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Abstract
In Quantum Key Distribution (QKD) two remote parties aim to establish an
information-theoretically secret key based on the laws of quantum mechanics. In
contrast to frequently used classical encryption schemes, QKD is forward-secure,
i.e., keys that are secure when they are generated cannot be reconstructed in the
future, and do not rely on assumptions about the computational power of an eaves-
dropper or the existence of efficient algorithms for solving complex mathematical
problems. Therefore, QKD allows secret communication even in the presence of
scalable quantum computers. To perform quantum key distribution it requires
a physical implementation, a protocol describing the steps both parties have to
conduct and a security proof - which means finding a lower bound on the secure
key rate, given a model of the practical implementation and some reasonable as-
sumptions. For a long time, one of these assumptions was that the communicating
parties can exchange infinitely long keys. This, of course, is an idealisation and
does not hold true in the real world.
In this work, we analyse the security of a general discretely modulated continuous-
variable quantum key distribution (DM CV-QKD) protocol in the finite-size regime.
We use Renner’s finite-size security proof framework [85] to establish composable
security against i.i.d. collective attacks. CV-QKD protocols rely on measuring
continuous quantities like the position and momentum of quantum states that live
in infinite-dimensional Hilbert spaces. Therefore, one of the major challenges for
finite-size security proofs for DM CV-QKD protocols is handling these infinite-
dimensional systems properly. We introduce and prove a new noise-robust energy
testing theorem that helps to bound the weight of the exchanged signals outside
a finite-dimensional cutoff space and apply the dimension reduction method [105]
to rigorously take the impact of this cutoff on the secure key rate into account.
Although this energy test is an integral part of our security argument, we highlight
that it is an interesting result on its own that might turn out to be useful in various
contexts of quantum computation and communication. After extending Renner’s
framework to infinite-dimensional side-information, we finally apply a numerical
security proof framework [19, 110] to calculate tight lower bounds on the secure
key rate for different theoretically interesting and practically relevant scenarios.
The present security proof’s flexible structure allows taking adaptations according
to the experimentalist’s and user’s demands into account. For example, in con-
trast to many existing proof techniques, our method can take postselection into



account and does not rely on a particular physical model (e.g., of the detector
or the channel), which makes it a useful tool for everyone working with practical
QKD systems. This work presents another important step forward, towards the
widespread deployment of practical (DM) CV-QKD systems, which will be essen-
tial for secure communication in the future.

Key words: Quantum Key Distribution, Quantum Cryptography, Quantum
Communication, Continuous-Variable QKD, Security Proof, Composability, Finite-
Size



Kurzfassung
Quantenschlüsselverteilung - kurz QKD für Quantum Key Distribution - ist ein
Verfahren bei dem zwei Parteien einen informationstheoretisch sicheren Schlüs-
sel, basierend lediglich auf den Gesetzen der Quantenmechanik, erzeugen. Der
große Vorteil gegenüber gängigen Verschlüsselungsverfahren ist, dass QKD vor-
wärts gerichtet sicher (engl. forward secure) ist. Das bedeutet Schlüssel, die zum
Zeitpunkt der Erzeugung sicher waren, können auch in der Zukunft nicht rekon-
struiert werden. Außerdem ist die Sicherheit eines durch QKD erzeugten Schlüssels
nicht abhängig von Annahmen über die Rechenleistung von Angreifern oder die
Existenz effektiver Algorithmen für die Lösung schwieriger mathematischer Prob-
leme und ermöglicht daher selbst in der Gegenwart skalierbarer Quantencomputer
geheime Kommuniaktion.
Neben einer physischen Umsetzung und einem QKD Protokoll ist ein sogenannter
Sicherheitsbeweis, die Ermittlung einer unteren Schranke an die garantiert sichere
Schlüsselrate im Rahmen eines realistischen Modells des gesamten Systems und
weiterer sinnvoller Annahmen, essenziell für die praktische Implementierung eines
QKD Systems. Für lange Zeit war eine dieser Annahmen, dass die beiden kom-
munizierenden Parteien unendlich viele Signale austauschen können. Selbstver-
ständlich ist dies eine theoretische Idealisierung, die in der Realität nie erreicht
werden kann.
Im Rahmen der vorliegenden Arbeit analysieren wir die Sicherheit eines allge-
meinen diskret modulierten Quantenverschlüsselungsprotokolls mit kontinuierlichen
Variablen (DM CV-QKD, engl. für Discretely Modulated Continuous-Variable
QKD) im Regime endlich langer Schlüssel, dem sogenanten finite-size regime. Wir
beweisen die Sicherheit gegen sogenannte i.i.d. collective attacks, d.h. unter der
Annahme eines identisch und gleichverteiltem Angriffs bei anschließender gemein-
samer Messung aller eingesetzten Hilfszustände durch den Angreifer, aufbauend
auf Renners finite-size Sicherheitsbeweis-Framework [85]. Der verwendete Sicher-
heitsbegriff ist modular (engl. composable), das bedeutet das Sicherheitsversprechen
des Protokolls bleibt aufrecht, auch wenn es als Subprotokoll eines beliebigen
größeren Protokolls eingesetzt wird, dessen andere Bestandteile ebenfalls mod-
ular sicher sind. CV-QKD Protokolle, wie ihr Name bereits impliziert, verlangen
die Messung von kontinuierlichen Größen wie Ort und Impuls von Quantenzustän-
den in unendlichdimensionalen Hilberträumen. Eine besondere Schwierigkeit bei
der Analyse von DM CV-QKD Protokollen stellt daher die korrekte Behandlung



dieser unendlichdimensionalen Systeme dar, da - im Gegensatz zu vielen gauß-
modulierten CV-QKD Protokollen - keine Symmetrien ausgenützt werden können,
um die effektive Dimension zu verkleinern. Wir beweisen ein Theorem, das - vo-
rausgesetzt eine experimentell leicht zu überprüfende Bedingung ist erfüllt - das
Gewicht der analysierten Zustände außerhalb eines endlichdimensionalen Unter-
raums (ein s.g. cutoff space) beschränkt. Dieser sogenannte Energy Test ist für sich
ein interessantes Resultat dieser Arbeit und kann auch für Anwendungen außer-
halb des gegenständlichen Sicherheitsbeweises relevant sein. Anschließend wenden
wir die dimension reduction method [105], ein Verfahren zur rigorosen Behandlung
des Fehlers bei der Einschränkung auf endlichdimensionale Unterräume, an und
erweitern Renners Rahmenwerk auf Systeme mit unendlichdimensionale Nebenin-
formation. Schließlich berechnen wir scharfe untere Schranken an die garantiert
sichere Schlüsselrate mithilfe einer numerischen Sicherheitsbeweismethode [19, 110]
für verschiedene theoretisch interessante und praktisch relevante Szenarien.
Die flexible Struktur des gegenständlichen Sicherheitsbeweises erlaubt einfache An-
passungen auf experimentelle und praktische Bedürfnisse von Experimentatoren
und Anwendern. Beispielsweise ist, im Gegensatz zu zahlreichen anderen Beweis-
methoden, Postselection möglich, das die Performance von Protokollen merklich
steigern kann. Außerdem ist es relativ einfach möglich verschiedene physikalis-
che Modelle - etwa des Kanals oder des Detektors - zu berücksichtigen. Die
vorliegende Arbeit präsentiert somit einen wichtigen technischen Fortschritt bei
finite-size Sicherheitsbeweisen for DM CV-QKD Protokolle und leistet somit einen
wichtigen Beitrag für die zukünftige Verbreitung von Kommunikationssystemen
zum sicheren und geheimen Nachrichtenaustausch.

Schlagwörter: Quantenschlüsselverteilung, Quantenkryptographie, Quantenkom-
munikation, QKD mit kontinuierlichen Variablen, Sicherheitsbeweis, Composabil-
ity, Finite-Size
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1. Introduction
The transmission of secret messages between two legitimate parties has been an
integral task in human societies since the first ancient empires formed, and has
gained even more importance in the digital world we live in nowadays, where almost
every aspect of people’s daily life - the exchange of confidential text messages, ac-
cessing user accounts, controlling medical devices, digital signatures, or electronic
payments - is heavily reliant on protecting vulnerable data from third parties. Pi-
oneers like Claude Shannon introduced the field of classical cryptography during
the early and mid-20th century. He proved [94] that the so-called One-Time-Pad,
a primitive to encrypt messages, is secure (if every key is used only once) and
optimal (which means that there is no cryptographic protocol which uses a shorter
key and is provable secure). However, the main drawback of the One-Time-Pad
is that it requires the key to be of the same length as the message to be en-
crypted. Therefore, nowadays classical encryption schemes use different methods
that rely on certain assumptions about the computational resources of adversaries
and the difficulty of a mathematical problem. One of the most prominent exam-
ples is the Rivest-Shamir-Adleman (RSA) public encryption scheme, which relies
on the computational hardness of prime-factorisation, i.e., the assumption that
there is no efficient algorithm to factorise large numbers. This, however, is not a
proven fact and therefore there is no guarantee that no efficient algorithm exists
and can be found in the future. This imposes a severe security threat, once an
efficient algorithm has been found, not only for current messages but even for past
communication, which can be decrypted, given someone recorded and stored the
communication transcripts. In 1994 Peter Shor discovered an efficient factoring al-
gorithm for quantum computers, a new concept of computation based on quantum
mechanics, envisioned by Nobel Prize laureate Richard Feynman about a decade
earlier. His discovery did not only impose a sincere threat to nowadays encryp-
tion schemes, but also pushed the young field of Quantum Information Theory
to work both on the development of quantum computers, which are expected to
tackle difficult computational problems classical computers fail to solve, and new,
quantum-safe, encryption methods.
Post Quantum Cryptography [7] aims to replace the commonly used mathematical
problems (integer prime-factorisation, discrete logarithm and elliptic-curve discrete
logarithm) in public-key algorithms by tasks that are not known to be easily solv-
able by quantum computers. While Post Quantum Cryptography only requires

1



software changes, it continues the race between cryptographers and code-breakers,
as it cannot be proven that no efficient algorithm for the new problem can be found.
Therefore, the cryptographic algorithm needs to be replaced constantly, as soon as
new quantum algorithms are discovered. In contrast, Quantum Key Distribution
(QKD) aims to establish a provable information-theoretically secure key, relying
solely on the laws of quantum mechanics without imposing any assumptions on the
computational power of adversaries. Furthermore, thanks to the nature of quan-
tum mechanics [113], Quantum Key Distribution is safe against future progress in
quantum hacking, as in contrast to classical schemes, an adversary cannot record
and store all information exchanged during the key-generation process. This prop-
erty is called forward-security. Since QKD involves a physical process rather than
a mathematical problem, it demands new devices and infrastructure and there-
fore is a hardware solution, which requires more expensive adaptations than Post
Quantum Cryptography.

1.1. Quantum Key Distribution
Quantum Key Distribution was first envisioned by Charles Bennett and Gilles
Brassard in 1984 when they showcased their famous BB84 protocol [6] and inde-
pendently discovered by Arthur Ekert [27] in 1991 when he introduced his E91
protocol. The setting of QKD is the following. Two distant parties, commonly
called Alice and Bob, want to establish a secret shared key. They are connected by
two channels - an authenticated classical channel and a quantum channel, which
can be wiretapped by an eavesdropper known as Eve. Useful implementations of
QKD protocols require a practical implementation and an information-theoretic
security proof taking the limitations and shortcomings of realistic devices suffi-
ciently into account.
QKD protocols can be divided into two protocol families, based on the detec-
tion technology used in implementations, Discrete-Variable (DV) and Continuous-
Variable (CV) protocols. As the name suggests, DV protocols like BB84, B92 and
E91 [5, 6, 27] use discrete physical properties of photons, like their polarization and
rely on single-photon sources and single-photon detectors. Continuous-Variable
protocols were introduced in 1999 by Timothy Ralph [84] and independently in
2000 by Mark Hillery [48] and encode information into the quadratures and phase
of the quantum electromagnetic field, employing lasers and heterodyne detectors
to transmit information. Based on the modulation scheme, one can further distin-
guish between Gaussian Modulated (GM) CV-QKD protocols [16, 44, 45, 67] and
Discretely Modulated (DM) CV-QKD protocols [47, 49, 112]. On the one hand,
Continuous-Variable protocols use mature and noise-resilient hardware which is
very similar to state-of-the-art telecommunication infrastructure, hence have a
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head start when it comes to future large-scale implementations. On the other
hand, DV protocols currently achieve higher transmission distances than CV pro-
tocols, hence enjoying a performance advantage.
Security proofs for DV protocols [95] are more mature than those for CV proto-
cols, while CV security analyses usually take place in infinite-dimensional Hilbert
spaces, making security statements more challenging. In contrast to DM protocols,
GM CV-QKD protocols show a high symmetry, which can be exploited to ease se-
curity proofs [62]. However, this symmetry is broken in real-world applications,
opening security gaps. Comprehensive reviews about Quantum Key Distribution
can be found in [24, 81, 90].
In the present thesis, we focus on DM CV-QKD protocols and aim to close one
of the remaining open questions in DM CV-QKD security analyses - proving the
security in the finite-size regime. In order to make use of the law of large numbers
and to ease the analysis, so far many DM CV-QKD security proofs [22, 38, 64]
have assumed that Alice and Bob exchange infinitely many signals to establish
their secret key. This is known as security in the asymptotic limit. While this is
a handy idealisation for theoretical considerations, exchanging an infinite number
of signals is impossible in practical implementations, since at some finite point in
time Alice and Bob need to know the length of their secret key in order to encrypt
messages. This gap between security analysis and implementation was first closed
by Renner [85] in his PhD thesis, by analysing the finite-size security within his
ϵ-security framework. However, it is not straightforward to apply this framework
to a generic DM CV-QKD protocol. In general, proving the security of a given
QKD protocol means to lower-bound the achievable secure key rate within the
used physical model. This lower bound can be achieved either by analytical or
numerical security proofs. While analytical security proofs for CV-QKD protocols
are often very technical and not very flexible regarding changes in the protocol
structure or the physical model, numerical security proofs enjoy this flexibility at
the cost of high computational demands and numerical imprecision.
So far, only a few DM CV-QKD finite-key analyses are available. Furrer et.al.
[33, 34] proved security against general attacks for a protocol employing entangled
states and digitalised homodyne detection using an argument based on an entropic
uncertainty relation. However, their key rates do not converge against the known
asymptotic limit bounds for large block sizes. Matsuura et.al. [69] present a
finite-size security proof of a special two-state protocol using coherent states. Their
security proof method does not seem to be easily generalisable to a broader protocol
class and their key rates do not converge to the asymptotic bounds as the number
of rounds goes to infinity. A recent work done by Lupo and Ouyang [68] presents
a security analysis against collective i.i.d. attacks, exploiting the limitations of
realistic detectors. Even though their key rates converge towards the asymptotic
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bound (given by [22], which is known to be loose for a low number of signal states),
the obtained key rates and the achievable range are rather low.
We introduce a general DM CV-QKD protocol and analyse its security against
i.i.d. collective attacks in the finite-size regime. Therefore, we develop and apply
a so-called energy test, rigorously extend Renner’s ϵ-security framework [85] to
infinite-dimensional side-information and apply a recent numerical security proof
framework [19, 110] to calculate tight lower bounds on the secure key rate. Our
analysis includes both untrusted, ideal and trusted, non-ideal detectors, hence
is capable of taking realistic settings into account. The obtained finite-size key
rates converge to the asymptotic limit (given by [64, 105], which is believed to be
tight). Therefore, even though, due to the different assumptions in [68], a direct
comparison is difficult, both our key rate and our maximal achievable transmission
distance can be considered superior to the results in [68].

1.2. Structure of the Thesis
The present thesis is structured as follows. This brief introduction to the field
of Quantum Key Distribution is succeeded by Chapter 2, where we review the
mathematics required to follow the present thesis, as well as background on quan-
tum information theory and quantum optics that builds the physical backbone of
this work. In Section 2.1 we introduce mathematical quantities required to embed
quantum theory in the mathematical framework of Hilbert spaces and to describe
quantum states as positive operators acting on Hilbert spaces. Then, in Section 2.2
we introduce quantum states, formalise the physical measurement process mathe-
matically and explain how the evolution of quantum states can be described with
so-called quantum channels, which are completely positive, trace-preserving maps.
Furthermore, we discuss how to measure similarity between quantum states. An-
other essential task in this thesis is quantifying information. In Section 2.3 we
review several entropic quantities like the classical Shannon entropy and its quan-
tum mechanical counterpart, the von Neumann entropy, followed by smooth min-
and max-entropies, which will turn out to be essential for the finite-size analysis of
quantum key distribution protocols. We conclude this chapter by a brief overview
of quantum optics in Section 2.4, beginning with harmonic oscillators and coherent
states, leading over to the mathematical description of optical instruments that
are used for practical implementations of QKD and a short review about conic
programming in Section 2.5.
Chapter 3 aims to give an introduction to Quantum Key Distribution and to
introduce notions that are required to follow the security proof in the main part
of the thesis. We begin with defining the basic setting of QKD and its advantages
over classical cryptography in Section 3.1. Based on that we introduce a generic
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QKD protocol to illustrate the process of generating a secret key. In Section 3.3 we
elaborate on the process of proving security of QKD protocols. We begin with the
discussion of different eavesdropping strategies which classify the power we allow
a potential adversary to have and lead over to the notion of asymptotic and finite-
size security. Finally, we discuss composability, which turns out to be the right
security concept for cryptographic schemes. However, as perfect security can never
be achieved in real-world applications, we have to allow small deviations from ideal
devices and protocols which leads us to the concept of epsilon security. In Section
3.4 we review the numerical security proof framework we use in this work. First, we
explain how this numerical approach provides a tight lower bound on the achievable
secure key rate using a two-step process and we show how the framework is applied
to DM CV-QKD protocols. However, although dealing with infinite-dimensional
Hilbert spaces, at this point we still need to assume to perform our calculations
in a finite-dimensional subspace to make the problem computationally feasible.
We then address this issue by reviewing the dimension reduction method which
rigorously explains how this so-called photon-number cutoff can be removed at the
cost of introducing a small correction term to the key rate. Then, we explain how
this framework can be extended to take imperfect detectors into account.

Chapter 4 is the core part of the thesis, where we present the main results of this
work. We start by reviewing the current state of security proofs for DM CV-QKD
protocols in Section 4.1. In Section 4.2 we point out a crucial point for (numerical)
finite-size security proofs - estimating the maximal energy of photons considered
in the analysis. Procedures that make statistical statements about the maximum
energy in the considered rounds of quantum signals are called energy test. We
review existing energy tests and point out why they are not suitable for the finite-
size security analysis of general DM CV-QKD protocols with our numerical proof
method. Based on this overview, we formulate requirements for a suitable energy
test. In Section 4.3 we describe the general DM CV-QKD protocol we analyse in
this work. Finally, in Section 4.4 we present the main result of the present thesis.
We state our new energy test and prove composable security against i.i.d. collective
attacks in the finite-size regime for a general DM CV-QKD protocol. This section
focuses on a clear presentation of the proof, postponing technical proof steps and
lengthy calculations to the appendix.

In Chapter 5, we calculate numerical secure key rates for a four-state phase-shift
keying protocol. After a brief discussion of the choice of the weight in Section 5.2
and details about the implementation in Section 5.3, we state our numerical results
in Section 5.4. We present numerical key rate curves both for the untrusted, ideal
detector scenario and the trusted, non-ideal detector scenario and show that secure
key rates can be obtained up to 100km transmission distance under experimentally
viable conditions. Finally, we give a brief summary and conclusion in Chapter 6.
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Many detailed proofs and calculations are given in the Appendices. In Appendix
A, we prove our noise-robust energy testing theorem. In Appendix B.1 we give
proofs for technical lemmas and theorems that are used in the security proof of our
main theorem. In Appendix B.2 we generalise Renner’s asymptotic equipartition
property to infinite-dimensional side-information. In Appendix C we derive the
finite-dimensional optimisation problem we solve numerically to lower-bound the
finite-size key rate.
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2. Background

In this chapter, we review the mathematics used throughout the thesis and give
some necessary background on quantum information theory, quantum optics and
convex optimisation, required to describe and analyse quantum key distribution
(protocols). At the same time, we introduce some common notions and give defi-
nitions used throughout the whole thesis.

2.1. Mathematical preliminaries

Quantum phenomena do not occur
in a Hilbert space. They occur in
a laboratory.

Asher Peres [78, p. 373]

We begin by introducing the basic mathematical structure behind quantum me-
chanics and quantum information theory. We assume that readers are familiar
with basic linear algebra, calculus and functional analysis, as it can be found in
every introductory book on those topics. A review of the most essential mathe-
matical background required to follow the present thesis is, for example, given in
[108, Sections 1.1 and 1.2]. The definitions provided in this section are general and
can be found in many books on functional analysis (see, for example, [54, 89]).

The mathematical formulation of quantum mechanics takes place in Hilbert spaces,
so quantum mechanical objects and operations are represented by objects ‘living’
in or acting on Hilbert spaces. Many concepts that come with Hilbert spaces, like
dual spaces, orthogonality and unitary operators play a crucial role in quantum
theory. Therefore, we start with the following definitions.
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Definition 2.1.1: Hilbert Space

A Hilbert space H is a real or complex vector space equipped with an inner
product x¨, ¨y that is a complete normed space (i.e., a Banach space) with
respect to the distance measure induced by its inner product, || ¨ || :“ ax¨, ¨y.
A Hilbert space H is called separable if it contains a countable, dense
subset.

Inner products are assumed to be conjugate linear in the first argument and linear
in the second argument, which is known as physicist’s convention. In the present
thesis, we consider only separable Hilbert spaces over C. Since every norm || ¨ ||
induces a metric dM via dM px, yq :“ ||x ´ y||, separable Hilbert spaces are metric
spaces and we can presume that all Hilbert spaces in the present thesis have a
countable basis. Next, we define the dual space of a Hilbert space.

Definition 2.1.2: Dual Space

The dual space H˚ of a Hilbert space H is the set of all linear maps from
H to C.

Following the convention in quantum information theory, we use Dirac’s BraKet
notation throughout the whole thesis. States, i.e., vectors in H, are denoted by
a descriptive symbol or letter between a vertical line and a right angle bracket
called ket, |¨y. Linear forms, i.e., elements of the dual space H˚, are denoted
by a descriptive symbol or letter between a left angle bracket and a vertical line
called bra, x¨|. The action of the bra xΦ| on the ket |Ψy is then given by xΦ|Ψy.
Mathematically, the Riesz-Fréchet representation theorem (see, for example, [54,
Theorem 9.16]) allows us to identify a Hilbert space with its topological dual space
(in more detail it states that a Hilbert space and its dual space are isometrically
isomorphic). Hence, for every ket |Φy we find a unique bra, and we are allowed
to denote the inner product by xΦ|Ψy. We are going to use this notation for the
inner product on many occasions in the rest of this thesis.
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2.1.1. Operator Theory

At the moment physics is again
terribly confused. In any case, it is
too difficult for me, and I wish I
had been a movie comedian or
something of the sort and had
never heard of physics.

Wolfgang Pauli (1924) [17, p. 114]

The introductory quote, where later Nobel prize laureate Wolfgang Pauli refers to
his struggles with the formulation of quantum theory at this time, highlights the
unsatisfactory state of quantum theory in its early days. Even after Schrödinger
showed the equivalence of his wave mechanics with Heisenberg’s matrix mechan-
ics, the general formalism of quantum mechanics still relied on mathematically
ill-defined objects like the Dirac delta function [107]. It required the genius of
John von Neumann to recognise that the theory of Hilbert spaces and linear op-
erators acting upon them provides a very natural way of describing quantum me-
chanics [73] and it was as well von Neumann who generalised operator theory to
unbounded observables [74], which resulted in a framework able to meet the re-
quirements of quantum mechanics. Therefore, in the present section, we review
those parts of operator theory that will be relevant to this work.

Operators are mathematical objects that map vectors from one Hilbert space to
another one. As quantum mechanics is a linear theory, our focus will be on linear
operators. Let HA and HB be two Hilbert spaces. We denote the vector space of
linear operators from HA to HB by LpHA, HBq. If HA “ HB “: H, we simply write
LpHq. In what follows, we characterise subsets of the space of linear operators.
We start by defining the operator norm.

Definition 2.1.3: Operator Norm

The operator norm of an operator A : HA Ñ HB is defined as

||A||8 :“ sup
ΨPHA:||Ψ||ď1

||AΨ||HB
.

This allows us to define a subset of the set of linear operators, characterised by
having finite operator norm.
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Definition 2.1.4: Bounded Operators

Let HA and HB be separable Hilbert spaces.
The set of bounded operators BpHA, HBq is defined by

BpHA, HBq :“ tA P LpHA, HBq : ||A||8 ă 8u
If HA “ HB “: H we simply write BpHq to denote bounded operators on
H.

For every bounded operator A P BpHq, we can associate its adjoint operator A:
satisfying

@ |Φy , |Ψy P H : xΦ|AΨy “ xA:Φ|Ψy .

Operators that are equal to their own adjoint play a special role in quantum
mechanics.

Definition 2.1.5: Hermitian Operators

A bounded operator H P BpHq is called Hermitian or self-adjoint if
H: “ H.
We denote the set of Hermitian operators on H by HermpHq.

An operator H is Hermitian if and only if @ |ψy P H : xΨ|H|Ψy P R. Another
interesting subset is the set of positive operators.

Definition 2.1.6: Positive Semi-Definite Operators

A bounded operator P P BpHq is called positive semi-definite, P ě 0, if

@ |Φy P H : xΦ|P |Φy ě 0.

We denote the set of positive semi-definite or non-negative operators
on H by PospHq.

We have the following alternative characterisations of positive semi-definite oper-
ators. An operator P is positive semi-definite if and only if P is Hermitian and
specpP q Ď R0̀ . Alternatively, P is positive semi-definite if and only if there exists
X P BpHq such that P “ X:X.
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Definition 2.1.7: Normal Operators

A linear operator N P LpHq is called normal if NN : “ N :N .

Note that every Hermitian operator is normal. In many contexts we want to apply
functions f : C Ñ C to Hermitian operators. The spectral theorem allows us to
extend scalar-valued functions naturally to normal operators. For example, we
may extend the square-root,

?
H, or the logarithm, logpHq for H P HermpHq.

Recall that for arbitrary X P BpHq X:X is not only self-adjoint but also positive,
hence has only non-negative eigenvalues. Therefore,

?
X:X is well-defined and

can be used to define the absolute value of the operator X, |X| :“ ?
X:X.

Definition 2.1.8: Trace

Let H be a separable Hilbert space and A P HermpHq X PospHq. Let pϕiqiPI
be an orthonormal basis of H.
The trace of A, denoted by Tr rAs, is defined by

Tr rAs :“
ÿ

i

xϕi|A|ϕiy .

The trace is independent of the choice of the particular orthonormal basis. Since
A is Hermitian, according to the spectral theorem for Hermitian operators, there
exists an orthonormal basis of eigenvectors of A. By choosing this orthonormal
basis, we see that the trace is equal to the sum of all eigenvalues of A.

Now we are ready to introduce a family of norms called Schatten p-norms that
include many of the most common norms in quantum information theory as special
cases.

Definition 2.1.9: Schatten p-norm

Let H be a Hilbert space, A P LpHq and p P r0, 8q. The Schatten p-norm
of A is given by

||A||p :“ pTr r|A|psq 1
p .

Interesting special cases include the trace-norm || ¨ ||1, the Hilbert-Schmidt norm
|| ¨ ||2 and the operator norm || ¨ ||8. Schatten p-norms satisfy Hölder’s inequality.
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Theorem 2.1.10: Hölder’s inequality

For A, B P LpHq p, q P r1, 8q with 1
p

` 1
q

“ 1

|xA, By| ď ||A||p||B||q. (2.1)

Note that the inner product between two bounded operators A, B P LpHq acting
on a separable Hilbert space H is understood as

xA, By :“ Tr
“
A:B

‰
. (2.2)

A special role in quantum information play operators with finite Schatten 1-norm,
so-called trace-class operators.

Definition 2.1.11: Trace Class Operators

Let A P LpHq. The operator A is said to be in trace class if ||A||1 ă 8.
We denote the set of all trace class operators over H by T pHq.
By T1pHq we denote all trace class operators with Schatten 1-norm ď 1
and by adding the superscript `, T `pHq, we denote positive trace class
operators.

Having introduced trace class operators allows us to give a alternative definition
for the set of positive operators, PospHq “ conepT `q (see Definition 2.5.44).
We proceed by informally defining isometries and unitary operators. The identity
operator ✶H on H maps vectors |Ψy P H to themselves, ✶H |Ψy “ |Ψy. A bounded
operator U P BpHA, HBq is called an isometry if U :U “ ✶HA

. If additionally
UU : “ ✶HB

holds, U is a unitary operator.

Another commonly used type of linear operators, that does not even require an
inner product, are projection operators, or short projections.

Definition 2.1.12: Projection Operators

A projection on a vector space V is a linear operator P : V Ñ V such that
P 2 “ P .
If the vector space V is equipped with an inner product, we can define
orthogonal projections by requiring additionally that P “ P :.

On many occasions, for example, if we want to perform numerical calculations,
we have to represent finite-dimensional operators as matrices. By fixing bases
t|ϕyiuiPI1 of HA and t|ψyiuiPI2 of HB we can associate a linear operator A P
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LpHA, HBq with its representation matrix MA,

MA :“
ÿ

iPI1,jPI2

xψj|A|ϕiy .

Multipartite systems

The formalism we have summarised so far only allows us to describe states living in
the same Hilbert space. Therefore, the next step is to formalise the mathematical
description of objects living in different quantum systems. The tensor product is
a tool to combine multiple Hilbert spaces to a new Hilbert space.

Definition 2.1.13: Tensor Product

Let HA and HB be two Hilbert spaces over C and let x¨|¨yHA
and x¨|¨yHB

be
their corresponding inner products.
The tensor product of HA and HB, denoted by HA b HB, is defined via
a bilinear map

HA ˆ HB Ñ HA b HB, pΦ, Ψq ÞÑ Φ b Ψ

that maps every pair pΦ, Ψq P HA ˆ HB uniquely to an element Φ b Ψ in
HA b HB. By pointwise definition of the vector space operations it becomes
a vector space and

xΦ b Ψ|ω b σyHAbHB
:“ xΦ|ωyHA

xΨ|σyHB

defines an inner product which turns HA b HB into a Hilbert space.

This definition for bipartite systems can be extended inductively to multipartite
systems. The n-fold tensor product of the same Hilbert space H is denoted by
Hbn.
In the context of quantum mechanics, one often might want to apply the trace only
on one part of a composite system. This is done by the partial trace operation.

Definition 2.1.14: Partial Trace
Let HA and HB be separable Hilbert spaces. The partial trace over HB

is the unique linear operator TrHB
: LpHA b HBq Ñ LpHAq such that

@X P LpHAq @Y P LpHBq : TrHB
pX b Y q “ Tr rXs Y.

To ease notation, usually we write TrA instead of TrHA
.
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Linear Maps

So far, we have dealt with linear operators, which map vectors living in one Hilbert
space to vectors in another (or the same) Hilbert space. Therefore, the next step
is to talk about linear maps of the form E : LpHAq Ñ LpHBq that map linear
operators over HA to linear operators over HB. We denote the set of all such
operators by TpHA, HBq and if HA “ HB “: H we write TpHq. In what follows
we specify important special classes of linear maps.

Definition 2.1.15: Special classes of linear maps

Let HA and HB be separable Hilbert spaces. A linear map E P TpHA, HBq
is called

1. positive if @P P PospHAq : EpP q P PospHBq
2. completely positive (CP) if for every Hilbert space H the map

E b ✶LpHq is positive

3. trace preserving (TP) if @X P LpHA, HBq : Tr rEpXqs “ Tr rXs
4. trace non-increasing (TNI) if @X P LpHA, HBq : Tr rEpXqs ď

Tr rXs

An important class of maps will be completely positive trace preserving (CPTP)
and completely positive trace non-increasing maps. It remains to define the dual
map or adjoint map.

Definition 2.1.16: Dual Map (Adjoint Map)

Let HA and HB be separable Hilbert spaces and let E P TpHA, HBq.
The dual map or adjoint map E: P TpHB, HAq is defined by

@X P LpHAq @Y P LpHBq : xEpXq, Y y “ xX, E:pY qy.
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2.2. Quantum Theory

It seems hard to sneak a look at
God’s cards. But that he plays
dice is something that I cannot
believe for a single moment.

Albert Einstein [25, p. 68]

After having set the mathematical scaffolding in the previous chapter, we can now
bring quantum theory to life. The definition and statements given in this section
are widely known and can be found in many introductory books on quantum
mechanics and quantum information theory. If not mentioned otherwise, we loosely
follow the texts in [75, 109]. A quantum mechanical state describes our knowledge
about a physical system at a given time. Based on physical insights, we require a
quantum state to be a positive, Hermitian, trace-class operator with trace equal to
one. We describe quantum states with so-called density operators, usually denoted
by Greek letters.

Definition 2.2.17: Density Operator

Let H be a separable Hilbert space. We denote the set of density opera-
tors by

DpHq :“ tρ P PospHq : ||ρ||1 “ 1u .

Note that since non-negativity implies Hermiticity, we do not have to require
Hermiticity separately. Sometimes, we want to work with subnormalised states.
The set of subnormalised density operators is given by

DďpHq :“ tρ P PospHq : ||ρ||1 ď 1u .

The possibly most prominent quantum states are pure states, which can be
described by a single vector |Ψy P H and its density matrix is given by ρ “ |ΨyxΨ|.
For that reason, we sometimes call the state |Ψy although technically we refer to
the corresponding density operator. We denote the set of pure states on H by
S1pHq. However, general quantum states are not necessarily pure but are given as
a probabilistic mixture of pure states.
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Definition 2.2.18: Mixed State

Let t|Ψ1y , ..., |Ψnyu be an ensemble of pure states in a separable Hilbert
space H and let tp1, ..., pnu be a collection of non-negative real numbers
such that

řn
i“1 pi “ 1. Then, a mixed state is represented by the following

density operator

ρ “
nÿ

i“1
pi |ΨiyxΨi| .

For a given mixed state ρA P DpHAq, it is always possible to find another Hilbert
space HE, dimpHAq ď dimpHEq, and a pure state |Ψy P HA b HE in this larger
Hilbert space such that the marginal of this pure state is ρA,

ρA “ TrE r|ΨyxΨ|s . (2.3)

The state |Ψy is called purification of ρA.

2.2.1. Entanglement

Entanglement is not one but
rather the characteristic trait of
quantum mechanics.

Erwin Schrödinger [93, p. 555]

Next, we turn our focus to probably the most peculiar property of quantum me-
chanics: entanglement. Entanglement occurs when two or more quantum systems
interact in a way such that the quantum state of each system cannot be described
independently of the state of the other systems. This is not restricted to spatial
proximity but includes systems that are separated by large distances, which led to
Einstein’s famous quote, calling entanglement ‘spukhafte Fernwirkung’- ‘spooky
action at a distance’. In fact, entanglement is one mechanism that enables to do
quantum communication. Therefore, we require a mathematical way of describ-
ing entanglement. For simplicity, we describe entanglement between two quantum
systems. The ideas given here can be generalised straightforwardly to multiple
quantum systems. Consider two separable Hilbert spaces HA and HB. To ease
notation, we call the quantum systems associated with those Hilbert spaces A and
B. A state ρAB P HA b HB is called a bipartite state. One interesting family of
bipartite states are entangled states.
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Definition 2.2.19: Separable States - Entangled States

Let ρAB P DpHABq be a bipartite state over the Hilbert space HAB :“
HA b HB.
The state ρ is called separable, if there exist ensembles tρ

piq
A uiPI Ď DpHAq

and tρ
pBq
A uiPI Ď DpHBq and a set of non-negative real numbers tpiuiPI ,ř

iPI pi “ 1 such that

ρAB “
ÿ
iPI

pi

´
ρ

piq
A b ρ

piq
B

¯
.

If ρAB is not separable, it is called entangled.

We have a special name for separable states with exactly one non-zero coefficient
pi. States of the form ρA b ρB are called product states.
A special subset of separable states is the set of so-called classical-quantum states,
which play an important role in quantum key distribution.

Definition 2.2.20: Classical-Quantum States

Let HA and HB be two separable Hilbert spaces and ρAB P DpHA b HBq.
The density operator ρAB is called a classical-quantum state if there
exists an orthonormal basis t|ϕiyuiPI of HA and an ensemble of non-negative
real numbers tpiuiPI with

ř
iPI pi “ 1, as well as an ensemble of density

matrices tρ
piq
E u Ď DpHBq such that

ρAB “
ÿ
iPI

pi |ϕiyxϕi| b ρ
piq
B .

2.2.2. Measurements
Observations not only disturb
what is to be measured, they
produce it.

Pascual Jordan [52, p. 161]

We interact and gain information from quantum systems by performing measure-
ments. According to the third postulate of quantum mechanics, quantum measure-
ments are described by a set of measurement operators tΓiuiPI , where the index i
corresponds to the measurement outcome in the experiment. Within the frame of
this work, we view measurement as a process, where a quantum state enters our
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measurement device and we obtain a measurement outcome as a result. In partic-
ular, we are not interested in the post-measurement state of our quantum system.
This notion is captured by positive operator-valued measures. The explanations
in this subsection follow [102].

Definition 2.2.21: Positive Operator-Valued Measure (1)

Let H be a separable Hilbert space. A positive operator-valued mea-
sure (POVM) on a measurable space pΩ, Aq is a map µ : A Ñ BpHq
satisfying

• @A P A : µpAq ě 0

• µpΩq “ ✶H

• µ is σ-additive, i.e., for every sequence of pairwise disjoint sets
pAiqiPN Ď A :

µ

˜ď
iPN

Ai

¸
“

ÿ
iPN

µpAiq.

The series converges in the weak operator topology.

In the context of quantum information, it is very common to call the set of bounded
linear operators tΓsusPS “ tµpAsqusPS , for pAsqsPS , POVMs. Therefore, we also
give an alternative, less formal, definition, which turns out to be more practical
for the present work [109, Definition 4.2.1].

Definition 2.2.22: Positive Operator-Valued Measure (2)

Let H be a separable Hilbert space and S some set. A positive operator-
valued measure (POVM) is a set tΓsusPS of operators that satisfy non-
negativity and completeness:

• @s P S : Γs ě 0

•
ř

sPS Γs “ ✶H

According to Born’s rule, the probability for obtaining the outcome s if the con-
sidered quantum state is described by the density operator ρ is given by Probpsq “
Tr rΓsρs. We see that the two required properties non-negativity and completeness
then correspond to the requirement that probabilities have to be non-negative and
need to sum to one. We remark that POVMs are not restricted to discrete index
sets S. Then, in the completeness condition, the sum is replaced by a suitable
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integral. This will be the case for measurements of continuous quantities in the
present work.
Next, we discuss observables, i.e., physical quantities that can be measured. Every
observable O of a quantum system described by a Hilbert space H is associated
with a linear operator Ô P LpHq1. Eigenvalues of Ô are associated with pos-
sible measurement outcomes and therefore, in particular, real numbers. Hence,
observables are Hermitian operators ObspHq Ă HermpHq.

Definition 2.2.23: Observable
Let H be a separable Hilbert space. A quantum mechanical observable of
a quantum system described by the Hilbert space H is a self-adjoint linear
operator Ô P HermpHq.

The expected value of an observable is denoted by xÔyρ “ Tr
”
Ôρ

ı
, where the

underlying state is indicated as a subscript. Sometimes, if the underlying state is
clear from the context, the subscript is omitted. As we will see later, observables
can be unbounded, in that case, xÔy might be undefined.
Observables are included in the concept of POVM measurements. We obtain
observables as the special case where all POVM operators are projection operators
(so, we face the special case of a projection-valued measure ) on the sample space
Ω “ R. Then, in general, we obtain the operator Ô associated with the observable
O by Ô “ ş

R µpxq dλpxq.
In the discrete case, using the simplified definition of POVMs, the observable
associated with some projective measurement tΓsusPS yielding the measurement
results tγsusPS gives rise to the observable Ô “ ř

sPS γsΓs. Note that Γs is the
projector on the eigenspace of Ô corresponding to the eigenvalue γs.
In contrast to classical physics, in quantum mechanics, not all observables can be
measured simultaneously. Mathematically, this is expressed by the commutator,
rÂ, B̂s :“ ÂB̂ ´ B̂Â. Observables that cannot be measured at the same time, do
not commute, rÂ, B̂s ‰ 0.

1Note that we emphasise the difference between the observable and the operator associated
with the observable by adding a ˆ̈ when we refer to the operator.
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2.2.3. Quantum Channels

Quantum channels are all
encompassing. (...) From this
perspective, one could argue that
there really is just a single
underlying postulate of quantum
physics, that everything we
consider in the theory is just a
quantum channel of some sort.

Mark Wilde [109, p. 160]

It remains to describe the evolution of quantum states. The present subsection
follows the text [109, Chapter 4.4], where we refer the interested reader for more
details (in particular, to see why quantum channels can capture not only the
idea of the evolution of states but also concepts like quantum measurements and
discarding quantum systems, as indicated by the introductory quote). We picture
the process of the evolution of quantum states as a black box where we input a
density matrix and obtain another density matrix as output. Now suppose that one
prepares one out of two quantum states ρ, σ P DpHAq according to some probability
distribution. For example, assume ρ is prepared with probability 0 ă p ă 1 and σ
with probability 1 ´ p and then the evolution E is applied. The state then reads
Eppρ`p1´pqσq. Suppose this experiment is repeated multiple times and afterwards
we are given all the states and are allowed to perform measurements. In a first
scenario, we measure the state Eppρ ` p1 ´ pqσq directly and record how often we
obtained Epρq and Epσq. In a second scenario, we are told in which rounds which
state was prepared, so for a fraction p of our measurements we conclude that we
obtained Epρq, while for a fraction 1 ´ p we conclude that we obtained Epσq. For
consistency reasons, we expect the observed statistics to coincide in both scenarios.
Therefore, we require a quantum evolution to be linear. Putting all this together,
we can define the mathematical description of a quantum evolution: a quantum
channel.

Definition 2.2.24: Quantum Channel

A quantum evolution is described by a quantum channel, which is a linear,
completely positive, trace preserving (CPTP) map.

Sometimes, we want to work with sub-normalised states, so we do not require the
output to have trace equal to one. Then, quantum evolutions can be described as
well by completely positive trace non-increasing (CPTNI) maps. A useful
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way to characterise quantum channels is the so-called Kraus representation.

Theorem 2.2.25: Kraus Representation

Let HA and HB be separable Hilbert spaces and let E : LpHAq Ñ LpHBq.
Then, the map E is linear, completely positive and trace-preserving if and
only if there exist Ki P LpHA, HBq for i P t0, ..., d ´ 1u such that

@X P LpHAq : EpXq “
d´1ÿ
i“0

KiXK:
i

with
řd´1

i“0 K:
i Ki “ ✶HA

and d ď dimpHAq dimpHBq. The operators Ki are
called Kraus operators and this representation of a quantum channel is
called Kraus representation.

Quantum channels and their Kraus representation will play an important role in
the present thesis.

2.2.4. Distance Measures
The idea of distinguishing
probability distributions is
slippery business.

Christopher Fuchs [30, p. 12]

In many contexts, we have to quantify the distance between probability distribu-
tions or density operators. In what follows, we introduce the distance measures
used in the present thesis, following [109, Chapter 9]. We begin with the trace
distance, which is (up to a scaling factor) the distance measure introduced by the
Schatten 1-norm.

Definition 2.2.26: Trace-Distance
Let P and Q be positive operators. The trace-distance between P and Q
is defined as

∆pP, Qq :“ 1
2 ||P ´ Q||1. (2.4)

Note that by including the factor 1
2 , we defined the so-called normalised trace-

distance, as then for density matrices ρ, σ P DpHq we have 0 ď ∆pρ, σq ď 1. The
lower bound is attained if ρ “ σ and the upper bound follows from the triangle-
inequality 1

2 ||ρ´σ||1 ď 1
2 p||ρ||1 ` ||σ||1q “ 1. The significance of this normalisation
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will become clear later on when we give the trace distance an operational meaning.

However, the trace distance has one technical issue. To illustrate that, suppose
we hold two density operators ρAB, σAB P DpA b Bq and let ρA :“ TrBpρABq and
σA :“ TrBpσABq be their marginals. Assume further, we know that ||ρA´σA||1 ď ϵ.
Then, the trace norm doesn’t allow us to conclude anything about how similar ρAB

and σAB are. To close this gap (on the cost of losing the nice operational interpreta-
tion) we introduce the purified distance. However, this requires some preparation.

The closeness of two states can as well be measured by the fidelity. In the easiest
case, the pure-state fidelity determines the squared overlap between two pure states
|Ψy and |Φy, | xΨ|Φy |2. It obeys values between zero and one and tells us how likely
the state |Ψy would pass a test for being the state |Φy (or vice-versa). We see that
if |Ψy “ |Φy the pure-state fidelity is equal to 1, so it is not directly a distance
measure. Let us next define fidelity for general quantum states as a generalised
measure of their overlap.

Definition 2.2.27: Fidelity

Let H be a separable Hilbert space and ρ, σ P DpHq.
The fidelity between ρ and σ is defined as

F pρ, σq :“
´

Tr
”a?

ρσ
?

ρ
ı¯2

.

Note that, unfortunately, there are two slightly different definitions of fidelity in
quantum information literature. While some authors omit the square, we follow
those who define fidelity with a square. However, this is not a problem as long as
we consistently stick to one of both conventions.

Even though fidelity is not directly a distance measure, as mentioned earlier, it
can be used to define distance measures, like the angular distance Apρ, σq :“
arccos

`a
F pρ, σq˘

[39].

In the present work, we will rely on a generalised form of fidelity to include sub-
normalised states. Based on the observation that we can think of sub-normalised
states as normalised states on a larger Hilbert space [100], we define
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Definition 2.2.28: Generalised Fidelity

Let H be a separable Hilbert space and ρ, σ P DďpHq. By H1 Ě H we denote
that a Hilbert space H is embedded in another Hilbert space H1. Let Π be
the corresponding projector onto H.
The generalised Fidelity between ρ and σ is

F˚pρ, σq :“ sup
H1: H1ĚH

sup
ρ̄,σ̄PDpH1q

Πρ̄Π“ρ, Πσ̄Π“σ

F pρ̄, σ̄q.

As shown in [100, Lemma 3] F˚pρ, σq reduces to F pρ, σq if ρ or σ is normalised.
Based on the fidelity, we now can define the so-called purified distance [39, 100].

Definition 2.2.29: Purified Distance

Let H be a separable Hilbert space and ρ, σ P DpHq. The purified distance
between ρ and σ is defined as

Ppρ, σq :“ a
1 ´ F˚pρ, σq.

It can be shown that the purified distance is a metric [100, Lemma 5]. The purified
distance can be thought of as the minimum trace-distance between purifications
of the states ρ and σ [100]. Therefore, the trace-distance is always upper-bounded
by the purified distance. This, in fact, is the mathematical statement of the lower
Fuchs-van de Graaf inequalities, which relate the purified distance and the trace-
distance [31],

∆pρ, σq ď Ppρ, σq ď a
2∆pρ, σq. (2.5)

2.3. Quantum Information Theory

I argue that quantum mechanics is
fundamentally a theory about the
representation and manipulation
of information, not a theory about
the mechanics of nonclassical
waves or particles.

Jeffrey Bub [13]

Both classical and quantum information theory deal with storing and quantifying
information. In this section, we review the information-theoretic concepts that are
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relevant to the present thesis, following the texts [75, 108, 109].
Registers are a mathematical model of physical devices, used to memorise informa-
tion. In this context, the term alphabet refers to a finite, non-empty (index-)set.
Alphabets usually are denoted by capital Greek letters. Elements of alphabets are
called symbols. We give an abstract definition of a register [108, Definition 2.1].

Definition 2.3.30: Register

A register X is either one of the following two objects:

• an alphabet Σ (simple register)

• an n-tuple X “ pY1, ..., Ynq, where n P N` and Y1, ..., Yn are registers
(compound register).

It turns out that classical information-theoretic tasks, which are based on random
variables and probability distributions, are special cases of quantum mechanical
problems, where we hold quantum states represented by density matrices. For
example, we can write a classical probability distribution into the diagonal entries
of a matrix, hence probability distributions can be seen as a subset of density
matrices.

2.3.1. Entropic Quantities

Von Neumann told me, ’You
should call it entropy, for two
reasons. In the first place your
uncertainty function has been used
in statistical mechanics under that
name, so it already has a name. In
the second place, and more
important, no one really knows
what entropy really is, so in a
debate you will always have the
advantage.’

Claude Shannon [101]

One of the central tasks both in classical and quantum information theory is to
quantify information. We begin with reviewing ways to measure information in
the classical case and introduce the generalised quantities afterwards. Since bits
are the basic carriers of information in modern information theory, we quantify

24



information in bits.
Probability density functions pXpxq of a random variable X tell us how likely we
observe the realisation X “ x of our random variable. If we are certain about the
outcome of our random variable, for example, if pXpx1q “ 1, we are not surprised
at all to find x1 when reading out X and do not learn anything new. Conversely,
our surprise when obtaining a particular realisation is high, if all realisations are
equally likely. Therefore, information content of a random variable measures the
surprise when learning the outcome of a random experiment, ipxq :“ ´ log2ppXpxqq.
However, the information content only quantifies the surprise of a particular re-
alisation and hence does not characterise the whole random variable. Therefore,
we introduce the entropy which is the expected information content of a random
variable.

Definition 2.3.31: Shannon Entropy

Let X be a discrete random variable with associated probability distribution
pXpxq. The classical entropy or Shannon entropy of X is defined as

HpXq :“ ´
ÿ
x

pXpxq log2ppXpxqq,

where we use the convention 0 ¨ log2p0q “ 0.

A special case of the Shannon entropy is the binary entropy for Bernoulli random
variables X with pXp0q “ p and pXp1q “ 1 ´ p for p P r0, 1s, denoted by

hppq “ ´p log2ppq ´ p1 ´ pq log2p1 ´ pq. (2.6)

Assume we hold two random variables X and Y that are somehow correlated. How
are the information contents of those two random variables related to each other?
An important quantity to answer this question is the joint entropy.

Definition 2.3.32: Joint Entropy

Let X and Y be discrete random variables with joint probability distribution
pX,Y px, yq. The joint entropy of X and Y is defined as

HpX, Y q :“ ´
ÿ
x,y

pX,Y px, yq log2ppX,Y px, yq.

Next, suppose we already possess the random variable Y . How much uncertainty
do we still have about X given our side information due to knowing Y ? This
notion is captured by the conditional entropy.
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Definition 2.3.33: Conditional Entropy

Let X and Y be discrete random variables with joint probability distribution
pX,Y px, yq. The conditional entropy of X conditioned on Y is known is
defined as

HpX|Y q :“ ´
ÿ
x,y

pX,Y px, yq log2ppX|Y px|yq.

A brief calculation shows that the three entropic quantities we introduced are
related to each other by

HpX, Y q “ HpX|Y q ` HpY q “ HpY |Xq ` HpXq. (2.7)

Finally, we want to measure how much information the random variables X and
Y have in common.

Definition 2.3.34: Mutual Information
Let X and Y be discrete random variables with joint probability distribution
pX,Y px, yq. The mutual information of X and Y is defined as

IpX : Y q :“ HpXq ` HpY q ´ HpX, Y q. (2.8)

We introduced the joint entropy, the conditional entropy and the mutual infor-
mation for two correlated random variables. However, they can be generalised
naturally to n random variables.
The quantum version of the classical entropy was discovered by John von Neu-
mann (interestingly, even before Claude Shannon introduced the classical entropy,
as the quote at the beginning of the section indicates). Since density operators
describe quantum states, we expect an entropic measure to be a function of the
density matrix. Furthermore, as classical probability distributions are included as
a special case in the density operator formalism, we expect the quantum entropies
to coincide with their classical equivalents in this special case.

Definition 2.3.35: Von Neumann Entropy

Let HA be a separable Hilbert space representing a quantum system A and
let ρA P DpHAq. The von Neumann entropy of ρA is defined as

HpAqρ :“ ´Tr rρA log2pρAqs .

The definition of the joint quantum entropy for a bipartite density operator ρAB P
DpHA b HBq follows straightforwardly.
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Definition 2.3.36: Joint Quantum Entropy

Let HA and HB be separable Hilbert spaces representing a quantum system
A and B and let ρAB P DpHA bHBq. The joint quantum entropy of ρAB

is defined as
HpABqρ :“ ´Tr rρAB log2pρABqs .

Based on the classical relation between joint entropy and conditional entropy, we
define the conditional quantum entropy as follows.

Definition 2.3.37: Conditional Quantum Entropy

Let HA and HB be separable Hilbert spaces representing a quantum system
A and B and let ρAB P DpHA bHBq. The conditional quantum entropy
HpA|Bqρ of ρAB is defined as

HpA|Bqρ :“ HpABqρ ´ HpBqρ. (2.9)

The quantum mutual information is defined analogously to the classical case.

Definition 2.3.38: Quantum Mutual Information

Let HA and HB be separable Hilbert spaces representing quantum systems
A and B and let ρAB P DpHA bHBq. The quantum mutual information
of the bipartite state ρAB is defined as

IpA : Bqρ :“ HpAqρ ` HpBqρ ´ HpA, Bqρ.

Finally, we introduce another entropic quantity which will play an important role
in quantum key distribution - the quantum relative entropy. It measures how
distinguishable two quantum states ρ and σ are and can be used to re-express
other entropies.

Definition 2.3.39: Quantum Relative Entropy

Let H be a separable Hilbert space and ρ P DpHq and σ P PospHq. The
quantum relative entropy between ρ and σ is given by

Dpρ||σq :“
#

Tr rρ log2pρqs ´ Tr rρ log2pσqs , if supppσq Ď supppρq
8 , otherwise,

where supppAq :“ t|Ψy P H : A |Ψy ‰ 0u.

27



For example, one can express the conditional entropy in terms of the quantum
relative entropy,

HpA|Bqρ “ ´ min
σB

DpρAB||✶A b σBq. (2.10)

The importance of both the Shannon and the von Neumann entropy arises from
their relation to certain information-theoretic tasks. For example, according to
Shannon’s famous formula, classical entropy is used to express the capacity of
a communication channel. For the sake of another example, assume we want to
encode some information into a quantum state ρ. The von Neumann entropy quan-
tifies the maximal number of qubits required to store the information. However,
these characterisations only work if we are allowed to repeat the process infinitely
many times, i.e., in an asymptotic setting. Additionally, Shannon assumed a
memoryless channel and for encoding example, we require a source emitting inde-
pendently and identically distributed states. This leads us to (smooth) min- and
max entropies, which were introduced in [85] to quantify information in tasks with
finitely many repetitions.

Smooth min- and max-Entropy

We are going to introduce the smooth min- and max-entropy following the text [99].
We start by giving the basic definitions and try to give an interpretation afterwards.
We begin with the min- and max-entropy.

Definition 2.3.40: Min-Entropy

Let HA and HB be separable Hilbert spaces and ρAB P DďpHA b HBq as
well as σB P DďpHBq.

The min-entropy of ρAB relative to σB is defined as

HminpρAB||σBq :“ ´ log2 inftλ P R : λ✶A b σB ě ρABu.

The min-entropy A conditioned on B of the state ρAB is

HminpA|Bqρ :“ sup
σBPDďpHBq

HminpρAB||σBq.

The min-entropy gives the maximum amount of uniform randomness that can be
extracted guaranteed from A given B.
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Definition 2.3.41: Max-Entopy

Let HA and HB be separable Hilbert spaces and ρAB P DďpHA b HBq as
well as σB P DďpHBq.
The max-entropy of A conditioned on B of the state ρAB is

HmaxpA|Bqρ :“ sup
σPDďpHBq

log2 pF pρAB,✶A b σBq .

The max-entropy quantifies the maximum amount register A can be compressed
without failure, given B. While in the classical case the min- and the max-entropy
seem to be rather unrelated, in the quantum case there appears an interesting
relation. Let HA, HB, HC be separable Hilbert spaces. For a pure state ρ P
S1pHA b HB b HCq we have

HmaxpA|Bqρ “ ´HminpA|Cqρ. (2.11)

This tells us, the more B knows about A, the less C can know about A. This
connection is a beautiful example of a quantum phenomenon that is not possible
in the classical world.

However, the min- and max-entropy have one major drawback. They can change
significantly if the considered quantum state changes only slightly under the trace
norm. In Chapter 3.2 of Renner’s thesis [85] one can find a classical example
illustrating this fact for the max-entropy. This highlights that we might want to
have a smoothed version of the min- and max-entropy, being the maximum or
minimum over all states close to the considered state. This leads to the smooth
min- and smooth max-entropy. We measure closeness either in terms of the trace
distance, or the purified distance. Let us define the ϵ-balls around some state ρ,

Bϵ
TDpρq :“ tρ̃ P PospHA b HBq : Tr rρs ě Tr rρ̃s ^ ||ρ ´ ρ̃||1 ď Tr rρs ϵu , (2.12)

Bϵ
PDpρq :“ tρ̃ P DďpHA b HBq : Ppρ, ρ̃q ď ϵu , (2.13)

where the subscript denotes the used distance measure.
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Definition 2.3.42: Smooth min- and max-entropy

Let HA and HB be separable Hilbert spaces and ρ P DďHA b HBq and
σB P DďpHBq.
The smooth min-entropy of A conditioned on B of the state ρAB

is defined as

Hϵ
minpA|Bqρ :“ sup

ρABPBϵpρABq
HminpA|Bqρ.

The ϵ-smooth max-entropy of A conditioned on B of the state ρAB

is defined as
Hϵ

maxpA|Bqρ :“ inf
ρABPBϵpρABq

HmaxpA|Bqρ.

In case the smoothing is done in the trace-distance, we denote this by adding (TD)
to the subscript and for purified distance, we add (PD).

As we already noted, for i.i.d. states in the asymptotic case, we do not need min-
or max-entropies to quantify information-theoretic tasks. The asymptotic equipar-
tition property shows that in the asymptotic limit we recover the von Neumann
entropy. The following result is taken from [87, Corollary 3.3.7] and we apply a
correction noted in [35, p. 17] and is stated for finite-dimensional Hilbert spaces.

Theorem 2.3.43: Asymptotic Equipartition Property

Let ρXB P DpHX b HBq be a classical-quantum state and let the dimension
of HX b HB be finite.

Then, for ϵ ě 0

1
n

Hϵ
minpXbn|Bbnqρ ě HpXBqρ ´ HpBqρ ´ δ,

where δ :“ p2 log2prankpρXq ` 3q
b

log2p 2
ϵ q

n
.

This is the so-called direct part of the AEP, which is used frequently in the key
rate analysis of quantum key distribution protocols. We will see later that a very
similar statement holds for infinite-dimensional Hilbert space HB as well.

In [99] Corollaries 6.2 and 6.3 they show that even in the fully quantum case, for
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ρAnBn “ ρbn
AB and 0 ď ϵ ď 1, we obtain

lim
nÑ8

1
n

Hϵ
minpAn|Bnqρ “ HpA|Bqρ

lim
nÑ8

1
n

Hϵ
maxpAn|Bnqρ “ HpA|Bqρ,

i.e., in the asymptotic limit, we recover the von Neumann entropy.

2.4. Quantum Optics
The statements made by quantum information theory refer to generic quantum
systems with certain properties but are not exclusive to particular implementa-
tions. However, for practical reasons, quantum key distribution is usually realised
by quantum optical implementations. Thus, we need to give a brief review of basic
concepts in quantum optics, following the texts [37, 61, 92].

The theoretical description of quantum optical phenomena is based on the quanti-
sation of the electromagnetic field. From field theory, we know that an (optical)
mode in some systems like an optical fibre or a cavity is a solution to Maxwell’s
equations for some fixed frequency. It can be shown that an optical mode can
be described mathematically by the solutions to a quantum mechanical harmonic
oscillator. Therefore, in quantum key distribution, it suffices to build up upon the
theory of quantum mechanical harmonic oscillators rather than working directly
with field theory. For a detailed derivation of the algebraic method to describe
the quantum mechanical harmonic oscillator, we refer the interested reader to [43,
Chapter 2.3].
We proceed with a review of the theory, relevant to the present thesis. In contrast
to the classical harmonic oscillator, the energy levels of the quantum harmonic os-
cillator are - nomen est omen - quantised. We number the energy levels by natural
numbers n, beginning with 0 for the lowest possible energy - the vacuum energy,
which is greater than zero. Going up or down one energy level adds or annihi-
lates one photon of energy ℏω, so the energy levels are separated by equidistant
gaps. We denote the quantum state associated with n photons by |ny. Inspired by
the equidistantly spaced energies, we introduce so-called ladder-operators â - the
creation-operator and â: the annihilation-operator, which add or subtract
one photon,

â |ny “ ?
n |n ´ 1y (2.14)

â: |ny “ ?
n ` 1 |n ` 1y . (2.15)
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For the vacuum-state, so if n “ 0, we have â |0y “ |0y. The states t|nyu8
n“0 are

called Fock states and form a basis of the Hilbert space we use to describe the
quantum mechanical harmonic oscillator. From Eq. (2.14) and (2.15), we observe

â:â |ny “ ?
nâ: |n ´ 1y “ n |ny .

We just showed that |ny is the eigenstate of the operator â:â with eigenvalue
n. This motivates the definition of the photon number operator n̂ :“ â:â.
Furthermore, we note that the ladder operators obey the commutation relation
râ, â:s “ ✶. Note that we chose natural units, i.e. we set ℏ “ 1. Since different
authors follow different conventions, we direct the reader to [60, Appendix F]
for a well-structured table converting quantities used in quantum optics between
different unit systems.
The field quadrature operators q̂ and p̂, within the frame of canonical quantisation
the operators corresponding to the classical quantities position and momentum,
can be expressed in terms of the ladder operators as

q̂ “ 1?
2

pâ: ` âq (2.16)

p̂ “ i?
2

pâ: ´ âq. (2.17)

They obey the commutation relation rq̂, p̂s “ i.
Besides Fock states, another important class of states are coherent states, de-
noted by |αy where α P C. Coherent states describe laser pulses, hence can be
created easily in experiments and therefore play a prominent role in quantum key
distribution. Mathematically, coherent states are eigenstates of the annihilation
operator, â |αy “ α |αy and can easily be represented as a Poissonian distribution
of Fock states

|αy “ e´ |α|2
2

8ÿ
n“0

αn

?
n!

|ny . (2.18)

Note that the coherent state |0y is equal to the vacuum state. Mathematically, we
can create coherent states from the vacuum using the displacement operator,

D̂pαq :“ eαâ:´α˚â, (2.19)

where α˚ denotes the complex conjugate of α. Starting from a vacuum state |0y,
we obtain a coherent state via |αy “ D̂pαq |0y. More generally, applied to an
arbitrary coherent state |αy, we obtain D̂pβq |αy “ eiImpβα˚q |α ` βy. We can as
well displace arbitrary states or even operators. We denote operators displaced by
β as Âβ :“ D̂pβqÂD̂pβq: and we use the short notation |nyβ :“ D̂pβq |ny to denote
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a displaced number state. Note that one can see directly from the definition that
D̂pαq: “ D̂p´αq.
The name of the displacement operator refers to its action on states in the phase
space. In quantum optics, the phase space is used to visualise single-mode quantum
states in terms of quasi-probability distributions. In contrast to the Schrödinger
picture, where either position q or momentum p are used to parameterise the wave
function, in the phase-space formalism position and momentum occur equitably.
Another important class of states are thermal states. They can be represented
as a thermal distribution of Fock states

ρth “ 1
1 ` n

8ÿ
n“0

ˆ
n

p1 ` nq
˙n

|nyxn| , (2.20)

where n denotes the mean photon number, i.e., Tr rρthn̂s “ n.

2.4.1. Optical Instruments
In order to perform quantum key distribution, we require optical devices to ma-
nipulate and detect light. The most prominent component is a beamsplitter. A
symmetric beam splitter is a device with two inputs and two outputs characterised
by its transmittance t and its reflectance r, where both are linked to each other
via the equation t2 ` r2 “ 1. While a more in-depth discussion can be found, for
example, in [37, Chapter 6.2], we only state the most important result. A sym-
metric beam splitter transforms the annihilation operators corresponding to the
input modes, labelled by 0 and 1 as followsˆ

â2
â3

˙
“

ˆ
t ir
ir t

˙ ˆ
â0
â1

˙
, (2.21)

where the output modes are labelled as 2 and 3. The factor of i next to the
reflectance r arises from the fact that for beam splitters built as a single dielectric
layer, the reflected and the transmitted beam differ in phase by π

2 .
Note that in the quantum case the beam splitter is always a two-input, two-output
device, even though we (actively) send light only in one mode, as the other mode
contains at least the vacuum state.
Even though we have already covered the theoretical description of measurements
in quantum mechanics in Section 2.2.2, it remains to specify, how measurements in
QKD protocols analysed within the frame of the present thesis, are conducted. For
protocols with continuous variables, we mostly perform homodyne and heterodyne
measurements. The idea is to mix the signal with a strong laser, called the local
oscillator, which serves as a phase reference. We begin with the description of
homodyne detection, following [37, Chapter 7.3].

33



Figure 2.1.: Schematic of a quantum mechanical beamsplitter.

Figure 2.2.: Schematic of a homodyne detector. LO denotes the local oscillator and
PDa and PDb are photodiodes. The box labelled with ∆ subtracts the
photocurrents Ja and Jb.
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Consider the constellation illustrated in Figure 2.2. The main components of a
homodyne detector are two photodiodes and a 50:50 beam splitter. We apply the
signal we want to measure to mode 0 of the beamsplitter, while mode 1 contains the
coherent laser light from the local oscillator. Following the beamsplitter relation
in Eq. (2.21), we obtain the annihilation operators of the output modes 2 and 3
of the beam splitter

â2 “ 1?
2

pâ0 ` iâ1q

â3 “ 1?
2

pâ1 ` iâ0q .

At the outputs, we place photodiodes, which measure the intensities Ja9xâ:
2â2y

and Jb9xâ:
3â3y. The photodiodes output electric currents Ja and Jb which are

proportional to the incident intensity. Thus, we can easily build the difference
between the currents from the photodiodes a and b, hence between the measured
intensities,

xn̂aby :“ Ja ´ Jb 9 xâ:
0â1 ´ â0â

:
1y.

Note that we inserted the expressions for â2 and â2 from above. Assuming that
the reference beam in mode 1 is a coherent state with amplitude β and that it has
the same frequency as our signal, one obtains

xn̂aby 9 |β|xX̂pθqy, (2.22)

where
X̂pθq :“ 1?

2

´
â0e

´iθ ` â:
0e

iθ
¯

(2.23)

is the field quadrature operator at the angle θ. Note that for θ “ 0 we obtain q̂
and for θ “ π

2 we obtain p̂. Hence, by choosing the phase difference θ between
the signal and the reference beam properly, we can measure either the q- or the
p-quadrature.
Unfortunately, homodyne detection allows us only to measure one of the quadra-
tures at the same time. Heterodyne detection overcomes this issue at the cost
of by 3dB lowered signal intensity. To perform heterodyne detection, we combine
two homodyne detectors and an additional 50 :50 beam splitter, which divides the
signal into two parts, halving the intensity. Note that even though we do not ac-
tively apply any signal to the second input of this beamsplitter, our input is mixed
with the vacuum state there, in accordance with the description of the quantum
mechanical beamsplitter. In our sketch in Figure 2.3, we indicate the vacuum state
by |0y. As the reflected mode of a beamsplitter naturally experiences a phase shift
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Figure 2.3.: Schematic of a heterodyne detector. LO denotes the local oscillator
and the two boxes represent homodyne measurements which measure
the q and p quadrature.

by π
2 , we can measure the q- and the p-quadrature at the same time. The POVM

of an ideal heterodyne detector reads [103]

Ey “ 1
π

|yyxy| . (2.24)
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2.5. Conic Programming

In this section, we summarise the theoretical background required to understand
conic linear programming, following [40]. A standard text about convex optimisa-
tion is the book by Boyd and Vandenberghe [9]. We refer the reader to this work
for more details.

2.5.1. Preliminaries

Definition 2.5.44: (Convex) Cone

A subset C of a vector space V over an ordered field F is called cone (linear
cone) if

@x P C, @α P F, α ą 0 : αx P C.

A cone is then a convex cone if

@α, β P F, α, β ą 0 @x, y P C : αx ` βy P C. (2.25)

Note that for a cone C we have C is convex ô C ` C Ď C. As we have defined
a cone, we are now ready to define the dual of a cone.

Definition 2.5.45: Dual Cone
Let V be a vector space equipped with an inner product and C Ď V . The
dual cone to C is defined to be the set

C˚ :“ tv P V ˚ | @w P C : xw, vy ě 0u . (2.26)

The cone of our main interest will be the closed convex cone of n ˆ n Hermitian,
positive semi-definite matrices.

2.5.2. Conic Programming and the Standard Form of SDPs

Consider HA and HB, two separable Hilbert spaces and let N : LpHAq Ñ LpHBq
be a linear map. Furthermore, denote by KA Ď LpHAq and KA Ď LpHBq two
convex cones and let HA P LpHAq and HA P LpHBq be two arbitrary but fixed
Hermitian matrices. A conic linear program is defined as follows:
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(P) Primal problem:

α :“ inf xX, HAyHA

s.t.
N pXq ´ HB P KB

X P KA

(D) Dual problem:

β :“ sup xY, HByHB

s.t.
HA ´ N ˚pXq P K˚

A

Y P K˚
B

The difference between α, the primal solution and β, the dual solution, is called
duality gap. Weak duality guarantees that for any primal feasible X and dual
feasible Y we have α ě β, so the duality gap is always non-negative. Under
certain conditions, we have even equality between the solution of the primal and
the dual problem, which is called strong duality. A sufficient condition for strong
duality is the so-called Slater’s condition:
If there exists a primal feasible X0 P intpKAq such that N pX0q ´ HB P intpKBq
and if there exists an optimal primal solution, then α “ β, so there is no duality
gap.

In what follows, we focus on the cone of Hermitian, positive semi-definite matrices,
as this will be the relevant cone in the present work. The subfield of convex
optimisation which deals with the optimisation over the positive semi-definite cone
is called semi-definite programming. The standard form for semi-definite programs
reads as follows [108].
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Definition 2.5.46: Standard Form for SDPs

Let HA, HB be separable Hilbert spaces and Ψ P LpHA, HBq a Hermitian-
preserving map. Let A P HermpHAq and B P HermpHBq.
A semi-definite program in standard form is a triple pΨ, A, Bq with
the following optimisation problems

(P) Primal problem:

α :“ min xA, XyHA

s.t.
ΨpXq “ B

X P PospHAq

(D) Dual problem:

β :“ max xB, Y yHB

s.t.
A ě Ψ˚pY q
Y P HermpHBq.

The set
A :“ tX P PospHAq | ΨpXq “ Bu

is called the primal feasible set, while

B :“ tY P HermpHBq | A ě Ψ˚pXqu
is called the dual feasible set.
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3. Introduction to Quantum Key
Distribution

God had meant photons to travel
rather than to stay put! This was
the insight that made us think of
using a quantum channel to
transmit confidential information.

Gilles Brassard [10]

The aim of this chapter is to give an overview of quantum key distribution and all
notions required to follow the security proof in the main part of the present thesis.
We begin by clearly defining the setting of quantum key distribution, followed
by the definition of security and by reviewing the differences between asymptotic
security analyses and finite-size security. In the second part of this chapter, we give
an overview of the numerical security proof method we use in this work to obtain
a tight lower bound on the secure key rate, including the dimension reduction
method and the non-ideal detector with trusted detector noise extension.

3.1. Basic Setting of Quantum Key Distribution
Consider two remote, honest parties called Alice and Bob. They are connected
via both an untrusted quantum channel and an authenticated public channel.
There are several techniques known for how to authenticate a classical message.
However, since this is a well-known classical process, for our purposes it suffices to
know that given some small pre-shared secret key, Alice and Bob can authenticate
their channel. Therefore, technically, we are dealing with a key-growing routine.
An eavesdropper, commonly called Eve, can manipulate the quantum channels in
any way that is permitted by the laws of physics and can read but not tamper
with messages exchanged via the classical channel. With only classical techniques,
it is impossible for Alice and Bob to establish a shared secret key in this setting,
where Eve’s only limitations are the laws of physics. However, thanks to the
peculiar nature of quantum mechanics, this task turns out to be feasible with a
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more advanced technique called quantum key distribution, or short QKD. One way
of explaining this advantage of the quantum world is the no-cloning theorem [113],
which is solely based on the very fundamental linear nature of quantum mechanics.
The no-cloning theorem makes it impossible for Eve to distinguish non-orthogonal
states with certainty without introducing errors that then can be detected by Alice
and Bob. Notice that in the whole scenario, we did not put any constraints on the
computational resources of the eavesdropper, i.e, quantum key distribution aims
for information-theoretical security rather than relying on assumptions about the
computational power like in classical cryptography. The second and even more
striking advantage of QKD is perfect forward security. This means that QKD-
keys at any future point in time are as secret as they have been when they were
generated. Note that this is opposite to classical cryptography, where an increase
in computational power immediately leads to a decline in secrecy, as information
can be copied and stored for an arbitrarily long time and may be encrypted once
the computational capacities suffice.

3.2. QKD Protocol
A QKD protocol is a publicly known list of instructions Alice and Bob follow
to establish a secret key and is usually subdivided into a quantum phase and a
classical phase. In the quantum phase, the quantum states are distributed via
the quantum channel and measured, while in the classical phase the measured
data is processed to decorrelate an eavesdropper’s correlations and via communi-
cation over the classical channel the bit-strings of the communicating parties are
error-corrected. While there exist protocols that involve trusted and untrusted
third parties, we focus on the case, where only Alice and Bob perform protocol
steps. Furthermore, in the sub-class of QKD protocols we consider in the present
thesis, Alice’s and Bob’s (measurement) devices are assumed to be fully charac-
terised and trusted and their labs are assumed to be inaccessible to Eve. This is
called device-dependent QKD. However, we note that there exist QKD protocol
families with weaker assumptions like measurement-device independent quantum
key distribution (MDI-QKD) [11, 66], where measurement devices do not have to
be trusted or even device-independent quantum key distribution (DI-QKD) (see
[83] for a review), where monitoring violations of Bell-inequalities allows Alice and
Bob to establish a secret key without trusting any devices. Clearly, in general,
keys generated under weaker assumptions are shorter than keys generated in the
device-dependent scenario.
We differentiate between two big classes of protocols, entanglement-based (EB)
protocols and prepare-and-measure (P&M) protocols. In entanglement-
based protocols both Alice and Bob receive one share of a bipartite state and
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then each of them performs measurements on the received state. In prepare-
and-measure protocols, Alice holds a quantum source, prepares a quantum state
and sends the prepared state to Bob via the quantum channel, while keeping a
(classical) record of the prepared state. It turns out that both families are equiv-
alent thanks to the source-replacement scheme [21, 28], which allows to translate
entanglement-based protocols into prepare-and-measure protocols and vice-versa.
The idea is that both implementations turn out to be indistinguishable for every-
one outside of Alice’s lab, and hence can be considered equivalent. This happens
to be very useful in security analyses as one can switch between both descriptions,
depending on which formulation is more convenient for theoretical analysis. How-
ever, we want to emphasise that source replacement does not change the physical
implementation of the protocol, as it is only a theoretical concept to ease certain
arguments in the security proof.
Next, let us describe the steps of a generic prepare-and-measure protocol.

1.) State Preparation — Alice prepares one out of NSt P N quantum states
t|ϕ0y , ..., |ϕNSt´1yu according to some probability distribution tp0, ..., pNSt´1u
in her lab and sends it to Bob via the quantum channel. She keeps track of
the state she prepared in a classical register.

2.) Measurement — Bob receives the states and measures them with a POVM
tP i

BuiPI . Afterwards, he holds a classical random variable representing his
measurement results.

Steps 1 and 2 are repeated N times. After N rounds Alice and Bob hold two
correlated random variables representing their raw data.

3.) Public Announcement and Sifting — Alice and Bob agree to perform
testing on a random subset of m rounds. For these rounds, Alice announces
publicly which state she prepared and Bob announced his measurement re-
sults. This allows them to calculate some statistical quantities they use to
decide if they have to abort the protocol or not. In case they conclude that
Eve might have gained too much information about their quantum states,
they stop. This phase is often (misleadingly) called parameter estimation,
implying that we determine channel parameters like channel transmission
and noise. We note that in particular in the finite-size regime, this nam-
ing is inaccurate, as we do not estimate ‘real’ quantities (which are never
accessible) but calculate statistical quantities and compare them with pre-
defined acceptance sets. Therefore, in the present thesis, we coin the term
acceptance testing.
Additionally, some protocols allow for sifting. This means that Alice and
Bob communicate to agree to discard particular rounds and to keep others
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(for example, in protocols with basis choice, they might only want to proceed
with rounds where they chose the same bases).

4.) Key Map — If they decided to proceed, one party performs a key map,
based on the publicly announced data and their own private information.
The key map assigns every round that is left after the testing and sifting
procedure a symbol in the set t0, ..., NSymb ´ 1, Ku in case of a NSymb-ary key
map. Assigning K to some of the rounds and announcing it publicly allows
performing postselection. Mathematically, a key map is a function

g : Spublic
1 ˆ Spublic

2 ˆ Sprivate
2 Ñ t0, ..., NSymb ´ 1, Ku,

where ‘2’ labels the party that performs the key map. Motivated by the
direction of the information flow (with or reverse to the quantum signals),
in case Alice does the key map it is called direct reconciliation, while Bob
performing the key map is referred to as reverse reconciliation.

5.) Error Correction (EC) — Alice and Bob use the classical channel to get
their data to agree with the key established by the party who performed the
key map. Thereby, they unavoidably reveal some information about their
key.

6.) Privacy Amplification (PA) — In the privacy amplification step, Alice
and Bob determine the maximal length of their final key while still being
secure and then randomly choose a member of the family of two-universal
hash-functions and apply it to their shared bit-string. Eventually, they ob-
tain the final secret shared key of length ℓ.

Without performing postselection, for CV-QKD with direct reconciliation, a se-
cure key cannot be created if the efficiency of the quantum channel falls below
50% as Eve can mimic the losses by inserting a beam splitter [45]. Then, in case
the losses exceed 50% Eve holds a larger share of the state than Bob, hence can
extract more information than him. However, as shown in [96] this issue can be
resolved by performing postselection. In the present thesis, we focus on reverse
reconciliation, where Eve has to guess Bob’s key that is based on his measurement
results rather than the state Alice prepared. Reverse reconciliation is known to
have a better performance for CV-QKD protocols, in particular for higher trans-
mission distances. We note that postselection can be applied in the case of reverse
reconciliation as well (see, for example, [56, 64]). However, our proof method is
applicable both to direct and reverse reconciliation.
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3.3. Security Analysis of QKD Protocols
Once Alice and Bob agreed on a certain QKD protocol, they require a physical
implementation capable of performing all required protocol steps as well as a se-
curity proof, determining if they are able to distil secret key (and how much) with
their chosen protocol. In the present thesis, we focus on the security proof and
consider the details of the physical implementation only up to a degree that is nec-
essary for the security proof. By security proof, we mean a theoretical assessment
of the protocol, whose output is a lower bound on the achievable secure key rate
(the number of secure key bits divided by the total number of signals sent) of a
certain QKD protocol, given some system parameters like the channel noise, the
channel transmittance or the detection efficiency and under some mathematical
description of the involved devices. While the goal of every security analysis is to
prove security without any assumptions or restrictions on Eve’s abilities, it can be
favourable to first prove security under some assumptions, simplifying the security
proof significantly, and lifting the proof to a more general case afterwards.

3.3.1. Eavesdropping Strategies
The following considerations refer to the prepare-and-measure picture and fol-
low [90]. In general, Eve can attach an ancilla state to the signal that leaves
Alice’s lab and let them interact via some unitary transformation. By measuring
her ancilla state after the interaction, Eve hopes to gain some information about
the state Alice prepared. Depending on how Eve’s ancillae are prepared, how long
Eve can wait to do her measurements (i.e., depending on if she has a quantum
memory), and the way she has to perform her measurement, we distinguish three
different classes of attacks, starting with the weakest.

• Individual attacks: Eve’s ancilla states interact with each of Alice’s
quantum signals individually and independently from others, following the
same strategy. This does not mean that she has to perform the same action
in every round but can include probabilistic strategies. Eve has to measure
her states before Alice and Bob start their classical postprocessing.

• Collective attacks: Again, Eve attacks each round of quantum signals
independently from each other, hence Alice’s, Bob’s and Eve’s common state
can be assumed to have tensor-product structure ρN

ABE “ σbN
ABE, where σABE

is some single-round state. In contrast to individual attacks, Eve is allowed
to keep her ancilla states in a quantum memory until Alice and Bob have
finished their postprocessing routine. Then, she may perform a collective
measurement on all of her ancilla states based on what she learnt from Alice’s
and Bob’s communication over the classical channel.
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Figure 3.1.: Schematic sketch of the three classes of eavesdropping strategies.

• Coherent attacks: Coherent attacks represent the most general class of
attacks. Eve does not have to interact with every round independently from
each other. She may prepare one large ancilla state and let it interact with
each of the rounds via some joint unitary operation. Afterwards, she can
store her ancilla state in a quantum memory and measure at some time,
in particular after Alice and Bob have finished their postprocessing routine.
In her collective measurement Eve can use the knowledge she gained from
listening to the communication during the classical phase.

Individual attacks turned out to be unjustifiably unrestrictive, leading to overly
optimistic key rates. In contrast, for many classes of protocols, there exist tech-
niques that allow us to relate key rates against collective attacks to key rates
against coherent attacks, like the quantum de Finetti theorem [86], the postse-
lection technique [18] or the (generalised) entropy accumulation theorem [26, 70],
stating that collective attacks are optimal up to some non-leading order correction
terms. Hence, in many cases, it is reasonable to simplify the analysis by assum-
ing collective attacks as a first step and lifting the security statement to general
attacks afterwards.

3.3.2. Asymptotic vs. Finite-Size Security
In practical settings, Alice and Bob exchange a finite amount of N P N signals in
the quantum phase (steps 1 and 2) before they proceed with the classical phase
(steps 3 to 6) of the protocol. However, from the perspective of security analy-
sis, it is much easier to assume that the number of exchanged signals N Ñ 8.
Security proofs relying on this assumption are called asymptotic security proofs.
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The asymptotic secure key rate against i.i.d. collective attacks is given by the
Devetak-Winter formula [23]

R8 ě IpX : Zq ´ IpZ : Eq, (3.1)

where X and Z denote Alice’s and Bob’s bit strings, respectively and E denotes
Eve’s knowledge, including all knowledge she gained from listening to Alice’s and
Bob’s classical communication. In general, Eve’s information about Bob’s key
string is difficult to calculate. The Holevo quantity χpZ : Eq gives an upper
bound on Eve’s accessible information IpZ : Eq. It is given by

χpZ : E 1q “ HpρE1q ´
ÿ

z

ppzqHpρE1|zq, (3.2)

where H denotes the von Neumann entropy, the sum is over Bob’s classical alpha-
bet distributed according to probability ppzq, ρE1|z is Eve’s conditional ancilla state
and ρE1 “ ř

z ppzqρE1|z is Eve’s marginal state. Note that our formulation assumes
reverse reconciliation. For direct reconciliation, replace the quantities referring to
Bob with those corresponding to Alice.
While the asymptotic limit is a convenient simplification to ease the theoretical
analysis, it is an idealisation that can never be achieved in practical settings.
Therefore, the ultimate goal is to prove security for a finite number of rounds
N , i.e., to prove security in the finite-size regime. To take finite-size effects into
account, we have to modify the key rate formula in Eq. (3.1) by subtracting a
finite-size correction term cpN, ϵq,

Rfin ě IpX : Y q ´ IpY : Eq ´ cpN, ϵq. (3.3)

Besides the number of transmitted quantum signals N , the finite-size correction
term depends on ϵ ą 0 which takes the failure probabilities of subprotocol steps
into account. This epsilon is closely linked to the idea of composability, which will
be discussed in Section 3.3.3. For ϵ small enough but non-zero and N Ñ 8, the
correction term should converge to zero, cpN, ϵq nÑ8Ñ 0, i.e. Eq. (3.3) converges to
Eq. (3.1), R8 “ limNÑ8 RfinpNq.
In the finite-size regime, we are usually interested in the achievable key length ℓ
as well. Note that the finite-size key rate Rfin is related to the key length via

Rfin “ ℓ

N
.

3.3.3. Composability
Cryptographic keys are generated to encrypt messages and are therefore used as
part of a larger protocol. For example, the obtained secret key can be used as
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an input for the one-time pad to enable secure communication. Therefore, it
is essential that the security of subprotocols can be used to argue that a larger
cryptographic scheme is secure. This is called composable security. In the
present subsection, we summarise the idea of composability, following [81, Chapter
II] and [82].
Early security proofs like the BB84 security proof by Shor and Preskill [95] based
their proof on a non-composable security definition, which was shown to be in-
secure when combined in a larger framework [59]. Composability goes back to
developments in classical cryptography where it was proposed independently by
Canetti [14, 15] and Pfitzmann and Waidner [80]. It was applied to the quantum
case briefly after [3, 4, 104]. The composability notion for quantum key distribu-
tion we present in this section goes back to Renner and König [85, 87].
In contrast to previous security definitions, which considered the information gath-
ered by an adversary, composable security compares an ideal system with the real
protocol and quantifies how well they can be told apart from each other. This is
known as the real-world ideal-world paradigm. An adversary is therefore seen as a
distinguisher that has all abilities of the original adversary and is able to simulate
any protocol that ran before the examined cryptographic protocol. He can choose
the inputs of the protocol (so, the outputs of previously run protocols) and obtain
all outputs that are not private to Alice or Bob while being allowed to tamper with
the communication channels similar to the original adversary. The distinguisher
then has access to two black boxes, the ideal and the real implementation and has
to decide which one is the real protocol. Then, a real system is called secure if it
is indistinguishable from the ideal protocol, i.e., if the probability of choosing the
right one is not better than randomly guessing. Let us call the ideal protocol F0
and the real protocol F1 and assume a distinguisher D is given both the output
x of the ideal and of the real protocol with probability p “ 1

2 . The output of the
distinguisher is a guess g P t0, 1u, where c “ 0 or c “ 1 indicate which protocol he
believes the output he received came from. Then, the distinguishability is defined
as [85, Proposition 2.1.1]

dpF0, F1q :“ max
D

„
2

ˆ
Prrg “ cs ´ 1

2

˙ȷ
. (3.4)

It can be shown that the trace distance is exactly the right measure to capture the
notion of distinguishability,

1
2

ˇ̌ˇ̌
ρp0q

x ´ ρp1q
x

ˇ̌ˇ̌
1 “ dpF0, F1q. (3.5)

In a real implementation, we cannot expect to achieve perfect security, therefore
we have to weaken our security definition to make it practical. This is captured

48



by ϵ-security. A real implementation is ϵ-secure if its distinguishability from the
ideal protocol is less than ϵ.
According to the security notion introduced by Renner and König [87] for QKD
protocols, the key of the real system is compared to a random and uniformly
distributed key that is completely uncorrelated to the eavesdropper’s system E,

ρideal
KAKBE “ 1

N

N´1ÿ
x“0

|xyxx| b |xyxx| b ρE. (3.6)

So, a perfect QKD protocol outputs a key with the following properties
1. KA “ KB,

2. KB is uniformly distributed,

3. Eve does not have any knowledge about KB.
The density matrix corresponding to the successful execution of the real imple-
mentation reads

ρreal
KAKBE “

N´1ÿ
x,y“0

P px, yq |xyxx| b |yyxy| b ρx,y
E . (3.7)

Let us use the symbol K to denote the abortion of the protocol and ppKq the
corresponding abort-probability. Then, the states taking the probability that the
protocol aborts into account, read

σideal
ABE “ ppKq |KyxK| b |KyxK| b ρK

E ` p1 ´ ppKqqρideal
ABE, (3.8)

σreal
ABE “ ppKq |KyxK| b |KyxK| b ρK

E ` p1 ´ ppKqqρreal
ABE. (3.9)

The protocol is trivially secure if it aborts. Therefore, the security definition for a
QKD protocol is

1
2

ˇ̌ˇ̌
ρideal

KAKBE ´ ρreal
KAKBE

ˇ̌ˇ̌
1 ď ϵ

1 ´ ppKq . (3.10)

If we introduce the state

ρUUE1 :“ 1
N

N´1ÿ
x“0

|xyxx| b |xyxx| b ρx
E (3.11)

and apply the triangle inequality, we can split the security condition into two parts,
1
2

ˇ̌ˇ̌
ρideal

KAKBE ´ ρreal
KAKBE

ˇ̌ˇ̌
1

ď1
2

ˇ̌ˇ̌
ρideal

KAKBE ´ ρUUE

ˇ̌ˇ̌
1 ` 1

2
ˇ̌ˇ̌
ρUUE ´ ρreal

KAKBE

ˇ̌ˇ̌
1

ăϵsec ` ϵcor

1 ´ ppKq .
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The first part,
p1 ´ ppKqq ∆pρideal

KAKBE, ρUUEq ă ϵsec, (3.12)
is called secrecy condition, which bounds the joint probability of not aborting and
the private information is known to Eve, while the second part,

p1 ´ ppKqq ∆pρUUE, ρreal
KAKBEq “ p1 ´ ppKqq Pr rKA ‰ KBs ă ϵsec, (3.13)

is called correctness condition, which bounds the joint probability of not aborting
and Alice and Bob not sharing the same key. This shows that if a protocol is
ϵsec-secret and ϵcor-correct then it is ϵ :“ ϵsec ` ϵcor secure.
We have already noted that a protocol that aborts all the time is trivially secure.
However, we want a practically useful protocol to execute successfully most of the
time when the adversary behaves honestly. This is called robustness. In more
detail, let q be a parameter quantifying the introduced noise (if the adversary is
passive). Then, the probability of a key being generated is a function of q and for
every q the probability that the protocol aborts is δ, the robustness of the protocol
[82, Section 4.4]

3.4. Numerical Security Proof Framework
In the present thesis, we use the numerical security proof framework introduced in
[19, 110] which was applied to calculate tight secure key rates in the asymptotic
limit for DM CV-QKD protocols in [64]. In contrast to analytical security proofs
which are often very technical, introduce looseness in the obtained lower bounds
and are rather inflexible regarding changes in the protocol structure, numerical
security proofs do not have those drawbacks on the cost of suffering from finite
numerical precision and high computational complexity. In the upcoming section,
we review the numerical security proof method for DM CV-QKD protocols in the
asymptotic limit, following [19, 110] for the general idea and [64] for the application
to DM CV-QKD protocols.

3.4.1. Asymptotic Numerical Security Proof Framework
Consider the entanglement-based version of the generic QKD protocol we described
in Section 3.2 under the assumption that Alice and Bob exchange infinitely many
rounds of signals. We denote the measurements Alice and Bob perform on system
A and B to obtain their raw key strings by ZA and ZB. Let the corresponding
POVM elements be tZi

AuiPI and tZj
BujP. The Devetak-Winter formula [23] for the

case of reverse reconciliation,

R8 ě IpZA : ZBq ´ IpZB : Eq
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can be reformulated using the definition of the mutual information in Eq. (2.8)
and the entropy relations in Eq. (2.7) and Eq. (2.9). We obtain

R8 ě HpZB|Eqρ ´ HpZB|ZAqρ. (3.14)

If we denote the tripartite density operator shared between Alice, Bob and Eve by
ρABE, the density operators related to the von Neumann entropies in the key rate
formula read

ρZAZB
“

ÿ
iPI

jPJ

Tr
“`

Zi
A b Zj

B

˘
ρAB

‰ |iyxi| b |jyxj| , (3.15)

ρZBE “
ÿ
jPJ

|jyxj| b Tr
“`

Zj
B b ✶E

˘
ρBE

‰
. (3.16)

The source-replacement scheme [21, 28] allows us to describe prepare-and-measure
protocols in the entanglement-based picture, hence Alice effectively prepares

|ΨyAA1 “
ÿ

xPNSt

?
px |xyA |ϕxyA1 , (3.17)

where we introduced the short notation NSt :“ t0, ..., NSt´1u and where A1 denotes
the register that is sent to Bob via the quantum channel. In this picture, Alice
chooses the state she prepared, using the local POVM ZA :“ t|xyxx|uxPNSt on her
register A. Describing the quantum channel connecting Alice and Bob by the
CPTP map EA1ÑB, the bipartite state upon Bob receiving his share reads

ρAB “ pidA b EA1ÑBq p|ΨyxΨ|AA1q . (3.18)

Then, depending on Alice’s measurement |xyxx|, Bob receives

ρx
B “ 1

px

TrA rp|xyxx| b ✶Bq ρABs . (3.19)

We can use this formulation to determine constraints on Alice’s and Bob’s bipartite
state which helps us to specify the set over which the optimisation in Eq. (3.23)
is performed.
It is reasonable to assume that Eve does not have access to Alice’s lab (strong lab
wall assumption), hence Eve cannot modify Alice’s part of the state as it never
leaves her laboratory. Therefore, Alice’s share of the state is fixed,

ρA “ TrB rρABs “
ÿ

x,x1PNSt

?
pxpx1 xϕx|ϕx1y |xyxx|A . (3.20)

Bob’s state travels through the quantum channel, which is under Eve’s control
before he receives it. Therefore, Bob’s share of their joint state ρAB is unknown
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and he has to perform local measurements to constrain the set of possible density
operators. We denote the set of performed measurements by tΓkukPt0,...,M´1u for
M P N, where the Γk’s are Hermitian operators and the corresponding expected
values by γk :“ xΓky “ Tr rΓkρABs. In addition, we require that ρAB represents
a valid quantum state, i.e., ρ ě 0 and Tr rρs “ 1. The trace constraint can be
included in the first set of constraints by setting ΓM :“ ✶B.
These constraints make up the set, defining all possible density matrices

S8 :“ tρAB ě 0 : ρA “ TrB rρABs , @k P t0, ..., Mu : Tr rΓkρABs “ γku . (3.21)

Eve’s system is assumed to purify ρAB as this gives her the most information about
ρAB. In general, the set S8 is non-trivial and contains many density operators.
Since we are looking for a lower bound on the secure key rate, we have to find
the state ρAB in S8 which minimises Eq. (3.14), i.e., the state which gives Eve
the most information about ρAB, while still being compatible with the constraints
imposed by S8. Therefore, we obtain

R8 ě min
ρABPS8

rHpZB|Eqρ ´ HpZB|ZAqρs . (3.22)

To ease the notation, we drop the subscript AB if it is clear from the context. It
is shown in [110, Section 4] that Eq. (3.22) can be reformulated to

R8 ě min
ρPS8

D pGpρq||ZpGpρqqq ´ ppassδ
EC
leak, (3.23)

where Dpρ||σq is the quantum relative entropy, G is a completely positive map
describing postprocessing steps, Z is a completely positive trace-preserving map
used to read out the result of the key map (see [64] for a more detailed expla-
nation of the maps G and Z) and ppass is the probability of passing the sifting
procedure (including postselection, see steps 3.) and 4.) of the generic protocol
in Section 3.2). Furthermore, by δEC

leak, we denote the information-leakage in the
information reconciliation procedure. Thanks to the joint convexity of the quan-
tum relative entropy and the linearity of the maps G and Z the objective function
fpρq :“ D pGpρq||ZpGpρqqq is convex. As the constraints in Eq. (3.21) are linear,
we conclude that the optimisation problem

α :“ min
ρPS8

fpρq (3.24)

is a convex optimisation problem. In more detail, we face a semidefinite program
(SDP) with a convex, non-linear objective function. While, in general, there is not
much hope in solving this optimisation analytically, there exist numerical methods
to solve problems of that structure numerically. However, numerical methods
cannot be expected to find the exact minimum, but only yield solutions close to
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the actual optimum. Since this is not a reliable lower bound for our key rate finding
problem, i.e., the obtained key rates would not guarantee security, we require a
more sophisticated method. The numerical security proof method established in
[19, 110] tackles the problem using a two-step procedure. In the first step, the
authors solve the optimisation problem approximately, finding a density matrix
representing a close-to-optimal eavesdropping attack. Therefore, the output of
step 1 gives only an upper bound on the secure key rate. In the second step, the
result from step 1 is converted into a lower bound, combining a linearisation of
the problem, based on the intermediate solution of step 1, with duality theory for
semidefinite programs.
Since we deal with linearisations of the objective function f , we require the gradient
of f at some point ρ. The gradient of the (matrix-valued) map f at some point ρ
can be defined in the standard basis t|kyu

∇fpρq :“
ÿ
k,j

cjk |jyxk| , cjk :“ Bfpσq
Bσjk

ˇ̌̌̌
σ“ρ

, σjk :“ xj| σ |ky . (3.25)

If we insert fpρq “ DpGpρq||ZpGpρqqq, following the rules given in [79], we derive
for the gradient

|∇fpρq|T “ G: plog2 pGpρqqq ´ G: plog2 pZpGpρqqqq . (3.26)

However, the gradient might not exist over the whole range of the feasible set.
Therefore, the authors in [110] introduce a small perturbation ϵ̃ ą 0 that maps
Gpρq to its interior. For τ , the maximally mixed state in the output space of G,
we define

Dϵ̃pρq :“ p1 ´ ϵ̃qρ ` ϵ̃τ.

This ensures that the eigenvalues of ρ are non-zero. Then, using the perturbed
map

Gϵ̃pρq :“ pDϵ̃ ˝ Gq pρq (3.27)
they show in [110, Lemma 1] that the gradient of

fϵ̃pρq :“ D pGϵ̃pρq||ZpGϵ̃pρqqq (3.28)

exists for all ρ ě 0. Hence, in what follows, we frequently replace f by its perturbed
version fϵ̃ without stating this explicitly.
Since the objective function is highly non-linear, step 1 is solved iteratively. One
well-suited method for this task is the Frank-Wolfe algorithm [29], which is an
iterative first-order optimisation algorithm for constrained, convex optimisation
problems. It is known for staying within the feasible set and therefore we do not
require a projection that brings us back after every iteration (in contrast to alter-
native methods like the gradient descent algorithm). The guaranteed convergence
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of the Frank-Wolfe algorithm is only O ` 1
k

˘
[51], where k is the number of itera-

tions. Therefore, we replace the update rule for the step width with a line-search
in the found descent direction. Furthermore, since the solution of a semidefinite
program in every iteration is computationally costly, we introduce an additional
stopping criterion to avoid the execution of iterations that do not lead to signif-
icant improvements. This leads to the following modified Frank-Wolfe algorithm
[110].

Algorithm 3.4.1: Modified Frank-Wolfe Algorithm

Choose δFW ą 0, imax P N and ρp0q P S8
for i “ 1 to imax do

Compute ∆ρ :“ arg min Tr
“p∆ρqJ∇fpρpiqq‰

subject to ∆ρ ` ρpiq P S8
if Tr

“p∆ρqJ∇fpρpiqq‰ ă δFW then
return ρpiq

else
Find λ P p0, 1q such that λ :“ argminfpρpiq ` λ ∆ρq
Update ρpi`1q :“ ρpiq ` λ∆ρ

end if
end for

Let us call the output of this algorithm ρStep 1, which gives rise to an upper bound
on the secure key rate. It remains to convert this into a lower bound. Since the
objective function is convex, the hyperplane defined via the gradient of f at ρStep 1
lies underneath the graph of f , @σ P S8 :

fpσq ě fpρStep 1q ` Tr
”
pσ ´ ρStep 1qJ ∇fpρStep 1q

ı
.

This holds, in particular for the minimiser ρ˚ P S8. Therefore, one deduces

f pρ˚q ě fpρStep 1q ` Tr
”
pρ˚ ´ ρStep 1qJ ∇fpρStep 1q

ı
ě fpρStep 1q ` min

σPS8
Tr

”
pσ ´ ρStep 1qJ ∇fpρStep 1q

ı
.

As ρJ
Step 1∇fpρStep 1q is constant with respect to the minimisation, lower-bounding

our original optimisation problem reduces to solving

min
σPS8

Tr
“
σJ∇fpρStep1q‰

. (3.29)

The authors in [110] show that the dual of this linearised problem reads

max
y⃗PS8̊pρStep 1q

γ⃗ ¨ y⃗, (3.30)
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where

S˚
8pρStep 1q :“

#
y⃗ P RM`1 :

Mÿ
i“0

yiΓi ď ∇fpρStep 1q
+

(3.31)

and γi :“ xΓiy. Weak duality then implies that the solution of the dual is a lower
bound for the solution of the primal problem. This leads to Theorem 2 in [110],
which states that for any attack ρStep 1 P S8,

α ě βϵ̃pρStep 1q :“ fϵ̃pρStep 1q ´ Tr rρStep 1∇fϵ̃pρStep 1qs ` max
y⃗PS8̊

γ⃗ ¨ y⃗ ´ ζϵ̃, (3.32)

with ζϵ̃ :“ 2ϵ̃pd1 ´ 1q ln
´

d1
ϵ̃pd1´1q

¯
and d1 :“ dimpGpρStep 1q. The last correction term

takes the price into account we pay for using the perturbed objective function fϵ̃.
Therefore, in step 2 it remains to solve the maximisation in Eq. (3.32). This
summarises the basic idea of the numerical security proof method.
However, so far we have ignored numerical errors inherent to computer represen-
tations of analytical quantities. So, it is not possible to find elements that are
completely in S8. Let us denote the computer representations of Γi and γi by Γ̃i

and γ̃i. The authors in [110] construct a relaxed set

S̃ϵ1
8 :“ tρ P DpHq : @i, |Tr

“
Γ̃i

‰ ´ γ̃i| ď ϵ1u, (3.33)

where ϵ1 is some small quantity that upper-bounds the constraint violations, that
contains S8 and derive a relaxed lower bound,

α ě βϵ̃,ϵ1 :“fϵ̃pρStep 1q ´ Tr
“
ρJ

Step 1∇fϵ̃pρStep 1q‰
` max

py⃗,z⃗qPS̃˚,ϵ̃8 pρStep 1q

˜
⃗̃γ ¨ y⃗ ´ ϵ1

Mÿ
i“0

zi

¸
´ ζϵ̃,

(3.34)

where

S̃˚,ϵ̃
8 pρStep 1q

:“
#

py⃗, z⃗q P pRM`1,RM`1q : ´z⃗ ď y⃗ ď z⃗,
Mÿ

i“0
yiΓ̃J

i ď ∇fϵ̃pρStep 1q
+

.
(3.35)

It is argued in [110, Section 3.4] that the obtained lower bounds are tight, provided
that ϵ̃ and ϵ1 are small and ρStep 1 is close to the optimum.

3.4.2. DM CV-QKD Optimisation Problem
In the present thesis, we are concerned with continuous-variable QKD protocols
and focus on protocols where Bob performs heterodyne detection (see Section 2.4).
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However, the technique can easily be adapted to homodyne detection as well (see,
for example, ‘Protocol 1’ in [64]). This subsection follows [64] (‘Protocol 2’) for
the formulation of the optimisation problem. In both cases, Bob measures the
first and second moments of the quadrature operators q̂ and p̂. Based on the
measurement outcomes, he can calculate the derived quantities n̂ “ 1

2 pq̂2 ` p̂2 ´ 1q
and d̂ “ q̂2 ´ p̂2, where n̂ is the photon number operator introduced in Section 2.4.
We use these measurement results to constrain the bipartite state ρAB and obtain
the following optimisation problem

min D pGpρABq||Z pGpρABqqq
s.t.

TrB rρABs “ ρA,

Tr rρABs “ 1,

Tr rp|xyxx| b q̂q ρABs “ pxxq̂yx,

Tr rp|xyxx| b p̂q ρABs “ pxxp̂yx,

Tr rp|xyxx| b n̂q ρABs “ pxxn̂yx,

Tr
”´

|xyxx| b d̂
¯

ρAB

ı
“ pxxd̂yx,

ρAB ě 0,

(3.36)

where x P NSt, ρA “ ř
x,x1PNSt

?
pxpx1 xϕx|ϕx1y |xyxx|A and xq̂yx, xp̂yx, xn̂yx and xd̂yx

are the expected values of Bob’s measurement operators for the conditional state
ρx

B. It remains to specify the maps G and Z occurring in the objective function.
We describe the postprocessing maps in terms of Kraus operators, Gpρq “ KρK:.
In case of reverse reconciliation, we use the following Kraus operator

K “
ÿ

zPNSt

|zyR b ✶A b
´a

Rz
B

¯
B

, (3.37)

where R is a classical register. The operators Rz
B coarse-grain Bob’s heterodyne

measurement results to regions in the phase space that are associated with the key
map. The so-called region operators are defined as

Rz
B :“ 1

π

ż 8

∆r

ż 2j`1
NSt

π

2j´1
NSt

π

r|reiϕyxreiϕ| dϕ dr, (3.38)

for z P NSt, where ∆r denotes the (radial) postselection parameter. They arise
from integrating the POVM elements for heterodyne detection from Eq. (2.24)
over wedge-shaped regions in phase space. The pinching quantum channel Z is
defined as

Zpρq “
ÿ

jPNSt

p|jyxj|R b ✶ABq ρ p|jyxj|R b ✶ABq . (3.39)
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Note that this description already uses the simplified postprocessing map. For a
detailed derivation, we refer interested readers to [64, Appendix A].

Photon-number cutoff assumption

The optimisation in Eq. (3.23) involves Alice’s and Bob’s bipartite states ρAB P
S8. Therefore, the dimension of the optimisation problem depends on the dimen-
sion of Alice’s and Bob’s Hilbert space. In the present thesis, we are concerned
with continuous-variable protocols. While the dimension of Alice’s system is de-
termined by the number of different signal states she prepares, so in particular
finite, the dimension of Bob’s Hilbert space is infinite and so is the dimension of
Alice’s and Bob’s bipartite system. However, as we want to employ computers to
calculate secure key rates, we require a finite-dimensional description of the prob-
lem. Motivated by the Poissonian distribution of the photon number in coherent
states, one can argue that high photon-number states are unlikely to be popu-
lated. This leads to the photon-number cutoff assumption, which imposes that
Bob’s system is sufficiently well described by a finite-dimensional Hilbert space
HB “ span t|0y , ..., |ncyu, where nc P N s the so-called photon cutoff number. Fol-
lowing the photon-number cutoff assumption, we replace ρB by ΠncρBΠnc , where
Πnc :“ řnc

n“0 |nyxn| and adapt all operators on Bob’s side in the same way. How-
ever, for a valid security proof, this assumption needs to be removed. This is done
rigorously by the dimension reduction method, which we are going to discuss in
the next section.

3.4.3. Dimension Reduction Method
In this section, we review the dimension reduction method first presented in [105].
The idea is to rigorously treat the photon-number cutoff by connecting the original
infinite-dimensional optimisation problem to a suitably chosen finite-dimensional
optimisation problem that is numerically evaluated under some reasonable re-
quirements on the objective function f . The method gives a tight lower bound
on the infinite-dimensional optimisation problem based on the result of the finite-
dimensional optimisation problem and a penalty term, that takes the cutoff into
account.
We choose Hfin to be any finite-dimensional subspace of the original infinite-
dimensional Hilbert space H8 :“ HA bHB. Let Π be the corresponding projection
onto Hfin. Furthermore, choose Sfin to be a nonempty convex subset of DďpHfinq
such that ΠS8Π Ď Sfin. Our goal is to relate the infinite-dimensional optimisation

min
ρPS8

fpρq (3.40)
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to the finite-dimensional problem

min
ρPSfin

fpρq. (3.41)

Let ρ8 P S8 be the density operator achieving the optimum in Eq. (3.40). Note
that for continuous f and compact S8 such a ρ8 exists. Furthermore, let ρfin P Sfin
be the density matrix achieving the optimum in the finite-dimensional optimisa-
tion, given in Eq. (3.41) and introduce ρΠ :“ Πρ8Π, which is the projection
of the optimum of the infinite-dimensional optimisation problem onto the finite-
dimensional subspace. The relation between the optimal values of the optimisa-
tions in Eq. (3.40) and Eq. (3.41) is established via two inequalities. By construc-
tion ρΠ lies within the finite-dimensional feasible set Sfin. Since ρfin attains the
minimum of f in Sfin, we have

fpρΠq ě fpρfinq. (3.42)

For the second inequality, we require f to satisfy a certain condition, which turns
out to be satisfied by the objective function of the key rate finding problem.

Definition 3.4.2: Uniformly Close to Decreasing under Projection

Let H be a separable Hilbert space. A function f : DďpHq Ñ R is called
uniformly close to decreasing under projection (UCDUP) on a set
S Ď DďpHq with correction term ∆pwq if

@ρ P S : F pρ, ΠρΠq ě Tr rρs ´ w ñ fpΠρΠq ´ fpρq ď ∆pwq, (3.43)

where Π is a projection onto a subspace of H.

Note that UCDUP is a slightly weaker condition than uniform continuity.
Requiring f to be UCDUP on S8, Ref. [105] shows that

fpρΠq ´ ∆pwq ď fpρ8q (3.44)

holds. Combining inequalities (3.42) and (3.44) leads to the main theorem of
the dimension reduction method ([105, Theorem 1]) where we used the improved
correction term from [106, Theorem 2]. For more details, we refer the interested
reader to the original paper.

58



Theorem 3.4.3: Dimension Reduction
Let H be a separable Hilbert space and Π the projection onto some finite-
dimensional subspace Hfin of H as well as ΠK the projection onto pHfinqK.
Let ρ8 P DďpHq and ρfin P DďpHfinq.
If f : DďpHq Ñ R is uniformly close to decreasing under projection, then

fpρfinq ´ ∆pwq ď fpρ8q,
where

∆pwq :“ ?
w log2p|Z|q ` p1 ` ?

wqh
ˆ ?

w

1 ` ?
w

˙
. (3.45)

Here, |Z| denotes the dimension of the key map and hp¨q is the binary en-
tropy.

The size of the correction term ∆pwq is a function of the weight w which depends on
the size of the chosen finite-dimensional Hilbert space Hfin, hence on the chosen
cutoff space Hnc . Hence, we are looking for a subspace where we expect the
weight to be small. The authors in [105] show that for the present DM CV-QKD
key rate optimisation problem, a particularly good choice is a subspace spanned
by displaced Fock states |nγy “ D̂pγq |ny, where the displacement is linked to
the states that Alice prepares. The projection for the ith state is then Π :“řnc

n“0 |nβi
yxnβi

|, where tβiuiPNSt is chosen according to ?
ηαi, where i P NSt.

Next, we give an interpretation of the quantity w and a brief motivation for nam-
ing it weight. Using Winter’s Gentle Measurement Lemma [111], the UCDUP
condition can be written as

F pρ, ΠρΠq “ Tr rρΠs ě Tr rρs ´ w (3.46)

since Π is a projection. This implies

Tr rp✶´ Πqρs ď w, (3.47)

so w is an upper bound for the weight of the state ρ outside the finite-dimensional
space Hfin.
It remains to state the finite-dimensional optimisation problem we have to solve.
For a derivation, we refer the interested reader to [105].
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min fpρfinq
s.t.

||TrB rρfins ´ ρA||1 ď 2
?

w

1 ´ w ď Tr rρfins ď 1,

Tr rp|xyxx| b n̂βxq ρfins ď pxxn̂βxy,
Tr

“`|xyxx| b n̂2
βx

˘
ρfin

‰ ď pxxn̂2
βx

y,
ρfin P Pos pHfinq ,

(3.48)

where x P NSt, ρA “ ř
x,x1PNSt

?
pxpx1 xϕx|ϕx1y |xyxx|A and xn̂βxy and xn̂2

βx
y are

the expected values of the displaced number operator and the squared displaced
number operator, respectively.

3.4.4. Trusted Detector Noise and Nonideal Detectors
So far, we assumed that Bob’s detectors have 100% detection efficiency and that
all observed noise is excess noise, hence under Eve’s control. In realistic imple-
mentations detectors are not perfect, but have detection efficiency ηd P p0, 1q and
electronic noise νel ą 0. If parts of the noise can be traced back to Bob’s detectors,
one might decide to trust this part of the total noise, as the detectors are located in
Bob’s lab. Hence, it is reasonable to assume the electronic noise is not under Eve’s
control. The authors in [63] generalise the present method to this more realistic
scenario. We review their ideas and the necessary changes briefly.
The noisy, nonideal heterodyne detector is described, following the detector model
by Lodewyck [67]. The idea is to introduce two additional beamsplitters with
transmittances η1 and η2 matching to the efficiencies of the real homodyne detec-
tors that are placed after the initial 50 : 50 beam splitter that divides the input
signal into two equal shares. At each of the additional beamsplitters, signal is
mixed with a thermal state with mean photon number ni “ νi

2p1´ηiq , i P t1, 2u
such that the matching electronic noise is added to the outputs. Finally, two ideal
homodyne detectors measure the resulting states. A sketch of the situation can be
found in Figure 3.2. For simplicity, we assume it what follows that η1 “ η2 “: ηd

and ν1 “ ν2 “: νel.
As the detector model is different now, several quantities change. First, we need
to replace the ideal detector POVM elements Ey “ 1

π
|yyxy| by

Gy “ 1
ηdπ

D̂

ˆ
y?
ηd

˙
ρth

ˆ
1 ´ ηd ` νel

ηd

˙
D̂:

ˆ
y?
ηd

˙
, (3.49)

as derived in [63]. This leads to modified region operators Rz
B “ ş

yPAz
Gy d2y,

where Az denotes the region in phase space the operator corresponds to. The map
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Figure 3.2.: Schematic of the trusted, nonideal detector model. The incident signal
is mixed with the vacuum state at a 50 :50 beamsplitter. The output
signals pass another beamsplitter with transmission η1 and η1, where
they are mixed with thermal states. Finally, the q and q quadratures
are measured by ideal homodyne detectors.
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G, hence the objective function f , change correspondingly. Furthermore, the first-
and second-moment observables become

F̂Q “
ż
C

y˚ ` y?
2

Gy d2y,

F̂P “
ż
C

i py˚ ´ yq?
2

Gy d2y,

ŜQ “
ż
C

py˚ ` yq2

2 Gy d2y,

ŜP “
ż
C

´ py˚ ´ yq2

2 Gy d2y.

(3.50)

This leads to the following optimisation problem for trusted, nonideal detectors

min fnoisypρq
s.t.

TrB rρABs “ ρA,

Tr rρABs “ 1,

Tr
”´

|xyxx| b F̂Q

¯
ρAB

ı
“ pxxF̂Qyx,

Tr
”´

|xyxx| b F̂P

¯
ρAB

ı
“ pxxF̂P yx,

Tr
”´

|xyxx| b ŜQ

¯
ρAB

ı
“ pxxŜQyx,

Tr
”´

|xyxx| b ŜP

¯
ρAB

ı
“ pxxŜP yx,

ρAB ě 0,

(3.51)

where, again, x P NSt, ρA “ ř
x,x1PNSt

?
pxpx1 xϕx|ϕx1y |xyxx|A and xn̂βxy and xn̂2

βx
y

are the expected values of the displaced number operator and the squared displaced
number operator, respectively.
Similarly, as we derived (3.51) from (3.36), we can modify the optimisation prob-
lem arising from the dimension reduction method (3.48). We give only a brief
review, following [105, Section VI, D and Appendix D], for more details, we refer
the interested reader to the original paper. It turns out that although Bob’s ob-
servables

“
n̂?

ηdβx

‰1 and
”
n̂2?

ηdβx

ı
in the noisy, trusted detector case are displaced

by ?
ηdβx, compared to only βx in the ideal, untrusted detector case, n̂βx and n̂2

βx
,

the new observables are related to the old ones by linear combinations. This means
that based on his measurement results, Bob can recreate the expected values of
the ideal observables. Let us denote these ‘effective’ expected values by xn̂yeff and
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xn̂2yeff. Then, as shown in [106, Section 5.3], the following relations hold

xn̂βxyeff “
A“

n̂?
ηdβx

‰1E ´ νel

ηd

(3.52)

xn̂2
βx

yeff “ 1
η2

d

ˆB”
n̂2?

ηdβx

ı1F ´ 2ν2
el ´ νel ´ p4νel ` 1 ´ ηdq

´A“
n̂?

ηdβx

‰1E ´ νel

¯˙
,

(3.53)
for x P NSt. Therefore, if Bob calculates these effective quantities based on his
measured results, only the objective function of the optimisation problem changes
due to different POVM elements for noisy, trusted detectors, while the set of
feasible states remains unchanged. The semidefinite program reads,

min fnoisypρfinq
s.t.

||TrB rρfins ´ ρA||1 ď 2
?

w

1 ´ w ď Tr rρfins ď 1,

Tr rp|xyxx| b n̂βxq ρfins ď pxxn̂βxyeff,

Tr
“`|xyxx| b n̂2

βx

˘
ρfin

‰ ď pxxn̂2
βx

yeff,

ρfin P Pos pHfinq ,

(3.54)

where x P NSt, ρA “ ř
x,x1PNSt

?
pxpx1 xϕx|ϕx1y |xyxx|A and xn̂βxyeff and xn̂2

βx
yeff are

the effective expected values of the displaced number operator and the squared
displaced number operator, as described above.
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4. Finite-Size Security Analysis of
DM CV-QKD Protocols

After having set the stage in the previous chapter, we are now almost ready to state
the main result of this work. Large parts of this chapter, in particular Sections
4.3 and 4.4, are taken from the draft of our paper that is currently in preparation
[55]. We begin this section with a brief overview of the current state of DM CV-
QKD security proofs, followed by a discussion of so-called energy tests. Then, we
introduce the protocol we analysed and finally present the finite-size security proof
for DM CV-QKD protocols against i.i.d. collective attacks.

4.1. State of Security Proofs
We begin by reviewing the current state of security proofs for DM CV-QKD pro-
tocols. Although practically simpler, security proofs for discretely modulated CV-
QKD protocols have been lagging behind proofs for protocols with Gaussian mod-
ulation for a long time, even though it is known that a practically useful security
analysis needs to take the influence of finite constellations into account [53].

4.1.1. Asymptotic Security Proofs
Early asymptotic security proofs for DM CV-QKD protocols against collective
attacks [47, 98] were restricted to idealised cases like channels without noise, but
already allowed some flexibility regarding the number of different signal states used.
Later, the first proofs for the more general case of noisy channels emerged [114],
but only applied for binary modulation and used homodyne detection. Binary
modulation schemes, however, are known to be limited, even for short distances
[46, 88]. The proof idea from [114] was extended to three states in [12]. However,
the attempt does not seem to be generalisable to an arbitrary number of states.
This leads us to more general security proofs against collective attacks in the
asymptotic limit for lossy, noisy channels. We begin with analytical attempts.
The proof by Denys et.al. [22] bounds the asymptotic secure key rate by ana-
lytically solving a semidefinite program for arbitrary modulation schemes. While
the secure key rates for large constellations come close to key rates known from
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Gaussian modulation but are loose for a low number of signal states. Further-
more, this proof approach does not allow postselection. Another security proof by
Kaur et.al. [58] approximates an isotropic Gaussian probability distribution by
finite-size constellations and applies entropic continuity bounds to quantify how
well approximated the Gaussian modulation is by the finite constellation. By con-
struction, this security proof is not suitable to determine secure key rates for small
constellations.
Finally, we come to numerical security proofs against collective attacks in the
asymptotic limit, which are more flexible than analytical approaches at the cost
of high computational complexity. Ghorai et.al. [38] use Bob’s measurements to
minimise over all density matrices that are compatible with the covariance matrix
determined based on Bob’s results. The optimality of Gaussian attacks then gives
a bound on the Holevo quantity, hence the secure key rate. The occurring semidefi-
nite program has a linear objective function and is solved numerically. In contrast,
the numerical security proof framework [19, 110] reformulates the Devetak-Winter
formula in terms of the quantum relative entropy and formulates a semidefinite
program constrained by Bob’s observations and additional requirements on the
density matrix arising from the source-replacement scheme with a nonlinear ob-
jective function. This SDP is solved in a two-step process, which results in a
tight lower bound on the secure key rate. The framework has been applied to DM
CV-QKD protocols [63, 64] both for homodyne and heterodyne detection and for
untrusted, ideal as well as for trusted, nonideal detectors. While both mentioned
numerical approaches initially relied on a photon-number cutoff assumption to
handle infinite-dimensional systems, this was removed by [105] for the numerical
framework in [19, 64, 110]. While both numerical frameworks allow postselection,
the key rates obtained by [64] are clearly higher than those by [38]. Both attempts
are in principle generalisable to a higher number of signal states (see, for example,
[56, 57]) and also allow for different modulation patterns. However, with a growing
number of signal states, the computational complexity increases rapidly, making
the problems numerically very challenging.

4.1.2. Finite-Size Security Proofs
Next, we turn to security proofs in the practically relevant finite-size regime. One
of the first finite-size security proofs for DM CV-QKD protocols is by Furrer et.al.
[34] and analyses a protocol employing two-mode squeezed vacuum states and
homodyne detection. The authors provide security statements both for collec-
tive and general attacks by exploiting the fact that in the case Alice and Bob
both measured the same quadrature, Eve’s knowledge about the complementary
quadrature is small. This allows them to lower-bound the smooth min-entropy
quantifying Eve’s knowledge about Alice’s outcome. Another approach by Fur-
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rer [33] exploits the finite detection range of real detectors, adds an additional
test measurement and employs an entropic uncertainty relation to obtain a lower
bound on the secure key rate. Both attempts work only for a special protocol and
give nonzero secure key rates only for very low transmission distances.
Papanastasiou et.al. [77] prove the composable finite-size security against Gaussian
collective attacks for a protocol using phase-encoded coherent states and hetero-
dyne detection. They allow for trusted thermal noise but no postselection and they
need to introduce a photon number cutoff to make the problem computationally
feasible. In the paper, they treat only the case of two and three signal states,
which seems to be already computationally demanding. Therefore, it is not clear
if this method can be used easily for higher constellations.
Matsuura et.al. [69] prove the general security of a binary phase-modulated CV-
QKD protocol detection by estimating the fidelity of an optical pulse to a coherent
state, where they use heterodyne detection for testing and homodyne detection for
key generation rounds. Their analysis does not include trusted detector noise or
postselection and does not seem to be generalisable to arbitrary constellations.
Another very recent approach by Lupo et.al. [68] builds up on the numerical
framework by Ghorai et.al and proves composable security against i.i.d. collective
attacks in the finite-size regime. The authors exploit the finite detection range
of realistic heterodyne detectors to bound the maximal photon number of incom-
ing signals. While they take the finite resolution of real detectors into account,
their measurement devices have unit detection efficiency and they do not consider
trusted noise or postselection. Similarly to [38] they solve linear SDPs to bound
entries of the covariance matrix to obtain bounds on the Holevo information, hence
on the secure key rate. They obtain secure key rates for a protocol with quaternary
modulation that for a large number of signal states N converge against the asymp-
totic key rates reported by [22], which are known to be loose for a low number of
states.

4.1.3. Résumé

This brief overview shows that security proofs for DM CV-QKD protocols are
subject to active research. While there has been much progress over the last couple
of years, in particular for proofs in the asymptotic limit, there is still no general
finite-size security proof for general modulation patterns, including postselection
and realistic detection devices available. In the asymptotic regime, the numerical
framework [19, 64, 110] provides a very flexible tool to calculate tight secure key
rates. This motivates us to extend this framework to the finite-size regime.
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4.2. Energy Tests
To illustrate the need for one of the main contributions of this work, imagine the
following situation. Alice sends N ă 8 quantum signals with low energy E “ 1

N

to Bob via a quantum channel, while Eve might interfere with the signals. Bob
receives the quantum states and decides to perform testing on k ăă N randomly
selected rounds. Now, assume Eve has replaced one of the signals by a state with
energy E ąą 1

N
. In most of the cases, Bob will test only those rounds, where Eve

has not interfered with the signal and might conclude that the average energy of the
states he receives is E “ 1

N
, while indeed the average energy is much higher. Thus,

he underestimates both the average and the maximum energy horribly. Note that
the energy of a harmonic oscillator (which is how we modelled laser pulses) and the
photon number are related via En “ ℏωn, hence underestimating the maximum
energy is equivalent to underestimating the maximal photon number. This was not
a problem for security proofs in the asymptotic limit as there the number of rounds
used for testing was infinite as well, but turns out to be a critical aspect for finite-
size security proofs, in particular for numerical approaches, which rely on having a
maximal photon number. This situation highlights, why it requires some statistical
statement about the maximal energy in the received pulses. Such statistical tests,
aiming to estimate or bound the maximum energy (or, equivalently, the maximum
number of photons) in a sequence of pulses, are called energy tests.
A couple of energy tests are known in the literature. The energy test by Renner
and Cirac, presented in [86], uses the permutation invariance of the quantum
output of most QKD protocols. The authors propose testing on a small subset
of all rounds. Given the test was successful, except with some small probability,
most of the remaining rounds live in a finite-dimensional Hilbert space. However,
with this approach, we are left with some possibly infinite-dimensional systems.
Unfortunately, it seems to be not possible to remove these infinite-dimensional
systems later on during the security proof in the lack of a chain rule for smooth-
min entropies removing infinite-dimensional registers. Hence, this energy test is
not applicable in our case.
In contrast, another energy test by Leverrier, introduced in [62], performs testing
on a small subset but results in a statistical energy bound on all remaining rounds.
However, this energy test requires a very strong phase-space rotation symmetry,
which is not satisfied by our protocol. Applying an additional symmetrisation step
to our protocol, performing the test and undoing the symmetrisation afterwards
again is not possible, as this artificial symmetrisation basically mixes all rounds
with each other. Then, the test traces out k ăă N rounds, hence ‘destroys’ some
information that is needed to recreate N ´ k non-symmetrised rounds. Besides
that, even if it was possible, we expect the whole artificial symmetrisation proce-
dure including performing its reverse operation, would require a large amount of
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coordination between Alice and Bob, hence communication over the classical chan-
nel. This would lead to large overhead and make the protocol slow and impractical
and potentially leaks information to Eve, lowering the key rate.
The energy test by Furrer [33] requires an additional beamsplitter which is used to
extract a small fraction of every signal. This small part of the signal is then mea-
sured via a heterodyne detector. Besides the fact that an additional beamsplitter
introduces additional losses, performing this energy test requires supplementary
hardware like a second measurement setup and is therefore experimentally less
favourable and less practical.
This motivates the development of an alternative energy test that does (a) not
require additional hardware, (b) does not require high symmetry and (c) makes a
probabilistic statement about all remaining systems after the testing.

4.3. General DM CV-QKD Protocol
In what follows, we describe the general discrete modulated CV-QKD protocol
we consider in the present work, where NSt P N denotes the number of distinct
signal states used in the protocol and Greek letters put in bra-ket notation refer
to coherent states. We present the prepare-and-measure version of the protocol.
Note that thanks to the source-replacement scheme [21, 28] this is equivalent to
the entanglement-based version of the protocol and we are free to switch between
both versions in case this eases the security analysis.

1 State preparation— Alice prepares one out of NSt possible coherent states
|αy with α P tα0, ..., αNSt´1u in her lab with equal probability and sends it to
Bob using the quantum channel. Alice associates every state with a symbol
and keeps track of what she sent in a private register.

2 Measurement— Bob receives the signal and performs a heterodyne mea-
surement to determine the quadratures of the received signal. This can be
described by a positive operator-valued measure tEγ “ 1

π
|γyxγ| : γ P Cu.

After applying this POVM, Bob holds a complex number yk P C that is
stored in his private register.

Steps 1 and 2 are repeated N times.

3 Energy test— After completing the state preparation and measurement
phases, Bob performs an energy test on kT ăă N rounds by using the mea-
surement results related to these rounds. If for most of the tested signals,
the heterodyne detection gave small measurement results, the test passes.
This means that most of the weight of the transmitted signals lies within
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a finite-dimensional Hilbert space, except with some small probability ϵET.
Otherwise, Alice and Bob abort the protocol. For details about the energy
test, we refer to Section 4.2.

4 Acceptance test — If the energy test was successful, Bob discloses the
data from the rounds he used for the energy test via the classical channel.
This information is used by Alice and Bob to determine statistical estimators
for their observables. If they lie within the acceptance set, Alice and Bob
proceed, otherwise, they abort the protocol.

5 Key map— Bob performs a reverse reconciliation key map on the remaining
n :“ N´kT rounds to determine the raw key string z̃. For this purpose, Bob’s
measurement outcomes are discretised to an element in the set t0, ..., NSt ´
1, Ku, where symbols mapped to K are discarded. By choosing a key map
that discards results in certain regions of the phase space, Bob can perform
postselection as described in [64].

6 Error correction— Alice and Bob publicly communicate over the classical
channel to reconcile their raw keys x̃ and z̃. After the error correction phase,
Alice and Bob share a common string except with a small probability ϵEC.

7 Privacy amplification— Finally, they apply a two-universal hash-function
to their common string. Except with small probability ϵPA, in the end, Alice
and Bob hold a secret key.

We note that step 4 is often called parameter estimation. However, we want
to emphasise that in the finite-size regime we can never estimate any properties
of the ‘real’ density matrix, but only determine some statistical quantities based
on our observations. First, we define a so-called acceptance set, which can be
imagined as a list of accepted observations. Based on our measurement results,
we partition the set of all density matrices into two disjoint sets. The first one
contains density matrices that lead to accepted statistics with probability less than
ϵAT, i.e., the protocol aborts with high probability for those states. The second set
is the complement of the first one and in what follows, we can restrict our security
considerations to states lying in the latter set, called the ‘feasible set’. Based on
this construction, we restrict our analysis to states that are ϵ-secure with ϵ ă ϵAT.
For a more detailed discussion of the idea of acceptance sets, we refer the reader
to [36, Section II.B], where this notion is discussed for discrete-variable QKD.
While we present our security proof approach for an arbitrary number NSt of signal
states, we demonstrate our numerical results for a quadrature phase-shift keying
protocol with NSt “ 4, where all four states are arranged equidistantly on a circle
with radius |α|, αk P t|α|, i|α|, ´|α|, ´i|α|u, where i denotes the complex unit. In
this case, the key map in step 5.) of the protocol description reads as follows
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z̃i “

$’’’’&’’’’%
0, if 7π

4 ď argpyiq ă 1π
4 ^ |yj| ě ∆r,

1, if 1π
4 ď argpyiq ă 3π

4 ^ |yj| ě ∆r,
2, if 3π

4 ď argpyiq ă 5π
4 ^ |yi| ě ∆r,

3, if 5π
4 ď argpyiq ă 7π

4 ^ |yi| ě ∆r,
K otherwise,

(4.1)

where ∆r ě 0 is the radial postselection parameter and argpzq denotes the polar
angle between the vector representing z and the positive q axis. We note that our
method, of course, can take other postselection patterns into account as well.

4.4. Finite-Size Security Proof
4.4.1. High-level outline of the security proof
Before we go into the details of our security proof, we aim to give the big picture
of our approach. For our proof, we assume i.i.d. collective attacks, this means
Eve prepares a fresh ancilla state to interact with each round of the protocol in
an identical manner and then stores them in a quantum memory. Once Alice
and Bob have finally executed their protocol, she measures her quantum memory,
containing all ancillae, collectively. In particular, this means that there are no
correlations between different rounds and that we can treat all rounds equally.
Since Alice’s quantum signals went through the quantum channel, which is under
Eve’s control, we do not know a-priori if there is a maximum photon number in
the states Bob receives. Thus, we have to work with infinite-dimensional Hilbert
spaces. To bound the maximum dimension, we perform an energy test (Theorem
4.4.1) by choosing a cutoff number nc, a weight w and a testing parameter βtest.
If the test passes, except with some small probability ϵET, most of the weight of
the sent states lies within the chosen cutoff space Hnc . In this case, we are deal-
ing with bounded observables and we can use Hoeffding’s inequality to perform a
statistical test in the acceptance testing step (Theorem 4.4.2) and obtain bounds
on the expectations. Mathematically, we distinguish between two scenarios for
each of both tests. Either the test fails, meaning that with high probability the
observed statistical quantity does not correspond to a state in our acceptance set.
Otherwise, the test passes. Hence, after performing both the energy test and the
acceptance test, we know that the actual state is ϵET ` ϵAT close to the set we
consider in our security analysis. Within Renner’s finite-size framework [85], the
next step is to handle blockwise post-processing and error correction and to apply
the leftover hashing lemma, which tells us that if Alice and Bob apply a randomly
chosen hash function from the family of two-universal hash functions, the output
is secure as long as it is smaller than Eve’s uncertainty about Alice’s and Bob’s
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initial key string. However, Renner assumes finite-dimensional Hilbert spaces, so
we cannot apply his results directly (recall that the energy test gave us a bound
on Bob’s dimension, but Eve created her purification before Bob performed his
energy test). To resolve this, we use the leftover hashing lemma against infinite-
dimensional side-information ([8, Proposition 21]) to derive our entropic condition
on the key length (Lemma B.1.4). It remains to take the effect of classical commu-
nication during the error-correction phase into account. Thanks to Lemma B.1.6,
we can remove the transcript from the information reconciliation step at the cost of
introducing a leakage term even if one of the conditioning systems (Eve’s purifying
system) is still infinite-dimensional. We then use various properties of the smooth
min-entropy to simplify the expression, giving an upper bound on the secure key
rate. Following the methodology of [34], we establish the Asymptotic Equiparti-
tion Property (AEP) from Renner’s thesis [85] and extend it to infinite-dimensional
quantum side-information (Corollary B.2.17) 1. Then, we use the dimension reduc-
tion method (Theorem 3.4.3) to obtain a finite-dimensional semidefinite program,
which then can be solved by an extension of the numerical framework presented
in [19, 110].

4.4.2. Noise Robust Energy Test
As outlined in Section 4.2, one of the crucial tasks when analysing the finite-size
security of DM CV-QKD protocols is handling Bob’s possible infinite-dimensional
quantum states. Since existing energy tests do either require additional hardware,
rely on high phase-space rotation symmetries or only make probabilistic statements
about most, but not all, systems remaining after the test, we develop our own
energy test.
Besides that, we aim for a practically useful energy test, which is an energy test
which does not abort almost all the time in realistic, in particular, noisy environ-
ments. Therefore, we want our energy test to be noise-robust. Unfortunately, we
are not able to perform a ‘maximum photon number’ or ‘photon-cutoff number’
measurement directly. Thus, we need to establish a connection between a ‘virtual’
maximum photon number measurement and the heterodyne measurement that we
are actually able to perform by Born’s rule. Having sketched the idea of our energy
test, we first state our result in the form of a theorem and postpone the proof to
Appendix A.
As outlined in the protocol description, after transmitting N rounds of signals,
Alice and Bob perform testing on kT ăă N modes, i.e. Bob carries out heterodyne
measurements to determine the quadratures of the chosen rounds. His measure-

1We generalize this form of the AEP rather than using the extension of the fully quantum
AEP [34] as it applies for all block lengths and is simpler to apply for numerical calculations.
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ment results can be used for the following statement.

Theorem 4.4.1: Noise Robust Energy Test

Consider signal states of the form ρbN and let kT P N, kT ăă N , be the
number of signals sacrificed for testing. Let lT P N be the number of rounds
that may not satisfy the testing condition. Denote by pY1, ..., YkT

q the results
of the test measurement. Pick a weight w P r0, 1s, a photon cutoff number
nc and a testing parameter βtest ą 0. For ideal detectors define rideal :“

Γpnc`1,0q
Γpnc`1,βtestq and for trusted, non-ideal detectors rnon-ideal :“ 1

Γp1,βtestq . Finally,
let ΠK be the projector onto the complement of the photon cutoff space Hnc .
Then, for all ρ such that Tr

“
ΠKρ

‰ ě w,

Pr
“ˇ̌␣

Yi : Yi ă β2
test

(ˇ̌ ď lT
‰

ď
`
1 ´ w

r

˘kT ´lT `1

kT ´ lT ` 1 “: ϵET,

where r P trideal, rnon-idealu, depending on the detector model and where
Γpn, aq is the upper incomplete gamma function.

Proof. See Appendix A.

In other words, the energy test tells us that for all ρ that satisfy Tr
“
ΠKρ

‰ ě w the
energy test will fail except with probability ϵET.
Note that the theorem only tells us something in the case the energy test passes.
If the energy test fails, we abort the whole protocol and therefore are (trivially)
secure. Furthermore, as Alice’s lab is assumed to be inaccessible to Eve, the test
needs to be performed by Bob only.
After passing the energy test, working in a finite-dimensional Hilbert space allows
us to specify the relevant set for our observables. This is the set we restrict our
security analysis to (see our discussion in Section 4.3), based on statistical bounds
for the observed values of our observables X̄. This statistical test replaces the
parameter estimation step in asymptotic security analyses.
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Theorem 4.4.2: Acceptance Test

Consider k outcomes of an observable X that is bounded by x. Assume the
state ρ is i.i.d. and denote the observed average by X̄.
Then, the complement to the set that is ϵAT-filtered by the acceptance test
is given by

SAT :“ ␣
ρ P DďpHA b Hnc

B q : @X P Θ,
ˇ̌
Tr rρXs ´ X̄

ˇ̌ ď µX

(
, (4.2)

where Θ denotes the set of Bob’s observables and

µX :“
d

2x2

k
ln

ˆ
2

ϵAT

˙
.

In case X is a positive semidefinite operator, we obtain the improved bound

µX :“
d

x2

2k
ln

ˆ
2

ϵAT

˙
.

Proof. Using Hölder’s inequality, we obtain for the observable X

||Xρ||1 ď ||X||8||ρ||1 “ ||X||8 “: x,

therefore EpXq “ Tr rρXs ď x. This implies that our measurement results w.r.t.
the observable X lie within the interval r´x, xs almost surely (or r0, xs in case X
is positive semi-definite). Hence, we can apply Hoeffding’s inequality [50] which
states that

Pr
“ˇ̌

X̄ ´❊rXsˇ̌ ě µX

‰ ď 2e
´ 2kµ2

X
p2xq2 “: ϵX

AT. (4.3)
For positive semi-definite X replace 2x by x. Then, we obtain µX from basic
algebra.
This allows us to define the relevant set by defining it as the set of all density
matrices whose expected values for all observables X deviate less than µX from
the corresponding observed statistics. For simplicity, we choose for all observables
the same ϵ-parameter, @X, X 1 P Θ : ϵX

AT “ ϵX 1
AT “: ϵAT and obtain the set in Eq.

(4.2).

For an observable X we can associate every density matrix with its corresponding
expected value. This theorem tells us that states whose expected values deviate
more than µX from (at least one of) our observations are accepted only with a
probability smaller or equal to ϵAT. For the rest of the security analysis, it suffices
to focus on SAT, the set of states that are likely to pass the test, at the cost of
some small error probability ϵAT.
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4.4.3. Formalisation of the protocol steps
Every protocol step can be described mathematically as a quantum channel. In
what follows, formalise the relevant steps to set the stage for the security proof in
the upcoming section.

1. Bob performs an energy test on kT modes, while the remaining n :“ N ´
kT modes as well as Eve’s system remain untouched. Let us denote the
measurement results by ZkT .
In case Bob obtains the measurement results ZkT such that the energy test
is successful, the map outputs a classical register |ry containing ’1’ and in
case the test fails, the register contains ’0’. Furthermore, Bob announces his
outcomes publicly ZkT . We translate this now into an energy testing map

EET :“ idAnBnE b `E ET, 2 ˝ E ET, 1˘
AkT BkT

.

The two maps composing the energy testing map are defined as follows,

EET, 1 : ρAkT BkT ÞÑ
ż

ZkT PC
ppZkT |ρAkT BkT q |ZkT yxZkT | dµ “: ρ

|ρ
ZkT

.

and

EET, 2 : σ ÞÑ ΠETσΠET ` p✶´ ΠETqσp✶´ ΠETq,

where we set ΠET :“ ř
A |ZkT yxZkT | with A being the set containing all bit

strings ZkT that cause the energy test to abort with probability 1´ET and

ρZk :“
ż

ZkPC
p

`
Zk|ρAkBk

˘ |ZkyxZk| dµ.

2. If the energy test passes, Alice and Bob perform parameter estimation. To
use their data economically, they may use the same rounds for parameter
estimation as Bob used for the energy test, as this information is already
public anyways. Hence, they use a parameter-estimation routine.

EAT : ρET
AnBnE b |yyxy|bkT

ÞÑ ρAT
AnBnE :“

#
ρET

AnBnE b |0yx0| , if AT failed,

ρET
AnBnE b |1yx1| , if AT passed

.

75



3. We may combine those maps into a map covering the whole testing proce-
dure,

ETest : ρAN BN E ÞÑ ρET&AT
AnBnE1

:“ ρAnBnE b
´

ΠETρ
|ρ
ZkT

ΠET b |0yx0|T ` p✶´ ΠETqρ|ρ
ZkT

p✶´ ΠETq b |1yx1|T
¯

,

where now |1yx1|T indicates that both the energy test and the acceptance
test passed and |0yx0|T stands for all other cases. Note that the right side of
the tensor product represents public information. Therefore, we can absorb
this expression into Eve’s system by renaming it E 1.

4. In case the testing procedures were successful, Alice and Bob apply a key
map to obtain classical data and perform classical post-processing

Eclass : ρET&AT
AnBnE1 ÞÑ ρXnY nE1 .

4.4.4. Finite-size security proof
After having finished all preparations, we now establish the security proof of the
present CV-QKD protocol against i.i.d. collective attacks. We state our main
result, the security statement against i.i.d. collective attacks, in the following
theorem and prove it afterwards. Note that we postpone the proof of technical
statements and lemmas used in our proof to Appendix B to improve readability.

Theorem 4.4.3: Security statement against i.i.d. collective attacks

Let HA and HB be separable Hilbert spaces and let ϵET, ϵAT, ϵ̄, ϵEC, ϵPA ą 0.
If the output of the quantum phase of the objective QKD protocol is i.i.d.,
the protocol is ϵET `ϵAT ` ϵ̄`ϵEC ` ϵPA

2 -secure given that, in case the protocol
does not abort, the secure key length is chosen to satisfy

ℓ

N
ď n

N

„
min

ρPSE&A
HpX|E 1qρ ´ δpϵ̄q ´ ∆pwq

ȷ
´ δEC

leak ´ 2
N

log2

ˆ
1

ϵPA

˙
,

(4.4)

where δEC
leak takes the classical error-correction cost into account, ∆pwq is

given in Eq. (3.45) and δpϵq :“ 2 log2 prankpρXq ` 3q
b

log2p2{ϵq
n

.

Proof. According to our assumption, after completing N rounds of the quantum
phase in the present QKD protocol, Alice and Bob share the state ρbN

AB P DppHA b
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HBqbN q. There exists a purification ρABE P S1pHA b HB b HEq of ρAB, where the
purifying system E can be infinite-dimensional. Hence, ρbN

ABE P S1ppHA b HB b
HEqbN q purifies ρbN

AB . To ease the notation, we define H :“ HA b HB b HE. We
argue first that the relevant state after both the energy test and the acceptance
test still has a tensor-product structure. Due to the nature of statistical testing, in
our security analysis we never know the actual state Bob receives, but only decide
to proceed or abort the protocol, based on if the state we receive lies within a
pre-defined set. Therefore, in the next step, we show that the states we consider
in our security analysis are ϵET ` ϵAT-close to this unknown state. Finally, we
choose the worst-case state contained in the feasible set, i.e., the state that gives
Eve the most advantage and Alice and Bob the lowest key rate. In what follows,
we formalise those steps rigorously.
By Lemma B.1.1, we know that there exists a measure ν on S1pHq such thatˇ̌̌̌ˇ̌̌̌

ρbN
ABE ´

ż
σPS1pHq

σbN νpσq
ˇ̌̌̌ˇ̌̌̌

1
“ 0.

Since the data processing inequality for the trace distance under completely pos-
itive trace non-increasing maps holds for general density operators as well (see
Lemma B.1.3), we apply the map EET modelling our energy test and obtainˇ̌̌̌ˇ̌̌̌

ρET ´
ż

σPS1pHq
σET νpσq

ˇ̌̌̌ˇ̌̌̌
1

“ 0, (4.5)

where the superscript ET indicates that the energy test has been applied. Note
that we omitted the N -fold tensor product in the superscript of the states to
improve readability. We define the set of states that have not been filtered by the
energy test with probability greater than 1 ´ ϵET,

SET :“ tσ P S1pHq : TrE rσs is not ϵET-securely filteredu .

Similarly, we can apply our (CPTNI) acceptance testing map EAT and obtainˇ̌̌̌ˇ̌̌̌
ρE&A ´

ż
σPS1pHq

σE&A νpσq
ˇ̌̌̌ˇ̌̌̌

1
“ 0. (4.6)

Analogously, as a subset of all states that have not been filtered by the energy
test, we define the set of states that have not been filtered by the acceptance test
with probability greater than 1 ´ ϵAT

SE&A :“ ␣
σ P SET : TrE rσs is not ϵAT-securely filtered

(
.

To ease the notation, in what follows, we omit the superscript E&A for states
occurring in integrals as for those the set they belong to is clear from the context.
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We can split up the set of pure states as follows S1pHq “ SET Y SET, where .̄
denotes the complement of a set, and similarly SET “ SE&A Y SE&A. Therefore,
we obtain ż

σPSET
σ νpσq “

ż
σPS1pHq

σ νpσq ´
ż

σPSET
σ νpσq (4.7)

and ż
σPSE&A

σ νpσq “
ż

σPSET
σ νpσq ´

ż
σPSE&A

σ νpσq. (4.8)

We derive ˇ̌̌̌ˇ̌̌̌
ρET ´

ż
SET

σ νpσq
ˇ̌̌̌ˇ̌̌̌

1

ď
ˇ̌̌̌ˇ̌̌̌
ρET ´

ż
S1pHq

σ νpσq
ˇ̌̌̌ˇ̌̌̌

1
`

ˇ̌̌̌ˇ̌̌̌ż
S1pHq

σ νpσq ´
ż

SET
σ νpσq

ˇ̌̌̌ˇ̌̌̌
1

“ 0 `
ˇ̌̌̌ˇ̌̌̌ż

SET
σ νpσq

ˇ̌̌̌ˇ̌̌̌
1

ď
ż

SET
||σ||1 νpσq

ď ϵET,

where the first step follows from the triangle inequality. For the second step, we
applied Eq. (4.5) and Eq. (4.7). For the last step, we used that ν is a probability
measure, and ||σ||1 ď 1.
Similarly, one can show thatˇ̌̌̌ˇ̌̌̌

ρE&A ´
ż

SE&A
σ νpσq

ˇ̌̌̌ˇ̌̌̌
1

ď ϵAT.

We use these two statements to concludeˇ̌̌̌ˇ̌̌̌
ρABE ´

ż
SE&A

σ νpσq
ˇ̌̌̌ˇ̌̌̌

1

ď
ˇ̌̌̌ˇ̌̌̌
ρABE ´

ż
S1pHq

σνpσq
ˇ̌̌̌ˇ̌̌̌

1
`

ˇ̌̌̌ˇ̌̌̌ż
S1pHq

σ νpσq ´
ż

SE&A
σ νpσq

ˇ̌̌̌ˇ̌̌̌
1

ď

ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌ ż
S1pHq

σ νpσq ´
ż

SET

σ νpσq

ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌
1

`
ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ ż
SET

σ νpσq ´
ż

SE&A

σ νpσq
ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
1

ď
ˇ̌̌̌ˇ̌̌̌ż

SET
σ νpσq

ˇ̌̌̌ˇ̌̌̌
1

`
ˇ̌̌̌ˇ̌̌̌ż

SE&A
σ νpσq

ˇ̌̌̌ˇ̌̌̌
1

.
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Hence, we showed thatˇ̌̌̌ˇ̌̌̌
ρbn

ABE ´
ż

SE&A
σ νpσq

ˇ̌̌̌ˇ̌̌̌
1

ď ϵET ` ϵAT. (4.9)

Finally, since the map describing the classical post-processing, Ekey, is CPTNI as
well, we apply Lemma B.1.3 once again, and obtainˇ̌̌̌ˇ̌̌̌

ρXnY nE1 ´
ż

SE&A
σ νpσq

ˇ̌̌̌ˇ̌̌̌
1

ď ϵET ` ϵAT. (4.10)

The register E 1 combines the purification space and all the classical information
released to Eve up to now. So, it suffices to show that the remaining parts of the
protocol are secure on ρXnY nE1 .
The two remaining problems we face are that Alice and Bob’s keys are only par-
tially correlated and only partially secret. The first problem is tackled by perform-
ing error-correction, while the second one is addressed by the privacy amplification
routine, which is characterized by the leftover hashing lemma [85, Lemma 5.6.1]
which we extend to infinite-dimensional side-information in Lemma B.1.4. As
shown by Renner [85, Lemma 5.6.1], if Alice and Bob apply a randomly chosen
hash function from the family of two-universal hash-functions to their bit-string,
the output is secure as long as it is smaller than Eve’s uncertainty about their
initial bit-string, where the uncertainty is measured in terms of the smooth min-
entropy. Since in the present case the purifying system E is infinite-dimensional,
we cannot apply Renner’s result directly, but derive a leftover hashing lemma
against infinite-dimensional side-information (Lemma B.1.4 in the Appendix).
In Lemma B.1.4, we set ϵ1 :“ ϵET ` ϵAT ` ϵ̄ (the nature of this choice will become
obvious later) as well as ϵPA :“ 2pϵsec ´ ϵ1q and obtain

ℓ ď Hϵ1
minpX|E 1Cqρ ´ 2 log2

ˆ
1

ϵPA

˙
,

where C denotes the information reconciliation transcript. Note that we re-scaled
ϵ1 by a factor of 2 when we define ϵPA, hence the factor of 2 in the smoothing of
the smooth min-entropy expression from the statement of Lemma B.1.4 is already
included in our new ϵ1.
Lemma B.1.6, extends a statement in [85, Lemma 6.4.1] to infinite-dimensional
side-information, allows us to remove a classical register from the smooth min-
entropy at the cost of leakEC bits,

ℓ ď Hϵ1
minpX|E 1qρ ´ 2 log2

ˆ
1

ϵPA

˙
´ leakEC. (4.11)
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All that remains is to convert the smooth min-entropy term into something we
can optimise over. Therefore, we define the state ρ̄ :“ ş

σPSE&A σXnE1 b |σyxσ| νpσq,
where the artificially introduced register keeps track of the states in the mixture.
From Eq. (4.9) we know that the ρ that occurs in the smooth min-entropy ex-
pression in Eq. (4.11) and ρ̄ are ϵET ` ϵAT-close to each other. Recalling that we
set ϵ1 “ ϵET ` ϵAT ` ϵ̄, we observe that the ϵ̄-ball around ρ̄ is contained in the
ϵ1-ball around ρ (note that this motivates our choice for ϵ1). Since the definition
of the smooth min-entropy includes a supremum over the corresponding ϵ-ball, we
conclude

Hϵ1
minpX|E 1qρ ě H ϵ̄

minpX|E 1qρ̄.

Next, we use Lemma B.1.8 and Lemma B.1.9, extensions to infinite-dimensional
side-information of the strong subadditivity property for smooth min-entropies
([85, Lemma 3.2.7]) and the rule for conditioning smooth min-entropies on classical
registers ([85, Lemma 3.2.8]), to rewrite our smooth min-entropy expression. In
more detail, we condition on the register that indexes over the set SE&A, denoted
by ‘conditioning on the set itself’, and then remove the introduced register by
choosing the worst-case,

H ϵ̄
minpX|E 1qρ̄ ě H ϵ̄

minpX|E 1SE&Aqρ̄

ě min
σPSE&A

H ϵ̄
minpX|E 1qσ.

Thanks to Proposition B.1.10 and the i.i.d. structure of our signals, ρXN Y N “
ρXnY n b ρXkT Y kT , the rounds we used for testing (and sifting) are independent of
the key generation rounds and can be removed from the conditioning system in
the min-entropy expression without cost (hence, do not give Eve any advantage).
Combining these results, we arrive at

ℓ ď min
σPSE&A

H ϵ̄
minpX|E 1qσ ´ 2 log2

ˆ
1

ϵPA

˙
´ leakEC. (4.12)

Finally, we use Corollary B.2.17, which is our version of the asymptotic equiparti-
tion property [85, Corollary 3.3.7], to rewrite the smooth min-entropy in terms of
the von-Neumann entropy

ℓ ď n

„
min

σPSE&A
HpX|E 1qσ ´ δpϵ̄q

ȷ
´ 2 log2

ˆ
1

ϵPA

˙
´ leakEC. (4.13)

While this completes our finite-size analysis, we want to optimise over finite-
dimensional (in more detail: low-dimensional) states. Our energy test (Theo-
rem 4.4.1) guarantees that any state that is not ϵET- filtered has at most weight
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w outside the cutoff-space (defined by the parameter nc in the energy test), hence
satisfies Tr rρΠncs “ 1 ´ w. Using [105, Theorem 1], we can relate the values of
our objective function on inputs in infinite-dimensional Hilbert space to its val-
ues on projections on a finite-dimensional subspace Hnc by taking an additional
weight-dependent correction term ∆pwq into account. Hence, we finally arrive at

ℓ ď n

„
min

σPSE&A
HpX|E 1qσ ´ δpϵ̄q ´ ∆pwq

ȷ
´ 2 log2

ˆ
1

ϵPA

˙
´ leakEC.

(4.14)

Finally, we divide both sides by N , the total number of signals sent, and arrive at

ℓ

N
ď n

N

„
min

σPSE&A
HpX|E 1qσ ´ δpϵ̄q ´ ∆pwq

ȷ
´ 2

N
log2

ˆ
1

ϵPA

˙
´ δEC

leak,

(4.15)

where we defined δEC
leak :“ leakEC

N
(see Section 4.4.6). As we defined ϵPA “ 2pϵsec ´ϵ1q,

we obtain ϵsec “ ϵPA
2 ` ϵET ` ϵAT ` ϵ̄. Hence, the key we obtain is ϵsec secret and

ϵcor “ ϵEC correct, so ϵ :“ ϵsec ` ϵcor secure, which finishes the proof.

4.4.5. Finite-size optimisation problem

Notice that the objective function of the optimisation in the asymptotic limit
(3.23) is the same as for the finite-size problem (4.4), while the feasible sets differ.
Furthermore, there are additional correction terms for the finite-size version of
the key rate formula. However, as these terms are constant with respect to the
performed optimisation, they do not influence the structure of the SDP.
In the finite-size regime, we do not know the expected values of our observables
with certainty. As outlined in the protocol description, we fix some small ϵAT ą 0
and a testing ratio TR P p0, 1q such that k :“ TR ¨ N and perform testing on
k randomly selected rounds. According to Theorem 4.4.2, we obtain bounds µj

which define our acceptance set. Therefore, our actual optimisation problem reads
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α :“ min fpρq
s.t.

TrB rρs “ ρA,ˇ̌̌
Tr

”
Γ̂jρ

ı
´ γj

ˇ̌̌
ď µj,

Tr rρs “ 1,

ρ ě 0

(4.16)

for j P t1, ..., 2NStu. Note that the trace equal to one constraint is not subject to
finite-size effects.
It is shown in Appendix C that finally, after applying the dimension reduction
method, and various steps to bring the SDP to a more favourable form, we obtain
the following (primal) optimisation problem

β :“ min fpρ̄q
s.t.

1 ´ w ď Tr rρs ď 1,

Tr rP s ` Tr rN s ď 2
?

w,

P ě TrB rρs ´ ρA

N ě ´ pTrB rρ̄s ´ ρAq ,

Tr
“`|iyxi| b n̂βj

˘
ρ̄

‰ ď µj ` xn̂βj
y ´ aj,

Tr
“`|iyxi| b n̂βj

˘
ρ̄

‰ ď ´µj ` xn̂βj
y ` bj,

Tr
”´

|iyxi| b n̂2
βj

¯
ρ̄

ı
ď µj ` xn̂2

βj
y ´ aj,

Tr
”´

|iyxi| b n̂2
βj

¯
ρ̄

ı
ď ´µj ` xn̂2

βj
y ` bj,

ρ̄, P, N ě 0,

a⃗, b⃗ ě 0.

(4.17)

This optimisation problem gives a lower bound on the first term in the key rate
formula in Eq. (4.4), α ě β. After taking numerical imprecisions into account
and applying the relaxation theorem in [110], the dual problem reads (as shown
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in Appendix C):

γ :“ ´ max y⃗¨
´

λ⃗ ` ϵ⃗
¯

` `
2
?

w ` ϵnum
˘

s ` Tr rρA τ s ´ Tr rρA Θs
s.t.

∇fpρq `
6NStÿ
j“1

yjΓ̂j ` τ b IB ´ Θ b IB ě 0,

s ¨ I ´ τ ě 0,

s ¨ I ` Θ ě 0,

y⃗ ě 0, s ě 0, τ ě 0, Θ ě 0,

(4.18)

where the Γ̂j and γj are defined as follows

Γ̂j :“ n̂βj
, γj :“ xn̂βj

y,
Γ̂NSt`j :“ ´n̂βj

, γNSt`j :“ ´xn̂βj
y,

Γ̂2NSt`j :“ n̂2
βj

, γ2NSt`j :“ xn̂2
βj

y,
Γ̂3NSt`j :“ ´n̂2

βj
, γ3NSt`j :“ xn̂2

βj
y,

Γ̂4NSt`j :“ ✶, γ4NSt`j :“ 1,

Γ̂5NSt`j :“ ´✶, γ5NSt`j :“ w ´ 1,

and

λ⃗ :“
¨̊
˝ γ1 ` µ1

...
γ6NSt ` µ6NSt

‹̨‚.

Furthermore, note that we defined ϵnum :“ ϵrep (see remark in Appendix C of [105]
for details) to take numerical imprecisions into account and ϵ⃗ is a vector containing
ϵnum in every component. Solving (4.18) gives us a reliable lower bound on the
first term in Eq. (4.4), minσPSE&A HpX|E 1qσ ě γ.

4.4.6. Error correction
In this subsection, we briefly explain the information-reconciliation leakage term.
In the case one is able to carry out the information reconciliation procedure in the
Slepian-Wolf limit [97], the EC leakage term reads

δEC :“ HpY |Xq “ HpY q ´ IpX : Y q.
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Here, X and Y represent Alice’s and Bob’s key strings. Since we cannot expect to
perform error correction in the optimal limit, we assume only a fraction 0 ă β ď 1
of the mutual information between Alice’s and Bob’s key strings can be used.
Hence, IpX : Y q in the formula above is replaced by βIpX : Y q. Therefore,

δEC ÞÑ δβ
EC :“ HpY q ´ βIpX : Y q

“ HpY q ´ β rHpY q ´ HpY |Xqs
“ p1 ´ βqHpY q ` βHpY |Xq.

Finally, the total leakage term is the sum of the correction term we just derived
and the verification term. We obtain

leakEC ď n δβ
EC ` log2

ˆ
2

ϵEC

˙
. (4.19)

As the present protocol allows postselection, not all signals might be used for
signal generation. Hence, not all signals have to undergo the information recon-
ciliation procedure. Therefore, we replace leakEC ÞÑ ppassleakEC, where ppass is the
probability that a round passes the postselection routine.

84



5. Numerical Results
After deriving a lower bound on the secure finite-size key rate (Theorem 4.4.3)
and applying a modified version of the numerical method in Refs. [19, 110] in
Section 4.4.5, it remains to calculate numerical key rates for a particular protocol.
Exemplarily, we chose the QPSK protocol in Ref. [64]. We note that large parts
of this chapter are taken from our publication [55].

5.1. Quadratue phase-shift keying protocol
After proving the security of a general discretely-modulated CV-QKD protocol, in
order to provide numerical key rates, we restrict our considerations to the special
case of NSt “ 4 signal states arranged on a circle in the phase space, a so-called
quadrature phase-shift keying protocol. Therefore, in every round, Alice prepares
one of the states t|αy, |iαy, | ´ αy, | ´ iαyu with equal probability, where α P R
is arbitrary but fixed. Bob then performs heterodyne detection on the states he
receives. While our security proof works both for direct- and reverse reconcilia-
tion, we proceed with reverse reconciliation which is known to outperform direct
reconciliation for CV-QKD protocols. Therefore, Bob performs the key map and
assigns symbols to his measurement results, depending on in which area of the
phase space the measurement outcomes lie. This includes the option of perform-
ing postselection to increase the key rate. For more details regarding the protocol,
we refer to [64, Protocol 2]. Since our description of the numerical method in
Section 3.4 was general, the expressions there apply to the present special case if
we insert NSt “ 4.

5.2. Choice of the weight
In our security proof, the weight w “ Tr

“
ρΠK‰

plays a two-fold role. On the one
hand, it appears as a parameter in the energy test, while on the other hand, it
determines the size of the correction term ∆pwq arising from the dimension reduc-
tion method. While the asymptotic dimension reduction method gives a bound
on the weight via another semidefinite program, in our case w is chosen freely
during the energy test. This means that, in principle, one could choose the weight
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Figure 5.1.: Secure key rates over total number of signals sent N for L “ 10km,
α “ 0.95, ∆r “ 0.60.

arbitrarily small, resulting in a negligible correction term without corrupting our
security statement (possibly resulting in a large ϵET. However, since the energy
test only makes a statement in the case when the test passes and aborts otherwise
(and therefore is trivially secure), this comes at the cost of a high failure rate of
the energy test, hence ultimately a low average key rate. Therefore, the choice
of the weight w is a balancing act between aiming for a low correction term and
making the energy test pass with high probability. In order to assure that, we
required that the energy test passes with high probability in the honest implemen-
tation, i.e., when Eve is passive. Therefore, we modelled the quantum channel
connecting Alice and Bob as a noisy and lossy Gaussian channel with excess noise
ξ and transmittance η and calculated the expected weight wexp outside the cutoff
space. Then, one possible choice for the weight is w ě wexp. Alternatively, we
can fix ϵET and just solve the expression for ϵET obtained from the energy testing
theorem (Theorem 4.4.1) for w to obtain wϵ. In practice, we introduce a minimal
weight wmin and choose the weight w :“ maxtwexp, wϵ, wminu to make sure it is
both compatible with the chosen ϵET and large enough such that the energy test
passes with high probability on the honest implementation.
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5.3. Details about the Implementation
Before we come to our numerical results, we briefly discuss our choice of param-
eters and some technical details. To demonstrate the performance of the chosen
four-state phase-shift keying protocol under our finite-size security proof, we sim-
ulate the expectation values (see Eq. (4.16) and optimisation problems derived
thereof) obtained from an experiment by modelling Alice’s coherent states passing
a noisy and lossy Gaussian channel with excess noise ξ and channel transmittance
η. The excess noise is understood as preparation noise on Alice’s side so that it is
taken to be fixed at the input of the channel. Hence, Bob experiences the effective
noise ηξ. Note that we measure the noise in the shot noise units. Within the
whole work, our transmittance model as a function of the transmission distance
L is η “ 10´0.02L. This corresponds to a transmission of ´0.2 dB/km which is a
common value for optical fibres at the telecom wavelength.

While the total number of transmitted signals N , as well as the testing ratio kT

N

varies, we fix lT (see Theorem 4.4.3) to be 1% of kT . Furthermore, we fix the ϵ
parameters to be ϵET “ ϵAT “ ϵ “ ϵEC “ 1

5 ˆ10´10 “ 1
2ϵPA such that our total secu-

rity parameter is ϵ “ 10´10. We emphasise that our security proof is independent
of the choice of parameters and that those values are chosen for demonstration
purposes only.

We applied the numerical framework in [19, 110] to find a lower bound on the min-
imisation problem in Eq. (4.17) and Eq. (4.18). For a brief review of the method
see Section 3.4. The coding was carried out in Matlab™, version R2020a and
the semidefinite programs were modelled using CVX [42, 41], where we used the
MOSEK solver (Version 9.1.9) [1] to solve the semidefinite programs.

A crucial point with respect to computation time is the calculation of the region
operators in Eq. (3.38) in the displaced number basis. An expression for the matrix
elements in the displaced basis, given in [105, Appendix B], contains an integral
that needs to be calculated numerically, which is computationally costly, in par-
ticular for larger cutoff numbers nc. Therefore, in the current work, we present an
alternative approach. We use the analytical expressions for region operators in the
non-displaced number basis from [56, 64] and apply a basis change to the displaced
number basis. Calling the corresponding transformation matrices T , we have
Rz

B,disp “ TRz
BT :. In principle, the occurring matrices are infinite-dimensional.

Assuming the dimension of Bob’s system in our numerical implementation is d ˆ d
(based on the energy test), we only require the first pd ˆ dq-subblock of Rz

B,disp
for the numerical method. However, it turns out to be difficult to prove rigor-
ously the numerical error we make by this cutoff. Therefore, we calculate the
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analytical matrix elements up to dimension p3d ˆ 3dq and apply the corresponding
p3d ˆ 3dq-dimensional transformation matrices T . We repeat the same process
with dimension p5dˆ5dq and compare the first dˆd-subblock of the resulting ma-
trices. We accept the result and proceed if the component-wise absolute difference
between both matrices is 10´16 or smaller (in fact, it turns out that the differ-
ences in almost all cases are 0 up to numerical precision), showing that increasing
the dimension further does not affect the matrix elements any more. Otherwise,
we increase the dimension. Even though we have to calculate significantly larger
‘intermediate matrices’ to ensure high numerical precision, this method turns out
to be significantly faster than calculating the matrix elements numerically and
avoids numerical integration errors (which are larger than the numerical errors of
our method at the level of machine precision).

We conclude by a brief remark about the expected values in our optimisation
problems given in Eq. (4.17) and Eq. (4.18). As derived in [105, 106], assuming a
lossy and noisy Gaussian channel, we obtain for the expected values occurring in
the primal as well as in the dual optimisation problem xn̂βj

y “ ξ
2 and xn̂2

βj
y “ ξp1`ξq

2 .
For the expected values in the trusted detector noise scenario, we refer to the
remark at the end of Section 3.4.4. For the key rate plots in the upcoming section,
we assume a lossy and noisy Gaussian channel, hence using those expected values
to formulate our optimisation problem.

5.4. Simulation Results
We present plots of the obtained secure key rates for various parameter choices.
If not mentioned otherwise, we fix ξ “ 0.01 and in all plots, we assume that an
error-correction code with efficiency β “ 0.95 is used, which is achievable with the
latest low-density parity-check codes. If we do not state a particular value for α
and ∆r, the corresponding curves have been obtained after optimising over α and
∆r via coarse-grained search. We chose the cutoff-space dimension nc “ 20, which
turned out to be a sound compromise between numerical feasibility (calculation
time) and impact on the obtained key rates (see the role of the cutoff number in
the security proof in Section 3.4).
First, we discuss our results for untrusted, ideal detectors (so ηd “ 1 and νel “ 0),
which is followed by results for trusted, non-ideal detectors (ηd ă 1 and νel ą 0).

5.4.1. Untrusted, ideal detectors
In what follows, we present our results for untrusted, ideal detectors. The key
rates shown are measured in bits per channel use and the plotted asymptotic key
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Figure 5.2.: Secure key rates over transmission distance L for different total num-
ber of signals N , optimised the coherent state amplitude α and the
radial postselection parameter ∆r and fixed testing ratio TR “ 10%.
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Figure 5.3.: Secure key rates over transmission distance L for fixed N “ 1012,
optimised the coherent state amplitude α and the radial postselection
parameter ∆r and different testing ratios TR.

rate curves were generated with the method described in [105].
Figure 5.1 shows the obtained secure key rates over the total number of signals sent
N . We fixed the transmission distance to be 10 km, the coherent state amplitude
α “ 0.95 and the radial postselection parameter ∆r “ 0.60, while we varied the
testing ratios (TR). As one can see, we obtain secure key rates for N ě 108 for
TR “ 40%. Furthermore, our secure key rates approach the asymptotic limit from
Ref. [105] for N Ñ 8 and low testing ratios. This shows that our analysis is tight
in the asymptotic limit. We note that we had to readjust the asymptotic key rate
curve in Figure 5.1 according to [105] by the correction term ∆pwq since the weight
in the asymptotic regime without testing is determined differently than in our
analysis including an energy test (see also discussion in Section 5.2). Therefore,
we are able to work with smaller weights, hence smaller correction terms. In
order to make the key rate curves comparable, we, therefore, had to readjust the
asymptotic curve.
Next, we consider the performance of our secure key rates as a function of the
transmission distance for a different number of total rounds N . We fix the testing
ratio to TR “ 10%. Again, we note that for the asymptotic key rates, we do
not sacrifice signals for testing effectively. Hence the asymptotic key rates are
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conceptionally different to the finite-size key rates in the plot and would correspond
to finite-size key rates with a testing ratio equal to 0%. This explains the difference
in key rates between the asymptotic reference curve and the finite-size key rates
for low transmission distances. From Figure 5.1 we know that we cannot expect
positive secure key rates for N “ 108 or smaller at L “ 10km, therefore we
start our investigation at N “ 109, where we have hope to surpass L “ 10km
significantly and go up to N “ 1012, which is the largest N we assume is achievable
in experiments with state-of-the-art lasers and heterodyne detectors in a practical
amount of time. In Figure 5.2, we present our results. Note that we optimised
over the coherent state amplitude α and the postselection parameter ∆r via coarse-
grained search. We observe positive key rates up to 26 km for N “ 109, up to 45
km for N “ 1010, up to 65 km for N “ 1011 and up to 86 km for N “ 1012.
It remains to discuss how much we can improve our results by varying the testing
ratio TR. In Figure 5.3, we fix N “ 1012, optimise over α and ∆r via coarse-
grained search and examine the impact of testing ratios between 5% and 60%. As
expected, it turns out that for low transmission distances, low testing ratios are
advantageous, while the maximal achievable transmission distance can be improved
significantly by increasing the fraction of signals used for testing. This is because
for high transmission distances the expectation values in our constraints become
small, hence (for the same testing as for lower distances) their uncertainties become
relatively large. Higher testing counteracts this effect and increases the secure key
rates. Sacrificing 60% of the signals for testing increases the maximal achievable
transmission distance from 80 km (for 5% testing) to 101 km.

5.4.2. Trusted, non-ideal detectors
Next, we present our results for the case of trusted, non-ideal detectors. For
demonstration purposes we choose ηd “ 0.72 and νel “ 0.04 and emphasise that
our analysis is not restricted to this choice. We fix the excess noise again to
ξ “ 0.01. Note that this means the curves for trusted, non-ideal detectors have
a higher total noise level compared to the curves for untrusted, ideal detectors in
the previous section. Again, we add asymptotic key rate curves, derived following
the method presented in [105], for comparison. Like in the untrusted, non-ideal
case, our key rates are tight, i.e. for low testing ratio TR and a high number of
rounds N , the obtained finite-size key rates converge to the asymptotic limit.
We examine the performance of our security proof for a different total number
of rounds, while we fix the testing ratio at 10% and optimise over the coherent
state amplitude α and the radial postselection parameter ∆r via coarse-grained
search. The resulting key rate curves can be seen in Figure 5.4. We see that, as
expected, the secure key rates are lower than for the untrusted, ideal detector, but
the maximal achievable transmission distances decrease only moderately compared
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Figure 5.4.: Secure key rates over transmission distance L for trusted, non-ideal
detector for with νel “ 0.04 and ηd “ 0.72. We plot key rates for
different total number of signals N for optimised the coherent state
amplitude α and the radial postselection parameter ∆r and fixed test-
ing ratio TR “ 10%.

to the untrusted detector with the same excess noise level. For N “ 109 signals
we observe positive key rates up to 22 km (compared to 26 km for untrusted,
ideal detectors), for N “ 1010 we obtain non-negative key rates up to 41 km
(compared to 45 km), for N “ 1011 up to 63km (compared to 65 km) and for
N “ 1012 up to 85 km (compared to 86 km). We see that the difference in
maximal achievable transmission distance between the untrusted, ideal and the
trusted, non-ideal detector scenario decreases with increasing N .
In Figure 5.5, we plot the obtained secure key rates as a function of the transmission
distance L for different testing ratios, while we fix N “ 1012 and optimise over the
coherent state amplitude α and the radial postselection parameter ∆r. As expected
the obtained secure key rates are lower than those for the untrusted, ideal detector.
However, for an excess noise level of ξ “ 0.01, it turns out that the maximal
achievable transmission distances do not differ significantly in the trusted detector
scenario. For example, when the testing rate is 60% of the signals, the maximal
achievable transmission distance for the trusted, non-ideal detector is 100km while
in the untrusted, ideal detector case we obtained 101km. Therefore, even for
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Figure 5.5.: Secure key rates over transmission distance L for a trusted, non-ideal
detector with νel “ 0.04 and ηd “ 0.72. We fixed N “ 1012, optimised
the coherent state amplitude α and the postselection parameter ∆r

and examined different testing ratios TR.

realistic detectors, our method yields practically relevant secure finite-size key
rates. We note that this small difference between key rates using ideal, untrusted
detectors and noisy, trusted detectors was already observed for the asymptotic
case in [106, Section 5.3]. The reason behind this is that Bob’s noisy observables
can be related to his ideal observables by linear combinations. Hence, effectively,
the feasible set remains unchanged, while only the objective function changes due
to the POVM elements of the noisy, non-ideal heterodyne detector.
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6. Conclusion

Summing up, in this work we provide a composable finite-size security proof for
discretely modulated continuous-variable security proof against i.i.d. collective
attacks. We introduce and prove a new, noise-robust energy testing theorem that
allows to bound the weight of quantum states outside a finite-dimensional cutoff
space based on experimental observations. This theorem is a key ingredient for our
proof, but can turn out to be useful in related contexts and other proof attempts as
well. Having bound the dimension of Bob’s system, we apply Renner’s finite-size
security proof framework [85] and extend it to cover infinite-dimensional side-
information. After applying the dimension reduction method [105] to rigorously
take the influence of the cutoff into account, we obtain a lower bound on the
secure finite-size key rate against i.i.d. collective attacks. To calculate the secure
key rate, it remains to solve a highly nonlinear semi-definite program over a subset
of a finite-dimensional Hilbert space. We tackle this by applying the numerical
method presented in [19, 110] and extending it to the structure of our finite-
size optimisation problem. This allows us to obtain tight lower bounds on the
secure key rate. Our analysis covers both the theoretically interesting case of ideal,
untrusted detectors on Bob’s side, as well as the practically relevant case of non-
ideal detectors with trusted detection noise. We demonstrate our general method
for a quadrature phase-shift keying protocol and show that secure finite-size keys
can be obtained up to about 100km transmission distance under experimentally
viable conditions.
Besides that, we discuss numerical improvements of the security proof method
that enable a quicker and more efficient computation of secure key rates. As
computation time is a crucial factor for numerical security proofs, this marks an
important improvement towards higher practicality.
This work, therefore, is another significant step towards widespread practical de-
ployment of QKD systems, which will be essential for future secret communication.
We expect immediate practical implications as we provide a security proof that
can be used to calculate tight secure finite-size key rates for experimental DM CV-
QKD systems under realistic conditions. Furthermore, the numerical approach
allows us to be very flexible regarding changes in the protocol structure and there-
fore is able to deal with postselection and can easily be adapted to take more
refined physical models into account.
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6.1. Outlook
However, this work does not mark the end of the road for DM CV-QKD protocols
and their security proofs. While we prove security against i.i.d. collective attacks,
probably the most interesting task, left for future work, is lifting our analysis to
general attacks. While there are several methods known that lift secure key rates
against collective attacks to secure key rates against coherent attacks, not all of
them can be applied directly. For example, the quantum de Finetti theorem [86]
and the postselection technique [18] depend on the dimension of the considered
quantum system, which even after applying our energy test, strictly speaking, is
still infinite-dimensional. We would require a chain rule for smooth min-entropies
that allows us to remove infinite-dimensional registers, which is not feasible. We
note that this is even an overlooked technical detail in the de Finetti paper by
Renner and Cirac [86]. Therefore, there seems to be no immediate solution and
it might require alternative techniques to circumvent this issue. However, simply
imposing a photon-number cutoff, our ideas can be adapted to handle coherent
attacks by applying methods similar to those developed in Ref. [36].
An interesting alternative is provided by the Entropy Accumulation Theorem
(EAT), in particular, the recently developed Generalised Entropy Accumulation
Theorem (GEAT) [71] that allows for analysing prepare-and-measure protocols.
However, due to the novelty of this technique, not all difficulties and challenges
when applying to DM CV-QKD protocols are immediately obvious. It remains an
interesting task for the future to combine both results.
We expect that there are feasible ways to lift our collective attack proof to coherent
attacks and leave analyses in this direction for future work.

96



APPENDIX

i





A. Proof of the energy testing
theorem

In this section, we are going to prove our energy testing theorem (Theorem 4.4.1)
for both ideal detectors and trusted non-ideal detectors. We begin with the proof
for ideal detectors.

Proof. We start by proving an operator inequality related to heterodyne measure-
ments, similarly to Lemma III.2 in [86] for homodyne detection. We define the
following operators

W1 :“ P
q̂2`p̂2´1

2 ěnc , (A.1)

V1 :“ 1
π

ż
|α|2ěβ2

test

|αyxα| dµα, (A.2)

where W1 is the projector onto the span of the eigenvectors of the operator q̂2`p̂2´1
2

corresponding to (generalized) eigenvalues greater or equal to nc, and V1 describes
our test measurement, where the heterodyne detection gives outcomes with am-
plitudes greater or equal to βtest. Defining W0 :“ ✶´ W1 and V0 :“ ✶´ V1, it can
be easily seen that tV0, V1u and tW0, W1u form POVMs.
Recall, that the photon-number operator is defined as n̂ “ 1

2pq̂2 ` p̂2 ´ 1q. One

observes W1 :“ ř
něnc

|nyxn| and, using xγeiθ|ny “ e´ γ2
2 γne´iθn?

n! (see, for example [2,
p. 37]), it can be seen that V1 “ ř

nPN
Γpn`1,βtestq

Γpn`1,0q |nyxn|. Therefore, comparing the
coefficients of V1 and W1 and recalling that for fixed first argument the incomplete
gamma function is monotonically decreasing in its second argument, we conclude
xn|W1|yn ď 1 ď Γpnc`1,0q

Γpnc`1,βtestqxn|V1|ny @n P N. Hence, we found

W1 ď Γpnc ` 1, 0q
Γpnc ` 1, βtestqV1. (A.3)

To ease notation, we define ridealpnc, βq :“ Γpnc`1,0q
Γpnc`1,βtestq . The operator W0 is the pro-

jector onto the cutoff space Hnc and W1 projects onto the orthogonal complement
of the cutoff space. Therefore,

w “ E rW1s “ Tr rρW1s ď ridealpnc, βtestqTr rρV1s “ ridealpnc, βtestqE rV1s .
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Hence, w
ridealpnc,βtestq ď E rV1s.

Next, we express the probability that the test passes but the photon number cutoff
space does not contain most of the weight. We define the binary vector f⃗kT

to be
of size kT , containing a 0 in its k-th entry if the energy test for round k passes (so
if the outcome of the POVM tV0, V1u is ‘0’) and 1 otherwise. To ease the notation,
we use the shortcut r for ridealpnc, βtestq and denote the hamming weight of a vector
v⃗ by HWpv⃗q.

Pr
„

max
i“1,...,kT

Yi ă β2 for all but lT rounds ^ TrrρW1s ě w

ȷ
ďPr

”
HWpf⃗kT

q ď lT ^ E rV1s ě w

r

ı
“

lTÿ
i“0

ż 1

w
r

QkT
y

´
HWpf⃗kT

q “ i
¯

dy,

where QkT
y piq is the probability of drawing a sequence of type i for a fixed weight

y when testing kT i.i.d. random variables and the inequality can be explained by
the relation in (A.3). We derive

lTÿ
i“1

ż 1

w
r

QkT
y

´
HWpf⃗kT

q “ i
¯

dy

“
lTÿ

i“1

ż 1

w
r

2´kpHpP⃗iq`DpP⃗i||Qq dy

“
lTÿ

i“1

ż 1

w
r

2k
´

p1´ i
kT

q log2p1´yq` i
k

log2pyq
¯

dy

“
lTÿ

i“1

ż 1

w
r

p1 ´ yqk´iyi dy

ď
lTÿ

i“1

ˆ
lT
i

˙ ż 1

w
r

p1 ´ yqkT ´iyi dy “
ż 1

w
r

p1 ´ yqkT ´lT

lTÿ
i“1

ˆ
lT
i

˙
p1 ´ yqlT ´iyi dy

“
ż 1

w
r

p1 ´ yqkT ´lT p1 ´ yqkT ´lT dy “
`
1 ´ w

r

˘kT ´lt`1

kT ´ lT ` 1 ,

where the first equality follows from [20, Theorem 12.1.2]. Naming the last ex-
pression ϵET concludes the proof.

It remains to prove the energy testing theorem for trusted, non-ideal detectors.
The second part of the proof follows the arguments of the proof for ideal detectors.
However, the measurement operator for trusted, non-ideal detectors differs from
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the measurement operator V1 for the ideal detector. Therefore it remains to show
that the measurement operator for the trusted, non-ideal case dominates W1 as
well (possibly with another constant rpnc, βtestq.
Proof. According to [63] the POVM elements for the trusted, non-ideal heterodyne
measurement with efficiency ηd and electronic noise νel are given by

Gy “ 1
ηdπ

D̂

ˆ
y?
ηd

˙
ρ̂th pndq D̂:

ˆ
y?
ηd

˙
, (A.4)

where nd :“ 1´ηd`νel
ηd

. Therefore, the modified measurement operator is Ṽ1 :“ş
y2ěβ2 Gy dµy. We use [72, Eq. (6.13) and (6.14)] to express Gy in the number

basis. For simplification, we define Cn,m :“ 1
πηd

m´n
2 `1

b
n!
m!

nn
d

p1`ndqm`1 , a :“ 1
ηdp1`ndq

and b :“ ηdndp1 ` ndq, and obtain for n ď m

xn|Gy|my “ Cn,me´a|y|2py˚qm´nLpm´nq
n

ˆ
´|y|2

b

˙
, (A.5)

where

Lα
k pxq “

kÿ
j“0

p´1qj

ˆ
k ` α

k ´ j

˙
xj

j! (A.6)

is the generalised Laguerre polynomial of degree k and with parameter α [76]. The
following calculation is a special case of the derivation in [56, Appendix G].

Ṽ1 “
ż

y2ěβ2
Gy dµy

“
ÿ
m,n

Cn,m|nyxn|
ż

y2ěβ2
ym´n`1e´ay2

Lpm´nq
n

ˆ
´y2

b

˙
dy

ż 2π

θ“0
e´iθ dθ

“
ÿ
m,n

Cn,m|nyxm|
ż

y2ěβ2
ym´n`1e´ay2

Lpm´nq
n

ˆ
´y2

b

˙
dy 2πδn,m

“ 2π
ÿ
n

Cn,n|nyxn|
ż

y2ěβ2
ye´ay2

Ln

ˆ
´y2

b

˙
dy

“ π
ÿ
n

Cn,n|nyxn|
ż

zěβ

e´azLn

´
´z

b

¯
dz

“ π
ÿ
n

Cn,n|nyxn|
nÿ

j“0

ˆ
n

n ´ j

˙
1

aj`1bj

Γpj ` 1, βtestq
Γpj ` 1q dz
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Note that we substituted y2 ÞÑ z for the fifth equality and that we used the
definition of the Laguerre polynomials to obtain the last line. Inserting Cn,n and
simplifying the obtained expression yields

Ṽ1 “
ÿ
n

ˆ
nd

1 ` nd

˙n nÿ
j“0

ˆ
n

j

˙ ˆ
1
nd

˙j Γpj ` 1, βtestq
Γpj ` 1q |nyxn|.

We define and simplify

U :“Γp1, βq
Γp1q

ÿ
n

ˆ
nd

1 ` nd

˙n nÿ
j“0

ˆ
n

j

˙ ˆ
1
nd

˙j

|nyxn|

“Γp1, βq
ÿ
n

ˆ
nd

1 ` nd

˙n ˆ
1
nd

` 1
˙n

|nyxn|

“Γp1, βq
ÿ
n

|nyxn|.

Note that the quotient Γpj`1,βtestq
Γpj`1q is monotonically increasing in j, therefore @j P

N : Γp1,βtestq
Γp1q ď Γpj`1,βtestq

Γpj`1q . Hence, U ď Ṽ1. Based on the structure of W1, we
observe W1 ď 1

Γp1,βtestqU . Defining rnon-idealpβtestq :“ 1
Γp1,βtestq and combining our

operator relations, we obtain

W ď rnon-idealpβtestqU ď rnon-idealpβtestqṼ1. (A.7)

The rest of the proof is the same as for the ideal case, where every ridealpnc, βtestq
needs to be replaced by rnon-idealpβtestq.
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B. Detailed Derivations for the
Security Proof

In this section, we present and prove technical theorems and lemmas that we use
in the security proof to generalise existing finite-dimensional statements to their
infinite-dimensional counterparts.

B.1. Technical Lemmas
Lemma B.1.1

If |Ψy P S1pHq, there exists a Borel measure ν on S1pHq such thatˇ̌̌̌ˇ̌̌̌
|Ψybn ´

ż
σPS1pHq

σbnνpσq
ˇ̌̌̌ˇ̌̌̌

1
“ 0.

Proof. The idea of the proof is to directly construct this point-measure ν on
BorelpS1pHqq. Therefore, let νpt|Ψyuq “ 1 as well as νpS1pHqq “ 1. Note that the
latter condition makes ν automatically normalised. Countable additivity is satis-
fied since at most one disjoint set can contain |Ψy. Using countable additivity, we
obtain νpt|Ψyuq “ νpt|Ψyu Y Hq “ νpt|Ψyuq ` νpHq and conclude that νpHq “ 0.

Finally, for any Borel set A Ď S1pHq we have νpAq “
#

0 if |Ψy R A
1 otherwise.

Therefore,

we conclude that ν is a Borel measure.

Proposition B.1.2: Relation between ϵ-Balls

For ρ P DďpHq we have Bϵ
PDpρq Ď B2ϵ

TDpρq Ď B
?

2ϵ
PD pρq.

Proof. Consider ρ P DďpHq and σ P Bϵ
PDpρq.

For the first inclusion, by one of the Fuchs-van de Graaf inequalities (Eq. (2.5)),
we have ∆pρ, σq ď Ppρ, σq ď ϵ, hence if σ P Bϵ

PDpρq, we have 2∆pρ, σq ď 2ϵ.
Thus, due to the definition of the trace-distance ball (without a factor 1

2), every
σ P Bϵ

PDpρq is contained in B2ϵ
TDpρq.

vii



For the second inclusion, assume σ P B2ϵ
TDpρq. Then, by the other Fuchs-van de

Graaf inequality in Eq. (2.5), we have Ppρ, σq ď a
2∆pρ, σq ď ?

2ϵ. Hence, if
σ P B2ϵ

TDpρq it is as well contained in B
?

2ϵ
PD .

Lemma B.1.3: Data-Processing Inequality for the Trace Distance
under CPTNI Maps

Let H be a separable Hilbert space and let ρ, σ be compact, self-adjoint
trace-class-1 operators over the separable Hilbert space H and let E be a
completely positive trace non-increasing (CPTNI) map.
Then,

||Epρq ´ Epσq||1 ď ||ρ ´ σ||1 .

Proof. Consider ρ, σ compact, self-adjoint and trace-class-1 operators, as in the
statement. Then, trivially, ρ ´ σ is self-adjoint as well.
Furthermore, we show that ρ ´ σ is compact. Since ρ is compact, for all bounded
sequences pxnqnPN Ď H there exists a subsequence pxnk

qkPN such that pρxnk
qkPN

converges for k Ñ 8. Clearly, pxnk
qkPN is bounded as well. Similarly, since σ is

compact according to assumption, there exists a subsequence
´

xnkl

¯
lPN

Ď H such
that pσnkl

qlPN converges for l Ñ 8. Summing up, for every sequence pxnqnPN Ď H
we found a subsequence

´
xnkl

¯
lPN

such that both
´

ρnkl

¯
lPN

and
´

σnkl

¯
lPN

converge

for l Ñ 8. Since the difference of convergent sequences converges,
´

pρ ´ σqxnkl

¯
lPN

converges as well. Hence, ρ ´ σ is compact.
Now we may apply the spectral theorem for compact, self-adjoint operators on
ρ ´ σ and find an orthonormal basis diagonalising ρ ´ σ. Let P be the positive
part and Q the negative part of the diagonal form of ρ ´ σ, ρ ´ σ “ UpP ` QqU :,
where P K Q. Note that we found P, Q diagonal, P K Q with ||ρ´σ||1 “ ||P `Q||1.
Since E is a CPTNI map, we can find a Kraus representation Epτq “ ř

i KiτK:
i

where
ř

i K:
i Ki “ ✶. Inserting τ “ UDU :, where D is the diagonal form and U

the corresponding transformation, we obtain

Epτq “ EpUτU :q “
ÿ

i

KiUDU :K:
i “

ÿ
i

KiUD pKiUq: “
ÿ

i

K̃iDK̃:
i .

Note that we defined K̃i :“ KiU and observe

ÿ
i

K̃:
i K̃iK̃

:
i “

ÿ
i

pKiUq: KiU “ U :
˜ÿ

i

K:
i Ki

¸
U “ U :U “ ✶.
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Define the new channel Ẽpτq “ ř
i K̃iτK̃:

i . Finally, we conclude

||Epρq ´ Epσq||1 “||Epρ ´ σq||1 “ ||ẼpP ` Qq||1 “ ||ẼpP q ` ẼpQq||1
ď||ẼpP q||1 ` ||ẼpQq||1 “ Tr

“ẼpP q‰ ` Tr
“ẼpQq‰

ďTr rP s ` Tr rQs “ Tr rP ` Qs “ ||P ` Q||1
“||ρ ´ σ||1,

which proves the claim.

Lemma B.1.4: Leftover Hashing Lemma against Infinite-
Dimensional Side-Information

Let ρXE P Dďpℓ8
X b HEq, where X is finite. Let ϵ1 ą 0 such that

ϵPA :“ 2pϵsec ´ 2ϵ1q, where ϵsec ě 2ϵ1 ` 1
2

b
2ℓ´Hϵ1

min(PD)pX|Eqρ in case of
purified-distance smoothing and in case of trace-distance smoothing ϵsec ě
2ϵ1 ` 1

2

b
2ℓ´H2ϵ1

min(TD)pX|Eqρ .
Then for the purified-distance smoothing ball, if

ℓ ď Hϵ1
min(PD)pX|Eqρ ´ 2 log2

ˆ
1

ϵPA

˙
,

or, for the trace-distance smoothing ball, if

ℓ ď H2ϵ1
min(TD)pX|Eqρ ´ 2 log2

ˆ
1

ϵPA

˙
,

the obtained key is ϵsec-secure.

Proof. We start the proof with [8, Proposition 21] for the case |K| “ 2ℓ since
we are interested in bit-strings. Then, Proposition 21 states that for X, K, two
sets of finite cardinality with |K| “ 2ℓ ď |X|, tF , PFu, a family of two-universal
tX, Ku-hash functions, ρXE “ pρx

EqxPX P Dďpℓ8
X b MEq and ϵ1 ą 0

EF ||pTf b idEqpρXEq ´ πK b ρE||1 ď
a

2ℓ´Hϵ1
minpX|Eqρ ` 4ϵ1

holds. Here EF denotes the expectation with respect to PF , Tf is the map applying
the hash function and πK “ 1

|K|
ř

sPK |syxs|. . Note that K denotes the alphabet
the hash function map into and that Ref. [8] uses the purified distance in the
smooth min-entropy definition.
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First, we rewrite the left-hand side

EF ||pTf b idEqpρXEq ´ πk b ρE||1
“

ÿ
f

ppfq||Tf b idEqpρXEq ´ πK b ρE||1

“
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇÿ

f

ppfq rTf b idEqpρXEq ´ πK b ρEs b |fyxf |
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
1

“ ||ρF pxqEF ´ πK b ρEF ||1.

We replace the left-hand side of the original statement with what we just derived
and divide by two to obtain a statement in trace-distance and obtain

1
2 ||ρF pxqEF ´ πk b ρEF ||1 ď 2ϵ1 ` 1

2

b
2ℓ´Hϵ1

min(PD)pX|Eqρ ď ϵsec.

Let ϵPA :“ 2pϵsec ´ 2ϵ1q ą 0. Then, we derive

2ℓ´Hϵ1
min(PD)pX|Eqρ ď ϵ2

PA “ 4pϵsec ´ 2ϵ1q2 ñ ℓ ď Hϵ1
min(PD)pX|Eqρ ´ 2 log2

ˆ
1

ϵPA

˙
.

This gives us the statement in purified-distance smoothing. By Proposition B.1.2,
we yield the proposed statement in trace-distance smoothing.

Lemma B.1.5: Chain Rule for Smooth min-Entropies

Let HA, HB, HC be separable Hilbert spaces with |HB| “ n.
Then for smoothing in trace-distance,

Hϵ
min(TD)pAB|Cqρ ´ log2pnq ď Hϵ

min(TD)pA|BCqρ,

as well as for smoothing in purified distance

Hϵ
min(PD)pAB|Cqρ ´ log2pnq ď Hϵ

min(PD)pA|BCqρ,

Proof. The proof in purified-distance smoothing can be found in [32, Lemma 4.5.6]
and it is straightforward to show that the proof given there works for trace-distance
smoothing as well.
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Lemma B.1.6: Removing a Classical Communication Register

Let HC , HE1 and HX be separable Hilbert spaces and dimpHCq ă 8 as
well as dimpHXq ă 8, where X is the raw key and C the transcript of the
communication between Alice and Bob. Let ρ P DpHX b HE1 b HCq and let
ρXE1 P DpHX b HE1q be the state after tracing out the register C.
Then both for smoothing in trace-distance,

Hϵ
min(TD)pX|E 1Cqρ ě Hϵ

min(TD)pX|E 1qρ ´ leakEC

Proof. This proof follows closely the proof of [91, Lemma 2]. We define Y to
be the other party’s local information used during information reconciliation and
start with the left-hand side of the statement,

Hϵ
min(TD)pX|E 1Cqρ ě Hϵ

min(TD)pXC|E 1qρ ´ log2p|C|q
ě Hϵ

min(TD)pX|E 1qρ ` Hmin(TD)pC|XE 1qρ ´ log2p|C|q
ě Hϵ

min(TD)pX|E 1qρ ` Hmin(TD)pC|XY E 1qρ ´ log2p|C|q
ě Hϵ

min(TD)pX|E 1qρ ` Hmin(TD)pC|XY E 1qρ ´ log2p|C|q.
The first inequality follows from the chain rule for smooth-min entropies (Lemma
B.1.5) and the second inequality is an extension of [85, Lemma 3.2.10] for an
infinite-dimensional register C Ñ E 1. We remark that proving this extension
requires extending the min-entropy part of [85, Lemma 3.1.8] which we have done
in Lemma B.1.9 and [85, Lemma 3.1.1] where the proof for the infinite-dimensional
case is identical to the proof given there. The third line is obtained by the strong
subadditivity property of the smooth min-entropy (Lemma B.1.8) and the last
inequality comes from the fact that E 1 Ø pX, E 1q Ø C forms a Markov-chain since
C is computed by Alice and Bob as a function of XY . Finally, since log2p|C|q
stands for the number of all possible information-reconciliation transcripts, we
may replace it with the actual leakage leakEC giving the number of bits needed to
implement the used information-reconciliation scheme.

Proposition B.1.7: Discarding Classical Information cannot In-
crease Smooth min-Entropy [32, Lemma 4.5.7.]

Let HA, HB and HX be separable Hilbert spaces and dimpHXq ă 8.
Then, in the purified distance,

Hϵ
min(PD)pA|Bqρ ď Hϵ

min(PD)pAX|Bqρ. (B.1)

Proof. See proof of Lemma 4.5.7. in [32].
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Lemma B.1.8: Strong Subadditivity of Smooth min-Entropy

Let HA, HB and HC be separable Hilbert spaces and ρ P DďpHAbHB bHCq.
Then, for either smoothing ball

Hϵ
min(TD)pA|BCqρ ď Hϵ

min(TD)pA|Bqρ.

Hϵ
min(PD)pA|BCqρ ď Hϵ

min(PD)pA|Bqρ.

Proof. The proof for trace-distance follows from [85, Lemma 3.2.7] which states
the strong subadditivity for finite-dimensional Hilbert spaces since this proof only
relies on [85, Lemma 3.1.7] (its proof is identical for separable Hilbert spaces) and
the fact that the trace-distance is monotonic under CPTNI maps (which we have
established in Lemma B.1.3). Therefore, it remains to prove the statement in
purified distance smoothing.
Consider the map EpωBq :“ ωB b ✶C . By the data-processing inequality [32,
Proposition 4.5.1] for E : MC Ñ MB and ω P DďpMABq, where M stands for a
von Neumann algebra and E˚ denotes the dual map of E , we obtain

Hϵ
min(PD)pA|Bqω ď Hϵ

min(PD)pA|CqidAbE˚pωq, (B.2)

where the smoothing of the min-entropy is done in the purified distance. Letting
MB :“ BpHBq b BpHCq and MC “ BpHBq and ω “ ρ, we obtain

Hϵ
min(PD)pA|BCqρ ď Hϵ

min(PD)pA|BqidABbTrC rρs “ Hϵ
min(PD)pA|BqρAB

. (B.3)

This completes the proof in the purified distance.

Lemma B.1.9: Conditioning on Classical Register

Let HA and HB be separable Hilbert spaces and Z a classical register. Con-
sider ρABZ P DďpHA b HB b ℓ8

Z q.
Then we have

Hϵ
min(TD)pAB|Zqρ ě inf

zPpλzqz

Hϵ
min(TD)pA|Bqρz

AB
(B.4)

in trace distance and

Hϵ
min(PD)pAB|Zqρ ě inf

zPpλzqz

H
ϵ2
2

min(PD)pA|Bqρz
AB

(B.5)

in purified distance.
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Proof. Since Z is a classical register, hence z’s are mutually orthogonal, by the
definition of the min-entropy (see Section 2.3.1) we have @z

λTr rρz
ABs

ÿ
z

✶A b |zyxz| ´
ÿ

z

ρz
AB b |zyxz| ě 0

ôλTr rρz
ABs ¨ ✶A ´ ρz

AB ě 0.

Therefore, again recalling the definition of the min-entropy, we obtain

HminpA|BZq “ inf
z

HminpA|Bqρz
AB

. (B.6)

Using the definition of smoothed min-entropies, we know that for every δ ą 0 and
for every z P Z there exists ρ̃z

AB P Bϵpρz
ABq such that

Hminpρ̃z
AB||ρz

Bq “ inf
z

Hminpρz
AB||ρz

Bq ´ δ,

for example if we let ρ̃z
AB be the optimiser for the smooth min-entropy. Then,

defining ρ̃ABZ :“ ř
z ρ̃z

AB, we obtain from Eq. (B.6)

Hminpρ̃ABZ ||ρBZq “ inf
z

Hminpρ̃z
AB||ρz

Bq ě Hϵ
minpρz

AB||ρz
Bq ´ δ.

It remains to show that ρ̃ABZ is in the smoothing ball of ρABZ . We use the trace-
distance ball, where ρ̃ABZ is guaranteed to be a subnormalized state. Therefore,
following [85], we first prove Eq. (B.4)

||ρ̃ABZ ´ ρABZ ||1 “ inf
z

||ρ̃z
AB ´ ρz

AB||1 ď
ÿ

z

Tr rρz
ABs ϵ ď ϵ,

which concludes the proof in trace-distance smoothing. Using Proposition B.1.2,
we obtain Eq. (B.5).

Proposition B.1.10: Conditioning on an Independent Register

Let HA, HB and HC be separable Hilbert spaces and ρAB P DďpHABq, ρC P
DďpHCq and define ρABC :“ ρAB b ρC .
Then, the following smooth min-entropy relations hold

Hϵ
min(TD)pA|BCqρ “ Hϵ

min(TD)pA|Bqρ.

Hϵ
min(PD)pA|BCqρ “ Hϵ

min(PD)pA|Bqρ.

Proof. We prove two inequalities. The first one, Hϵ
minpA|BCqρ ď Hϵ

minpA|Bqρ

follows from the strong subadditivity property, proven in Lemma B.1.8 (for both
smoothing balls). Therefore, it remains to prove the reverse direction.
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Define the map Φ : XABC ÞÑ XAB b ρC , which traces off the register C of XABC

and prepares ρC instead. As a composition of two CPTP maps, Φ is CPTP as well.
By construction, ρABC is invariant under Φ. Using the data processing inequality
for smooth min-entropies, we obtain Hϵ

minpA|BCqρ̃ABbρC
ě Hϵ

minpA|BCqρ̃ABC
. The

data processing inequality for purified distance tells us that if ρ̃ P Bϵ
PDpρq then

Φpρ̃q P Bϵ
PDpρq as well. Since the smooth min-entropy is defined via a supremum,

we can restrict our considerations to states of the form ρ̃AB b ρC .
Finally, let for any ρ̃AB P Bϵ

PDpρq the tuple pλ, σBq optimise HminpA|Bqρ̃. Then,
λ is the smallest real number satisfying λ✶A b σB ´ ρ̃AB ě 0. Then, since Φ
is a CPTP map, λ✶A b σB b ρC ´ ρ̃AB b ρC ě 0. While λ optimised the first
inequality, there might be a smaller λ satisfying the last inequality and therefore,
HminpA|Bqρ ď HminpA|BCqρ. As this holds for any ρ̃AB P Bϵ

PDpρq we can take the
supremum and obtain Hϵ

minpA|Bqρ ď Hϵ
minpA|BCqρ, which completes the proof.

The argument works similarly in trace-distance.

B.2. Generalisation of the Asymptotic Equipartition
Property

In this section, we generalise the asymptotic equipartition property [85, Corollary
3.3.7] to infinite dimensions. The proof there requires an ordering on the eigen-
values as well as the Birkhoff-von-Neumann theorem, so it needs some care to
generalise the AEP statement to infinite dimensions. We note that in [32, 34] they
extend the fully quantum asymptotic equipartition property to infinite dimensions.
However, as noted in [36] this version is harder to apply numerically. The basic
idea of our proof relies on the fact that the infinite-dimensional min-entropy can
be converged via projections [34]. Before we come to the actual proof, it requires
some preparations.
We start by extending the definition of the max-relative entropy to infinite dimen-
sions.

Definition B.2.11: Infinite-Dimensional max-Relative Entropy

Let HA be a Hilbert space and let P, Q P PospHAq. Then the max-relative
entropy is defined by

DmaxpP ||Qq “ inftλ : P ď 2λQu.

Next, we prove that Dmax is a Rényi-divergence just as in finite dimensions.
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Proposition B.2.12: Properties of max-Relative Entropy

For the max-relative entropy, as defined in Eq. (B.2) the following holds

(1) Normalisation: DmaxpaP ||bQq “ DmaxpP ||Qq ` log2paq ´ log2pbq
(2) Dominance: For P, Q, Q1 P PospHAq and Q ď Q1 we have

DmaxpP ||Qq ě DmaxpP ||Q1q.

Proof. We prove the two points separately.

(1) Let λ˚ :“ DmaxpP ||Qq and λ :“ DmaxpaP ||bQq. Using the definition of the
max-relative entropy, we obtain P ď 2λ˚

Q and aP ď 2λbQ which implies
P ď 2λ b

a
Q. Therefore, it follows 2λ˚ “ 2λ b

a
, hence λ “ λ˚ ` log2paq ´ log2pbq.

(2) Again, for λ˚ :“ DmaxpP ||Qq, we have P ď 2λ˚
Q. Since Q ď Q1, we have

P ď 2λ˚
Q ď 2λ˚

Q1. So, λ˚ is feasible for DmaxpP ||Q1q. Hence, it is an upper
bound. This proves the claim.

Observe that HminpρAB||σBq “ ´DmaxpρAB||✶A b σBq, which gives us the following
corollary.

Corollary B.2.13: Properties of min-Entropy

Let ρ P PospHA b HBq and σ, σ1 P PospHAq such that σ ď σ1.
Then the following statements hold,

(1) Normalisation: Hminpaρ||bσq “ Hminpρ||σq ´ log2paq ` log2pbq
(2) Dominance: Hminpρ||σq ď Hminpρ||σ1q.

Definition B.2.14: Infinite-Dimensional Smooth Min Entropy

Let HA and HB be separable Hilbert spaces and let ρ P PospHA b HBq as
well as σ P PospHBq.

For ϵ P p0,
a

Tr rρsq the smooth min-entropy is given by

Hϵ
minpρ||σq :“ sup

ρ̃PBϵ
TDpρq

Hminpρ̃||σq.

Note that this coincides with the definition given in the main text (Section 2.3.1).
Next, we want to generalise [34, Lemma 2]. Therefore, we introduce sequences of
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projectors tΠkukPN onto finite-dimensional subspaces U Ď H of the relevant Hilbert
space H, that converge to the identity ✶H with respect to || ¨ ||1. Then we define a
sequence of non-normalised projected states as ρ̂k :“ Πkρ̂Πk. For a more detailed
description, we refer the reader to [34, Section II]. We note that the following could
be trivially further generalised to a continuity claim for the smoothed max-relative
entropy.

Lemma B.2.15

Let ρB P DpHA b HBq and let tρ̂k
ABu8

k“1 a sequence of normalised projected
states converging to ρAB in the || ¨ ||1-norm. Let σB P DpHBq and tσ̂k

Bu8
k“1

be a sequence of normalised projected states that converge to σB.
For any fixed t P p0, 1q there exists k0 P N such that @k ě k0 we have

Hϵ
min(TD)pρB||σBq ě H tϵ

min(TD)pρ̂k
AB||σ̂k

Bq ` log
`
Tr

“
Πk

BσΠk
B

‰˘
,

where the smoothing is done in trace-distance.

Proof. For fixed σ the statement can be established by showing

@k ě k0 : Btϵ
TD

`
ρ̂k

AB

˘ Ď Bϵ
TDpρABq, (B.7)

where the proof is then identical to the proof of [34, Lemma 2]. Therefore, we take
this result as established, so Dk0 such that

@k ě k0 : Hϵ
minpρ||σq ě Hϵ

minpρ̂k
AB||σq. (B.8)

We are using this result and Corollary B.2.13 to prove the general case. We deduce

H tϵ
min(TD)pρ̂k

AB||σ̂k
Bq “ H tϵ

min(TD)

ˆ
ρ̂k

AB

ˇ̌̌̌ˇ̌̌̌
σk

B

Tr
“
Πk

BσΠk
B

‰ ˙
“ H tϵ

min(TD)
`
ρ̂k

AB||σk
B

˘ ` log
ˆ

1
Tr

“
Πk

BσΠk
B

‰˙
,

where we applied the normalisation property in Corollary B.2.13 for the second
equality. Then, using the dominance property in Corollary B.2.13 and noting that
σ ě Πk

BσΠk
B “ σk, we obtain

H tϵ
min(TD)

`
ρ̂k

AB||σk
B

˘ ď H tϵ
min(TD)

`
ρ̂k

AB||σB

˘
.

Putting things together, we showed

H tϵ
min(TD)pρ̂k

AB||σ̂k
Bq ď H tϵ

min(TD)
`
ρ̂k

AB||σB

˘ ´ log
`
Tr

“
Πk

BσΠk
B

‰˘
.

Thanks to the statement in Eq. (B.8) we know already that there exists such a k0
to bound Hϵ

min(TD)pρ̂k
AB||σq from above. This completes the proof.
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In the next Lemma, we extend Renner’s AEP [85, Theorem 3.3.6] to infinite-
dimensional side-information. Note that we cannot generalise register A to infinite-
dimensions, as the correction term is a function of the dimension of this register.
However, this generalisation is not required for QKD anyways.

Lemma B.2.16
Let HA and HB be separable Hilbert spaces where HA is finite-dimensional,
|HA| ă 8. Let ρAB P DpHA b HBq and n P N.
Then for any ϵ P p0, 1q

1
n

Hϵ
min(TD)pρbn

AB||σbn
B q ě HpABqρ ´ HpBqρ ´ DpρB||σBq ´ δ,

where δ “ 2 log
`
rankpρAq ` Tr

“
ρ2

B

`
✶A b σ´1

B q ` 2
˘‰˘ b

logp 1
ϵ q

n
` 1 and

smoothing is in terms of trace distance. In terms of purified distance, we
replace ϵ ÞÑ ?

ϵ.

Proof. We follow the proof of [34, Proposition 8]. Let
`
Πk

A, Πk
B

˘
be sequences of

projectors such that @k1 ě k : Πk
A ď Πk1

A that converges to the identity in the
weak operator topology and similarly for the projectors in B. Then, the n-fold
projectors

´`
Πk

A

˘bn
,
`
Πk

B

˘bn
¯

satisfy these conditions as well.
Fix t P p0, 1q. Then, by Lemma B.2.15 there Dk0 P N such that @k ě k0

Hϵ
min(TD)

`
ρbn

AB

ˇ̌ˇ̌
σbn

B

˘ ě H tϵ
min(TD)

`pρ̂ABqbn
ˇ̌ˇ̌pσ̂Bqbn

˘ ´ n log
`
Tr

“
ΠkσΠk

‰˘
holds. We used that the trace is multiplicative over tensor products. Next, since
we are working on projections, we can apply [85, Theorem 3.3.6] and obtain

1
n

Hϵ
min(TD)

`
ρbn

AB

ˇ̌ˇ̌
σbn

B

˘ ě H
`
ρ̂k

AB

˘´H
`
ρ̂k

B

˘´D
`
ρ̂k

B

ˇ̌ˇ̌
σ̂k

B

˘´δptϵq´log
`
Tr

“
ΠkσΠk

‰˘
.

(B.9)
When we take the limit of k Ñ 8 the left-hand side doesn’t change, while the
right-hand side, by our assumptions on the projections, recovers the true states.
The log-term drops, as log pTr rσsq “ logp1q “ 0. Hence, we obtain

1
n

Hϵ
min(TD)

`
ρbn

AB

ˇ̌ˇ̌
σbn

B

˘ ě H pρABq ´ H pρBq ´ D pρB||σBq ´ δptϵq.

Finally, taking the limit t Ñ 1 completes the proof.

We obtain the final result of this section, the generalised Asymptotic Equipartition
Property, as a corollary.
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Corollary B.2.17: Asymptotic Equipartition Property

Let HX and HE be separable Hilbert spaces, where HX is finite-dimensional.
Let ρXE be a classical-quantum state.
Then, for smoothing in terms of trace-distance

1
n

Hϵ
min(TD)pX|Eqρbn

XE
ě HpX|Eq ´ δpϵq,

where δpϵq :“ 2 logprankpρXq`3q
b

logp2{ϵq
n

. For smoothing in terms of purified
distance every ϵ needs to be replaced by

?
ϵ.

Proof. The proof is now identical to [85, Corollary 3.3.7], where we omit the sim-
plifications in the end of the proof. The purified-distance bound can be obtained
by Proposition B.1.2.
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C. Derivation of the
finite-dimensional optimisation
problem

In this section, explain and derive the primal and dual SDP we have to solve
in order to obtain a lower bound on the secure key rate. Our starting point is
the infinite-dimensional optimisation problem, given in Eq. (4.16), that we ob-
tain based on Bob’s observations. By introducing slack variables, the inequality
constraints can be turned into equality constraints.

min fpρq
s.t.

TrB rρs “ ρA,ˇ̌̌
Tr

”
Γ̂jρ

ı
´ γj

ˇ̌̌
ď µj,

Tr rρs “ 1,

ρ ě 0

ô

min fpρq
s.t.

TrB rρs “ ρA,

Tr
”
Γ̂jρ

ı
` aj “ µj ` γj,

´ Tr
”
Γ̂jρ

ı
` bj “ µj ´ γj,

Tr rρs “ 1,

ρ ě 0,

a⃗, b⃗ ě 0
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Next, we apply the dimension reduction method [105] and obtain the expanded
finite-dimensional optimisation

min fpρq
s.t.

1
2 ||TrB rρ̄s ´ ρA||1 ď 2

?
w,

µj ` γj ´ aj ´ w
ˇ̌̌ˇ̌̌
Γ̂j

ˇ̌̌ˇ̌̌
8

ď Tr
”
Γ̂jρ

ı
ď µj ` γj ´ aj,

´ µj ` γj ` bj ´ w
ˇ̌̌ˇ̌̌
Γ̂j

ˇ̌̌ˇ̌̌
8

ď Tr
”
Γ̂jρ

ı
ď ´µj ` γj ` bj,

1 ´ w ď Tr rρs ď 1,

ρ ě 0,

a⃗, b⃗ ě 0,

where we replaced the infinite-dimensional ρ by the finite-dimensional ρ and used
the improved bound

?
w for the trace-norm constraint from [106, page 59]. As in

our case the Γ̂J ’s are infinite-dimensional, ||Γ̂j||8 “ 8. Since w is non-negative,
the left-hand side of the inequalities on Tr

”
Γ̂jρ

ı
, therefore, become trivial and

can be omitted. Furthermore, we can rewrite the trace-norm constraint (see, for
example, [108]). We obtain

min fpρq
s.t.

Tr rP s ` Tr rN s ď 2
?

w,

P ě TrB rρs ´ ρA,

N ě ´ pTrB rρs ´ ρAq ,

Tr
”
Γ̂jρ

ı
ď µj ` γj ´ aj,

Tr
”
Γ̂jρ

ı
ď ´µj ` γj ` bj,

1 ´ w ď Tr rρs ď 1,

ρ, N, P ě 0,

a⃗, b⃗ ě 0.

(C.1)

The numerical method in [110] lower bounds the minimum of the objective function
as follows. Let ρ˚ minimise f over the feasible set S. Then, we have

fpρ˚q ě fpρq ` Tr rpρ˚ ´ ρq∇fpρs ě fpρq ` min
σPS

Tr rpσ ´ ρq∇fpρs (C.2)

“ fpρq ´ Tr rρ∇fpρsq ´ min
σPS

Tr rσ∇fpρqs . (C.3)
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Therefore, in what follows, we consider this linearised problem. The feasible set
is given by the constraints in Eq. (C.1). Furthermore, for ease of notation, we
denote all measurement operators by the label Λ̂ and call the right-hand sides of
the constraints related to measurements and the trace-condition λj to obtain a
more abstract form of our optimisation problem. Then, the problem reads

min x∇fpρq, σy
s.t.

λk ´ Tr
”
Λ̂kσ

ı
ě 0,

2
?

w ´ Tr rP s ´ Tr rN s ě 0,

P ´ TrB rσs ` ρA ě 0,

N ` TrB rρs ´ ρA ě 0,

ρ, N, P ě 0.

(C.4)

We identify
X “ pσ ‘ P ‘ Nq ,

H1 “ p∇fpρq ‘ 0 ‘ 0q ,

H2 “ ´ `´λ1 ‘ . . . ‘ λ6NSt ‘ 2
?

w ‘ ρA ‘ ´ρA

˘
,

Y “ py1 ‘ . . . ‘ y6NSt ‘ s ‘ τ ‘ Θq ,

as well as the linear map
N pXq “ N pX1 ‘ X2 ‘ X3q

“ p´Tr
”
X1Λ̂1

ı
‘ . . . ‘ ´Tr

”
X1Λ̂6NSt

ı
‘ ´Tr rX2s ‘

´ Tr rX3s ‘ X2 ´ TrB rX1s ‘ X3 ´ TrB rX1sq
which brings our SDP to the form
(P) Primal problem:

α :“ inf xX, H1yH1

s.t.
N pXq ´ H2 P K2,

X P K1

(D) Dual problem:
β :“ sup xY, H2yH2

s.t.
H1 ´ N ˚pXq P K˚

1 ,

Y P K˚
2
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Note that K1 denotes the cone

K1 :“
$&%

¨̋
x1
x2
x3

‚̨: x1, x2, x2 ě 0

,.- ,

K1̊ denotes the dual cone of K and x¨, ¨yH1 and x¨, ¨yH2 are the inner products on
the Hilbert spaces H1 and H2, where the optimisation problems are set. In our
case, we have K1̊ “ K1 and the first inner product is the Hilbert-Schmidt inner
product over the Hilbert space of bounded linear operators and the second inner
product is the inner product induced by the component-wise inner products of
Hilbert spaces of the constituents of Y . It remains to find the dual (adjoint) of N ,
defined by xY, N pXqyH2 “ xN ˚pY q, XyH1 . One can show that

N ˚ py1 ‘ . . . ‘ y6NSt ‘ s ‘ τ ‘ Θq

“
˜˜

´
6NStÿ
j“1

yjΛ̂j ´ τ b IB ´ Θ b IB

¸
‘ p´s ¨ I ` τq ‘ p´s ¨ I ` Θq

¸
.

Therefore, the dual problem reads

´ max y⃗ ¨ λ⃗ ` 2
?

ws ` Tr rρAτ s ´ Tr rρAΘs
s.t.

∇fpρq `
6NStÿ
j“1

yjΛ̂j ` τ b IB ´ Θ b IB ě 0,

s ¨ I ´ τ ě 0,

s ¨ I ` Θ ě 0,

y⃗ ě 0, s ě 0, τ, Θ ě 0.

Finally, we apply the relaxation in [110] to take numerical imprecisions into ac-
count. This adds ϵnum to the vector v⃗ as well as to 2

?
w. Therefore, as claimed,

we finally obtain the dual of the form given in Eq. (4.18).
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D. Bound on the Weight for DM
CV-QKD protocols

An integral task when applying the dimension reduction method is to bound the
weight outside the considered finite-dimensional subspace. In our work, the energy
test provides us a weight. However, in an earlier stage of the present proof, we
were required to calculate the weight directly. Theorem 5 in [105] gives a bound
on the weight for the asymptotic optimisation problem which is given by equality
constraints. In the finite-size case, based on statistical analyses, we obtain only
bounds on the expectations of our observables, and hence have to deal with in-
equality constraints. Therefore, we showed that even for this more general case,
we obtain the same bound for the weight. Although this way of bounding the
weight outside the cutoff space is not required in the final version of our proof, we
provide our result, in case it might be of use for someone’s future work.
Let be Πβi

the projector onto the Hilbert space spanned by displaced Fock states
|nβi

y with photon number smaller or equal to nc and let Π :“ řnc

i“0 |iyxi| b Πβi
the

corresponding projector onto Alice’s and Bob’s joint Hilbert space. Then, for the
j-th weight we have

wj ě max Tr
“
Πβj

ρ
‰

s.t.ˇ̌̌
Tr

”
Γ̂iρ

ı
´ γi

ˇ̌̌
ď µi,

ρ ě 0,

where i P t1, ..., Mu. Introducing slack-variables, this is equivalent to

wj ě max Tr
“
Πβj

ρ
‰

s.t.

Tr
”
Γ̂iρ

ı
` ai “ µi ` γi,

´ Tr
”
Γ̂iρ

ı
` ai “ µi ´ γi,

ρ ě 0.

xxiii



Let us define

A :“ Πβj
‘ 0⃗ ‘ 0⃗,

σ :“ ρ ‘ a⃗ ‘ b⃗,

Γ̂` :“ Γ̂i ‘ |iyxi| ‘ 0⃗,

Γ̂´ :“ ´Γ̂i ‘ 0⃗ ‘ |iyxi|

to simplify the SDP to

wj ě max Tr rAσs
s.t.

Tr
”
Γ̂˘

i ρ
ı

“ µi ˘ γi,

σ ě 0.

It can be shown that the dual problem reads

min
Mÿ

i“1
pyipµi ` γiq ` yi`M pµi ´ γiqq

s.t.

A ď
Mÿ

i“1

´
Γ`

i yi ` Γi ´ yi`M

¯
,

y P R2M .

Note that A ď řM
i“1

´
Γ`

i yi ` Γi ´ yi`M

¯
breaks down to

Πβi
ď

Mÿ
i“1

Γ̂J
i pyi ´ yi`M q,

0 ď
Mÿ

i“1
|iyxi| yi,

0 ď
Mÿ

i“1
|iyxi| yi`M ,

which implies @i P t1, ...2Mu : yi ě 0. Replacing Γ̂i by the actual observables and
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γi by their expectations leads to the following dual problem

min
”
y1p1 ` µ1q ` y2pxn̂βj

y ` µ2q ` y3pxn̂2
βj

y ` µ3q
`y4p´1 ` µ4q ` y5p´xn̂βj

y ` µ5q ` y6p´xn̂2
βj

y ` µ6q
ı

s.t.
py1 ´ y4q✶B ` py2 ´ y5qn̂βj

` py3 ´ y6qn̂2
βi

ě Πβj
,

y⃗ ě 0⃗.

Note that all Πβj
have the form

Πβj
“

ˆ
0pnc`1qˆpnc`1q

✶

˙
.

Therefore, we can satisfy the constraints by choosing

y1 “ 0 “ y4,

y2 “ ´y3 “ ´ 1
ncpnc ` 1q ,

y3 “ ´y6 “ 1
ncpnc ` 1q ,

and obtain as an upper bound for the j-th weight

wj ď xn̂2
βj

y ´ xn̂βj
y

ncpnc ` 1q , (D.1)

which coincides with the weight in the restricted case with equality constraints.
We obtain the total weight

w “
ÿ

j

ppjqwj ď
ÿ

j

ppjqxn̂2
βj

y ´ xn̂βj
y

ncpnc ` 1q . (D.2)
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E. Glossary

E.1. Abbreviations and important Terms
This section lists abbreviations and terms used in the present thesis alphabetically.

Asymptotic Limit is an idealisation for security proofs where one presumes
Alice and Bob exchange infinitely many signals. Lifting this assumption
means proving security in the finite-size regime. See Section 3.3.2 for a more
in-depth discussion.

AT stands for Acceptance Test, see Theorem 4.4.2.

Composability is a security notion that ensures that protocols that are
proven secure remain secure if they are used as a subprotocol in a larger
protocol. For more details, see Section 3.3.3.

CP stands for Completely Positive [map], see Definition 2.1.15.

CPTP stands for Completely Positive Trace Preserving [map, see CP and
TP].

CV QKD stands for Continuous-Variable Quantum Key Distribution.

Direct Reconciliation is a special case of information reconciliation, where
the flow of classical information is in the same direction as the flow of quan-
tum signals, that is Alice sends classical information to Bob who then corrects
his bit-string according to the instructions he received from Alice.

DM stands for Discrete Modulation.

DV QKD stands for Discrete-Variable Quantum Key Distribution.

EC stands for Error Correction.

ET stands for Energy Test, see Theorem 4.4.1.

Error Correction is a way to execute information reconciliation. However,
often it is used as a synonym for information reconciliaton as well.
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Finite-Size Regime describes the realistic scenario where Alice and Bob
exchange only a finite amount of signals before generating their key. We
refer to Section 3.3.2 for a more detailed discussion.

GM stands for Gaussian Modulation.

Homodyne Detection is the name of a method for measuring one quadra-
ture of light. The incoming state is mixed with the light coming from the
local oscillator, a strong reference light source, at a 50 : 50 beamsplitter.
The intensity of the superposed signal is measured with photodiodes. The
quadrature component is then proportional to the difference in the output
photo-currents. For more details we refer the reader to Section 2.4.

Heterodyne Detection is another method for measuring the quadratures
of light. At the cost of an additional 3dB loss compared to the homodyne
detector, heterodyne detectors can measure both quadrature components
simultaneously. It introduces an additional 50 :50 beamsplitter and measures
the output states each with a heterodyne detector. For more details we refer
the reader to Section 2.4.

Information Reconciliation describes the process of Alice and Bob using
classical communication to synchronise their only partially correlated bit
strings, while information is leaked to the eavesdropper via the classical
channel.

PA stands for privacy amplification.

PE stands for Parameter Estimation. Note that for the finite-size regime
PE is replaced by the notion of acceptance sets and acceptance testing.

Postprocessing summarises classical protocol steps that transform the raw
key into a shorter secret key.

Postselection describes a process where selectively certain measurement re-
sults are discarded aiming to improve the performance of the protocol (e.g.,
higher key rates, higher noise-tolerance, fewer data needed to be postpro-
cessed).

POVM stands for Positive Operator-Valued Measure (see Definition 2.2.21
and Definition 2.2.22).

Privacy Amplification is the procedure when Alice and Bob distil a secret
key from a common random variable that is partially known to an adversary.
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PSK is short for Phase-Shift Keying and is a modulation pattern for data
transmission, where the sent signals are prepared with the same amplitude
but a different phase.

QKD stands for Quantum Key Distribution which is a method to establish
a shared secret key between two remote parties.

QPSK is short for Quadrature Phase-Shift Keying and is the special case
of Phase-Shift Keying, where four signal states are used.

Quantum Channel is a completely positive trace preserving map, see Def-
inition 2.2.24.

Raw Key is the bit-string obtained by measuring the incoming quantum
signals before performing classical protocol steps like sifting, error-correction
and privacy-amplification.

Reverse Reconciliation is a special case of information reconciliation,
where the flow of classical information is opposite to the direction of the
quantum phase. So, Bob sends classical information to Alice who then cor-
rects her bit-string according to the instructions he received from Bob.

SDP is the abbreviation for Semidefinite Program.

Security Proof is a mathematical statement giving a lower bound on the
achievable secure key rate for a Quantum Key Distribution protocol under
some model for the physical system and certain additional assumptions.

Secure Key Rate is the fraction of transmitted signals that can be used
for encryption.

TNI stands for Trace Non-Increasing [map], see Definition 2.1.15.

TP stands for Trace Preserving [map], see Definition 2.1.15.

Trusted Detector describes a model for a detector, where (parts of) the
electronic noise is trusted and therefore assumed not to be controlled by an
eavesdropper.
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E.2. Symbols used
This section lists symbols used in the present thesis.

E.2.1. Sets, fields and spaces
N is the set of natural numbers t1, 2, ...u.

N0 is the set of natural numbers including 0.

R is the set of real numbers.

C is the set of complex numbers.

H denotes a separable Hilbert space over C, see Definition 2.1.1.

H˚ denotes the dual space of a Hilbert space H, see Definition 2.1.2.

BpHA, HBq denotes the set of all bounded operators, mapping from Hilbert
space HA to the Hilbert space HB , see Definition 2.1.4.

BpHq is a short notation for BpH, Hq.
PospHq denotes the set of all positive semi-definite operators on H, see Def-
inition 2.1.6.

T pHq denotes the set of all trace-class operators over H (see Definition 2.1.11).

T1pHq denotes the set of all trace-class operators over H with Schatten 1-
norm equal to 1, see Definition 2.1.11.

T `pHq denotes the set of positive trace-class operators over H, see Defini-
tion 2.1.11.

DpHq denotes the set of density operators over H, see Definition 2.2.17.

DďpH) denotes the set of subnormalised density operators over H.

E.2.2. Maps and Distance-Measures
b denotes the tensor product, see Definition 2.1.13.

¨: denotes the dual of a linear map, see Definition 2.1.16.

∆p¨, ¨q denotes the trace-distance between two positive operators, see Defini-
tion 2.2.26.
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F p¨, ¨q denotes the Fidelity between two density operators, see Definition
2.2.27.

F˚p¨, ¨q] denotes the generalised fidelity between two subnormalised density
operators, see Definition 2.2.28.

Pp¨, ¨q denotes the purified distance between two quantum states, see Defi-
nition 2.2.29.

Tr r¨s denotes the trace of an operator, see Definition 2.1.8.

TrA¨ denotes the partial trace of a bipartite operator ρAB P HA b HB, see
Definition 2.1.14.

|| ¨ ||8 denotes the operator norm of an operator, see Definition 2.1.3.

|| ¨ ||p denotes the Schatten p-norm of an operator, see Definition 2.1.9.

E.2.3. Entropic Quantities and Probabilities
Hp¨q denotes the classical or Shannon entropy of a discrete random variable,
see Definition 2.3.31.

Hp¨, ¨q denotes the classical joint entropy of two discrete random variables,
see Definition 2.3.32.

Hp¨, |¨q denotes the classical conditional entropy of two discrete random vari-
ables, see Definition 2.3.33.

Ip¨ : ¨q denotes the classical mutual information, see Definition 2.3.34.

Hp¨qρ denotes the von Neumann entropy of a quantum state ρ, see Defini-
tion 2.3.35.

Hp¨, ¨qρ denotes the joint von Neumann entropy of a bipartite quantum state
ρ, see Definition 2.3.36.

Hp¨, |¨qρ denotes the conditional von Neumann entropy of a bipartite quan-
tum state ρ, see Definition 2.3.37.

Dp¨||¨q denotes the quantum relative entropy between a quantum state in the
first argument and a positive operator in the second argument, see Defini-
tion 2.3.39.

Hminp¨|¨q denotes the min-entropy of a quantum state, see Definition 2.3.40.
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Hmaxp¨|¨q denotes the max-entropy of a quantum state, see Definition 2.3.41.

Hϵ
minp¨|¨q denotes the smooth min-entropy of a quantum state, see Defini-

tion 2.3.42.

Hϵ
maxp¨|¨q denotes the smooth max-entropy of a quantum state, see Defini-

tion 2.3.42.

P p¨, ¨q denotes the joint probability of two events.

P p¨|¨q denotes the conditional probability of two events.

E.2.4. Miscellaneous
.J denotes the transpose of a matrix.

.̄ denotes the complex conjugate of a complex number.

ě is a short notation for non-negativity of an operator.

✶X is the identity operator on the space X.

idH denotes the identity map on the Hilbert space H.

E denotes the expectation value of an observable.

|.y is a vector in a Hilbert space H in BraKet notation.

x.| denotes a linear-form on a Hilbert space H in BraKet notation.

x.|.y denotes the action of a bra on a ket. The Riesz-Frechet representation
theorem allows us to use this notation to denote the inner product between
two states.

|.yx.| is the outer product between two quantum states, defined as a map
from H to H, |ψy xϕ|σy :“ xϕ|σy |ψy.
x.yρ denotes the expectation value of an operator Ô in the state (associated
with) ρ.

x., .y denotes the inner product between two vectors.

e. denotes the exponential function. The exponential of a matrix or a
bounded operator A is defiend via the series eA :“ ř8

n“0
An

n! .
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logbp.q denotes the logarithm to the base b. If logb is applied to a matrix
or a bounded operator A, we mean by logbpAq the matrix that satisfies
blogbpAq “ A. The logarithm of a diagonalisable matrix M “ T ´1DT is
defined via logbpMq “ T ´1 logbpDqT .

xxxiii



E.3. Variables Used
This section lists important variables used in the present thesis.

â is the annihilation operator, see Section 2.4.

â: is the creation operator, see Section 2.4.

α denotes the complex amplitude of the coherent state |αy.
β denotes the reconciliation efficiency, that is the efficiency of classical error
correction.

βtest is the testing parameter for the energy test, see Theorem 4.4.1.

χ stands for the Holevo quantity.

d̂ denotes a second order quadrature operator, see Section 3.4.

∆r denotes the radial postselection parameter.

δEC is the information leakage in the Slepian-Wolfe limit, see Section 4.4.6.

δEC
leak is the information leakage for imperfect information reconciliation, see

Section 4.4.6.

EA1ÑB is the map, modelling the quantum channel connecting Alice and Bob,
see Section 3.4.

Ey denotes the POVM for ideal heterodyne measurement.

ϵ is the total security parameter, see Theorem 4.4.3.

ϵ̃ stands for the small perturbation that guarantees differentiability of the
optimisation problem’s objective function, see Section 3.4.1.

ϵ is the smoothing-epsilon.

ϵAT is the security parameter of the acceptance test, see Theorem 4.4.2.

ϵET is the security parameter of the energy test, see Theorem 4.4.1.

ϵEC is the security parameter of the error-correction subroutine.

ϵPA is the security parameter of the privacy amplification subroutine.
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η denotes the transmittance of the quantum channel connecting Alice and
Bob. In accordance with state-of-the-art optical fibres, in the whole work,
we chose η “ 10´0.02L.

ηd denotes the detector-efficiency within the trusted, non-ideal detector model,
see 3.4.4.

f denotes the objective function of optimisation problem for untrusted, ideal
detectors.

fnoisy denotes the objective function of optimisation problem for trusted,
non-ideal detectors.

F̂P denotes the first-order p-quadrature operator within the trusted, non-
ideal detector model, see 3.4.4.

F̂Q denotes the first-order q-quadrature operator within the trusted, non-
ideal detector model, see 3.4.4.

G denotes the completely positive trace non-increasing map that describes
several protocol steps, see Section 3.4.

Gy denotes the POVM of the trusted, non-ideal detector, see Section 3.4.4.

Γ̂i is a generic symbol, standing for the i-th measurement operator that is
used to define the feasible set.

γi is a generic scalar, standing for the right-hand-side of the i-th constraint
required to define the feasible set.

I stands for an index set. If it is not specified in more detail, its size is clear
from the context.

kT is the number of signals sacrificed for testing, see Theorem 4.4.1.

L denotes the length of the optical fibre between Alice and Bob, measured
in km.

leakEC is the total leakage term, including error verification, see Section 4.4.6.

lT is the number of testing rounds that may violate the testing condition,
see Theorem 4.4.1.

µX is the acceptance bound related to the observable X, see Theorem 4.4.2

N denotes the total number of signals transmitted.
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n denotes the number of rounds left after testing, n :“ N ´ kT .

n̂ denotes the number operator, see Section 3.4.

n̂βi
denotes the displaced number operator, see Section 3.4.4.

nc denotes the photon cutoff number, see Section 3.4.2.

NSt denotes the number of states of a certain protocol (see Chapter 3.2).

νel is the electronic noise in the trusted, non-ideal detector model, measured
in shot-noise units, see Section 3.4.4.

p̂ denotes the momentum-operator.

pi is the probability that the state, associated with the symbol i, is prepared
by Alice, see Section 3.2.

ppass denotes the probability that random round is kept until after the post-
selection phase, see Section 3.4.1.

q̂ is the spatial quadrature operator, see Section 3.2.

R8 is the asymptotic secret key rate.

Rz
B is the region operator associated with Bob’s key map, corresponding to

the region labelled by the symbol z, see Section 3.4.

ρ stands for a general density operator.

S8 denotes the feasible set associated with the optimisation problem for the
asymptotic key rate, see Section 3.4.

ŜP denotes the second-order p-quadrature operator within the trusted, non-
ideal detector model, see 3.4.4.

ŜQ denotes the second-order q-quadrature operator within the trusted, non-
ideal detector model, see 3.4.4.

w denotes the weight outside the cutoff space, see Theorem 3.4.3.

ξ denotes the excess noise, measured in shot-noise units.

Z denotes the pinching quantum channel that describes several protocol
steps, see Section 3.4.
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