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Kurzfassung

Auf dem Gebiet der digitalen integrierten Schaltungen sind asynchrone und im speziellen
quasi-laufzeitunabhängige (engl. quasi delay-insensitive (QDI)) Designs dafür bekannt,
besonders robust gegenüber fertigungsbedingten Variationen bzw. Änderungen der Umge-
bungstemperatur sowie der Betriebsspannung zu sein (engl. process, voltage and timing
(PVT) variations) – ein zunehmend erstrebenswertes Verhalten. Der Hauptgrund für diese
Eigenschaften liegt darin, dass im QDI Design nur sehr wenige Signallaufzeitbedingungen
notwendig sind, um das korrekte Verhalten einer Schaltung garantieren zu können. Dies
steht im starken Kontrast zum starren zeitlichen Ablauf, der dem Funktionsprinzip syn-
chroner Schaltungen zu Grunde liegt. Dieses flexible Zeitverhalten macht derartige QDI
Designs prädestiniert für den Einsatz in einigen hoch relevanten Anwendungsgebieten
– zwei davon stehen im Fokus dieser Dissertation. Die inhärente Robustheit gegenüber
Laufzeitvariationen macht QDI Designs (i) bestens geeignet um laufzeitunabhängige (engl.
delay-insensitive (DI)) Kommunikationskanäle für Inter- oder Intra-Chipverbindungen zu
implementieren und (ii) eine vielversprechende Wahl für die Realisierung fehlertoleranter
Systeme.

Der erste Teil dieser Arbeit wird sich daher mit der Untersuchung von laufzeitunab-
hängiger Kommunikation beschäftigen, welche die Implementierung hochflexibler Über-
tragungsstrecken erlaubt. Die einschlägige Fachliteratur zeigt, dass eine große Vielfalt an
Möglichkeiten für die Realisierung solcher laufzeitunabhängigen Übertragungsstrecken
existiert. Eine besondere Herausforderung, die sich dabei stellt, ist es, eine Balance
zwischen verschiedenen, oft entgegengesetzten Optimierungskriterien für eine effiziente
Implementierung zu finden. Durch eine umfassende Analyse von bereits bekannten,
aber auch neu entwickelten Protokollen, Datenkodierungen und Schaltungen präsentiert
diese Arbeit einige effiziente Lösungen und Optimierungsstrategien zur Realisierung
von laufzeitunabhängiger Kommunikation. Weiters werden auch Schnittstellenmodule
untersucht, die einen effizienten Datenaustausch zwischen synchronen und asynchronen
Subsystemen einer Schaltung ermöglichen.

Der zweite Teil dieser Arbeit ist der Analyse der Fehlertoleranzaspekte von QDI Schal-
tungen gewidmet. Dabei wird der Fokus auf die Untersuchung von transienten Fehlern
gelegt, welche sich typischerweise als kurze (wenige hundert Picosekunden dauernde)
Spannungs- bzw. Stromspitzen in einer Schaltung manifestieren. Solche Fehler werden
hauptsächlich durch kosmische Strahlung verursacht und beeinträchtigen eine Schaltung
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nur für einen begrenzten Zeitraum, verursachen also keinen permanenten Schaden. Der
anhaltende Trend zu immer kleineren Strukturgrößen und Versorgungsspannungen macht
digitale Schaltungen anfälliger für diesen Fehlertyp. Aus diesem Grund sind Maßnahmen
zur Steigerung der Resilienz nicht nur für Systeme, die eine besonders hohe Zuverläs-
sigkeit garantieren müssen, relevant, sondern in zunehmendem Maß auch für “normale”
Verbraucherelektronik.

Die wissenschaftliche Untersuchung der Fehlertoleranzeigenschaften von QDI Schaltungen
ist deshalb notwendig, weil sich deren Verhalten unter der Einwirkung von (transienten)
Fehlern fundamental von dem synchroner Schaltungen unterscheidet, welche bereits gut
erforscht sind. Ein einziger Fehler kann bei asynchronen Schaltungen beispielsweise zur
Selbstblockierung (engl. deadlock) eines gesamten Systems oder zur Erzeugung neuer
Datenelemente führen – Effekte, für die es in synchronen Schaltungen keine direkten
Entsprechungen gibt. Das hat auch zur Folge, dass Maßnahmen zur Erkennung, Ver-
meidung und Behandlung von Fehlern, die für synchrone Designmethoden entwickelt
wurden, nicht (immer) direkt auf asynchrone Schaltungen anwendbar sind. Deshalb
beschäftigt sich diese Dissertation speziell mit der Analyse der Auswirkungen von tran-
sienten Fehlern auf QDI Designs und untersucht mögliche Verfahren zur Behandlung der
auftretenden Effekte. Dabei werden sowohl bekannte Verfahren aus der Literatur sowie
eigene Entwicklungen untersucht. Darüber hinaus wird ein umfassendes Softwarepaket
für die Erzeugung, Simulation und Verifikation von asynchronen Schaltungen präsentiert,
das auch bei weiteren Forschungsarbeiten zu diesem Thema Verwendung findet.



Abstract

In the field of digital integrated circuits asynchronous and especially quasi delay-insensitive
(QDI) designs are known to have a high robustness against process, voltage and tem-
perature variations – an increasingly desired property. This is because for QDI designs
only very few timing assumptions and constraints are necessary to guarantee the correct
behavior of a circuit, which is in strong contrast to the rigid timing scheme of the
traditional synchronous design style. This characteristic key-property opens up many
interesting and highly relevant application areas – two of are the focus of this thesis. The
inherent robustness against timing variations makes QDI design styles and techniques (i)
perfectly suited for constructing delay-insensitive (DI) communication channels for global
inter- or intra-chip interconnect and (ii) a promising choice for the design of fault-tolerant
systems.

The first part of this work is, hence, devoted to the investigation of efficient ways to
transmit information in a DI way, which allows for the construction of highly flexible
communication links. Literature shows that there is a large design space for how such DI
links can be implemented, with many different and often opposing optimization criteria.
We provide a comprehensive analysis of available protocols and data encoding schemes
and complement them with our own contributions to the field. Furthermore, we also
investigate interface components that enable synchronous parts of a system to efficiently
communicate with asynchronous ones.

The second part of this thesis explores the fault-tolerance aspects of QDI design. Here
we focus our work on transient faults, i.e., short voltage spikes that affect a circuit over a
certain amount of time (usually a few hundred picoseconds), which are primarily caused
by cosmic radiation. The ongoing trend to ever smaller supply voltages and feature sizes
makes circuits more prone to these types of faults. Thus, countermeasures against such
effects are not exclusively relevant for highly dependable systems, but also for everyday
end-user electronics.

Research into the fault-tolerance properties of QDI circuits is necessary, because their
behavior under faults is fundamentally different from that of circuits constructed using
the well understood synchronous paradigm. Here, even single faults can lead to the
creation of additional erroneous data elements or complete system deadlocks – effects for
which there is no direct counterpart in synchronous designs. This also means that fault-
mitigation and hardening strategies from synchronous design do not (always) directly
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translate over to the asynchronous world and that more specialized approaches are
required. Hence, in this thesis, we analyze the effects of transient faults, investigate
fault-mitigation strategies from literature and present and evaluate our own techniques.
Moreover, we also contribute to the design of a comprehensive tool set to generate and
simulate asynchronous circuits to enable further research in the future.
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CHAPTER 1
Introduction

To organize the data transfer between storage elements in digital circuits (e.g., registers
in a pipeline) the designer has basically two options. In the widely used synchronous
design style all storage elements are (simultaneously) triggered by a clock signal, while
asynchronous designs use local closed-loop handshakes to perform this task [Spa20].

Since the clock signal must be routed to every single flip-flop of a design it is, by its nature,
a very high fan-out signal. However, at the same time it must exhibit a minimal amount
of skew, because the rigid synchronous timing model demands that all flip-flops in a design
are triggered at (virtually) the same time. This leads to the situation that a considerable
amount of (electrical) energy and engineering resources have to be put into the clock
tree of a synchronous chip to uphold this abstraction [DIBM03, Fri01, LKM10]. The
ever-increasing miniaturization of semiconductor circuits and the accompanying rising in
chip-complexity and clock rates further exacerbate these problems and challenges.

To determine the maximal possible clock frequency a design can be operated with, a
static timing analysis is performed. This analysis essentially searches for the longest
delay between any two flip-flops in a design, which is referred to as the critical path.
The clock frequency must then be chosen such that the clock period allows for the
signal traveling along the critical path to reach its destination before the next clock edge.
Because of process, voltage and timing (PVT) variations, some timing margin has to
be added to the critical path delay (which thus lowers the maximal clock frequency).
This means that the speed of the circuit is determined solely by the slowest path in
the design, even if this path may only be relevant in very rare cases. Nevertheless,
the synchronous design style is indisputably popular for industrial/commercial designs
because it models time as discrete steps, which greatly simplifies circuit design and speeds
up the development process. Virtually all commercial electronic design automation (EDA)
tools are specifically optimized for and tailored to synchronous design.
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1. Introduction

However, modern high-performance chips heavily use dynamic (voltage and) frequency
scaling and often multiple separate clock domains [RMGW09, SMB+02], which under-
mines this abstraction to a certain degree. Hence, these designs naturally contain a
large number of clock domain crossings which come with their own set of problems
(metastability, latency, area overhead, etc.). This situation lead to the concept of Glob-
ally Asynchronous Locally Synchronous (GALS) Systems [Cha84, TGL07], which use
synchronous “islands” communicating over some form of asynchronous interconnect
[KSS+16].

For these reasons it makes sense to also consider an alternative. Since asynchronous
design styles don’t use a (global) clock signal they don’t suffer from many of the discussed
problems. However, they come with their own difficulties, challenges and drawbacks.
Asynchronous design styles can (among other characteristics) be classified based on the
timing assumptions imposed on the circuits.

Bundled-data (BD) designs [SN07, Sut89] are quite similar to synchronous circuits as
they use the same combinational logic to process binary data. However, instead of a
clock signal they “bundle” the data that is transmitted from one storage element (the
source) to the next (the sink) with an additional signal that indicates the validity of
the data. This signal is usually referred to as request and can be viewed as a local
replacement of the clock signal. It is used by the sink to trigger the capturing event of
the transmitted data. As soon as the data is stored the sink uses the acknowledgment
signal to inform the source that the data has been consumed and that new data can be
sent1. Note that there is an immanent race condition between the request signal and
the data that is being transmitted. It must be guaranteed that the request reaches the
sink only after the data is stable at its input. In BD designs this timing constraint is
usually fulfilled by inserting delay elements in the request paths. Thus, for correct circuit
operation, it must be ensured that the delay on the request signal is at least as long as
the critical path of the combinational logic between source and sink. Since for different
input data, different critical paths through the combinational logic are relevant, it is
even possible to dynamically select an appropriate delay using multiple different delay
elements, depending on the actual data being processed – a strategy that improves the
average-case performance of a circuit [Now96]. This is in contrast to the synchronous
style which always has to accommodate the worst case. An important side-effect of the
way asynchronous logic operates, is that there is only (switching) activity in the circuit
when there is actually something being processed, which can have a positive impact on
the power consumption of a chip. For synchronous designs, techniques like clock gating
are required to achieve a similar effect. Asynchronous design styles further offer the
benefit that circuits with different speeds can simply be connected without the need for
clock domain crossing circuits, as would be needed for synchronous designs operating
with different clock speeds.

Another possibility for implementing the request in an asynchronous circuit is to implicitly
1This explanation assumes push channels. In pull channels the meaning of the request and acknowl-

edgment signals are reversed, see [Spa20] for a more detailed discussion.
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encode it in the data being transmitted. It is then the responsibility of the receiver
to decide when this data is complete (i.e., valid) and can thus be consumed. This
process is referred to as completion detection and the circuit that performs it is called
completion detector (CD). It is only possible if the code used to encode the data has
certain properties [Ver88]. Possible choices include constant-weight (e.g., dual-rail) and
Berger codes. Of course such special encodings cause a certain overhead, especially when
considering computational logic. In comparison to synchronous or BD circuits the data
processing is very different and induces additional costs in terms of area and delay (and
hence power). However, the huge advantage that comes with this design paradigm is
that circuits can be implemented in a quasi delay-insensitive (QDI) way, which means
that they are basically immune to delay variations2. This allows circuits to, e.g., easily
cope with (power) optimization techniques like sub-threshold operation.

These properties open up promising application areas for QDI circuits. The robustness
against timing variations makes delay-insensitive (DI) communication channels very
interesting for global inter- or intra-chip interconnect [BF02, PFT+07, Lin03, MG20],
especially in the light of GALS systems. Moreover, asynchronous circuits in general
and particularly QDI circuits are well-suited for systems that have to operate over a
wide range of environment temperatures and supply voltages [KMM15, BRWG05]. Since
their correct behavior doesn’t rely on strict timing guarantees inside the circuit they
can gracefully degrade performance and simply run slower if, e.g., the supply voltage
is low. However, it is also worth noting that QDI circuits can be used to implement
specialized high-performance hardware, which has been successfully demonstrated by
Fulcrum Mircosystems with their network switches [DLD+14]. On a side note, there
is also some indication that QDI circuits have some inherent robustness against power
analysis attacks [HPL+16, LHCG17], which is important for security-critical applications.

PVT variations in digital circuits mainly cause delay faults. For a delay fault to manifest
itself as an error in the value domain (i.e., a wrong binary value in some storage
element) some timing assumption must be violated by it. However, as already discussed,
asynchronous and especially QDI design styles have an inherent robustness against these
faults. Unfortunately digital circuits are also affected by other environmental influences
as well as internal defects which can directly cause value errors.

Basically faults can be classified as transient and permanent. Permanent faults, also
referred to as hard-errors, result in physical damage to a circuit (gate oxide/interconnect
wear-out, latchup, etc.) and cannot be corrected (although they may be tolerated to some
degree) [WH11]. Transient faults, on the other hand, only affect a circuit over a limited
period of time (usually a few hundred picoseconds) and cause a voltage spike on some
internal node of the circuit, referred to as single-event transient (SET). If such a pulse is
captured by a storage element it can manifest itself in the circuit’s state, which is then
referred to as a soft-error or single-event upset (SEU). In modern designs transient faults

2As will be explained in more detail in Section 2.2, the only timing constraint in QDI circuits comes in
the form of the isochronic fork assumption, which is also the reason why we speak of quasi delay-insensitive
and not complete delay-insensitive circuits.
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1. Introduction

are mainly caused by cosmic radiation, i.e., high energy particles hitting a transistor in a
chip [Bau05]. However, also cross-talk effects can play a role [MMK+02]. The ongoing
trend to ever smaller supply voltages and feature sizes makes circuits more prone to these
effects, because it reduces the critical charge a particle hit has to “overcome” to create an
SET. Moreover, because the physical area a single transistor occupies is ever decreasing,
the chance that a single particle hit affects multiple transistors is also increased. This
altogether makes transient faults an issue not only for dependable, high-critically systems
in harsh operation environment (like airplanes or space-probes) but also for everyday,
non-safety-critical systems like consumer electronics [DDC05].

1.1 Research Questions
This thesis will focus on two aspects of QDI circuits which correspond to the two
application areas identified in the discussion above. We want to (a) investigate efficient
ways to transmit information in a DI way and (b) analyze existing QDI design styles for
their behavior under transient faults and use this information to further improve their
resilience to environmental influences.

1.1.1 Efficient DI Communication
For this research direction we start out by thoroughly investigating the current approaches
for DI data transmission with regard to three main aspects:

• DI Codes (encoding/decoding overhead)
How are the data words (usually in unencoded binary representation) mapped to
the code words of some DI code? What are the advantages and disadvantages of
the different DI codes?

• Completion detection
What are the best known CDs for the different codes and are there any limitations
to their QDI properties?

• Protocols and protocol converters
Which protocols exist for DI communication and how do they impact both of
the aforementioned points? How can the conversion between QDI and non-QDI
asynchronous protocols be implemented most efficiently?

Based on this analysis we will then address the following research questions:

• While the mapping of data words to the code words is predefined for systematic
codes like the Berger code, finding a good mapping for the non-systematic constant-
weight codes is a non-trivial problem. From this observation, two questions arise:
Is there a strategic way to perform this mapping? Can such a mapping simplify
and, hence, improve the required encoders and decoders?

4



1.2. Organization

• Can the known CDs for constant-weight and Berger codes be further optimized
with respect to area and delay? Can residual problems in the QDI properties be
fixed?

• Are there areas in the design space of DI protocols, previously not explored by
literature that have advantages over the state-of-the-art?

• How do the available and proposed design options compare to each other and how
do they affect the overall overhead and performance of DI communication links?

Another important research direction that we want to pursue in this thesis is the junction
between the synchronous and asynchronous worlds. In particular we want to investigate
how an efficient data transmission between a synchronous and an asynchronous timing
domain can be implemented. This process of timing domain crossing is vital for all
asynchronous systems that at some point have to exchange information with a synchronous
system or have to provide some synchronous interface. Conversely, synchronous systems
that want to leverage the benefits of asynchronous subsystems – like, e.g., in a GALS
system – are in need of such conversion circuits. Obviously, these must be fast and energy
efficient, otherwise they would undermine the original purpose of the conversion.

1.1.2 Fault Tolerance in QDI circuits
For the second part of this thesis we strive to answer the following questions:

• Is there some inherent fault resilience in QDI circuits (i.e., fault masking)? If so,
where exactly does it originate from? Can it be leveraged or even enhanced?

• Are there certain parts or states of a QDI circuit that are specifically prone to
faults? Can the system be operated in a way to minimize its fault susceptibility?

• What are the high-level effects of faults (e.g., deadlock, token generation, etc.)?

• Which circuit design strategies exist that can prevent some of the fault effects or
make them at least less likely to affect the system?

The main tool to investigate these research questions is simulation-based fault injection.
Based on the analysis of the results gathered this way, we then present our own approaches
for handling faults.

1.2 Organization
First, Chapter 2 gives a general overview of the field of asynchronous and specifically
QDI circuits and discusses some related work. This will lay the foundation the following
chapters build upon.
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1. Introduction

Chapters 3 and 4 tackle the research questions regarding DI communication, outlined
in Section 1.1.1. First, Chapter 3 examines the challenges associated with passing data
between synchronous and asynchronous timing domains and presents a novel solution to
this problem. The results of this chapter have been published in

• Florian Huemer and Andreas Steininger. Timing Domain Crossing using Muller
Pipelines. In 26th IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC), pages 44–53, May 2020

Then, Chapter 4 focuses on the actual DI codes, protocols and communication links and
their associated overhead considering all the parameters posed in Section 1.1.1. The
three publications that originate from this work appeared in

• Florian Huemer and Andreas Steininger. Partially Systematic Constant-Weight
Codes for Delay-Insensitive Communication. In 24th IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC), pages 17–25, May 2018

• Florian Huemer and Andreas Steininger. Advanced Delay-Insensitive 4-Phase
Protocols. In Austrochip Workshop on Microelectronics (Austrochip), pages 50–55,
Sep. 2018

• Florian Huemer and Andreas Steininger. Novel Approaches for Efficient Delay-
Insensitive Communication. Journal of Low Power Electronics and Applications,
9(2), 2019

While the first two entries in this list are conference papers, the last one is an in-depth
journal article that builds on top of them. The results of those two chapters are entirely
my own work.

The second part of the thesis addresses the research questions outlined in Section 1.1.2,
regarding the resilience of QDI circuits against (transient) faults and the tools we created
to facilitate the required experiments for this investigation. Hence, Chapter 5 first
presents our Python-based asynchronous circuit design tools package, that enables us to
generate, verify and simulate the circuits needed in Chapter 6. Two selected parts of this
Chapter 5 have been published in

• Florian Huemer and Andreas Steininger. Sorting Network based Full Adders for
QDI Circuits. In Austrochip Workshop on Microelectronics (Austrochip), pages
21–28, Oct. 2020

• Florian Huemer, Robert Najvirt, and Andreas Steininger. On SAT-Based Model
Checking of Speed-Independent Circuits. In IEEE 25th International Symposium
on Design and Diagnostics of Electronic Circuits Systems (DDECS), pages 100–105,
April 2022
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1.2. Organization

I performed the majority of the research, conceptualization, design and implementation
for the tools presented in this chapter. However, as this is a software project that is
used by other people in our research group, I also received various useful suggestions for
improvements and bugfixes, especially by Robert Najvirt.

Finally, Chapter 6 presents the research that is directly concerned with the topic of fault
resilience of QDI circuits. Its results have been published in

• Florian Huemer, Robert Najvirt, and Andreas Steininger. Identification and Con-
finement of Fault Sensitivity Windows in QDI Logic. In Austrochip Workshop on
Microelectronics (Austrochip), pages 29–36, Oct. 2020

• Patrick Behal, Florian Huemer, Robert Najvirt, Andreas Steininger, and Zaheer
Tabassam. Towards Explaining the Fault Sensitivity of Different QDI Pipeline
Styles. In 27th IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC), pages 25–33, 2021

As part of a larger research project, those publications are collaborative works. However,
I had a key role in the conceptualization and the design of the performed experiments as
well as the analysis of the results. The proposed circuit improvements are entirely my
own work. For performing the actual large-scale (fault-injection) simulations we relied
on tools mainly development by Patrick Behal and Robert Najvirt [BHNS21].

Chapter 7 summarizes the results of my work and concludes the thesis.
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CHAPTER 2
Background and Related Work

This chapter covers some of the basics of asynchronous design as well as common literature,
that all followings chapters rely on. For a more thorough introdcution we refer to [Spa20]
and [BOF10].

2.1 Handshaking Protocols
In contrast to the rigid time-driven regime of the synchronous design style, asynchronous
circuits always use some form of closed-loop handshaking protocol to control the data
transfer between storage elements (e.g., the individual buffer stages in a pipeline). As
shown in Figure 2.1 this handshake (usually) involves two signals, which are referred to
as request (req) and acknowledgment (ack). The rising edge of the req signal is typically
used as an indicator by the source to notify the sink that new data is available. The sink
then uses the ack signal to inform the source that it has received the data and that new
data can be transmitted1.

Event 0

Event 0

Event 1

Reset

Event 2

Event 1

Event 3

Reset

2-phase:

4-phase:

So
ur

ce

Si
nk

req

data

ack

req

ack

Figure 2.1: Asynchronous handshaking protocols

At this point we have to address the difference between 2-phase and 4-phase protocols,
which is also shown in Figure 2.1. In the former case, every transition of req and ack
conveys actual information. Hence, every handshaking cycle (labeled “Event 0-3” in the

1This explanation assumes push channels. For pull channels the meaning of the request and acknowl-
edgment signals are reversed, see [Spa20] for a more detailed discussion.
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figure) consists of two transitions. 4-phase protocols, on the other side, always entail a
reset phase where both signals return to zero again. This is also the reason why we will
use the terms return-to-zero (RZ) and non-return-to-zero (NRZ) protocols, respectively.

In the following subsections we will discuss the two main classes of asynchronous protocols,
namely BD and DI protocols. Note that there is also the option to let the source and
sink communicate over just a single wire, which has been explored by Sutherland and
Fairbanks in [SF01]. However, since this approach is not used in this work, we won’t go
into further detail on that.

2.1.1 Bundled Data Protocols
Note that there is an immanent race condition between the request signal and the data
that is being transmitted. It must be guaranteed that the request reaches the sink
only after the data is stable at its input. In the so called BD approach this is usually
accomplished with a delay element in the request path. This requirement is not dissimilar
from the setup-constraint in synchronous design and it has the same drawback, namely
the need to know a bound for the propagation delay of the data path.

The advantage of this approach is that the transmitted data itself, does not need to be
handled or encoded in any special way. In fact the data path of a BD circuit can be
implemented exactly the same way as for a synchronous design. Moreover, when an RZ
protocol is used typically only the handshaking signals (i.e., req and ack) go through the
four phases (see Figure 2.1). The data can directly transition from one data word to the
next.

The term BD stems from the fact that the data is bundled with the request and acknowl-
edgment signals.

2.1.2 Delay-Insensitive Protocols
The request mechanism does not need to be implemented as a dedicated signal. Another
possibility is to implicitly encode the request into the transmitted data. It is then the
responsibility of the receiver to decide when this data is complete (i.e., valid) and can thus
be consumed. This process is referred to as completion detection and the component that
performs this task is called a CD. It is only possible if the code used to encode the data has
certain properties. Of course this encoding and the requirement for completion detection
cause a certain overhead. However, it has the advantage that the communication is DI,
i.e., the transitions on the individual wires (also referred to as rails) of a DI link may
arrive in any order and there is no race condition between data and request (as with the
BD approach).

DI communication can also be implemented in a 2- or 4-phase scheme. In RZ protocols
two successive code words (data phase) are always separated by a spacer (zero or null
phase), which does not carry any information and is usually represented by logic zeros
on all rails. Possible choices for the data encoding for 4-phase DI protocols are, e.g.,
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constant-weight (m-of-n) or Berger codes [Ver88]. Further details on these codes will
be presented in Section 4.1. In this section we will only use the dual-rail code, which
technically also falls into the constant-weight category. The dual-rail code encodes each
bit using two rails (i.e., wires) which we refer to as the true and false rail. Throughout
this thesis we will use the point notation to denote the individual rails of a dual-rail
signal. Hence, given the dual-rail bit d, d.T refers to its true rail, while d.F refers to its
false rails, respectively.

The dual-rail encoding is arguably the most simple DI code. Still, as will be explained in
more detail in Section 2.6.2, combinational circuits (adhering to the QDI timing model,
see Section 2.2) that operate on dual-rail encoded data easily entail more than double
the hardware overhead, compared to a “classic” single-rail implementation of the same
function. Circuits operating on more complex codes (with higher information density)
that are often not even systematic (in contrast to the dual-rail code) would involve even
higher hardware costs. Consequently, the dual-rail code is the only one of practical
relevance for circuits that actually process data (in contrast to just transmitting it)2.

In order to decide whether dual-rail data is complete, the receiver only needs to check if
there has been a transition on either the true or false rail of each received dual-rail signal
pair. A task that can simply be implemented by an OR or NOR gate. However, more
sophisticated codes often need much more complicated CDs, which will be thoroughly
discussed in Section 4.4.

Figure 2.2 shows an example transmission of two dual-rail bits d1 and d0. The order of the
individual rails for the labels of the DI data trace in the figure is (d1.T, d1.F ), (d0.T, d0.F ).
The transmission starts out with a spacer, i.e., all data rails are zero. Then, the DI data
bus transitions to the code word cn, which encodes a logic zero for both data bits (data
phase). This condition is detected by the CD of the receiver and a rising transition on
the ack signal is issued. After the acknowledgment the data rails return to the spacer
again, which is in turn acknowledged by a falling transition on the ack signal. Then,
another code word (cn+1) is transmitted, which encodes the logic value d1d0 = 01.

DI data

ack

Spacer cn Spacer cn+1

(0,0),(0,0) (0,1),(0,1) (0,0),(0,0) (0,1),(1,0)

Figure 2.2: RZ (4-phase) DI protocol

Note that a 4-phase protocol can also be implemented using a return-to-one scheme,
where the spacer is implemented with logic ones on all wires. This approach is used by
[MOPC13] to reduce energy consumption. To improve security by increasing a circuit’s
robustness against power analysis attacks, [SMBY05] proposes to dynamically switch
between the all-one and all-zero spacer (either strictly alternating or randomly). The

2Despite that, there is some research that also investigates other codes, e.g., [LG01] where a 1-of-4
code has been used.
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authors further show that using different spacers for different circuit parts in a fine-grained
manner, can also allow for area and throughput optimizations. To this end, [MBSC18]
follows a similar strategy, although with a different gate-level logic style. However, strictly
speaking, all of these techniques still use a 4-phase protocol.

For NRZ protocols, level or transition encoding can be used. With level-encoded protocols
the currently transmitted value can directly be derived from the state of the DI bus. The
Level-Endcoded Dual-Rail (LEDR) [DWD91] and Level-Encoded Transition Signaling
(LETS) [MAMN08] protocols are examples for such a strategy.

For transition encoding every 4-phase DI code can be used. However, here the information
is only contained in wire transition events (no matter the direction), the actual DI bus state
is only meaningful when compared to the previous state. Hence, the actual transmitted
code word can only be obtained by performing a bit-wise XOR between the current bit
pattern on the bus and the previous one. Figure 2.3 visualizes this approach. Again
two dual-rail bits with the binary values d1d0 of 00, 01 and 10 are transmitted. The DI
data bus starts with logic zero on all rails. Since the figure does not show the bus state
prior to this value, we don’t know which code word is being transmitted by it. After that
the three data values are sent. Notice that there are no spacer phases where the data
rails and the ack signal have to return to a known ground state. This has the obvious
benefit of needing fewer bus transitions to transmit the same information when compared
to 4-phase protocols. However, as will be shown in Chapter 4 there is significant area
overhead associated with actual hardware implementations of this protocol. For example,
the CD for the individual dual-rail signal pairs can no longer be implemented with an
OR gate – now an XOR gate is required.

DI data

ack

cn = (0, 1), (0, 1) cn+1 = (0, 1), (1, 0) cn+2 = (1, 0), (0, 1)

(0,0),(0,0) (0,1),(0,1) (0,0),(1,1) (1,0),(1,0)

Figure 2.3: NRZ (2-phase) transition signaling DI protocol

In general it can be summarized that, for circuits that actually process data, practically
only the RZ dual-rail protocol is relevant. All other codes and protocols find their
application areas mainly in the transmission of data as will be discussed in Chapter 4.

2.2 Delay Models
As we will see in the following sections the design space for asynchronous circuits is quite
large and diverse. One important classification aspect of asynchronous circuits or design
styles are the imposed delay assumptions.

In this categorization the class of DI circuits uses the weakest timing assumptions. Here
gate and wire delays can be completely arbitrary, the only restriction is that they have
to be positive and finite. Consider the example circuit snippet shown in Figure 2.4.
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Following the DI model, all gate delays ΔA to ΔC as well as the wire delays δ1 to δ3 may
assume any positive value and the circuit would still be guaranteed to work correctly.
However, as shown by Martin [Mar90], this class of circuits is very limited, as the selection
of gates to construct such circuits is restricted to inverters and C gates (see Section 2.3.1).

To overcome these limitations, isochronic forks [vB92] are introduced, yielding the class
of QDI circuits. While this delay model still does not impose any restrictions on gate
delays, it demands that (some selected) wire forks must be isochronic, i.e., both signal
paths after the fork must have the same delay. For the wire fork in Figure 2.4 this
means that δ2 = δ3 must hold. With this modification of the DI timing model, arbitrary
circuits can be constructed. More detailed discussions of isochronic forks can be found in
[Mar90, MM15]. However, as will be discussed in more detail below, in practice strict
isochronicity is often not really required.

ΔA δ1

δ2

δ3

ΔB

ΔC

wire fork

Figure 2.4: Asynchronous circuit model

For the class of speed-independent (SI) circuits [Mul59], we again have arbitrary gate
delays. However, the wire delays are assumed to be zero (δ1 = δ2 = δ3 = 0). Obviously,
this timing model is the least realistic one, since interconnect delays play an important
(and sometimes even dominating) role for modern technology nodes. However, if all wire
forks in a circuit are regarded as isochronic, it is possible to merge the wire delays with
the gate delays . For our example in Figure 2.4 this would add δ1 and δ2 to ΔA. Hence,
an SI circuit is simply a QDI circuit where all forks are isochronic. There is also an
interesting relation to DI circuits. A circuit is DI if a transformed circuit, where all wires
have been replaced with buffers (after the fork points), is SI.

The models presented so far are precise (mathematical) concepts and apply to the gate-
level of asynchronous circuits. Self-timed (ST) circuits is a more general term and refers
to circuits that need higher-level timing constraints or assumptions to work as intended.
Such an assumption can for example ensure that the result of a certain (sub-) circuit
must be available before another signal reaches its destination. These constraints are
often enforced by the use of delay elements.

Note that an asynchronous design may apply different delay models for different parts of
the design. As we will see in Section 2.5, the control logic for BD circuits is often SI or
even DI, while the data path relies on timing assumptions enforced by delay elements
making it ST.
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a � gate orphan

(a) Gate orphan

a

b

x

y
�wire orphan

(b) Wire orphan

Figure 2.5: Examples for gate and wire orphans

Finally, we need to address the issue of gate and wire orphans and its relation to the
presented delay models. From the definitions above we know that a circuit is considered
DI, QDI or SI iff it operates correctly, despite of arbitrary gate (and wire) delays. Since
under this condition, it is not possible to make any assumptions about the time it takes
for a circuit (falling into one of these three categories) to process a set of input values, it
must be possible to determine that the circuit is done processing by just observing its
primary outputs. If the environment of a circuit is not able to unambiguously discern
this situation, the next set of input values applied to the circuit may interfere with the
previous one leading to incorrect behavior. An orphan transition is a transition that
happens on some node (gate or wire) inside a circuit for some input pattern without
having any influence on the primary outputs of the circuit (or sub-circuit). In other
words it is an unobserved internal circuit transition. The unbounded delay model for
gates (and wires) makes it impossible to make any assumptions about such events. Since
the environment of a circuit eventually creates new input transitions in response to the
observed output transitions, it is possible that an orphan interferes with actions inside a
circuit caused by the new input transitions at unpredictable points in time. This can
cause the circuit to produce invalid results or even deadlock.

We say that such a circuit contains gate or wire orphans, depending on where this
transition can appear. Figure 2.5 demonstrates the difference between gate and wire
orphans using two simple examples.

A gate orphan, as shown in Figure 2.5a, is produced by a gate G that changes its output
value for some particular input pattern (i.e., a = b = 1, c = 0), but the output of G does
not have any impact on the primary (observable) outputs of the circuit (i.e., x), because
it is masked by some other gate. If a circuit is operated according to its specification and
still contains gate orphans it cannot be considered DI, QDI or even SI.

A wire orphan is an unobserved transition at some wire originating at a fork, as illustrated
in Figure 2.5b. To show how a non-isochronic fork may lead to undesirable circuit behavior,
let’s examine the this example circuit a little more closely. For that purpose, consider
the scenario shown in Figure 2.6. The figure shows how the state of the circuit from
Figure 2.5b evolves over time, if we assume that the fork at the input a is non-isochronic.
This is indicated by the delay element in the signal path going to the input of the AND
gate. Initially (State 1) all inputs and output as well as all internal nodes of the circuit are
low. Then, an input transition is applied to input a, which will set the output x driven by
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the OR gate (State 2). However, because of the long delay on the path to the AND gate,
the transition will still be on its way to its destination when the environment already
deasserted the input a again (State 3), constituting a wire orphan. The deassertion
of a is correctly reflected by the deassertion of the output x, which in turn causes the
environment to assert input b (State 4). However, because of the non-isochronicity of the
fork the falling transition on input a still has not reached the AND gates, which means
that the single input transition at b erroneously sets both outputs x and y.

x

yb

a x

yb

a x

yb

a x

yb

a

State 1: State 2: State 3: State 4:

Figure 2.6: Possible effect of a non-isochronic wire fork

This example shows how wire orphans can lead to problems in circuits if the delays on
wire forks are not considered correctly. However, it also shows that there is not always the
need for strict isochronicity. To fix the issue in the scenario in Figure 2.6, it is sufficient
to demand that the delay (i.e., the skew between both paths after the fork) must be
less than the time it takes the environment to switch the inputs from (a, b) = (1, 0) to
(0, 0) and then to (0, 1) on top of the input-to-output delay caused by the OR gate. This
condition is far easier to satisfy with an appropriate circuit layout than a “real” isochronic
fork would be.

By definition QDI and SI circuits cannot contain wire orphans, since the isochronic fork
assumption prevents this. However, for the DI model, wire orphans cannot be ruled out,
and must be accounted for in the design.

We can conclude, that the presence for the potential of an orphan transition (gate or
wire) automatically invalidates the DI, QDI or SI property of a circuit, as such a circuit
would need additional timing assumptions to work correctly in every case.

2.3 Basic Asynchronous Circuit Elements
This section discusses some basic asynchronous circuits, circuit elements and specification
methods used throughout the thesis.

2.3.1 Muller C Gate
An essential gate found in nearly every asynchronous circuit is the (Muller) C gate3

[Mul59]. Figure 2.7a shows the circuit symbol that will be used throughout this thesis.
Here a 2-input version is depicted, but conceptionally C gates can have any number of
inputs. There are multiple ways to define the functionality of a C gate. In an informal

3In literature also the term (Muller) C-Element is used.
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(b) Truth table
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(c) Timing diagram

Figure 2.7: 2-input Muller C gate

way it might be described as an AND gate with hysteresis or an AND gate for transitions.
This fact is also reflected by the circuit symbol.

For a more formal definition, consider Equation (2.1) describing the output of a 2-input
C gate and the resulting truth table in Figure 2.7b. Notice that the output Y depends
on the inputs A and B as well as the current state of the output itself, which we denoted
with Y �.

Y = (A ∧ B) ∨ (Y � ∧ (A ∨ B)) (2.1)
Thus, to set the output of a C gate to one, all inputs must be set to one (similarly to an
AND gate). However, to reset the output back to zero again, all inputs must be set to
zero as well. If only one input changes its logical value the output of the gate does not
change (“keep” entries in the truth table). Figure 2.7c further illustrates this behavior
using a timing diagram.

From this definition it is obvious that in order to implement a C gate some form of
internal storage is required to keep track of its current state. There are multiple ways how
this can be implemented in Complementary Metal-Oxide-Semiconductor (CMOS) logic
[SEE98, MMC14]. The three main variants are referred to as the Martin, Sutherland
and Van Berkel style C gate, which each have their own advantages and disadvantages
[MOMC12]. The implementation costs for a 2-input C gate range form 8 to 12 transistors,
which shows that they can be significantly more expensive than simple AND gates.
Although, extending the CMOS C gate implementations to more than two inputs is
possible, the resulting circuits quickly become quite large with several transistors in series
in p- and n-stack. Hence, C gates with a high number of inputs are often broken up into
(multi-level) C gate trees.

The C gate concept can also be extended to derive so called asymmetric C gates. Those
gates have additional inputs marked with a plus or minus symbol (see Figure 2.8a). A
positive input, i.e., one marked with a plus symbol, is only relevant for rising output
transitions. This means that in order for an asymmetric C gate with positive inputs
to switch its output to one, all normal as well as the positive inputs must be asserted.
To switch back to zero only the normal inputs must be deasserted, the positive input
may be kept asserted. Negative inputs have a similar effect for falling output transitions,
i.e., an asymmetric C gate can only switch its output to zero if all normal and negative
inputs are deasserted.
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(a) Circuit symbol
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0 0 don’t care 0 0
1 1 1 don’t care 1

all remaining cases keep

(b) Truth table

Figure 2.8: Asymmetric C gate with one positive, one negative two normal inputs

Asymmetric C gates can have any combination of positive, negative and normal inputs.
Consider the example in Figure 2.8, showing an asymmetric C gate with one positive
input P and one negative input N alongside its two normal inputs A and B. To set
its output to one both of the normal inputs as well as the positive asymmetric input P
must be asserted. To reset it A, B and N must be deasserted. The behavior can also be
expressed using a Boolean formula in Equation (2.2).

Y = (A ∧ B ∧ P ) ∨ (Y � ∧ (A ∨ B ∨ N)) (2.2)

2.3.2 Muller Pipeline
A Muller pipeline (MPL), such as the one shown in Figure 2.9, is a fundamental asyn-
chronous circuit composed of C gates and inverters. Its purpose is to store and transport
handshakes from its input (reqin, ackout) to its output port (reqout, ackin), where each
port consists of a request and an acknowledgment signal. In this sense it is also often
described as a first in, first out (FIFO) buffer for transitions.

The MPL is completely agnostic to the handshaking protocol (2-phase vs. 4-phase). It is
rather just a matter of interpretation, whether the stored transitions constitute 2-phase
or 4-phase handshakes. Input handshakes can also be viewed as tokens that are fed into
and travel through (or get stored in) the pipeline. In Figure 2.9 these tokens travel from
left to right.

The operation principle of an MPL is quite straightforward. If the successor and
predecessor of some node (i.e., C gate) xi (1 ≤ i ≤ n) in the pipeline differ in their
logic values, xi (eventually) takes on the value of its predecessor. The predecessor of
x1 is x0, i.e., the input request reqin, while the successor of xn is xn+1, i.e., the input
acknowledgment ackin.

An MPL is considered empty when all its C gates store the same logic value, which
must also be matched by input signals x0 and xn+1 (∀0≤i≤nxi = xi+1). A full pipeline is
identified by a strictly alternating pattern on the circuit nodes x0 to xn+1 (∀0≤i≤nxi =
¬xi+1). Section 3.2 goes into further detail on the possible states of MPLs and also
presents more formal definitions for them.

One interesting fact about the MPL is that it is a completely DI circuit, which means
that it works correctly with arbitrary gate and wire delays. However, the MPL by itself
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Figure 2.9: 4-stage Muller pipeline

is not yet a very useful circuit. It has nevertheless great significance as it is an often
reoccurring structure in asynchronous designs and forms the (basic) control circuit for
many pipelines, which will become clear in Section 2.5 and Section 2.6.

2.3.3 Asynchronous State Machines
Asynchronous state machines (also referred to as sequential or control circuits) play
an important role in the design of asynchronous circuits. This section only examines
SI circuits – so called Huffman circuits [Huf54], which rely on much stricter timing
constraints, are not covered here.

A convenient way to specify such circuits on an abstract level are Petri nets (PNs)
[Pet62, Pet77] or more specifically Signal Transition Graphs (STGs) [RY85, Chu87].
These specifications can then be translated into gate-level SI circuits using fully automated
software tools. For the STGs presented in this thesis Workcraft is used [PKY09].

STGs are a special type of PNs, a widely used model for distributed and concurrent
systems. For the following explanations, consider the example of a PN specification of
a Muller C gate. A PN is a directed graph that consists of two types of nodes: places
(gray circles) and transitions (black bars). The predecessor nodes of a transition are
always place nodes and vice versa, i.e., arcs always connect places and transitions. The
PN is “executed” as tokens flow through it. Tokens (black circles) are stored in places. A
transition can fire if there is a sufficient number of tokens at all of its inputs. If that is
the case the tokens are removed from the input places and placed at the outputs of the
transition. The exact number of tokens that are removed from the input places and put
into the output places depends on the PN (and is usually specified by a label on the arc).
If nothing is specified, as is the case with the C gate example at hand, exactly one token
is removed from the input and placed into the output places.

Notice that the timing diagram of the C gate (shown in Figure 2.7c), can directly be
translated into the PN.

As already mentioned STGs represent a special subclass of PNs. Here the transitions
model real signal transitions and the edges of the graph indicate the causal and temporal
order of these events. Signals can either be inputs to the STG or outputs that have to
be generated by the STG. Internal signals are also allowed. For a PN to be a valid STG
it must be free from deadlocks and the signal transitions for each variable must strictly
alternate between rising (+) and falling (-) transitions for every possible execution path.
For the purpose of circuit synthesis, it is usually also demanded that an STG has to be
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Figure 2.10: C gate specifications

safe (or one-bounded), which means that there may never be more than one token in a
place (all STGs presented in this work are safe) [KKY98]. It must further be guaranteed
that once a transition is enabled it must fire, i.e., it may not be disabled again by another
signal transition. Another important property is the so called “input free choice”. This
property demands that, if there are mutually exclusive paths through the graph then the
selection which path is actually taken must be handled via mutually exclusive inputs to
the STG. An immediate consequence of this constraint is that it is generally not possible
to specify a mutex (i.e., a mutual exclusion element) with an STG. However, recently a
slight extension has been proposed, which allows such conditions by introducing special
mutex states in the STG [SKYL18].

For STGs, such as the one for the C gate shown in Figure 2.10b, places are not drawn if
there is only a single incoming and outgoing edge, i.e., every edge can be considered to
contain an implicit place. Hence, only for STGs containing choice, i.e., mutually exclusive
paths, explicit places are needed. The initial state is indicated by the tokens on the
appropriate edges. For further details please refer to [Spa20].

Note that STGs (as well as PNs) also have to model a (well-behaved) environment of
the circuit. In the example at hand the environment simply sets both inputs when the
output of the C gate is zero and resets them when the output is one. By convention we
draw transitions that must be fulfilled by the environment using dashed lines.

A slightly more complex example for an STG is shown in Figure 2.11. This STG specifies
a 3-stage MPL with the inputs reqin and ackin and the outputs reqout and ackout as well
as the three internal signals x1 to x3. Using this visualization the operation rule of MPLs
discussed in the previous section is clearly visible. Consider, for example the transition
x2+. The graph shows that in order for this transition to happen, the predecessor x1
must exhibit a rising transition while the successor x3 must transition to low.
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ackout- reqin+ x1+ x2+ x3+ reqout+ ackin+

ackout+ reqin- x1− x2− x3− reqout- ackin-

Figure 2.11: STG describing a 3-stage MPL

2.4 Channels and Static Data-Flow Structures
Before we discuss the actual implementation details of the various asynchronous design
styles, we first introduce the concepts of channels and Static Data-Flow Stuctures (SDFSs).
An asynchronous channel refers to a set of signals that are associated with each other and
which are jointly used to convey (i.e., transmit) information. This includes data signals as
well as their accompanying control signals (like req and ack). An asynchronous circuit can
be viewed as a set of operations performed on such channels. This gives rise to the notion
of SDFSs, which can be defined as directed graphs, where the edges are channels and
the nodes are operations (such as combinational data transformations, storage/buffers
or flow control elements). This representation corresponds to the register-transfer level
(RTL) in synchronous circuits and facilitates abstract circuit design, that disregards the
actual handshaking protocol (i.e., BD or DI) and the data encoding.

This section only focuses on 4-phase SDFSs (operating on 4-phase channels) since this
thesis is mainly concerned with those types of circuits. Although Chapters 3 and 4 also
deal with 2-phase channels and interfaces, only linear pipelines without any processing
logic are used (hence, no need for SDFSs). However, with some modifications SDFSs can
also be used to describe of 2-phase circuits. For more details we refer to [Spa20].

2.4.1 Structure

As already mentioned SDFSs consist of different types of operation nodes that are shown
in Figure 2.12. The notation introduced with this figure will be used throughout this
thesis and is in accordance with [Spa20].

f

buffer logic fork join multiplexer merge demultiplexer

flow control components

Figure 2.12: SDFS operations
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The buffer (or latch) has a single input and output channel and stores data items, like
registers in synchronous circuits do. These data items (conveyed by the channels) are
referred to as tokens and will be explained in more detail in Section 2.4.2. A function or
logic block applies a (Boolean) operation to the token on its (single) input channel and
relays it to its (single) output channel. Using these two components it is already possible
to design linear pipelines. However, for many practical applications feedback paths are
required. Hence, we also need flow control components like fork, join, multiplexers, merge
and demultiplexers4.

A fork takes a single input channel and splits it up into multiple output channels, each
carrying either all the data of the input channel or only parts of it. The join performs
the opposite operation, taking multiple input channels and combining them into a single
output channel. The multiplexer also has multiple input channels, but only relays the
token of one of them to its single output channel, depending on the token received on
the control channel (top). A similar operation is performed by the merge component.
However, here it must be guaranteed that there is only one token on one of the input
channels (making the control input unnecessary). Finally, the demultiplexer takes an
input token and relays it to a specific output channel, selected by the control input.

2.4.2 Token Flow

An SDFS models how data is processed by an asynchronous circuit. For that purpose,
data items are represented as tokens, which flow through the system in accordance with
a set of rules, called token game semantic. Note that multiple different rule sets exist,
which may lead to different results when applied to the same graph [SPY07]. However,
for the circuits discussed in this thesis there is no ambiguity, even under different token
game semantics. Hence, we stick to an intuitive (informal) definition (refer to [SPY07]
for strictly formal definitions of various token game semantics).

Since the behavior of 4-phase circuits is modeled, two types of tokens must be distinguished,
namely data and empty tokens. Tokens can only be stored in buffers. In order for a
token to enter and get stored in a buffer, the buffer must not already contain another
token, i.e., it must be empty. To represent this absence of tokens the concept of bubbles
is used. Whenever a token leaves a buffer it leaves behind such a bubble. Hence, we
again have to distinguish between data and empty bubbles. Notice that those four
types of flow elements (i.e., data tokens, empty tokens, data bubbles and empty bubbles)
directly correspond to the four phases of the handshaking protocol. Asserting the request
on a channel creates a data token, which becomes a data bubble when the associated
acknowledgment is asserted. Following that event the request is deasserted again, creating
an empty token that is eventually acknowledged to become an empty bubble. Thus, a
bubble can be viewed as an old (already acknowledged and thus consumed) copy of the
respective token.

4[Spa20] additionally defines the mutex and the arbiter component. However, since those elements
are not used in the work, we don’t cover them here.
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A data token can only move forward to a buffer that contains an empty bubble, while an
empty token can only enter a buffer that contains a data bubble. Hence, as tokens move
forward through a circuit bubbles move backwards. Figure 2.13 shows how a single data
token moves in a pipeline ring consisting of three buffers5.

system
progression

V E E

V V E

E V E

E V V

E E V

V E E

V E E

E ... empty bubble
E ... empty token
V ... data bubble
V ... data token

Figure 2.13: Token progression in a 4-phase 3-stage pipeline ring SDFS

There are a few things to note about this example. It demonstrates that the minimal
number of buffers for ring structures in (4-phase) SDFSs is three. Otherwise no token
progression would be possible and the system would deadlock. Furthermore, each ring
must contain at least one bubble, because again otherwise no token movement is possible.
In fact, the performance of asynchronous circuits heavily depends on the number of
bubbles, or more specifically the ratio of tokens and bubbles in the circuit. This means
that sometimes it can be beneficial for the circuit performance to add additional buffers
to facilitate a more efficient token flow. Also note that in a 4-phase pipeline that is
completely full, only every second stage contains data tokens, since the other stages must
hold empty tokens.

In contrast to buffers, flow control components don’t store tokens but simply relay them
from their input to their output channels. Presented with a token, a fork creates multiple
output tokens. To implement this in hardware for a 4-phase BD channel the request
signal is forked (see Figure 2.14a). The acknowledgment signals need to be joined using
a C gate, since the fork must only generate an acknowledgment on its input channel
when it has received acknowledgments on all output channels. For a join to generate an
output token, tokens on all input channels must be present. Hence, a C gate is used to

5We use the letter V to denote data tokens/bubbles, in order to be consistent with the notation used
in [Spa20], where data tokens (bubbles) are also referred to as “valid” tokens (bubbles).
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join the individual request signals to generate the request for the output channel. The
acknowledgment on the other hand can simply be relayed to all input channels.

C acka

ackb

ackin

reqa

reqb

reqin

dataa

datab

datain

(a) 4-phase fork

C
acka

ackb

ackout

reqa

reqb

reqout

dataa

datab

dataout

(b) 4-phase join

Figure 2.14: Fork and join implementations for 4-phase BD channels

The fork and join circuits shown in Figure 2.14 can also be used for DI channels. The
only modification that is required is the removal of the request signals, since the request
is encoded in the data anyway.

The multiplexer and the demultiplexer operate in a slightly different way. For the
multiplexer to produce an output data token, there must be a data token on the control
input channel as well as a data token on the input data channel selected by this control
token. Data tokens that might be pending on input data channels not selected by the
control token are simply not relayed further or interacted with by the circuit. Such a
token keeps sitting at the input data channel until an appropriate control token arrives.
After the data token passed the multiplexer, an empty token must be provided by the
same data input as well as the control input to complete the handshaking cycle on both
of these channels. For the demultiplexer, the situation is similar. The data token at the
input data channel is relayed to the output channel selected by the control channel token.
After that, the following empty token on the data input channel will be relayed to the
same output channel. Circuit implementations for these components and some special
variations of them can be found in [Spa20].

Sections 2.5 and 2.6 will show how to implement buffers and pipelines with BD and QDI
design styles. For the latter, also the implementation of function blocks will be discussed,
since due to the DI encoding of the data it is not possible to simply use conventional
combinational logic as is the case with BD circuits.

2.4.3 Iterative Multiplier Example
Figure 2.15 shows a slightly larger example for an SDFS specifying a multiplier circuit
that uses an iterative approach to process the inputs a and b and produces the result z.
The figure shows the basic flow control elements (fork, multiplexer and demultiplexer) as
well as combinational blocks and buffers.

The circuit basically consists of two ring structures formed by the buffers L3, L2, L1 and
L3, L5, L4. The lower ring contains the actual data path, while the upper one contains
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Figure 2.15: SDFS of an iterative multiplier circuit

the control logic for the multiplexer and demultiplexer. New tokens enter the circuit via
the multiplexer at the input and then “rotate” in the circuit until the end condition b = 0
is reached. This then leads to the result token in L3 being relayed to the output channel
via the demultiplexer and enables a new token to enter the circuit. In [Spa20] this circuit
would be identified as a typical application of the “while” template. Additional basic
circuit templates for “for” and “if” constructs can also be found there.

2.5 Bundled Data Circuits

Over the years many different asynchronous design styles have been proposed. One of
the most important and influential circuits in this context is certainly the MPL, which
has already been covered in Section 2.3.2. The MPL can be utilized as control logic
for the storage elements in BD circuits. Figure 2.16 demonstrates how this approach
can be applied to construct a pipeline. The actual storage elements used in this circuit
are D latches. The outputs of the C gates (comprising the MPL) are used to control
whether the latches in a pipeline stage are opaque or transparent. In this configuration
a 4-phase protocol has to be used to operate the pipeline. The figure shows two delay
elements δA and δB that delay the request signal going from one pipeline stage to the
next. These delays must be matched to the respective data path, i.e., the combinational
logic in between the pipeline latches. For performance reasons the combinational delays
of the stages should be balanced, because the slowest stage limits the throughput of the
whole pipeline.

Note that, as already discussed in Section 2.4, in a full pipeline only every other stage
contains actual data tokens. We can also see that here, when we look at the alternating
pattern stored in the C gates of a full MPL. The pattern leads to only every other
latch in the pipeline being opaque, i.e., storing a data token, the rest of the latches are
transparent.

To operate an MPL-controlled BD circuit using a 2-phase handshaking protocol, different
storage elements have to be used. For that purpose, Sutherland [Sut89] proposed so
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Figure 2.16: 4-phase BD pipeline with MPL as handshake control circuit

called capture/pass latches. Another possibility are special double-edge triggered D
flip-flops [YBA96].

The C gates in the MPL can be viewed as the simplest form of a 4-phase latch controller
circuit which allow for little parallelism between the handshakes on the input and the
output of a stage. Moreover, using it prevents the full utilization of the storage elements
in a pipeline. To address this issue [FD96] describes advanced 4-phase latch controller
circuits with different degrees of independence between input and output channels. A
similar approach is also presented in [VSB10].

Another important and influential BD style, proposed by Singh and Nowick, is the
MOUSETRAP pipeline [SN07]. This approach does not rely on C gates but instead uses
a single XNOR gate and a D latch to control the pipeline’s storage elements (D latches).
MOUSETRAP operates using a 2-phase protocol and yields high-performance circuits.

Regarding 2-phase circuits, another notable design approach are so called Click elements
[PtBdWM10]. Click-element-based pipelines use D flip-flops as storage elements. The
pipeline stage controllers only use standard gates and a D flip-flop to store the current
protocol phase, C gates are not required. This facilitates the integration of scan-chains,
which is not so easy for, e.g., MPL- or MOUSETRAP-based circuits.

2.6 QDI Circuits

This section covers 4-phase QDI pipeline and logic styles. Since practically 2-phase
circuits are not really used for building data processing circuits, they are not addressed
here. However, Section 4.5 will show how to construct pipelines capable of transporting
data using 2-phase DI protocols.

The QDI circuits used and covered by the work in this thesis, are mainly based on
the Weak-Conditioned Half Buffer (WCHB) (Section 2.6.1) and the logic styles covered
in Section 2.6.2. However, for the sake of completeness Section 2.6.3 briefly addresses
asynchronous QDI design templates based on dual-rail domino logic.
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2.6.1 Weak-Conditioned Half Buffer
The arguably most basic way to construct QDI pipelines is using the WCHB, as demon-
strated in Figure 2.17. The figure shows a 3-stage pipeline with a data width of two
dual-rail bits (i.e., comprising four data rails). Each buffer consists of two main parts:

• The C gates used as storage elements for the incoming data, which are controlled
by the acknowledgment signal of the succeeding stage.

• A CD that monitors the output data signals and informs the preceding stage that
a data or spacer token has been received.

The circuit operates in the following way: Assume that initially all storage elements as
well as all input signals (ain.T , ain.F , bin.T , bin.F , ackin) are zero. This in turn leads to
all outputs and internal acknowledgment signals being set to zero as well. Due to the
inverters on the acknowledgment paths the buffer C gates (in all three stages) are armed
for rising transitions on their input data rails. After input data arrives at ain and bin,
some of the C gates in the first stage will be switched to one (i.e., exactly one for each
dual-rail pair). The CD detects this condition and eventually generates a rising transition
at the acknowledgment signal ackout at the input side of the pipeline, indicating to the
circuit’s environment that the spacer can be applied (i.e., all data rails can be reset to
zero again). At the same time the input data transitions also travel through the rest of
the pipeline, setting the respective C gates in each stage along the way, until the data
appears at the output (aout and bout). When the data fully propagated through the CD
in the second stage the acknowledgment to the first stage will be asserted, arming the C
gates for falling input transitions, i.e., the spacer. Note that it does not matter whether
the falling input transitions on the data rails arrive before or after the C gates are armed.

The example circuit from Figure 2.17 can also be viewed as four MPLs, whose acknowl-
edgment wires are merged and interlocked by the CDs. This perspective visualizes an
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important point about QDI circuits in general: While there is a clear separation between
data and control paths in BD circuits, they are strongly intertwined in QDI circuits,
since every data wire is, essentially, also a request signal. From this point of view it
is now also easily possible to identify the isochronic forks in this circuit. Interlocking
the MPLs introduces a fork in the acknowledgment wire, which now has to fan out to
all the buffer C gates of a particular stage. Consider the situation when the buffer C
gates of a stage are armed for a data token (i.e., rising input transitions) by deasserting
the acknowledgment input. Due to the dual-rail encoding only half of the C gates will
actually eventually switch to one. Hence, the signal transitions that arm the C gates
that don’t switch to one, constitute wire orphans. Introducing an arbitrary delay on
one of these signal paths, could lead to a scenario, where the associated C gate switches
at a point in time that brings the circuit into an erroneous state. Hence, to guarantee
correct behavior of the WCHB, the wire fork in front of the buffer C gates must be
considered isochronic. However, in practice it is sufficient to keep the skew between the
different paths of this fork within certain bounds in relation to the cycle time of the
circuits attached to its input and output channel.

The CD in the example pipeline checks each dual-rail bit for completion separately using
an OR gate and then combines the results using a C gate. This approach can be extended
to n dual-rail bits using an n-input C gate, which in practice can be implemented as a C
gate tree. However, as will be discussed in more detail in Chapter 4 the general structure
of the WCHB can be used for arbitrary DI codes. The only thing that needs to changed
is the CD.

In literature there exist many variations of the basic WCHB design. One example for
such a modification is the relocation of the stages’ CDs to in front of the buffer C
gates, which offers some performance improvements by introducing a higher amount
of parallelism, but compromises on the strict QDI paradigm by introducing additional
timing constraints [Smi02, PS13]. Chapter 6 will further present and analyze WCHB
variants with improvements regarding their fault tolerance.

2.6.2 Logic Styles
Combinational logic or function blocks for QDI circuits must of course be able to operate
on the DI code used for the data encoding. Since practically only the dual-rail code is of
relevance for the design of (complex) QDI circuits, this section will only focus on this
code.

A QDI logic style must ensure the preservation of the circuit’s QDI properties. In
particular this means that the last (dual-rail) output of the combinational logic block
may only transition to the data phase after all inputs are in the data phase. Conversely,
the last output must only transition to the spacer phase if all inputs have switched to
the spacer. For this protocol to work properly, each rail is allowed to make only one
transition (if any) per phase, which naturally forbids the occurrence of glitches anywhere
in the circuit. Furthermore, it must be guaranteed that the circuit is free from gate
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orphans (see Section 2.2). Hence, for combinational QDI circuits it must be possible to
determine that the circuit has finished its computation by only observing its outputs.

comb.
logic

CD CD

DoutDin
C

C

C

C

doneC
ackout ackin

Figure 2.18: WCHB pipeline with combinational logic

If this requirement cannot be satisfied for a circuit, an additional control signal (done)
may be introduced. The purpose of this output signal is to “collect” all orphan transitions
from “hidden” internal circuit nodes, essentially resembling the output of an internal CD.
This done signal is combined with the acknowledgment signal, such that the circuit can
only proceed when the combinational logic has stabilized, i.e., all gates that needed to
transition for the particular input data (or the spacer), actually finished transitioning
(see Figure 2.18).

One possibility to implement QDI function blocks is the Delay-Insensitive Minterm
Synthesis (DIMS) design style [SS93]. DIMS uses an array of C gates to exclusively map
every possible (valid) dual-rail input data word to a dedicated internal signal (one-hot
code). In a second stage OR gates map this code to the desired output signals. The
actual logical function depends only on these OR gates. Figure 2.19a demonstrates this
approach for a 2-input dual-rail AND gate. Notice that circuits produced with the DIMS
design style don’t contain gate orphans, which means that there is no need for an internal
CD.
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(a) DIMS AND gate
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b.T
b.F

x.F

x.T

C done

(b) AND gate with input CD

Figure 2.19: QDI dual-rail AND gates

It is apparent that this design style does not scale well with the number of inputs. Thus,
complex circuits have to be broken down into a collection of simpler gates with fewer
inputs each. Moreover, because of the high usage of C gates, DIMS-based circuits have a
relatively high area overhead.

To tackle some of these disadvantages, a more efficient design style was proposed, which
is based on special so called threshold gates [Fan05, DS09]. This design style is referred
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to as Null Convention Logic (NCL). Threshold gates can be viewed as a generalization of
C gates. Typically the notation THmn is used to describe a threshold gate with n inputs
and a threshold of m. Hence, in order to set the output of such a gate at least m of the
n inputs must be asserted. To reset it, all inputs must be deasserted again, which shows
that there is a similar hysteresis behavior as with C gates. Using this naming convention
a THnn threshold gate would refer to a conventional n-input C gate, while TH1n refers
to an n-input OR gate. Figure 2.20 shows how an AND gate is implemented using this
design style. Note that the lower threshold gate (i.e., TH34W22) has a weight of two
associated with two of its inputs, as indicated by the suffix W22 in its name. Therefore,
to reach the threshold of this gate (3) it is sufficient that one of the weighted inputs and
one of the normal inputs are asserted.

2

3

y.T

y.F

a.T

b.T

a.F

b.F

TH22

TH34W22

Figure 2.20: NCL AND gates

Compared to the DIMS design style, NCL yields more efficient circuits. However, looking
at their CMOS implementations, threshold gates have a quite considerable footprint due
to their large stacks and the required storage loop for the hysteresis behavior [SF98].
Hence, as with DIMS, large, potentially slow gates are used directly in the data path.
A different implementation template for combinational circuits that does not rely on
C gates (or other state-holding gates) to implement the actual Boolean function was
proposed in [DGY92] and further improved in [KL02], where it is called NCLX (NCL
with explicit completion detection). However, we will present it here in a slightly different
way in order to better fit our explanations and narrative. Figure 2.19b shows an AND
gate implemented in this style. As can be seen the output signals x.T and x.F of the gate
are generated using an AND and an OR gate. Without further precautions a dual-rail
AND gate only comprised of these two gates would violate the QDI properties presented
in Section 2.2. In a data phase, where one dual-rail input is false (i.e., its false rail is
asserted), the circuit immediately produces a valid output signal (with the OR gate
asserting x.F ) without waiting for the second input to become valid. A similar situation
arises in the reset phase where the output may transition to the spacer before both
inputs did so. For this reason the circuit in Figure 2.19b also includes the input CD
which generates the done signal. Here C gates are still required in order to merge the
completion signals for the individual dual-rail bits. However, as shown in [KL02] in
practice this CD can often be shared with the CD of the preceding pipeline buffer.
Now let’s investigate how a circuit consisting of multiple cascaded gates would be
implemented. For that purpose, consider the function y = (a ∧ b) ∨ c. Using the DIMS
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design style this is quite straightforward to implement. The DIMS AND gate from
Figure 2.19a can simply be connected to a DIMS OR gate, no special care must be taken
to avoid orphans. Note that in QDI design signal inversions are achieved by swapping
the true and false rail of a dual-rail bit, which essentially makes them “free” in terms
of area and delay. Hence, by De Morgan’s rule a dual-rail OR gate is equivalent to a
dual-rail AND gate with all input and output rails swapped. The given function could
also be implemented using a 3-input DIMS gate. However, such a circuit requires eight
3-input C gates, which depending on the target library may not be available and produce
a circuit with higher area requirements anyway6.

Now consider the circuit shown in Figure 2.21. Similar to the CD at the inputs of the
AND gate in Figure 2.19b all three inputs of this circuit must be equipped with CDs as
well. Since the output of the dual-rail AND gate is not used as a primary output of the
overall circuit, a CD is required for this intermediate dual-rail signal.

Note that collecting all orphans to produce the done signal usually involves a large tree
or cascade of C gates (or a large multi-input C gate, which is not practically feasible).
However, this happens concurrently to the actual computation of the output value,
which, compared to the DIMS approach, involves fewer gates, resulting in faster circuits.
Furthermore, even with the internal CDs the area overhead can still be significantly lower
as we will show for some example circuits in Section 5.3. Also, notice that the done
signal actually propagates upstream, i.e., its destination is the previous pipeline buffer,
where it joins with the acknowledgment signal of the succeeding buffer. However, for this
acknowledgment signal to transition the data signals have to traverse the buffer C gates
as well as the CD of the associated stage. This is obviously not required for the done
signal, which further reduces the performance criticality of this signal path.

a.F

a.T

b.F

b.T y.T

y.F

c.F

c.T

C C C done

AND OR

Figure 2.21: NCLX AND-OR structure with 3 inputs and input/internal CDs

Since this is only a basic introduction to QDI dual-rail logic styles, (advanced) optimiza-
tion techniques [SMBY05, JN07, JN08, DS09, CC13] are not covered here. However,
Section 5.3 will demonstrate how to automate the synthesis process of QDI dual-rail
circuits using standard EDA tools.

6Eight 2-input C gates and two 3-input OR gates vs. eight 3-input C gates, one 3-input OR gate and
one 5-input OR gate.
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Finally, we have to introduce an important concept in QDI design. Multi-output QDI
function blocks can be classified as strongly or weakly indicating [Spa20]. A strongly
indicating function block only starts switching (any of) its outputs to the data (null)
phase when all inputs switched to the data (null) phase. Weakly indicating circuits may
already change some output data with only a subset of the inputs in a suitable phase.
However, in both cases it is guaranteed that the last output switches to the data or null
phase only after all inputs switched to the respective phase (since only at this point the
CD triggers the change to the next phase at the input).

2.6.3 Dynamic Circuit Templates
Dual-rail domino circuits [WH11] are very fitting for implementing 4-phase QDI circuits
as the precharge and evaluate phases of their operation cycle nicely map to the spacer
and data phases of the DI RZ protocol.

Figure 2.22 shows a single Prechared Half Buffer (PCHB) (pipeline) stage [BOF10]. The
transistor-level circuit on the right shows how the individual domino buffers, each storing
a single dual-rail bit, are implemented. To avoid unnecessary additional inverters in the
figure the acknowledgment signals in this circuit are low-active (in contrast to the WCHB
circuit discussed above).
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Figure 2.22: PCHB pipeline stage

Assume that all input data rails are zero and that all data outputs of the domino buffers
are zero as well. The acknowledgment signals ackin and ackout are one (low-active).
Hence, neither the p-stack nor the n-stack of the individual dual-rail buffers are active,
i.e., the domino gates are precharged. This means that the (weak-feedback) keepers
are responsible to hold the outputs at a stable level. However, both footer transistors
(connected to pc and en) are switched on, priming the gates for the arrival of input data
at Din. Eventually one input transition arrives for each dual-rail bit in Din, which cause
one of the keepers in each dual-rail buffer to switch its state (evaluation phase). This
condition is detected by the input and output CDs (also referred to as left and right
CDs), which eventually cause the (controller) C gate to deassert ackout. This event also
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deasserts the en signal, effectively decoupling the domino gates from the input Din, which
may now switch back to spacer phase. When the output data at Dout is acknowledged
by the succeeding logic via the desassertion of ackin, the buffers are precharged again
(i.e., the p-stack is now active), which will switch Dout to the spacer. The output CD
indicates when precharging is complete by deasserting its output. As soon as Din also
switched to the spacer the output of the input CD will be deasserted as well, which again
causes the assertion of ackout and en. Meanwhile the handshake on the output side is
completed (assertion of ackin), which brings the whole circuit back into the state from
the beginning of this explanation and the whole process can start over.

Notice that, unlike to the WCHB, this circuit needs an additional CD at the input side.
Without this CD the circuit would not be able to detect when the input switched to the
spacer phase. Since input transitions can only affect the storage loops of the buffers in
one direction the output CD is not sufficient to detect the spacer at the input.

Besides the PCHB presented here there also exist other variants such as the Prechared
Full Buffer (PCFB), that offer more parallelism between in the input and output channels
or reduced hardware overhead. We refer to [BOF10] for more details. To implement
combinational logic for this type of asynchronous circuits dual-rail domino gates (with
signal keepers) can be used.
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CHAPTER 3
Crossing the Boundary to

Asynchrony

This chapter represents a bridge between the synchronous and asynchronous worlds.
Modern system on a chip (SoC) designs comprise multiple clock domains and/or a
mixture of synchronous and asynchronous styles, i.e., multiple timing domains. Hence,
by the nature of this design approach, data must be able to cross the boundaries of these
domains, such that, different parts of a system can communicate with each other. The
interfaces required for such clock and timing domain crossings require specific care in
their conception and design, as metastability [KC87] becomes a relevant issue there, and
they also tend to constitute significant performance bottlenecks.

Consider Figure 3.1 that shows a very basic way to equip a synchronous system with
an asynchronous (BD) output channel. The request signal can simply be generated
synchronously by some synchronous state machine. However, when reading the acknowl-
edgment signal (ack) care must be taken. Because of the asynchronous nature of the
interface, this signal may transition at any point and is, hence, not synchronized to the
clock the synchronous system is operated with (clk). Sampling it at an inauspicious point
in time may lead to metastability being introduced into the synchronous system. This
can have unwanted effects inside the circuit and can ultimately cause the whole system
to fail. Hence, a synchronizer must be employed to reduce the risk of metastability
propagating to the system. The downside of incorporating a synchronizer at this point in
the circuit is that it introduces additional latency and reduces the overall throughput of
the interface, since a single data transfer is always prolonged by the synchronizer latency.

For a synchronous system that has an asynchronous input channel a similar situation
arises with the request signal, where a synchronizer is necessary as well.

Hence, for performance critical interfaces a more elaborate data transfer strategy must
be found, which (i) avoids metastability by utilizing suitable synchronizers and (ii) is
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Figure 3.1: Synchronous system with asynchronous output channel

able to hide the latency of said synchronizers such that they have no or very little impact
on the overall data throughput. To satisfy those constraints a natural choice is the FIFO
buffer (or short just FIFO). These buffers are able to sustain throughput in spite of
synchronization delays and facilitate efficient data transfer even in the face of fluctuations
in the relative transfer speeds of sender and receiver.

In this chapter we present rationale, design and analysis of two building blocks that
are fundamental for timing domain crossing: a synchronous/asynchronous interface that
allows to control data transfer from a synchronous domain into an asynchronous one,
and an asynchronous/synchronous interface for the reverse direction. Figure 3.2 shows
an overview of the respective interfaces considered in this chapter. Besides the actual
data lines, the synchronous write interface consists of two control-flow signals. The write
signal must be asserted (for one clock cycle) to push one data item into the asynchronous
domain. The full signal indicates that it is not able to process more data items. Thus, if
full is active, write must not be asserted. Similarly, the empty signal of the synchronous
read port indicates whether data can be read from the interface. Hence, the read signal
must only be activated if empty is deasserted. For each cycle in which read is asserted
the interface outputs one data item in the next clock cycle. The full signal basically
implements a back-pressure mechanism, while the empty signal constitutes a synchronous
request signal. Generating these two flow-control signals typically represents the most
challenging function in a timing domain crossing. Our key idea is to employ an MPL
(see Section 2.3.2) for transferring the information relevant for flow-control across the
domain border.
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data
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data
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Figure 3.2: FIFO interfaces

The asynchronous interfaces are basically BD channels (we only consider 2-phase push
channels in this chapter) where flow-control is given by the asynchronous handshaking
protocol. For the remainder of this work we refer to FIFO architectures that implement
synchronous to asynchronous interfaces (and vice versa) as A/S FIFOs.
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The chapter is structured as follows: Section 3.1 briefly reviews some existing work on
the topic. Next, Section 3.2 demonstrates how to reliably obtain the fill level of an
MPL through sampling its internal states. Following an outline of our basic approach
given in Section 3.3, the key components of our solution, namely the Desynchronizer and
the Resynchronizer, are elaborated in Sections 3.4 and 3.5, respectively, along with an
analysis on timing and metastability issues. An experimental evaluation of the design is
given in Section 3.6, before Section 3.7 concludes the chapter.

3.1 Related Work
Later on in this chapter we will combine our modules to form a bisynchronous FIFO. While
this serves as a compact illustration of our approach, it is not its primary application.
There are many other bisynchronous FIFO applications around [AG17], and we do not
claim that ours is better than those, albeit it may be beneficial in specific settings.
We present the related work about bisynchronous FIFOs here, since they face similar
problems as we have for our A/S FIFOs, namely synchronizing information about the read
and write pointers for the FIFO memory across clock domains, such that the flow-control
signals (full and empty) can be generated. If a parallel synchronizer is used to directly
move these pointers, a special encoding is required such that the respective other side
receives a consistent image of the actual value of the pointer. For this purpose Gray code
pointers [AYM+07] or one-hot (unary) pointers [PG07] can be employed. Another quite
elegant way is the even/odd synchronizer [FMRM10]. Here a phase prediction between
the read and write clocks is used to avoid long synchronizer chains, which contribute to
the overall latency of the FIFO.

In the approach proposed by Keller et al. [KFK15] the FIFO uses pausible clocks and
mutexes to only transmit pointer increment events to the other clock domain, i.e., the
actual value of the read/write pointers is never transferred explicitly. This approach is
actually somewhat related to the techniques we present in this chapter, because we also
only transfer pointer increment information across the timing domain boundaries – in
our approach in the form of read tokens. A token-based approach is presented in [CD03].
Our approach differs from that in not requiring mutex elements, and not assuming a
ripple FIFO for the data path.

As a matter of fact pausible clocks make the problem of timing domain crossing a little
easier because these circuits are by their nature much more related to asynchronous
circuits, in that metastability can in principle be converted to additional wait times
through the use of mutexes (time-safe rather than value-safe [Spa20, Cha84]). This
property is for example utilized in the A/S FIFOs proposed in [MTMR02] and [TBV09].

In contrast to that the A/S FIFO proposed in [BV06] uses Gray-encoded read and write
pointers. The FIFO architecture presented in [CN04] can be used for bisynchronous and
A/S FIFOs. However, this design relies on special, custom-design FIFO cells, that are
selected for read and write operation through a token-ring-based structure.
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3.2 Sampling Muller Pipelines
This section first clearly defines the state of an MPL and then analyzes how (consistent)
state information can be extracted from it in a synchronous timing domain. Although
the MPL is agnostic to the handshaking protocol, we only consider the 2-phase protocol
here, since this is the protocol used by the circuits proposed in this chapter. Furthermore,
we assume that the environment of the MPL will operate the input and output port
strictly in accordance with the protocol.

3.2.1 Pipeline States
The state of an n-stage MPL is defined by the n + 2-element vector x = x0, ..., xn+1. The
entries x1, ..., xn hold the (output) states of all C gates, while input variables x0 and xn+1
hold the logic value of the request at the input port (reqin) and the acknowledgment at
the output port (ackin). The pipeline outputs ackout and reqout are equal to the nodes
x1 and xn, respectively. Figure 3.3a shows an example pipeline consisting of four C gates,
which is, consequently, described by a 6-element state vector x0, ..., x5.
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Figure 3.3: MPL circuits

Recall that, MPLs operate according to a simple rule: If the successor and predecessor of
some node xi (1 ≤ i ≤ n) differ in their logic values, xi (eventually) takes on the value
of its predecessor. Note that the nodes x0 and xn+1 are inputs to the pipeline. Thus,
their values are controlled by the environment. We define an MPL to be in a steady state,
when its defining state vector x does not allow for changes to x1, ..., xn when applying
the pipeline operation rule formulated above. Thus, the only way to get a pipeline out of
a steady state is by toggling one of its inputs (x0 or xn+1). A pipeline that is not in a
steady state is transitioning. In the following we will define and analyze what it takes for
a pipeline in a steady state to be regarded as full or empty.

An n-stage pipeline is regarded empty iff all elements of its state vector x have the same
logic value, i.e., xi = xi+1. Note that this also includes the inputs: A mismatch between
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ackin (xn+1) and reqout (xn) indicates that there is still one transition in the pipeline
that has not been acknowledged. A mismatch on the input side (i.e., x0 = ¬x1) indicates
a new request that causes a transition to propagate towards the output. More formally,
this violates the stability condition from above for x1 and hence our presumption of a
stable state. The only possibility to get an empty pipeline out of this steady state is to
externally toggle the reqin (x0) input. Without any read being performed at the output,
n complete handshakes can be performed on the input side of an empty n-stage pipeline.
After that the input side can once more toggle the input request (x0), but won’t get an
acknowledgment unless the output xn+1 is toggled.

An n-stage pipeline is full iff there is a strictly alternating 0/1 pattern on the state vector
x, i.e., xi = ¬xi+1. Again the interfaces are included here: Unless there is an active
input request (i.e., x0 = ¬x1), there is still one “free” position in the pipeline. Likewise,
xn = xn+1 would indicate an acknowledged output request, which makes all transitions
contained in the pipeline move by one position. This is a dynamic state, as witnessed by
the violation of the stability condition for xn. Assuming no further write access, on a
full n-stage MPL n + 1 2-phase read handshakes can be performed before the pipeline
becomes empty.

3.2.2 Obtaining State Information
Since an MPL is an event driven circuit, care must be taken when extracting (synchronous)
state information from it. Figure 3.3b shows how flip-flops can be used to sample the
pipeline state vector x, effectively transferring its information into the synchronous
timing domain. To model the state of the pipeline nodes at the synchronous clock events
(i.e., when they are sampled), we use the set BT = {0, 1, �, �}. Consequently, x is described
as a vector of length n + 2 over BT . The values 0 and 1 indicate the normal logic states
for the nodes xi that were stable during the setup/hold (S/H) window of the associated
sampling flip-flop. The value � (�) indicates that the respective node was transitioning
from 0 to 1 (1 to 0) during the S/H window. If a flip-flop samples a transition, it may
become metastable. Hence, we use a different set of values BM = {0, 1, M} to model the
outputs x� of the sampling flip-flops. The values 0 and 1 again have the usual meaning
of logic low and high. The value M denotes a metastable state, and can basically be
considered as a wild card for arbitrary behavior of a signal, including late transitions or
glitches. This meaning is consistent with the notion of metastability used in metastability
containing circuits [FFL18]. Using BM , Boolean equations can be evaluated normally
with slightly extended truth tables for the logic operators1.

The flip-flops in the figure essentially perform the task of a synchronizer, in that they
(try to) map the asynchronous signal at their inputs to a stable output value; hence, they
must be appropriately extended in practice (see later). The function s (Equation (3.1))
models this operation2. It maps a value in BT to a set of possible values in BM , to

1¬M = M, 0 ∧ M = 0, 1 ∧ M = M, M ∧ M = M , all other operations can be reduced to the given
rules using De Morgan’s laws.

2In Equations (3.1) and (3.2) P(A) denotes the power set of set A.
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which the synchronizer might resolve (or fail to resolve, in the case of M). Note that
sampling a transition can basically cause an arbitrary output value of the synchronizer.
The synchronizer can either settle on the old or the new value of the input (0 or 1), or
become metastable itself (M). Which of the values from BM the output actually assumes
cannot be predicted for a single instance.

s : BT �→ P(BM ), s(x) =
�

{0, 1, M} if x ∈ {�, �}
{x} otherwise

(3.1)

Similarly sv yields the set of possible values for the a whole vector of length m.

sv : Bm
T �→ P(Bm

M ), sv(x) = {y ∈ Bm
M |yi ∈ s(xi)} (3.2)

Ultimately, our goal when evaluating the pipeline state is to retrieve the number T of
tokens present. For the stable pipeline we have argued that T equals the number of state
changes between consecutive elements along the state vector. So we need to be able to
find all instances of 01 or 10 in x�. Considering that the propagation delays ΔS

i from
the individual pipeline nodes to the respective sampling flip-flops (see Figure 3.3b) may
vary, one might experience an inconsistent result when taking a sample while several
transitions are “in flight”. To safely prevent that, we require that all ΔS

i (0≤ i≤n+1)
are equal, i.e., there is no (or negligible) skew between the wires connecting the nodes xi

to the flip-flops.

In the general case, where no timing constraints are imposed on the MPL, every possible
vector in Bn+2

T can appear at the input of the sampling flip-flops. Under our sampling
model this would make it impossible to infer reliable state information about the pipeline,
let alone obtaining an exact token count. Consider, for example, the state vector ��0,
representing a single token traveling through an initially empty pipeline. Sampling this
vector (and assuming metastability is resolved) may result in 000, 010, 100 or 110 for x�,
which obviously correspond to vastly different pipeline states and token counts.

To avoid such problems, we constrain the forward and backward delay of the pipeline
stages. Let TS and TH denote the setup and hold time of the synchronizer/sampling
flip-flops as specified in their datasheet. Moreover, ΔFi and ΔBi denote the forward
and backward delay of stage i in the MPL. For the sake of simplicity we assume equal
delays for rising and falling transitions (namely the shorter of both). As indicated in
Figure 3.3b we always measure the delays ΔFi and ΔBi from and to the nodes xi. They,
hence, incorporate the delay of the C gate as well as the interconnect and the inverter.

∀i, 0 ≤ i ≤ n, ΔF
i > TS + TH ∧ ΔB

i > TS + TH (3.3)

The constraint in Equation (3.3) guarantees that it can never be the case that two
neighboring flip-flops in the synchronizer sample transitions at the same time. This
in turn means that neighboring flip-flops cannot both evaluate to random values (or
become metastable) at the same time, i.e., if a node xi experiences a transition, its
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neighbors xi-1 and xi+1 must be stable. Moreover, because of the pipeline operation
rule, these two stable nodes must have opposite values, i.e., xi =� ⇒ xi -1 = 0 ∧ xi+1 = 1
and xi =� ⇒ xi -1 = 1 ∧ xi+1 = 0 for 1 ≤ i ≤ n. For the pipeline inputs node x0 and
xn+1 (which obviously don’t have a predecessor or successor node, respectively) these
rules can be simplified to x0 =� ⇒ x1 = 1, x0 =� ⇒ x1 = 0, xn+1 =� ⇒ xn = 0 and
xn+1 =� ⇒ xn = 1. Figure 3.4 illustrates this behavior. Note that any variance of ΔS

i

between different nodes xi, basically “enlarges” the S/H window and must be added on
the right side of the constraint inequality. Clock skew between the sampling flip-flops
has the same effect.

In summary, if we assume that metastability is resolved, every token, i.e., every 01 or 10
transition in the state vector x� can be identified reliably. For the token detection it does
not matter to which value metastable flip-flops resolve, since the total number of state
changes stays the same in both cases (recall that transitions must be enframed by two
opposite stable values). The only exception to this are transitions on the pipeline inputs
x0 and xn+1 (e.g., �00 can be sampled as 000).
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Figure 3.4: Setup/hold window

Now let’s reason about the possible states an n-stage pipeline can have under our sampling
model. Let Xm ⊂ Bm

T , m = n + 2 denote the set of possible values the vector x can take
under the timing constraints formulated above. Starting with the set Bm

T we can simply
remove all states that violate one of the rules formulated above to, hence, obtain Xm.

To construct Xm, for some given m, in a recursive way the following approach can be
used: Given Xm-1 the set Xm is generated by appending a new element to the front of
the vectors in Xm-1 and considering the possible values this new element can take based
on the exclusion rules formulated above. From a circuit view this means the original
input request x0 is now driven by a newly added C gate whose inverted input is connected
to x1. The new input request of the extended pipeline is then given by this C gate’s
non-inverted input. For all x ∈ Xm-1 where we have x0 =� (�) a new vector z is added
to Xm, where z0 = 1 (0) and zi = xi-1 for 1 ≤ i ≤ n + 1. All other symbols for z0 are
forbidden by the exclusion rules. If x ∈ Xm-1 starts with a constant value, three new
vectors are added to Xm. The only value that is forbidden for z0 now is � if x0 = 1 and� if x0 = 0. Equation (3.4) formalizes this construction.
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Xm ={1x|x ∈ Xm-1 ∧ x0 =�} ∪ {0x|x ∈ Xm-1 ∧ x0 =�}∪�
y∈{0,1,�}

{yx|x ∈ Xm-1 ∧ x0 = 0} ∪
�

y∈{0,1,�}
{yx|x ∈ Xm-1 ∧ x0 = 1} (3.4)

From this recursive construction it is now possible to derive a suitable recurrence relation
that yields vm = |Xm|, i.e., the number of possible state vectors for a pipeline with n
stages (i.e., C gates). Let vC

m and vT
m, denote the number of state vectors (for a given

vector length m) that start with a constant (i.e., 0 or 1) and transitional (i.e., � or �)
value at x0, respectively. Therefore, we have:

vm = vC
m + vT

m (3.5)

Using the recursive construction of Xm, Equation (3.6) can be established.

vm = 3vC
m-1 + vT

m-1 (3.6)

From the discussion above it is also clear that Equation (3.7) must hold, because for all
vectors in Xm starting with a constant value in x0 a single vector starting with either �
or � is added to Xm+1.

vT
m+1 = vC

m (3.7)

After some simple transformations (Equation (3.8)), we arrive at the recurrence relation
shown in Equation (3.9).

vm = 3vC
m-1 + vT

m-1 (apply Equation (3.5) to vC
m-1)

= 3(vm-1 − vT
m-1) + vT

m-1 (resolve parenthesis)

= 3vm-1 − 2vT
m-1 (split off vm-1)

= 2vm-1 + vm-1 − 2vT
m-1 (apply Equation (3.6) to vm-1)

= 2vm-1 + 3vC
m-2 + vT

m-2 − 2vT
m-1 (split off vC

m-2)

= 2vm-1 + vC
m-2 + vT

m-2 + 2vC
m-2 − 2vT

m-1 (apply Equation (3.5) to vC
m-2 + vT

m-2)

= 2vm-1 + vm-2 + 2vC
m-2 − 2vT

m-1 (apply Equation (3.7) to vC
m-2)

= 2vm-1 + vm-2 + 2vT
m-1 − 2vT

m-1 (cancel right-most terms)

= 2vm-1 + vm-2

(3.8)

vm = 2vm-1 + vm-2 (3.9)

Now it remains to establish suitable initial values for v1 and v0. Since m = n + 2, at
first glance v1 and v0 don’t make much sense in the context of an actual pipeline circuit.
However, setting v0 = 0 and v1 = 4 yields the value 8 for v2, which is the expected
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number of states for a pair of handshake signals (i.e., a “zero-stage” MPL). Similarly, v3
yields 20, which again matches the expectation for a “pipeline” consisting of a single C
gate. For that matter v1 = 4 can be viewed as the number of states a single wire can
have.

Solving this linear recurrence relation under the established initial conditions yields
Equation (3.10).

vm =
√

2
�
(1 +

√
2)m − (1 − √

2)m


(3.10)

This result (Equation (3.10)) is not really needed for the explanations that follow.
However, as an interesting corollary of the discussion in this section, it is included for
the sake of completeness.

3.3 Proposed Approach
In essence, we propose two basic modules, a synchronous/asynchronous interface which
we will call Desynchronizer in the following, and an asynchronous/synchronous interface
called Resynchronizer. These two components form the cornerstones for our A/S FIFO
architecture and can, if connected together, also be used to implement a bisynchronous
FIFO. We will leverage the knowledge from Section 3.2 about the possible pipeline
behaviors under the imposed restrictions for those implementations.

3.3.1 Problems and Requirements

The fundamental problem with timing domain crossing interfaces is to compensate for
the lack of a handshake on the synchronous side, by means of full or empty status flags
(recall Figure 3.2). The generation of these flags necessarily involves combining status
information from both timing domains, which creates the demand for synchronization.
A well known instance of this problem is the comparison of read and write pointers
in bisynchronous FIFOs outlined in Section 3.1. While the use of synchronizers can
easily solve this, synchronizers, in the general case, do create a delay that makes the
validity of the status flags questionable: Knowing that the asynchronous domain was
ready to receive data, e.g., two clock cycles ago, does not imply that this is still the
case when this information is received (i.e., after the synchronizer delay). This seems
to be a fundamental issue that cannot be eliminated, but rather requires appropriate
consideration. In our attempt to provide an efficient approach for the latter, let us pin
down the requirements more precisely:

(R1) Validity of the full flag: If the full flag is inactive at any clock cycle, then the
asynchronous domain must indeed be able to accept a data item at the next
active clock edge.
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(R2) Validity of the empty flag: If the empty flag is inactive at any clock cycle, then
the asynchronous domain must indeed be able to deliver a valid data item at the
next active clock edge.

(R3) Maximum Throughput: It shall be possible to move a data stream over the
interface at a sustained rate of one data item per clock cycle.

(R1) is essential to prevent losing data through overflows while (R2) prevents reading
stale data from an empty FIFO.
While (R1) and (R2) are mandatory for any reasonable timing domain interface to ensure
correct data transfer, they do not prevent overly conservative activation of the full and
empty flags. (R3) is introduced to counterbalance this by also considering performance.
Note that our definition of (R3) only applies to the data throughput, it does not restrict
the latency. We chose to do so, since having FIFO applications in mind, the efficient
transfer of single data items may not be the primary concern anyway.

3.3.2 Key Solution Principle
The core of our proposed FIFO architectures is an MPL. For each new data item written
to the write port of the FIFO, a token is placed into this pipeline. For each of these tokens
the read port may perform exactly one read operation on the FIFO, removing the token
from the pipeline. In this sense, the MPL is used as an asynchronous up/down counter,
representing the fill-level of the FIFO. The tokens themselves don’t carry any information,
only their total number stored in the pipeline is relevant. The actual data must be stored
in some shared memory, and each port of the FIFO must maintain its own memory
pointer to it. Since fundamentally the MPL is an asynchronous structure, reading from
and writing to it from the asynchronous domain is natural and straightforward; and
with full or empty flags in place on the synchronous sides for establishing flow-control,
maintaining a correct token count remains feasible.
Unlike conventional approaches where the read and write pointer must be related in
some way to obtain information on the fill level, the token count in our up/down counter
directly reflects the fill level. Consequently, the pointers for the shared memory on the
read and write port of the FIFO can be maintained independently and never need to be
mapped into the respective other timing domain, as no comparison is required – this is a
significant advantage of the up/down counting underlying our approach. For every write
operation, one token is added to the MPL and the write pointer is incremented, and
upon every read one token is removed and the read pointer incremented. Of course, the
pipeline depth must be adjusted to the number of locations in the actual FIFO memory.
Now the remaining challenge is to generate the full and empty flag the synchronous
sides rely on to comply with (R1) and (R2). To this end, we have to overcome three
problems:
First, reading the fill status of an immanently event-driven MPL is non-trivial. We have
already elaborated on that in Section 3.2.
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Second, the status must be moved across the timing domain boundary from asynchronous
(where the MPL is located) to synchronous (where the flag is needed). In principle, the
full or empty flag can be generated on the asynchronous side, in which case only the flag
as such needs to cross the timing domain. While this seems conceptually very attractive,
we have decided to move the flag generation to the synchronous domain, as this simplifies
the implementation as well as eases the reasoning for why the proposed circuits work
correctly. Even though, as a consequence, a number of pipeline status signals now need
to cross the timing domain, only one of them is actually critical for metastability, as will
become clear later on.

Third, as already mentioned, synchronizing an asynchronous event to a fixed clock causes
a delay. This delay in obtaining the pipeline state information needs to be appropriately
accounted for.

To handle these issues we designed the De- and Resynchronizer circuits. These two
components basically evaluate a synchronized state of a certain number of pipeline
stages. For the Desynchronizer the sub-pipeline comprises the first stages after the
circuitry with which the synchronous side places a read token3 into the pipeline. The
obtained information is then used to generate the full flag for the synchronous domain.
Consequently, the Resynchronizer must look at the last few stages to generate the empty
flag. As a consequence of (R3) the number of pipeline stages that are synchronized
must be appropriately matched to the synchronizer delay, which is usually chosen with a
specific mean-time between upsets (MTBU) requirement in mind.

Although we consider FIFOs an important application and use one to illustrate our
approach, the focus of this chapter will be on the two interface blocks, the Desynchronizer
and the Resynchronizer. With these components in place, the remaining parts of a FIFO
implementation (memory cells and memory pointers) can each operate in a single timing
domain and are, hence, relatively easy to implement. We will give a brief implementation
example in Section 3.6.

3.4 Desynchronizer
An overview of the Desynchronizer circuit is shown in Figure 3.5. It can be seen that the
single flip-flops from Figure 3.3b have been replaced by n-flip-flop synchronizers, where n
can be chosen according to the reliability demands of the circuit, i.e., the desired MTBU.
This synchronizer array reads the state vector x = x0, ..., xk+1 of the first k stages of the
MPL used to buffer the read tokens and produces the synchronized state vector x�. We
will show that in order to compensate for the synchronizer delay of n cycles, we need to
sample exactly n stages of the MPL, i.e., k must be equal to n, which is already indicated
by the figure. The bottom-most C gate in the figure is not part of this n-stage (sub-)
pipeline; it is, however, relevant for the pipeline timing constraints. Since this C gate

3We refer to them as read tokens, because for each of these tokens one read operation may be
performed on the FIFO.
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Figure 3.5: Desynchronizer circuit

produces the input acknowledgment xn+1 to the n-stage (sub-) pipeline, it determines ΔF
n

as indicated in the figure. It also represents the first C gate in the subsequent pipeline
portion that is used to buffer read tokens. Recall that the total pipeline depth (in terms
of token capacity) must be equal to the number of memory locations in the FIFO (which
may be significantly larger than n).

The synchronous write port uses a toggle flip-flop to place tokens (i.e., 2-phase handshakes
on req and ack) into the pipeline4. At every active clock edge where write is high the
input request to the pipeline (x0) is inverted, hence, generating a new token. As it is not
possible to directly observe the output acknowledgment (x1) of the pipeline, because of
metastability concerns, the input port must assume that (i) whenever full is low the
pipeline can accept a token and that (ii) this write operation completes within one clock
cycle. In order for this design to work properly, we have to impose timing constraints
(Equation (3.11)) on the minimum clock period Tc (i.e., the maximum frequency) the
synchronous port can be operated with.

Tc > tCO +
�

0≤i≤n

ΔF
i + ΔS + TS

�
Tc > max

0≤i≤n
δB

i (3.11)

Here, tco denotes the clock-to-output delay of the toggle flip-flop and TS again denotes
the setup time of the sample flip-flops. Moreover, δB

i denotes the delay from node xi

back to the input of the previous C gate (including the inverter). This is illustrated in
the figure for δB

n . The constraint ensures, that given an empty pipeline a token that is
generated during a write operation must have left the (n-stage) pipeline within one clock
cycle (of course assuming that the subsequent logic at the asynchronous side is ready
to receive this token). This means that the synchronizer will again sample a constant

4The proposed principle would also work with 4-phase handshakes. However, this would mean, among
other things, that the MPL would need to be twice as long.
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3.4. Desynchronizer

pattern and the full flag will stay deasserted. This is required to sustain a continuous
data stream, as demanded by (R3).

Hence, for every clock cycle in which a token is written to the pipeline (and the pipeline
does not start to fill up) the state of all nodes xi must toggle and the new C gate states
must propagate to the respective sampling flip-flops (first inequality). Furthermore, there
must be enough time such that all C gates in the pipeline are again armed for the next
(opposite) transition, i.e., the next token (second inequality). If the pipeline starts to
fill up, because tokens are not removed fast enough at the asynchronous side, the state
vector x sampled by the synchronizer will be different from the all-zero/all-one vector,
which indicate an empty pipeline. In particular the first token that is not able to leave
the pipeline within one clock cycle results in a state vector where the value of xn and
xn+1 will be different.

After n cycles the sampled status vector x will have propagated through the synchronizer
and appear as x� at its output. Because of this latency the MPL must be able to absorb
another n read tokens without overflowing after the first token that was not able to leave
the pipeline within one clock cycle. As initially claimed, we see that n = k must hold for
the Desynchronizer to work correctly.

As a consequence full is activated as soon as the pipeline is recognized not being
completely empty, i.e., already when it holds a single token. Therefore, it is possible
that the full signal is asserted in some cycle c although there were no write accesses
for the last n − 1 cycles. Obviously, this is pessimistic and does not fully utilize the
pipeline in every case, but it is safe with respect to (R2) and allows for a very simple,
fully combinational implementation of the logic to generate the full flag. Moreover, n
will typically be as low as 3, so the sub-pipeline is not very deep. This also means that
timing constraint for Tc in Equation (3.11) should not be too difficult to fulfill.

As shown in Figure 3.5 the full signal is driven by the inverted output of the constant
pattern detector (full = ¬cp), whose implementation is defined by Equation (3.12).

cp(x�) =

 �
0≤i≤n+1

x�
i

 ∨
 �

0≤i≤n+1
¬x�

i

 (3.12)

Using this approach it is guaranteed that whenever full is asserted it stays asserted until
the pipeline is empty, i.e., there are no tokens left in the circuit that could lead to further
transitions on x.

Finally, the risk for metastability on the full signal must be evaluated. To this end we
leverage the findings from Section 3.2 and examine all possible pipeline states given by
the set Xn+2. Note that writes to the MPL are only performed synchronously. Thus, the
flip-flop chain at x0 will never sample a transition, and hence cannot become metastable.
This means that for our analysis we don’t have to consider those vectors x ∈ Xn+2 where
x0 ∈ {�, �}. This only leaves two cases for x, that, when sampled and converted to
x� = sv(x), can lead to an arbitrary value at the full signal (i.e., 0, 1 or M). In particular
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these are constant patterns with a transition at the last node xn+1 (xi|i≤n = 1, xn+1 =�
or xi|i≤n = 0, xn+1 =�). These situations occur when a token is just about to leave the
pipeline but didn’t quite make it. Hence, in our application it is irrelevant to which stable
value the synchronizer resolves the transition. Either the pipeline appears non-empty
for another cycle, which is a safe state since writes are not allowed, or it is considered
empty, which is also fine because the token was just about to leave the pipeline anyway.
Consequently, M is the only critical output, and the overall MTBU of the circuit is,
hence, determined solely by the synchronizer on xn+1. Metastability on all the other
nodes is always masked. This indicates that it is beneficial to use flip-flops with good
metastability resolving capabilities on this signal to minimize the risk of an upset – the
remaining “synchronizer” chains are just needed for timing alignment of the paths. They
do not at all contribute to the MTBU, and cheaper implementations may be used. This
is in contrast to other schemes, e.g., ones using Gray-encoded pointers, where all paths
need to have good metastability resolution, even though only one specific path is relevant
at a time (i.e., for a given count value).

3.5 Resynchronizer
An overview of the Resynchronizer circuit is shown in Figure 3.6. It can be seen that its
general structure is closely related to that of the Desynchronizer. However, now the last
n stages of the token buffer pipeline are sampled by n-flop synchronizers to transfer the
pipeline status across the timing domain boundary and to ultimately deduce the FIFO
fill level. Again, we need to sample n stages, in order to compensate for the synchronizer
latency. Similar to the Desynchronizer here the top-most C gate is not considered part
of this pipeline. It is included in the figure as it determines ΔB

0 . The toggle flip-flop is
now used to control the input acknowledgment, i.e., to remove tokens from the pipeline.

For the minimum clock period Tc a similar constraint applies as for the Desynchronizer
(Equation (3.13)).

Tc > TCO +
�

0≤i≤n

ΔB
i + ΔS + TS

�
Tc > max

0≤i≤n
δF

i (3.13)

The variable δF
i denotes the delay from the node xi to the non-inverting input of the next

C gate. This constraint ensures that after a read from a full pipeline, the pipeline is again
indicated as full for the next clock cycle, if there was already a new token pending on
the input port (req �= ack). To accomplish this all values xi must invert their logic state
within a clock cycle, which means that the bubble (free space) created by removing the
token through the read must ripple up the whole pipeline from xn+1 to x0. In addition,
this constraint is more than sufficient to ensure that a read operation completes within
one clock cycle.

Since it must be guaranteed that the read signal is only asserted if there is at least one
token in the pipeline, care must be taken when generating the empty signal. As can be
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Figure 3.6: Resynchronizer circuit

seen from Figure 3.6, there are two conditions for the deassertion of empty, either (i) ap
or (ii) one must be asserted.

Let’s first consider the former condition. Whenever there is an alternating pattern
detected on the vector x�, we know that the pipeline was full n cycles ago. This means
that, even if we assume the worst case, namely that n read operations have been performed
in the last n cycles, there must still be one token left to read in the pipeline. Hence,
whenever there is an alternating pattern on x�, empty can be safely deasserted, allowing
for a read operation in the next cycle. As long as there is a constant stream of new tokens
arriving at the input side of the pipeline (req and ack), the (n-stage) pipeline will always
stay full and the synchronous side can perform continuous reads (requirement (R3)).
This behavior is illustrated by the timing diagram in Figure 3.7 for n = 2. For the sake
of clarity we added xn+1 as an individual signal trace, as it represents the synchronously
generated input acknowledgment to the pipeline. The signal xs holds the intermediate
value of the flip-flop (synchronizer) chain. The pipeline starts out in a full state where
x = x� = 0101, which would allow for three read operations. After the first read another
token immediately enters the pipeline in the same clock cycle, which leaves the pipeline
in the state x = 1010 (red state label). Note that, if no new token would enter, the state
of the pipeline after the read would be 0010. Because of the new token entering the
pipeline, in total four consecutive read operations are possible.

If the design would just use the ap signal to generate the empty signal, the Desynchronizer
would already work fine for streaming applications. However, this way the situation may
arise that there are tokens left in the pipeline (i.e., data left in the FIFO), that cannot
be read because their number is too small to trigger the alternating pattern detector.
Consider, for example, the case where only a single token arrives. This token would not
be detected, and could hence not be read until further tokens arrive to fill up the pipeline.
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Figure 3.7: Example timing diagram (n = 2)

To eliminate this issue, we introduced condition (ii), i.e., the one signal. The one signal
basically indicates whether there is an active, i.e., unacknowledged, output request
(xn+1 = ¬xn), which means that there is at least one token left in the pipeline. For
that matter it can be viewed as a full indicator for the 0-stage sub-pipeline formed by
the output request and input acknowledgment signals. Since the state vector x� only
corresponds to the state of the pipeline n cycles ago, it is only safe to interpret the output
of the XOR gate if there have not been any reads during this time. For this purpose
the constant pattern detector checks if the input acknowledgment to the pipeline has
changed during the last n cycles.

Now it only remains to analyze the effects of metastability on the pipeline state information
signals one and ap and therefore the empty signal; specifically which scenarios can lead
to a violation of (R2) or metastability propagation.

Similar to x0 in the Desynchronizer, the flip-flop at xn+1 can never sample a transition,
and thus cannot become metastable. Hence, knowing that x�

n+1 ∈ {0, 1}, the remaining
condition for the one signal to produce a stable output is that x�

n ∈ {0, 1} must hold.
Unfortunately, for the case where xn ∈ {�, �} we may still get an arbitrary output (i.e., 0,
1 or M) at x�

n, and therefore at one. Let’s analyze the consequences of that:

• In the case of an M at x�
n metastability propagation to the empty output can

ultimately cause the circuit to fail. This situation may arise, when a transition is
traveling through the MPL, but did not quite make it to the bottom-most C gate.
In such a case we must rely on the synchronizer to minimize the probability that
this value actually appears at its output.

• If the synchronizer internally resolves metastability at x�
n to the same logic value

as held by x�
n+1, one stays low, which is a safe outcome because read operations

are forbidden.

• If, on the other hand, x�
n takes the opposite value of x�

n+1, one will be asserted.
However, since the transition of the C gate at xn that caused this value occurred n
cycles ago, we can be certain that it has settled in the meantime and a token can
successfully be read from the pipeline.
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For generating the ap signal, we have the alternating pattern detector in place whose
basic function is represented by the left product term in Equation (3.14) (the symbol ⊕
denotes an exclusive or operation): The pipeline is full when all neighboring nodes have
opposite logic states.

ap(x�) =

 �
0≤i≤n

x�
i ⊕ x�

i+1

 ∧
 �

0≤i≤n-1
¬(x�

i ⊕ x�
i+2)

 (3.14)

Unfortunately, this function alone is not sufficiently resilient to metastability at any
x�

i. To improve that, we have added the second (right) term in Equation (3.14), which
states that every node must have the same logic state as the nodes next to its direct
neighbors. While this term is logically redundant, it allows for metastability masking
on all x�

i for 1 ≤ i ≤ n for the following reason: From the discussion about the possible
values for x, we know that transitions (i.e., � or �) at xi must always be framed by
two opposite stable values (i.e., xi-1 = ¬xi+1). This means that even if one (or more)
of the signals x�

i for 1 ≤ i ≤ n evaluate to M because the synchronizer was not able to
resolve metastability, M would not be able to propagate to the ap signal, since, due to
the second term, its stable neighbors will make ap evaluate to a stable 0 in these cases.
Hence, regarding the ap signal metastability is only an issue for node x0. The overhead
for the metastability containing alternating pattern detector can be estimated by a factor
of two, when compared to a non-metastability containing version.

An analysis of the set of possible vectors for x reveals that there are only two cases that can
lead to an ambiguous value at ap (i.e., vectors x where {ap(y)|y ∈ sv(x)} = {0, 1, M}).
These cases are alternating patterns starting with a rising or falling transition on x0
instead of 1 or 0, respectively, i.e., x0, x1 =� 0 and x0, x1 =� 1, whereas xi = ¬xi-1 for
i > 1. However, for the same reasoning as presented for the one signal, both of these
cases are unproblematic, as long as the synchronizer manages to resolve metastability.

3.6 Results
This section presents a prototype implementation of the presented circuits to demonstrate
the viability and practicality of our approach. Furthermore, we briefly analyze the impact
of metastability on the MTBU of the circuits.

3.6.1 Prototype
For the prototype implementation we combined the Re- and Desynchronizer circuits to
implement a bisynchronous FIFO in a field-programmable gate array (FPGA). Figure 3.8
shows an overview of this design. We used n = 3 synchronizer flip-flops and a FIFO
depth of d = 16 elements.

The Altera/Intel Cyclone IV [Alt16] FPGA, we used for our prototype, features logic
cells containing a 4-input lookup table (LUT) and a flip-flop. The interconnect of this
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Figure 3.8: Bisynchronous FIFO prototype

device is capable of using the LUT’s and flip-flop’s output simultaneously. Hence, the
2-input C gates constituting the MPL are implemented in a single LUT, using one input
for the feedback path and one as a reset input to ensure the correct start-up of the circuit.
Unfortunately, there is no dedicated path in a logic cell from the output of the LUT
back to its inputs. Hence, the feedback path is implemented using local interconnect,
i.e., the same routing resource that also implements the connections between the C
gate in the MPL. We assume that the delay through this local interconnect within the
MPL (i.e., from the output of a LUT to the input of another or the same LUT) is
always approximately ΔLI . From the operation principle of the MPL, we can derive the
following: When a C gate changes its output value, it takes at least 2ΔLI + ΔLUT before
the input of C gate can change again, where ΔLUT denotes the delay of a C gate in the
MPL. This should give the feedback path plenty of time to settle before the inputs of
the C gate change again. Thus, we don’t believe this feedback path delay is critical for
correct circuit operation.

The output of the LUT is directly connected to the flip-flop in the same logic cell, which
results in a small and more importantly uniform delay for this connection across the
whole pipeline (ΔS in Figure 3.3b). Besides the explicit placements of the MPL and the
sampling flip-flops, no further manual interventions were necessary. Actual values for
the S/H times are not available in the datasheet of our target FPGA. Thus, we initially
assumed that our circuit components and layout don’t violate Equation (3.3) and then
verified this assumption using extensive hardware tests. The MPL connecting the Re-
and Desynchronizer must accommodate for the size of the (dual-clocked) memory, which
means that we need d − 1 stages in total. Recall that a full n-stage MPL contains n + 1
tokens (Section 3.2).

The bisynchronous FIFO is embedded in a hardware testbench that generates pseudo-
random input data using a linear feedback shift register (LFSR) and measures the data
throughput. Furthermore, the read and write signals can also be controlled using LFSRs
to simulate sporadic access to the FIFO (of course considering the full and empty
signals). Both FIFO sides maintain a counter that records the total number of data items
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that passed through the FIFO. Matching these two counters reveals if data has been
lost or falsely generated (requirements (R1) and (R2)). The read side also automatically
checks whether the read data matches the expected value.

The read and write clocks were generated using uncorrelated external clock sources. We
tested a wide range of different read/write clock speed combinations and operation modes
(maximal throughput and sporadic access). Each of these test scenarios ran over several
days without any errors, which verified that the FIFO indeed works as expected and
led us to believe that our initial assumption about the constraint in Equation (3.3) was
correct. Furthermore, the experiments showed the throughput of a data stream is only
limited by the slower one of the read and write clocks, fulfilling requirement (R3). We
were able to measure maximum operation frequencies of up to 275 MHz for both the read
and the write port. To put this number into context: The maximum performance for
block RAMs (i.e., M9K blocks) in the used FPGA (speed grade C7) is 274 MHz [Alt16].
This means that our FIFO allows to utilize the full performance of the used memory
block and that the timing constraints imposed on the MPL don’t affect the maximum
operation frequency in this case.

To further investigate the operation speed of just the Re- and Desynchronizer we devised
a simple experiment. For the Desynchronizer a single token is inserted into an empty
pipeline by asserting the write signal for exactly one clock cycle. Since the pipeline is
empty, this event will cause all nodes xi for 0 ≤ i ≤ n + 1 to change their logic value. In
the next clock cycle the first level of the synchronizer flip-flops (i.e., those that sample
the vector x) is disabled. This means that they will only sample the state of pipeline in
the clock cycle immediately following the token insertion and then keep this value. A
debug interface then allows to read out the state of the vector x�. If x� never attains
a value different from the all-zero/all-one vector, then we can deduce that the timing
constraint for the minimum clock period Tc is not violated. If it does, the token was not
able to clear the pipeline within one clock cycle. Moreover, it is possible to gradually
increase the frequency (i.e., decrease Tc) to examine the circuit’s boundaries. For the
Resynchronizer a similar experiment is performed, where a single token is removed from
a full pipeline. In this case x� must always hold a strictly alternating bit pattern.

These experiments showed that the Re- and Desynchronizer could even handle higher
frequencies. This is not unexpected, as an MPL stage can operate very fast, and for
our timing constraints (Equations (3.11) and (3.13)) only a few stages become effective,
namely as many as we have synchronizer stages. Note that this holds even if the FIFO is
much deeper.

The external clock generators also allowed us to test the circuit under the influence of
significant clock jitters (in the range of tens of MHz). Unsurprisingly the circuit proved
to be very robust against such disturbances, because the only thing that must be ensured
is that the minimum clock period Tc is still sufficiently long.

The example implementation also shows that our design uses fairly standard components
and even maps quite nicely to FPGAs, even though the C gate is somewhat handcrafted.

51



3. Crossing the Boundary to Asynchrony

However, if a different pipeline style would be chosen, that does not use any special gates
(e.g., MOUSETRAP [SN07]) we could even get rid of those.

3.6.2 Metastability Considerations
The prototype implementation is not intended to analyze the metastability behavior of
the presented circuits, because the related properties are easy to assess analytically with
the usual approach for n flip-flop synchronizers [Gin11]. The only parameter that must
be determined for that is the actual rate of transitions at the input of the (relevant)
flip-flop chains. Clearly, this data rate strongly depends on the actual use case of the
circuit and its environment. However, as a pessimistic limit one can use the maximum
data (token) rate.

For the Desynchronizer metastability can only occur if the pipeline starts to fill up
because tokens cannot be removed (i.e., read) fast enough on the asynchronous side.
Hence, the data rate for the MTBU estimation is basically the rate with which this
happens.

For the Resynchronizer, we have a similar situation. As long as the pipeline is kept full,
metastability is not an issue because the synchronizer flip-flops always sample stable
input signals. Thus, metastability can only occur during the time the pipeline fills up
and empties.

So normally one will come along with a very low n (like, e.g., 3), which keeps the latency
of the circuit within bounds and also yields a low minimum requirement for the FIFO
depth.

3.7 Conclusion
In this chapter we have presented a synchronous to asynchronous and an asynchronous
to synchronous interface that are both based on the use of an MPL, intended for
implementing A/S FIFOs. More specifically, we employ the MPL to convey tokens
across the timing domain boundary. These tokens provide both, sender and receiver
with all necessary information for their local memory pointer management and flow-
control. Reducing the information exchange to tokens in an MPL allows for a systematic
and efficient metastability handling at the boundary. Although still synchronizers are
mandatory to cope with metastability, which is in general inevitable at timing domain
boundaries, we have confined the critical components to a single synchronizer path per
direction. In addition our proposed concept pipelines data transfers and thus handles the
synchronizer latency in the transmission of data streams without negatively impacting
the throughput, resulting in a sustained data rate of one data item per clock cycle.

Moreover, the proposed circuits also allow for a configuration as a bisynchronous FIFO,
which we have used to experimentally verify our approach and confirm its robust opera-
tion, high throughput and complete flexibility with respect to the frequencies on both
synchronous sides (as long as the lower limit for Tc is satisfied).
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Porting the proposed designs to some application-specific integrated circuit (ASIC)
technology should be fairly straightforward. Such design flows and target technologies
allow for more flexibility regarding routing delays and timing constraints compared to
what is possible with an FPGA-based prototype. However, this, of course, assumes
that the target technology in question features C gates, which might not be the case.
Hence, one potential improvement to our design would be an implementation based on
other pipeline styles that can be realized with standard CMOS library components (i.e.,
without C gates).

Another concern for future developments is related to the performance of non-blocked
data streams.
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CHAPTER 4
Efficient Delay-Insensitive

Communication

As already explained in Chapter 2, compared to synchronous approaches, asynchronous
DI communication links have desirable properties with respect to their robustness against
timing variations and delay assumptions required to implement them. This makes
them especially interesting as a form of system-level intra-chip or inter-chip connection,
particularly in the context of GALS systems [Cha84]. Hence, in this chapter we seek to
explore the design space of how such links can be implemented and provide new insights
into key components and communication protocols involved.

In many contemporary applications, energy-efficiency of semi-conductor devices is a
major concern. It is well understood, that communication links between function blocks
(within an SoC, or on a printed circuit board (PCB)) are a significant contributor to
the overall power consumption of a system, due to the relatively high capacitances
involved. In this context, synchronous communication has some disadvantages due to
the high transition rate of the clock line. Moreover, delay mismatch (skew) among
the different wires of the communication link is problematic. This also holds true for
those asynchronous approaches that employ some explicit request signals such as the
BD approach. With ever-increasing PVT variations these issues steadily gather more
relevance. DI communication elegantly overcomes these problems by employing a special
data encoding (and protocol) that enable the receiver of a transmission to recognize when
a code word is complete (i.e., all wires made their final transitions) without the need for
an accompanying clock or request signal, and even in the presence of arbitrary skew on
the transmission link. Such links have been successfully employed in many applications,
like Spinnaker [NFG+13], [SFGP09], Chain [BF02] or [MG20].

A fundamental challenge in the design of DI interconnect is to find the right balance
between efficiency of the DI code and protocol on the one hand, and the implementation

55



4. Efficient Delay-Insensitive Communication

complexity on the other hand (e.g., the area overhead for encoders, decoders and CDs).
In this context efficiency refers to the number of data bits a code word of a given length
can hold as well as to the number of bus transitions it requires for transmission. Generally,
complex codes and protocols have a better efficiency but are more costly to implement.

To facilitate a fair and meaningful comparison between DI codes and protocols, this
chapter considers many design aspects of (pipelined) DI links, such as the one shown in
Figure 4.1. This includes the implementation of the transmitter, the receiver and the
intermediate pipeline stages as well as their sub-components (encoders, decoders, CDs).

Intermediate
Pipeline Stages

Transmitter Receiver

Encoder
Decoder

CD
CD

DI data

ack

BD Input
Channel

BD Output
Channel

Figure 4.1: Delay-insensitive link overview

One drawback of DI codes is that they are generally not well-suited for data processing.
As already explained in Section 2.6, even circuits operating on the arguably most simple
DI encoding, i.e., the dual-rail code, entail a significant hardware overhead when compared
to an equivalent circuit just processing binary data. Hence, for our analysis we assume
that the transmitter and receiver operate on binary coded data, in particular we consider
asynchronous BD channels. Consequently, we will also discuss the circuits that convert
binary coded data (i.e., a data word) to a DI code word, which we refer to as encoders,
as well as circuits that perform the reverse operation, called decoders. Thus, this chapter
can be viewed as a continuation to the previous one, where the conversion between
synchronous and BD interfaces was investigated.

The chapter starts off by clearly defining and comparing the classes of constant-weight
(i.e., m-of-n) and Berger codes in Section 4.1. Furthermore, some of their basic properties
are explored and important notation is introduced, which will be used throughout the
chapter. In general, Berger codes excel because of their simple encoding and the complete
absence of a decoder, while, unfortunately, their CDs tend to become complex and difficult
to realize in a QDI way (i.e., without timing assumptions). Constant-weight codes, on
the other hand, often provide higher coding efficiency and facilitate completion detection
with significantly lower efforts, but incur a higher penalty for encoding and decoding. The
reason for the high overhead is that constant-weight codes are not systematic, i.e., the
mapping between data words and code words is not predetermined by the code itself (in
contrast to Berger codes). However, this mapping strongly impacts the implementation
overhead, and even optimizing the implementation for a given mapping is non-trivial as
was already tackled in [BTEF03].
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Consequently, the first contribution of this chapter is a code word mapping scheme
for constant-weight codes, which divides the code words into a systematic and a non-
systematic part (see Section 4.2). We refer to this approach as Partially-Systematic
Constant-Weight Codes (PSCWCs). Our presumption is, that the systematic part will
simplify the encoding and decoding process. We show that this approach indeed yields
very regular mappings with reoccurring sub-codes for the non-systematic part, which
allows for efficient encoder and decoder circuits. Although the method is not fully
generalized, we carefully explore the design space relevant for DI communication links.

The second contribution of this chapter, presented in Section 4.3, is a new class of DI
protocols, which bridge the two “classic” asynchronous approaches – that is the RZ and
the NRZ protocol. With these hybrid protocols, we are able to show that there is a
whole spectrum of DI communication schemes, each with different use cases, complexity,
advantages and disadvantages.

Furthermore, we provide a novel CD design approach for the m-of-n and Berger code
classes in Section 4.4 that works with the RZ as well as the new hybrid protocols. The
approach is mainly based on prior work by Piestrak [Pie98] as well as [HSS15, CJN10] and
represents to the most general and optimized approach for CDs yet. In our construction
approach, we carefully avoid gate orphans, which compromise the underlying QDI timing
model for CDs and which are not fully avoided by current state-of-the-art solutions.

Section 4.5 provides example link implementations for all protocols discussed in Sec-
tion 4.3. Those circuits will be used by an extensive case study in Section 4.6 where
we systematically analyze all presented techniques. We not only investigate the area
overhead for encoders, decoders and CDs for all the discussed codes and protocols but
also consider the overall implementation costs of complete DI communication links for
the model-architectures we use in this context. Regarding the protocols, we examine the
classic RZ, the presented hybrid protocols (if applicable to a particular code) as well
as the NRZ transition signaling protocol. We only consider transition signaling as it
works with the same DI codes as the RZ and hybrid protocols. In addition, we perform a
systematic analysis of the performance implications of the different approaches. This
analysis provides useful insights into the advantages and disadvantages of the individual
approaches for different use cases.

Finally, Section 4.7 concludes the chapter.

4.1 Delay-Insensitive Codes
Since there are no assumptions on signal delays in DI communication schemes, transitions
of the individual rails of a DI bus may arrive at the receiver in any order. Let F2n = {0, 1}n

denote the set of all possible n bit vectors. Further, if v ∈ F2n denotes a bit vector then
v0 to vn−1 refer to the individual bits. We define a code C with code word length n as a
subset of F2n . Verhoeff shows that a (4-phase) code is DI iff it is unordered [Ver88]. This
means that there must not exist a code word that is contained in another code word,
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i.e., the positions of the ones in a code word may not be a subset of the positions of the
ones in another code word. Consider the following example, let c1 = 001 and c2 = 011
be two elements of some set C ⊆ F23 . Since c1 is contained in c2, i.e., c1 � c2, C cannot
be a DI code. Hence, formally we can state that a code C is delay-insensitive iff for all
c1, c2 ∈ C (c1 �= c2) we have that c1 ✚✚� c2. In this chapter we focus on constant-weight
(m-of-n) and Berger codes which both meet this requirement. In the following we will
introduce some notations and definitions that will be used throughout the next sections.

A constant-weight or balanced code Ccw
m,n ⊂ F2n is defined by Equation (4.1):

Ccw
m,n = {c ∈ F2n | h(c) = m}, (4.1)

where h(c) denotes the Hamming weight of the bit vector c. The size (i.e., the number of
symbols or code words) of an m-of-n code is given by the binomial coefficient (

���Ccw
m,n

��� =
n
m

�
). However, when transmitting binary data, only a subset of these code words is

actually used, usually the nearest power of two. With the exception of the dual-rail
code, m-of-n codes are non-systematic. This means that there does not exist a subset of
bit positions in the code that contains the unencoded data (i.e., the data word) for all
code words. Hence, one is completely free to choose a suitable mapping for a particular
purpose. In Section 4.2 we will present one possible mapping strategy.

The Berger code [Ber61], on the other hand, is a systematic code. Hence, every code
word can be split into a b-bit data part d and a k-bit check (parity) part p, where p
carries the binary representation of the number of zeros in the data part. As shown in
the formal definition of the Berger code in Equation (4.2), the size of k depends on the
size of the data part. Here the colon symbol denotes concatenation, while �p� returns
the numerical value of the binary vector p. The size of the Berger code CB

b is naturally
given by 2b.

CB
b =

�
d∈F2b

{d : p | p ∈ F2k , �p� + h(d) = b}, where k = log2(b + 1)� (4.2)

A Berger code encoder simply uses adders to calculate the check part p from the data part
d and is, hence, quite straightforward to implement. Since the Berger code is systematic,
there is no hardware overhead for the decoding process.

There are a few aspects that define the quality of a DI code. Of course the overhead for
encoding and decoding as well as completion detection have to be considered. Besides
that it is also important how many bits of information can be encoded by a given code
and how many bus transitions it takes to transmit it. The coding efficiency R specifies
how many bits can be encoded per rail and always yields a value 0 < R < 1 (larger values
are better). The power metric P on the other hand measures how many transitions are
required to transmit a single bit (smaller values are better).

Equations (4.3) and (4.4) show the coding efficiency and power metric for constant-weight
codes using the RZ protocol. The binomial coefficient in these equations calculates the
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4.2. Partially Systematic Constant-Weight Codes

number of code words in an m-of-n code. Since this number is generally not a power of
two we need the floor operation.

Rcw|RZ
m,n =

�log2

n

m

��
n

(4.3)

P cw|RZ
m,n = 2m

�log2

n

m

�� (4.4)

The coding efficiency of the RZ Berger code protocol is quite straightforward to calculate
(Equation (4.5)). The variable k again denotes the number of parity bits as defined in
Equation (4.2). However, since the code words of the Berger code have different Hamming
weights the determination of power metric is a little bit more involved. For that we
assume that every code word is equally likely to occur. Equation (4.6) basically goes
through all possible values p for the parity part p, calculates the Hamming weight of the
whole code word ((h(�p�) + b − p) depending on p and multiplies it with the number of
code words (


 b
b−p

�
) that have this Hamming weight. Note that the operator �p� returns a

binary vector with the numerical value of p such that we can apply the Hamming weight
function1. The sum of these products is then divided by the total number of symbols
(2b) and the number of bits (b). Notice that Berger codes are most efficient (in terms of
both R and P ) if b = 2x − 1, because then all available symbols in the parity part p are
actually used in some code word.

R
B|RZ
b = b

b + k
(4.5)

P
B|RZ
b = 2 ∗

�
0≤p≤b (h(�p�) + b − p) ∗ 
 b

b−p

�
2b ∗ b

(4.6)

Notice that since NRZ protocols lack the null phase, the power metric is improved by a
factor of two (i.e., P RZ = 2P NRZ), the coding efficiency, however, stays the same.

4.2 Partially Systematic Constant-Weight Codes

This section covers the PSCWC, a semi-generic mapping scheme we use to find efficient
encoder and decoder circuits for the constant-weight codes used in the case study in
Section 4.5. We first give a formal definition of the approach and then show how it can
be used to create efficient encoder and decoder circuits.

1Formally we can define the operator as �p� = p|p ∈ F2�log2(p+1)� ∧ �p� = p
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4. Efficient Delay-Insensitive Communication

4.2.1 Formal Definition
Given a j-of-k constant-weight code, where j < k

2 , Equation (4.7) defines the partially
systematic (j+s)-of-(k+s) code.

Cps
j,k,s =

�
d∈F2s

{d : c | c ∈ Ch(d)},

where s ≤ k − 2j, e ≤ �log2

k

j

��, Ch ⊆ Ccw
j+s-h,k s.t. |Ch| = 2e

(4.7)

This definition ensures that every code word is composed of a systematic part d containing
s bits of the data word and a non-systematic part c containing the remaining e bits in
some encoded form. Since the Hamming weight of the whole code word must be constant,
the Hamming weight c is dictated by the Hamming weight of d, with its minimum
being j (if h(d) = s). This minimum determines the number of bits e encodeable in the
non-systematic part c. Also note the restriction on the size of s imposed by Equation (4.7).
If h(d) = 0, then the symbols for c are supplied by the (j+s)-of-k code C0. Under the
assumption of the number of systematic bits s being maximal (i.e., s = k − 2j, as also
constrained by Equation (4.7)), we have j + s = k − j and C0 ⊆ Ccw

k-j,k. Because of a
basic property of the binomial coefficient, stated in Equation (4.8), it is guaranteed that
there are enough symbols in this code to encode the required e bits. This holds for all
values of h(d) in between 0 and s.
n

m

� ≤ 
n
x

�
, where m ≤ x ≤ n − m (4.8)

The resulting code Cps
j,k,s is a subset of Ccw

j+s,k+s. However, with its size of 2s+e it may
encode a smaller number of bits.

To better illustrate this concept, consider the example of the Cps
1,4,1 code. Here a single

systematic bit (i.e., s = 1) is appended to the 1-of-4 code (i.e., j = 1, k = 4, e = 2)
resulting in the partially systematic 2-of-5 code. Notice that since k −2j = 2, s fulfills the
constraint imposed on it by Equation (4.7). Equation (4.9) shows the resulting definitions
for this concrete example.

Cps
1,4,1 = {0 : c | c ∈ C0} ∪ {1 : c | c ∈ C1} ⊆ Ccw

2,5

C0 = {0101, 0110, 1001, 1010} ⊆ Ccw
2,4

C1 = {1000, 0100, 0010, 0001} ⊆ Ccw
1,4

(4.9)

Notice how the Hamming weight of the systematic part (i.e., the single systematic bit)
determines the code for the non-systematic part. The combined Hamming weight of the
systematic and non-systematic part is always two, though. So we obtain a subset of the
2-of-5 code comprising only eight symbols (while


5
2
�

= 10). Hence, we can still encode
three bits of data but encoding and decoding may potentially be simplified because of
the systematically mapped bit.

This illustrates the basic concept: Use the freedom to (a) select a suitable subset of
the full code set and (b) choose a suitable mapping from data words to code words, to
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4.2. Partially Systematic Constant-Weight Codes

make at least part of the bits within the code word systematic, thus simplifying the
encoder/decoder implementation. Concerning (b), Equation (4.9) illustrates how fixing
the first bit to be systematic restricts the choice in the encoding of the remaining bits.
Still, the mapping of elements within, e.g., C0 to data words starting with 0 can be freely
permuted, which leaves further room for optimization in the implementation (which we
perform in a heuristic fashion later in Section 4.2.2). Also, there would have been other
choices for the four elements within C0.

However, since we are interested in maximizing the coding efficiency, we want to take a
slightly different construction approach. By starting out with an m-of-2m code, which
offers the best coding efficiency with regard to the length of its code words (2m), we
try to map as many bits systematically as possible, without compromising on the total
number of bits that can be encoded. This approach is outlined by Equation (4.10).
Again s denotes the number of systematic bits in each code word and e the number of
bits encoded in the non-systematic part. However, now s is restricted to be the largest
number x, such that the code used for the non-systematic part is still able to encode
�log2


2m
m

�� − x bits. Since the capacity (in number of encoded bits) of the non-systematic
part is bounded by the capacity of the m-of-(2m − x) code, it is given by �log2


2m−x
m

��.

Cps
m =

�
d∈F2s

{d : c | c ∈ Ch(d)},

where s = max(S),
S = {x | x ∈ N, x ≤ m, �log2


2m
m

�� − x = �log2

2m−x

m

��},

e = �log2

2m

m

�� − s, Ch ⊆ Ccw
m+s-h,2m-s s.t. |Ch| = 2e

(4.10)

To demonstrate this construction with the help of an example, let’s take a more in-depth
look at the partially systematic 3-of-6 code Cps

3 , which is able to encode four bits of data.
First, s needs to be calculated. It is not too difficult to verify that the set S only contains
the values {0, 1, 2}, hence s = 2 and e = 2. With this information, the sets C0, ..., C2 can
be defined, which are in turn used to finally specify Cps

3

Cps
3 = {00 : c | c ∈ C0} ∪ {01 : c | c ∈ C1}∪

{10 : c | c ∈ C1} ∪ {11 : c | c ∈ C2} ⊆ Ccw
3,6

C0 = {1110, 1101, 1011, 0111} ⊆ Ccw
3,4

C1 = {0101, 0110, 1001, 1010} ⊆ Ccw
2,4

C2 = {0001, 0010, 0100, 1000} ⊆ Ccw
1,4

(4.11)

Since there are three unique values the Hamming weight of the two systematic bits can
take, three different codes are required to supply the symbols for the non-systematic part,
such that the Hamming weight of the combined code words is always three.

An important question is how many systematic bits can be encoded in a given m-of-2m
code. It is quite straightforward to verify by enumeration that for relevant values of m
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4. Efficient Delay-Insensitive Communication

Table 4.1: Examples for Partially Systematic Codes

Code # systematic bits # non-systematic bits
3-of-6 2 2
4-of-8 1 5
5-of-10 3 4
6-of-12 3 6

(m ≤ 20), s is always smaller than 4. Table 4.1 shows the partitionings of codes with
m ≤ 6. We will use these codes for the comparison in Section 4.6.

At this point, we want to emphasize the difference to Knuth’s coding scheme [Knu86]
and related approaches like [IW10]. These schemes use a strict separation between data
and parity bits. To encode a data word in Knuth’s approach, the first g data bits are
inverted, such that the whole data part always has the same Hamming weight. This
number g is then encoded with some constant-weight code to get the parity bits of the
code word. For decoding, first the number g has to be extracted from the parity bits and
then the data has to be inverted accordingly. This approach is very generic and works
for arbitrary data word lengths. It can easily be applied to data words several tens or
hundreds of bits long. However, as a result of this strict separation the code does not use
the full capacity of the underlying constant-weight codes.

In our proposed approach, there is no clear distinction between data and parity bits.
Moreover, it is mainly targeted for short length code words and provides optimal coding
efficiency for these cases.

4.2.2 Encoding and Decoding
When compared to the quite simple encoders and decoders for the Berger code, the
circuits for the partially-systematic (PS) m-of-n codes are more involved. Unfortunately
we are not aware of a complete procedure that directly yields efficient circuits. Figure 4.2
shows the general structure of an encoder for a PSCWC Cps

j,k,s. We use di to denote the
individual bits of the data words (d0 is the least significant bit (LSB) and ci to denote
the rails of the code words. The systematic part of the code words (cs+k-1...ck) is, hence,
always given by the vector (de+s-1...de). Since the encoding of the non-systematic part
changes based on the Hamming weight of the systematic part, an x-of-k multi-encoder is
employed, with x being controlled by a sorting-network- or adder-based structure that
computes h(de+s-1...de). This encoder must be able to produce code words of all x-of-k
codes (j ≤ x ≤ j + s) required for the non-systematic part.

Figure 4.3a shows an example implementation of an encoder for the PS 3-of-6 code (as
defined by Equation (4.11)). Its control logic consists of an AND and an XOR gate,
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code word c

e bitss bits
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j ≤ x ≤ j + s

Control logic
s

k

de+s-1, ..., de

de-1, ..., d0

ck+s-1, ..., ck

ck-1, ..., c0

Figure 4.2: PSCWC encoder for Cps
j,k,s

which essentially form a half adder (HA). This HA is fed by the systematic bits d3d2 and
generates two control signals. These control signals can take one of three possible values
(00, 01 and 10) and select which code must be used by the {1, 2, 3}-of-4 multi-encoder.

c3
...
c0

c5
c4

d0

d1

d2

d3
Control logic

{1,2,3}-of-4 Multi-Encoder
(a) Encoder

c5

c4

c3

c2

c1

c0
d0

d1

d3

d2

{1,2,3}-of-4 Multi-Decoder
(b) Decoder

Figure 4.3: Circuits for the PS 3-of-6 code

The decoder circuits for the PSCWCs are built in a similar way. Again the systematic part
can be used to generate control signals for an appropriate multi-decoder. However, often
this is not really necessary, as the non-systematic part obviously carries the information
about the respective value of x. Therefore, in contrast to the multi-encoder, the multi-
decoder has all required information to generate the binary output. So in principle, no
additional control signals generated from the systematic part are necessary, albeit such a
design approach can yield more efficient circuits. Figure 4.3b shows the decoder circuit
for the PS 3-of-6 code. Here it can be seen that no additional control logic is required that
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4. Efficient Delay-Insensitive Communication

depends on the Hamming weight of the systematic part. The {1,2,3}-of-4 multi-decoder
is by itself able to decode all 1-of-4, 2-of-4 (i.e., dual-rail) and 3-of-4 code words.

Obviously, the multi-encoders and decoders have a large impact on the total hardware
overhead of the encoder and decoder circuits. Thus, it is very important to find mappings
of data words to the respective code words of the non-systematic part, that allow for
an efficient implementation of encoder and decoder. To give a more general approach
for dealing with this problem, we draw some ideas from the incomplete m-of-n codes
proposed in [BTEF03]. Here larger DI codes are assembled by a concatenation of simpler
sub-codes according to certain construction rules. A simple example for this approach is
the incomplete 2-of-7 code, where the code words fall in one of two categories: Either
the first three bits are zero and concatenated with two dual-rail bits, or the first three
bits constitute a 1-of-3 code word followed by a 1-of-4 code word in the next four bits.
The term incomplete refers to the fact that some code words, like 1100000, are not
part of the code, although they would be valid 2-of-7 code words. However, they are
excluded because they don’t follow the construction rule of the code. The incomplete
2-of-7 encoding is also shown in the first row of Table 4.4. The notation used in this
table as well as Tables 4.2, 4.3 and 4.5 is as follows: The functions m-of-n(v) express
the encoding of the binary vector v to an m-of-n code word. Consequently, DR(v) is
used to denote the dual-rail encoding. Note that, since there are only three symbols in
the 1-of-3 and 2-of-3 codes, one vector cannot be encoded by these functions. In our
implementation this is the data word 00.

The usage of incomplete codes simplifies the implementation of the encoder (and decoder)
circuits, because it allows to distribute the task of encoding a (complex) code word to
simpler sub-encoders. Hence, for the example of the incomplete 2-of-7 code, a {0, 1}-of-3
and a {1, 2}-of-4 multi-encoder are required. The price is a reduction in the number
of available code words, but as long as all data words can still be encoded, this is
unproblematic.

Tables 4.2 to 4.5 show the mappings performed by the multi-encoders for the PS 3-of-6,
4-of-8, 5-of-10 and 6-of-12 codes, respectively. Note that every line in these tables defines
an incomplete m-of-n code. The condition column specifies when a certain code word
structure has to be used. The 3-of-7 and 4-of-7 as well as the 2-of-7 and 5-of-7 codes
used by 6-of-12 code are exactly the same ones as those listed in the tables for the PS
4-of-8 and 5-of-10 codes.

It can be seen that the construction rules for all x-of-j sub-codes of a particular PS code
are very similar. For a specific section of a code word there is only a certain number of
possible encodings (i.e., sub-codes). For example, the section c3...c0 of the PS 5-of-10
code alwyas either contains a 1-of-4, a dual-rail or a 3-of-4 code word. This property
holds across all codes supported by a particular multi-encoder, which allows for efficient
hardware reuse when designing these circuits.
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4.2. Partially Systematic Constant-Weight Codes

Table 4.2: {1,2,3}-of-4 multi-encoder for the PS 3-of-6 code Cps
3

h(c5c4) Ch Condition c1...c0

2 1-of-4 - 1-of-4(d1d0)
1 2-of-4 - DR(d1d0)
0 3-of-4 - 3-of-4(d1d0)

Table 4.3: {3,4}-of-7 multi-encoder for PS 4-of-8 code Cps
4

h(c7) Ch Condition c6c5c4 c3...c0

1 3-of-7
d4 = 0 d3d2 = 00 000 3-of-4(d1d0)

d3d2 �= 00 2-of-3(d3d2) 1-of-4(d1d0)

d4 = 1 d3d2 = 00 1-of-3(d1d1) d0d0d0d0
d3d2 �= 00 1-of-3(d3d2) DR(d1d0)

0 4-of-7
d4 = 0 d3d2 = 00 111 1-of-4(d1d0)

d3d2 �= 00 1-of-3(d3d2) 3-of-4(d1d0)

d4 = 1 d3d2 = 00 2-of-3(d1d1) d0d0d0d0
d3d2 �= 00 2-of-3(d3d2) DR(d1d0)

Table 4.4: {2,3,4,5}-of-7 multi-encoder for the PS 5-of-10 code Cps
5

h(c9c8c7) Ch Condition c6c5c4 c3...c0

3 2-of-7 d3d2 = 00 000 DR(d1d0)
d3d2 �= 00 1of3(d3d2) 1-of-4(d1d0)

2 3-of-7 d3d2 = 00 000 3-of-4(d1d0)
d3d2 �= 00 1-of-3(d3d2) DR(d1d0)

1 4-of-7 d3d2 = 00 111 1-of-4(d1d0)
d3d2 �= 00 2-of-3(d3d2) DR(d1d0)

0 5-of-7 d3d2 = 00 111 DR(d1d0)
d3d2 �= 00 2-of-3(d3d2) 3-of-4(d1d0)

Table 4.5: {3,4,5,6}-of-9 multi-encoder for the PS 6-of-12 code Cps
6

h(c11c10c9) Ch Condition c8c7 c6...c0

3 3-of-9 d5 = 0 00 3-of-7(d4...d0)
d5 = 1 DR(d4) 2-of-7(d3...d0)

2 4-of-9 - DR(d5) 3-of-7(d4...d0)
1 5-of-9 - DR(d5) 4-of-7(d4...d0)

0 6-of-9 d5 = 0 11 4-of-7(d4...d0)
d5 = 1 DR(d4) 5-of-7(d3...d0)
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4.3 Hybrid Protocols
This section proposes four novel 2-phase/4-phase hybrid DI communication protocols
that both rely on allowing more than a single spacer. All these protocols use one default
spacer (the all-zero pattern) and a set of other special spacers (for one protocol this set
only contains one code word). Hence, one transmission cycle of the new hybrid protocols
consists of the data phase and one of two possible spacer phases (default or special).

Recall that in Section 2.1.2 we introduced the notion of the spacer for the RZ protocol
and stated that it is usually encoded by the all-zero pattern on every rail of the DI bus.
We can generalize that to the statement that the spacer must simply be a single distinct
bit pattern. For each bit of the spacer pattern that is zero (one) we can now define that
the corresponding rail of the DI bus must only perform

(i) rising (falling) transitions when the bus switches from the spacer to the data phase
and

(ii) falling (rising) transitions when the bus switches from the data to the spacer phase.

The code words of the DI code must then be unordered with respect to this chosen spacer
pattern s. This means that the set of bit vectors that is obtained by taking the bit-wise
XOR of s and every bit pattern that should constitute a valid DI code word, must be
unordered. If we again look at the case of the RZ protocol with the all-zero spacer, only
rising (falling) transitions are allowed when switching from the data (spacer) phase to the
spacer (data) phase. Notice that since there are no spacers in NRZ protocols every rail is
always allowed to make a transition when switching from one data phase to the next.

With the hybrid protocols we can relax the two constraints for the switching behavior
of RZ protocols formulated above to a certain degree, without allowing the “complete”
freedom of the NRZ protocol. We do this by allowing more than a single spacer, and
applying a new set of rules depending on the current state the protocol is in. When the
protocol is in the default spacer phase again only rising transitions can occur. However,
in the data phase one of two things can happen. Either all rails return to zero again
(default spacer) or additional ones appear at the DI bus until a special spacer is reached.
In the special spacer phase again only falling transitions back to the next data phase
(i.e., next valid code word) are allowed.

Although it would again be possible to use an arbitrary bit pattern for the default
spacer of the hybrid protocols, we don’t consider this in our explanations for the sake of
simplicity. Note that the ack signal still makes two transitions for each complete bus
transaction (i.e., the transmission of one code word and one spacer).

4.3.1 Data Spacer Protocol
The Data Spacer (DS) protocol uses the spacer to transmit one additional bit of informa-
tion in the spacer phase and works with m-of-n as well as Berger codes. After each data
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phase, the transmitter checks this bit bs and decides whether to go to the all-zero or the
all-one spacer (see Figure 4.4). This is possible because every code word of a DI code can
be reached from either of these two spacers without any potential for misinterpretation
(unorderedness property). Note that, when applied to a single dual-rail bit, a special
case of this approach is the LEDR protocol [MAMN08]. So in a sense, the DS protocol
represents the smallest step from a 4-phase protocol with its single spacer (that only
carries control information but no data) to a 2-phase protocol (in which all protocol
phases carry data, and the control information is embedded in the set of code words used
to encode these data). While in a conventional level-encoded 2-phase DI code like LEDR
the two code sets have equal size, the DS protocol is a very unbalanced 2-phase protocol
– which is likely to yield different properties that we are interested to explore.

if bs = 0 if bs = 1

all-one
spacercode wordall-zero

spacer

Figure 4.4: DS protocol state diagram

Through the addition of the single extra bit transmitted by the spacer, this approach
obviously has improved coding efficiency with respect to a single-spacer (i.e., the RZ)
protocol (Equation (4.12)).

Rcw|DS
m,n =

�log2

n

m

�� + 1
n

, RB|DS
m,n = b + 1

b + log2(b + 1)� (4.12)

To calculate the power metric we have to consider four different cases. A transmission
starts out in one of the two spacers, transitions to the code word and finally transitions
either to the all-zero or all-one spacer. We denote the number of DI bus transitions
involved in each of those cases with tzz, tzo, too and toz. For m-of-n codes these values
can easily be calculated:

tzz = 2m, tzo = n, too = 2(n − m), toz = n (4.13)

If we assume uniformly distributed data for bs the average number of transitions for one
transmission is given by the mean of those four values, which immediately yields the
power metric:

P cw|DS
m,n = n

�log2

n

m

�� + 1 (4.14)

Furthermore, Equation (4.14) shows that for some cases (e.g., for the class of m-of-2m
codes) the DS Protocol also improves the power metric.

The same approach is used to derive the power metric for Berger codes. The values for
tzo and toz are straightforward to calculate because these cases involve the switching of
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all b + k rails. The other two values depend on the actual code word structure, i.e., the
value of p:

tzz
p = 2(h(p) + b − �p�), too

p = 2(k − h(p) + �p�) (4.15)

This could potentially demand for a case distinction based on the different possible values
of p. However, when calculating the mean of the four cases it turns out that all terms
containing p cancel out and one is left with b + k. Hence, the final power metric for
Berger codes using the DS protocol is given by:

P
B|DS
b = b + k

b + 1 (4.16)

Recall that Berger codes are most efficient (in terms of both R and P ) if b = 2x − 1
(i.e., 3, 7, 15, 31 etc.) data bits. Thus, one additional bit comes in handy to “fill” up the
transmitted data to some multiple of a byte.

4.3.2 Short Distance Spacer Protocol (m-of-n Codes)
We observe that a 4-phase m-of-n code requires m transitions to go from a code word
back to the spacer, and another m to transmit the next code word. The basic idea
behind the Short Distance Spacer (SDS) protocol is to dynamically select a suitable
spacer between two m-of-n code words cn and cn+1 based on their Hamming distance
D(cn, cn+1) in such a way that only d transitions are required to get from cn to that
spacer, and another d to get from there to cn+1, where d < m. Note that, unlike with
the DS protocol, here the spacer does not carry any extra information (as it cannot be
freely chosen), so the SDS protocol is still considered 4-phase.

Figure 4.5 shows a state graph visualizing this principle. Besides the usual all-zero
(i.e., 0-of-n) spacer, the protocol also uses another type of spacer. However, this spacer,
which we will refer to as short-distance spacer, is not a single distinct bit pattern, but
rather one dynamically chosen from a set of (m + d)-of-n code words (i.e., the code
Ccw

m+d,n). Starting in the left-most state, the code word cn is transmitted by applying
m transitions. After acknowledgment the transmitter checks the next code word cn+1
that will be sent, to see whether it could be reached via an (m + d)-of-n short-distance
spacer. If this is the case the number of transitions to reach cn+1 can be reduced to 2d.
Otherwise the system falls back to the regular all-zero spacer, which ultimately results in
2m transitions to reach the next code word.

otherwise if D(cn, cn+1) ≤ 2d

0-of-n
spacer

m-of-n
code word

(m + d)-of-n
short-distance spacer

Figure 4.5: SDS protocol state diagram
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Consider the following example, shown in Figure 4.6. Here a DI link using the 3-of-6 code
transmits the two code words cn =000111 and cn+1 = 001110 using the SDS protocol
with d = 1. Using the normal (single-spacer) RZ protocol this transmission would require
nine transitions. However, the SDS protocol is able to leverage the short-distance spacer
001111 to separate the two code words and hence only needs five transitions.

DI data

ack

Spacer cn

Short Distance
Spacer cn+1

000000 000111 001111 001110

Figure 4.6: SDS protocol example timing diagram

The important question, arising from this concept, is that of the optimal value for d
(to achieve the best power metric). Observe that the Hamming distance between two
code words in a constant-weight code is always a multiple of two. To calculate the power
metric we assume that every code word is equally likely to be transmitted. The number
of neighboring code words to any m-of-n code word with a maximum Hamming distance
of 2d is given by Equation (4.17).

Nm,n,d =
d�

x=0

	
m

x

�	
n − m

x

�
(4.17)

This equation has some similarity with Vandermonde’s identity. The intuition behind
the formula is that the first binomial coefficient provides the number of ways x ones can
be selected from the m one-positions in a code word, while the second coefficient yields
the number of possibilities how these x ones can be arranged in the remaining n − m
zero-positions. Knowing this number we can argue that the percentage p of cases in
which the short-distance spacer can be used is given by

pm,n,d = Nm,n,d
n
m

� . (4.18)

Hence, the power metric P cw|SDS of the SDS protocol is (approximately) given by

P
cw|SDS
m,n,d ≈ 2dpm,n,d + 2m(1 − pm,n,d)

�log2

n

m

�� (4.19)

The denominator of Equation (4.19) holds the number encodable bits. Since the binomial
coefficient is generally not a power of two only a subset of the actual code words provided
by the code is actually used. Note that the selection of this subset obviously has an
impact on p, which is disregarded by the equation. A precise way for calculating P cw|SDS

is provided by Equation (4.20), where C is the set of used code words. However, for the
codes we have examined in this work, the approximation of Equation (4.19) was quite
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accurate (within a few percent).

P
cw|SDS
C,k = 1

|C|2
�

c1∈C

�
c2∈C

n(c1, c2),

where n(c1, c2) =
�

2d if D(c1, c2) ≤ 2d

2H(c1) otherwise

(4.20)

The optimal value for d is given exactly by the number for which P SDS is minimal.
Figure 4.7 shows that the improvement for the power metric lies in the range of up
to ∼38% for the class of m-of-2m codes. Note that an NRZ protocol leads to an
improvement of exactly 50% (disregarding the transitions on the ack wire). The bold
entries in the figure are exact values for the PSCWCs, or subcodes thereof (as defined in
Tables 4.2 to 4.5) discussed in the previous section, the rest are estimates obtained with
Equation (4.19). The only exceptions are the 2-of-6 and 2-of-8 codes, which are actually
just concatenations of two 1-of-n codes. A 1-of-2 and a 1-of-4 code in the case of former
code and two 1-of-4 codes for the latter code.

m\n 5 6 7 8 9 10 11 12 13 14
2 34|1 31|1 30|1 22|1 21|1 19|1 17|1 16|1 15|1 14|1
3 33|1 30|2 27|2 26|2 24|2 22|2 21|2 19|2 18|2
4 38|2 31|2 27|2 23|2 21|3 21|3 20|3
5 35|3 33|3 30|3 27|3 25|3
6 35|3 31|3 29|4
7 37|4

Figure 4.7: Power metric improvement for the SDS protocol (improvement of P [%] |
optimal value for d)

It is obvious that this protocol is a little more involved to implement than the RZ, DS
or even NRZ protocol. The crucial component in the transmission link is the spacer
generator, which basically has two tasks. First, it must determine if a short-distance
spacer is applicable to separate the two given code words cn and cn+1 or else the system
has to fall back on the all-zero spacer. If the short-distance spacer can be used it must
then provide an appropriate bit pattern at its output that is element of Ccw

m+d,n. In the
simplest case, i.e., if D(cn, cn+1) = 2d the short-distance spacer is obtained by a bit-wise
OR operation between the two code words. However, if D(cn, cn+1) < 2d, the bit-wise
OR produces a bit pattern with a Hamming weight smaller than m + d. Hence, there
must be some circuitry that allows to set “dummy” zero-positions in this bit pattern in
order to get to the required Hamming weight for a valid short-distance spacer. This part
of the spacer generator needs a considerable amount of resources, because its hardware
overhead is proportional to the maximal number of “dummy” bits, that it must be able
to set in a bit pattern. In the worst case (i.e., if cn = cn+1) exactly d such dummy
positions need to be set.

Hence, one small optimization that can be implemented is not to use the short-distance
spacer if the same code word is transmitted twice. This would essentially add the
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4.3. Hybrid Protocols

condition cn �= cn+1 to the arc between the code word and the short-distance spacer in
the state diagram in Figure 4.5. Assuming uniformly distributed data the exclusion of
this case does not have a huge impact on the overall power metric.

4.3.3 Short Distance Dual Spacer Protocol (Berger Codes)
Since there are multiple different values for the Hamming weight of Berger code words, it
is also possible to leverage the all-one spacer to reduce the number of bus transitions,
instead of transmitting an additional bit of data. Figure 4.8 illustrates this approach,
which we refer to as Short Distance Dual Spacer (SDDS) protocol. Whenever the

otherwise if b + k > h(cn) + h(cn+1)

all-one
spacer

Berger
code word

all-zero
spacer

Figure 4.8: SDDS protocol state diagram

protocol is in the code word (i.e., the middle) state, the Hamming weight of the next
code word (h(cn+1)) is calculated and compared to the one of the code word that has
just been sent (h(cn)). Based on these values it can then be determined whether it is
cheaper (in terms of the number of transitions required) to transition to the next code
word through the all-one or all-zero spacer. Note that k again denotes the number of the
parity bits (i.e., the width of p).

Equation (4.21) shows how the power metric of the SDDS protocol is calculated. The
equation is quite similar to Equation (4.6). However, here we go through every possible
transition with respect to the Hamming weights of the code words involved. The minimum
function selects that value, whose corresponding spacer yields the minimum amount of
transitions.

P
B|SDDS
b =

�
0≤p1≤b

�
0≤p2≤b min



f(p1, p2), 2(b + k) − f(p1, p2)

�
 b
b−p1

�
 b
b−p2

�
2b2 ∗ b

,

where f(p1, p2) = h(�p1�) + h(�p2�) + 2b − p1 − p2

(4.21)

When compared to the RZ protocol, this approach obviously does not affect the coding
efficiency. The advantage of this protocol is that it has increased power efficiency and is
quite simple to implement, because at least some of the values needed for the spacer-
decision (i.e., the Hamming weights of the data parts) already need to be calculated for
the encoding process anyway.

4.3.4 Unbalanced Spacer Protocol (Berger Codes)
The Unbalanced Spacer (UBS) can be viewed as the SDS protocol for Berger codes.
However, where the spacer for the SDS protocol was basically defined by its Hamming
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otherwise if ∃s s.t. (h(ds) + �ps� = b + d)
∧

(cn � s) ∧ (cn+1 � s)

unbalenced spacer s = ds : ps
h(ds) + �ps� = b + d

Berger
code word

all-zero
spacer

Figure 4.9: UBS protocol state diagram

weight, here the spacer definition is a bit more involved. Figure 4.9 shows the state graph
of this protocol.

It can be seen that, like the code words themselves, the spacer s is also divided into a
data part ds and a parity part ps. Recall that all code words of a Berger code have a
certain balance between the Hamming weight of the data part and the numerical value
represented by the parity part (i.e., h(d) + �p� = b, see Equation (4.2)). The spacer s is
now defined as a bit vector for which this balance deviates from the balance of the code
words by exactly the value of d (i.e., h(ds) + �ps� = b + d). Hence, the name unbalanced
spacer protocol. The set of all possible spacers for a Berger code with a given b and d is
denoted by Sb,d.

Let’s now discuss the condition for when the unbalanced spacer can be used. The first
thing a potential transmitter for this protocol has to check is if the balance of the bit
pattern obtained by a bit-wise OR of the code words cn and cn+1 is less than or equal
to b + d (i.e., h(dcn ∨ dcn+1) + �pcn ∨ pcn+1� ≤ b + d). Notice that this is a necessary
condition that must be fulfilled in order to use an unbalanced spacer. The unbalanced
spacer must be a bit vector that contains (in the sense of the unorderedness property)
both of the code words cn and cn+1, because it must be possible to use only rising
transitions to switch from cn to s and then only falling ones to make the switch from s
back to cn+1. Thus, the simplest way to generate such a bit pattern is to use the bit-wise
OR of the code words. However, if the balance of this vector is already greater than
b + d, then there cannot exist a suitable spacer. On the other hand it may be the case
that the balance is strictly smaller than b + d, which means that some “dummy” bits
must be set in order to generate a valid spacer (similar to the spacer generation of the
SDS protocol). This is exactly what the condition in Figure 4.9 expresses.

Notice that there are cases where the balance of the bit-wise OR of the code words is
smaller than b + d, but there still does not exist a suitable spacer. Consider the following
example of a Berger code with b = 4 (i.e., k = 3) and d = 2. The bit-wise OR of the code
words c1 = 1111 : 000 and c2 = 1110 : 001 is c1 ∨ c2 = 1111 : 001 (we use the colon to
emphasize separation of the data and the parity part). The balance of this bit vector is
b + 1. Hence, the necessary condition would be fulfilled. However, to get to a spacer we
still need to increase this balance by one, which is not possible in this case because the
only bits that could be set would increase the balance to b + 3 or b + 5.
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Figure 4.10 shows a comparison between the power metrics of the RZ, DS, SDDS and
UBS protocols. The power metric for the UBS protocol has been calculated using a
numerical method, which is also the reason why we only have values for b ≤ 20. For each
Berger code with a certain bit width b, the power metric was evaluated for increasing
values of d, starting with d = 1. The figure shows the first local minimum of the power
metrics obtained by this process. The corresponding values for are shown in Table 4.6.

Table 4.6: d values used for the power metric evaluation of the UBS protocol

b 3 4 ≤ b ≤ 7 8 ≤ b ≤ 9 10 ≤ b ≤ 15 16 ≤ b ≤ 17 18 ≤ b ≤ 19 20
d 1 2 3 5 6 7 10

Recall that for a single transmission cycle (i.e., a code word and a spacer phase) the DS
protocol needs on average b + k transitions. For the SDDS protocol this is the maximum
number of transitions required. However, the DS protocol transmits one bit more per
transmission cycle. Hence, for values b < 7 it is more efficient. The UBS protocol always
yields the best results of the four protocols. However, it is still not able to reach the
efficiency of the NRZ protocol, and as we will see in Section 4.6 it is also quite expensive
to implement, because of its complex encoder (i.e., spacer generator).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1

1.2

1.4

1.6

Berger code data width [bits]
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SDDS
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Figure 4.10: Power metric comparison for Berger code protocols (RZ, DS, SDDS and
UBS)

4.4 Completion Detection
This section shows how to implement efficient CDs for all codes and protocols discussed
in this work. We start out by addressing this problem for the RZ protocol and show
how these CDs can also be used for NRZ protocols. Then, we generalize the presented
approach to also work with new hybrid protocols.
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4. Efficient Delay-Insensitive Communication

The core challenge when implementing CDs is that the resulting circuits must conform to
the design rules of the QDI timing model as outlined in Section 2.2. Hence, a paramount
concern is that the resulting circuits are free from hazards (i.e., don’t produce glitches)
and don’t contain gate orphans.

A CD for the RZ and the hybrid protocols is a function block that issues a logic one at
its (done) output, if the bit pattern presented to its input corresponds to a valid code
word for some DI code. The CD’s output must go to zero when the input constitutes a
valid spacer. While the input transitions from the spacer to a valid code word the output
must remain at zero. Consequently, it must remain at one during the transition from a
code word to the spacer. This implies a hysteresis behavior.

CDs for the NRZ (transition signaling) protocol have a slightly different behavior. Their
done output must change its state whenever a new set of transitions arrive at their inputs,
whose positions constitute a valid DI code word. This value must be kept until the next
valid input pattern is detected. With the exception of 1-of-n codes where the NRZ CD is
a simple parity function (i.e., cascaded XOR gates)2, NRZ CDs are usually constructed
using 4-phase CDs combined with a 2-phase wrapper circuit [SFGP09, CJN10]. This
principle is illustrated in Figure 4.11. For every input rail this wrapper contains one
(shadow) latch to store the previous bus state and one XOR gate to detect transitions.
Initially the latches are opaque and their output value is equal to the DI bus state
x0, ..., xn−1. Input transitions are, hence, converted to rising transitions at the input of
the internal 4-phase CD. As soon as the done output of the internal CD is asserted the
latches are made transparent again, which resets the inputs of the internal CD, effectively
issuing a spacer. This again leads to a falling transition on the internal done signal
prompting the latches to capture the new bus state. The toggle flip-flop generating the
actual done output changes its state with every falling transition on the internal done
signal. This behavior essentially emulates an RZ protocol for the internal 4-phase CD and
artificially introduces the all-zero spacer. Note, however, that this introduces a timing
constraint, because it must be guaranteed that the latches are opaque before the next set
of transitions arrive at the inputs x0, ..., xn−1.

D Q
en

D Q
en

x0

xn-1

RZ CD

D Q done

Figure 4.11: NRZ CD constructed from RZ CD with 2-phase wrapper circuit

For 4-phase completion detection circuits binary sorting networks (SNs) offer a very
generic and efficient design approach [Pie98, HSS15, CJN10]. The idea behind SNs is

2Cannizzaro et al. also propose a special CD for 2-of-n codes [CJN10]. However, since we don’t
include these particular codes in our analysis, these circuits are not considered or further addressed.
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that a set of numbers can be sorted by applying a sequence of predetermined comparison
and swap operations to them [Knu98]. This is accomplished by a network of so called
comparator cells. A comparator cell, such as the one shown in Figure 4.12a, has two
inputs (a and b) and two outputs, where one output generates the maximum of the inputs
while the other one generates the minimum. Hence, it basically compares the inputs
and swaps them if they are in the wrong order. In the binary case only the (single bit)
numbers zero and one have to be distinguished, which is accomplished by an OR and an
AND gate (Figure 4.12b).

a

b

max(a, b)

min(a, b)
(a) comparator

a

b

max(a, b)

min(a, b)

(b) binary comparator

Figure 4.12: Comparator cells
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(a) Abstract representation

x0

x1
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x3

T 4
2

T 4
3

T 4
1

T 4
4

(b) binary implementation

Figure 4.13: T 4 sorting networks

Figure 4.13a shows how these comparators are connected to construct a larger network.
We use the notation T n to denote a SN with n inputs x0 to xn-1. The outputs are labeled
with T n

1 to T n
n . Figure 4.13a shows the usual abstract representation of a SN, whereas

Figure 4.13b shows the gate-level implementation of a binary SN. The output T n
k of

a binary T n SN is one if at least k inputs are one. The problem of designing optimal
SNs for arbitrary number of inputs is still open. However, for a small number of inputs
optimal solutions are known. Table 4.7 lists the size (i.e., number of comparators S(n))
of the best known SN with minimal depth/delay(D(n)). For more information on this
topic in general, we refer to [Knu98].

Table 4.7: SN implementation costs (minimal depth)

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S(n) 3 5 9 12 16 19 25 31 35 40 47 52 57 61
D(n) 3 3 5 5 6 6 7 7 8 8 9 9 9 9
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4.4.1 Constant-Weight Codes (RZ)
The outputs T n

1 to T n
n of a binary SN can be viewed as the unary encoded Hamming

weight of the binary vector presented at its input. This provides exactly the required
information to perform completion detection for m-of-n codes. However, a bare binary
SN, such as the one shown in Figure 4.13b, is not yet a CD, as it lacks the hysteresis
behavior. To construct an m-of-n CD, Piestrak [Pie98] proposes to remove all “unneeded”
outputs (i.e., all outputs except T n

m) of the SN as well as the gates driving them and
replace all AND gates with C gates. Alternatively a procedure is provided that directly
constructs a CD by using two SNs T 
n/2� and T �n/2� and some appropriate merging logic,
which yields similar results. The C gates are required to establish the required hysteresis
behavior of the CD. Figure 4.14a shows the resulting CD for a 2-of-4 code.

Unfortunately, this circuit contains orphan transitions. To better understand this issue,
consider the case where the input vector 1100 is applied to the circuit. The signals that
make transitions to one in this case are marked in the figure. Notice that the top-most
OR gate switches to one. However, since no part of the circuit observes (i.e., waits for)
this transition before producing an output transition, it constitutes gate orphan. Recall
that, as discussed in Section 2.2, gate orphans must generally be avoided in QDI circuits
because they conflict with the unbounded delay model.

An alternative approach that does not suffer from this problem is to combine the outputs
T n

1 to T n
m of the T n SN with an m-input C gate [HSS15]. This has the secondary

advantage that the AND gates in the SN don’t have to be replaced by C gates. The
hysteresis is solely implemented by the final C gate. The unused outputs T n

m+1 to T n as
well as the gates driving them can still be removed from the circuit.

x0

x1

x2

x3

C

C

C done

T 2

T 2 �orphan

(a) Original CD with orphans
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T 4

C done
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(b) Orphan-free alternative

Figure 4.14: 4-phase 2-of-4 CDs

This is the circuit variant we use as the basis for our proposed solution, that will offer
further optimizations. Notice that the T 4 SN in the 2-of-4 CD basically maps every 2-of-4
input code word to the output pattern 1100. However, it is also guaranteed that every
1-of-4 input code word is mapped to 1000. The latter behavior is actually not really
required. Hence, the specification of what the SN should do in the CD can be relaxed to:
Output the two largest input values at the outputs T 4

1 and T 4
2 in arbitrary order. This is
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exactly what a selection network [Ale69] does. Figure 4.15 shows the general construction
for a selection network with 2m inputs. The set {yi | 0 ≤ i ≤ m − 1} contains the m
largest values of the set {xi | 0 ≤ i ≤ 2m − 1}, while {yi | m ≤ i ≤ 2m − 1} contains the
m smallest ones. Note that from here on we refer to the characteristic output stage of a
selection network as selection network merging logic (SNML). An SNML with 2m inputs
z0 to z2m-1 contains m comparators which conditionally swap the inputs zi and z2m-i-1
for 0 ≤ i < m − 1.

T m

T m

Selection Network Merging Logic

x0
z0

x2m-1
z2m-1

y0

y2m-1

x1
z1

x2m-2
z2m-2

y1

y2m-2

...
xm-1

zm-1

xm
zm

ym-1

ym

Figure 4.15: Selection network

Using this method we can already construct m-of-2m CDs in a quite efficient way, by
connecting an m-input C gate to the outputs y0 to ym-1. Again the unused outputs can
be removed from the circuit (i.e., the AND gate of the SNML driving the outputs ym to
y2m-1). The overhead is similar to the original approach by Piestrak [Pie98], because we
also use two T m SNs for a CD with 2m inputs. However, the construction of the merging
logic now ensures that there are no orphans in the circuit.

In the following we will generalize this approach for arbitrary m-of-n CDs. Given an
m-of-n code, a CD can be constructed by using two SNs T q and T r where q + r = n,
some appropriate merging logic and a single m-input C gate, which will be referred to as
the output C gate. The inputs to the CD (x0 to xn−1) are connected to the inputs of the
SNs, where q inputs are connected to T q and the remaining r are connected to T r (the
particular assignment is not relevant).

The outputs of each of the two SNs can be classified into three categories based on their
role in the final CD. We define T x

y as

(i) unused if y > m

(ii) certain if y ≤ x − (n − m)

(iii) indicating otherwise.

An unused output can never be asserted, because there are not enough ones in the
input code word to ever set this output. This means that it can be removed from the
corresponding SN (again with all gates driving it). Since of x inputs to T x at most n − m
can be zero, the rest (if existent) must be asserted for every (valid) input code word.
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These certain outputs can, consequently, be directly connected to the output C gate.
The indicating outputs can, depending on the input code word, be zero or one. However,
for each of the networks they are guaranteed to be sorted binary vectors, i.e., vectors
encoded with a thermometer code.

For the next steps we define functions to calculate the number of outputs which fall
into each of these categories. Let u(T x), c(T x) and i(T x) denote the number of unused,
certain and indicating outputs of the SN T x (Equations (4.22) to (4.24)).

u(T x) =
�

x − m if x > m

0 otherwise
(4.22)

c(T x) =
�

x − (n − m) if x > (n − m)
0 otherwise

(4.23)

i(T x) = x − c(T x) − u(T x) (4.24)

In the following we will show that the number of indicating outputs is the same for both
SNs (i.e., i(T q) = i(T r)). Moreover, we will show that this number also matches the total
number of transitions expected on all indicating outputs, denoted by I(T q, T r). This
value can be calculated simply by subtracting the number of certain transitions from the
total number of input transitions m.

I(T q, T r) = m − c(T q) − c(T r) (4.25)

If we can show that i(T q) = i(T r) = I(T q, T r) always holds, then it is possible to use the
indicating outputs to build a selection-network-like structure that outputs the I(T q, T r)
largest (binary) values of the total i(T q) + i(T r) indicating outputs with I(T q, T r)
comparator cells. This is achieved by merging the indicating outputs of both SNs using
the SNML structure shown in Figure 4.15. However, since we are only interested in the
I(T q, T r) outputs of the merging network that are actually asserted for valid code words,
only the OR gates of the comparators are needed.

Without loss of generality we assume that q ≥ r. The following cases can be distinguished.

(i) m ≤ r:
c(T r) = 0, u(T r) = r − m ⇒ i(T r) = r − (r − m) = m
c(T q) = 0, u(T q) = q − m ⇒ i(T q) = q − (q − m) = m
⇒ I(T q, T r) = m

(ii) r < m ≤ q (where r < q):
u(T r) = 0, c(T r) = 0 ⇒ i(T r) = r
u(T q) = q − m, c(T q) = m − r ⇒ i(T q) = r
⇒ I(T q, T r) = m − c(T q) = r
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(iii) m > q:
u(T r) = 0, c(T r) = r − (n − m) ⇒ i(T r) = n − m
u(T q) = 0, c(T q) = q − (n − m) ⇒ i(T q) = n − m
⇒ I(T q, T r) = n − m

This gives evidence that in all three possible cases we have i(T q) = i(T r) = I(T q, T r),
which is exactly what we wanted to prove.

Figure 4.16 shows the general overview of the proposed CD, where the SN T q has certain,
indicating and unused outputs. Note that, according to the provided proof, for every
valid code word and every intermediate input pattern (with less than m ones), there can
only be one of the inputs of each OR gate in the SNML set to one. This means that the
proposed circuit is free from gate orphans.
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Figure 4.16: Proposed m-of-n completion detection approach

The proposed construction approach ensures that the resulting circuits can always be
separated into a block composed solely of binary comparator cells, which we refer to as the
Comparator Network (CN) and a block that implements the hysteresis behavior, called
the Hysteresis Generator (HG). The HG takes some outputs of the CN and generates the
done output. The other outputs of the HG can be pruned (i.e., the gates driving them
can be removed). While this observation seems trivial for the case of m-of-n CDs, we
will see this holds true for every other CD presented in this work. Moreover, it enables
us to present CDs in an abstract unified form (see Figure 4.17a for an example). This
also allows for the implementation of a single algorithm that finds a suitable mapping of
the CN to a gate-level circuit, that minimizes the usage of non-inverting gates (i.e., AND
and OR gates), automating the CD generation process.

79



4. Efficient Delay-Insensitive Communication

To optimize for a low transistor count and delay the CN should be implemented pre-
dominantly with NAND and NOR gates. In our analysis we observed that SNs with an
even number of inputs can often be implemented more efficiently, since because of their
symmetrical structure no additional inverters inside the network are required. Hence, if
n
2 is an odd integer, it is beneficial to use an SN partition with q = n

2 + 1 and r = n
2 − 1.

On top of that it is also often the case that the costs for two identical SNs of some
particular uneven size m are higher (in terms of comparators) than the combination two
SNs of sizes m + 1 and m − 1. To illustrate that consider the example of a CD for the
5-of-10 code. Two T 5 SNs require 18 comparator cells. However, a T 4 combined with a
T 6 only need 16. Furthermore, we know the T 6

1 is a certain output, and is hence directly
connected to the HG, which simplifies the SNML.

Figure 4.17b shows another example CD for the 3-of-6 code. Here the partition q = 4
and r = 2 was chosen. Notice that the circuit does not contain any explicit inverters.

The proposed fully generic CD construction approach yields circuits that are guaranteed
to be QDI (i.e., free from gate orphans). At least for the class of m-of-2m codes the
generated CD are also the most area-efficient in literature (to the best of our knowledge).
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Figure 4.17: Proposed 3-of-6 CD (q = 4, r = 2)
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4.4.2 Berger Codes (RZ)
Piestrak also proposed a SN-based CD for Berger codes, which is shown in Figure 4.18.
The basic idea behind this circuit is that a SN is used to determine the Hamming weight
of the data part d of the code word, while the Unate Product Generator (UPG) sets
the signals w1, ..., wb according to the value of the parity bits p. For this purpose the
signal wi is generated by a conjunction over those rails of p, which are set if p carries
the binary representation of i (e.g., w5 is generated by a C gate over the inputs p0 and
p2). Note that for every T b

h(d) asserted by the SN for a certain Hamming weight of d, a
corresponding wb−h(d) will eventually be asserted by the UPG. The C gates are used to
detect these conditions. Their outputs are connected to an output OR gate generating
the done signal. For the two special cases T b

b and wb, there is no corresponding signal
from the respective other block. Hence, these signals are directly connected to the OR
gate.

C
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done

UPG

T b

T b
1
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b-1

T b
b

w1

wb-1
wb

�orphans

Figure 4.18: CD for Berger codes by Piestrak [Pie98]

However, as with the m-of-n CD discussed in the previous section, there is a similar
problem with orphans in this circuit. Notice that, if the data part of a code word has a
certain Hamming weight h, none of the outputs T m

x |x<h of the SN is observed by any
part of the circuit. Thus, transitions occurring on them constitute orphan transitions. A
similar problem arises in the UPG, but we won’t go into further detail on that because
our proposed CD does not use this component anyway. Figure 4.18 shows the extreme
case where the CD processes a code word, whose data part only contains ones.

An overview of our proposed CD architecture is depicted in Figure 4.19. It uses the same
basic idea as discussed in the previous section. The data part d is processed by the T b

SN at the top that fulfills the same purpose as in Piestrak’s design, giving us a unary
encoding of the Hamming weight of d. The bottom block BUC2k-1, referred to as the
binary-to-unary converter (BUC), is connected to the parity bits p and yields a unary
representation of the binary value carried by p. For now assume that the BUC is itself
implemented as a SN with 2k − 1 inputs where each rail pi is connected to the exact
number of inputs of this SN that represents its binary value 2i (i.e., pi is connected to 2i

inputs).
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From the definition of the Berger code we know that the sum of the Hamming weight of d
and the binary value represented by p must be b. Therefore, we again have the situation
that there are two sorted binary vectors (i.e., unary encoded values) of length b where
exactly b bits must be one for valid code words. This means that in order to generate
the final output of the CD an SNML is connected to the b outputs of the SN and the
BUC. The outputs of the resulting CN are then fed into a b-input C gate representing
the HG. We thus need b comparator cells between the signals T b

i and T 2k-1
b+i-1 for 1 ≤ x ≤ b,

from which only the OR gates remain after pruning. Again, it is important to stress that
for every valid code word and every intermediate input pattern only one of the inputs to
each of these OR gate can be one. Every internal transition is observed by this circuit;
thus, it is free from orphans.
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T b
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T b
b

p0
p1

pk-1

T 2k-1
1
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b
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Figure 4.19: Orphan-free CD for Berger codes

From a functional point of view this CD design works. However, the implementation of
the BUC is highly inefficient and needs to be improved. Consider the following inductive
definition of a BUC using a special CN. Converting a single-bit number x0 to unary is
trivial. Assume we have a BUC with the inputs x0 to xn (where xn is the most significant
bit (MSB)) and the outputs y1 to y2n . To extend this circuit to also process the input
signal xn+1, we need to add 2n+1 − 1 comparators as illustrated in Figure 4.20a. We
denote the new outputs of the resulting circuit with z1 to z2n+1 . To generate the outputs
zi and z2n-i+2 we need the maximum and minimum output of the comparator connected to
yi and x2n+1 for 1 ≤ i ≤ 2n. The output z2n+1 is generated directly from the input x2n+1 .
Note that the newly added layer of comparators basically performs a unary addition of
the unary vector y and the newly created unary vector which can only hold the values 0
or 2n+1. Figure 4.20b shows an example 4-bit BUC represented as a CN.

To further illustrate the construction approach Figure 4.21 shows three Berger code CD
examples represented by their CNs. The presented technique is completely generic and
guarantees fully QDI CD circuits, which are (to the best of our knowledge) the most
area-efficient in literature for this class of codes.
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Figure 4.21: Abstract CN specification for Berger CDs with 3, 5 and 7 data bits

4.4.3 Hybrid Protocols
Now, to extend the CDs proposed in the two previous sections to also cope with the
hybrid protocols, we need to be able to detect the second spacer (or set thereof). We will
first show how this works for m-of-n codes and then generalize the approach to Berger
codes.

Again, consider the circuit in Figure 4.16 with a valid m-of-n code word at its input.
In this case all certain outputs of the SNs T q and T r are one and exactly one input of
every OR gate in the SNML is asserted. Now we assume that the input transitions to
the special spacer. Therefore, by the construction of the circuit, for every additional one
that appears at the input one of two things can happen:

(i) An additional indicating output goes high

(ii) An unused output on one of the SNs goes high
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Finally, if all bits of the input vector were set to one (as would be the case for the
all-one spacer) all of the outputs of the two SNs T q and T r are set to one. Thus, every
(previously) unused output and every OR gate input is asserted.

Note that case (i) implies that the additional one in the input bit pattern causes the
assertion of both inputs of exactly one of the OR gates in the SNML. This condition can
easily be detected if we don’t prune the AND gates of the SNML.

Hence, for detecting k ≤ (n − m) additional ones in the input pattern we propose to use
a second-level CD connected to the AND gates of the SNML and the previously unused
outputs (if present). For that the following cases have to be distinguished:

(i) In the simplest case no SN has unused outputs. Then, we basically only have to
connect another k-of-i CD to the outputs of the i AND gates of the SNML that
would otherwise have been pruned from the circuit.

(ii) In the second case, namely when T q is the only SN with unused outputs, we can
simply use a k-of-j CD to which we connect the i AND gates as before, plus up to
k of the u(T q) originally unused outputs of T q, i.e., j = i + min(k, u(T q)).

(iii) Finally, if both T q and T r have unused outputs, care must be taken because some
of the unused outputs might only be asserted in a mutually exclusive way. These
can be merged by an OR gate (i.e., a comparator) before being connected to the
second-level CD. Consider the case of a CD for the 2-of-7 code with q = 4 and
r = 3. Hence, T 4

3 , T 4
4 and T 3

3 are unused. If this CD is extended to an SDS CD
with d = 1, the outputs T 4

3 and T 3
3 could never be asserted at the same time, and

can consequently be merged.

We use done2 to refer to the output of the second-level CD, which is again generated
by a C gate. This signal needs to be merged with the output of the original CD, which
we now refer to as done1 into the final done output of the hybrid protocol CD. Here we
need to distinguish three cases.

(i) all-zero spacer: done1 is low (which implies done2 is low as well); done has to be
zero

(ii) special spacer: done1 and done2 are both high; done has to be zero

(iii) valid data: done1 is high and done2 low; done has to be one

This behavior can be implemented using a simple AND gate with the done2 input inverted.
Note that the case where done2 is high and done1 is low can never occur.

Figure 4.22 shows two example CDs for the SDS protocol. Note that it is again possible
to make a clean distinction between the CN and the HG. The 3-of-6 CD constitutes a

84



4.5. Link Architecture

special case, where no second C gate is required. Since here d = 1 the second-level CD
only needs to detect a 1-of-3 code, which can be implemented by a three input OR gate.
Another special case are CDs for the DS protocol, where only the all-one spacer needs to
be detected. Hence, it is sufficient to connect the second C gate to all unused outputs of
the SNs as well as all AND gates of the SNML to generate the done2 signal, because this
essentially creates an (n-m)-of-(n-m) CD.
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Figure 4.22: CD examples for the SDS protocol

For Berger codes a very similar approach can be used. Let’s first consider the DS protocol.
Instead of pruning the respective base CN (see Figure 4.21), we use a 2k − 1-input C gate
to combine all these previously pruned outputs signals into the signal done2. Note that
it is not possible to prune any of the outputs in this case, because it must be possible to
detect the case where all bits in the parity part p are set to one. If we would, for example,
only use the AND gate outputs of the SNML, gate orphans would be introduced.

For the UBS protocol a second-level d-of-x CD is added to the AND gate outputs of
the SNML and some of the outputs of the (previously) unused and pruned outputs of
the BUC. The variable x is given by the maximal numerical value the parity part of all
possible spacers for a given code can take (i.e., x = maxds:ps∈Sb,d

(�ps�)), while d again
denotes the chosen imbalance between the code words and the unbalanced spacer. Note
that outputs of the BUC that were previously unused, must be directly connected to the
second-level CD, since a one at these outputs directly contributes to the spacer balance.
Figure 4.23 shows two example CDs for the UBS protocol.

4.5 Link Architecture
This section briefly discusses how the proposed protocols impact the transmitter, receiver
and repeater (i.e., buffer) design of a (pipelined) DI link, such as the one shown in
Figure 4.1. We assume that the protocols have to be converted to and from 4-phase BD
channels. However, adapting the circuits to 2-phase BD protocols is quite straightforward,
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Figure 4.23: CD examples for the UBS protocol

mostly only the presented STGs have to be revised to accommodate the protocol change.
Note that we don’t claim that these circuits are in any way optimal, we just want to (i)
show that the protocols can actually be implemented and (ii) have some basis for the
area estimations, we conduct in Section 4.6. For that purpose, we try to take similar
design decisions for all the circuits.

4.5.1 Pipeline Design
The first point we want to address is the actual pipeline architecture that can be used to
implement intermediate stages on a link. Since the hybrid protocols don’t use a single
spacer, it is no longer possible to use 4-phase pipeline buffers like the WCHB. What
is actually needed is a circuit capable of transporting 2-phase protocols. One possilbe
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option is a MOUSETRAP-style [SN07] pipeline, which has also been utilized for the
2-phase LETS approach [MAMN08]. Instead of C gates like in the WCHB this buffer
uses D latches, whose enable input is controlled by an XNOR gate (see Figure 4.24).
For this reason we will refer to this buffer as MOUSETRAP-style D latch half buffer
(MDHB). Initially the latches are transparent, but are disabled as soon as data (or a
spacer) arrives. To re-enable the latches the subsequent pipeline stage must acknowledge
the received data (or spacer), by toggling the acknowledgment signal. This behavior
implies a small timing assumption, because it must be ensured that the latches of a stage
are closed before the preceding stage can invalidate the latch inputs. Notice that these
two actions are triggered by the same signal, namely the output of the CD.
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Figure 4.24: Pipeline implementation for proposed protocols (three stages)

4.5.2 RZ Link

We start with the “base-line” design for the RZ protocol. Figure 4.25 shows a possible
transmitter/receiver pair. Consider the circuit in the reset state, i.e., all reqin and ackout

signals and the output register Rout contains the (all-zero) spacer. A rising transition
on the transmitter’s reqin signal will thus set the C gate. This event is used to produce
the acknowledgment for the BD input channel as well as to trigger the output register
Rout, which will thus be loaded with the data produced by the encoder. Eventually this
data gets acknowledged (rising transition on ackDI), which, if reqin has already been
deasserted by the BD channel, in turn triggers the reset of the register (through the
pulse generator formed by the delay δp and the AND gate). This essentially produces the
all-zero spacer on the DI bus, which will again be acknowledged by a falling transition on
ackDI . After the C gate is reset the BD ackout signal will be deasserted and the whole
process may start over. The receiver works in a quite similar fashion. When the CD
detects a valid DI code word on the DI bus, the receiver’s C gate is set to one (assuming
ackin is zero). This transition is used to capture the DI data into the input register Rin,
produce the acknowledgment for the DI link as well as to generate the reqout signal for
the BD channel. The C gate will be reset again if the CD detects the spacer and if the
BD side acknowledges the (decoded) output data (ackin = 1). This produces the falling
transitions on ackDI and reqout, which in turn leads to the deassertion of ackin on the
BD side. The delay elements δenc and δdec ensure that the request signal is sufficiently
delayed such that there is enough time tor the data to pass through the encoder and
decoder, respectively.
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Figure 4.25: RZ protocol transmitter and receiver

Note that no actual decoder is required if the link uses a Berger code. Furthermore,
there is no need for the receiver to capture the parity bits into its input register, further
simplifying the circuit.

4.5.3 SDS/UBS/SDDS Link

The transmitter for the SDS and the UBS protocol is a little more tricky to implement than
the RZ transmitter. Figure 4.26a shows a high-level overview of a possible transmitter
circuit. The behavior of the controller is defined by the STG in Figure 4.26b. Let’s first
disregard the reset controller (i.e., the signal r is low) and assume that the circuit and
controller are in a state where a valid code word is in the output register Rout. Hence,
ackDI will eventually be asserted by the environment (this state is indicated by the initial
marking in the STG). Now the controller waits for the next input data, i.e., a rising edge
on the req signal. As soon as this edge is received the controller sets the trg output to
one, which switches the multiplexer to the spacer path. The delay element δenc ensures
that trg reaches the pulse generator (formed by the XOR gate and the delay element δp)
only after data passed through the encoder, the spacer generator and the multiplexer
and a valid SD spacer (if one could be generated for the two code words) is stable at the
input of Rout. If no spacer could be generated the spacer generator asserts its z output,
in this case the actual value of the spacer output does not matter. Depending on the
value of the signal z, the pulse that is generated at the output of the XOR gate is either
relayed to the clock or the reset input of the output register. A pulse on the clock input
transfers the SD spacer to the output of Rout while a reset pulse effectively generates
the all-zero spacer. The spacer at the output DI data will cause the environment to
eventually deassert ackDI , which in turn causes the controller to respond by also resetting
trg. This causes the multiplexer to switch to the next code word (i.e., the output of
the encoder). The zero value on the control input of the demultiplexer ensures that
the generated pulse will clock the output register, which results in the next code word
appearing at DI data. After completing the input handshake (ack+ → req− → ack−)
this process can start over. To optimize the cycle time of this circuit the delay element
δenc can be implemented in an asymmetrical way, since for falling transitions on trg only
the delay of the multiplexer must be compensated for.

The thing that complicates the circuit is the reset controller which ensures correct start-up
of the protocol. As can be seen from the STG the controller expects that initially the
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circuit is in a state where a code word is present in Rout and ackDI is high. However, on
reset we don’t yet have a code word and hence ackDI is also low. Furthermore, the first
task the controller will execute is to reset Rout to generate “another” (all-zero) spacer.
The reset controller is, thus, used to “emulate” the circuit state expected by the controller
and uses an OR gate to force ackDI to a high level. Furthermore, it is ensured that the
first pulse that will be generated is relayed to the reset input of Rout. After the first
pulse the signal r is permanently set to low. This leads to ackDI going low, fulfilling the
STG specification and completing the start-up phase.

An interesting observation is that the receiver for the SDS/UBS protocol is not affected
by the more complex protocol. The event that triggers the consumption of the received
data is still the rising edge of the CD’s output, the spacers themselves don’t carry any
data information and can, hence, be ignored completely behind the CD.

The transmitter for the SDDS protocol is quite similar. The main difference is that
the spacer generator only has the z output. Thus, the multiplexer is not required.
Furthermore, the output register now also needs an asynchronous set input (to generate
the all-one spacer). The signal z is then used to decide, whether to generate a set or reset
pulse for the output register (similar the DS transmitter presented in the next section).
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Figure 4.26: SDS/UBS protocol transmitter

4.5.4 DS Link
A possible transmitter/receiver pair for the DS protocol is shown in Figure 4.27a. The
transmitter circuit is simpler than for the SDS protocol because here the spacer does not
depend on the next code word being transmitted. The different spacers are generated by
using an output register (Rout) with asynchronous set and reset inputs that are activated
based on the value of bs. One thing to point out is that the bit bs needs to be captured
with the same clock signal that is used to trigger the output register. This is because
after the assertion of ackin, the BD input channel is allowed to invalidate the input data.
To control the sequence of events in the circuit a simple C gate suffices. Its rising output

89



4. Efficient Delay-Insensitive Communication

Encoder
Rin

CD

Decoder

Controller

Rout

se
t

rs
t

1

0

δp
C

ackout

reqin

data

D Q
bs

In
te

rm
id

ia
te

St
ag

es

done

data

reqout

ackin

DI data bs

ackDI

(a) Circuit

ackDI− done+ ackDI+ done− reqout+

ackin− reqout− ackin+

(b) Controller STG

Figure 4.27: DS protocol transmitter and receiver

edge clocks Rout, while the falling one is used to generate a pulse that is either applied
to the set or reset input of Rout.

The receiver uses the done output of the CD to trigger its input register Rin. The controller
specified by the STG in Figure 4.27b acknowledges the data phase and waits for the spacer.
When the spacer arrives the output handshake (reqout+ → ackin+ → reqout− → ackin−)
is initiated. As soon as the preceding logic asserts ackin the spacer can be acknowledged
(deassertion of ackDI) and the whole process can start over. Note that we have omitted
the delay elements on the BD channels for both transmitter and receiver for the sake of
clarity of the figure.

4.5.5 NRZ Link

Finally Figure 4.28a shows a possible NRZ link. The transmitter controller STG in
Figure 4.28b basically performs a 4-phase/2-phase conversion between the BD input
channel and the ackDI signal. Note that the encoder needs the last state of the DI data,
because information is only encoded in the transitions. Internally the encoder essentially
uses an RZ encoder and an array of XOR gates for the transition encoding. The receiver
on the other side very closely resembles that of the RZ protocol. The only difference is
the 2-phase/4-phase conversion (D latches and XORs) in front of the 4-phase CD (see
Figure 4.11). The toggle flip-flop again converts the 4-phase done signal of the (4-phase)
CD to the 2-phase ackDI of the link. Note that the input register already captures a
4-phase code word. Thus, the decoder is the same as for the RZ protocol.
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Figure 4.28: NRZ protocol transmitter and receiver

4.6 Results

There is no single, globally optimum solution for a DI protocol and encoding. Each
choice has its specific place within the parameter space spanned by coding efficiency,
power metric, area overhead and data throughput. Ultimately, the application needs to
determine the most desirable region within this space. In the previous sections we have
already investigated coding efficiency and power metric. While that was possible on a
purely abstract level, area overhead and data throughput will be studied in this section,
based on implementation examples.

4.6.1 Area Analysis

The synthesis results and area estimations in this section are generated using the NanGate
45 nm Open Cell Library. However, to abstract away from the library details, we use
the gate equivalents (GEs) metric, which relates the actual area to the one of a single
2-input NAND gate. Encoders and decoders have been synthesized from Very High
Speed Integrated Circuit Hardware Description Language (VHDL) descriptions with the
Synopsys Design Compiler (version 2018.06), with high effort on area optimization (we
only consider the pre-layout results for our analysis). The CDs are already generated on
the gate level by our CD construction approach, hence no logic synthesis is required to
estimate their area overhead. Since the library does not contain C gates, we assumed an
area overhead of 3 GE (12 transistors) for a 2-input version of this gate [SEE98]. For
multi-input C gates we further assume an implementation using a single 2-input C gate
(as state-holding element) which is set and reset with two carefully routed AND/OR
networks.
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Table 4.8 lists the hardware costs for the encoders and decoders3 for all codes analyzed
in this thesis. Table 4.9 provides the accompanying information for the respective CDs.
The numbers in parentheses in the Berger code rows denote the number of data bits
b and parity bits k, respectively. All values given use the GE/bit metric, because this
makes it easier to compare codes with different bit widths.

Let’s first concentrate on the encoders and decoders. For the RZ and the NRZ protocols,
it can be seen that the encoders for the PSCWCs are always more expensive than for a
Berger code with the same bit width. Furthermore, since Berger codes are systematic no
decoders are required. However, the table also shows that the PSCWCs codes generally
have a better coding efficiency R (with the exception of the 5-of-10 and 7-bit Berger code)
and as can be seen in Table 4.9 also have smaller CDs. The decoders for the PSCWCs
are also considerably simpler than their respective encoders.

The values for the SDS, UBS and SDDS protocols also include the logic for the spacer
generation. The encoder costs for the SDS and UBS protocol require very similar
hardware efforts for codes with a certain bit width. This also holds true for different
values of the parameter d. It is obvious that these protocols require a very large amount
of additional logic when compared to (simple) RZ or even NRZ encoders. However, their
CD costs are still below that of the NRZ protocol. Another interesting fact is that the
encoders for the SDDS protocol are only marginally more expensive than the ones for
the RZ protocol.

Note that we did not include the encoding costs for the DS protocol. Recall that this
protocol basically uses the exact same encoder as the RZ protocol but can encode one
additional bit via the use of a special output register. Since this table does not include
the costs for the output register, we did not include the values because they would give a
skewed picture of the actual costs4.

The CD implementation costs in Table 4.9 always list two values per entry. The first
one corresponds to the combinational costs, i.e., mainly the CNs and the XORs for the
NRZ CDs, while the second one includes the costs for the C gates and the latches in case
of the NRZ CDs. It is immediately apparent that the NRZ CDs require the most logic,
since the 2-phase/4-phase wrapper circuit basically adds an additional D latch and XOR
gate for every input rail. Also notice the entries for the DS and SDDS protocols. These
protocols use the exact same CD. However, the values for the DS protocol are smaller
because one additional bit of data can be transported.

With the link architecture established in Section 4.5 we now want to calculate the total
combined link costs for each protocol and code. This not only includes the encoder,
decoder and CD costs but also the overhead for input and output registers and pipeline
stages. However, in this analysis we don’t include the static costs for the control logic of
the links (i.e., controllers, delay-lines, etc.), since these costs are very similar for all the

3Recall that the decoders are always the same regardless of the protocol.
4To some extent this argument also applies to the SDDS protocol.
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Table 4.8: Hardware overhead for encoders and decoders

#
ra

ils

#
bi

ts

R
Encoder overhead [GE/bit] Decoder

RZ SDS/UBS (d) SDDS NRZ overhead
Code 1 2 3 [GE/bit]

PS 3-of-6 6 4 0.67 3.67 14.67 – – – 7.33 1.67
PS 4-of-8 8 6 0.75 6.61 16.44 18.94 – – 9.28 4.89
PS 5-of-10 10 7 0.70 5.33 16.14 18.67 20.52 – 8.52 1.71
PS 6-of-12 12 9 0.75 6.63 16.33 18.78 20.48 – 10.33 4.63

Berger (3,2) 5 3 0.60 2.22 12.33 – – 2.56 5.67 0.00
Berger (4,3) 7 4 0.57 2.75 16.33 19.58 – 3.42 6.50 0.00
Berger (5,3) 8 5 0.62 2.87 15.40 17.93 – 3.33 6.47 0.00
Berger (6,3) 9 6 0.67 3.39 16.06 19.67 – 3.56 7.11 0.00
Berger (7,3) 10 7 0.70 3.33 16.05 18.90 – 3.86 7.00 0.00
Berger (8,4) 12 8 0.67 4.04 17.04 19.62 20.88 5.25 7.25 0.00
Berger (9,4) 13 9 0.69 3.67 16.30 18.63 20.85 4.41 6.85 0.00

Table 4.9: Hardware overhead for CDs

CD overhead [GE/bit] (combinational/sequential costs)

RZ SDS/UBS (d) SDDS DS NRZ
Code 1 2 3

PS 3-of-6 3.25/1.50 4.67/1.50 – – – 3.53/2.40 6.25/6.50
PS 4-of-8 4.11/1.56 5.39/1.56 6.17/2.06 – – 4.43/2.67 6.78/6.00
PS 5-of-10 5.43/1.43 6.90/1.43 7.76/1.86 7.95/2.29 – 5.71/2.50 8.29/6.19
PS 6-of-12 6.07/1.33 7.44/1.33 8.37/1.67 8.44/2.00 – 6.30/2.40 8.74/5.78

Berger (3,2) 4.00/2.00 6.00/2.00 – – 5.67/4.00 4.25/3.00 7.33/7.56
Berger (4,3) 5.42/2.33 7.92/2.33 10.58/3.08 – 8.25/5.50 6.60/4.40 8.92/8.17
Berger (5,3) 6.53/2.00 8.53/2.00 11.53/2.60 – 8.73/4.53 7.28/3.78 9.73/7.33
Berger (6,3) 6.72/2.00 8.83/2.00 10.78/2.50 – 8.44/4.11 7.24/3.52 9.72/7.00
Berger (7,3) 7.33/1.81 9.19/1.81 10.86/2.24 – 8.76/3.62 7.67/3.17 10.19/6.57
Berger (8,4) 8.38/1.67 10.42/1.67 12.96/2.04 14.42/2.42 11.08/4.71 9.85/4.19 11.38/6.67
Berger (9,4) 9.22/1.56 11.04/1.56 13.81/1.89 14.63/2.22 11.63/4.26 10.47/3.83 12.11/6.37

presented links. We are only interested in the dynamic cost that are directly impacted by
the choice of a certain protocol and code. Figure 4.29 shows the results of this analysis.

The base bar of each bar stack corresponds to the combined costs of a transmitter/receiver
pair. Hence, this bar includes the encoder, decoder, input and output register as well as
one CD. Each additional section represents the costs for one intermediate pipeline stage,
which includes the pipeline D latches (or C gates in the case of the RZ protocol because
of the simple WCHB design) and one CD.

It can be seen that for all codes the hop costs for the NRZ protocol are the most expensive.
However, with greater initial costs the cheaper CDs of the SDS and UBS protocols often
only pay off after a certain amount of pipeline stages. The DS protocol performs quite
well, as it only requires a little more hardware investment than the RZ protocol and still

93



4. Efficient Delay-Insensitive Communication

0 20 40 60 80 100 120 01

RZ
DS
SDDS
UBS, d=1
NRZB

er
ge

r
(3

,2
)

RZ
DS
SDS, d=1
NRZPS

3-
of

-6

RZ
DS
SDDS
UBS, d=1
UBS, d=2
NRZB

er
ge

r
(4

,3
)

RZ
DS
SDS, d=1
SDS, d=2
NRZPS

4-
of

-8

RZ
DS
SDDS
UBS, d=1
UBS, d=2
NRZB

er
ge

r
(6

,3
)

RZ
DS
SDS, d=1
SDS, d=2
SDS, d=3
NRZ

PS
5-

of
-1

0

RZ
DS
SDDS
UBS, d=1
UBS, d=2
NRZB

er
ge

r
(7

,3
)

RZ
DS
SDS, d=1
SDS, d=2
SDS, d=3
NRZ

PS
6-

of
-1

2

RZ
DS
SDDS
UBS, d=1
UBS, d=2
UBS, d=3
NRZ

B
er

ge
r

(9
,4

)

Area [GE/Bit] P [T/Bit]

Figure 4.29: Hardware overhead for different link lengths, codes and protocols (left) and
the associated power metric (right)
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improves the power metric quite significantly (see bars on the right hand side), especially
for codes with a small bit width. When the PSCWCs are compared to the Berger codes
it can be seen that the higher initial costs for encoding and decoding pay off after just a
few hops, regardless of the protocol.

4.6.2 Performance/Delay Analysis
This section discusses how the hybrid protocols impact the data transmission performance,
i.e., the throughput, of a DI link. We start out by comparing the “classic” RZ and NRZ
protocol. For this purpose we analyze the WCHB as well as the MDHB pipeline style
(see Section 4.5.1) by creating a model for their dynamic behavior. After that we show
how the hybrid protocols change the attainable performance when compared to the RZ
protocol.

To quantify the pipeline performance, we use the local cycle time metric [BOF10]. The
local cycle time corresponds to the minimal time required for a single pipeline stage to
complete one handshake cycle with its neighbors. This, hence, gives a lower bound for
the system cycle time, which is basically the inverse of a pipeline’s throughput.

For this analysis we consider DI links as homogeneous linear pipelines, i.e., every pipeline
stage is implemented identically and hence has similar delays. Because of the fact that
handshaking protocols involve the communication of a pipeline stage with the next
and the previous stage the local cycle time is usually a function of the delays of three
neighboring blocks. This is reflected by the model circuits we use in this analysis shown
in Figures 4.30 and 4.32. The environments shown in these figures are assumed to be
ideal, i.e., they generate immediate responses to the inputs they are presented with.
Hence, they are no limiting factor for the cycle time.

Let’s first consider a classic 4-phase WCHB pipeline as shown in Figure 4.30. The delay
Δwire models the wire delay5 on the data bus Di connecting two pipeline stages. Adding
Δwire and ΔC (i.e., the delay through the C gates comprising the buffer) thus yields
the forward latency of a pipeline stage. The delay Δack corresponds to the delay of
the acknowledgment signal measured from the output of the CD to the C gates of the
previous pipeline stage. To simplify the analysis we assume equal delays for rising and
falling transitions.

To extract an analytical expression for the cycle time of this circuit, its dynamic behavior
can be modeled by a PN as discussed in more detail in [BOF10]. For the WCHB pipeline
this yields the graph shown in Figure 4.31. This type of graph can be interpreted in a
similar way as an STG. However, here the nodes don’t (always) correspond to transitions
of single signal wires but model more abstract events, like the transition of the data bus
from the spacer (i.e., null) phase to the data phase (Ddata

i ) or vice versa (Dnull
i ). This

allows to capture the behavior of the pipeline in a compact way, independent of the
actual data traversing it.

5In this chapter we focus on data transport, so we do not account for computations performed on the
data and the associated delay.
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Figure 4.30: WCHB pipeline circuit model with delays (three stages)
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Figure 4.31: PN model for the WCHB pipeline (three stages)

Every node (event) of the graph is associated with a certain delay/latency: The nodes
cdi+ and cdi− add the delay ΔCD, and each node Dx

i adds ΔC . However, note that some
of the arcs also cause a delay (e.g., cdi+ → Dnull

i−1 , which adds Δack or Ddata
i → Ddata

i+1 ,
which adds Δwire). These particular delays are marked with dashed lines in Figure 4.30.

The local cycle time is now obtained by analyzing the longest cycle in this graph, which is
marked by the orange arrows in the figure. Equation (4.26) shows the resulting expression
for the local cycle time of the WCHB pipeline, which corresponds to the time it takes for
one code word and one spacer to pass though one pipeline stage.

TW CHB = 4ΔC + 2ΔCD + 2Δwire + 2Δack (4.26)

For the MDHB pipeline we use the circuit model shown in Figure 4.32.

The associated graph model is shown in Figure 4.33. Since this pipeline works with both
RZ and NRZ protocols we refer to the data events as Dϕ1

i and Dϕ2
i .

Again the longest cycle is marked orange and the resulting cycle time expression is shown
in Equation (4.27).

TMDHB = 4ΔL + 2Δwire + 2ΔCD + 2ΔXNOR + 2Δack (4.27)

This expression yields the time it takes one pipeline stage to go though the two phases
ϕ1 and ϕ2. In NRZ protocols both of these phases transmit actual data, while in RZ
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Figure 4.33: PN model for the MDHB pipeline (three stages)

protocols ϕ2 corresponds to the spacer phase. Hence, to make the protocols comparable
this fact must be taken into account. We do this by introducing a factor of 1

2 for the
actual cycle time of the NRZ protocol. Equations (4.28) and (4.29) show the resulting
expressions.

T RZ
MDHB = 4ΔL + 2Δwire + 2ΔRZ

CD + 2ΔXNOR + 2Δack (4.28)

T NRZ
MDHB = 1

2(4ΔL + 2Δwire + 2ΔNRZ
CD + 2ΔXNOR + 2Δack)

= 2ΔL + Δwire + ΔNRZ
CD + ΔXNOR + Δack

(4.29)

When Equation (4.28) is compared to the cycle time of the WCHB pipeline (Equa-
tion (4.26)), it can be seen that the expressions are very similar. The only difference is
the delay for the additional XNOR gate (assuming ΔL ≈ ΔC). This reveals a first small
downside of the hybrid protocols because they have to use the MDHB pipeline.

Notice that in Equations (4.28) and (4.29) ΔCD has been replaced by variables denoting
the actual delays of CDs for the specific protocol. Section 4.4 discussed how an NRZ CD
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can be implemented using an RZ CD and an appropriate wrapper circuit consisting of
shadow latches and XOR gates to detect input transitions. From the circuit in Figure 4.11
we can, thus, derive the following equation for the delay of NRZ CDs:

ΔNRZ
CD = ΔT F F + ΔL + 2(ΔXOR + ΔRZ

CD) (4.30)

Plugging this into Equation (4.29) yields:

T NRZ
MT = 3ΔL + Δwire + ΔT F F + 2(ΔXOR + ΔRZ

CD) + ΔXNOR + Δack (4.31)

When this expression is now compared to Equation (4.28) (or Equation (4.26)), it can
be seen that the main difference is that the terms Δwire and Δack appear without the
factor 2. Depending on how large these values are (compared to the sum of the other
delays of the expression) this can of course have a large impact on the overall performance
gains that can be achieved using the NRZ protocol.

For a very detailed picture of the NRZ protocol one might also investigate the impact of
the protocol on the delay Δwire. Even if the signal wires between two pipeline stages
have the same geometrical dimensions and the same driver strength is used, it makes a
difference whether an RZ or NRZ protocol is used. If neighboring wires of a bus switch
in opposite directions capacitive crosstalk effects [PD08] can have a negative impact on
the delay. For the RZ and hybrid protocols such a situation can never occur since in one
protocol phase all transitioning wires must switch to the same value.

To calculate the cycle time of the hybrid protocols, we can basically take Equation (4.27)
and plug in the correct value for ΔCD. Hence, in the following we will examine which
factors contribute to the CD delay and how to estimate it. We start off with the analysis
of the CDs for constant-weight codes and then briefly discuss Berger CDs as well.

From the general structure of the RZ CDs (see Figure 4.17) we can deduce that the delay
Δcw|RZ

CD can be divided into the delay ΔCm of the HG (i.e., the m-input C gate at the
output) and the delay of the purely combinational CN ΔCN . The latter delay is bounded
by the depth of the CN, denoted by DCN (i.e., the maximum number of comparator cells
an input signal has to pass through in order to reach the HG), multiplied by the delay of
a single comparator cell ΔCC , which amounts to roughly one gate delay.

Δcw|RZ
CD = DCN ∗ ΔCC + ΔCm (4.32)

Table 4.10 lists the CN depths for the PSCWCs investigated in this chapter. However,
note that for asymmetrical CDs (like the one for the 3-of-6 code) the actual value of ΔCN

is data-dependent. Hence, the actual selection of the code word set also plays a role. This
is because for certain input vectors there are paths through the CN that are shorter than
its (worst-case) depth. For the partially-systematic 3-of-6 code an exhaustive analysis of
every critical path for every code word reveals that the average number of comparator
cells an input vector has to pass through is actually only 3.5 comparators instead of 4.
However, for simplicity’s sake we only consider the worst-case path in our analysis.
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For CDs for the SDS protocol the data dependency is an even bigger issue, because
depending on whether the all-zero or the short-distance spacer is used two different paths
through the CD are relevant. Equation (4.33) shows how the average CD delay can
be calculated. Recall that the variable p denotes the percentage of cases in which the
short-distance spacer is used, which can either be estimated using Equation (4.18) or
be calculated exactly by considering the actual code word set. For the cases where the
input of the CD transitions from the all-zero spacer to a code word (or vice versa) the
normal depth DCN must be used. When the input of the CD switches from a code word
to the short-distance spacer or vice versa, the second-level CD must be considered, which
increases the depth of the CN to DCN2 . However, in this case only the delay of the
d-input C gate in the HG is relevant, since the m-input C gate (with the delay ΔCm) is
already set. Finally the delay ΔAND of the output AND gate of the HG must be added,
to arrive at the following equation:

Δcw|SDS
CD = (1 − p) ∗ (DCN ∗ ΔCC + ΔCm) + p ∗ (DCN2 ∗ ΔCC + ΔCd

) + ΔAND (4.33)

Table 4.10 shows the parameters for p and DCN2 extracted from our CD circuits. Note
that, for the case where d = 1, there is no second C gate in the HG (hence ΔC1 = 0).
Furthermore, the second-level CD only consists of an m-input OR gate for which we
estimated 1 (for m = 3) and 2 (for 3 < m < 10) comparator delays, respectively.

Table 4.10: Delay estimation parameters for m-of-n CDs (RZ and SDS protocols)

Code DCN
DCN2/p (d)

1 2 3
PS 3-of-6 4 5/0.50 – –
PS 4-of-8 4 6/0.24 6/0.76 –
PS 5-of-10 6 8/0.12 9/0.5 9/0.88
PS 6-of-12 6 8/0.05 10/0.29 10/0.71

Generally it can be concluded that Δm-of-2m|SDS
CD |d=1 will only be marginally larger than

Δm-of-2m|RZ
CD , since the delay of an m-input OR gate (for the second-level 1-of-m CD)

will certainly not exceed the delay of an m-input C gate. If the delay of the OR gate is
significantly lower it can even compensate for ΔAND. For higher values of d it strongly
depends on whether the smaller C gate in the short-distance spacer path is sufficiently
faster than the m-input C gate in the regular path to make up for the increased CN
depth DCN2 .

Because of a similar reason Δm-of-2m|DS
CD is only marginally larger than ΔRZ

m-of-2m|CD. Both
possible paths to the output AND gate contain the same circuit elements, i.e., a CN with
the same depth and an m-input C gate. Hence, the only difference in terms of delay is
the output AND gate itself.

Δm-of-2m|DS
CD = Δm-of-2m|RZ

CD + ΔAND (4.34)
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The CDs for protocols using Berger codes are by their nature very asymmetric, which
again hints on some data-dependent delay behavior. However, in most cases the overall
depth of their CNs is dominated by the depth of the SN T b used to determine the
Hamming weight of the data part of the code words. Equation (4.35) shows the CD delay
for the RZ protocol. Table 4.11 lists the CN depths for the Berger codes with 3 ≤ b ≤ 9
data bits.

ΔB|RZ
CD = DCN ∗ ΔCC + ΔCb

(4.35)

Similar to Δcw|SDS
CD , ΔB|UBS

CD can be defined as:

ΔB|UBS
CD = (1 − p) ∗ (DCN ∗ ΔCC + ΔCb

) + p ∗ (DCN2 ∗ ΔCC + ΔCd
) + ΔAND (4.36)

The variable p again denotes the percentage of cases where the unbalanced spacer can
be used and the second-level CD is activated. The parameters DCN2 and p are listed in
Table 4.11. Again an argument can be made that for d = 1 the delay of the CD is only
marginally increased compared to ΔB|RZ

CD .

Table 4.11: Delay estimation parameters for Berger CDs (RZ and UBS protocols)

Code DCN
DCN2/p (d)

1 2 3
Berger (3,2) 4 5/0.50 – –
Berger (4,3) 4 6/0.38 8/0.65 –
Berger (5,3) 6 8/0.27 10/0.53 –
Berger (6,3) 6 8/0.18 10/0.44 –
Berger (7,3) 7 9/0.12 11/0.36 –
Berger (8,4) 7 9/0.07 12/0.29 13/0.48
Berger (9,4) 8 10/0.05 13/0.22 14/0.45

Recall that for the CD for the DS (and SDDS) protocol, the same CN as for the RZ CD
is used. The only difference is that the 2k − 1 outputs that would be pruned from the
network in case of an RZ CD, are merged using a C gate with 2k − 1 inputs. Depending
on the spacer either this C gate or the usual b-input C gate of the base circuit contributes
to the critical path. Assuming equally distributed spacer-types (all-zero and all-one) we
arrive at the following equation.

ΔB|DS
CD = DCN ∗ ΔCC +

ΔCb
+ ΔC2k−1

2 + ΔAND (4.37)

Notice that in the case where b = 2k − 1 (i.e., in the case where Berger codes offer the
best coding efficiency), both C gates have the same number of inputs. In this case the
only difference to ΔB|RZ

CD is the delay of the output AND gate. In all other cases we have
that ΔCb

< ΔC2k−1
, which (depending on b) can significantly worsen the delay of the CD.
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Overall we can conclude from our analysis that the more (power) efficient encodings
and protocols do incur a performance penalty. We have, however, also seen that with a
careful selection of the protocol parameters this penalty can be made negligible.

4.7 Conclusion
In this chapter we have tried to supply the designer of a DI communication channel with
a systematic approach for finding the most efficient solution for a given purpose. To this
end we have made contributions along several lines:

Observing that traditional DI codes are either very efficient with respect to completion
detection (like the constant-weight codes) or with respect to decoding (like systematic
codes), but not both at the same time, we have tried to approach a global optimization
by careful composition of the DI code as a constant-weight code that includes a number
of systematic bits. More specifically, we have elaborated a method for systematically
deciding upon the number of systematic bits plus the generation of the non-systematic bits
required to make the code constant weight. The degrees of freedom we use for optimization
are the mapping between data words and code words, as well as the selection of unused
code words present in our incomplete coding approach. We have presented guidelines for
codes up to the 6-of-12 code, which covers the practically relevant range.

We have proposed the use of multiple spacers in the 4-phase protocol, either to obtain a
higher energy efficiency (by saving transitions when going to the spacer and onward to
the next data phase), or to encode additional information through the specific choice of
the spacer. The latter can be viewed as a blend of the 4-phase protocol with its relatively
low implementation overhead and the 2-phase protocol with its high coding and energy
efficiency.

For the completion detection we have presented construction guidelines based on com-
parator networks. Our solution not only surpasses related approaches in terms of area
efficiency, it also avoids pitfalls with orphan transitions sometimes found. Apart from
CDs for constant-weight codes, which are immediately useful for the presented partially
systematic codes, we also elaborate optimized solutions for Berger codes. Furthermore,
our completion detection approach also works for all of the newly proposed protocols.

Building on all these contributions, we have explored the code space relevant for typical
DI communication channels and have identified the respective efforts for the diverse
options and devised highly optimized solutions with respect to code construction and
implementation of encoders, decoders and CDs. Our comprehensive analysis results allow
the designer of a DI channel to quickly check the available options for a given problem
and immediately compare the efforts implied by different alternatives, as well as the
attainable data throughput.

Error detection and error correction have not been covered here. If these properties are an
issue, the concepts presented in [LSH15] and [HLS16] can be consulted additionally. In this
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context it should also be mentioned that the extra bit encoded by the DS protocol is very
robust, which might be advantageous for transmitting specifically sensitive information.

Considering that DI channels are very convenient for inter- and intra-chip communication
between function blocks, our hope is, that this work can thus provide the designer a
useful reference for selecting the appropriate coding scheme along with implementation
for encoder, decoder and CD, to ultimately come up with an efficient overall solution.
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CHAPTER 5
Asynchronous Circuit Description

This chapter introduces pypr, the Python-based asynchronous circuit description frame-
work, developed throughout the course of this thesis, to conveniently create, analyze,
modify and simulate asynchronous (and specifically dual-rail QDI) circuits. The main
application area of this framework is to generate QDI circuits for the fault-injection
experiments carried out in Chapter 6. For that purpose, it is paramount to be able
to easily parameterize the circuit generation to, e.g., iterate through different circuit
implementation styles, (input) bit widths or delay configurations. For the design entry we
target the data-flow (see Section 2.4) and gate level, since we want to have very specific
control over the circuit structure and guarantee predictable results for procedurally
generated circuit parts. Hence, we opted for a low-level production-rule-inspired circuit
representation.
A production rule, as defined in [Mar89, Mar91], is a construct of the form G �→ S. G is
a Boolean expression referred to as the guard of the production rule, while S is a set of
simple signal assignments. A signal assignment is given by a variable and an arrow (↑ or
↓) that indicates whether the respective signal switches to high or low. A production rule
can “fire” if its guard evaluates to true, which means that all of its signal assignments
are executed. Consider the following example.

a ∧ b �→ x ↑, y ↓
If a and b are both true the signal x is asserted while y is deasserted.
Two production rules that make statements about opposite transitions of a signal are
called complementary. Together they implement an operator :

G1 �→ x ↑
G2 �→ x ↓

Complementary production rules must be non-interfering, which means their guards (i.e.,
G1 and G2 in the example above) must never evaluate to true at the same time (i.e.,
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¬G1 ∨ ¬G2 must always hold). If it is always the case that either G1 or G2 holds the
operator they implement is combinational. If ¬G1 ∧ ¬G2 ever holds, the associated signal
retains the value of the last assignment, which makes the operator state-holding.

Guards of production rules must be stable, which means that if a guard becomes true
(because of some other signal change) it must remain true until the assignments are
executed. A Production Rule Set (PRS) is defined to be the “concurrent composition” of
multiple production rules. Under stability and non-interference a PRS is executed by
continuously selecting a rule (the selection must be fair, i.e., each rule must be selected
infinitely often) and executing its signal assignments if its guard evaluates to true.

The mapping of a PRS to a CMOS circuit is straightforward, if the guards of its production
rules can be directly mapped to suitable p- and n-stacks. If this is not the case the
respective rule must be implemented using multiple CMOS gates. State-holding operators
can for example be implemented using signal keepers, constructed from weak-feedback
inverter loops.

The way we use this formalism in our circuit description framework is as follows. We
define a simple (production-rule-based) hardware description language and implement
an accompanying Python package that operates on said language. This package must,
therefore, offer data structures able to represent circuits specified in this language and
provide the means to generate and modify them. The use of a dedicated language also
allows to conveniently load and store circuits, which in turn enables different tools to
process and analyze them. Moreover, it enables the package user to dump quite a complex
data structure into a more easily digestible human readable format, which is vital during
circuit development and debugging.

Besides the central requirement of being simple to parse, understand and process we also
want this PRS language to have support for the following features:

• embedded delay information

• hierarchical designs (decomposition)

• datatype-level dual-rail signals and vectors

• extensibility through attachable general-purpose (user) information for various
language constructs

Any form of parameterization or support for generic programming constructs is not
needed since code (especially for larger designs) will mainly be generated by Python
scripts anyway. Since the user can leverage the full power of the Python programming
language to make generic and parameterizable circuit designs, adding such features would
unnecessarily complicate the language and thus interfere with the main goal of simplicity.

This is also partly the reason for why we decided to use a dedicated language and did
not build on some standard hardware description language like VHDL or Verilog. In
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addition, it would have been complicated to realize and integrate some of the desired
special purpose features. There is also no real benefit in using an established language,
since it is trivial to export the dedicated PRS language to other formats. This also
has the added benefit that the way in which production rules or gates are modeled and
represented in the target language is fully customizable.

The structure of this chapter is as follows. First, Section 5.1 gives a formal language
definition of our dedicated PRS language. Then, Section 5.2 continues with a brief
overview of the actual Python package, its features, core data structure and algorithms.
Section 5.3 details how logic synthesis for QDI dual-rail circuit is handled within our
framework. Finally, Section 5.4 discusses the formal verification features of the package.

5.1 Language Specification
This section formally describes the PRS language used internally by the pypr package.
To define the language we present its context-free grammar (CFG) and describe the
semantics of the various language constructs [Wat17].

For the sake of brevity we first define some essential non-terminal symbols used throughout
the grammar in form of POSIX Extended Regular Expressions.

Non-terminal Regular expression
〈ident〉 [a-zA-Z][a-zA-Z_0-9]*

〈int〉 [-+]?(0x|0b)?\d+

〈float〉 [-+]?((\d*\.\d+|\d+\.)([Ee][-+]?\d+)?|\d+[Ee][+-]?\d+)

〈string〉 "\.*"

Identifiers (〈ident〉) are given by an arbitrary sequence of letters, numbers and underscores.
The first character must always be a letter and reserved keywords are obviously not
allowed. Integers (〈int〉) may be specified as binary, decimal or hexadecimal values.
The base is determined by the prefix to the number (i.e., 0b for binary and 0x for
hexadecimal numbers). Float values (〈float〉) can either be numbers containing a decimal
point (e.g., 1.2, .2, 1.) followed by an optional exponent (e.g., 1.2e-1, .2e2) or a
number without a decimal point, which must be followed be an exponent (e.g., 1e-1,
1e2). This approach allows a clear and unambiguous distinction between integers and
floats. A string (〈string〉) is simply an arbitrary sequence of characters delimited by
quotation marks.

Before we can specify the actual grammar rules1, we first need to introduce the notation
used throughout the section. A grammar rule consists of a right- and left-hand part,
where the left-hand side contains a single non-terminal symbol. We use an extended

1The rules of a (context-free) grammar are also often referred to as production rules. However, to
avoid confusion with the way this term is used in the context of this work we avoid this term and simply
use grammar rules instead.
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Backus–Naur form (EBNF) for (the right-hand side of) the grammar rules, since this
allows a more compact and natural way of expressing the syntax [Wat17]. Hence, the
right-hand side may contain terminal and non-terminal symbols in arbitrary sequence
as well as the operators “|”, “[...]” and “{...}”. To better illustrate the meaning of the
notation and the used operators, consider the following example grammar.

�start� ::= �nt� {‘c’} [‘d’]

�nt� ::= ‘a’ �nt� | ‘b’ �nt� | �empty�

The start symbol of the grammar is 〈start〉. Additionally there is one other non-terminal
symbol 〈nt〉. Non-terminal symbols are marked with diamond brackets. The grammar
contains four terminal symbols ‘a’, ‘b’, ‘c’ and ‘d’, which are marked using single quotation
marks. The special symbol 〈empty〉 corresponds to the empty word (often also written
as ε) and is used to, e.g., break rule recursions.

The brace operator means that the inner expression may be repeated (an arbitrary
number of times) but may also appear not at all. The bracket operator marks optional
expressions2. Finally, the vertical bar operator denotes alternatives.

Hence, the two-rule example grammar shown above generates the language specified by
the regular expression [ab]*c*d?. However, note that CFGs and regular expressions
are not equally powerful in the languages that they can generate (Type-2 vs. Type-3
in the Chomsky hierarchy of languages). This can easily be demonstrated with another
simple example.

�start� ::= ‘a’ �start� ‘b’ | �empty�

This grammar generates the language consisting of all words that start with an arbitrary
number of ‘a’ symbols followed by the exact same number of ‘b’ symbols. It is not
possible to specify this language as a regular expression.

With the notation out of the way we can start to define the PRS language. Let’s start
by defining two important non-terminal symbols, for numerical and Boolean constants.

�number� ::= �int� | �float�

�bool� ::= ‘true’ | ‘false’

Input files are processed one PRS at a time. Thus, the start symbol of the grammar is
the (non-terminal) 〈prs〉.

2Note that the bracket and brace operators have a completely different semantic in regular expressions.
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�prs� ::= ‘prs’ �ident� ‘is’ [�attributes� ‘;’] �inputs� �outputs� [�locals�] [�instances�]
‘begin’ { �rule� } [�constraints�] ‘end’ ‘prs’ ‘;’

The start of a PRS is marked with the keyword ‘prs’ followed by an identifier specifying
the name of the PRS and the keyword ‘is’. After that an optional set of attributes
can be specified (see Section 5.1.5). Then, the declarations for the inputs, outputs and
(optional) locals signals are listed, which are in turn followed by an optional list of
instances of other (sub-) PRSs. The beginning of the actual rule section of the PRS
is marked with the ‘begin’ keyword. Following the rule section an optional set of
constraints may be listed (see Section 5.1.4). The end of the PRS is indicated using the
keywords ‘end prs;’

The language supports line comments which use the # symbol. Everything after this
symbol, until the next newline, is ignored.

5.1.1 Signal Declarations and Datatypes
Input and output signals must always be declared, as these signals define the interface to
the PRS. If a PRS is instantiated by another one, the inputs and output of the inner PRS
(i.e., the instance) can be driven (inputs) or read (outputs) by the outer one. Local signals
also have to be declared, unless their data type is Bit, in which case the declaration may
be omitted. The keywords ‘inputs’, ‘outputs’ and ‘locals’ are used to mark
the beginning of the respective declaration sections.

�inputs� ::= ‘inputs’ { �signal-decl� }

�outputs� ::= ‘outputs’ { �signal-decl� }

�locals� ::= ‘locals’ { �signal-decl� }

�signal-decl� ::= �ident� ‘:’ �ident� [‘(’ �integer� ‘)’] [�attributes�] ‘;’

A signal declaration is given by an identifier (i.e., the signal name) followed by a colon
and another identifier, which specifies the datatype. The most basic data type is Bit.
The language currently also support the datatype DRBit to represent dual-rail signals.
This datatype is a so called multi-rail type and encompasses two single-bit signals (i.e.,
the true and the false rail). Further datatypes could be added in the future. However,
datatypes are always built-in types of the pypr package, i.e., they are directly defined
in the Python package since there is no possibility to declare new datatypes within the
language itself.

By adding an optional integer in parentheses after the datatype identifier, it is also
possible to declare vectors (the integer specifying the vector width). Hence, in the context
of the pypr type system the datatypes Bit and DRBit are considered scalar types while,
e.g., Bit(2) would be considered a vector.
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Finally, an optional set of attributes can be added to the signal declaration, which will
be discussed in more detail in Section 5.1.5.

Consider the following example PRS, named demo, which specifies four single-bit inputs
a-d and a single 2-element dual-rail output vector x. In the rules section of the PRS each
of those four inputs is assigned to one of the four rails that make up the output x using
so called wire rules. For one of the dual-rail bits a (temporary) local signal temp is used.
The exact rule syntax and semantic will be explained in more detail in Section 5.1.3. For
now it is sufficient to know that the ‘wire’ command simply connects two signals.

1 prs demo is
2 inputs a : Bit; b : Bit; c : Bit; d : Bit;
3 outputs x : DRBit(2);
4 locals temp : DRBit;
5 begin
6 x(0).T := wire(a);
7 x(0).F := wire(b);
8 temp.T := wire(c);
9 temp.F := wire(d);

10 x(1) := wire(temp);
11 end prs;

This example also shows the syntax for accessing certain bits or elements of multi-rail
and vector signals. Vector elements are accessed using parentheses enclosing the desired
index. The elements of an n-element vector have the indices 0 to n − 1. Individual rails
of a multi-rail signal can be accessed via the point operator. The dual-rail datatype
DRBit has two rails named T (true) and F (false). The formal grammar rule for that is
shown below.

�signal� ::= �ident� [‘->’ �ident�] [‘(’ �integer� ’)’] [‘.’ �ident�]

This grammar rule also shows how an interface signal of an instance can be accessed. For
that purpose, the arrow operator ‘->’ is used. The identifier to the left of the arrow
operator refers to an instance name while the right identifier refers to some input or
output of this instance. These arrow expressions are referred to as instance connectors.
For more details see Section 5.1.2.

Note that every signal expression has a distinct datatype. Wire rules, as used in the
example above, can only connect signals of the same datatype. The datatype of the
signal expression x(0) is DRBit, since it is an element of a DRBit vector. Hence, it can
be connected to the temp signal using a wire rule (Line 10). The individual rails of a
multi-rails signal, like x(0).T always have the datatype Bit, which makes it possible to
connect them to the Bit-type inputs (Lines 6 to 9).

5.1.2 Instances
After the signal declarations follows an optional list of instances, where other PRSs can
be instantiated and connected. The beginning of the instance section is marked with the
keyword ‘instances’.
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�instances� ::= ‘instances’ {�instance�}

�instance� ::= �ident� := �ident� ‘(’ [ �inline-connector-list� ]‘)’ [�attributes�] ‘;’

An instance is declared by specifying an identifier (i.e., the instance name) followed by the
assignment operator ‘:=’ and the name of the PRS that should be instantiated. After
that a set of parentheses with an optional list of inline connectors, which will be explained
shortly, is expected. Like signal declarations, instances may also be augmented with a
set of attributes (see Section 5.1.5). Consider the two example PRSs simple_and_gate
and top shown below.

1 prs simple_and_gate is
2 inputs x : Bit; y : Bit;
3 outputs z : Bit;
4 begin z := rule(a and b);
5 end prs;
6
7 prs top is
8 inputs a : Bit; b : Bit;
9 outputs c : Bit;

10 instances and_inst := simple_and_gate();
11 begin
12 and_inst->x := wire(a);
13 and_inst->y := wire(b);
14 c := wire(and_inst->z);
15 end prs;

The PRS simple_and_gate simply implements an AND gate with two inputs x and y

and a single output z. The top-level PRS top instantiates this PRS and connects its
own interface signals to it using three wire rules. Notice how instance connectors are
used to access the I/O signals of the instance and_inst. Instance connectors can be
viewed as implicitly declared local signals.

Another way of connecting instances are inline connectors, which can be specified directly
when the instance is declared.

�inline-connector-list� ::= �inline-connector� {‘,’ �inline-connector�}

�inline-connector� ::= �signal� ‘:=’ �signal�

This language feature is more or less a short-hand notation for wire rules and does not
add expressive power to the language. An inline connector is given by a signal expression
followed by the assignment operator ‘:=’ and another signal expression. The left signal
expression always refers to an interface signal of the instantiated PRS (no matter whether
the signal is an input or an output). Hence, here instance connectors are not allowed
(although the grammar allows that for the sake of simplicity). The right-hand side can
be an arbitrary signal expression. Of course the datatypes of both sides must match for
an inline connector to be valid.

109



5. Asynchronous Circuit Description

The example below shows how the PRS top can also be implemented using inline
connectors.

1 prs top is
2 inputs a : Bit; b : Bit;
3 outputs c : Bit;
4 instances inst := P(x := a, y := b, z := c);
5 begin
6 end prs;

Of course, if an inline connector drives an input signal then there must not be other rules
driving the corresponding instance connector, as this would create a driver conflict.

5.1.3 Rules
The rules section of the PRS may contain an arbitrary number of rules but may also
be left completely empty. A rule always start with a signal expression followed by the
assignment operator ‘:=’. This signal expression must be a signal that can be driven,
i.e., not an input or instance connector connecting some output signal of an instance.
Moreover, there must always only be one rule (or inline-connector) that writes to a
particular signal. The right-hand side of the assignment operator can be divided into
four distinct parts. The first one, which is also the only non-optional part, is the actual
rule expression (〈rule-expr〉). After that we have the optional initialization (〈init-expr〉)
and delay expressions (〈delay-expr〉), followed by a set of supplemental attributes.

�rule� ::= �signal� ‘:=’ �rule-expr� [�init-expr�] [�delay-expr�] [�attributes�] ‘;’

From this specification it is clear that the language in its current form only supports
rules that define the behavior of exactly one signal, in contrast to what the production
rule formalism introduced in the beginning of the chapter is capable of. For the scope of
the investigations of this thesis this is sufficient. An extension of the PRS language to
support a more general form of production rules would be trivial, but would also require
suitable modifications to the algorithms of the accompanying Python package.

5.1.3.1 Rule Types

The PRS language supports three different types of rules, which are referred to as wire,
standard and function rules.

�rule-expr� ::= �wire-rule� | �standard-rule� | �function-rule�

�wire-rule� ::= ‘wire’ ‘(’ �signal� ‘)’

�standard-rule� ::= ‘rule’ ‘(’ �expr� [‘,’ �expr�] ‘)’

�function-rule� ::= �ident� ‘(’ �expr� {‘,’ �expr�} ‘)’
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Let’s start with the wire rule, which has already been used in some of the examples
shown above. As the name suggest a wire rule simply connects two signals. What makes
it special, is the ability to connect signals that consist of multiple physical bits, i.e., it
can connect signal expressions with arbitrary datatypes as long as the datatypes on the
left-hand and the right-hand side of the assignment operator match. This is not possible
with the two other rule types, where the signal expression on the left-hand side must
always have the datatype Bit. However, wire rules cannot implement any logic, they
just model physical connections between signals. Consider the following two PRSs A and
B, which both describe the exact same circuit.

1 prs A is
2 inputs a : DRBit(2)
3 outputs x : DRBit(2);
4 begin x := wire(a);
5 end prs;
6
7 prs B is
8 inputs a : DRBit(2)
9 outputs x : DRBit(2);

10 begin
11 x(0).T := wire(a(0).T);
12 x(0).F := wire(a(0).F);
13 x(1).T := wire(a(1).T);
14 x(1).F := wire(a(1).F);
15 end prs;

The standard rule is declared with the ‘rule’ keyword and two Boolean expressions
(〈expr〉) in parentheses separated by a comma. The first one specifies the condition
that must be satisfied for the target signal to switch to high (i.e., the up condition),
while the second condition is responsible for switching the signal to low again (i.e., the
down condition). If the second condition is omitted the rule is considered to be purely
combinational, i.e., the down condition is derived automatically by inverting the up
condition. Rules that specify up and down conditions that can be satisfied simultaneously
are invalid, as this would basically correspond to a short-circuit. If there is a signal
assignment where both the up and down condition are not satisfied the rule is considered
to be state-holding. Note that it is also possible to model wires using standard rules, if
the Boolean expression just consists of a single signal expression. However, as already
mentioned, using this approach only single-bit signals can be connected.

To make to notation more compact and readable the language also supports so called
function rules. Instead of the ‘rule’ keyword a function rule uses an identifier followed
by a list of arguments (i.e., Boolean expressions) separated by commas. Thereby the
identifier refers to some specific function defined in the Python package. Additional
function rules can be added by providing the necessary information and semantics in
the form of a Python class which must adhere to certain interface specifications. These
classes then also define how many arguments a respective function rule supports and
what type of Boolean expressions are permissible (most of the function rules only allow
plain signal expressions, i.e., no Boolean operators). Furthermore, they must provide a
way to convert the function rule into a standard rule. Most of the standard gates (AND,
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OR, XOR, etc.), including (asymmetric) C gates as well as threshold gates are already
included in the pypr framework.

The example below shows three (equivalent) ways of defining a 2-input OR gate.
1 prs three_or_gates is
2 inputs a : Bit; b : Bit;
3 outputs x : Bit(3);
4 begin
5 x(0) := rule(a or b, not a and not b);
6 x(1) := rule(a or b);
7 x(2) := or_gate(a, b);
8 end prs;

5.1.3.2 Rule Initialization

Rules can be equipped with an optional initialization expression, which basically defines
the initial value for the target variable and offers a possibility to reset the rule and
thereby a whole circuit to a defined state. The initialization expression is marked with
the ‘init’ keyword followed by an initialization value (Boolean constant or 0/1) and
an optional initialization condition in parenthesis. The initialization condition may be a
signal expression (high-active reset), an inverted signal expression (low-active reset) or a
Boolean constant. A constant initialization condition with the value false is semantically
equivalent to not having an initialization condition at all, while the constant true means
that the whole rule can be replaced with a wire rule, which simply writes the initialization
value to the target signal (those conditions might turn up during circuit optimization).

�init-expr� ::= ‘init’ ‘(’ �init-value� [‘,’ �init-cond�] ‘)’

�init-value� ::= �integer� | �bool�

�init-cond� ::= �signal� | ‘not’ �signal� | �bool�

The following example shows a PRS modeling a resetable 2-input C gate.
1 prs resetable_cgate is
2 inputs a : Bit; b : Bit; reset : Bit;
3 outputs x : Bit;
4 begin x := cgate(a, b) init(0, reset);
5 end prs;

Initialization expressions are not supported/allowed for wire rules or combinational rules,
i.e., only state-holding rules can be equipped with them. It is of course also possible
to encode the reset directly into the Boolean equations for the up and down condition
of a standard rule. However, the rationale behind the decision to allow to keep the
initialization condition separate, is to not clutter the rule expressions with boilerplate
reset code and to clearly mark and distinguish the initialization code from the actual
logic.
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5.1.3.3 Rule Delays

The delay expression allows to associate a delay value with a rule. A delay expression starts
with the (optional) selection of a delay model using the ‘inertial’ or ‘transport’
keywords (delay model specifier). After that the ‘delay’ keyword is used followed by
one or two actual time values enclosed in parentheses and separated by a comma. A time
value is simply a number (integer or float) followed by a time unit. If two time values are
specified the delay is asymmetric. This means that the first value measures the time it
takes the rule to transition to high given that the up condition has been satisfied while
the second value specifies the delay of falling transitions given that the down condition
has been satisfied. These time values are referred to as up and down delays. If only one
time value is specified, the delay is symmetric, meaning that the up and down delays are
equal.

If no delay model is selected, the actual delay model depends on the code generator
and/or the target language. When a VHDL model is generated out of a PRS with
rules without an explicit delay model specifier, the delays in the VHDL code also won’t
explicitly specify the model, which means the default VHDL delay model (i.e., inertial)
is used.

�delay-expr� ::= [�delay-model�] ‘delay’ ‘(’ �time-value� [‘,’ �time-value�] ‘)’

�delay-model� ::= ‘inertial’ | ‘transport’

�time-value� ::= �number� �time-unit�

�time-unit� ::= ‘ps’ | ‘ns’ | ‘us’ | ‘ms’ | ‘s’

The PRS in the listing below shows some examples of delay expressions.
1 prs demo is
2 inputs a : Bit; b : Bit;
3 outputs x : Bit(3);
4 begin
5 x(0) := or_gate(a, b) delay(1 ns);
6 x(1) := or_gate(a, b) transport delay(1 ns);
7 x(2) := or_gate(a, b) inertial delay(1 ns, 2 ns);
8 end prs;

5.1.3.4 Boolean Expressions

Boolean expressions can be any combination of the binary operators ‘and’, ‘or’
and ‘xor’ and the unary operator ‘not’ as well as Boolean constants and signal
expressions. Note that the ‘xor’ operation has the highest and the ‘or’ operator
the lowest precedence. Parentheses can be used to change the precedence of operations
and/or to make them more explicit. The expression a or b and c xor d is interpreted
as a or (b and (c xor d)). Of course, for a Boolean expression to be valid it must
only use signal expressions with the Bit datatype.
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�expr� ::= �unary-expr�
| ‘not’ �unary-expr�
| �expr� ‘or’ �expr�
| �expr� ‘and’ �expr�
| �expr� ‘xor’ �expr�

�unary-expr� ::= �signal� | ‘(’ �expr� ‘)’ | �bool�

5.1.4 Constraints
The constraints section allows to specify certain assumptions about how the inputs
of a PRS should behave (‘assume’) and which circuit states are valid (‘assert’).
Currently, assert and assume statements can only refer to the current state of a circuit
(no temporal operators). Assignments can be used to calculate temporary variables that
can be used in the other expressions in the ‘constraints’ sections. Expressions (i.e.,
〈expr〉) used by constraint statements may use all inputs, output and local signals from
the PRS as well as the temporary variables created by assignments in the constraints
section itself. As with the rules, the sequence of the statements has no semantic value.

�constraints� ::= ‘constraints’ { �constraint� }

�constraint� ::= �ident� ‘:=’ �expr� [�attributes�] ‘;’
| ‘assert’ ‘(’ �expr� ‘)’ [�attributes�] ‘;’
| ‘assume’ ‘(’ �expr� ‘)’ [�attributes�] ‘;’

Consider the following trivial example. Since the assume constraint forbids that a dual-
rail value where both true rails of the vector a are asserted is applied to the circuit, the
assertion can state that the output will also never attain this value.

1 prs demo is
2 inputs a : DRBit(2);
3 outputs x : DRBit(2);
4 begin
5 x := wire(a);
6 constraints
7 assume(not (a(0).T and a(1).T));
8 assert(not (x(0).T and x(1).T));
9 end prs;

The content of the constraints section has no influence on the functionality of a PRS. It
can, however, be used by a model checker for verification purposes (see Section 5.4).

5.1.5 Attributes
For prototyping and scientific purposes as well as to support data-flow abstractions (see
Section 5.2.4) it is vital to be able to attach additional information to language constructs
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that can easily be accessed from Python code. Hence, every signal declaration, instance,
rule or constraint as well as PRSs themselves can be associated with a set of attributes,
which can be used to store additional information about the respective object.

Attributes are specified using the ‘attributes’ keyword, which is followed by a
comma-separated list of key/value pairs in parentheses. Attribute keys must be (valid)
identifiers, attribute values can be other identifiers, strings, numbers, Boolean values
or lists of values. Lists are expressed using the ‘list’ keyword followed by a comma-
separated list of values in parentheses. They can contain an arbitrary mix of different
value types.

�attributes� ::= ‘attributes’ ‘(’ [ �attr-list� ] ‘)’

�attr-list� ::= �attr� {‘,’ �attr� }

�attr� ::= �attr-key� ‘:=’ �attr-value�

�attr-key� ::= �ident�

�attr-value� ::= �ident� | �string� | �number� | �bool� | �list�

�list� ::= ‘list’ ‘(’ �attr-value� {‘,’ �attr-value�} ‘)’

The language itself does not specify any semantic meaning regarding attributes. However,
the pypr package uses some attributes for special purposes. Those attributes should,
therefore, only be used in the correct context.

Some examples for reserved attributes include:

• keep: The (Boolean) keep attribute can be set for signal declarations to indi-
cate that the respective signal must not be removed during optimization (see
Section 5.2.2).

• needs_cd: This attribute is used on input signals of PRSs to indicate that the
respective signal needs a CD to avoid gate orphans and is used during logic synthesis
(see Section 5.3).

• Channel related attributes (like channel, channel_type, role, etc.) are used to
group signals into channels and support data-flow abstractions (see Section 5.2.4).

5.2 Python Production Rule Package
This section discusses the Python production rule package pypr that has been developed
to create, analyze, modify and simulate asynchronous (and specifically dual-rail QDI)
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Table 5.1: pypr sub-packages

Sub-Package Description
ast Basic data structures to represent and manipulate the abstract

syntax tree
bmc Bounded model checking related data structures and functions
cg Code generators (VHDL, Verilog)
dfg Channel and data-flow graph related code and data structures
lib Function rule definitions for standard gates (C gate, AND, OR,

XOR, etc.), asymmetric C gates and threshold gates
opt PRS optimizer
pg PRS generators and circuit synthesis functions
pt PRS transformation and modification algorithms
tb Testbench generator

circuits. Since the package is built around the PRS description language presented in the
previous section, it contains data structures that directly map to the syntax constructs of
the language. The goal of this section is not to provide a detailed application programming
interface (API) documentation of the package, but to give a general overview of its features,
core data structures and algorithms. Some aspects of the package are more thoroughly
discussed in Sections 5.3 and 5.4. For a detailed documentation please refer to the git
repository3.

The pypr package consists of several sub-packages which are listed in Table 5.1.

5.2.1 Basic Data Structures
To demonstrate how circuits are created and represented in pypr, we present a simple
example script in Listing 5.1, that creates a WCHB pipeline for a single dual-rail bit. This
circuit will be used as a running example in the following sections. All data structures
used in this example script are provided by the pypr.ast sub-package.

1 wchb = PRS("wchb")
2 wchb.AddInput("reset", Bit)
3 wchb.AddInput("d_in", DRBit)
4 wchb.AddInput("ack_in", Bit)
5 wchb.AddOutput("d_out", DRBit)
6 wchb.AddOutput("ack_out", Bit)
7 wchb.AddRule(ProductionRule(var="en", up=BoolOpNode.NOT("ack_in")))
8 wchb.AddRule(FunctionRule(var="d_out.T", name="cgate",
9 arguments=["d_in.T", "en"], init_condition="reset", init_value=False))

10 wchb.AddRule(FunctionRule(var="d_out.F", name="cgate",
11 arguments=["d_in.F", "en"], init_condition="reset", init_value=False))
12 wchb.AddRule(FunctionRule(var="ack_out", name="or_gate",
13 arguments=["d_out.T", "dout.F"]))
14
15 pl_length = 3

3https://gitlab.ecs.tuwien.ac.at/eda/pypr.git
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16 pl = PRS("pl")
17 pl.AddInput("reset", Bit)
18 pl.AddInput("d_in", DRBit)
19 pl.AddInput("ack_in", Bit)
20 pl.AddOutput("d_out", DRBit)
21 pl.AddOutput("ack_out", Bit)
22 last_ack = "ack_out"
23 last_data = "d_in"
24 for i in range(pl_length):
25 pl.AddInstance(f"s{i}", wchb, inline_connectors={
26 "d_in": last_data, "ack_out": last_ack, "reset":"reset"})
27 last_ack = f"s{i}->ack_in"
28 last_data = f"s{i}->d_out"
29 pl.AddWireRule(dest="d_out", src=last_data)
30 pl.AddWireRule(dest=last_ack, src="ack_in")
31 pl.Attributes["desciption"] = f"A {pl_length}-stage WCHB pipeline."
32
33 lib = PRSLib()
34 lib.AddPRS(wchb)
35 lib.AddPRS(pl)

Listing 5.1: Python script to generate a 3-stage single-bit WCHB pipeline

Lines 1 to 13 create a WCHB named wchb. The input and output acknowledgment wires
of this PRS are single-bit signals while the actual data signals use the DRBit data type.
Then, four rules (i.e., gates) are created, two C gates as storage elements, one OR gate
as CD and one inverter to control the C gates.

The actual pipeline is generated in Lines 16 to 31. The pipeline length (i.e., the number
of buffers) is controlled by the variable pl_length. The overall interface of the pipeline
is the same as for the individual buffers. The for loop starting in Line 24 adds wchb

instances to the pl PRS and creates inline connectors to connect the individual stages
with each other. Finally, the last pipeline stage is connected to the ack_in and d_out

interface signals.

In order to keep track of multiple PRSs, pypr organizes them into libraries, which
basically serve as containers for PRS objects. Hence, in Line 33 a PRSLib object is created
and both created PRSs (i.e., wchb and pl) are added to this library.

All data structures provided by the pypr package feature the ToCode function, which
converts the respective abstract syntax tree element represented by the object to a
string according to the grammar rules from Section 5.1. Calling this function on the
PRSLib object from the example script yields Listing 5.2. Using this function PRSs
can be dumped to files, either simply for storage or to enable another tool to process
them. Moreover, the function is quite useful for debugging purposes, since it allows to
quickly create a human readable representation of complex data structures. The package
naturally also offers the possibility to parse the PRS language. For that purpose, pypr
provides the functions ParsePRS and ParsePRSFile, which are able to parse (Python)
strings or whole files, respectively, and return PRSLib objects. Hence, taking the string
produced by the ToCode function and passing it to the ParsePRS function again yields
an equivalent PRSLib object.
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1 prs wchb is
2 inputs
3 reset : Bit;
4 d_in : DRBit;
5 ack_in : Bit;
6 outputs
7 d_out : DRBit;
8 ack_out : Bit;
9 begin

10 en := rule(not ack_in);
11 d_out.T := cgate(d_in.T, en) init(0, reset);
12 d_out.F := cgate(d_in.F, en) init(0, reset);
13 ack_out := or_gate(d_out.T, d_out.F);
14 end prs;
15
16 prs pl is
17 attributes(description := "A 3-stage single-bit WCHB pipeline.");
18 inputs
19 reset : Bit;
20 d_in : DRBit;
21 ack_in : Bit;
22 outputs
23 d_out : DRBit;
24 ack_out : Bit;
25 instances
26 s0 := wchb(d_in:=d_in, ack_out:=ack_out, reset:=reset);
27 s1 := wchb(d_in:=s0->d_out, ack_out:=s0->ack_in, reset:=reset);
28 s2 := wchb(d_in:=s1->d_out, ack_out:=s1->ack_in, reset:=reset);
29 begin
30 dout := wire(s2->d_out);
31 s2->ack_in := wire(ack_in);
32 end prs;

Listing 5.2: PRS language representation of the 3-stage WCHB pipeline

5.2.2 Optimization
The pypr framework contains an optimizer in the pypr.opt sub-package that is able to
perform basic circuit simplifications. An important application of the optimizer is the
removal of superfluous wire rules introduced during flattening (Section 5.2.3). However,
besides that it also resolves constant expressions and removes unused or redundant logic.
In particular the steps performed by the optimizer are the following:

• Wire rule removal:
Generally the optimizer removes all wire rules that don’t have a delay associated
with them. Since such wire rules essentially state that two signals are equal the
optimizer will pick one of them and replace all occurrences of it in all other rules
(and inline connectors) with the other one. However, if none of the signals can
be removed (e.g., an input that is directly assigned to an output or an instance
connector) the wire rule is kept.

1 b := wire(a);
2 x := rule(b or c); �→ 1 x := rule(a or c);
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• Constant expression resolution:
In this optimization pass the optimizer repeatedly goes through all rules of the
PRS and applies simple combinational optimizations on a per rule basis (i.e.,
optimizing the up and down conditions) while simultaneously creating a list of all
constant signals and their values, which are in turn used for further combinational
optimizations. Constant signals are identified by wire rules connecting the signal to
either true or false (e.g., a := wire(true);). All such wire rules are immediately
removed from the PRS (the only exception are assignments to output signals).
Consider the following example, showing an excerpt of the rules section of some
PRS (assume that all involved signals are locals).

1 x := rule(a or a);
2 y := rule(a or true);
3 z := rule(a and y);

�→ 1 x := wire(a);
2 z := wire(a);

The first rule is simplified to a wire rule, while the second one is removed altogether.
With the acquired knowledge that the signal y is true, the third rule can also be
simplified to a wire rule. The optimizer repeats this process until no further changes
are possible.

• Inverter removal:
If the optimizer encounters an inverter, whose input signal is only read by this
particular inverter, it will try to merge it into the gate driving its input.

1 x := and_gate(a, b);
2 y := rule(not x); �→ 1 y := nand_gate(a, b);

• Equal function rule removal:
If a PRS contains two (or more) function rules that perform the exact same
operation, one will be replaced by a wire rule. The newly created wire rule will
then be removed by next wire rule removal pass.

1 x := or_gate(a, b);
2 y := or_gate(a, b); �→ 1 x := or_gate(a, b);

2 y := wire(x);

All these steps are applied until no further changes to the circuit are possible.

The optimizer also allows to prevent certain signals from being removed using the keep

attribute. If a local signal declaration (inputs and output cannot be removed anyway)
has this attribute set to true, the optimizer will preserve that signal. However, this does
not mean that the rule writing to that signal is preserved as is.

5.2.3 Flattening
From the language specification and the example in Listing 5.2 we know that pypr
supports hierarchical designs, which means that a PRS can contain other PRSs as
instances. However, many algorithms (e.g., the model checker, see Section 5.4) only
operate on flat PRSs, i.e., PRSs that don’t contain any instances. This restriction often
significantly simplifies the implementation of the respective algorithm. Furthermore,
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the optimizer, although fully capable to operate on non-flattened designs, generally also
produces better (more efficient) results, when it operates on flat designs. This is because
the circuit can be analyzed and optimized as a whole and the interfaces to instances
don’t have to be kept in place.

Hence, pypr provides the Flatten function in the pypr.pt sub-package. This function
takes a PRSLib object and the name the top-level PRS, collapses all hierarchical circuit
levels and returns a single flattened PRS, with the same functionality as the original.
For that purpose, it recursively goes through all instances of a PRS, copies all rules
of an instantiated PRS to the instantiating one and renames the used signals to avoid
name clashes. This process generates a lot of wire rules which can then be removed in a
subsequent optimization step.

Listing 5.3 shows the result produced by the Flatten function and a subsequent op-
timization pass when applied to the example from Listing 5.2. It can be seen that all
instances and wire rules have been removed. Moreover, notice that inverters have been
merged into the OR gates driving them.

1 prs pl is
2 attributes(description := "A 3-stage single-bit WCHB pipeline.");
3 inputs
4 reset : Bit;
5 d_in : DRBit;
6 ack_in : Bit;
7 outputs
8 d_out : DRBit;
9 ack_out : Bit;

10 locals
11 s1__d_in : DRBit;
12 s2__d_in : DRBit;
13 begin
14 s1__d_in.T := cgate(d_in.T, s0__en) init(0, reset);
15 s1__d_in.F := cgate(d_in.F, s0__en) init(0, reset);
16 ack_out := or_gate(s1__d_in.T, s1__d_in.F);
17 s2__d_in.T := cgate(s1__d_in.T, s1__en) init(0, reset);
18 s2__d_in.F := cgate(s1__d_in.F, s1__en) init(0, reset);
19 s0__en := nor_gate(s2__d_in.T, s2__d_in.F);
20 s2__en := rule(not ack_in);
21 d_out.T := cgate(s2__d_in.T, s2__en) init(0, reset);
22 d_out.F := cgate(s2__d_in.F, s2__en) init(0, reset);
23 s1__en := nor_gate(d_out.T, d_out.F);
24 end prs;

Listing 5.3: Flattened and optimized 3-stage WCHB pipeline

5.2.4 Channels and Data-Flow Structures
In pypr attributes are used to annotate input and output signals of PRSs in order to
group them into channels. For that purpose, the channel attribute specifies the name of
the channel to which a certain signal belongs. The role attribute then further defines
the function of the signal within the channel. For at least one signal of a channel (per
convention the acknowledgment signal should be used) the channel_type attribute must
be added. Currently the channel types BD and DIDR are supported, representing BD and
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(4-phase) DI dual-rail channels, respectively4. Some signals, like reset inputs, have a
role attribute but are not associated with any particular channel.

Listing 5.4 shows the interface signals of the WCHB PRS from Listing 5.2 with channel
annotations.

1 prs wchb is
2 inputs
3 reset : Bit attributes(role:=reset);
4 d_in : DRBit attributes(channel:=chin, role:=data);
5 ack_in : Bit attributes(channel:=chout, channel_type:=DIDR, role:=ack);
6 outputs
7 d_out : DRBit attributes(channel:=chout, role:=data);
8 ack_out : Bit attributes(channel:=chin, channel_type:=DIDR, role:=ack);
9 rules

10 # [...]
11 end prs;

Listing 5.4: WCHB PRS annotated with channel attributes

Channels can also be created independently from an actual PRS using the DIDRChannel

and BDChannel classes provided by the pypr.dfg sub-package. These data structures
basically manage a set of (data and control) signals as well as some other important
channel attributes (like, e.g., the channel direction, or information about the used
protocol).

The channel information is essential within the pypr framework to be able to specify
and create asynchronous circuits on the data-flow level (see Section 2.4). In particular
this functionality is provided by the DataFlowGraph class, which is also located in the
pypr.dfg sub-package. The script shown in Listing 5.5 generates the exact same PRS
as Listing 5.1. However, here the individual signals of the instances don’t have to be
painstakingly connected manually, but are handled on the much more convenient channel
level.

1 wchb = [...] # WCHB with channel annotations
2 channel = DIDRChannel(data=["d"])
3 pl_dfg = DataFlowGraph()
4 pl_dfg.AddInputChannel(channel, name="chin")
5 pl_dfg.AddOutputChannel(channel, name="chout")
6 for i in range(pl_length):
7 pl_dfg.AddHandshakingBlock(f"s{i}", wchb)
8 pl_dfg.Pipeline(*["chin"] + [f"s{i}" for i in range(pl_length)] + ["chout"])
9 pl = pl_dfg.CreatePRS("pl")

Listing 5.5: WCHB pipeline created using the DataFlowGraph class

First, a channel object is created, which is then used to define the inputs and outputs
of the top-level circuit represent by the DataFlowGraph object (pl_dfg). Then, the
AddHandshakingBlock function is called repeatedly in the for loop to create the indi-
vidual pipeline stages. The buffers created this way, are then connected with each other
and the input and output channels using the Pipeline function.

4Note that the channel_type attributes actually makes some of the role attributes redundant.
However, we still use this verbosity, to (i) make the code easier to read and (ii) avoid mistakes, since
using this additional information some sanity checks can be performed.
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Note that this example only shows a small subset of the features of the DataFlowGraph

class. It is, for example, also able to implement forks and joins of channels and can
handle multiple input and output channels on a data-flow element. The latter feature is
vital to be able to process flow control elements like multiplexers and demultiplexers.

The class also distinguishes between handshaking and logic (i.e., function) blocks. Logic
blocks don’t have acknowledgment (or request) signals, they basically only modify the
data signals of a channel.

To generate the individual (handshaking) blocks that can then be connected using the
presented method, pypr provides a range of PRS generators in the ast.pg sub-package.
The buffer used in the previous example can, for example, be automatically generated
using the DRBuffer function from a suitable channel specification (i.e., a DIDRChannel

object). Listing 5.6 demonstrates this feature.
1 wchb = DRBuffer(
2 name="wchb",
3 output_channel=DIDRChannel(data=["d"]),
4 buffer_style=DRBufferStyle.WCHB
5 )

Listing 5.6: QDI dual-rail buffer PRS generator

The sub-package also provides generator functions for (QDI dual-rail) flow control
components (multiplexers, demultiplexers, etc.). Moreover, it also supports logic synthesis,
which will be explained in more detail in Section 5.3.

5.2.5 Code Generation
The pypr.cg sub-package provides code generators for VHDL and Verilog to export
circuits specified in pypr to formats that can be processed by standard EDA tools,
like digital simulators. Listing 5.7 shows the VHDL entity created from the WCHB
pipeline example using the ExportVHDL function. A record type is used to represent the
multi-rail type DRBit5, for Bit-type signals std_logic is used. Also notice that the
signal attributes are preserved in VHDL comments.

1 entity pl is
2 port (
3 d_in : in DRBit; --attributes(channel := chin, role := data)
4 ack_in : in std_logic; --attributes(channel := chout, role := ack,

�→ channel_type := DIDR)
5 reset : in std_logic; --attributes(role := reset)
6 ack_out : out std_logic; --attributes(channel := chin, role := ack,

�→ channel_type := DIDR)
7 d_out : out DRBit --attributes(channel := chout, role := data)
8 );
9 end entity;

Listing 5.7: Entity produced by the VHDL code generator for the WCHB pipeline

5The Verilog code generator creates multiple single-bit signals to represent multi-rail datatypes, where
the rail names are used to suffix signal names (e.g., d_in_T and d_in_F). For multi-rail vector types,
a Verilog vector is created for each rail.
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The way the actual rules of a PRS are translated is highly configurable. Per default a
VHDL process is created for each rule. This process basically checks the up and down
conditions (and if present the initialization condition) and sets the associated variable
accordingly. However, it is also possible to change this behavior to create an actual
instance of some gate library component instead.

5.2.6 Testbench Generation
To verify a circuit created with pypr through simulations in digital simulators, a testbench
is required which models the environment of the circuit and checks whether the generated
outputs are correct. Such testbenches often contain a lot of (repeating) boilerplate code.
Hence, it makes sense to automate the process of testbench generation. For that purpose,
the sub-package pypr.tb provides the GenerateTestbench function, which is able to
generate complex VHDL testbenches from quite compact specifications.

This specification is a fully custom format and must be supplied in the form of a (nested)
Python dictionary, which can either be directly constructed in the respective script or be
loaded from a separate YAML file. Listing 5.8 shows an example testbench specification
for the WCHB pipeline.

1 channels:
2 chin:
3 log_tokens: true
4 data: random
5 timing: 1 ns
6 token_limit: 8
7 chout:
8 log_tokens: true
9 ack_delay: 2 ns

10 check:
11 type: function
12 function: |
13 is
14 begin
15 return chout.GetLatestToken.d_out =
16 chin.GetToken(chout.GetLatestTokenIndex).d_in;
17 end function;
18 general:
19 reset: 10 ns
20 start: 20 ns

Listing 5.8: YAML-based testbench specification for the WCHB pipeline

This example specifies a testbench that will generate eight random tokens on the input
channel chin. The data signals of the input channel will take 1 ns to switch from the
data to the spacer phase and vice versa (measured from the point in time of the last
acknowledgment transition). For the output channel a function must be defined (as
embedded VHDL code), that is then used to check the output tokens. This function
has full access to the internal VHDL data structures of the testbench (chout and chin)
that provide a level of abstraction over the asynchronous protocol and the raw interface
signals of the unit under test (UUT) (i.e., the simulated PRS). It is also possible to access
the full token history of each channel. Note that this example only shows a very limited
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subset of the actual features of the testbench generator. In particular we are able to
model much more complex channel behaviors, which includes the exact timing of the
involved signal transitions as well as the actual content of data tokens and the causal
dependencies between tokens on different channels.

The testbench generator can also handle VHDL entities as UUTs. To determine which
interface signal belongs to which channel, the ports must be annotated by comments using
the attributes syntax of the PRS language (an example for that is shown in Listing 5.7).
This feature facilitates the use of the testbench generator for circuits not created by
pypr.

Since, we are using the automatically generated testbenches for the fault-injection
experiments performed in Chapter 6, monitors are included that check for various effects
(transient) faults can have on the outputs of the UUT.

The testbenches created using the described process should work with all digital simulators
supporting at least VHDL 2008. In particular we used and tested Questa and GHDL.

5.3 Dual-Rail Logic Synthesis
For synthesizing QDI dual-rail combinational circuits from a high-level hardware de-
scription in Verilog, pypr provides the DRSynthesize function in the pypr.pg.qdi

sub-package. The reason for why we only support Verilog (rather than VHDL, which we
use for our testbenches) is because Yosys [Wol], the underlying open-source synthesis
tool, currently only supports Verilog. However, it will be trivial to extend the support to
VHDL as soon as an appropriate front-end is added to Yosys.

The Verilog input must be a purely combinational single-rail description of the desired
dual-rail function. Hence, it cannot contain any flip-flops or latches.

The synthesis process is split into two parts. First, a standard logic synthesis tool is used
to process the Verilog specification (Section 5.3.1). The resulting intermediate netlist is
then processed by a simple dual-rail expansion algorithm described in Section 5.3.2 that
generates the final QDI dual-rail circuit.

To optimize the handling of arithmetic operations (such as addition, subtraction, com-
parisons) during the synthesis process, special care must be taken of adders, which will
be addressed in Section 5.3.4.

5.3.1 Cell Library Specification and Synthesis
Before the actual synthesis process can be started a target dual-rail cell library must be
defined. This library is then automatically converted to a single-rail library that contains
the exact same gates and can be used by standard logic synthesis tools. This single-rail
library is used to synthesize and technology-map the Verilog design, which is then further
processed using the dual-rail expansion algorithm.
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The cell library is specified as a PRSLib object containing a PRS for each available cell.
Listing 5.9 shows an example in the form of a 2-input NCLX AND gate.

1 prs nclx_and is
2 attributes(function:="and", area:=12);
3 inputs
4 a : DRBit attributes(needs_cd := true);
5 b : DRBit attributes(needs_cd := true);
6 outputs
7 x : DRBit;
8 begin
9 x.T := and_gate(a.T, b.T);

10 x.F := or_gate(a.F, b.F);
11 end prs;

Listing 5.9: NCLX AND gate library element

The function attribute is used to indicate the actual logic function implemented by the
PRS. Possible values are "and", "xor", "fa" and "ha", where the latter two represent
full adders (FAs) and HAs, respectively. Note that an inverter cell does not need to
be (and actually must not be) contained in the cell library. The reason for this is that
inverters are not “real” gates in dual-rail logic, but are rather just implemented by
switching the true and false rail of a particular dual-rail bit. Hence, an inverter is always
implicitly added to the library anyway (as we will see in the next section, they also
require special treatment during dual-rail expansion). This is also the reason why it is
sufficient for a minimal cell library to just contain a single (2-input) AND gate and why
it is not necessary to add OR, NAND or NOR gates. Because the inversion is essentially
“free” in dual-rail logic, those gates can simply be implemented using the AND gate. For
each function (and number of inputs) the library may only contain one PRS.

The PRS attributes can also be used to specify the area requirements of a library cell,
which will be used during technology mapping6. The meaning of the data signals is
automatically detected (only relevant for full and half adders).

The data inputs and outputs of a cell must have the type DRBit and may also have
attributes associated with them. Relevant for the synthesis (or more specifically the
dual-rail expansion) is the Boolean needs_cd attribute on input signals (if it is missing
it is assumed to be false). As discussed in Section 2.6.2 some dual-rail logic gates (e.g.,
NCLX gates) require CDs on their inputs to avoid orphans. The outputs of those CDs
are then combined into an additional single-bit done output signal of the circuit. The
reason for why the input CDs are not directly integrated into the library cells themselves,
is efficiency. Depending on the actual use of a cell in the circuit the input CDs may in
fact not be required after all. Hence, integrating them would potentially unnecessarily
increase the area footprint of the circuit. Consider the following two scenarios:

• Imagine a circuit where two NCLX gates are connected to the same input signal.
If both gates would bring their own input CDs the input completion of this signal
would be checked twice.

6For HA and FA cells the area attribute is not used.
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• Now consider the case where one of those NCLX gates would be changed to, e.g., a
DIMS gate, which does not need to check for input completion. This would mean
that the input CD of the remaining NCLX gate is not needed anymore since input
completion is implicitly checked by the second (DIMS) gate.

To summarize these observations: In order to avoid orphans all signals in a circuit must
be observed. Hence, a CD is only required for those signals which are only read by cells
that need input completion and then only a single CD is required.

Library cells may also have an additional single-bit output, whose role attribute is set
to "done" (or "done_n" referring to a low active version of this signal). These signals
represent the outputs of internal CDs and are combined into a single done output during
dual-rail expansion. Some of the FAs presented in Section 5.3.4 feature this output.

After the specified dual-rail cell library passed to the DRSynthesize function has been
processed and checked, the single-rail version of the library is created. This library is then
used during synthesis and technology mapping of the Verilog design which is performed
by Yosys [Wol]. The resulting netlist is then passed to the dual-rail expansion algorithm.

5.3.2 Dual-Rail Expansion Algorithm
After the Verilog code has been synthesized and technology mapped to (single-rail versions
of) our available library cells, the dual-rail expansion can be performed. The technology
mapped circuit is represented by a set of instances of (library) cells and a set of (single-bit)
signals connecting them. Each input and output of a cell instance is connected to exactly
one signal. Of course for every signal there must be exactly one cell output connected to it
(i.e., there can only be a single driver). However, signals can be connected to an arbitrary
amount of cell inputs (i.e., they can be read multiple times). Inputs and outputs of the
overall circuit (i.e., the interface signals of the original Verilog module) are represented
as special input and output cells. Input cells only have outputs, while output cells only
have inputs. For vector inputs (outputs) the corresponding interface cell has multiple
outputs (inputs). Each of these inputs and outputs is again connected to exactly one
signal. For the inputs of output cells the needs_cd attribute is assumed to be false. The
rationale behind this is, that the outputs of a function block are always observed by some
other part of the circuit because, if they weren’t they should not exist in the first place.

The algorithm keeps a list of all signals and associates a Boolean value with them,
representing whether they are observed or not. Initially all signals are marked as
unobserved.

Before the dual-rail cell instances can be created, a data structure, which we refer to as
the observation equivalence map is created. This data structure maps every signal to
a set of signals, which are equivalent regarding the requirement for when they can be
considered observed. If one of the signals in this set is observed, then all members of the
set can be considered observed. The reason for why this is necessary are the inverters in
the circuit. Recall that in dual-rail logic inverting a signal does not involve any actual
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gates but just a rewiring of the true and false rails. Hence, when the output (input) of
an inverter is observed the input (output) is observed as well, since physically we are
dealing with the same pair of signals. Whenever a signal is marked as observed, the
observation equivalence map is consulted, to check if any other signals have to be marked
as observed as well.

First, the algorithm creates an empty PRS and adds local signal declarations for all
signals. Obliviously the type of these signals must be DRBit. Then, it goes through the
list of all cell instances and performs one of the following actions depending on the cell
type.

• Output cells:
For each output cell an output signal is added to the PRS. If the cell only has a
single input the type of this output is DRBit, for multiple inputs a DRBit vector
is used. Then, wire rules are added to connect the actual output signals to the
signals driving them. Finally, the relevant signals are marked as observed.

• Input cells:
For each input cell an input signal is added to the PRS. Similar to outputs cells a
DRBit vector will be used for multi-output input cell. Wire rules connect the cell
outputs to the relevant signals.

• Inverter cells:
If an inverter is encountered two wire rules are added to the PRS, which basically
assign the crossed-out true and false rails of the input signal of the inverter to the
output signal.

• Other cells:
For all other cells an instance of the actual library cell PRS is created. Wire rules
are used to connect the local signals to the data inputs and data outputs of the
instance. If the library cell has a done output, a new local signal of type Bit is
declared and connected to it. This signal is then added to a list containing all the
done signals. Each signal that is connected to an input of the library cell where
the needs_cd attribute is set to false, will be marked as observed (of course taking
into account the observation equivalence map).

When all cells have been processed the algorithm again goes through all the PRS inputs
and sets the needs_cd attribute. For signals that are still unobserved after all cells have
been instantiated the inputs driving these signals have their needs_cd attribute set to
true. For input vectors where the individual dual-rail bits have different observation
states a list of Boolean elements is used. If the needs_cd attribute is set to true the
signal is also marked as observed.

Now the algorithm takes the list of signals and creates a list of unobserved signals, where
it also needs to take the observation equivalence map into account. For each unobserved
signal an internal CD in the form of a NOR gate is created.
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Finally, a multi-input C gate is used to merge all the done outputs of the cell instances
and the outputs of the internal CDs. The output of this C gate is used to drive the done

output of the generated PRS. If the circuit does not contain cells with done outputs or
internal CDs no top-level done output will be created.

To complete the process the generated PRS is flattened and optimized.

5.3.3 Synthesis Example
To demonstrate the described synthesis process, consider the Verilog specification of a
simple combinational circuit over four inputs in Listing 5.10 consisting of an OR, an
AND and an XOR gate.

1 module comb (a, b, c, d, z);
2 input a, b, c, d;
3 output z;
4 assign z = (a | b) ^ (c & d);
5 endmodule

Listing 5.10: Verilog description of a simple combinational circuit

Synthesizing this circuit for an NCLX target library yield the PRS shown in Listing 5.11.
The PRS has not been flattened to preserve its structure. It can be seen that for the three
Boolean operations that are required to compute the output z, three PRS instances are
created. The OR gate is implemented using an AND gate with inverted inputs (Line 20)
and outputs (Line 21). Internal CDs are created for the outputs of the AND and the OR
gate and their outputs are then merged into the done output of the PRS (Lines 27-30).
Also notice that all inputs have their needs_cd attribute set to true.

1 prs comb is
2 inputs
3 a : DRBit attributes(needs_cd := true);
4 b : DRBit attributes(needs_cd := true);
5 c : DRBit attributes(needs_cd := true);
6 d : DRBit attributes(needs_cd := true);
7 outputs
8 z : DRBit;
9 done : Bit attributes(role := done);

10 locals
11 int_sig_10 : DRBit;
12 int_sig_11 : DRBit;
13 int_sig_9_done_n : Bit;
14 int_sig_11_done_n : Bit;
15 instances
16 cell_0 := nclx_and(
17 a.F:=d.F, a.T:=d.T, b.F:=c.F, b.T:=c.T,
18 x.F:=int_sig_10.T, x.T:=int_sig_10.F);
19 cell_1 := nclx_and(
20 a.F:=b.T, a.T:=b.F, b.F:=a.T, b.T:=a.F,
21 x.F:=int_sig_11.F, x.T:=int_sig_11.T);
22 cell_2 := nclx_xor(
23 a.F:=int_sig_10.F, a.T:=int_sig_10.T,
24 b.F:=int_sig_11.F, b.T:=int_sig_11.T,
25 x.F:=z.F, x.T:=z.T);
26 begin
27 int_sig_9_done_n := nor_gate(int_sig_10.F, int_sig_10.T);
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28 int_sig_11_done_n := nor_gate(int_sig_11.T, int_sig_11.F);
29 internal_done_n_merged := cgate(int_sig_9_done_n, int_sig_11_done_n);
30 done := inv(internal_done_n_merged);
31 end prs;

Listing 5.11: Synthesis result

5.3.4 Adder Synthesis

Binary adders are very versatile generic function blocks that are heavily used in digital
circuits. They are not only required to implement arithmetic addition, but are also
needed for subtraction and comparison operations. Hence, to achieve well-performing and
area-efficient circuits, it is reasonable to give adders special attention during synthesis.
Over the years many different design approaches for adders have been proposed [WH11].
These range from the simple ripple-carry adder (RCA) to more sophisticated circuits like
carry-lookahead adders and related strategies.

Since the operation speed of synchronous circuits is limited by the critical path of their
combinational logic, a special focus in the design of adders is placed on the reduction
of their worst-case delay. In that regard RCAs, although very area-efficient, perform
particularly bad, because in the worst case the complete carry chain has to be traversed.
However, as will be discussed in this section, this is not necessarily the case for QDI
circuits. A well-designed QDI RCA can take full advantage of average case performance
and does not suffer from the same issue as its synchronous counterpart.

Hence, our logic synthesis always implements adders as RCAs (if the supplied cell library
provides an FA). Since, unfortunately the tool internally used by Yosys for technology
mapping does not support multi-output function blocks like FAs, adders are implemented
in a separate additional processing step during synthesis, which slightly complicates the
synthesis process.

This section first gives some background on QDI RCAs in general in Section 5.3.4.1
and then shows how their basic building block, i.e., the FA, can be implemented in
Section 5.3.4.2. Additionally, some novel FA implementations based on the use of SNs
are presented in Section 5.3.4.3. Finally, the different FA versions are compared to each
other in terms of speed and area-efficiency in Section 5.3.4.4.

For the FA designs presented in this work we restrict our investigation to logic styles that
only use basic gates readily available in standard libraries (with no more than 3 inputs)
and 2-input C gates. The aim of this investigation is not to give a definite answer to
the question which adder design is the best. We rather want to give an overview of the
available designs and present some estimates on their area overhead and performance.
The selection of a particular design depends on the available target technology. Therefore,
we keep our analysis on a more abstract level.
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5.3.4.1 Ripple Carry Adders

RCAs are constructed form FAs (and HAs). An FA, such as the one shown in Figure 5.1a,
is a digital circuit with three inputs a, b, and cin (carry input) and two outputs s (sum)
and cout (carry output). Its purpose is to add the three (single-bit) input signals and
produce a 2-bit result consisting of the sum bit (i.e., the LSB of the 2-bit result) and a
carry output. To add binary numbers of arbitrary width n, an RCA consisting of n FAs
(FA0,...,FAn-1) can be used. As shown for the example of n = 2 in Figure 5.1b this is done
by connecting the i-th bits of the input vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1)
to the a and b inputs of FAi, while the carry output of FAi is connected to the carry
input FAi+1 to form a so called carry chain. The delay of this carry chain represents the
critical path through an RCA in a synchronous circuit. Therefore, its optimization is
critical for the attainable speed of the circuit.

As illustrated in Figure 5.1a, a single FA can also be viewed as being composed of two
HA components. An HA just adds two single-bit numbers and is, hence, considerably
simpler. For RCAs that don’t require a cin signal the first FA can be replaced by an HA.

a

b

cin

cout

s

half adder

half adder

(a) Full adder

FA0

FA1

a0

b0
s0

a1

b1
s1

cin

cout

(b) 2-bit RCA

Figure 5.1: Binary addition circuits

Recall from Section 2.6.2 that multi-output QDI function blocks can be classified as
strongly and weakly indicating. In the context of QDI FAs in RCAs this is an important
performance-determining property. Using strongly indicating FAs the carry signal always
has to travel through the complete carry chain, because every FA only starts producing
output values when it received its carry input.

To achieve good average performance a weakly indicating FA is preferable, because
it shortens the average distance a signal has to travel in the carry chain: If inputs a
and b match (which is the case for statistically 50% of the inputs), then cout is already
determined irrespective of the value of cin. This allows an early activation of cout

therefore effectively shortening the carry path; in essence it breaks the carry path into
segments (depending on the data inputs) that can be processed independently and, more
importantly, concurrently. This also occurs in synchronous implementations, but there
the reliance on the worst-case timing prohibits making use of this effect. QDI circuits, in
contrast, can fully benefit from this average case timing – if they are weakly indicating.
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5.3.4.2 Full Adder Designs from Literature

The first QDI FA we want to discuss is the version using 2-input DIMS gates. A first
naive approach to such an implementation is to replace each gate in Figure 5.1a with its
DIMS version, which each consist of four C gates and one or two OR gates, depending on
the Boolean function. However, notice that the two pairs of XOR and AND gates (i.e.,
the two HAs) share the same inputs, meaning that the C gates in their DIMS versions
would perform the exact same operation. Hence, these gates can be shared between
the DIMS AND and XOR gates. A different optimization for this design style called
“Input Completeness Relaxation” was proposed by Jeong and Nowick in [JN07]. This
optimization essentially allows to replace the two DIMS AND gates with the simpler
NCLX version consisting of just an OR and an AND gate. This circuit is the one we will
use for our evaluation and refer to as DIMS-FA. We don’t consider a potential FA variant
using a single 3-input DIMS gate. This is because such a solution would require 3-input
C gates, which we want to avoid, and would bring little to no benefit when compared to
other presented circuits.

Another possibility is to replace every gate in Figure 5.1a with its NCLX equivalent,
resulting in the circuit shown in Figure 5.2. This circuit needs CDs for the three input
signals as well as the three internal signals, which are also depicted in the figure. Notice
that the marked gates can be shared between the XOR and AND gates. We will refer to
this circuit as NCLX2-FA.

a.F
a.T

b.T
b.F

s.F

s.T

cin.F

cin.T

cout.F

cout.T

C done

XORXOR

AND

AND

OR

Figure 5.2: NCLX FA (input CD omitted from figure)

The NCLX design style can also be applied using 3-input gates, resulting in the circuit
shown in Figure 5.3, which we will refer to as NCLX3-FA. For every input pattern only
one of the AND gates is activated, the OR gates at the output then determine which
output rails must be asserted. Since the AND gates switch to zero again as soon as one
input is deasserted an input CD is required for this circuit. Notice that using C gates
instead of AND gates would yield a DIMS circuit.
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cout.T

Figure 5.3: NCLX FA with 3-input gates (input CD omitted from figure)
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b.T
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Figure 5.4: Toms’ FA [Tom06]

In [Tom06] Toms presents a synthesis algorithm for QDI combinational circuits, which
yields the FA shown in Figure 5.4. For every input value exactly one of the C gates in
the first column and one in the second column switch to one. The circuit does not need
an input CD and is strongly indicating. We will refer to this circuit as Toms-FA.

If this circuit is equipped with an input CD and an internal CD to collect gate orphans
after the first column of C gates, the C gates can be replaced with AND gates. The
resulting circuit, which we will refer to as TomsX-FA, is shown in Figure 5.5. Note that
this circuit can no longer be classified as strictly strongly indicating. While it still only
generates output data on s and cout when all three input values have switched to the
data phase, the done output may be asserted with only two inputs present. Moreover,
when one input switches to the null phase the outputs will immediately switch to the
null phase as well, only the done signal switches to low when all inputs are in the null
phase. This behavior also applies to the NCLX3-FA.

5.3.4.3 Sorting-Network-based Full Adders

This section presents three of our own FA designs that are based on the use of binary
SNs (see Section 4.4). Figure 5.6 shows the first of these circuits, which we will refer to
as SN-FA. The SNs are essentially used to count the number of asserted true and false
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cin.F

cin.T

s.T

s.F

cout.T

cout.F

a.F

b.T

b.F

a.T

done

Figure 5.5: Modification of Toms’ FA (input CD omitted from figure)

rails in the set of dual-rail input signals. If any of the SNs detects two asserted inputs
(i.e., T 3

1 and T 3
2 switch to one), the respective carry output can be generated, which

means that the circuit is weakly indicating. To generate the sum output, all three inputs
must be present and one of two conditions must be satisfied. Either one SN detects three
asserted inputs, which means that the inputs are either all true (i.e., their sum is one) or
all false (i.e., the sum is zero). The other possibility is that one SN detects two asserted
inputs and the other SN one. If two true rails and one false rail are detected, the sum is
zero, in the complementary case it is one.

It is important to point out that this circuit does not need input or internal CDs. As
already discussed in Section 4.4, SNs themselves don’t contain gate orphans, if all outputs
are observed correctly. For every combination of input values exactly three outputs of
the combined set of outputs of both SNs will transition to one. When all those three
intermediate transitions are involved in the generation of output values it is clear that
there are no more orphan transitions that could happen at an output of a T 3. After the
last output transitioned to data or null, one can be sure that all switching activity inside
the circuit has completed.

Specifically, if on one SN T 3
1 is the only activated output (first case), it takes T 3

2 from
the other side to activate the respective sum rail (according to our assumption, the
lower input of the OR must be 0). The T 3

1 on the side where T 3
2 is asserted, is required

to activate the corresponding carry rail. In case of all 3 outputs activated on one SN
(second case), the respective carry rail collects the transitions from T 3

1 and T 3
2 , while the

transition at T 3
3 is observed at the respective sum rail. Hence, it is clear that in both

cases all internal transitions are observed.

Notice that for generating the carry rail cout.x the corresponding output T 3
2 alone would

be sufficient, as T 3
2 = 1 implies T 3

1 = 1. In fact the C gates joining these two signals
are only there to keep the T 3

1 signals involved, and specifically avoid introducing gate
orphans when switching to the null phase. Unfortunately, these additional C gates in
the carry path introduce additional delay in the carry chain of an RCA, which is exactly
where we need to optimize.

The circuit shown in Figure 5.7, which we refer to as the SNFC-FA, improves this issue
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cin.F
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cout.F

Figure 5.6: SN-based FA (SN-FA)

by removing the C gate from the carry path. However, to still keep the T 3
1 outputs

involved in generating an output signal in the case where both SNs assert this output,
additional C gates have to be introduced in the signal paths generating the sum output.

T 3b.T
a.T

cin.T

T 3b.F
a.F

cin.F

C

cout.T

cout.F

C

C

C

C

s.T

s.F

Figure 5.7: SN-based FA with fast carry generation (SNFC-FA)

The other possibility to create a fast carry path, but without compromising on the sum
output delay, is presented in Figure 5.8 and will be referred to as the SNX-FA. This
FA variant does not use C gates to implement the actual Boolean function and directly
uses the T 3

2 outputs for cout. In order for this to work correctly, an internal CD must be
added to collect all orphan transitions that may arise. Having thus again ensured that
all three output transitions of the two T 3 SNs are involved in generating the outputs for
every possible input pattern, the circuit still does not require an input CD.

Note carefully, that we have now made the carry generation fast and by removing the C
gates from the data path also improved the sum output delay. This optimizations came
at the price of introducing the done signal, which, for some input patterns, resembles
the slowest path in the cell now. Recall, however, that done is moving downstream, thus
bypassing the next stage and its CD, and hence has some delay margin.

Table 5.2 shows an overview of the properties of the FA circuits presented in this section.
Keep in mind that if an FA needs an input CD then every internal carry signal along the
carry chain of an RCA also needs a CD.

7Weakly indicating on the data rails when switching to the spacer, see explanation above.
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T 3b.T
a.T

cin.T

T 3b.F
a.F

cin.F

cout.T
cout.F

s.T

s.F

C done

Figure 5.8: SN-based FA with explicit completion detection (SNX-FA)

Table 5.2: QDI FA properties

Circuit Indication Input CD Internal CD
DIMS-FA weak no no

NCLX2-FA weak yes yes
NCLX3-FA full7 yes no
Toms-FA full no no

TomsX-FA full7 yes yes
SN-FA weak no no

SNFC-FA weak no no
SNX-FA weak no yes

5.3.4.4 Evaluation and Performance Considerations

This section evaluates and compares the presented FA circuits in terms of their area
overhead and performance.

Area Analysis For the area analysis, we optimized the individual FAs using standard
CMOS optimizations, reducing the number of non-inverting gates. As mentioned before
we don’t target any specific gate library with this analysis. Hence, for the evaluation
we assume an area requirement of 1 GE for 2-input NAND/NOR gates and 0.5 GEs
for inverters. C gates are assumed to require 2 GE, which, depending on the actual
implementation may even be considered generous [SEE98]. Our analysis only considers
the gate costs, other parameters like drive strength/fanout or routing are not considered.

First, we consider a classic RCA with a varying data width of 8, 16 and 32 bits and
carry input and output signals. Figure 5.9a shows the area overhead of the presented
implementation variants relative to the DIMS version, which we will use as the baseline
for this analysis. The stacked bars in the figure indicate the proportion of the hardware
dedicated to C gates (upper part) and combinational gates (lower part). Note that the
cost for input CDs (needed for the NCLX2-FA, NCLX3-FA and TomsX-FA versions)
is not included in these results, since we assume that the adder is directly fed from a
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buffer stage8. It can be seen that all the SN-based FA variants have a competitive area
footprint. The fact that the NCLX3-FA variant performs best in this analysis is a little
misleading. From the discussed circuits, this variant has the highest fanout on its input
signals, which might require additional drivers, and quite complex routing requirements
which are not factored in here. Unlike all other FAs presented in this work the maximum
fanout for any signal in the SN-based FAs is three.

For the second evaluation we implemented an adder tree consisting of two levels of
RCAs adding four numbers. Here we used HAs for the lower-most bits of the individual
RCAs, where an NCLX-style HA was used for the NCLX2-FA, NCLX3-FA, TomsX-FA
and SNX-FA versions, while the other used DIMS HAs. Figure 5.9b shows the results.
Since some circuits need CDs at the input of the second-level adder, the NCLX2-FA,
NCLX3-FA, TomsX-FA version perform worse than in the previous test. The SNX-FA
version now even surpasses the NCLX3-FA version. It is also worth noting that with the
exception of the NCLX3-FA the SNX-FA version requires the least amount of C gates.
This means that assuming a more expensive C gate implementation, the SNX-FA version
would perform even better when compared to the other variants.

DIMS
NCLX2

NCLX3
Toms

TomsX SN
SNFC SNX

0
0.2
0.4
0.6
0.8

1 8 16 32

(a) Single RCA

DIMS
NCLX2

NCLX3
Toms

TomsX SN
SNFC SNX

0
0.2
0.4
0.6
0.8

1 8 16 32

(b) 2-level adder tree of RCAs

Figure 5.9: Area overhead of the presented adder circuits (normalized to the DIMS RCA)

8Note that this assumption combined with the “Input Completeness Relaxation” approach from
[JN07] could be used to further optimize the DIMS-FA and the Toms-FA variants resulting in a hybrid
NCLX/DIMS solution, which relies on an input CD provided by the source buffer. However, such specific
circuit-level optimizations go beyond the scope of this analysis. Hence, we restrict the discussion to the
“pure” DIMS solution.
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Performance For the performance evaluation of the presented circuits we derive a
simple mathematical model that describes their behavior in an RCA with input data
width n. For that purpose, we assume that all inputs arrive at the RCA simultaneously
and that their values are uniformly distributed (i.e., every input data bit is equally likely
to be zero or one regardless of the other input bits).

Let us define the following delay parameters.

• Early carry delay ΔE : The delay to generate cout out of the inputs a and b for the
case where a = b (this only applies to weakly indicating FAs).

• Late carry delay ΔL: The delay to generate cout when cin arrives, assuming that
a and b have already propagated through the circuit as far as possible. Hence,
internal nodes only dependent on a and b have already settled to a value.

• Sum delay ΔS : The delay to generate the s output when cin arrives, again assuming
the same condition for a and b as before.

Given these parameters we can model the average delay ΔRCA the RCA needs to produce
its outputs. As already mentioned, the most important factor for the performance of
an RCA is the length of its carry chain. If the RCA consists of strongly indicating FAs,
always the complete carry chain has to be traversed, which means that their average case
delay is equal to the worst case. Thus, their overall delay (Equation (5.1)) is given by
the carry delay through (n − 1) FAs and the final delay to generate the MSB s signal or
the cout signal (depending on which circuit path is slower).

ΔF
RCA ≈ (n − 1)ΔL + max(ΔL, ΔS) (5.1)

We only use the approximate symbol, because the equation does not fully consider the
delay through the first FA of the chain. However, for large n this discrepancy is not
significant.

The calculation of the RCA delay for the case of weakly indicating FAs is a little bit more
involved. In a first step we need to determine the average length of the longest carry
chain segment for a given input data width. Because we assumed uniformly distributed
input values, for every possible input value combination there is an equal chance that a
particular FA in the adder is able to generate its cout signal with just the inputs a and
b or that it has to wait for the cin signal. This means that every possible input value
configuration fits one of these 2n equally likely cases. Hence, we can simply enumerate
every possible binary vector of length n, determine the longest sequence of zeros and take
the average of these values. We denote this function with lc(n). A numerical analysis
showed that lc(n) grows quite slowly (lc(8) = 2.1, lc(16) = 3.2, lc(24) = 3.8). The final
adder delay ΔW

RCA(n) is then given by Equation (5.2). Again the approximate symbol is
used for the same reason as before.

ΔW
RCA(n) ≈ lc(n) ∗ ΔL + ΔE + ΔS (5.2)
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When comparing the two equations it is apparent that the weakly indicating FAs have
quite a large performance advantage over the strongly indicating ones. Table 5.3 shows
estimations for the delay parameters9 for the weakly indicating FAs based solely on the
gate delays involved (routing/wire delays are not considered).

Table 5.3: Estimated full adder delay parameters

Circuit ΔE ΔL ΔS

DIMS-FA 8.5 4.75 3.75
NCLX2-FA 3 2 2

SN-FA 5.75 4 5.9
SNFC-FA 3.75 2 6.6
SNX-FA 3.75 2 3.5

As can be seen from the table, all our proposed approaches perform better than the DIMS
version. The SNX-FA even has comparable delay to the NCLX2-FA version. However,
these numbers must be interpreted cautiously, because circuit layout and the target
technology also play an important role in the real-world performance of these circuits.

Another important point we need to address here is the delay when switching to the null
phase. Again an RCA consisting of fully indicating FAs is at a disadvantage, because
also in the null phase the carry signal has to traverse the complete carry chain before
every individual FA is reset. However, some of the weakly indicating circuits suffer from
a similar albeit less severe issue. If the carry output of the SN-FA was generated solely on
the basis of the inputs a and b (i.e., for the case where a = b), then resetting just those
inputs also resets cout. If on the other hand the cin signal was involved in generating
cout the circuits waits until cin resets before letting cout enter the null phase. Hence,
the same carry segments that determined the delay of the circuit in the data phase also
affect the null phase. Notice that the SNFC-FA and SNX-FA variants don’t behave like
that. A similar issue arises in the DIMS-FA, where if cin.F is asserted, this rail must be
deasserted before cout can enter the null phase.

5.4 Bounded Model Checking
The pypr framework also has some basic bounded model checking (BMC) capabilities
to verify the correctness of SI circuits with regard to certain properties (within certain
bounds). For that purpose, we use Z3. The advantage of Z3 is that it is not “just” a
Boolean satisfiability (SAT) solver, but a satisfiability modulo theories (SMT) solver,
allowing to reason about more general classes of problems. This feature can come in handy
for future extensions of the model checker. Moreover, the solver can handle arbitrary
Boolean input formulas, i.e., it is not restricted to an input clause set in conjunctive

9For this estimation, we assumed a unit delay of 1 for 2-input NAND/NOR gates, 1.25 for 3-input
NAND/NOR gates, 0.75 for inverters, and 2 for C gates.
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normal form (CNF). This is a convenient feature as it makes it a lot easier to formulate
the SAT problem.

After a brief introduction to BMC for synchronous circuits in Section 5.4.1, Section 5.4.2
goes on to show how the presented techniques can be adapted and applied to SI/QDI
circuits. Then, some of the checkable properties supported by our framework are
discussed in Section 5.4.3. Section 5.4.4 shows how to model transient faults within the
model checker. For a practical demonstration of the framework Section 5.4.5.1 includes
two simple application examples. Finally, Section 5.4.6 provides some insight into the
computational complexity of our approach.

5.4.1 Introduction and Related Work

Model checking is a well established technique to verify the correctness of digital circuits
or to find (potential) problems in them [BK18]. For BMC the core idea (as also used in
this work) is to convert a circuit into a SAT problem and model its state progression
for a certain (bounded) amount of time. In the domain of synchronous circuits the SAT
problem simply models how the circuit’s register values change with each clock cycle
(given some initial state). To visualize this approach consider the circuit in Figure 5.10
showing a 3-bit LFSR, consisting of three registers r1 to r3 and an XOR gate (disregard
the NOR gate and the err output for now).

D Q D Q D Q
r1 r2 r3

clk

err

Figure 5.10: 3-bit LFSR

In the following we will use the notation r[n] to denote the value of the register r in clock
cycle n, where r[0] refers to the initial (i.e., reset) value of a register. The clause set that
models the behavior of this LFSR is, thus, given by10:

¬r1[0], ¬r2[0], r3[0], inital state
r1[1] = (r2[0] ⊕ r3[0]), r2[1] = r1[0], r3[1] = r2[0], state after first clock cycle
r1[2] = (r2[1] ⊕ r3[1]), r2[2] = r1[1], r3[2] = r2[1], state after second clock cycle

...

r1[b] = (r2[b−1] ⊕ r3[b−1]), r2[b] = r1[b−1], r3[b] = r2[b−1] state after b clock cycles

10For a clause set to be considered satisfiable all clauses must evaluate to true, hence a clause set can
also be viewed as one large Boolean logic formula given by the conjunction of all clauses.
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Note that we don’t use a CNF here, since this would unnecessarily complicate the example.
To convert the clause set into a CNF the Tseytin transformation can be used. However,
modern solvers such as Z3 can often directly handle clauses in propositional logic.

The first three unit clauses11encode the initial (i.e., reset) state of the circuit, which is
given by r1 = r2 = 0 and r3 = 1. The following three clauses model the state after the
first clock cycle. It can be seen that the state in cycle n is derived from the previous state
(i.e., the state in cycle n−1) through some Boolean transformations which are determined
by the combinational logic of the circuit. Hence, given a suitable representation of a
circuit (often and-invert-graphs are used for this purpose) the creation of this clause set
is quite straightforward. However, it is apparent that during creation we must choose
a certain bound b up to which the circuit progression is modeled. This is where the
boundedness comes from.

Circuit inputs can, e.g., be modeled using free variables (i.e., variables unconstrained by
any clause). However, as we will see in the following section, inputs must often adhere to
a certain protocol, which must then also be modeled using appropriate clauses.

Now that we modeled and encoded the behavior of the circuit itself, we also need some
clauses that actually verify certain properties that we are interested in. A common
question is whether a given circuit can ever enter an unsafe/forbidden or invalid state
(safety property). For our simple example, we want to check if the circuit can ever enter
a state where all registers are zero. Since LFSRs cannot produce this value, this would
indicate a problem with the circuit. To do that we can add some extra logic to the
circuit (i.e., the NOR gate) that checks for this state and produces a single output err
that indicates whether the state has been entered. This additional logic is basically a
circuit-level representation of an assertion, in this specific case r1 ∨ r2 ∨ r3. The clause
set is then extended accordingly:

err[0] = ¬(r1[0] ∨ r2[0] ∨ r3[0]),
err[1] = ¬(r1[1] ∨ r2[1] ∨ r3[1]),
...

err[b] = ¬(r1[b] ∨ r2[b] ∨ r3[b])

Finally, we add a clause that states that the err signal will be asserted at least once (i.e.,
for at least one clock cycle). �

0≤n≤b

err[n]

If we now run the SAT solver and it is not able to find a model (i.e., a variable assignment
that satisfies the SAT problem), we can conclude that the circuit never enters the unsafe
state (within b clock cycles). If a model is found, we can immediately get a concrete
(counter) example of how the circuit got into the state and can further investigate it.

11A unit clause only consists of a single literal and states whether a variable must be true or false. For
example, the unit clause ¬a states that the variable a must be false.
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This also brings us to the limitation of simple BMC. The obtained results are only valid
up to the chosen bound b. Even if a circuit behaves correctly up to bound b, it may still
violate some assertion at step b + 1. Hence, selecting the “right” bound (completeness
threshold) is a non-trivial problem. On the other hand, it is guaranteed that if there is
the possibility to enter a certain (e.g., unsafe) state within the chosen bound, the model
checker will find it. However, there are further techniques, that allow to overcome this
bound limitation and derive universal results which hold in general and not just up to
some bound. In particular this includes induction- or interpolation-based approaches
[BK18].

Regarding model checking of asynchronous and more specifically SI circuits the discussed
approach needs to be modified to a certain degree. How this is done is subject of the
next sections. There are some other model checking approaches for asynchronous circuits
in literature. In [TM18] a commercial synchronous tool is used to verify SI (and mixed-
style) circuits, by first creating a suitable synchronous transformation of the circuit. An
STG-based approach is presented in [KKY06, SKM+15]. Another approach is presented
in [BRG+18], which, however, operates on a higher abstraction layer (SystemVerilog is
used for design entry). For verification the circuit is transformed such that it can be
processed by the tool CADP (an acronym for “construction and analysis of distributed
processes”).

The use of a SAT-based approach for verifying the delay insensitivity of circuits (absence
of orphans) is presented in [KNR+02]. However, the focus is on partitioning large circuits
to make model checking feasible and the construction of the SAT problem is not described.

In this section we want to provide a clear path from a circuit description and properties to
be verified, to a SAT problem understood by a SAT solver to facilitate formal verification
of (asynchronous) circuits created using pypr.

5.4.2 Encoding PRSs as SAT problems
This section describes how an SI PRS can be converted into a SAT problem. The process
that will be discussed assumes a flat PRS (i.e., a PRS without instances) with only
single-bit wire rules.

The bound to which the circuit is unrolled is denoted by the variable b. Since there is no
clock signal in asynchronous circuits that can be used to model the progression of time
in discrete steps a different abstraction has to be found. Moreover, as already implicitly
assumed in the previous section, when model checking synchronous circuits gate delays
are completely disregarded. It is simply assumed that the combinational logic evaluates
within one clock cycle. This assumption is perfectly fine for synchronous circuits as it
represents the core abstraction for the design style. However, recall that in the SI delay
model, gate delays can be arbitrarily long – a fact that must somehow be reflected by
our model. Hence, the circuit’s (state) progression is not modeled using clock cycles, but
production rule evaluation rounds. During a step each rule of the PRS may evaluate if
its up or down condition is satisfied but it doesn’t have to. This way the SI delay model
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is accommodated by the model checker. Similar techniques have been used in literature
[TM18]. The resulting SAT problem encodes exactly b such rule evaluation steps. The
SAT solver tasked with this problem will, thus, explore every possible rule firing sequence
corresponding to every possible delay configuration of the circuit. As a consequence of
this approach the computational effort of model checking per gate of an SI circuit is
much higher than for a synchronous circuit.

The state of a circuit and its environment for some step n is defined by the values of a set
of variables. These variables include all input, output and local signals of a circuit as well
as some auxiliary variables required to describe and constrain the dynamic behavior of
the circuit or to formulate and check certain properties. Thus, we use x[n] to denote the
value of the variable x in rule evaluation step n, where 0 ≤ n ≤ b. Using this notation
x[0] refers to the initial value of some variable x, while x[1] models the state after the
first rule evaluation step. Since internally Z3 is employed as the actual SAT solver, all
variables can conveniently be represented using the built-in bit vector type for Boolean
variables.

In the context of the model checker a DI RZ channel C is defined by the tuple (D, ack),
consisting of a set of (multi-rail) data signals D(C) and an acknowledgment signal ack(C).
Each data signal d ∈ D(C) is represented by a set of rails. For a dual-rail signal, this
rail set is given by {T, F}, i.e., the true and the false rail. To denote the individual rails
r ∈ d, the notation d.r is used. This means that a dual-rail bit d consists of the rails d.T
and d.F . Currently the model checker only supports dual-rail input and output channels.

We use the variables CI and CO to refer to the set of input and output channels of a
PRS, respectively.

A production rule r, in the context of model checker, is defined by the tuple (x, up, down),
where x(r) refers to the variable the rule writes to while up(r) and down(r) refer
to the Boolean expressions that determine if x(r) should be asserted or deasserted,
respectively. If up(r) = ¬down(r) the rule r is combinational, otherwise it is state-holding.
A combinational rules, where up(r) just contains a single signal, is a wire rule.

5.4.2.1 Initialization

To encode the initial condition of the circuit into the SAT problem, the value of each
input, output and local signal x of the PRS must be determined and encoded using a
unit clause, effectively fixing the value of x[0]. However, in some cases the initial value of
a signal cannot be derived, which results in a not fully constrained initial state. If this
signal then fans out to other production rules this uncertainty can spread.

Consider the following example PRS consisting of an inverter, a C gate (without init
expression) and an XOR gate.

1 prs demo is
2 inputs a : Bit; b : Bit; c : Bit;
3 outputs z : Bit;
4 rules
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5 not_b := inv(b);
6 x := cgate(a, not_b); # no init expression
7 z := xor_gate(x, c);
8 end prs;

Assume that initially all inputs are zero, which would be encoded using three unit clauses:

¬a[0], ¬b[0], ¬c[0]

The value for the local not_b is unambiguously true, hence we have

not_b[0]

However, the value of the local signal x cannot be derived because the C gate is in its
state-holding mode of operation, where it outputs the value of its internal storage loop.
Hence, we cannot constrain x[0] using a SAT clause, it is a free variable that will be
treated as such by the SAT solver. Consequently, it is also not possible to derive an
initial value for the output z, because it directly depends on the value of x. However,
we still need to constrain z[0], because, although x[0] is not constrained, the value of
z[0] is still related to it (e.g., x[0] = true and z[0] = false would not be a valid variable
assignment, since we assumed all inputs are false). Hence, we add the following clause to
the SAT problem (remember that because we are using Z3 not all our clauses will be
specified as simple disjunctions):

x[0] = z[0]

We will now describe the process we use to ascertain the initial signal values. The model
checker takes a (Python) dictionary with signal assignments, where initial values for
inputs and internal signals can be specified. An initial value can either be a Boolean
constant or None, indicating that no assumption about the initial value of the respective
signal shall be made. Specifying an initial value for an internal signal is only possible for
signals driven by state-holding rules. Doing so then overrides the initialization expression
of the respective rule and replaces it with an initialization expression only containing the
specified reset value, the initialization condition is removed. Note that overriding the
initial values of state-holding rules can be used to bring the circuit into arbitrary initial
states. Using this approach a circuit can even be brought into a state not reachable
during normal operation. This could for example be useful to explore how a circuit
behaves in a state that was caused by a fault.

Per default all inputs are assumed to be zero initially. However, this behavior can be
deactivated, such that the model checker does not make assumptions about the initial
values of inputs.

Now, to derive the initial signal assignment the model checker first makes a copy of the
original PRS and replaces all initialized inputs with local signals driven by a constant wire
rule. Furthermore, reset input signals are assumed to be active (reset inputs are identified
using the role attribute). Hence, those inputs are likewise replaced by constant wire rules.
In the next step, every rule with an initialization expression which just contains a value
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(init(true) or init(false)) is also replaced with a constant wire. Then, the keep
attribute is set to true for all locals (undeclared locals are explicitly declared for that
purpose) and the PRS is passed through the optimizer. This yields a PRS with initial
signal assignments (i.e., constant wire rules) for all inputs, locals and outputs, which can
be expressed as constants. The remaining signals, which are not driven by constant wire
rules, are either themselves indeterminable because they are driven by state-holding rules
(like the C gate in the example above) or are driven by a combinational rule depended
on an indeterminable signal (like the XOR gate). For the former case no clauses are
generated, while for the latter case we simply generate a clause that states that the signal
the rules writes to is equal to the combinational expression represented by the rule.

The model checker reports signals with indeterminable initial values, because such
situations can potentially lead to unintended consequences or a malfunction of the circuit
(see Section 5.4.5.1 for an example).

5.4.2.2 Rule Translation

Before the clauses for the rules of a PRS are generated the reset inputs are replaced
with local signals driven by constants ensuring the reset is not active. The PRS is then
optimized accordingly, which will remove all occurrences of the reset signals in the rules,
which in turn removes all init expressions.

The simplest form of production rules are wire rules, which are expressed using simple
equivalence clauses. This means that wires are always assumed to have zero delay, which
is consistent with the SI delay model. Hence, a wire rule of the form x := wire(y)

yields: �
1≤n≤b

x[n] = y[n]

For each non-wire rule r we introduce an auxiliary variable (vector) sr, that determines
whether the rule is evaluated in a particular step or not. A rule may only be activated if
activating it would change the associated variable x(r). If a rule is activated, x(r) simply
changes its value, otherwise it keeps its old value. This is expressed with the following
two clauses. �

1≤n≤b

sr [n] → (x(r)[n] = ¬x(r)[n−1])

�
1≤n≤b

¬sr [n] → (x(r)[n] = x(r)[n−1])

Hence, the entirety of these auxiliary variables determine the sequence in which the rules
of a PRS “fire”, which basically corresponds to different delays associated with each rule.
Since we evaluate SI circuits this sequence must not have an impact on the validity and
correctness of the result the circuit produces. It can, however, be relevant in the case of
faults. Notice that in step n = 0 no rule evaluation takes place. Hence, we can set all
sr [0] variables to false using unit clauses, effectively “deactivating” them.
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To specify the clauses that determine when a production rule may fire we distinguish
state-holding and combinational rules. As we will see in the following, we only constrain
when a rule is not allowed to fire, leaving the actual firing sequence (which as mentioned
above actually corresponds to different/varying gate delays) to the underlying SAT solver.

Combinational Rules: The following constraint ensures that a combinational rule r
may only fire in some step n, if the value of up(r)[n−1] is different from x(r)[n−1].�

1≤n≤b

(up(r)[n−1] = x(r)[n−1]) → ¬sr [n]

Consider the following example of a simple OR gate (x := or_gate(y, z)), which
translates into the following clauses:�

1≤n≤b

((y[n−1] ∨ z[n−1]) = x[n−1]) → ¬sr [n]

�
1≤n≤b

sr [n] → (x[n] = ¬x[n−1])

�
1≤n≤b

¬sr [n] → (x[n] = x[n−1])

State-holding Rules: There are three distinct cases when a state-holding rule r is
not allowed to fire.

• Neither up(r) nor down(r) evaluate to true:�
1≤n≤b

(¬up(r)[n−1] ∧ ¬down(r)[n−1]) → ¬sr [n]

• When up(r) evaluates to true and x(r) is already asserted:�
1≤n≤b

(up(r)[n−1] ∧ x(r)[n−1]) → ¬sr [n]

• When down(r) evaluates to true and x(r) is already deasserted:�
1≤n≤b

(down(r)[n−1] ∧ ¬x(r)[n−1]) → ¬sr [n]

Consider the example of a C gate (x := cgate(y, z)), which translates to:�
1≤n≤b

(¬(y[n−1] ∧ z[n−1]) ∧ (y[n−1] ∨ z[n−1])) → ¬sr [n]
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�
1≤n≤b

((y[n−1] ∧ z[n−1]) ∧ x[n−1]) → ¬sr [n]

�
1≤n≤b

((¬(y[n−1] ∨ z[n−1]) ∧ ¬x[n−1]) → ¬sr [n]

�
1≤n≤b

sr [n] → (x[n] = ¬x[n−1])

�
1≤n≤b

¬sr [n] → (x[n] = x[n−1])

Notice that the last two lines are the same as for the OR gate example above.

5.4.2.3 I/O Channel Constraints

This section explains how the constraints describing the behavior of DI dual-rail input
and output channels are formulated. For that purpose, consider Figure 5.11 that shows
the different protocol phases of a dual-rail channel consisting of n dual-rail bits d0,...,dn-1.

• Phase A represents the spacer phase, where all data rails and the acknowledgment
signal are zero. The channel waits for transitions on the data rails.

• In Phase B the data rails transition from the spacer to the data phase. It ends
when all dual-rails bits are in the data phase

• Phase C represents the data phase, the channel now waits for an acknowledgment.

• In Phase D the acknowledgment is asserted and the channel waits for the data rails
to return to the spacer again.

• The actual data rail transitions happen in Phase E. It ends with the last data rail
transitioning to zero.

• Finally, the channel again enters the spacer phase in Phase F and waits for a falling
edge on the acknowledgment signal.

We will use this figure and the described protocol phases to explain where a particular
clause applies and which behavior it models.

Recall the notation for channels introduced above: The expressions ack(C) and D(C)
refer to the acknowledgment wire and set of dual-rail data bits of some channel C,
respectively. CI (CO) refers to the set of input (output) channels of a PRS.
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A B C D E F

d0.F

d0.T

. . .

dn-1.F

dn-1.T

ack

Figure 5.11: DI dual-rail channel protocol phases

Input Channel Constraints For input channels C ∈ CI we distinguish between
coding and protocol constraints. The coding constraints specify how inputs are allowed
to change, while protocol constraints state when the inputs are allowed to change.

Regarding the coding constraints, since we only deal with dual-rail inputs it suffices to
demand that the true and false rails cannot be asserted at the same time (i.e., at the
same step n). �

d∈D(C)

�
0≤n≤b

¬(d.T [n] ∧ d.F [n])

For the protocol constraints we distinguish between the data and the spacer phases.

• Data Phase: If ack(C) is deasserted (Phases A, B, C) and a rail is one, it must
stay one until ack(C) is asserted, i.e., in the data phase only rising transitions are
allowed. �

d∈D(C)

�
r∈d

�
1≤n≤b

(d.r[n−1] ∧ ¬ack(C)[n−1]) → d.r[n]

This means that rails that are zero are allowed to switch to high during the phases A
and B, and if they do, they have to stay one. Note that in phase C rising transitions
are prevented by the coding constraints.

• Null Phase: If ack(C) is asserted (Phases D, E, F) and a rail is zero, it must stay
zero until ack(C) is deasserted, i.e., in the null phase only falling transitions are
allowed. �

d∈D(C)

�
r∈d

�
1≤n≤b

(¬d.r[n−1] ∧ ack(C)[n−1]) → ¬d.r[n]

This constraint has two functions:

– If a rail was not set during the data phase, it has to remain zero
– If a rail was set during the data phase, it may switch to zero, but then it has

to remain zero
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To support other 4-phase DI codes (see Section 4.1), only the coding constraints need to
be adjusted. For example, to support a 1-of-4 code the coding constraint must state that
it must never be the case that two or more rails are asserted at any given time.

Output Channel Constraints For output channels C ∈ CO we have to model the
behavior of the ack(C) signal based on the value of D(C). For that purpose, for each
channel, two auxiliary variables ocC and oeC are required, that essentially model the
behavior of a CD. The output complete indicator signal ocC is given by:

ocC [n] =
�

d∈D(C)
d.T [n] ∨ d.F [n]

The output empty indicator signal oe is given by:

oeC [n] = ¬
�

d∈D(C)
d.T [n] ∨ d.F [n]

• If ack(C) is asserted and the output data is not empty, (Phases D, E), it must stay
asserted. �

1≤n≤b

(ack(C)[n−1] ∧ ¬oeC [n−1]) → ack(C)[n]

• If ack(C) is deasserted and the output data is not complete (Phases A, B) it must
stay deasserted. �

1≤n≤b

(¬ack(C)[n−1] ∧ ¬ocC [n−1]) → ¬ack(C)[n]

Hence, we see that ack(C) may only change in Phases C (rising transition) and F (falling
transition), which effectively ends these phases.

5.4.3 Checkable Properties
5.4.3.1 Static Assertions

As described in Section 5.1.4 the pypr PRS language also supports a constraints section
where assumptions and assertions about the circuit can be formulated. Assumptions are
useful to constrain the inputs of a circuit (e.g., forbid certain input values) or to prevent
the model checker from exploring certain circuit states. Assertions on the other hand
make statements about valid states of a circuit – a violation of an assertion means that a
circuit has entered an illegal state, which should not have been possible to enter in the
first place.

Let E (U) denote the set of assert (assume) statements in the constraints section. Each
assertion e ∈ E and assumption u ∈ U is represented by a Boolean expression.
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The following clause states that there is at least one step n where at least one assertion
is violated. Hence, if the model checker cannot find a model we can conclude that all
assertions hold. �

e∈E

�
0≤n≤b

¬e[n]

Assumptions can also easily be incorporated into the SAT problem. We simply state that
every assumption holds in every step:�

u∈U

�
0≤n≤b

u[n]

5.4.3.2 Liveness/Deadlocks

A deadlock is defined as a state where no rule of a PRS can fire and no input signal can
transition because the I/O channel constraints forbid it. Since no signal changes are
possible, once entered, this state can never be left. Let deadlock(n) denote the clause
set that encodes this condition for the step n, i.e., a PRS is deadlocked in step n when
deadlock(n) evaluates to true. From the definition of the deadlock state it is clear that

deadlock(n) → deadlock(n + 1)

must hold. Hence, to check for a deadlock, we simply add the clause set created by
deadlock(b) to our SAT problem. If the solver is unable to satisfy the presented problem,
it can therefore be concluded that the circuit does not deadlock (up to bound b). If a
model is found, we can immediately extract an example (i.e., a rule firing sequence) that
shows how the deadlock was caused.

Now what remains is to define the deadlock condition itself:

deadlock(n) = ¬
	 �

r∈R

liver(r, n)
�

∨
 �

C∈CI

liveic(C, n)

 ∨
 �

C∈CO

liveoc(C, n)


This formula can be subdivided into three parts, each expressing the liveness constraints
for production rules, input channels and output channels. To get to deadlock the
disjunction of all these constraints must be false.

A rule is live if it could fire, which is expressed as:

liver(r, n) =

����
(up(r)[n] ∧ ¬x(r)[n]) ∨ (down(r)[n] ∧ x(r)[n]) if r is state-holding
up(r)[n] �= x(r)[n] if r is combinational
false if r is a wire

For dual-rail input channels we have liveness if (i) the acknowledgment signal is deasserted
and there is at least one dual-rail signal pair that is still in the spacer phase or if (ii) the
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acknowledgment signal is asserted and there is at least one dual-rail signal pair still in
the data phase (i.e., with one asserted rail).

liveic(C, n) =

¬ack(C)[n] ∧
�

d∈D(C)
¬d.T [n] ∧ ¬d.F [n]

 ∨
ack(C)[n] ∧

�
d∈D(C)

d.T [n] ∨ d.F [n]


For output channels the situation is a little bit simpler, as it is only required to check the
value of the auxiliary variables ocC [n] and oeC [n] in comparison to ack(C)[n] to determine
if a transition on the acknowledgment is expected.

liveoc(C, n) = (ocC [n] ∧ ¬ack(C)[n]) ∨ (oeC [n] ∧ ack(C)[n])

5.4.3.3 Gate Orphans

Another very interesting property to check in an SI/QDI circuit is whether it contains
gate orphans (see Section 2.2) as this would invalidate the SI/QDI property in the first
place. In our SAT problem gate orphans are discoverd by searhing for rules that could
have fired in step n − 1 (but didn’t) and can no longer fire in step n.

Hence, for each combinational rule the following clause is added to the problem, which
exactly captures this condition.�

1≤n≤b

up(r)[n−1] �= x(r)[n−1] ∧ up(r)[n] = x(r)[n] ∧ x(r)[n] = x(r)[n−1]

For state-holding rules the situation is similar, but here a distinction has to be made
between up and down transitions. If the up condition is fulfilled in step n − 1 and no
longer fulfilled in step n, then we have a gate orphan if the output value of the rule x(r)
was zero in both steps. The down condition is handled analogously.�

1≤n≤b

�
up(r)[n−1] ∧ ¬up(r)[n] ∧ ¬x(r)[n−1] ∧ ¬x(r)[n]


∨

�
down(r)[n−1] ∧ ¬down(r)[n] ∧ x(r)[n−1] ∧ x(r)[n]


If the solver finds a model for a SAT problem with these clauses the circuit contains at
least one gate orphan.

5.4.4 Fault Injection
The model checker can also be used to investigate the effects of transient faults on a
circuit. A fault in the context of the model checking problem is defined as the change of
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a signal without the associated rule firing. We distinguish between SETs and SEUs. The
former can be injected into both state-holding and combinational rules and only changes
the value of the affected signal for one step. SEUs on the other hand can only be injected
into state-holding rules. If neither the up nor the down condition is fulfilled the fault
makes a lasting change to the value of the associated signal (i.e., until it gets overridden).

To mark a rule as the target of a fault injection its fault_victim attribute must be set
to true. This can be set for multiple rules at once. The fault_type attribute is used to
choose between SETs and SEUs.

When the SAT problem is generated and a rule r is encountered that should be the target
of a fault injection, a special variable f is introduced. This variable models the actual
fault-injection event and is constrained to be asserted for exactly one step n using the
clause once(f)12.

once(v) =

 �
1≤n≤b

v[n]

 ∧
 �

n≤b

v[n] → ¬
�

j≤b,n �=j

v[j]



To model the effects of a fault only minor modifications to the rule clauses introduced in
Section 5.4.2.2 are necessary. For SETs the same set of clauses is generated but a newly
introduced variable x�

r is used as the target instead of x(r). Then, an additional clause is
added, which basically states that the actual signal x(r)[n] is always equal to x�

[n] except
for the fault-injection event:

�
1≤n≤b

x(r)[n] = x�
r [n] ⊕ f [n]

To model SEUs the clauses that determine what happens when the auxiliary variable sr

is asserted or deasserted have to be modified. In the case of a fault the variable f is used
to force the variable x(r) to flip its state, regardless of the value of sr.

�
1≤n≤b

(sr [n] ∨ f [n]) → (x(r)[n] = ¬x(r)[n−1])

�
1≤n≤b

(¬sr [n] ∧ ¬f [n]) → (x(r)[n] = x(r)[n−1])

5.4.5 Model Checking Examples

This section demonstrates two possible use cases for the model checker.

12Notice that f [0] is always false, because we don’t allow faults to be injected in step 0.
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5.4.5.1 Checking Circuit Initialization

Consider the circuit in Figure 5.12, showing a 3-stage dual-rail WCHB pipeline ring,
that constantly outputs a stream of tokens on its output channel C = ({x}, ack). Since
the data rails are crossed-over in the feedback connection in the pipeline (i.e., the two
top-most signal lines in the figure) the value of the single-bit output token toggles between
true and false. The PRS encoding this circuit is shown in Listing 5.12. Note that the
listing uses vectors where the labels in the figure use subscript indices.

1 prs atg is
2 inputs
3 ack : Bit attributes(channel:=C, role:=ack, channel_type:=DIDR);
4 outputs
5 x : DRBit attributes(channel:=C, role:=data);
6 locals
7 d : DRBit(2); c : Bit(3);
8 ack_n : Bit; en : Bit;
9 begin

10 #1. stage (data rails are crossed-over)
11 d(0).T := cgate(x.F, c(1)) init(true);
12 d(0).F := cgate(x.T, c(1)) init(false);
13 c(0) := nor_gate(d(0).T, d(0).F);
14 #2. stage
15 d(1).T := cgate(d(0).T, c(2)) init(false);
16 d(1).F := cgate(d(0).F, c(2)) init(false);
17 c(1) := nor_gate(d(1).T, d(1).F);
18 #3. stage (output)
19 x.T := cgate(d(1).T, en) init(false);
20 x.F := cgate(d(1).F, en) init(false);
21 c(2) := nor_gate(x.T, x.F);
22 #join input acknowledgment
23 ack_n := inv(ack);
24 en := cgate(ack_n, c(0));
25 constraints
26 assume(not (x.T and x.F));
27 end prs;

Listing 5.12: Alternating token generator PRS

C

C

C

C

C

C

c0 c1 c2

x.T

x.F

C

en

ack

d0.T

d0.F

d1.T

d1.F

Figure 5.12: Alternating token generator circuit

As can be seen in the listing all but two C gates are initialized to false (init(false)).
The C gate driving the signal d0.T is initialized to true, as the buffers comprising this C
gate initially starts with a data token. The other stages are initialized with the spacer
value.
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The C gate joining the input acknowledgment ack of the output channel C with the
acknowledgment of the left-most pipeline stage is intentionally left uninitialized. We
will now use the model checker to show that this can lead to a problem in the form
of a deadlock. Listing 5.13 shows how to run the model checker to find this particular
issue from within the pypr framework. First, the PRS is loaded and a bounded model
checking problem is created with a bound of ten. We then assert that there exists a
deadlock in the circuit and run the solver. Note the assume statement in the constraints
section of the PRS. This assumption is added to exclude models that would produce
an illegal output (i.e., x.T = x.F = 1), which is also a possible scenario in this circuit.
Every model found by the model checker corresponds to a sequence of events that brings
the circuit into a deadlocked state. To examine the model the Plot function allows to
create a timing diagram, which is shown in Figure 5.13. It can be seen that if the initial
value of the C gate driving the en signal is one (which is a valid initial value since it
has not been set explicitly), there exists a trace that leads to a deadlock. If this C gate
is initialized to zero, the circuit is deadlock-free. This example shows how the model
checker can be used to find potential initialization problems in SI circuits.

1 prs_lib = ParsePRSFile("atg.prs")
2 problem = BMCProblem(prs_lib["atg"], 10)
3 problem.ConstrainIOChannels()
4 problem.ImplementPRSConstraints()
5 AssertDeadlock(problem)
6 model = problem.Check()
7 model.Plot("counter_example.png")

Listing 5.13: Example Python code demonstrating how to run the model checker

d1.T

x.T

c1
ack

¬ack

d0.T

c2
en

c0

Figure 5.13: Timing diagram representing the model found by the model checker

5.4.5.2 Generating Fault Scenarios

The model checker can also be used to investigate the potential effects of faults on
a system. Consider the 3-stage 2-bit WCHB pipeline shown in Figure 5.14 and its
corresponding PRS in Listing 5.14.

153



5. Asynchronous Circuit Description

1 prs pl is
2 inputs
3 a : DRBit(2) attributes(channel:=Cin, role:=data);
4 ack_in : Bit attributes(channel:=Cout, role:=ack, channel_type:=DIDR);
5 outputs
6 ack_out : Bit attributes(channel:=Cin, role:=ack, channel_type:=DIDR);
7 d : DRBit(2) attributes(channel:=Cout, role:=data);
8 locals
9 b : DRBit(2); c : DRBit(2);

10 begin
11 #stage 1
12 b(0).T := cgate(a(0).T, b_en) init(0);
13 b(0).F := cgate(a(0).F, b_en) init(0);
14 b(1).T := cgate(a(1).T, b_en) init(0);
15 b(1).F := cgate(a(1).F, b_en) init(0);
16 b0_done_n := nor_gate(b(0).F, b(0).T);
17 b1_done_n := nor_gate(b(1).F, b(1).T);
18 b_done_n := cgate(b0_done_n, b1_done_n);
19 ack_out := inv(b_done_n);
20 #stage 2
21 c(0).T := cgate(b(0).T, c_en) init(0)
22 attributes(fault_victim:=true, fault_type:=SET);
23 c(0).F := cgate(b(0).F, c_en) init(0);
24 c(1).T := cgate(b(1).T, c_en) init(0);
25 c(1).F := cgate(b(1).F, c_en) init(0);
26 c0_done_n := nor_gate(c(0).F, c(0).T);
27 c1_done_n := nor_gate(c(1).F, c(1).T);
28 b_en := cgate(c0_done_n, c1_done_n);
29 #stage 3
30 d(0).T := cgate(c(0).T, d_en) init(0);
31 d(0).F := cgate(c(0).F, d_en) init(0);
32 d(1).T := cgate(c(1).T, d_en) init(0);
33 d(1).F := cgate(c(1).F, d_en) init(0);
34 d0_done_n := nor_gate(d(0).F, d(0).T);
35 d1_done_n := nor_gate(d(1).F, d(1).T);
36 c_en := cgate(d0_done_n, d1_done_n);
37 d_en := inv(ack_in);
38 end prs;

Listing 5.14: 3-stage 2-bit WCHB pipeline PRS with fault injector
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Figure 5.14: 3-stage 2-bit WCHB pipeline circuit
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Using pypr this circuit can be generated with a script similar to the one shown in
Listing 5.5. In Line 22 the rule producing the signal c(0).T (c0.T in Figure 5.14), which
represents one of the buffer C gates in the second WCHB, is marked as a fault victim.

Now the model checker can be run in order to, e.g., find a scenario where a fault on
this signal leads to a deadlock of the circuit, using a similar script as the one shown
in Listing 5.13. Figure 5.15 shows the resulting traces extracted form the model found
by the model checker (some input and internal signals have not been included in the
figure in order not to unnecessarily clutter the timing diagram). It can be seen that
the input transition at a1.T propagates through the pipeline and appears at the output
d1.T . In the second time step an SET is injected into c0.T which in turn propagates to
the output d0.T . Simultaneously this fault also triggers the completion detector in the
second WCHB leading to the deassertion of ben. This event is what causes the deadlock,
since even if an input transition on a0.T or a0.F arrives, it can no longer pass though
the buffer C gates of the first WCHB.

a1.T

b1.T

c1.T

d1.T

ben

c0.T

d0.T

Figure 5.15: Timing diagram representing the model found by the model checker

Another possible fault scenario that can be visualized by the model checker is an illegal
output state, where both rails of a single dual-rail bit are asserted. For that purpose,
the assertion assert(d(0).T and d(0).F) must be added to the constraints section
of the PRS in Listing 5.14.

The presented scenarios might seem trivial, but this approach can, e.g., be used to find
edge cases for fault-mitigation strategies or to show that a particular signal in a circuit is
not susceptible to faults.

5.4.6 Performance and Limitations

To demonstrate the computational overhead of this model checking approach we apply it
to two simple QDI/SI dual-rail circuits – a 4-bit adder and a 4x4-bit unsigned multiplier
circuit. Both circuits have one input and one output channel and use DIMS for their
combinational logic. The multiplier is implemented using a 4-stage WCHB pipeline, and
comprises 440 rules of which 296 represent C gates. The combinational logic of the adder
(122 rules, 77 C gates) is also placed between two WCHB stages.

155



5. Asynchronous Circuit Description

16 20 24 28 32 36 40 44 48 52

101

103

105

model checking bound

ru
nt

im
e

[s]
orphans
deadlock
assertion

Figure 5.16: Model checker runtime for the multiplier (solid lines) and adder (dashed
lines) circuits

We performed three different model checking tasks, which include a check for a deadlock
possibility, gate orphans and the verification of a simple static assertion13. Since there
are no issues with the circuits, no models can be found for any of these tests. Figure 5.16
shows the runtime (in seconds) for these tests for different bounds b as executed on an
Intel Core i7-10700K CPU at 3.80 GHz with 32 GB of dual-channel DDR4 memory at
3200 GHz. It is obvious that checking for orphans is the hardest problem, while verifying
a static assertion is much less expensive, and can hence be executed for much larger
bounds in reasonable time. The results also show that the computational overhead is not
only dependent on the size of the circuits.

For our future research, we want to address the boundedness of the model checker, and
extend it to be able to verify SI circuits to an unbounded depth. Moreover, we plan to
further explore applications of model checking for the analysis of SI/QDI circuits with
respect to their behavior under transient faults.

5.5 Conclusion
This chapter introduced our Python-based design and development tool for asynchronous
circuits, called pypr. To summarize its various features, Figure 5.17 shows an example
tool-flow for a simple linear (QDI) pipeline. The combinational logic of this pipeline is
described using Verilog code, which is synthesized to PRSs using Yosys and our integrated
dual-rail expansion algorithm. The resulting PRSs are collected in a PRSLib object.
To generate the pipeline buffers, the PRS generator function DRBuffer is used. Those
sub-components are then connected using the DataFlowGraph class. The resulting PRS
is then flattened and optimized. In this form, it can be passed to our Z3-based model

13The result of the multiplier (adder) circuit cannot be larger than 152 (2 ∗ 15).
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checker to verify certain desired properties. Using the code generator, the PRS is then
converted to a VHDL design, which can be simulated with a standard digital simulator
(like, e.g., GHDL or Questa) For that purpose, also a testbench is required, which is
automatically generated from a compact, yet powerful YAML-based specification.

PRS PRS PRS PRS PRS

DRSynthesize
(pypr.pg.qdi)

DRBuffer
(pypr.pg.qdi)

PRSLib

Flatten
(pypr.pt)

DataFlowGraph-based
PRS Generation

(pypr.dfg)

Optimize
(pypr.opt)

PRS
Bounded Model

Checking
(pypr.bmc)

Code
Generation
(pypr.cg)

Testbench
Generation
(pypr.tb)

VHDLVHDL

YAML

Digitial
Simulator

VerilogVerilog

Figure 5.17: pypr tool-flow example
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CHAPTER 6
Fault-Tolerance in QDI Circuits

The overall goal of the research presented in this chapter is to perform a meaningful
comparison of the resilience of different QDI pipeline and design styles to transient
faults and to analyze their respective strengths and weaknesses. To this end we provide
an elaborate fault-injection simulation framework, that allows insightful conclusions
regarding our research questions. As part of a larger project, this work also represents
the foundation for further research into this area.
As their name already suggests transient faults only affect a circuit for a certain amount
of time, without actually causing physical harm to it. They may, however, lead to a
change of the contents of some storage elements (e.g., latches or flip-flops), which is then
usually referred to as a soft error. This is in contrast to permanent faults that always
entail some form of physical damage to a circuit (e.g., a permanently open connection
between two circuit nodes). Transient faults can have a variety of causes, including but
not limited to cross-talk, electrostatic discharge or radiation effects. Specifically the
sensitivity of semiconductors to (cosmic) radiation is a major point of concern, which
continuously increases in severity due to the ongoing technology scaling [DDC05, Bau05].
We won’t to go into detail on the exact causes and composition of cosmic radiation and
how it manages to induce state changes in a circuit, since these topics are not particularly
relevant for this work [AM15]. For our discussion here it suffices to say that an energetic
particle strike (e.g., by a neutron) can cause a (short) current/voltage pulse on some
node of a circuit, which is referred to as SET. Whether an SET actually has an impact
on the behavior of the victim circuit depends on various factors, including the location of
the hit and the current state of the circuit. In particular SETs may be filtered by logical,
temporal or electrical masking effects as they spread through a circuit.
For our fault-tolerance research we focus on the investigation of the digital effects of
SETs on QDI/SI circuits and ways to harden them against such effects. In the context of
this work, faults are considered to be binary events, that (instantly) appear, affect some
part of the circuit for the fault duration and then disappear again. The immediate effect
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of a fault is a change in the binary state of the affected node. We exclude analog effects
from our analysis. Hence, electrical masking is not covered.

To investigate fault effects we perform extensive fault-injection simulations. The circuits
we subject to these experiments are modeled and created using the pypr framework
presented in Chapter 5. We consider every production rule as a single possible fault-
injection target. This means that an SET can change the output of exactly one production
rule, which essentially represents the output of a CMOS gate. This change then propagates
to all gates that are connected to the respective signal. Although certain things like
stack-sharing of gates cannot be modeled this way, our circuit model is a good compromise
between a detailed and realistic circuit representation and a reasonable computational
overhead required for the actual simulation, where we want to use a digital circuit
simulator.

The chapter is structured as follows: First, Section 6.1 presents an overview of the
relevant related work. Then, Section 6.2 examines possible effects transient faults can
have on QDI circuits and identifies certain weak points of the classic WCHB. With
this analysis in mind Section 6.3 presents some relatively low-overhead fault mitigation
and hardening techniques from literature that can be used as drop-in replacements for
the WCHB. To evaluate those buffer styles Section 6.4 performs a case study using
fault-injection simulations on a simple pipeline without any processing logic. Building
upon the knowledge gathered form this experiment we then propose our own improved
QDI buffer designs in Section 6.5. A second case study on more complex target circuits
then shows how the different buffer styles perform in a more realistic real-world scenario
and allows for better insights in the fault resilience of different designs. Finally, Section 6.7
summarizes our findings and concludes the chapter.

6.1 Related Work
As already discussed in Section 2.6, a core difference between BD and QDI circuits lies in
the separation of control logic and the data path. While they are considerably intertwined
for QDI circuits there is a more or less strict separation in BD circuits. Nevertheless, the
timing/delay model that is applied for the control logic of BD circuits is often similarly
strict to the QDI model, i.e., the control logic is often QDI itself or at least SI.

One very important characteristic of QDI or SI circuits is glitch-free operation. Every
transition that happens inside such a circuit, or at its primary inputs and outputs has
a certain meaning and must have a direct causal dependence on some other input or
output transition. Hence, although SI and QDI circuits are by their nature very robust
against delay variations, disturbances in the value domain caused by transient faults can
have severe consequences. A single transition at the wrong time can bring a circuit into
an undefined or illegal state and cause a deadlock or some other undesired behavior. The
simplest form of faulty behavior is data corruption (similar to what can also be observed
in synchronous circuits). However, with asynchronous circuits it is also possible that
complete handshaking cycles get extinguished or wrongly created (token creation and
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deletion) [LM04, MRL07]. For these cases there is no direct equivalent in the synchronous
world. Therefore, it is vital to take these special characteristics of asynchronous and
specifically QDI circuits into account, when investigating and analyzing their behavior
under faults and when it comes to implementing appropriate countermeasures.

However, this sensitivity to faults in the value domain also has advantages. It is well
established that under (certain) permanent faults QDI circuits eventually deadlock
[DGY95, YCCP04]. Intuitively this is because of the fact that a certain transition
can no longer occur. Since every transition carries some meaning the system can no
longer progress, if it waits for it. Of course permanent faults can also be dormant, were
they don’t have an effect unless invoked. This means that QDI circuits have inherent
self-checking abilities, which can, for example, be used for circuit testing. A test run that
triggers every possible transition in a QDI circuit and does so without deadlocking, proves
that the circuit does not contain any stuck-at faults. Some fault tolerance techniques for
QDI circuits try to leverage this fail-stop behavior also for transient faults [PM05]. One
of the techniques proposed in this chapter also falls into this category.

Other methods for tolerating transient faults in QDI pipelines are presented in [JM05,
MRL05, FS09]. Here the circuits are basically duplicated and the resulting replicas are
carefully interlocked, such that they can only operate in a lock-step way. If one replica is
affected by a fault, the other one still works correctly and the whole system can only
proceed if the fault disappears. A concrete implementation example where this technique
was used is a radiation-hard microcontroller presented in [KMM15].

Similar techniques, although for BD circuits, have been proposed in [VM02, MR07,
KHS+20, KK20]. Here full or partial duplication of the target circuit is used to detect
and (for the latter two publications) also correct faults caused by SETs.

In [GYB07] a special buffer style for QDI circuits is proposed that relies on checking for
the illegal dual-rail state (i.e., both rails set simultaneously) to ensure that faulty data is
not captured into the buffer. Regarding the hardening of pipeline buffers [BS09] presents
a variety of different techniques based around the WCHB and discusses their strengths
and weaknesses. Some of these approaches will be investigated thoroughly throughout
this chapter.

To accurately understand and assess the behavior of QDI circuits under the influence of
(transient) faults, some form of fault model is required. Hence, it must be defined what
a fault is capable of doing to a system. This of course depends on the chosen level of
abstraction used to represent the circuit, which can range from transistor or gate-level
representations to more high-level token-based circuit modeling techniques. This means
that a fault can, for example, cause a transistor to become conductive (with various
possible consequences on the higher abstraction layers), flip the state of some storage
element or cause the corruption, deletion or insertion of tokens.

In an early approach [Dil88] built an automated verifier for SI circuits based on trace
theory, which is a natural means for describing the sequences of transitions relevant for
the operation in asynchronous circuits. Later, [Yak93] also used trace theory (among
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others) for modeling the correct (and incorrect) behavior of asynchronous circuits, more
specifically interfaces.

Another approach to model the effects faults can have on a circuit are STGs, which have,
e.g., been used in [BS09].

In [MRL04] a simulation-based approach is presented, which acquires statistics about the
fault sensitivity of individual C gates in QDI circuits. A C gate is considered sensitive
if only one input needs to change for the output of the C gate to change. A similar
approach that, instead of C gates, also considers threshold gates is proposed in [KZYD10].
Another simulation-based fault-injection technique is presented in [BMS+09]. All these
approaches show that, similar to synchronous circuits, there is a certain degree of fault
masking. However, none of the papers consider a wide range of different QDI design
styles.

In [LM04] LaFrieda and Manohar show how permanent and transient faults affect
production rules.

On a higher abstraction level [MRL07] analyzes how faults affect the token flow in QDI
systems. For this they use a set of token and fault rules to model the circuit operation.

6.2 Fault Effects and Sensitivity Windows
Figure 6.1 shows a timing diagram of a multi-bit WCHB over a single handshake cycle.
The shown data signals correspond to the data outputs of the buffer, i.e., the outputs
of the C gates. The dual-rail bits d0 and dn symbolize the pair of data signals with the
largest skew between them (windows B-C and E-F).

As soon as the input acknowledgment ackin goes low (A) a WCHB waits for the data
phase. Thus, all its C gates are armed for rising transitions. The C gates are only
disabled when the next stage acknowledges the received data (D), which can only happen
after the slowest dual-rail signal pair transitioned to the data phase. This leaves quite a
large time window (A-D) where the buffer is susceptible to faulty rising input transitions.
We say that the buffer is now in a (fault-)accumulating state, since all input transitions
(faulty and valid ones alike) will be captured into the C gates. This is in stark contrast
to, e.g., synchronous designs, where there is only a single point in time (i.e., the clock
edge) where data is captured by the storage elements.

Considering a WCHB pipeline we can see that the sensitive time window for each stage
depends on various factors. The time between when the first buffer of the pipeline is
armed for rising input transitions (A) and a valid data token actually starts to arrive
(B) depends on the overall speed the circuit is operated with, i.e., the rate with which
input tokens arrive. This factor alongside the general timing of each stage and the overall
delay balance of the pipeline contribute to the individual duration of the window (A-B)
for each stage. A token arriving at a stage has to pass through its buffer C gates and
the combinational logic on the data path to the next stage, which also adds delay. The
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skew between the individual data rails (B-C) also affects this delay. In the worst case
the combinational logic cannot start processing until all dual-rail bits arrived. When
the token arrives at the next WCHB it has to pass through its buffer C gates and CD.
However, if this buffer is currently not yet ready to receive a new token, additional wait
time is added (this again depends on the overall load and delay balance of the pipeline).
Finally, there is the delay of the acknowledgment path back to the source stage.
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Figure 6.1: WCHB time windows

Depending on when exactly a fault strikes a data wire during the data phase and
erroneously sets a C gate, one can observe vastly different effects. If a fault strikes a
data wire that should transition anyway, in the best case only the point in time when
this transition happens is shifted, which is completely tolerable in the context of QDI
circuits. However, given sufficient skew between the data rails, in the worst case such
a fault can deadlock the whole circuit. Striking a data rail that should remain zero, a
fault can (besides the deadlock) cause an invalid output pattern for a dual-rail bit (i.e.,
both rails set to one) or a valid but incorrect data token, depending on whether the
valid transitions on the respective other dual-rail signal arrives before the buffer is closed.
These scenarios have been explored in Section 5.4.5.2 using the BMC feature of pypr.

After ackin has been asserted (D) to acknowledge the received data the C gates in the
buffer are again armed for falling input transitions. Hence, there is a time window (D-G)
where the buffer is susceptible to faulty (falling) input transitions. However, since the
null phase does not carry any actual data, faults don’t affect the transmitted information
but can again lead to deadlocks.

Since the input acknowledgment signal ackin basically represents the enable signal for
all the C gates in a buffer, faults affecting this signal can have severe consequences
on a circuit1. These range from deadlocks to lost or additional data tokes or illegal
output patterns. The ackin (or en) signal is vulnerable during phases where the inputs
to the C gates differ in their logical value (i.e., the C gate is in state-holding mode). In
such a situation a single input change can flip the value of the C gate. As Figure 6.1
shows, at time (C) the output of the buffer is complete. Thus, eventually the output

1In synchronous systems this is in a way comparable to a clock glitch.
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acknowledgment ackout would be asserted, which in turn leads to the deassertion of all
input data rails. However, the output of the buffer must not enter the null phase until
ackin is asserted, which means that there is a sensitive window for the acknowledgment
signal between (C) and (D). A similar situation arises during the null phase between the
points (F) and (G).

We see that although in general delays are not relevant for the correct behavior of QDI
circuits, the exact fault behavior of such a circuit is highly dependent on the input
skew, the involved gate and wire delays, the speed of operation and the actual data
that is being processed. This means that the sensitivity of a buffer cannot be evaluated
completely statically but must incorporate environmental conditions as well as concrete
circuit details.

6.3 Fault Mitigation Strategies
To mitigate the shortcomings of the classic WCHB with regard to its fault sensitivity,
various modifications and improvements have been proposed. A selection of those
strategies will be presented in this section. Most WCHB modifications aim at shortening
the time window in which the buffer stores input transitions, in one way or another.

One possibility to achieve this, is to use two CDs for every buffer, one for the input channel
and another one for the output channel (see Figure 6.2a). Using this configuration, the C
gates of the buffer are only armed when there is actually data at the input. Consequently,
we refer to this buffer as the Dual-CD WCHB. This idea is presented in more detail in
[BS09], where it is referred to as normally closed latch.

Moreover, [BS09] proposes another slightly different approach, which uses asymmetric
C gates as storage elements for the buffer (see Figure 6.2b). These C gates have one
additional (asymmetric) input that must be asserted in order to set the gate, but does
not need to be deasserted to reset it again, like a normal input would have to be. The
asymmetric input is then fed by the (inverted) output of the buffer’s CD, which ensures
that the C gates are disarmed as soon as all input transitions arrived, effectively closing
the sensitivity window at point (C) in Figure 6.1. In case of the dual-rail code this can be
done on a per-bit basis by using the output of the individual OR (or NOR) gates in the
CD, which has the benefit of closing the C gate of the respective other rail as soon as one
transition arrived. This approach prevents the capturing of the invalid dual-rail state,
where true and false rails are asserted simultaneously. However, blindly capturing the first
transition creates a potential of forwarding a wrong value (50% when assuming random
faults). In that sense it operates similarly to a mutex, with the important difference
that depending on the timing of the feedback path, there may still be cases where both
outputs are set simultaneously. This buffer modification can be beneficial in combination
with an error correcting code on top of the dual-rail code: It prevents the protocol from
being upset by an illegal dual-rail state, while the potential corruption of the data value
it causes can be undone by the error correction. In the context of this work we refer to
this buffer style as the Locking WCHB.
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Another approach to avoid the lasting consequence of a faulty transition is to use different
storage elements altogether (see Figure 6.2c). For that purpose, the MDHB (already
presented in Section 4.5.1) can be used. Here a simple buffer control circuit, consisting
of just a single XOR gate, is responsible to enable and disable the buffer’s D latches.
When the D latches are transparent, input glitches caused by SETs can freely propagate
through the latch to the output. Unless the latch is closed in exactly this time instance,
the latch will not store the faulty value. Similar to the previous approach the buffer is
closed as soon as the CD detects the data phase. Although, strictly speaking, this circuit
is not QDI because it introduces a small timing constraint, we still want to include it in
our survey since it should show quite a different behavior in the analysis. However, note
that this buffer has not been proposed to improve fault-tolerance.
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Figure 6.2: Alternative buffer styles

Finally, we also want to mention a completely different approach proposed by Jang
and Martin in [JM05]. This is not really a design or buffer style on its own, rather an
all-encompassing technique for hardening existing QDI designs. Here the original design
is duplicated and both copies are interlocked with C gates that essentially vote on every
intermediate signal of the circuit. The authors formally show that this scheme is able to
tolerate (single) faults on any internal signal, which means that in our analysis it should
not show any erroneous behavior. However, it is easy to see that this approach more
than doubles the area footprint of the original design. Moreover, the additional logic for
synchronization of the two replicas also results in a slightly slower circuit. Following the
terminology used in [JM05] we refer to a WCHB using the described technique as a DD
WCHB.

6.4 Case Study: Pipeline

To experimentally analyze the fault sensitive windows of the QDI buffer styles presented
in the previous section, we conducted a fault-injection simulation experiment on a simple
4-stage, 2-bit, dual-rail pipeline. The rationale behind using a pipeline without any
processing logic is to enable an unobstructed analysis of only the pipeline buffers.
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6.4.1 Experiment Setup
Figure 6.3 shows our fault-injection simulation target and its testbench. Both pipeline
and testbench were generated using pypr, which makes it straightforward to iterate over
the various buffer designs. For our circuit model we use inertial gate delays and no wire
delays. Since we don’t target any specific circuit technology with our simulations, the
delays of all gates are set to some nominal value, which is then (randomly) varied by
±20% in a uniform way, to account for routing and process variations. This is important
to get some skew between the data rails to be able to observe how the different buffers
styles handle that.

The victims for the fault injection are the 4 data rails between buffers 1 and 2 as well as
the acknowledgment input to buffer 2 originating from buffer 3 (i.e., all the input signals
to buffer 2). Moreover, for buffer types that use multi-input gates to generate the enable
signals for their actual buffer elements (i.e., the Dual-CD WCHB and the MDHB), this
enable signal is targeted as well. The actual fault-injection simulations are carried out
using Questa (version 10.6c).
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Figure 6.3: Simulation Setup

The testbench generates a pseudo-random token stream for the pipeline and checks the
produced output tokens for correctness. Whether an injected fault had an effect on the
circuit is only checked on the primary outputs of the pipeline (i.e., the data outputs
of buffer 3 and the acknowledgment output of buffer 0). The motivation behind this
decision is to let the pipeline stages after the fault-injection point perform logical and
temporal masking as it would occur in a normal pipeline.

To classify the effects of faults we use the following categories:

• Timing deviation: A transition happened earlier or later than expected, when
compared to a reference simulation run (without fault injection). The circuit being
QDI, this is not a fault, but rather an observation.

• Value fault: A wrong data value was delivered to the output.

• Code fault: An invalid DI code word was observed at the output (i.e., both rails of
a dual-rail bit were high).
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• Glitch: A signal changed its value twice during a protocol phase. This includes
protocol violations, e.g., acknowledgment before data completion.

• Deadlock: The circuit reached a state where no further transitions are possible.

One minor downside of only checking the output channel of the target circuit and
categorizing the recorded effects into the listed fault classes is that token insertion or
deletion cannot be observed directly. When a data token is erroneously removed from or
inserted into the pipeline due to the injected fault, the testbench would only see a timing
deviation and a value fault for some of the following words extracted from the pipeline2.

For the result visualization in the next section, we consider the presented list of fault
classes to be ordered with ascending importance, i.e., the timing deviation is the least
important effect. Whenever a fault injection triggered faults from different classes, only
the one with the higher importance was plotted and counted towards the results. An
example would be a dual-rail output x that is expected to change from the null phase
(x.T = x.F = 0) to a logic 1 (x.T = 1) which, as a result of a fault injection, instead
changes to a logic 0 (x.F = 1) at an unexpected time, generating both a value fault and
a timing deviation event in the testbench. If subsequently the expected transition arrived
causing a code fault (x.T = x.F = 1) we would consider the fault injection to yield a
code fault and disregard the value fault and timing deviation.

6.4.2 Results
Figure 6.4a shows a single simulation trace of the reference run of the classic WCHB.
A single fault-injection simulation always starts with a pre-run, where several rising
transitions on the ackin signals are counted in order to skip the initial phase, where the
pipeline only starts to fill up (this part is not visible in the figure). Afterwards a single
400 ps pulse is injected into one of the victim signals in the time frame between 0 ns and
120 ns from the end of the pre-run (marked by the 0 ns point on the x-axis). Multiple
simulation runs are executed to perform a sweep over this injection window in 250 ps
steps. Markers in the figure indicate injection times of pulses that had an observable
effect on the pipeline when injected into the respective signal. Their colors represent the
classification of that effect.

As we have seen from the analysis in the previous section, the timing of the input signals
to a pipeline has a high impact on the fault sensitivity windows. By operating the circuit
at a specific speed (i.e., handshake rate) the external signals determine how much time the
circuit spends in the different protocol phases, and hence in its sensitive windows. This
is again in stark contrast to synchronous designs, where the input signals simply don’t
have that much “power” over the circuit. Hence, a single simulation trace (Figure 6.4a)
alone only yields very little information about fault behavior of a circuit, since it only
shows one specific operation point. For that reason, an essential part of the simulation

2Hence, for the second case study presented in Section 6.6 we use a separate fault class for this
purpose.

167



6. Fault-Tolerance in QDI Circuits

setup was the possibility to choose delays of the source and sink when generating new
input tokens and acknowledgments, respectively. It allowed us running the fault-injection
simulation of the same pipeline with a variety of timing settings, gradually changing its
operation from token-limited (where the pipeline stages mostly wait for valid data words
to arrive) to bubble-limited (where the pipeline stages receive valid data at their inputs,
but need to wait for the acknowledgment from the succeeding stage before being allowed
to store the new data word).
Figure 6.4b shows the results of such a timing variation for the same WCHB pipeline
simulated in Figure 6.4a: For each signal, horizontal stripes represent the results of
eleven different simulation runs, in which the pipeline transitioned from bubble-limited
(top) to token-limited (bottom) operation. A stripe is colored light blue where the
respective signal (in the reference run) is supposed to be low and light orange where
should be high. Note that Figure 6.4a shows the topmost WCHB simulation stripe from
Figure 6.4b. In the same way the other sub-graphs in Figure 6.4 illustrate the behavior of
the pipeline using the alternative pipeline implementation styles presented in Section 6.3.
This representation style, that allows to pack a large amount of information about the
fault behavior of a buffer into a single figure, is one of the contributions of this work.
It allows us to see how the external interface timing affects the sensitivity to faults of the
different pipeline implementations when subject to SETs. The data rails for the classic
WCHB implementation show how the inactive rail is sensitive to produce a code fault
the entire time the receiving C gate is accumulating, irrespective of whether the pipeline
runs token- or bubble-limited. The Locking WCHB significantly reduces the sensitive
windows by correctly preventing code faults in bubble-limited operation after a transition
on one of the two rails was captured by a C gate. It only fails to prevent code faults for
a short time corresponding to the feedback delay for locking. In token-limited operation,
the injected pulse is captured and the correct and expected transition on the other data
rail is prevented from turning the valid, albeit incorrect, value into a code fault.
Unsurprisingly, the DD WCHB style proves to be insensitive to SETs in all operation
modes, whereas the Dual-CD WCHB style brings little to no improvement to the
sensitivity windows. The MDHB shows very narrow sensitivity windows on the data rails
while the enable signal (the signal that activates the D latches of the buffer) is sensitive
most of the time. Faults on this signal also have a wide range of possible effects.
Figure 6.5 shows the ratio of injected faults that had an observable effect (other than a
timing deviation) to all injected faults. Note that buffer styles which will be introduced in
the following section are also already included in this figure. To make a fair comparison
and prevent speed differences from influencing the results, faults are only considered
during one handshake cycle between two rising edges of the acknowledgment wire. For
each considered buffer style, the eleven bars show the results for the eleven simulation runs
depicted in Figure 6.4 (going from a bubble-limited mode of operation to a token-limited
one). It is apparent that the robustness of the simulated pipelines clearly depends on
the external timing. By observing a sweep of simulations with varying timing, one can
qualitatively assess the effectiveness of fault mitigation strategies like, e.g., the Locking
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Figure 6.4: Simulation results for the 4-stage pipeline visualizing the sensitive windows
of the considered buffer styles (x-axis shows the simulation time in nanoseconds)
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WCHB design instead of just looking at numbers without the knowledge of whether the
circuit was simulated with token- or bubble-limited timing. If this factor is not taken
into account correctly it might lead to a situation where some fault mitigation technique
appears advantageous in simulation but turns out to be ineffective in practice. This could
be caused by the mere fact that introducing additional logic and therefore delay, changes
the circuit operation mode from token-limited to balanced which can (as shown in the
figure) in itself bring a significant improvement to the fault sensitivity windows. The
figure also shows that, depending on the operation mode a circuit is actually used in,
it may not pay off to invest in very high overhead fault mitigation strategies, because
simple and comparatively cheap approaches also yield quite good robustness.
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Figure 6.5: Simulation results for the 4-stage pipeline showing the number of fault-
injection simulations with an observable effect on the pipeline

6.5 Improved Buffer Designs
The analysis in the previous section shows that the accumulation behavior of buffers
is crucial when it comes to their susceptibility to faults. This section introduces two
improved buffer designs that aim to mitigate this fault-accumulating behavior.

6.5.1 Proposed Circuits
Figure 6.6 shows two simple and comparatively low-hardware-overhead modifications to
the classic WCHB design. The core idea for both of these modifications is to replace
the C gate pairs used as the storage elements for the individual dual-rail bits in the
WCHB with cross-coupled asymmetric C gates. As shown in the figure the asymmetric
inputs of these C gates are fed by the output of the respective other C gate in the pair.
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Depending on the type of asymmetric C gate (i.e., whether the asymmetric input is
positive or negative), two different circuit behaviors can be achieved. We refer to the
resulting circuits as Deadlocking and Interlocking WCHB.
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Figure 6.6: Proposed WCHB modifications

For the Deadlocking WCHB the feedback inhibits the buffer from entering the null phase
if it is ever the case that both C gates are set (erroneously) because of some transient
event. Hence, the feedback path effectively forces the circuit into a deadlock and prevents
it from processing possibly faulty data. This can be useful in applications where the
correctness of the output is crucial, while deadlocking is not harmful (fail-stop behavior).
A deadlocked system could, e.g., be detected using a timeout and reset to a known
working state.
The Interlocking WCHB only allows the first transition at its input to propagate, thus,
prohibiting the invalid dual-rail state where both the true and the false rail are asserted
simultaneously. In this sense it is similar to the Locking WCHB design discussed in
Section 6.3. However, one important difference is that their approach uses the output of
the CD to deactivate the corresponding C gates (i.e., prohibiting them from switching to
one) in the buffer. While this allows the use of arbitrary DI codes, it also prolongs the
feedback path by the delay of the CD, which keeps the buffer open and thus susceptible
to SETs on its inputs for a longer time window. Another more subtle difference to the
approach in [BS09] is that in order to prevent an erroneous input transition from setting
a C gate, after completion all C gates are switched to a state-holding mode (i.e., the
output is driven by the internal storage loop). In our approach only the C gate connected
to the rail that did not transition to high is switched to the state-holding mode (keeping
its zero value).
A similar design can also be applied to buffers used in QDI circuits based on precharged/-
domino logic, like the PCHB. As shown in Figure 6.7, depending on the desired behavior
(deadlocking or interlocking), an additional layer of transistors can be added to either the
p- or the n-stack of the buffer. However, these circuits are only presented for the sake
of completeness and not further analyzed in this work, since we focus on static designs
based on and around the WCHB.

6.5.2 Evaluation
To evaluate the proposed buffers we subjected them to the same experiments as the other
buffer styles in Section 6.4. Figures 6.5 and 6.8 show the results of this analysis. It is
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Figure 6.7: Proposed buffer modifications for precharged/domino logic
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Figure 6.8: Simulation results for the proposed buffer visualizing their sensitive windows

clearly visible how the Deadlocking WCHB, as expected, turns all code faults seen on
the data rails in the classic WCHB into deadlocks, albeit without changing the sensitive
window. The Interlocking WCHB in turn significantly shortens the sensitive windows,
since in the bubble-limited case the correct transition appears early, and afterwards the
interlocking mechanism closes the sensitive window. The non-zero size of the remaining
window is due to the propagation delay for the interlocking to become active. Note that
these windows are slightly shorter than those found for the Locking WCHB, due to the
shorter feedback path. In the token-limited case, there is the potential for a fault on the
non-switching rail to arrive before the correct transition on the other rail and thus lock
the buffer in an incorrect (but valid) state. This is indicated by the windows with value
faults that match the size of the sensitive windows in the original WCHB.
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6.6 Case Study: Multiplier
In this case study we want to deepen our investigation regarding the resilience of different
QDI buffer styles. For that purpose, we need more sophisticated target circuits for
our fault-injection experiments that, most importantly, also include some actual data
processing elements (i.e., not just a simple FIFO pipeline) as such a circuit is more
representative of a real-world application. This will then allow us to perform a more
comprehensive and meaningful comparison of different QDI buffer (and logic) styles, and
to analyze their respective strengths and weaknesses under different operation scenarios
and circuit topologies. In order to fulfill this goal we have to conduct a statistically
significant number of experiments in reasonable time which requires a highly automated
setup for which a special distributed simulation framework had to be developed.

6.6.1 Experiment Setup
For our experiments we chose an unsigned multiplier as target circuit, as it is an elementary
function in many applications, and it comprises an appreciable amount of combinational
logic – partly in the shape of adders, which by themselves represent another elementary
function block. This choice is a trade-off between a highly realistic, complex target
circuit that, however, requires excessive computational performance for running the
anticipated high number of fault injections, and a too simplistic target, that impairs the
significance of the results. Another valuable property of the multiplier is its regularity,
which conveniently enables us to either implement it as a linear pipeline or use an iterative
approach. For the former case, different degrees of pipelining are possible, a fact that we
are using for our experiments.

Figure 6.9 shows the fully pipelined multiplier circuit, where each stage calculates a
partial product and adds the result to a sum variable that is then passed to the next
stage. The number of pipeline stages is given by the input bit width (plus one additional
output buffer). Both factors of the multiplication have the same bit width n while the
result has a width of 2n.

...R0 R1 R2 RN

a<<=1
b>>=1

z:=a ∗ b[0]

a<<=1
b>>=1

z+=a ∗ b[0]
a, b z

Figure 6.9: Pipelined multiplier

The iterative version of the multiplier has already been discussed in Section 2.4.3. In
this circuit variant the partial products are calculated in a feedback loop. Because the
hardware to calculate and add up the partial products is shared, the resulting circuit has
less area overhead when compared to the pipelined version. However, this also leads to
lower throughput and higher latency.

As a rough point of reference: The (fully) pipelined version of the multiplier using the
classic WCHB has approximately 500 production rules for an input data width of 4
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bit and 2200 rules for the 8-bit version. The iterative multiplier (also using the classic
WCHB) requires approximately 540 for the 4-bit version and 1200 for the 8-bit version
of the circuit.

Again the target circuits and the required testbenches are created via pypr. To implement
the combinational logic the DIMS design style is used, the required adders are implemented
as RCAs. The script-based circuit generation again allows for an easy change of buffer
styles. The generated PRSs are annotated with static (inertial) delays, which we randomly
varied by 10% to model PVT variations in the circuit. Wires in the PRSs are considered
ideal (i.e., zero delay).

So overall we believe that these multipliers represent reasonably complex targets of
which we can, thanks to our tool flow, easily generate numerous variants. Of course the
high simulation efforts for the controlled fault injection and detailed tracing limit the
attainable input width to (currently) 8 bit. While we are aware that 32 bit or even larger
may be desirable, such values are out of reach here. Still we believe that our results can
give initial insights, especially since we also include a 4-bit variant, whose comparison
with the 8-bit variant facilitates a first judgment of the impact of bit width on the fault
effects.

6.6.1.1 Tools and Automation

To obtain the necessary statistical coverage of the experiment space in our desired
comparison of pipeline styles, and their dependence on certain parameters, we have to
execute over 100 million simulations on a total of 120 different target variations. To make
this feasible we extensively rely on automation of target generation and parameterization
as well as simulation and result extraction. Figure 6.10 shows an overview of this process.

Simulation
tasks
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Parameter
set

Result
Extraction

Golden
run

Target
Synthesis

Database

Simulation
worker

Figure 6.10: Simulation setup

Everything is built around a central Structured Query Language (SQL) database, that
stores the simulation tasks that need to executed as well as the results of those simulations.
In a first step a parameter set has to be defined which is then issued to the simulation task
generator, which uses pypr to generate the appropriate circuit as well as an accompanying
testbench, and configures all the required simulation parameters.
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Some of those parameters must be configured on a per-target and per-experiment basis.
Consider for example the delays of the sink and the source in the testbench that interface
with the target circuit, which have to be adapted to bring the target into a given
load scenario. Since those values depend on the actual target-circuit timing, they are
determined using some preliminary simulations during circuit generation. Another
example is the amount of simulations to be executed to get an adequate coverage with
randomized injection times and targets. Furthermore, the injection window (confining
the allowed injection time) is dependent on the target’s timing and needs to be adjusted
on a per-target basis. During this process also the reference (i.e., fault-free) simulation
run is performed.

After all the necessary data for an experiment (circuit, testbench, simulation parameters)
has been generated the simulation task is divided into several reasonable-sized work
packages that are added to the database. Those work packages can then be processed
by multiple simulation workers (on multiple physical machines) in parallel. Simulation
workers can be added and removed dynamically from our setup, which helps with restrict-
ing and balancing the computational load. Every active simulation worker periodically
checks the database for open work packages. If one is present, it is claimed and the
associated simulations are performed. To save space only results which deviate from the
reference run are saved in the database.

To run the simulation for this case study we use a network of ten physical machines (3.5
GHz 7th generation Intel i5 processor, 16 GB RAM) each running four workers in parallel
(one worker per core). The combined runtime of all simulations across all machines is
approximately 1200 hours. The actual simulator used is Questa (version 10.6c).

After all simulations are complete the final results can be extracted from the database
using SQL queries. The information stored in the database also allows for each individual
simulation to be rerun, such that unexpected behavior or interesting effects can be
investigated more closely.

A large part of this simulation setup was developed by Patrick Behal in the context of a
master thesis [Beh21] and is discussed in more detail in [BHNS21].

6.6.1.2 Fault-Victims and Effect Classes

During a simulation run, we inject faults into all internal signals of the target circuit
that are visible on the PRS level, i.e., we again consider production rules to be atomic
and do not resolve their internal implementation. However, we don’t inject faults on
primary inputs and gates driving primary outputs. Like with the previous case study the
testbench only monitors the primary outputs of the circuit and records all deviations from
the reference run. Again, this choice was made to include the fault masking capability of
the circuits in the results. The more masking the circuit provides, the fewer effects will
propagate to and be observable at the primary outputs, thus reducing the effective set of
signals sensitive to faults.
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We are using the same fault classification as for the previous case study, extended by
one additional category, the token fault. A token fault occurs when the total number
of tokens at an output channel did not match the number of tokens in the reference
run. For the last case study we did not explicitly test for this situation and basically
only observed its side effects (mostly in the form of value errors and timing deviations).
However, for the much more complex target circuits used for this experiment, it makes
sense to record them separately.

Note that the effects of a single simulation run can fall into multiple categories, e.g., the
circuit may produce a coding fault and then deadlock. We will show all of these effects
in our results. This is different from the way we presented the results in the previous
case study, where we established a fault hierarchy and only considered the “worst” fault
for each simulation.

6.6.1.3 Comparison Parameters

Since our highly automated target circuit generation and simulation framework allows
a seamless adaptation of the fault-injection experiment setup, one of our goals was to
study what effects changes of certain parameters have on the resilience of a circuit and
identify the important ones. For this purpose we systematically varied the following
design parameters during our analysis:

• Buffer style (classic WCHB, Dual-CD WCHB, MDHB, Deadlocking WCHB, Inter-
locking WCHB, DD WCHB)

• Circuit topology (pipelined, iterative)

• Input data width (4 bit, 8 bit)

• Operations per stage (only applies to the pipelined version)

• Pipeline load factor

We use a similar set of buffers as in the previous case study. The only difference is
that we don’t include the Locking WCHB here, since it has very similar behavior to the
Interlocking WCHB. The buffer styles also list the DD WCHB. However, note that this
is not “just” another buffer style, as the duplication and double-checking is applied to the
whole PRS not just the production rules/gates implementing buffers. For the previous
case study this did not make a difference, since there was no processing logic involved.
We included this circuit variant in our experiment as a sanity check for our tool and
simulation flow, as it is proven that duplicated and double-checked circuits are tolerant
to single faults. Hence, we should not be able to observe any effects with this circuit
variant except for timing deviations.

The operations per stage parameter of the pipelined implementation dictates, how many
stages of computational logic are placed between two pipeline buffers. The fully pipelined
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multiplier computing one partial product in each pipeline stage has one operation per
stage. When set to two, every other buffer is removed and its input and output signals
are wired together, leaving the logic for two partial product computations in each pipeline
stage.

Both, the operations per stage and the data width parameters allow us to change the
ratio of logic related gates to gates used to implement the buffers. When only the input
data width is increased the sizes of the used adders increase but so does the width of data
words stored in the buffers along with their CDs. By using fewer buffer stages we are able
to vary the amount of logic between pipeline stages while keeping the implementation
and width of the buffers unchanged.

The pipeline load factor is a metric that specifies whether the circuit is operated in a
more bubble- or token-limited way. It is the averaged ratio of the time the individual
buffers of a circuit spend waiting for the next data or null phase and of the time waiting
for the acknowledgment. A well balanced pipeline should have load factor of one when
operated at maximum speed; delaying the acknowledgments on the output channel will
make the circuit bubble-limited, thus, increasing the load factor. While having the nature
of a measurement rather than a design parameter, it can be varied by changes of the
average response time of the input and output channels in the testbench. However, note
that our simulation setup automation which determines the testbench speed to reach a
certain pipeline load factor averages the pipeline load measurement over all buffers while
100 tokens pass through them, while the actual fault-injection simulation is significantly
shorter and the measured pipeline load factor of that shorter simulation time can differ
from the desired setting.

In the analysis, we differentiate between injection victims being control or data signals.
Control signals, like the acknowledgment and latch enable signals, are responsible for
value and spacer token migration through the circuit, which is not to be confused with
the full control part of the iterative multiplier implementation, i.e., the upper portion of
the circuit depicted in Figure 2.15.

Of course, our tool conveniently allows adapting the relevant fault and delay parameters
to a given technology and a given physically grounded fault model. For our more general
study here, we performed preliminary experiments to assess the impact of the width of the
injected fault pulse (relative to the circuit delays) on the observed effect classes. It turned
out that pulses shorter than the gate delays were filtered by the inertial delay model we
used for the gates (corresponding to electrical masking), while arbitrarily increasing the
pulse width did not bring any new insight. Thus, we only used a fixed width of 1.5 ns for
the injected pulses that was slightly above the range of randomization we used for most
of the gate delays.

6.6.2 Results
The results are presented with plots showing the number of injections that provoked
observable effects in each of the respective fault classes, divided by the total number of
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injections into the considered set of signals (when differentiating between control and
data signals). We refer to this metric as the fault sensitivity. Figure 6.11 shows the
results for the pipelined multiplier (one operation per stage) for 4 and 8 bit input data
width and the six considered buffer styles. Control and data signals are shown in separate
subplots. Each subplot shows the configured pipeline load factor on the x-axis and the
fault sensitivity on the y-axis.

6.6.2.1 Effects of Parameter Changes

Figure 6.11 clearly shows that the pipeline load factor is an important parameter with
a significant influence on the resilience of the studied circuits. The control signals of
all buffer styles have lower fault sensitivity in the token-limited operation, i.e., with a
low pipeline load factor. Also for data signals, most buffers show better resilience in
token-limited operation. The exception here is the MDHB, which has its data latches
transparent while waiting for data and thus naturally provides less temporal fault masking
in token-limited operation, which also increases the chance that glitches are propagated
to the output.

Comparing the results of the different data widths (4 vs. 8 bit), it can be noticed that
the sensitivity of the control signals decreases with the higher data width. This is due
to the CD signals being part of the control signal group. A larger data width requires
larger CD trees which are less sensitive to faults than for example acknowledgments and
buffer enable signals. Increasing the number of CD wires in the control signal group
while keeping the number of other control signals mostly unchanged causes a relative
decrease of overall control signal sensitivity. For the data signals, we observe an increase
of value faults across all the buffer styles, as data width increases – which corresponds
with intuition.

Figure 6.12 shows the results for the 8-bit pipelined multiplier with 1 and 2 operations per
stage as well as the results for the iterative multiplier variant. The pipeline load factor
of the iterative multiplier is not practically controllable by varying handshake delays at
the interface to the circuit because of its self-timed operation while computing all partial
products in a loop. Thus, for the iterative implementation, the pipeline load factor was
only measured, rather than controlled, and found to be 1.25 on average for the different
buffer styles, ranging between 0.98 and 1.36. Given that we have seen the pipeline load
factor having a significant influence on the results, for a fair comparison, when plotting
the results for the pipelined multiplier, we only used data with the pipeline load factor
fixed at 1.2, the closest value simulated to that of the iterative multiplier. Figure 6.12a
can, thus, be considered as a vertical cut through the 8 bit values from Figure 6.11 at
load factor 1.2, slightly right of the center, both for data signals (upwards of 0 on the
y-axis in the bar plot) and control signals (downwards from 0 in the bar graph).

Figure 6.12 also demonstrates that increasing the operations per stage does not have a
remarkable impact on the fault sensitivity of the circuit. The most significant difference
for data signals can be observed with the Interlocking WCHB. However, in this case the
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Figure 6.11: Simulation results for the pipelined multiplier circuits, one operation per
stage – fault sensitivity to the different fault classes (y-axis) over pipeline load factor
(x-axis)
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Figure 6.12: Simulation results for the 8-bit multiplier circuit variants, pipelined (1 and
2 operations per stage) and iterative
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6.7. Conclusion

measured pipeline load factors during the fault-injection were 0.78 and 1.28 for the 1
and 2 operations per stage simulations, respectively. Taking the effect of the pipeline
load factor from Figure 6.11 into consideration, the deteriorated performance of the
Interlocking WCHB can be explained by the imperfection of our automated testbench
setup yielding a discrepancy between the targeted pipeline load factor of 1.2 and the
actual pipeline load factor during fault injection.

For the iterative implementation we observe a better resilience. One notable difference
lies in the reduced coding faults for the Deadlocking WCHB, because the iterative nature
of the circuit prevents the coding faults detected in the internal loop to be propagated
to the output when a deadlock occurs. Where the Interlocking WCHB more or less
stochastically masks a fault completely or converts it into a value fault, the deadlocking
variant always stops the operation of the circuit altogether.

6.6.2.2 Buffer style comparison

Compared to the WCHB, the masking provided by the Interlocking WCHB version
successfully reduced the number of faults that can propagate through the buffer. While
being seemingly worse, the Deadlocking WCHB in fact performs as expected and, by
not allowing a spacer into a buffer once a coding fault has been detected, it turns coding
faults into some residual coding, deadlock and token events logged by the testbench.

The Dual-CD WCHB performs similar to the WCHB albeit showing less sensitivity
for control signals. Similar to the increase of the data width, also here the added CDs
increase the relative number of signals in the group of the control signals thus making
the overall result relatively better.

It can also be seen that the DD WCHB (and logic) style successfully withstands all
fault-injections into the circuit. The only observable effect compared to the reference run
are timing deviations. The resilience of this style along with its very large size compared
to the other styles is also the reason why we did not simulate all circuit variations with
this style. The Dual-CD WCHB performs similar to the WCHB buffer, while the MDHB
buffer is more resilient albeit propagating more glitches and being more sensitive on the
control signals.

6.7 Conclusion
In this chapter we performed two simulation-based fault-injection case studies with the
goal of providing a first insight into the sensitivity of different QDI circuits to transient
faults.

Given that this sensitivity strongly depends on the operation speed of a circuit (e.g.,
the sink and source speed in a pipeline), our conclusion was that a systematic analysis
requires a visualization of this dependence. Our proposed solution here is a graphical
representation of the sensitive windows for each relevant signal, aggregated for different
settings of source and sink speed, and showing a color code for the observed effect of a
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fault at the point corresponding to its injection. The required data for these plots were
generated, in our first case study on linear pipeline circuits which use different variants
of the WCHB. Using this compact representations we have identified a key vulnerability
of the classic WCHB and proposed two enhancements. For both circuit variants, namely
the Interlocking and the Deadlocking WCHB, we have sketched target use cases and
given evidence for their proper operation through our analysis.

To extend the significance of our results we performed a second case study on a much more
complex target circuit which also incorporates processing logic. For this purpose we have
selected a multiplier, since its complexity, while not being trivial, still allows understanding
and tracing all its operation details and simulation with reasonable computational efforts.
Our sophisticated fully automated circuit generation and simulation framework allowed us
to perform many millions of fault injections that are still well controlled and reproducible
in all detail for later analysis of interesting cases. By varying several parameters like data
width, pipeline structure, buffer style and operation speed we were able to directly observe
the differences in the effects that the same types of injected faults cause under these
different conditions. This allowed a direct and meaningful comparison of the sensitivity
of different buffer styles under different operation modes.

Since this work is part of an ongoing research project, the tools developed for the
experiments in this thesis also lay the ground work for further investigations. Our setup
will, with some minor refinements, allow us numerous further investigations like taking
the effect analysis to the level of a single buffer, or quantifying the degree of masking
between pipeline stages. The vision is to understand the masking effects well enough to
be able to make quantitative predictions for a given parameter set, which would be a
valuable foundation for optimizations of the circuits’ resilience.

In addition, once we have gained a better understanding of the impact of certain parameter
choices, we can reduce the parameter space and use the available computational power
to extend our list of target circuits towards more complex ones.
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CHAPTER 7
Conclusion and Future Work

In this thesis several contribution to the field of asynchronous and specifically QDI
circuits have been presented. This chapter briefly summarizes our findings and lays out
possible paths for future research.
Starting with Chapter 3 we proposed a novel timing (and clock) domain crossing scheme
based on the use of Muller pipelines. To this end, we developed a synchronous sampling
model for the inherently asynchronous Muller pipeline and showed what timing constraints
are necessary in order to minimize the risk for a metastable upset. The resulting circuits
proved to be quite simple, have low area overhead and are straightforward to implement –
even on an FPGA platform not at all meant for asynchronous design. Our measurements
demonstrated that the approach is capable of delivering high throughput, with acceptable
latency and is resilient against severe clock jitter. An interesting direction for future
research would be to test the circuits for higher performance target technologies. Another
possible extension would be to develop versions of the circuits which don’t rely on C gates
(e.g., based on MOUSETRAP) and only use standard library elements. This would make
the proposed approach more attractive for traditional target technologies not featuring
this special asynchronous component.
Chapter 4 was dedicated to the investigation of various important aspects of DI
communication links and made several contribution to this field. First, we proposed a
(semi-generic) strategy for mapping data words to code words in constant-weight codes.
The approach separates the code words into a systematic and a non-systematic part to
reduce the encoding and decoding overhead. We also explored a new class of DI protocols
which represent a hybrid between the classic RZ and NRZ schemes. The protocols
improve the power and/or coding efficiency over RZ protocols (using the same DI code),
but without the hardware overhead that would be entailed by a “full” NRZ protocol
implementation. Regarding the design of completion detectors for the 4-phase protocols
we built on the work of Piestrak [Pie98] and provided a fully generic orphan-free design
approach for (arbitrary) constant-weight and Berger codes. The proposed technique
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yields the most area-efficient circuits in literature for many DI codes and is also applicable
to the hybrid protocols. The chapter concluded with an extensive case-study which
compared the different protocols and codes as well as the circuits required to implement
them and highlighted their potential strengths and weaknesses. A potential path for
future work would be to look at the implementation of fully QDI links, i.e., replacing
the BD input and output channel of the link model used in this work with dual-rail DI
channels.

In Chapter 5 we introduced a comprehensive Python-based tool set called pypr, which
is able to generate, analyze, simulate and verify asynchronous circuits and is built around
a custom PRS-inspired circuit description language. The framework allows the description
of asynchronous circuits on the gate-level but also supports the use of the data-flow
level for a more abstract and convenient design entry. QDI combinational circuits can
be synthesized from Verilog specifications using a dual-rail synthesis algorithm, that
internally relies on the open-source EDA tool Yosys. Moreover, we also presented a survey
of QDI dual-rail full adder circuits and proposed our own low-area-overhead variants,
which are based on the use of binary sorting networks. Regarding the verification of
QDI/SI circuits, we showed how a basic model checking system is quite straightforward
to implement using standard open-source tools.

The short- to midterm strategy for our design framework is to continue to use and extend
it, because a lot of our internal tools (for our ongoing fault-tolerance research) are built
around it and depend on it. To broaden its applicability and enable direct comparisons of
different design styles extensions for BD and maybe even synchronous circuits would be
very useful. Another feature that would definitely benefit a lot from further refinement
is the model checker. In our opinion, this is an interesting and promising direction for
future work, especially with regard to the analysis of fault behavior. When evaluating
fault-mitigation strategies such a tool could, e.g., be used to automate the process of
identifying edge cases where a particular strategy fails or to find vulnerable signals. Some
important aspects that could be addressed in a first step are the completeness of the
model checking approach (using, e.g., inductive techniques or Craig interpolation [BK18])
and the overall performance. It would also be very expedient if it would be possible to
express and verify temporal properties of circuits.

For the longer term it might be beneficial to direct our ambitions towards ACT [AHY+21]
to facilitate the standardization of the tools used within the asynchronous research
community and to benefit from the mature tools and algorithms provided by it. We
currently also have an ongoing master thesis that looks into how ACT can be used for
our fault-injection experiments. In the course of that work a code generator has been
developed, that is able to export circuits created using pypr to a format that can be
processed by ACT.

However, we definitely also see long-term value in our Python-based asynchronous design
methodology and think that it can be useful to introduce people to asynchronous design.
Using a quite common programming language that many people are already familiar with
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can lower the barrier of entry into the field. Hence, we also plan to use our framework
for teaching asynchronous design.

Finally, we performed an extensive study on the behavior of QDI circuits under transient
faults in Chapter 6. Due to the vast size of the design space of QDI circuits we restricted
our investigation to WCHB-based circuits and variations thereof. We used large-scale
fault-injection simulations, which gave first insights into the fault-sensitivity of different
QDI circuits and their inherent masking capabilities. We showed that the sensitivity
of a given circuit strongly depends on its operation speed and proposed a compact but
very expressive visualization of the fault-sensitive windows of the different buffer styles.
Furthermore, two new buffer designs have been proposed that aim to alleviate some of
the shortcomings of a classic WCHB. The experiments demonstrated the viability of our
proposed solutions.

Since the work in this chapter is part of a larger and ongoing research project, we
already have plans for how to proceed with it. The results presented here focused on how
buffers react to faults and how they can be hardened. However, another important factor
contributing to the overall fault resilience of a circuit is the combinational logic. Here we
want to investigate differences between different logic styles and implementation variants
for basic blocks (e.g., full adders). For example, since NCLX logic contains no storage
elements (i.e., C gates) directly in the data path of combinational logic there should
be less potential for capturing a fault than, e.g., for DIMS. Moreover, we are currently
working on functionality in pypr that allows us to track the sensitive time frames for all
gates in a circuit. The basic idea is to use this information in to assess and optimize the
resilience of a circuit with less need for complex fault-injection simulations.
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S/H Setup/Hold. 37, 39, 50

SAT Boolean Satisfiability. 138–143, 145, 149–151

SDDS Short Distance Dual Spacer. 71, 73, 89, 92, 94, 100, 188

SDFS Static Data-Flow Stucture. 20–24, 187

SDS Short Distance Spacer. 68–72, 84, 85, 88, 89, 92–94, 99, 188

SET Single-Event Transient. 3, 4, 151, 155, 159–161, 165, 168, 171

SEU Single-Event Upset. 3, 151

SI Speed-Independent. 13–15, 18, 138, 139, 141, 142, 144, 150, 153, 155, 156, 159–161,
184

SMT Satisfiability Modulo Theories. 138

SN Sorting Network. 74–85, 100, 129, 132–136, 184, 188, 191, 197

SNML Selection Network Merging Logic. 77–80, 82–85

SoC System on a Chip. 33, 55

SQL Structured Query Language. 174, 175

ST Self-Timed. 13

STG Signal Transition Graph. 18–20, 86, 88–91, 95, 141, 162, 187

UBS Unbalanced Spacer. 71–73, 85, 86, 88, 89, 92–94, 100, 188, 191

UPG Unate Product Generator. 81
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UUT Unit Under Test. 123, 124

VHDL Very High Speed Integrated Circuit Hardware Description Language. 91, 104,
113, 116, 122–124, 157, 199

WCHB Weak-Conditioned Half Buffer. 25–28, 31, 32, 86, 87, 93, 95–97, 116–118,
120–123, 152–155, 160–165, 167–174, 176, 179–182, 185, 187–189, 197
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Glossary

A/S FIFO A FIFO buffer with a synchronous write and an asynchronous read port (or
vice versa). 34, 35, 41, 52

DD WCHB A WCHB where the duplication and double-checking (DD) modification
introduced in [JM05] has been applied . 165, 168–170, 176, 179–181

Deadlocking WCHB A WCHB variant using cross-coupled asymmetric C gates intro-
duced in Section 6.5. 170–172, 176, 179–181

DIMS-FA A QDI FA constructed using 2-input DIMS gates (using the “Input Com-
pleteness Relaxation” optimization[JN07]). 131, 135, 136, 138

Dual-CD WCHB A WCHB variant with CDs on both its input and its output channel
[BS09]. 164–166, 168–170, 176, 179–181

Interlocking WCHB A WCHB variant using cross-coupled asymmetric C gates intro-
duced in Section 6.5. 170–172, 176, 178–181

Locking WCHB A WCHB variant using asymmetric C gates proposed in [BS09] . 164,
165, 168–172, 176

NCLX NCL with explicit completion detection – a QDI logic style (also referred to as
NCL_X or NCL-X). 29, 30, 125, 126, 128, 131, 132, 136, 185, 187, 188, 197

NCLX2-FA A QDI FA constructed using the NCLX design style using only 2-input
basic gates. 131, 135, 136, 138

NCLX3-FA A QDI FA constructed using the NCLX design style using basic gates with
up to three inputs. 131, 132, 135, 136

SN-FA A QDI FA based on the use of binary SNs. 132, 134, 135, 138, 188, 198

SNFC-FA A QDI FA based on the use of binary SNs with a specially optimized fast
carry (FC) signal path. 133–135, 138, 188
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SNX-FA A QDI FA based on the SN-FA, but without C gates in the signal paths to the
data outputs and with additional explicit completion detection. 134–136, 138, 188

Toms-FA A QDI FA constructed using Toms’ synthesis approach [Tom06]. 132, 135,
136, 198

TomsX-FA A QDI FA based on the Toms-FA, but with AND gates instead of C gates
and additional explicit completion detection. 132, 135, 136
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Software and Tools

pypr Python Production Rule Package – The Python-based asynchronous circuit mod-
eling and analysis framework developed for this thesis,
https://gitlab.ecs.tuwien.ac.at/eda/pypr.git. 103, 105, 107, 112,
115–124, 138, 141, 148, 153, 155–157, 160, 163, 166, 174, 184, 185, 189, 191

ACT Asynchronous Circuit Toolkit, an open-source asynchronous design suite developed
at Yale University R. Manohar and his research group,
https://avlsi.csl.yale.edu/act. 184

GHDL an open-source VHDL simulator,
https://github.com/ghdl/ghdl. 124, 157

Questa a commercial digital simulator,
https://eda.sw.siemens.com. 124, 157, 166, 175

Synopsys Design Compiler a commercial RTL synthesis suite by Synopsys,
https://www.synopsys.com. 91

Workcraft an open-source framework for interpreted graph models,
https://workcraft.org. 18

Yosys Yosys Open SYnthesis Suite, an open-source Verilog synthesis tool,
https://github.com/YosysHQ/yosys. 124, 126, 129, 156, 184

Z3 an open-source theorem prover from Microsoft Research,
https://github.com/Z3Prover/z3. 138, 140, 142, 143, 156
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