et al., Intercomparison Experiment of Water-Insoluble Carbonaceous Particles in Snow in a High-Mountain Environment (1598 m a.s.l.), Geosciences, 2022, 12(5), 197

[19] S. Lim et al., *Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement*, Atmos. Meas. Tech., 2014, 7, 3307-3324

[20] Mário Cerqueira et al., *Particulate carbon in precipitation at European background sites*, Aerosol Science, 2010, 41, 51-61

[21] Jonas Svensson et al., *Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic,* Atmospheric Measurement Techniques, 2018, 11, 1403-1416

[22] Sarah J. Doherty et al., *Black carbon and other light-absorbing particles in snow of central North America,* Journal of Geophysical Research: Atmospheres, 2014, 119, 12807-12831

[23] Vukicevic A., *Thermo-optische Analyse von Schnee und Aerosolproben aus den Hohen Tauern* (Sonnblick Observatorium), Bachelor's thesis, TU Wien, 2022

[24] Greilinger M. et al., *Temporal changes of inorganic ion deposition in the seasonal snow cover for the Austrian Alps (1983-2014)*, Atmospheric Environment, 2016, 132, 141-152