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Abstract

Insurance companies are facing a huge amount of regulations, including vari-
ous guidelines addressing forecast scenario calculations for the policies in the
portfolio. Taking the hundreds of thousands policies into account an average
insurance company has in its portfolio on can easily see that these scenario
calculations are very time consuming. Due to the rising number of policies and
the very tight time schedule introduced with Solvency II insurance companies
are looking for ways to reduce the computational time significantly. In the
past years different approaches were developed and already used for grouping
similar policies together and therefore reducing the computation time. The
currently used algorithms are ranging from just grouping policies with exactly
the same attributes together to basic cluster algorithms like k-means. This
work highlights potential problems with the algorithms currently used and
shows the implementation of some machine learning techniques which can be
used to replicate cash flows of insurance policies.
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Kurzfassung

Versicherungsunternehmen sehen sich mit einer immer größer werdenden An-
zahl von Vorschriften konfrontiert. Ein Teil dieser Richtlinien beschäftigt sich
dabei mit der Fragestellung wie Versicherungsportfolios in die Zukunft pro-
jiziert werden sollen. Bedenkt man dabei, dass ein durchschnittliches Ver-
sicherungsunternehmen hunderttausende von Polizzen im Bestand hat, kann
man den Zeitaufwand erahnen, der für solche Prognoserechnungen aufzuwen-
den ist. Steigende Bestände von Versicherungspolizzen in Kombination mit
engen aufsichtsrechtlich gesetzten Fristen führen dazu, dass Versicherungsun-
ternehmen nach Möglichkeiten suchen, die Rechenzeit für Projektionen zu
verkürzen. In den letzten Jahren wurden bereits verschiedene Ansätze en-
twickelt und zum Einsatz gebracht, um ähnliche Polizzen zusammenzufassen
und damit die Rechenzeit zu verkürzen. Dabei reichen die derzeit verwen-
deten Methoden von einfachen Zusammenfassungen von Polizzen mit exakt
gleichen Attributen bis hin zu Clusteralgorithmen wie beispielswiese k-means.
Diese Arbeit zeigt mögliche Probleme mit den derzeit verwendeten Algorith-
men auf und präsentiert neue Implementierungsansätze aus dem Bereich des
maschinellen Lernens, um eine Gruppierung des Versicherungsbestandes noch
effektiver umsetzen zu können.
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1. Introduction

A fundamental problem faced by many insurance companies is the projection
of the insurance portfolio into the future. In a projection, the future cash flows
for each individual policy must be calculated on the basis of actuarial principles
and then saved for further analysis. Depending on the purpose of the forecast,
these cash flows have to be provided either on a monthly or annually basis.
Together with the contractually agreed benefits to the policyholder, a wide
variety of other parameters must also be taken into account and modelled
in such projections. These include, for example, all contract changes that
may occur during the duration of the contract, such as a premium pause, a
surrender or the occurrence of a claim. While the calculation of a small set
of policies over a relatively short time horizon does not pose a challenge in
terms of computation time, this fact changes greatly when projecting entire
portfolios. This problem is particularly severe for life insurance portfolios.
These contracts often have durations of several decades and the portfolios
tend to grow over time as fewer policyholders leave than new ones are added.
Even with the optimistic assumption that the complete projection of a single
contract only takes a hundredth of a second, the computing time adds up to
several hours for a portfolio with several million policies. As the liabilities are
projected over a period of several decades, it is also essential to simulate the
development of the assets, underlying the liabilities, over this period. Even
under the assumption that the assets can be represented by a small number
of different types of investments, their projection additionally increases the
run time of the projection. The simultaneous simulation of the asset and
liability portfolios results in further factors that have to be taken into account
with respect to the behaviour of policyholders during the contract term. If
one assumes that the policyholder behaviour during the projection period also
depends on external parameters such as the current interest rates on savings,
one also has to include that effect into the simulation. This finally results in a
dynamic interaction of all components which can be summarized in a simplified
pseudo code given in algorithm 1:

Note that during an iteration (algorithm 1, 2a - 2d ) all results must be kept in

1
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1. Introduction

Algorithm 1 Simplified dynamic interaction scheme of portfolio projection

1. Initialisation of assets and liabilities at time t = 0.

2. Iteration till the end of the projection horizon is reached:

a) Calculation of one time step for the liabilities. This means that all
policies are rolled forward to the next year (t 7→ t+ 1).

b) Calculation of one time step for the assets. This means that the
returns of all investments are simulated for the next year.

c) Simulation of the dynamic policyholder behaviour based on the
current economic parameters from the previous step.

d) Application of pre-defined management decisions based on current
developments of assets and liabilities. This means that in this step
it is determined how high the dividend per share, for example, will
be for this year.

memory until every decision for that loop is made and the next iteration starts.
Assuming that there is a portfolio of several million policies and for each policy
at least a few dozen variables are relevant for the decision making process, a
memory requirement of at least hundreds of million individual values emerges.
Also the simulations of the assets and the subsequent management decisions
have a considerable memory requirement. All this leads to the fact that the
projection models currently used in the insurance industry are extremely de-
manding in terms of their memory requirements and execution time. There
are at least two different ways to address this problem:

• Outsourcing of calculations to an external high performance infrastruc-
ture.

• Data compression in the sense that similar policies are grouped together
and only the grouped portfolio is calculated.

With the increasing availability of cloud services, it is already an option these
days to outsource complex computing operations to specialized providers. It
is possible to rent different types of computing capacities for a certain period
of time without much effort and run the projections there. The big advantage
of this option is that there is no need to set up, maintain and configure an
infrastructure. Since personal data such as age or gender are always used in
the projection of insurance contracts, potential problems could arise with re-
spect to the General Data Protection Regulation [43]. Many companies have
therefore decided to compress the insurance portfolio and therefore reducing

2
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1.1. Problem formulation

the memory requirements using various techniques. It is then feasible to cal-
culate the projections with infrastructure that is owned by the company. This
approach has the big advantage that it avoids possible problems with data
protection issues and also reduces the dependency on external services. On
the other hand, an additional effort has to be made to compress the portfolio
in a proper way. Of course, it is of utmost importance that the compressed
portfolio has the same characteristics and produces the same cash flows as the
non-compressed one. This is exactly where this thesis comes in by presenting
possible ways and methods of compressing a portfolio of insurance contracts
or simulating their cash flows.

1.1. Problem formulation

For the sake of simplicity all values calculated by the projection tool are re-
ferred to as cash flows regardless of whether they are non-cumulative values
such as the reserve or actual cash flows such as the premium. The task is to
find a portfolio with a reduced number of policies, the so called grouped port-
folio, so that the projected cash flows match those from the reference portfolio
as accurately as possible. In order to be able to define what accurately means
in terms of cash flow deviations, some basic concepts must be defined first .

Definition 1.1. Let V = {V, V is a valid insurance contract} be the set of all
valid insurance contracts. A finite set of elements P ⊂ V is called a portfolio
and the number of policies within that portfolio is determined by its cardinality.

Definition 1.2. Let P ⊂ V be a portfolio of n policies (i.e. |P | = n) and m

the number of projected cash flows by the simulation s. Then the individual
cash flows corresponding to P are encoded in A ∈ R

m×n and the summed cash
flows are encoded in b ∈ R

m.

s : V → R
m×n

P 7→ s(P ) = A

s : V → R
m

P 7→ A · ✶n×1 = b

Remark 1.1. It should be noted that the definition of portfolio is ambiguous.
It can include anything from a single policy to all policies held by an insurance
company. The usual segmentation into portfolios is often based on the following
characteristics:

• All contracts of a singe tariff are put into one portfolio.

3
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1. Introduction

• All contracts of a tariff group (endowment, annuity, ...) are put into one
portfolio.

• All contracts sold in the same country are put into one portfolio.

Example 1.1. Let P ⊂ V be a portfolio with |P | = 1000. The number of cash
flows is given by m = 180. Then the cash flows generated by the projection
software can be described as:

A =




a1,1 a1,2 · · · a1,1000

a2,1
. . . a2,1000

...
. . .

...
a180,1 a180,2 · · · a180,1000


 b =




b1
b2
...

b180


 =




∑1000
i=1 a1,i∑1000
i=1 a2,i
...∑1000

i=1 a180,i




A column in matrix A describes all cash flows generated by this policy. One row
of matrix A describes the same cash flow generated by the different policies.
By calculating line totals, the corresponding cash flow is obtained at portfolio
level. The individual policy by policy cash flows are therefore given as matrix
A, and the portfolio cash flows as vector b.

Definition 1.3. Let P ⊂ V be a portfolio with |P | = n, P̃ ⊂ V the grouped
portfolio with |P̃ | = ñ, ñ < n, w ∈ R

m
≥0 = {x ∈ R

m, x ≥ 0} a vector of weights
and A◦B the Hadamard product of two matrices A and B. Then the weighted
sum of squares of the cash flows over the entire projection horizon between the
grouped portfolio P̃ and the ungrouped one P is given by:

WSStotal = ‖w ◦ (b− b̃)‖22 (1.1)

The weighting parameter w makes it possible to make deviations from certain
cash flows more or less important by weighting them differently. This can be
useful, for example, to weight deviations at the end of the projection period
less heavily compared to deviations at the beginning of the projection horizon.
Particularly with projection horizons of 30 years and more, it may make sense
to weight deviations in cash flows less strongly at a later point in time.

Remark 1.2. In a situation where every deviation of cash flows between the
grouped and the ungrouped portfolio is equally important, the elements of w are
all one. In this situation equation (1.1) simplifies to:

WSStotal = ‖b− b̃‖22 (1.2)

4
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1.2. Legal Framework

The aim is to develop a method which is capable of finding a suitable grouped
portfolio for each portfolio at hand so that (1.1) is sufficiently small. If there
are several methods that come to similar results, then of course the one that
needs the smallest grouped portfolio (i.e. smallest ñ) to generate the desired
cash flows is of interest.

This thesis reviews the currently used technique for grouping policies together
and introduces furthermore some new approaches on how life insurance policies
can be grouped together. Therefore drawbacks and advantages with a special
emphasis on the regulatory requirements of every approach discussed will be
highlighted. Theoretical considerations as well as practical implementations
and tests with real world data will provide some information on which method
an insurance company should work with in order to obtain the best grouping
results.

This thesis is structured as follows: First, an overview is given of the legal
framework that defines the minimum requirements for grouping approaches in
insurance companies. The next chapter is dedicated to the question on how
sensitive main characteristics of a policy are with respect to the interest rate,
the age or the duration. This analysis, carried out on a real insurance portfolio
with a widely used projection tool, already gives a first impression which pa-
rameters are important for grouping purposes. In the next chapter one of the
most popular unsupervised learning algorithms called k-means is presented.
Besides the algorithm itself, further theoretical aspects regarding the optimal
choice of clusters are given. Then the next chapter is dedicated to an optimiza-
tion algorithm called non-negative least squares. For this algorithm, which is
often used in practice, the focus is also on the possible numerical instabil-
ities that can occur during execution. This is followed by a chapter which
shows that machine learning methods can also be used to simulate cash flows
of forecast models. A special focus therefore is put on neural networks and
their application to real data. The final chapter then provides a brief sum-
mary of the results obtained and offers an outlook on possible further fields of
research.

1.2. Legal Framework

Solvency II - entered into force on 1. January 2016 - is the European framework
for a common insurance supervision. It is intended to achieve a harmonization
of the European insurance sector and was implemented in accordance with

5
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1. Introduction

the Lamfalussy architecture which works on a 4 level basis [8]. The most
significant elements and aims of the new regulation framework can be studied
on the homepage of the financial market authority (FMA) [18] and on the
homepage of the European Insurance and Occupational Pensions Authority
(EIOPA) [16]. This work is intended not to cover all aspects and aims of the
new Solvency II regulation framework but focuses on the topic of data quality
regarding to the actuarial function. In order to meet all the requirements
imposed by Solvency II, insurance companies need to process large amounts
of data within a short period. One critical aspect of these calculations is the
projection horizon which however should cover the full lifetime of all obligations
as stated in [6]:

3.83.

The projection horizon used in the calculation of best estimate
should cover the full lifetime of all obligations related to existing
insurance and reinsurance contracts on the date of the valuation.

3.84.

The determination of the lifetime of insurance and reinsurance
obligations shall be based on up-to-date and credible information
and realistic assumptions about when the existing insurance and
reinsurance obligations will be discharged or cancelled or expired.

Another aspect needed to be considered is the fact that cash flow calculations
need to be done for a variety of different economic scenarios which yields to
an enormous computational effort. Due to the tight time schedule, insurance
companies are looking for new possibilities to speed up these time consuming
calculations. One approach is not to make all these calculations on a per policy
level, but on a grouped level where similar policies are grouped together and
represented by only a few policies. This approach raises the question of how to
maintain data quality as mentioned in the level 1 directive [40] while reducing
the number of policies.

Article 82

Data quality and application of approximations, including

case-by-case approaches, for technical provisions

Member States shall ensure that insurance and reinsurance un-
dertakings have internal processes and procedures in place to ensure
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1.3. Statistical Learning

the appropriateness, completeness and accuracy of the data used
in the calculation of their technical provisions...

By publishing the level 2 regulations, supplementing the level 1 directive [40]
the European Commission is getting more specific on data quality (Article 19
in [7]) and also formulates concrete requirements for grouped policies [7].

Article 35

Homogeneous risk groups of life insurance obligations

The cash flow projections used in the calculation of best esti-
mates for life insurance obligations shall be made separately for
each policy. Where the separate calculation for each policy would
be an undue burden on the insurance or reinsurance undertaking,
it may carry out the projection by grouping policies, provided that
the grouping complies with all of the following requirements:

a) there are no significant differences in the nature and complex-
ity of the risks underlying the policies that belong to the same
group;

b) the grouping of policies does not misrepresent the risk under-
lying the policies and does not misstate their expenses;

c) the grouping of policies is likely to give approximately the
same results for the best estimate calculation as a calculation
on a per policy basis, in particular in relation to financial
guarantees and contractual options included in the policies.

These level 2 regulations are a reference point on what to consider when group-
ing policies together and they are even further specified in the level 3 guide-
lines issued by EIOPA[15]. Further details on the level 3 guidelines including
feedback statements to the consultation paper (EIOPACP-14/036) and the
guidelines can be obtained from [14].

1.3. Statistical Learning

Statistical learning refers to a set of methods which deals with predicting
outcomes based on input variables or finding patterns in data sets. In order to
accomplish the task of grouping together similar policies, different approaches
from statistical learning can be applied. All these methods can be classified

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

1. Introduction

either as supervised or unsupervised. Within the framework of supervised
methods, statistical models try to predict output variables yi based on some
input variables xi where the relation y = f(x) is unknown. It is therefore
indispensable to have input as well as output data to parameterize such a
model in order to find a prediction f̂ of f . Unsupervised methods, in contrast,
are used when inputs xi but no corresponding outputs yi are available. These
methods then try to find some hidden patterns within to data. The task of
grouping insurance policies involves many different aspects. On the one hand
we have all data needed to apply supervised methods, but on the other hand
we are only interested in the patterns that can be revealed by an unsupervised
method. The input variables are given by the characteristics of each policy and
the corresponding output variables are determined by the projection tool. Our
primary goal is not to get a good f̂ because the projection tool, which stands
for f , is already known. We are more interested in hidden patterns that can be
used for grouping purposes. In a first step we will apply unsupervised methods
to the data and try to group the policies based on their characteristics and
their cash flows. In a further step we will try to use the additional information
of f to improve the grouping results if possible.
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2. Sensitivities

Grouping together single policies and representing them by just a few represen-
tative ones always comes along with a loss of information. A natural question
which arises when grouping insurance contracts together is how to determine
the main characteristics of the new representative policy. Some characteristics
should for technical reasons be defined as the sum of the individual ones, like
the sum insured, the premium or the accumulated reserve. This is needed to
guarantee the equality between the ungrouped and the grouped portfolio in
terms of these characteristics at the beginning of the projection horizon. For
other characteristics like the age, the duration or the gender it is not intuitively
clear how they should be defined for a representative policy. Possible solutions
which can be implemented easily range from taking the weighted average over
the value with the highest relative frequency or to just taking the median of
the grouped policies. Another difficulty which arises when grouping together
policies from different product generations is, how the technical interest rate of
the representative contract should be defined. Even if the policies are identical
in terms of age, sex, sum insured, duration, costs,... and just differ on their is-
sue date the huge possible differences with respect to the technical interest rate
as shown in table 2.1 can have enormous impacts on the projected cash flows.
Already a relative small difference in the technical interest of only one percent
causes double digit differences in the guaranteed capital after 1 decade.

31.12.
1994

30.06.
2000

31.12.
2003

31.12.
2005

31.03.
2011

20.12.
2012

31.12.
2014

31.12.
2015

31.12.
2016

4% 3.25% 2.75% 2.25% 2% 1.75% 1.5% 1% 0.5%

Table 2.1.: Maximum technical interest rates for life insurance contracts is-
sued after the given dates. (see [17])

It is therefore important to know how sensitive the different output variables
of interest which are calculated by the projection tool react if various input
parameters are changed slightly. The most basic task is to determine whether
the correlation between the input and output variables is positive or negative.
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2. Sensitivities

There are many output variables which are important for determining if a
grouping process has been successful in terms of accuracy or not, but in the
subsequent we will focus only on a few of them, namely the premium, the
present value of future profits at time 0, the reserve and the yearly claims.
Due to the big variety of different insurance products we will just give some
general guidelines based on the most important input variables. Most of the
life insurance contracts can be built up by the following elementary insurance
types and some additional factors for different types of costs. 1:

Ax =
∞∑

k=0

vk+1
kpxqx+k (Whole life insurance) (2.1)

A1
x:n =

n−1∑

k=0

vk+1
kpxqx+k (Term insurance) (2.2)

Ax:n =
n−1∑

k=0

vk+1
kpxqx+k + vnnpx (Endowment) (2.3)

äx =
∞∑

k=0

vkkpx (Whole life annuity) (2.4)

äx:n =
n−1∑

k=0

äk+1 kpxqx+k + än npx (Temporary life annuity) (2.5)

These basic types already show that the main characteristics which should be
taken care of, when it comes to a grouping process are the age x, the duration
n and the technical interest rate which is implicitly given by v. The following
graphs and analyses are based on an endowment policy with a duration of 25
years, a sum insured of 10.000e and an investment return of 3% p.a. over
the whole projection horizon. The duration of 25 years is in all subsequent
considerations equal to the duration of the premium payments which are made
on a yearly basis. All other parameters especially the lapse, paid-up and
surrender rates as well as first and second order assumptions can’t be given
here in detail.

1For detailed definitions and explanations see [19].
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2.1. Age

10−4

10−3

10−2

10−1

100

0 25 50 75 100 125
age

lo
g 

q x
(2

00
1)

Austrian Annuity Valuation Table AVÖ 2005R Unisex

Source: Actuarial Association of Austria

Figure 2.1.: Logarithm of the yearly mortality defined by the Austrian An-
nuity Valuation Table AVÖ 2005R Unisex.

2.1. Age

The age of an insured person is one of the main factors which drives the
projected outcome because it directly influences the probability of death and
survival as shown in (2.1) - (2.5). When the age is changed from x to x+1 the
survival- and death-probabilities kpx and kqx change as well. It is impossible to
predict in general whether the probabilities will rise or fall. Figure (2.1) shows,
for example, the graph of logarithmic mortality rates based on the values of
the unisex mortality table from the Actuarial Association of Austria [24]. A
high level of non-linearity can be observed, which naturally leads to greater
challenges in the grouping process.

As known from life tables it is a bit more likely to die just after birth than
a bit afterwards and the same is true for people aged around 20. The exact
ages where the probability of survival increases and the probability of death
decreases when a person gets a year older depends heavily on the life table and
the sex of the insured person. Whether the values for (2.1) - (2.5) will rise or
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2. Sensitivities

fall when the age x is increased by 1 year will therefore depend on n, x and the
sex of the insured person. To get a better insight into the portfolio, simulation
runs for various parameters should be done. In figure (2.2) the development of
the yearly total claims is plotted against the duration of 25 years. The claims
are the amount of money that must be paid to the policyholder at the time of
an insured event multiplied by the probability that such an event will occur.
Such events can be of all kinds, but the most common are, for example, the
death of the insured person or a surrender of the contract.

For a clearer chart the last cash flow which is the sum insured and therefore
substantially larger than the yearly claims is omitted. We see that for younger
people (green and red lines) the claims are almost identical in the first years
and only deviate slightly at the end of the duration due to minor differences
in the probabilities of death. For an insured person aged 60 we observe over
the entire projection horizon considerably higher claims compared to younger
policyholders. This gap between young and old policyholders which is mostly
driven by mortality effects even increases with time. An insured person aged
60 which gets one year older faces in absolute values an higher increase in
the mortality rate compared to an insured person aged 40 and so the claims
will be higher in absolute values for the older person. This effect is partially
compensated by lower surrender claims due to the higher mortality rates. If
one compares the development of the claims also with respect to different
interest rates, one can see in figure (2.2) that there are hardly any differences
between the values of 2%, 3% and 4% shown.

In figure (2.3) the development of the booked premium at time 0 is plotted
against the age. For policyholders aged between 15 and 30 the premium stays
almost constant and then starts to increase exponentially. The increase of
the premium is of exponential order due to the fact that the mortality rate
is also increasing exponentially. Another fact that is not surprising is that
the premium is the lower the higher the technical interest rate is, because the
technical interest rate is used as a discount factor in (2.1) - (2.5). In figure (2.4)
the present value of future profits (PVFP) at time 0 is plotted against the age.
The PVFP is the higher the higher the entry age of the policyholder is, which
is a counter intuitive relation at first sight. An analysis of the yearly cash flows
for two different policyholders aged 15 and 70 reveals that this phenomenon is
based on two different aspects as given in detail in table A.1.

1. When the guaranteed interest rate is roughly equal to the investment
return or even higher then it is more advantageous for the insurance
company when the policyholder is older and therefore dies earlier because
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2.2. Technical interest rate

the difference between the guaranteed interest rate and the investment
return need not to be financed over a long period. This leads to the
observed fact that the PVFP is the lower the higher the technical interest
rate is.

2. The differences of the first and second order assumptions of the mortality
rates are in absolute values the bigger the higher the age is, because in
almost all cases the second order assumptions of of the mortality rates
are just a fixed fraction of the first order assumptions. This directly
leads to a higher risk margin and therefore to a higher premium for
elder persons in absolute values as shown in column prem diff in table
A.1. The higher premium overcompensates the higher death claims and
therefore increases the surplus in absolute values and leads to a higher
present value of future profits.

In figure (2.5) the value of the reserve is plotted against the time. In all three
cases the reserve is zero at the beginning and then starts to increase. This
is due to the fact, that the valuation date of the projection is Q1 but the
begin month of the policy is later. We see that for the ages of 15 and 30 the
difference in the reserve is negligible for all different values of the technical
interest rate. The reserve for a 45 year old person is almost identical to the
one of younger policyholders at the first 10 years of the endowment but then
increases at a slightly slower rate. For a person aged 60 we get a different
picture because the reserve is not always monotonically increasing as it is true
for the younger policyholders. The reserve increases after approximately 10
years at a much slower rate compared to the other policyholders and even starts
to decrease after roughly 20 years. This effect can again be explained by the
much higher morality rates in absolute values for older policyholders as time
increases. Due to that fact the reserve is at the end of the projection horizon
when the maturity claims are paid out for an older policyholder approximately
half of the size as for a younger policyholder.

2.2. Technical interest rate

The technical interest rate is one of the key assumptions in the life insur-
ance business. It determines the factor by which the reserve and the savings
premium increases during the contract period. After the contract has been
concluded the technical interest rate is fixed and can’t be changed by the
insurance company. The maximum technical interest rate has been reduced
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2. Sensitivities
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Figure 2.2.: Yearly cash flow for claims depending on the age and the tech-
nical interest rate.
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Figure 2.3.: Premiums depending on the age and the technical interest rate.

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.2. Technical interest rate
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Figure 2.4.: Present value of future profits at time 0 depending on the age
and the technical interest rate.
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Figure 2.5.: Yearly reserve depending on the age and the technical interest
rate.
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2. Sensitivities

dramatically by the Financial Market Authority in recent years from 4% to
0.5% as shown in table 2.1. The regulation of this upper bound is also relevant
as it is often related to the minimum interest rate guaranteed to the policy
holder. It is obvious that the higher the technical interest rate, the higher
the guaranteed benefit or the lower the premium will be. When the grouping
algorithm forces policies from different product generations with same payout
characteristics but different technical interest rates to be grouped together one
important thing to be aware of are sensitivities. Another important aspect
which need to be taken care of when policies with different technical interest
rates are grouped together is the one of consistent management rules. Take for
example policy 1 with a technical interest rate of 2% and a bonus rate of 2%
and policy 2 with a technical interest rate of 4% and a bonus rate of 0%. Lets
assume that the two policies are similar and the grouped policy has a technical
interest rate of 3% and a bonus rate of 1%. The total interest rate then is the
same for the grouped and the ungrouped policies. Assume that the bonus rate
is reduced by 1% caused by a management decision. Then policy 1 has only
a bonus rate of 1% and policy 2 doesn’t change at all, but the grouped policy
has now a bonus rate of 0%. The total interest rate is not the same for the
grouped and the ungrouped policies which can potentially have major impacts
on the projected cash flows. When the technical interest rate increases, the
present value of future profits as well as the premium will decrease as shown
in figure (2.4) and (2.3) respectively. This behaviour is not surprising at all,
because as the technical interest rate rises the insurance company guarantees a
higher benefit and this yields ceteris paribus to a lower PVFP. The reserve and
the claims are not that much affected by an increase of the technical interest
rate as shown in figure (2.2) and (2.5) respectively.

2.3. Duration

The duration n of an insurance contract is next to the age and the technical
interest rate another main characteristic which need to be taken care of when a
grouping process is carried out. In figure (2.6) the yearly claims except the last
claim, which is the maturity claim, are shown for different ages. One obvious
conclusion that can be derived is that the sum of all sorts of claims except the
maturity claim is getting the higher the higher the age is. Another observation
that can be made is that for any given time t the claims are the higher the
shorter the duration gets when we keep the age fixed. This is not surprising at
all, because a shorter duration goes along with a higher premium (see figure
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2.3. Duration

(2.7)) and a higher reserve (see figure (2.9)) which yields to higher claims for
every fixed t. In figure (2.7) we see that the premium is decreasing with an
exponential order when the duration is increased. The difference between the
premiums for policyholders with different ages is indistinguishable small for
short term contracts and is getting bigger as duration increases. In figure (2.8)
the present value of future profits at time 0 is plotted against the duration of the
contract. We see the same effect as in figure (2.4) where contracts with higher
ages lead to a higher PVFP. The effect of the absolute difference between the
first and second order mortality assumptions is getting the bigger the longer
the duration is and therefore the PVFP is getting the higher the longer the
duration is. In the last sensitivity chart (2.9) the reserve is plotted against the
time for different values of x and n. We see that for every time t the reserve is
the higher the shorter the duration is, because a shorter duration leads, ceteris
paribus, to a higher premium which then results in a higher reserve. For short
term contracts up to 10 years the reserve is approximately the same across
different ages and is then getting the lower the higher the age and the longer
the duration is. After the sensitivity analysis has already provided the first
important insights from the data, the next chapter discusses the first potential
algorithm that can be used for the grouping of policies.
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2. Sensitivities
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Figure 2.6.: Yearly cash flow for claims depending on the duration and the
age.
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Figure 2.7.: Premiums depending on the duration and the age
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2.3. Duration

5 10 15 20 25

duration

pr
es

en
t v

al
ue

 o
f f

ut
ur

e 
pr

of
its

age

15

30

45

60

Figure 2.8.: Present value of future profits at time 0 depending on the dura-
tion and the age.
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Figure 2.9.: Yearly reserve depending on the duration and the age.
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3. k-means

To be able to process, summarize and understand huge amounts of data better,
one is interested in methods that are able to find patterns in the data. The
characteristics of these patterns then can be represented by just a few repre-
sentative data points which behave like the whole data set. Given a data set
the challenge is, based on a measure of similarity, to find groups of observations
which are quite similar within each group but quite different to all the other
groups. If this task has to be done with unlabelled data it is referred to as
unsupervised clustering (c.f.[22]). One of the most widely used unsupervised
clustering approaches is the k-means clustering. The k-means method is a
simple approach in cluster analysis which splits a data set of n p-dimensional
observations into k distinct clusters. Each observation belongs uniquely to
exactly one of the k clusters, where k is a predefined number of clusters. Let
C = {C1, C2 . . . , Ck} denote the sets containing the indices of the observations
related to the clusters, then we get:

Definition 3.1. Let X = {x1, ..., xn} be a data set. X is said to be partitioned
into k different clusters C1, C2 . . . , Ck if

(i) C = C1 ∪ C2 · · · ∪ Ck = {1, . . . , n}

(ii) Ci ∩ Cj = ∅ ∀i 6= j

The basic idea of the k-means clustering is to minimize the variation within
the clusters. For this purpose some distance measure is needed in order to be
able to define variation within clusters.

Definition 3.2. Let X be a set, d: X×X → R a function. Then d is called
a metric (or distance) on X if for all x, y, z ∈ X the following conditions are
fulfilled:

(D1) d(x, y) = 0 ⇔ x = y (Identity of indiscernibles)

(D2) d(x, y) = d(y, x) (symmetry)

(D3) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)
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3. k-means

Remark 3.1. Given the axioms from definition 3.2 it can be shown that a
non-negativity property can be deducted e.g. d(x, y) ≥ 0 ∀x, y ∈ X.

d(x, y) + d(y, x) ≥ d(x, x)

d(x, y) + d(x, y) ≥ d(x, x)

2d(x, y) ≥ 0

d(x, y) ≥ 0

Example 3.1. (c.f. [25]) The most frequently used distance functions for two
points x = (x1, ..., xp) and y = (y1, ..., yp) in R

p are:

⋆ Euclidean distance:

d2(x, y) :=

√√√√
p∑

j=1

(xj − yj)2

⋆ Manhattan distance:

d1(x, y) :=

p∑

j=1

|xj − yj|

⋆ Chebyshev (maximum) distance:

d∞(x, y) := max
j

|xj − yj|

⋆ Minkowski distance (Lq distance) with q ≥ 1:

dq(x, y) :=

( p∑

j=1

|xj − yj|
q

) 1
q

Typically the Euclidean distance is used as a measure of similarity to compute
the distance between the different points. By using the Euclidean metric as a
measure of similarity one assumes that the clusters are spherical.

Definition 3.3. Let the Euclidean metric be the measure of similarity for the
data points in the data set X = {x1, ..., xn} and p the dimension of the data.
Then the variation within one cluster Cl, l = 1, ..., k is defined as:

D(Cl) :=
1

|Cl|

p∑

j=1

∑

i,i′∈Cl

(xij − xi′j)
2
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Remark 3.2. For the average over one dimension in one cluster we use the
short notation x̄lj =

1
|Cl|
∑

i∈Cl
xij.

Remark 3.3. The identity
∑

i∈Cl
(xij − x̄lj)

2 =
(∑

i∈Cl
x2
ij

)
− |Cl|x̄

2
lj can be

verified by simple calculus.

Corollary 3.1. The variation within one cluster, D(Cl) can be written as:

D(Cl) = 2
∑

i∈Cl

p∑

j=1

(xij − x̄lj)
2 (3.1)

Proof.

D(Cl) =
1

|Cl|

p∑

j=1

∑

i,i′∈Cl

(xij − xi′j)
2

=
1

|Cl|

p∑

j=1

∑

i,i′∈Cl

x2
ij − 2xijxi′j + x2

i′j

=

p∑

j=1

(
1

|Cl|

∑

i,i′∈Cl

x2
ij − 2

1

|Cl|

∑

i,i′∈Cl

xijxi′j +
1

|Cl|

∑

i,i′∈Cl

x2
i′j

)

(Remark 3.2)
=

p∑

j=1

(
∑

i∈Cl

x2
ij − 2x̄lj

∑

i∈Cl

xij +
∑

i′∈Cl

x2
i′j

)

(Remark 3.2)
= 2

p∑

j=1

(
∑

i∈Cl

x2
ij − |Cl|x̄

2
lj

)

(Remark 3.3)
= 2

∑

i∈Cl

p∑

j=1

(xij − x̄lj)
2

The approach of k-means is to find a partitioning of the data set in such a way
that the sum of the variations is minimized.

Definition 3.4 (k-means). Let X = {x1, ..., xn} be a data set and {C1, ..., Ck}
a partition. Then k-means tries to find an optimal partition C∗ = {C∗

1 , ..., C
∗
k}

such that:

k∑

l=1

D(C∗
l ) = min

C1,...,Ck

k∑

l=1

D(Cl) = min
C1,...,Ck

2
k∑

l=1

∑

i∈Cl

p∑

j=1

(xij − x̄lj)
2 (3.2)
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3. k-means

When it comes to solving the optimization problem defined by formula (3.2),
the computational complexity of the algorithm to be used is of high interest.
Therefore computational complexity theory categorizes problems into different
classes that have some defining properties, one of which is called NP-hard. The
definition of these classes would go beyond the scope of this work and therefore
only a reference to the literature is given here e.g. [39]. In very simplified
terms one can say that there are currently no efficient algorithms for this type
of problem.

Corollary 3.2. Solving the k-means problem defined in (3.2) is NP-hard.

Proof. c.f. [32]

Even though the problem is NP-hard it is still possible to provide algorithms
which converge to a local optimum. The algorithms used for finding a local
minimum work on an iterative basis and involve just a few different steps. The
k-means algorithms either start with an initial assignment of all observations
to k different clusters or with k distinctly selected cluster centres. The next
step is to find a new cluster centre such that the variation D(Cl) is minimized
within each cluster. Then all data points X = {x1, ..., xn} are reassigned to
the cluster which is nearest and the minimization procedure is repeated until
convergence.

Remark 3.4.

(i) For k = n, (3.2) is zero because each data point represents a cluster.

One possible formulation for an algorithm that converges to a local optimum
is the one from Lloyd [30] which is given below as pseudo code. Note that
for algorithm 2 we have a fixed number of clusters k as well as a finite set
of possible partitions kn. We can therefore show that the stated algorithm
converges to a local minimum by minimizing (3.1).

Remark 3.5.

(i) For any set of observations S it holds that:

x̄S = argmin
x

∑

i∈S
(xi − x)2

Hence, step 2a) minimizes the sum of squared deviations and therefore
D(Cl).
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(ii) Step 2b) which reassigns the observations to the new nearest centroid can
only reduce the objective function.

Algorithm 2 k-means clustering [23] - Lloyd’s algorithm

1. Choose k initial centroids randomly.

2. Iterate till the cluster assignments stop changing:

a) For each of the k clusters, compute the cluster centroid. The
i-th cluster centroid is the vector of the p parameter means for
the observations in the ith cluster.

b) Assign each observation to the cluster whose centroid is closest in
the sense of Euclidean distance.

Remark 3.6.

(i) The k-means algorithm always converges and finds a local optimum which
need not to be the global one.

(ii) Different clustering results can be obtained when different initial cluster
assignments in step 1 of algorithm 2 are chosen.

Remark 3.7 (Running Time).

(i) Algorithm 2 has a running time of O(nkpi), with n being the number of
data points, k the number of cluster, p the number of dimensions and i
the number of iterations needed to converge. The only unknown variable
is the number of iterations.

(ii) The trivial upper bound for the number of iterations needed is given by
O(kn), because the algorithm visits every partition of points only once.

(iii) It can be shown ([3]) that in the worst case scenario the runtime of
the algorithm is superpolynomial with a lower bound for the number of
iterations of O(2Ω(

√
n)). This means that the runtime is not bounded from

above by any polynomial function.

(iv) In practice, the number of iterations required is often small, which makes
the algorithm appear to be linearly complex.

It is advisable to run the algorithm several times with different initial cen-
troid assignments. This increases the likelihood of finding a partition that is
close to the optimum and thus provides a low value for the objective function

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. k-means

(3.2). However, the biggest challenge when using k-means is the estimation of
the optimal number of clusters k. Figure (3.1) shows an example with three
clusters that illustrates the different clustering results when the number of k
increases. Panel (a) shows the raw data with three clusters (ktrue = 3), each
generated by an uniform distribution. Panels (b), (c) and (d) show the cluster
results with k = 2, 3 and 7, respectively. If the number of clusters k is smaller
than the actual number of clusters in the data, then k-means merges clusters,
while for k greater than ktrue, k-means divides well separated clusters. Panel
(b) shows a merge of the clusters at the top right, whereas panel (d) shows an
artificial split of two natural clusters for k = 5. For the grouping of similar
data points and their representation by a cluster centre, an underestimation
of the actual number of clusters is more critical than an overestimation. If
k underestimates the true value of clusters (k < ktrue), then it’s not possible
to capture the cluster specific characteristics for the merged clusters because
they are represented by only one cluster centre. However, an overestimation
of ktrue is not so critical because some natural clusters will be represented by
two cluster centres which has a negative impact on the compression ratio but
not the clustering quality. For the most crucial step of k-means, a comprehen-
sive collection of methods for estimating the correct number of clusters can be
found in [34]. In the following, the ‘elbow’ and silhouette method, two widely
used graphical methods for estimating ktrue, are presented and applied to the
sample data set.
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Figure 3.1.: Results for a three-cluster example: (a) raw data; (b) k = 2; (c)
k = 3; (d) k = 5
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3. k-means

3.1. Elbow method - gap statistic

Estimating k, the parameter that defines the number of clusters, is one of the
most difficult tasks when using k-means. While it is still possible to graphically
determine the number of clusters by plotting the data in 2 or 3 dimensional
spaces, other methods must be used in higher dimensions. The ‘elbow’ method
is one of the most commonly used methods in this context.

Definition 3.5. Let X = {x1, ..., xn} be a data set and k the number of clus-
ters. Then C = {C1, ..., Ck} is the corresponding partition with the sum of
variation within all clusters defined as:

Vk :=
k∑

r=1

D(Cr)

2

Plotting Vk, the sum of variation within all clusters as a measure of total error
versus the number of clusters used gives a good indication for the true value
of k. Figure 3.2(a) shows that the error measure Vk decreases monotonically
as the number of clusters increases but there seems to exist a k from which
the decline is clearly flattened. Such an ‘elbow’ indicates that any additional
cluster reduces the total variation Vk only slightly and an appropriate number
of clusters can be derived from the location of the ‘elbow’. In accordance with
ktrue = 3, the ‘elbow’ plotted in 3.2(a) indicates that the true number of clus-
ters is three, because there the curve starts to flatten dramatically. Even if
the sample data set consists of very well separated clusters, the example indi-
cates that the method could also be suitable in general use cases. For a small
number of tasks the graphical determination of the ”elbow” is practicable, but
an automated method is needed with an increasing number of clustering op-
erations. A statistical method that formalizes this procedure of finding the
‘elbow’ is described in [48]. The basic idea is to make the sum of variation Vk

comparable to a reference. For this purpose, the sum of deviations is calculated
for each k and then compared with the expected sum of the deviations derived
from a reference data set with no obvious clustering. The reference data set
is generated by sampling uniformly over the range of the observed values for
every feature from the original data set. This means it is sampled uniformly
from the smallest p-dimensional cube that contains all data points {x1, ..., xn}
of the original data set.

Definition 3.6. Let k be the number of clusters and En the expectation under
a sample of size n from the reference distribution. Then the gap-statistic is
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3.1. Elbow method - gap statistic

defined as:
Gapn(k) := En

[
log(Vk)

]
− log(Vk) (3.3)

To determine the expected value En

[
log(Vk)

]
we draw B different samples

{x∗
1, ..., x

∗
n} from the p-dimensional cube and average over the B values of

log(Vk). Accounting for the simulation error introduced by using the B Monte
Carlo samples the standard deviation is given by:

sk =

√
1 +

1

B
sd(k)

The optimal cluster size k is then determined by the following rule which
identifies the ‘elbow’:

Definition 3.7. Let Gap(k) be the statistic defined above and sk the standard
error. Then the rule for choosing k is given by: (c.f. [48])

k̂ := smallest k such that Gap(k) ≥ Gap(k + 1)− sk+1 (3.4)

In order to find the optimal number of clusters in a computational way, the
following steps described in algorithm 3 are necessary:

Algorithm 3 Elbow method [48]

1. Define the maximal number of clusters kmax

2. Iterate over k = 1, ..., kmax:

a) Apply the k-means algorithm to the data set {x1, ..., xn} and cal-
culate log(Vk).

b) Generate B reference data sets, each of them having n samples
{x∗

1, ..., x
∗
n}.

c) Cluster each of those B data sets and calculate En

[
log(Vk)

]
=

1
B

∑B

b=1 log(Vkb)

d) Compute the standard deviation:

sk(k) =

√
1 +

1

B

(
1

B

B∑

b=1

(log(Vkb)− En

[
log(Vk)

]
)2
) 1

2

e) End the loop if: Gap(k) ≥ Gap(k + 1)− sk+1
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3. k-means
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Figure 3.2.: Three-cluster example: (a) Total within Sum of Squares; (b)
Gap-Statistic

Figure (3.2)(b) shows the gap-statistic for different values of k with the corre-
sponding standard errors as a vertical bar. The application of the proposed rule
(3.4) for selecting the number of clusters results in k̂ = 3 which corresponds
exactly to the actual number of clusters in the data set.

3.2. Silhouette method

Although the ”elbow method” is well suited in many cases to determine the
number of clusters, the resulting partitioning is not visually displayable if the
dimension is larger than three. A visually appealing graphical display called
silhouette plot introduced in [44] tries to overcome this shortcoming in order
to be able to interpret cluster results more properly. The plot shows whether
a specific partitioning result reflects a cluster structure actually present in
the data set or not, by comparing the within dissimilarity with the between
dissimilarity for every data point. It can thus be determined how similar a
data point is to its own cluster compared to the other clusters. The measure
of similarity can be calculated with any distance metric appropriate to the
specific problem and will be called dist(xi, xj) for two data points xi and xj.

Definition 3.8 (Within dissimilarity). Let X = {x1, ..., xn} be a data set and
C = {C1, ..., Ck} the corresponding partitioning with k cluster. Assume that
the data point xi is assigned to cluster Ci with Ci ∈ C and 1 ≤ i ≤ n. Then the
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3.2. Silhouette method

average dissimilarity of xi to all other objects assigned to cluster Ci is defined
by:

WD(Ci, i) :=
1

|Ci|

∑

xl∈Ci

dist(xi, xl)

One can think of WD(Ci, i) as a measure of how well the data point xi is
embedded in its cluster Ci. The smaller the value, the closer the data points
of the cluster are to each other on average.

Definition 3.9 (Between dissimilarity). Let X = {x1, ..., xn} be a data set
and C = {C1, ..., Ck} the corresponding partitioning with k cluster. For any
cluster Cj different from Ci (i.e. i 6= j) the average dissimilarity of xi ∈ Ci to
the cluster Cj is given by:

BD(Cj, i) :=
1

|Cj|

∑

xl∈Cj

dist(xi, xl)

One can see that BD(Cj, i) is the average distance from data point xi in cluster
Ci to all data points xj in cluster Cj.

Definition 3.10. Let X = {x1, ..., xn} be a data set and C = {C1, ..., Ck} the
corresponding partitioning with k cluster. For any data point xi assigned to
cluster Ci (e.i. xi ∈ Ci) the distance to the closest neighbor cluster is given by:

dist(i) := min
Ci 6=Cj

BD(Cj, i)

Cluster Cb with 1 ≤ b ≤ k, which shares the smallest average dissimilarity with
point xi ∈ Ci is called the neighbor cluster of xi. This neighbor cluster is the
first choice if cluster Ci is removed from our analysis and we have to reassign
xi to a new cluster. After computing WD(Ci, i) and dist(i) for every data
point xi, i = 1, ..., n one can define the silhouette statistic s(i) as follows.

Definition 3.11. Let X = {x1, ..., xn} be a data set and C = {C1, ..., Ck} the
corresponding partitioning with k cluster. For every xi ∈ X the silhouette s(i)
is defined as:

s(i) =





1− WD(Ci,i)
dist(i)

if WD(Ci, i) < dist(i)

0 if WD(Ci, i) = dist(i)
dist(i)

WD(Ci,i)
− 1 if WD(Ci, i) > dist(i)
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3. k-means

Remark 3.8. We can write the silhouette s(i) in a more compact form:

s(i) =
dist(i)−WD(Ci, i)

max{WD(Ci, i), dist(i)}
, if |Ci| > 1

s(i) = 0 if |Ci| = 1

Remark 3.9. For every xi it is true that −1 ≤ s(i) ≤ 1.

Remark 3.10. In order to understand which values of s(i) correspond to which
clustering results, it makes sense to look at values at the boundaries:

• s(i) ∈ (1− ǫ, 1]: For s(i) close to 1 the within dissimilarity of xi is much
smaller than the minimum between dissimilarity. This shows on the one
hand that the data point xi is very well embedded in its cluster and has
a small distance to the other data points of its cluster (i.e. WD(Ci, i)
small). On the other hand a relatively large value of dist(i) shows that
the minimum distance from xi to the nearest cluster is very large. Thus
one can speak of an adequate clustering result.

• s(i) ∈ (−ǫ,+ǫ): The within dissimilarity of xi is approximately the same
as the minimum between dissimilarity which indicates that xi lies between
two cluster. A small change of the data point xi could cause it to be
assigned to another cluster, suggesting unstable results.

• s(i) ∈ [−1,−1 + ǫ) The minimum between dissimilarity of xi is much
smaller than the within dissimilarity which indicates that xi may not
be correctly clustered. In this case xi is on average much closer to the
neighbor cluster than to the actual cluster which rises doubts if the cluster
assignment is correct.

Remark 3.11. Let xi be a data point which is assigned to cluster Ci and
cluster Cj the neighbor cluster of xi. If xi is reassigned from cluster Ci to
cluster Cj then s(i) becomes −s(i).

In order to get a visually appealing overview if a clustering result is good or
not all silhouettes are plotted on top of each other. Silhouettes which belong
to the same cluster are plotted together and ranked in decreasing order.

Figure (3.3) shows the silhouette plot for the sample data set with k = 3 and 5,
respectively. Each silhouette plot shows on the right side the cluster name,
the number of data points assigned to the cluster and the average silhouette
width. In the right panel of figure (3.3) cluster 1 consists of 11 data points
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3.2. Silhouette method

Figure 3.3.: Left: silhouette plot for k = 3; Right: silhouette plot for k = 5
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3. k-means

and has a average silhouette width of 0.37. In cluster 3, for example, two
data points have a silhouette width s(i) close to zero and one data point has
a negative value for s(i). Except for cluster 5, all other clusters include data
points which have a small or even negative value for s(i). At the bottom of
each silhouette plot the average silhouette width for all data points is given.
The silhouette plot with k = 3 has much wider silhouettes compared to the
plot with k = 5 which is an indicator that only 3 clusters are present in the
data. Similar plots for k = 2 and k = 4 also lead to the conclusion that the
data consists of 3 natural clusters. If there are too many (k > ktrue) or too
few clusters (k < ktrue) some of the cluster silhouettes will be much narrower
compared to the others.

Remark 3.12. A high average cluster silhouette width indicates that the clus-
ter is well separated from other clusters and is not split up artificially.

Remark 3.13. It can be seen that artificial splits of clusters gets quite heavily
penalizes by the silhouette coefficient. The average silhouette width drops from
0.75 to 0.52 if the number of cluster is increased from k = 3 to k = 5 as seen
in figure (3.3).

3.3. Curse of dimensionality

After presenting two methods namely the elbow method and the silhouette
method which help identifying the correct number of clusters one should also
be aware of a phenomena that arise when analyzing data in high dimensional
spaces. The ‘curse of dimensionality’ is a term introduced by Richard Bell-
man [4] to describe the rapid increase in volume and therefore the intractabil-
ity of algorithms, when adding more dimensions of data to a mathematical
space. Nowadays there are many different phenomenons referred to when
talking about the curse of dimensionality but in the subsequent the focus is
on distance functions as a measure of similarity. So far, all the methods pre-
sented are based extensively on the underlying distance functions used. To get
a better understanding on the issue a simple example is given that helps to
illustrate the problem.

Example 3.2.

(i) Imagine a line segment of length 1, and 10 data points which should
represent the line. To capture the whole line segment one would distribute
the points uniformly across the line. Therefore the line would be divided
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3.3. Curse of dimensionality

into 10 segments with length 1
10

and the points are centered within these
segments.

(ii) By adding one dimension the line segment becomes a square segment with
edge length 1. In order to represent the ‘same’ space with a data point
as in the one-dimensional case, the square would have to be divided into
100 smaller squares with an edge length of 1

10
each. In the centre of each

of those square segments one data point is needed as a representative. A
total of 100 data points are required to represent the square segment as
exactly as the line segment.

(iii) By adding another dimension the square segment becomes a cube and
1000 points are needed.

Example 3.2 illustrates that as the number of dimensions increases the num-
ber of data points rises exponentially in order to represent the whole space
properly. Thinking of insurance data, one can have data points with various
numbers of dimensions ranging from just a few to several hundreds dimensions.
Considering the fact that the cash flow projections of grouped policies should
coincide over a 60 year horizon, it is easy to see that only 5 of these cash flow
characteristics (e.g. premium, costs, ...) result in data points with a dimension
of 300. Of course, it is not advisable to include, over a period of 60 years, all
cash flow variables in the grouping process, but it is much more difficult to
find only those variables that are relevant for a major part of the results than
including everything. For this reason, in practice more variables are often used
than would actually be necessary. Another unintuitive fact one needs to be
aware of is that the volume of a hypersphere inscribed into a hypercube is
getting relatively smaller as the dimension increases.

Corollary 3.3. Let a hypersphere with radius r and dimension d be inscribed
into a hypercube with edges of length 2r. Then we get for the proportion of the
volumes:

VSphere

VCube

=
rd π

d
2

Γ( d
2
+1)

(2r)d
=

π
d
2

2dΓ(d
2
+ 1)

→ 0 as d → ∞

Remark 3.14. Corollary 3.3 says that as dimension d increases, more and
more volume of the hypercube is outside the hypersphere. This means that
under a uniform distribution most of the data points are located far from the
centre and thus close to an edge in a certain sense.

Remark 3.15. Some other examples why intuition fails in high dimensions
are given in paragraph 6 of [12].
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3. k-means

Not only do the data points move closer to the edge as the dimension d of the
data space increases, but the distance between the individual data points is
becoming more and more similar. It can be shown ([5]) that under a broad
set of conditions the distance to the nearest and to the farthest data point
converges as dimensionality d increases. Experimental results in [5] show that
this effect can occur even for relatively low dimensional data with only 10
to 15 dimensions. The fact that the distance to the farthest data point can
get similar to the distance of the nearest data point makes clustering a hard
job. The basic concept of k-means is to find, in the case of the Euclidean dis-
tance measure, spherically shaped clusters that have different characteristics.
Therefore, data that is almost identical should not be clustered with a simple
k-means algorithm without further analysis. Due to the fact that the k-means
algorithm always returns a result even though there are obviously no clusters
in the data because all data points are somehow similar, it is very difficult to
determine whether k-means is a suitable tool for clustering or not. Situations
in which all data points are similar and no cluster structure is present in the
data are, as shown in the previous section, indicated by a low silhouette coeffi-
cient. When using the methods described in section 3.2, a silhouette plot with
low silhouette coefficients for the clusters indicates that the clusters found by
the algorithm are not well separated. Single clustering attempts can easily be
verified by an visual inspection of plots described above. With an automated
clustering approach, which is necessary for large insurance portfolios, visual
control of the individual silhouette plots is not possible in most cases. In such
cases, only a validation of the silhouette coefficient is feasible, but this leads
ultimately to a situation where a clustering result is validated by a single value.
It is therefore advisable to use low-dimensional policy data sets or conduct a
thorough analysis of the data to avoid situations where problems referred to
as ’course of dimensionality’ occur.
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4. Non-negative least squares
(NNLS)

Another way to find a grouped portfolio that minimizes the deviation defined
in formula (1.1) is to solve the problem using mathematical optimization meth-
ods. The goal is to find a subset of the portfolio and scale it in way so that the
square deviation becomes minimal. Of course, this approach must ensure that
scaling is only possible in the positive direction. This means that it makes no
sense to have a negative policy in the grouped portfolio, because it cannot be
defined, not to mention explained logically.

Definition 4.1 (Non-negative least squares). Let P ⊂ V be a portfolio,
A ∈ R

m×n the matrix with the corresponding cash flows and b ∈ R
m the vector

with the summed cash flows. Then x ∈ R
n, the vector of scaling, should be

optimized such that:
argmin

x

‖Ax− b‖22

subject to x ≥ 0
(4.1)

Remark 4.1.

• The entries of the vector x are the so-called scaling values for the cash
flows in matrix A. Each entry xi, i ∈ {1, ..., n} that is greater than zero
scales to the i-th column of matrix A where column i represents the cash
flows of the i-th policy of the portfolio.

• It should be noted that this approach optimizes cash flows, not policies.
Since there is a one-to-one relationship between cash flows and policies,
the scaling factors cannot only be used to scale the cash flows but also to
scale the policies in order to create a grouped portfolio.

• Scaling policies can also involve risks, as a policy that is scaled by a
factor of 2 will not necessarily produce cash flows that are also increased
by a factor of 2. This can be attributed to the fact that, for example,
non-linearities occur due to discount effects for higher premiums in the
tariff.
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4. Non-negative least squares (NNLS)

Remark 4.2. The number of policies in the grouped portfolio corresponds ex-
actly to the number of entries greater than zero in the vector x.

One of the well known algorithms for solving the non-negative least squares
problem is that of Lawson and Hanson, which uses an active set method. The
steps necessary for solving that problem are given in [29]. Additionally to
those parameters defined in definition 4.1 one also needs a real value variable
ǫ as a stopping criterion.

Algorithm 4 Non-negative least squares [29]

1. Set P = ∅, R = {1, ..., n}, x = 0n×1

2. Compute w = A⊤(b− Ax).

3. While R 6= ∅ and max(w) > ǫ

a) Find index j ∈ R such that wj = max{wt, t ∈ R}.

b) Move the index j from R to P .

c) Let AP be A restricted to the variables included in P .

d) Let s be a vector of same length as x. Let sP denote the sub-vector
with indexes from P , and let sR denote the sub-vector with indexes
from R.

e) Compute sP = ((AP )⊤AP )−1(AP )⊤b

f ) Set sR = 0.

g) While min(sP ) ≤ 0

i. Set αk = min xi

xi−si
for i in P where si ≤ 0

ii. Set x = x+ αk(s− x)

iii. Move from P to R all indices k ∈ P for which xk = 0.

iv. Compute sP = ((AP )⊤AP )−1(AP )⊤b

v. Set sR = 0

h) Set x to s

i) Compute w = A⊤(b− Ax).

Algorithm 4 consists, apart from the initialization, of a main loop and an inner
loop. The loops are highlighted by indentations and start at step 3 and step g)
respectively. If for a variable reference is made to those indices of the variable
which are contained in the set R, then these entries are 0. All indexes that
exist in the set P, by contrast, have non-zero values. If such a variable has
a negative value, the algorithm either moves it to the positive value range or
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sets it to zero. By setting a variable to zero, the index is also shifted from the
set P to the set R. This ensures that the following condition is met at the end
of the algorithm.

xj > 0, j ∈ P

xj = 0, j ∈ R
(4.2)

Remark 4.3. Let f(x) = ‖Ax− b‖22, then the gradient of f(x) is given by:

∇f(x) = ∇‖Ax− b‖22 = A⊤(Ax− b)

Proof.

∇‖Ax− b‖22 = ∇(Ax− b)⊤(Ax− b)

= ∇(x⊤A⊤ − b⊤)(Ax− b)

= ∇(x⊤A⊤Ax− x⊤A⊤b− b⊤Ax+ b⊤b)

= ∇(x⊤A⊤Ax− 2x⊤A⊤b+ b⊤b)

= 2(A⊤Ax− A⊤b)

= 2A⊤(Ax− b)

As shown in remark 4.3, step 2 of algorithm 4 calculates the negative gradient
of the ordinary least squares problem. In the next step it is checked whether
the inner loop still has to be executed or not. If the index set R correspond to
the empty set then all indexes are already in P which means that all entries of
x are positive (see formula (4.2)). This case is not desirable, as no compression
can be achieved. If max(w) ≤ ǫ is satisfied, the gradient has no entry large
enough so that an substantial improvement can be achieved and the algorithm
has reached the optimum. If one of the two conditions in step 3) is fulfilled,
the main loop is executed.

The main loop starts with searching for the index of the gradient that is not
yet present in the set P and has the highest value. After this index has been
moved from the set R to the set P , the solution of a restricted least squares
problem is calculated in step e). This least squares problem is limited to the
columns of the matrix A whose indices occur in the set P . The result is then a
vector of dimension P which is indicated by the notation sP . To get a solution
vector of the dimension n, the n−|P | = |R| entries sR of the vector s are filled
with zeros - see step f).
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4. Non-negative least squares (NNLS)

Example 4.1. Based on algorithm 4, be n = 15, P = {2, 3, 4, 5, 7, 9} and
R = P c = {1, 6, 8, 10, 11, 12, 13, 14, 15} then

s =




s1
s2
...
s15


 sP =




s2
s3
s4
s5
s7
s9




sR =




s1
s6
s8
s10
...
s15




If all components of this least squares solution (i.e. sP ) are positive a new
solution has been found and the solution vector x is overwritten with s as
seen in step h). In step i) a recalculation of the gradient with the solution x,
adapted in the previous step, is carried out and the main loop is restarted by
checking the conditions in step 3.

If there are non positive entries in the solution of the restricted least squares
problem computed in step e), the inner loop is executed. Basically, negative
entries in the result vector sP would lead to a new solution vector x which
would also have negative entries without further adjustments, resulting in an
undesired solution since x must be non-negative (i.e x ≥ 0). Therefore, based
on the current solution vector x which has only positive entries, a shift is
carried out by using sP . In the first step the index k ∈ P is determined which
leads to the smallest scaling factor αk. The current solution vector x is then
shifted by using this factor which causes the entry xk to be zero after the
shift. The index k can thus be moved from set P back to set R because the
corresponding entry xk is zero after the shift. In the unlikely event that several
entries of the new solution vector x were changed to zero as a result of the
shift, all these indexes must of course be moved from set P to set R (see iii.).
Based on the new set P , a new limited least squares problem will be solved
and the inner loop will be redone if necessary.

Remark 4.4. Since xi ≥ 0 at all times and sj ≤ 0 within the inner loop, the
scaling factor is bounded by 0 ≤ αk ≤ 1.

Remark 4.5. Within the inner loop, at least one index k per iteration is
transferred from the set P to the set R. As a result, with each pass of the
inner loop, the number of entries in the solution vector x that are not equal to
zero is reduced by at least one. Since the cardinality of the set P is finite, it is
also determined how often the inner loop is run through at the most, namely
|P | − 1 times.
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As stated in [29, p. 163], for many examples the steps of the outer loop are
simply repeated by adding another positive coefficient to the solution vector
x until one of the termination criteria in step 3 are fulfilled. This observation
may be correct for many different application areas, but must be verified with
respect to the policy data being optimized. For this purpose, a standard
portfolio of policies is used in which the development of the vector x is analysed.
The test portfolio consists of 20.000 randomly selected policies using 351 cash
flows for each policy.

Figure (4.1) shows how the number of non-negative entries of the solution
vector x evolves. After the algorithm is started with an initialization, the
solution vector x only has entries that are zero and the next step is to execute
the main loop for the first time. So the graph starts in (0,0). After passing
through the main loop for the first time, the first entry of x became a positive
value and the graph displays this as the point (1,1). Also the next 9 passes
of the main loop run exactly as just described so that after 10 iterations 10
entries of x are not equal to zero and the graph is at (10,10). In the next pass
of the main loop, the solution sP , see step e), of the restricted least squares
problem becomes for the first time not positive for at least one entry and the
inner loop is executed. When entering the inner loop, sP has the dimension 11.
Within the inner loop, as explained above, a shift is performed and the index
k is shifted from the set P to the set R. Due to this shift of the index and
the subsequent recalculation of the now dimensionally reduced least squares
problem (see iv.), sP now has only dimension 10. Since none of these 10 entries
is not positive, the inner loop is now left. The solution vector still has only
10 positive entries after the 11-th iteration and therefore the point (11,10)
results. The just described phenomenon that the inner loop is left again after
one iteration, since all negative entries have been removed, can be observed
in figure (4.1) more often. This is exactly the case when a horizontal line is
present. In the above example, it is also easy to see that this phenomenon
of horizontal lines occurs more frequently after about 50 iterations. This can
be explained by the fact that at the beginning of an optimization the limited
least squares problem which need to be solved has a small dimension and
therefore it is less likely to get negative solution values. In the progress of the
optimization, the achievable improvements of the objective function become
smaller and smaller and also the cardinality of the set P increases. The last
feature in figure (4.1) that can be observed is that of a descending line. This
case occurs for the first time at the transition from iteration 28 to iteration
29. In iteration 29 the solution vector of the limited least squares problem sP

has entries that are not positive such as in the case described previously. The
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4. Non-negative least squares (NNLS)
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Figure 4.1.: Development of the non-negative entries of the solution vector
x based on the number of iterations.

difference to before is that the inner loop is not left after one iteration. So there
are several loop cycles required to adapt all negative entries by shifting. In the
particular case of iteration 29, the inner loop is executed exactly twice until all
entries of sP are positive. Since with each pass of the inner loop the number
of positive entries of the solution vector x is reduced by one, a descending line
results after 2 passes. It is therefore clear that the steepness of the descent is a
measure of how often the inner loop has been executed before all entries were
positive.

If not the number of non-negative entries is considered but the development
of formula 4.1 for each iteration, a similar picture emerges. Figure (4.2) shows
the logarithmic sum of the squared deviations between the fitted cash flows
Ax and the reference cash flows b. The graph is monotonously falling and
can be compared in its characteristics with the previous figure (4.1). Starting
with the initialization, the solution vector x has only zero entries and therefore
‖Ax− b‖22 reduces to ‖b‖22 which gives the first data point of the graph at (0,
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Figure 4.2.: Development of the deviance based on the number of iterations.

2.13e+20). Especially at the beginning of the optimization, a new non-negative
entry in x is added with each iteration, as seen in figure (4.1). This is also
reflected in the fact that in figure (4.2) the deviation falls significantly for the
first iteration. From iteration 50 on there is a clear flattening of the curve
which indicates that from then on the improvements of the target function are
no longer possible to the same extent as at the beginning of the optimization.
This is also confirmed by the fact that after 25% of the iterations 99.9% of the
reduction of the target function has already taken place. The remaining 0.1%
improvement to the final optimized value of formula (4.1) then takes place in
the last 75% of the iterations. Since, as described in more detail in the next
section, the inversion of matrices is one of the most time-consuming steps in
terms of execution time, it can be useful to cancel an optimization prematurely.
A large part of the computing time could be saved and at the same time only
a fraction of the optimization quality would be lost.
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4. Non-negative least squares (NNLS)

4.1. Numerical Aspects

As evident in figure (4.1) as well as figure (4.2), the optimization is stopped
after 214 iterations. The reason for this is neither that a sufficiently large
gradient is no longer available nor that the set R is empty. So all conditions
of the main loop stated in step 3 of algorithm 4 are still fulfilled. Rather, a
stable state has occurred which does not allow any further improvement of
the results. Reaching a stable state during an optimization is one of several
reasons for an optimization to stop.

Facing a stable state involves a very special case of index shifts between the
sets R and P , which must be handled separately by the algorithm. Starting
with the calculation of the gradient in step i), the new index j in R is searched
which has the highest gradient. This new index is then moved from the set R
to the set P and the constrained least squares problem is calculated as specified
in step e). Since the vector sP now has exactly one negative entry, the inner
loop must be entered in the next step. It turns out that exactly that index
j of s is negative which was added by the shift from j to P in the last main
loop. Since the corresponding entry xj is zero and s has only one negative
entry, the scaling factor α also has a value of zero. This leads to the fact that
the shift specified in step ii. has no effect and the solution vector x remains
the same. In step iii. the previously determined index j will then be shifted
back from the set P to the set R. In the next iteration of the main loop, the
index with the largest gradient is found again as the previously moved index
j. This will lead to what has just been described, resulting in an infinite loop.
A case such as this therefore only occurs if the following two conditions occur
simultaneously:

1. The solution vector sP of the constrained least squares problem has one
negative entry.

2. This negative entry is in vector s exactly at the index that was transferred
from set R to set P in the current loop pass in step b).

Remark 4.6. If the stopping reason of the optimization algorithm is the reach-
ing of a stable status, the number of non-negative entries of the solution vector
x must be equal for the last two iterations. This means that in figure (4.1) the
graph has to end with a horizontal line.

Another reason that can lead to an unplanned termination of the optimiza-
tion algorithm is related to the solving process of the restricted least squares
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4.1. Numerical Aspects

problem in step e) and iv). In these steps the solution of the constrained least
squares problem is calculated which requires the use of an inverse matrix. If
the inverse of ((AP )⊤AP )−1 does not exist, an alternative solution has to be
found. The most practicable approach is to test whether an inverse exists
using the determinant of (AP )⊤AP . If this is not the case, remove the just
added index j from the set P and replace it with a j′ which has the second
largest gradient. Not only the existence of the inverse matrix is important but
also its numerical stability. Therefore it should be ensured that with a small
change of the matrix A, the inverse matrix A−1 do not change significantly in
order to get stable results. To determine whether the inversion of a matrix A

is numerically stable, a new concept must be introduced which characterizes
the numerical stability.

Definition 4.2. Let V and W be normed vector spaces and f : V → W a
linear operator. Then the operator norm is given by:

‖f‖ := sup
x∈V \{0}

‖f(x)‖W
‖x‖V

= sup
‖x‖V =1

‖f(x)‖W (4.3)

Remark 4.7. Since every real valued matrix A ∈ R
m×n corresponds to a

linear map from R
n to R

m, each pair of norms induces an operator norm. In
the special case of choosing the Euclidean norm for both vector spaces, formula
(4.3) simplifies to:

‖A‖2 := max
x 6=0

‖Ax‖2
‖x‖2

= max
‖x‖2=1

‖Ax‖2 (4.4)

which is a naturally induced matrix norm called spectral norm.

The natural matrix norm thus vividly corresponds to the greatest possible
stretching factor, which results from the application of the linear mapping (i.e.
matrix) to a unit vector.

Remark 4.8. The naturally induced matrix norm satisfies the three norm
axioms:

• ‖A‖ = 0 iff A = 0 (being definite)

• ‖αA‖ = |α|‖A‖ (being absolutely homogeneous)

• ‖A+B‖ ≤ ‖A‖+ ‖B‖ (being sub-additive)
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4. Non-negative least squares (NNLS)

Remark 4.9. The naturally induced matrix norm is also sub-multiplicative,
which means that

‖AB‖ ≤ ‖A‖‖b‖

Proof.

‖AB‖ = max
x 6=0

‖ABx‖

‖x‖

= max
Bx 6=0

‖ABx‖

‖x‖

= max
Bx 6=0

‖ABx‖

‖Bx‖

‖Bx‖

‖x‖

≤ max
y 6=0

‖Ay‖

‖y‖
max
x6=0

‖Bx‖

‖x‖

= ‖A‖‖B‖

Remark 4.10 ([46]). The 2-norm has the following properties:

1. ‖A‖2 = σmax(A) largest singular value of A

2. ‖A‖22 = λmax(A
TA) largest eigenvalue of ATA

3. ‖A‖2 = ‖AT‖2

Definition 4.3. Let A ∈ R
m×n be a matrix, ‖.‖ a matrix norm and A+ the

generalized inverse of matrix A. Then the condition number of A is defined
as:

κ(A) := ‖A+‖‖A‖ (4.5)

Remark 4.11. For the special case that matrix A is regular, the pseudo inverse
can be replaced with the inverse matrix and the condition number becomes:

κ(A) = ‖A−1‖‖A‖ (4.6)

Remark 4.12. Let A be a non-singular matrix then a lower bound for the
condition number is given by:

1 ≤ ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖ = κ(A)
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4.1. Numerical Aspects

Remark 4.13. Let A ∈ R
m×n be a matrix and ‖.‖2 the induced matrix norm.

Then (4.5) simplifies to:

κ2(A) =
σmax(A)

σmin(A)

As already mentioned above, it is necessary to estimate to what extent changes
in the input variables have an effect on the output variables. In the case of
the calculation of an inverse matrix the following approach can be followed.
Starting from a matrix A which should be inverted another matrix E is defined.
This matrix E represents small changes of matrix A and should therefore be
seen as perturbation of matrix A. In order to determine how numerically stable
the inversion of a matrix A is, the following term is considered.

‖A−1 − (A+ E)−1‖ (4.7)

The task now is to find a constant c, so that for all sufficiently small matrices
E it applies that:

‖A−1 − (A+ E)−1‖ ≤ c‖E‖ (4.8)

Remark 4.14. It applies:

(A+ E)−1 = (I + A−1E)−1A−1

Corollary 4.1 ([26]). Suppose that B is a bounded linear operator on a Banach
space X with ‖B‖ < 1. Then

S =
∞∑

k=0

Bk = (I − B)−1 (4.9)

It therefore follows by applying remark 4.14 and corollary 4.1 that:

(A+ E)−1 = (I + A−1E)−1A−1

= (I − (A−1E) + (A−1E)2 − (A−1E)3 +H.O.T.)A−1

= A−1 − A−1EA−1 +H.O.T.

For the estimation of the stability the following inequality can be obtained by
using the previous results as well as formula (4.7):

‖A−1 − (A+ E)−1‖ = ‖A−1 − (A−1 − A−1EA−1 +H.O.T.)‖

= ‖A−1EA−1 −H.O.T.‖

≤ ‖A−1‖2‖E‖+H.O.T.
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4. Non-negative least squares (NNLS)

The relative error caused by applying a perturbation to matrix A has therefore
an upper bound which is given by:

‖A−1 − (A+ E)−1‖

‖A−1‖
≤ ‖A‖‖A−1‖

‖E‖

‖A‖
+H.O.T. (4.10)

Remark 4.15. If the naturally induced spectral norm is used as the matrix
norm, formula (4.10) simplifies to:

‖A−1 − (A+ E)−1‖

‖A−1‖
≤ κ2(A)

‖E‖

‖A‖
+H.O.T.

=
σmax(A)

σmin(A)

‖E‖

‖A‖
+H.O.T.

To reduce the influence of numerical instabilities, a linear least squares problem
is generally solved not by inverting the matrix of the normal equations like in
step e) and iv) in algorithm (4) but by other numerical methods. A very
frequently used method which avoids forming ATA and inverting it is the QR

decomposition.

4.2. QR - decomposition

A QR decomposition describes the decomposition of a matrix into a product
of two matrices with special properties. This decomposition exists for every
matrix and can be calculated with different algorithms where the best known
are:

• Gram–Schmidt

• Householder transformation

• Givens rotations

Definition 4.4. Let A ∈ R
m×n with m ≥ n be a matrix. The decomposition

of A into a product A = QR with an orthogonal matrix Q ∈ R
m×m and an

upper triangular matrix R ∈ R
m×n is called a QR-decomposition of A.

Considering the fact that m ≥ n and the matrix R is always quadratic, it often
makes sense to partition both R and Q in a way such that the special structure
of these matrices can be used advantageously. Since R is an upper triangular
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4.2. QR - decomposition

matrix, the last m − n rows of matrix R consist only of zeros. Therefore it
makes sense to split the matrix Q into two parts Q1 and Q2 which have n and
m − n columns respectively. The QR decomposition is reduced by the use of
the special characteristics described above to:

A︸︷︷︸
m×n

= Q︸︷︷︸
m×m

[
R1

0

]

︸ ︷︷ ︸
m×n

= [ Q1︸︷︷︸
m×n

Q2︸︷︷︸
m×(m−n)

]

[
R1

0

]

︸ ︷︷ ︸
m×n

= Q1R1 (4.11)

This notation is often referred to as reduced QR decomposition of A ([50]).

Remark 4.16. The QR - decomposition is unique if rank(A) = n and the
diagonal elements of R1 are required to be positive.

Remark 4.17. Let Q ∈ Rn×n be an orthogonal matrix and x ∈ R
n a vector,

then the following properties can be derived:

• Q⊤Q = I (Q orthogonal)

• ‖Qx‖22 = (Qx)T (Qx) = xTQTQx = xT Ix = ‖x‖22 (length-invariant)

The QR-decomposition of matrix A can now be used to reduce the numerical
instabilities that can occur in algorithm 4.

Remark 4.18. Let AP be the restricted matrix from algorithm 4 and QR the
corresponding decomposition such that AP = QR. Then steps e) and iv. from
algorithm 4 can be written as:

sP = ((AP )⊤AP )−1(AP )⊤b

= ((QR)⊤QR)−1(QR)⊤b

= (R⊤Q⊤QR)−1R⊤Q⊤b

= R−1(R⊤)−1R⊤Q⊤b

= R−1Q⊤b

(4.12)

A multiplication of formula (4.12) from the left with R results in a formula
which is particularly easy for the calculation of the coefficients sPi .

RsP = Q⊤b (4.13)

Since R is an upper triangular matrix, this system of equations can be solved
very easily. Under the assumption that sP has dimension n × 1 and Q⊤b
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4. Non-negative least squares (NNLS)

is denoted as b̃, the parameters can be calculated by backward substitution
following the rule:

sPn =
b̃

rnn

sPi =
1

rii

(
b̃i −

n∑

j=i+1

rijs
P
j

)
i = n− 1, ..., 1

After showing how algorithm 4 benefits by using the QR decomposition, a way
how such a decomposition can be calculated will be presented. In the follow-
ing, the Householder-transformation, one of the most widespread methods, is
derived.

4.2.1. Householder Transformation

The aim of the Householder transformation is to transform matrix A into an
upper triangular matrix R by iterative multiplications of so-called Householder
matricesHi. The procedure is schematically shown in the following example:

Example 4.2. Let A ∈ R
m×n, m ≥ n be the matrix for which a QR decom-

position is to be performed. Let H1 and H2 be special Householder matrices.
Then the QR decomposition is methodically calculated according to the follow-
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4.2. QR - decomposition

ing pattern.

A =




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
a3,1 a3,2 · · · a3,n
...

...
. . .

...
am,1 am,2 · · · am,n




H1A =




a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
0 a3,2 · · · a3,n
...

...
. . .

...
0 am,2 · · · am,n




=




a1,1 a1,2 · · · a1,n
0
0

0 A2
0




H2H1A =




a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
0 0 · · · a3,n
...

...
. . .

...
0 0 · · · am,n




=




a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
0 0

0
... A3

0 0




As shown in example (4.2), by applying the Householder matrix H1 to matrix
A, the first column of Matrix A is transformed to a multiple of the first unit
vector. This transformation is implemented by a mirroring which is derived
in the following section. After the transformation of the first column only the
submatrix A2 of the matrix H1A is considered. This matrix consists of one
row and one column less, but has a decisive advantage. Considering A2 on its
own, the first column can be mirrored to a multiple of the first unit vector as
before and the same logic can be used iteratively. Altogether this means that
the use of Householder matrices Hi iteratively generates an upper triangular
matrix.

Remark 4.19. Since the sub matrices (i.e. A2, A3, ...) that are to be trans-
formed become in each step one row and one column smaller, this is also the
case for the Householder matrices H̃i. In order to preserve the transformations
already carried out in the previous steps, the matrices H̃i are therefore enlarged
in a way such that:

Hi :=

[
I 0

0 H̃i

]

The task now is to find a matrix P that represents the desired reflection. To
achieve this, a step-by-step approach is chosen. In a first step the reflection of
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4. Non-negative least squares (NNLS)

Figure 4.3.: Mirroring of ~x to ~Px through hyperplane H.

H

~v

0

~x

~Px

~wθ

a vector at a hyperplane through the origin in Euclidean space is constructed.
Once this general case has been derived, it can be used to construct a reflection
such that the the first column of matrix A is transformed to a multiple of the
first unit vector.

For the construction of the mirroring matrix P the case shown in figure (4.3)

is considered. Let ~x be a vector in an Euclidean space and ~Px the vector into
which ~x is to be transferred by a mirroring. Furthermore, H is the hyperplane
at which the reflection should take place. H, that mirror-hyperplane which
runs through the origin is defined by the normal vector ~v, thus a vector which
is orthogonal to the hyperplane. The difference between the vector ~x and the
hyperplane H is called ~w. The angle enclosed by the vectors ~−x and ~w is called
θ. The goal is to identify a relation between ~Px and ~x. In the sense of better
readability and since there can be no misunderstandings in the following, the
vector arrows are omitted from now on. The length of ~w is then given by:

‖w‖ = ‖x‖ cos(θ) = ‖x‖
〈−x, v〉

‖−x‖‖v‖
=

−x⊤v

‖v‖

Where in the second step the definition of the dot product was used. The
vector w is then characterized by the length and the direction which leads
to:

w =
−x⊤v

‖v‖

v

‖v‖
= −v

x⊤v

v⊤v

By referencing to figure (4.3), the mirrored vector Px can now be defined as:

Px = x+ 2w = x− 2v
x⊤v

v⊤v
= x− 2

vv⊤x

v⊤v
=

(
I − 2

vv⊤

v⊤v

)
x
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4.2. QR - decomposition

The matrix constructed, representing the linear mapping described above is
called Householder matrix. Householder matrices are defined by a normal
vector v, i.e. a vector that is orthogonal to the mirror hyperplane and are
typically denoted by H.

H = I − 2
vv⊤

v⊤v
(4.15)

Where I in equation (4.15) is the identity matrix. In case that v is normalized
to length one (4.15) simplifies to:

H = I − 2vv⊤ (4.16)

The concept of Householder matrices can now be used to formalize the process
described in example 4.2. Let x be a vector which is to be mirrored to a
multiple of the first unit vector e1. This means that a vector v is required,
so that with the corresponding Householder-Matrix Hv the following linear
transformation can be achieved.

Hvx = ce1

The required reflection vector v now results from normalizing the difference
vector and is given by:

v =
x− ce1

‖x− ce1‖

A basic property that is important for the construction of a QR decomposition
is the fact that Householder matrices are orthogonal.

Remark 4.20. Let H be a Householder matrix. Then H is symmetric and
orthogonal.

H⊤ = (I − 2
vv⊤

v⊤v
)⊤ = I⊤ −

(
2
vv⊤

v⊤v

)⊤
= I − 2

(
vv⊤

)⊤

(v⊤v)⊤
= I − 2

vv⊤

v⊤v
= H

H⊤H = HH = (I − 2
vv⊤

v⊤v
)(I − 2

vv⊤

v⊤v
)

= I2 − 2I
vv⊤

v⊤v
− 2I

vv⊤

v⊤v
+ 4

vv⊤

v⊤v

vv⊤

v⊤v

= I − 4
vv⊤

v⊤v
+ 4

vv⊤vv⊤

v⊤vv⊤v

= I − 4
vv⊤

v⊤v
+ 4

(v⊤v)vv⊤

(v⊤v)2

= I
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4. Non-negative least squares (NNLS)

Remark 4.21. Let H1, H2, ..., Hn be Householder matrices as stated in exam-
ple 4.2. Then by using the properties proofed in the previous remark the QR

decomposition is given by:

HnHn−1 · . . . ·H1A = R

⇔ Q⊤A = R

⇔ QQ⊤A = QR

⇔ A = QR

After demonstrating how a QR decomposition can be performed using House-
holder transformations, the next section is dedicated to the question of perfor-
mance.

4.2.2. Performance

Even if runtime analyses of algorithm 4 have shown that a large part of the
computing time had to be dedicated to the calculation of the gradients, the
importance of finding the solution for the least squares problems must not
be underestimated and will therefore be analysed as well. Since not only
computing time but also the numerical stability of the grouping process is of
great interest in practice, the runtime and accuracy of different approaches
for solving the least squares problem are compared in this section. Obviously,
an implementation of a grouping algorithm which is numerically stable on the
one hand and fast on the other hand with regard to the computing time is the
preferred solution. Therefore seven different implementations will be compared
using only functions that are available in R by default. Since these are standard
functions in the area of linear algebra, it can be assumed that the functions
used are already highly optimized with respect to performance. In particular,
some functions access implementations of the software packages LINPACK
and LAPACK directly and therefore act only as wrappers. Examples of such
R-functions are solve and qr whose default methods are interfaces to the
LAPACK routines DGESV and ZGESV as well as DQRDC from the LINPACK
package.

• DGESV computes the solution to a real system of linear equations A∗X =
B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
[2].
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4.2. QR - decomposition

• DQRDC uses householder transformations to compute the qr factorization
of an n by p matrix x. column pivoting based on the 2-norms of the
reduced columns may be performed at the users option [13].

The two software libraries LINPACK and LAPACK are written in Fortran
and enjoy great popularity in many areas of application due to their efficient
implementations with respect to memory usage and computational speed. Of
course, there is also a big number of packages available on CRAN (Comprehen-
sive R Archive Network) that offer different implementations for solving least
squares problems. Since a comprehensive analysis of these implementations is
not possible due to the daily growing number of packages available, the focus
is on standard functions available in R. The basic R-functions used to perform
the comparison are therefore solve, backsolve, qr.solve, qr and t. The
notation used in algorithm 4 steps e) and iv. is simplified for the following
comparison to the degree that the restriction to set P is not explicitly spec-
ified, i.e. A = AP . The first three approaches pursue a solution without the
calculation of a QR decomposition whereas the last four approaches are based
on a QR decomposition.

Method 1: This method uses the calculation procedure for solving a least
squares problem given in algorithm 4. By using the function
solve with only one matrix as parameter the inverse of that
matrix will be returned, i.e. solve(A) =̂ Ax = I ⇔ x = A−1.

s = (A⊤A)−1A⊤b

solve((t(A) %*% A)) %*% t(A) %*% b

Method 2: For this method, the initial approach from the previous method
is transformed in such a way that no inverse has to be calculated
any more. The least squares problem is then given by:

(A⊤A)s = A⊤b

solve(t(A) %*% A, t(A) %*% b)

Method 3: The last approach using no QR decomposition solves the least
squares problem using the crossprod function. According to
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4. Non-negative least squares (NNLS)

the documentation crossprod should be slightly faster than
a direct calculation via the transposed matrix. The approach
is therefore identical to the one from method 2 except that a
different implementation is used:

(A⊤A)s = A⊤b

solve(crossprod(A), crossprod(A,b)))

Method 4: This approach uses a QR decomposition and directly imple-
ments formula (4.12) derived in remark 4.18 for the solution of
the least squares problem:

s = R−1Q⊤b.

deco <- qr(A, LAPACK = FALSE)

solve(qr.R(deco)) %*% t(qr.Q(deco)) %*% b

Method 5: This approach again uses a QR decomposition and applies
formula (4.13), which is a transformation of formula (4.12).
Therefore no inverse has to be calculated to solve the least
squares problem:

Rs = Q⊤b.

deco <- qr(A, LAPACK = FALSE)

solve(qr.R(deco), t(qr.Q(deco)) %*% b)

Method 6: This method again uses a QR decomposition, but also makes
use of the special form of the decomposition where R is an
upper triangular matrix. The function backsolve solves a sys-
tem of linear equations where the coefficient matrix is upper
triangular [41]:

Rs = Q⊤b
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4.2. QR - decomposition

deco <- qr(A, LAPACK = FALSE)

backsolve(qr.R(deco), t(qr.Q(deco)) %*% b)

Method 7: The last method uses a QR decomposition as well. The result
of the QR decomposition is not saved in a temporary variable
as before, but is passed directly to the qr.solve method.

QRs = b

qr.solve(qr(A, LAPACK = FALSE), b)

In order to determine how the number of columns of matrix A affects the run
time, the following setup was chosen. Matrix A was defined as a square matrix
with n = 5000, where the entries of A are uniformly distributed between 0 and
100000, i.e. A ∈ R

n×n. The values of vector b are uniformly distributed
between 0 and 1000. By defining matrix A and vector b, the result vector s

is determined as well. For each of the seven methods, the number of columns
used from matrix A was successively increased and then the least squares
problem was solved. The results obtained in the test runs were produced with
the following configuration:

• Processor: Intel R© CoreTM i7-6700

• RAM: 64GB

• R-version: 3.5.0

In order to obtain reliable results, all calculations were repeated ten times and
the individual results averaged. Figure (4.4) shows how the time needed to
solve the least squares problem increases with the number of columns used.
It is important to note that due to illustration purposes the methods are pre-
sented separately based on their underlying approach, but both panels use the
same scaling. The left part of the graph shows the results of methods one to
three, i.e. all those methods that do not use a QR decomposition to solve the
least squares problem. Even if it is difficult to recognize in the left panel of
figure (4.4) due to the scaling, the data shows that method one generally has a
significantly longer runtime than method two and three even for small values
of n. Starting from a column number of about 1000, it is clearly visible that
the runtime for method one increases significantly faster than for the other two
methods. This can be attributed to the fact that method one requires the ex-
plicit calculation of an inverse matrix which is not advisable. When an inverse

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4. Non-negative least squares (NNLS)
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Figure 4.4.: Computation time for solving the least squares problem As = b

in seconds.
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4.2. QR - decomposition

is needed rather an LU composition should be performed [31]. Moreover, there
are no significant differences between method two and method three, although
method two generally has a slightly shorter runtime. The usually existing speed
advantage given in the help of the crossprod function could not be verified.
In the right part of figure (4.4), the results of methods four to seven are shown,
i.e. all those methods that use a QR decomposition. In general, it can be seen
that, with the exception of method seven, all methods are considerably slower
than those without QR decomposition. Method four shows significantly longer
running times than all other methods, which is due to the fact that both, a QR

decomposition and a matrix inversion must be performed. Methods five and
six behave very similarly for the most part, with a small runtime advantage for
method six being observed as the number of columns increases. Since the two
methods are basically identical and method six uses only the special structure
of the upper triangular matrix, it can be assumed that this advantage is only
effective for larger systems of equations. The method that distinguishes signif-
icantly from the others in terms of runtime is method seven. Over the entire
range, its computational time is significantly shorter than that of the other
methods. Since method seven is the only method that does not temporarily
save the result of the QR decomposition but directly processes it, it seems
reasonable to conclude that this already results in a significant performance
advantage. Considering the results regardless of whether a QR decomposition
was used or not, the following summary results:

• Methods two, three and seven are to be classified as equivalent in terms
of runtime and are also the fastest altogether.

• Methods one, five and six have a similar runtime, with method one always
performing best.

• The slowest method by far is method four.

After analysing how the runtime of the different approaches behave in relation
to the number of columns, there is still a need to analyse their accuracy. As
mentioned above, methods two, three and seven scale best with an increasing
number of columns of matrix A. Since method seven uses a QR decomposi-
tion, while methods two and three do not use it, an important aspect is to
compare their accuracy. Figure (4.5) shows how much the calculated solu-
tions sLS deviate on average in absolute values from the actual values strue,
i.e. erravg =

∑n

i=1
1
n
|siLS − sitrue|. Each box represents the deviations of all

seven methods for a fixed number of columns. For example, the box in the
upper right corner of figure (4.5) shows the results for a matrix A with 300
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4. Non-negative least squares (NNLS)
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Figure 4.5.: Comparison of average absolute errors based on method and
number of columns used from matrix A
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4.2. QR - decomposition

columns. In contrast to figure (4.4), the data points for the column numbers
10, 50, 100, 500 and 1000 were not shown. This is because by omitting the
plots a better readability and arrangement was possible without suffering a loss
of information. It should therefore be noted once again that all missing boxes
basically provide the same results as those shown here and therefore do not
provide any information gain. Considering the nine panels, a clear pattern can
be identified. In each individual case methods one to three show on average
higher deviations than methods four to seven. Taking the definitions of the
methods into account it can be revealed that methods four to seven are based
on a QR decomposition. Within those four methods no significant difference
can be seen with respect to the deviations. The results of the simulation there-
fore suggest that all methods based on a QR decomposition are equivalent in
terms of accuracy. Methods one to three, which don’t use a QR decomposition,
show a differentiated picture. Methods two and three show similar deviations,
which is not surprising because of their definition, as they differ only in the
functions t and crossprod. For method one, there are strong indications that
the average deviation increases with the number of columns. In the case that
matrix A has 150 columns, the average differences between sLS and strue are
significantly smaller for method one than for method two or method three.
If the number of columns is increased step by step, this difference becomes
smaller and smaller. Looking at the case where matrix A has 3000 columns,
it is evident that method one has the highest deviation of all tested methods.
Since method one is the only method which uses the calculation of an inverse,
the results leads to the conclusion that calculating an inverse becomes more
unstable as the number of columns increases. This shows, as already men-
tioned in previous sections, that an algorithm for finding the solution of the
least squares problem should be implemented, which doesn’t rely on inverse
matrix calculations. After both the execution time and the accuracy of the
seven approaches have been examined, the following picture emerges:

• In all test cases considered, it could be proven that those methods that
use a QR decomposition show the highest accuracy.

• Among those methods that use a QR decomposition, the fastest is the
one that does not temporarily store the QR results but directly processes
them.

• Looking at the fastest methods of each group (QR decomposition used
or not) no significant difference can be found.
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4. Non-negative least squares (NNLS)

• If an inverse matrix is calculated, the more columns the matrix has, the
worse the overall accuracy gets for the test sample.

• The calculation time required to solve the least squares problem scales
exponentially with the number of columns.

Taking all aspects into account, method seven is the preferred method in terms
of both runtime and accuracy.
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5. Neural Networks (NN)

In the last chapter of this thesis, a mathematical concept is discussed that has
attracted much attention in the recent past, namely neural networks. The area
of artificial intelligence (AI) in which neural networks are embedded has been
the subject of an intense media hype in recent years. In 2016, for example,
a computer program developed by the British company Google DeepMind
succeeded for the first time in defeating Lee Sedol of South Korea, considered
to be the strongest Go player in the world [51]. This victory of a machine
against a human being is considered to be a milestone in the field of artificial
intelligence [45]. Further successes were also achieved in the area of real-time
games at the beginning of 2019. For the first time DeepMind’s program called
AlphaStar was able to defeat the world’s best players in StarCraft which is
considered to be one of the most challenging real-time strategy games [47].
Also Gartner, a global research and advisory firm, which publishes the well-
known but definitely criticizable hype cycle representations considers AI as
one of the most important technologies of recent years. In the hype cycle for
emerging technologies from 2017 there are 4 out of the 32 listed technologies
that can be attributed to the field of AI, such as Deep Learning or Machine
Learning [36]. Also in the following years 2018 and 2019 technologies that
clearly belong to the AI sector were mentioned in the hype cycle 5 and 6
times respectively [37], [38]. This trend towards new methods based on neural
networks can also be seen in other places, such as Kaggle. With more than
one million registered users, Kaggle is one of the world’s largest platforms for
data science competitions and attracts teams from all over the world with prize
money in the millions [20]. It can be observed that, besides gradient boosting,
one of the most important concepts with which to win Kaggle competitions is
the concept of neural networks in various forms.

It is therefore clear to see that on the one hand the technology behind AI
has enormous potential to solve problems that have so far been assumed to
be solved only by humans. On the other hand, it can be assumed that this
trend is not just a short-lived phenomenon, but a continuous process leading
to business solutions which are based on AI-systems. Therefore, it is even
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5. Neural Networks (NN)

Figure 5.1.: Relation of Artificial Intelligence, Machine Learning, and Deep
Learning.

more important to understand the underlying concepts of these technologies
and to discuss their applicability in the insurance industry. Whether in the
end a completely automated grouping algorithm based on neural networks is
possible at all or can be implemented with the available resources remains
open. However, the aim of this section is to provide an overview of the basic
concepts and to present case studies with insurance cash flows. Since various
terms and buzzwords related to artificial intelligence are often used differently
in media reports, it is useful to classify some of the most often used terms
in order to show their relationship and provide a general framework which is
based on [1].

• Artificial Intelligence: Artificial Intelligence is a branch of computer sci-
ence that deals with the programming of intelligent computer systems.
Due to a missing definition of the term intelligence the question which
types of computer programs are included is not clearly definable. In
addition to machine learning and deep learning, there are many other
approaches that do not include any kind of learning but are also part of
AI.

• Machine Learning: Machine learning arises from this question if it is pos-
sible to design a program in such a way that it can learn how to perform
a specific task automatically. Given a set of input data and the corre-
sponding results the task is to derive rules. These rules are therefore the
output of the machine learning algorithm and can then be used to derive
the results for new input data. What all these methods have in common
is the fact that they actually try to identify statistical patterns in the
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5.1. Fundamentals of Neural Networks

data. Thus the aim is to find a meaningful representation of the given
data by projections, translations, rotations, nonlinear transformations or
any other method and to apply it then to new input data.

• Deep Learning: Deep learning, as a sub field of machine learning, fo-
cuses on the progressive learning of several levels of abstraction which
are increasingly meaningful representations of the data. One can think
of the method as a multistage information distillation process where in
every single process step a more meaningful representation of the data
is obtained. The term deep in deep learning is a reference to the multi-
ple layers which store the abstract representations of the input data in
such an algorithm. The number of layers that contribute to a meaningful
representation of the data is called depth. Although there is a consid-
erable amount of learning involved, models with several hundred layers
are quite common, depending on the type of problem at hand. The con-
cept of the neural network is a reference to the field of neurobiology and
the neurons that are connected in different ways in the human brain.
Although neuronal networks are not models of the human brain, it is
surprising what amazing results can be achieved with such a simple idea
and a sufficiently large amount of data.

After a brief classification of the terms, the next section describes the basic
structure and functionality of neural networks.

5.1. Fundamentals of Neural Networks

In the previous section the functionality of neuronal networks was already de-
scribed in a rather abstract way as a multi-stage information distillation pro-
cess. After this high level explanation, the focus is now on pointing out which
individual components make up a simple neural network and how they interact.
Figure (5.2) shows a simplified representation of the individual components re-
quired to build one of the most basic neural networks possible. Starting point
for explaining the learning process of a neural network is a data set consisting
of both the input and the associated output data. If the cash flows of insurance
policies are to be simulated, the individual policy parameters can be used as
input data and the associated cash flows as output data. These two exogenous
quantities are then processed in several steps.
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5. Neural Networks (NN)

Figure 5.2.: Simplified representation of a neural network from [1]

Step 1: The process is initiated by providing the input data Input X in a suitably
format to the first layer.

Step 2: This first layer then performs a data transformation based on some
weights associated with that specific layer. In the first cycle those weights
are randomly initialized.

Step 3: The transformed output from the first layer is then passed to the next
layer and serves as its input. This layer also performs a data transforma-
tion based on weights which are again initialized randomly for the first
cycle.

Step 4: After the data has passed through the last data transformation layer of
the model the transformed output values are used as Predictions Y’.

Step 5: A predefined function, called the Loss function, measures the quality
of the network’s output by comparing the Predictions Y’ and the True
targets Y. The result is the loss score, which is used as a feedback
signal to adjust the weights associated with the layers.

Step 6: The task of the Optimizer is to take the loss score as an input and
update the weights in such a way that the loss score is lowered.

Remark 5.1. The choice of the correct loss function is of great importance.
If the loss function does not correctly reflect an improvement of the model, the
neural net will inevitably drift in the wrong direction.
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5.1. Fundamentals of Neural Networks

Remark 5.2. As already explained in the previous chapters, in the specific
case of cash flow matching the sum of the squared residuals would be suitable
as a loss score.

The above steps describe a single learning cycle for a neural network. Of
course, passing the input data through the net once is not sufficient to find
combinations of weights that would lead to good prediction results at all. So
what learning means, is to find a set of values for all weights such that the input
is mapped correctly to the output for as many different input combinations as
possible. This learning is achieved by grouping the input data into so-called
batches and repeatedly passing those batches through the network. Associated
with a batch is the batch size which defines the number of training samples sent
through the neural network before the weights are adjusted by the optimizer.

Remark 5.3. Three different batch size approaches can be used to learn the
weights in a network.

• Batch Gradient Descent: Batch size is equal to the size of the training
samples.

• Stochastic Gradient Descent: Batch size is equal to one.

• Mini-Batch Gradient Descent: Batch size is bigger than one but less than
the size of the training samples.

Depending on the design of the network there can be millions of weights that
need to be learned. Adjusting those millions of weights based on the feedback
signal is by far the most computing intensive part of training a network. Due to
the fact that the learning process is based on a large number of similar matrix
operations it is possible to use highly parallelized algorithms. The availability
of relatively affordable hardware that can efficiently handle such parallelizable
tasks is besides the existence of large amount of data another major reason
why neural networks took off in recent years.

Remark 5.4. Compared to a pure CPU system, graphics cards with their
massively parallel architecture are predestined for handling such training tasks
and can therefore massively reduce the time needed to train a network.

After providing an brief overview of all components used in a neural network
and presenting the idea of how a network learns, the next section focuses on
the internals of a single layer.
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5. Neural Networks (NN)

Σ
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ŷ

ω1

ω2

ω3

Figure 5.3.: Components of a single neuron.

5.1.1. Single neuron

The so called neurons form the basis of every neural network and are the
elements which carry out the data transformations. Each layer of a neural
network consists of one or more neurons which are connected differently de-
pending on the structure of the underlying network. The task of a neuron is to
take a predefined number of input values and map them to an one dimensional
output. Figure (5.3) shows a single neuron with all its associated components
needed to perform the data transformation given by:

ŷ = g

( 3∑

i=1

ωixi + b

)

= g(w⊤x+ b)

= g(z)

(5.1)

In the example shown in figure (5.3) the neuron takes the three input values
x1, x2 and x3 and transforms them in several steps into the output value ŷ.
In the first step, a weighted sum is formed from the input values and the
corresponding weights w1, w2 and w3. A bias b is then added to this weighted
sum and the intermediate result is called z. This intermediate result is then
the input for the activation function g. Applying the activation function to
z gives the final output value of the neuron. The purpose of the activation
function can be seen . Since both, the values of the inputs and the values of
the weights are unrestricted, the value of z can be in the interval (-∞, +∞).
A natural way of determining whether the next neuron should be activated or
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5.1. Fundamentals of Neural Networks
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Figure 5.4.: Commonly used activation functions for neural networks.

not is to apply a transformation to z, which is done by an activation function.
For this reason neural networks use non-linear activation functions. Those
activation functions can limit the value range and also enable the network to
learn complex data structures. Some of the most commonly used activation
functions in neural networks are shown in figure (5.4):

• Sigmoid function:

g : R → (0, 1)

g(x) =
1

1 + e−x

(5.2)

The sigmoid function has an order of continuity of C∞ and is convex
for all values less than 0, and it is concave for all values greater than 0.
Since the output is always in the range from 0 to 1, one of the use cases
of the sigmoid function is to model probabilities. Applying the sigmoid
function to strongly negative values results in values close to zero. This
means that the next neuron is only activated if the linear transformation
has given a value z that is not too negative.

• Hyperbolic tangent function:

g : R → (−1, 1)

g(x) =
ex − e−x

ex + e−x

(5.3)
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5. Neural Networks (NN)

The hyperbolic tangent function is very similar to the sigmoid function
and, just like the sigmoid function, also has an order of continuity of C∞.
Since the range of output values lies between -1 and 1, the possibilities
of using this activation function as a gate are rather limited compared
to the sigmoid function. Possible application scenarios can be found in
the area of classification problems where all outputs below zero belong
to class A and all outputs greater than zero belong to class B.

• ReLu function:

g : R → [0,+∞)

g(x) = max(0, x)
(5.4)

One of the most successful and widely-used activation functions is the
Rectified Linear Unit (ReLU). All values greater than zero activate the
next neuron and all negative input values result in the next neuron not
being activated by setting the output to zero. Because of the maximiza-
tion the ReLu-function has only an order of continuity of C0. Although
it is non-differentiable, this function is popular because of it’s simplicity
and reliability as a gate function (see [42], [35]).

• Softplus function:

g : R → (0,∞)

g(x) = ln(1 + ex)
(5.5)

Since ReLu is non-differentiable at zero a smooth version of it, which also
has an order of continuity of C∞, is given by the softplus function. It
can be used as a replacement for the ReLu function. As various analyses
have shown the performance between the softplus function and the ReLu
function is negligible in most cases (see [42]).

In the example given in figure (5.3), the output value of the neuron is already
the prediction ŷ, but in almost every case the output of one neuron serves as
an input for another neuron. The next section is therefore dedicated to the
interaction of multiple neurons in multiple layers and also introduces a general
notation based on [33], that allows to describe the mathematical concept of a
neural network including an optimization algorithm.

5.1.2. Multiple neurons

Having described the basic function of a single neuron in the previous section,
the focus is now on how multiple neurons interact in order to form a neural
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5.1. Fundamentals of Neural Networks
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a
(i+1)
j

z
(i+1)
j

s
(i+1)
j

...

Figure 5.5.: Components of a single neuron.

network. Figure (5.5) shows the same single neuron as figure (5.3) but with a
slightly adapted and extended notation. While in figure (5.3) the weights ωi

are directly assigned to the individual inputs xi, in figure (5.5) these weights

are represented by a weight vector W
(i)
j. . To be able to refer to a single neuron

in a neural network with a large number of neurons, a single neuron is referred
to in the form of s

(i)
j . Where s stands for single neuron, i for the layer in which

the neuron is used and j for a consecutive number over all neurons in this layer
i. The notation of the inputs and the output of a neuron have also changed,
so that the notation a

(i)
j is now used in both cases. The a refers to activation

and the two indices i and j refer to the layer and respectively the neuron
that generated the activation value. The value a

(i)
1 from figure (5.5) therefore

identifies both, the output of the first neuron in the i-th layer and the input
for the j-th neuron in the i+1-th layer. Depending on which and how many
layers, and how the individual neurons in the individual layers or between the
individual layers are connected to each other, different types of neural networks
result. So-called feedforward networks, for example, are characterized by the
fact that neurons from one layer are only connected to neurons from the next
higher layer. The information flow therefore takes place only in one direction,
namely from the input side to the output side. On the other hand there are
so-called recurrent nets where feedback between different layers is also allowed.
There are three different categories of recurrent neural networks which can be
distinguished depending on how they use their feedback signals [10]:
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5. Neural Networks (NN)

...

...
...

...

x1

x2

x3

xn0

s
(1)
1

s
(1)
n1

s
(N)
1

s
(N)
nN

s
(N+1)
1

s
(N+1)
nN+1

ŷ1

ŷnN+1

Input
layer

Hidden
layer 1

Hidden
layer N

Output
layer

. . .

Figure 5.6.: Illustration of fully connected feedforward neural network with
N hidden layers.

• Direct feedback: The own output of a neuron is used as an additional
input for the neuron.

• Indirect feedback: The output of a neuron serves as an input to a neuron
of a previous layer.

• Lateral feedback: The output of a neuron servers as an input to a neuron
from the same layer.

Since the possibilities of how the different neurons are connected in a neural
network are almost unlimited, the following section describes one of the most
common forms [28]. It is a fully connected feedforward network as shown in
figure (5.6). The most important properties of such a network are:

• Fully connected: All outputs from the neurons of layer i serve as inputs
for all neurons in layer i+ 1.

• Feedforward: The information flows only from one layer to the next
higher layer.
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5.1. Fundamentals of Neural Networks

For the calculation and analysis of such a neural network the following no-
tation, which is taken from [33], is used in accordance with figure (5.5) and
figure (5.6). Let

• N ∈ N be the number of hidden layers in the neural network.

• N+2 be the total number of layers in the network since the hidden layers
are wrapped between an input and an output layer.

• ni ∈ N, i ∈ {0, 1, ..., N + 1}, be the number of neurons in the i-th layer.

• s
(i)
j denote the j-th neuron of the i-th layer.

• a(i) ∈ R
ni , a(i) = (a

(i)
1 , a

(i)
2 , ..., a

(i)
ni )

⊤ be the vector of activation values
produced by the neurons of the i-th layer.

• b(i) ∈ R
ni+1 , b(i) = (b

(i)
1 , b

(i)
2 , ..., b

(i)
ni+1)

⊤ be the bias vector for the linear
transformation performed in all neurons of layer i+ 1.

• W
(i)
j. ∈ R

1×ni , W
(i)
j. = (W

(i)
j1 ,W

(i)
j2 , ...,W

(i)
jni

) be the weight vector for the
linear transformation performed in the j-th neuron of the i+ 1-th layer.
Combining all weights used in the i + 1-th layer into a matrix W (i) ∈
R

ni+1×ni results in:

W (i) =




W
(i)
11 W

(i)
12 · · · W

(i)
1ni

W
(i)
21 W

(i)
22 · · · W

(i)
2ni

...
...

...

W
(i)
ni+11

W
(i)
ni+12

· · · W
(i)
ni+1ni


 =




W
(i)
1.

W
(i)
2.
...

W
(i)
ni+1.


 ,

with W
(i)
j. being the j-th row of W (i).

• z(i) ∈ R
ni , z(i) = (z

(i)
1 , z

(i)
2 , ..., z

(i)
ni )

⊤ be the result vector after the linear
transformation performed in all neurons of layer i.

• g : R 7→ R be any activation function which is applied to the result of
the linear transformation.

• x ∈ R
n0 , x = (x1, x2, ..., xn0)

⊤ be a vector of input data to train the
model.

• y ∈ R
nN+1 , y = (y1, y2, ..., ynN+1

)⊤ be a vector of output data to train the
model.
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5. Neural Networks (NN)

• ŷ ∈ R
nN+1 , ŷ = (ŷ1, ŷ2, ..., ŷnN+1

)⊤ be a vector of estimated output values
obtained from the neural network by sending an input vector x through
the network.

Remark 5.5. Since the input layer has n0 neurons, the input vector x must
be an element of Rn0. Similarly, the estimated output ŷ of the neural network
is a vector which is an element of RnN+1.

Remark 5.6. Since a(i) denotes the values that are transferred between neu-
rons, it is both the output values of the neurons from layer i and the input
values of the neurons from layer i+ 1.

Remark 5.7. The input values x for the neuronal network correspond to the
first activation values a(0), e.g. x = a(0). Similarly, the estimated output
ŷ of the neural network corresponds to the last activation values a(N+1), e.g.
ŷ = a(N+1).

Remark 5.8. For the training of a neural network many different sets of input
and associated output vectors are needed. If a specific set of input or output
data is to be referenced, this is done by adding a superscript, e.g. x(k) and y(k).
The corresponding estimated values are also referred to as ŷ(k).

Remark 5.9. The weight defined as W
(i)
jk connects the activation value from

the k-th neuron in layer i with the j-th neuron from layer i+ 1.

After a notation for the analysis of the neural network has been defined, the
next section is devoted to the question of how data can flow through a network
and how the network can learn.

5.2. Train a model

Figure (5.3) together with formula (5.1) already illustrated in the previous
section how a single neuron is constructed and how it processes the inputs.
Since the notation has been generalized in the previous section also formula
(5.1) could be generalized.

Remark 5.10. Let a(i) ∈ R
ni be the activation values from layer i, b

(i)
j ∈ R

the bias term for the j-th neuron in layer i+1, W
(i)
j. the weights and g : R → R
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5.2. Train a model

any activation function. Then the linear transformation performed by the j-th
neuron of layer i+ 1 called z

(i+1)
j is given by:

z
(i+1)
j =

ni∑

k=1

W
(i)
jk a

(i)
k + b

(i)
j (5.6)

Using vector notation gives:

z
(i+1)
j = W

(i)
j. a

(i) + b
(i)
j (5.7)

Remark 5.11. Based on the previous remark, the activation value a
(i+1)
j gen-

erated by neuron s
(i+1)
j is given by:

a
(i+1)
j = g(z

(i+1)
j ) = g

( ni∑

k=1

W
(i)
jk a

(i)
k + b

(i)
j

)
(5.8)

Using vector notation gives:

a
(i+1)
j = g(z

(i+1)
j ) = g(W

(i)
j. a

(i) + b
(i)
j ) (5.9)

Performing these transformations for all neurons from layer i+1 gives a system
of ni+1 equations:

a
(i+1)
1 = g(W

(i)
1. a

(i) + b
(i)
1 )

a
(i+1)
2 = g(W

(i)
2. a

(i) + b
(i)
2 )

...

a(i+1)
ni+1

= g(W (i)
ni+1.

a(i) + b(i)ni+1
)

Since the activation function is only defined for scalar values, a small extension
must be made.

Remark 5.12. Let g : R → R be an activation function which operates on
scalars only. In case that a vector is supplied the scalar activation function g

is applied element by element.

With the help of the previous remark it is now possible to represent the flow
of information through the network in vector notation.

a(0) = x

z(i) = W (i−1)a(i−1) + b(i−1)

a(i) = g(z(i))

ŷ = a(N+1)

(5.10)
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5. Neural Networks (NN)

This step, where the neural network takes an input vector and transforms it to
a prediction is the first step to train the network and is called forward propaga-
tion [49]. The process shown in figure (5.2) illustrates that after the generation
of the predictions ŷ the deviation between those and the real outputs y must
be measured. A way of measuring the deviation between actual and estimated
values is the L2 norm.

Definition 5.1. Let x(i) and y(i) be the vector of the input and the correspond-
ing output values, respectively. Let W be the matrices of weights and b the
vectors of biases used in the entire network for a single forward propagation.
If ŷ

(i)

W,b,x(i) denotes the estimated outputs from the network then the loss score

is given by:

L(b,W, x(i), y(i)) :=
1

2

∥∥∥ŷ(i)
W,b,x(i) − y(i)

∥∥∥
2

2
(5.11)

By using the notation given in definition (5.11) it is explicitly stated, that the
loss of a single forward pass depends on the four parameters b,W, x(i) and y(i).
In order to increase the readability in the following paragraphs from now on it
is not longer explicitly stated that the estimated output depends on the three
parameters W , b and x(i), e.g. ŷ

(i)

W,b,x(i) = ŷ(i). Since in most cases not only

a single pair of input and output data is used for the calculation of the loss
function but several, the loss must also be defined for a sample of multiple
input and output vectors. In the field of machine learning such a sample of
multiple input and output vectors is called a batch. The batch size is one of
many so-called hyperparameters of a neural network and specifies how many
samples must be sent through the network before the model parameters are
updated.

Definition 5.2. Let {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))} be a sample of m
input and the corresponding output vectors, e.g. the batch size is m. Then the
total loss is given by:

L(b,W ) =
1

m

m∑

i=1

1

2

∥∥ŷ(i) − y(i)
∥∥2
2

=
1

m

m∑

i=1

L(b,W, x(i), y(i))

(5.12)

Remark 5.13. In order to reduce the complexity of the model by using smaller
weights and to reduce overfitting to some extend, a regularization term can be
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5.2. Train a model

used in equation (5.12).

L(b,W ) =
1

m

m∑

i=1

1

2

∥∥ŷ(i) − y(i)
∥∥2
2
+

λ

2

N∑

i=0

∥∥W (i)
∥∥2
F

=
1

m

m∑

i=1

L(b,W, x(i), y(i)) + λR(W )

(5.13)

where
∥∥W (i)

∥∥2
F
is defined as:

√∑ni+1

j=1

∑ni

k=1 W
(i)
jk

If a regularization term is used in a neural network, the choice of the regular-
ization parameter λ plays an important role. When the regularization term λ

is too high the weight matrices W are close to zero and this can lead to simple
networks and underfitting. However, if the parameter is set too low and there-
fore higher weights of the matrices are not penalized enough, regularization
has no effect at all.

Once a loss function is defined, the information of the loss score can be used
to take the next step as shown in figure (5.2). The job of the optimizer is
to evaluate how the weights of W and b have to be adjusted so that the
loss score becomes smaller in the next forward pass. A reduction of the loss
score indicates that the deviation between predicted output values and actual
outputs is reduced. This iterative improvement of the loss score based on
the insights given by the optimizer is the so called learning procedure of a
neural network. The task of minimizing L(b,W ) with respect to the weights
b and W can be solved by using the gradient descent method which is an
first-order iterative optimization algorithm for finding the local minimum of a
function [9]. This method calculates, using the gradients, for each weight of
the network what effect a change would have on the loss score. The algorithm
used to calculate the gradients is called backpropagation. Once all gradients
have been calculated after a forward pass, one way to update the weights of
the neural network is to adjusted them by a constant learning rate of α.

Remark 5.14. Let W (i) and b(i), i = 0, 1, ..., N be the weights used in the
i+1-th layer and α ∈ R+ the user defined learning rate. Then the weights are
updated in every optimization step such that:

b
(i)
j = b

(i)
j − α

∂

∂b
(i)
j

L(b,W ) (5.14)

W
(i)
jk = W

(i)
jk − α

∂

∂W
(i)
jk

L(b,W ) (5.15)
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5. Neural Networks (NN)

Since the learning rate α is a hyperparameter that can be chosen freely, the
only parts that need to be analyzed are the partial derivatives. By using
definition 5.2 those can be written as:

∂

∂b
(i)
j

L(b,W ) =
1

m

m∑

i=1

∂

∂b
(i)
j

L(b,W, x(i), y(i)) (5.16)

∂

∂W
(i)
jk

L(b,W ) =
1

m

m∑

i=1

∂

∂W
(i)
jk

L(b,W, x(i), y(i)) (5.17)

This shows that the partial derivative of the loss function based on a batch of
size m is given by the mean value of the partial derivatives of all single loss
functions based on the individual input and output vectors used in this batch.
If the regularization term introduced in remark 5.13 is used for the weight
matrices W , this does not change anything for the partial derivatives with
respect to the bias terms b, but the partial derivatives of the weight matrices
given in formula (5.17) changes to:

∂

∂W
(i)
jk

L(b,W ) =
1

m

m∑

i=1

∂

∂W
(i)
jk

L(b,W, x(i), y(i)) + λW
(i)
jk (5.18)

If the regularization term is used, just an additive expression of the form λW
(i)
jk

is added. Since the construction of the partial derivatives with respect to W
(i)
jk

and b
(i)
j are very similar, only the former will be explained step by step in

the following. Before the partial derivative can be analysed in more detail a
distinction must be made between two different cases.

Case 1: The first case deals with the special situation in which the weights
W (N) and b(N) are directly related to the output. These weights are used in the
transformation that results in the estimated output values ŷ and thus directly
influences the loss function L(b,W, x(N), y(N)). Because of their direct influence
on the loss function, the calculation of their gradients is easier and can be used
as a template for the other case.

Remark 5.15. Let W (N) be the matrix of weights used in the last layer of the
neural network. Then the gradient is given by:

∂L(b,W )

∂W
(N)
jk

= δ
(N+1)
j a

(N)
k
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5.2. Train a model

Proof.

∂L(b,W )

∂W
(N)
jk

=
∂

∂W
(N)
jk

1

2

nN+1∑

l=1

(ŷl − yl)
2

=
∂

∂W
(N)
jk

1

2

nN+1∑

l=1

(a
(N+1)
l − yl)

2

= (a
(N+1)
j − yj)

∂

∂W
(N)
jk

(a
(N+1)
j − yj)

= (a
(N+1)
j − yj)

∂

∂W
(N)
jk

g
(
z
(N+1)
j

)

= (a
(N+1)
j − yj)g

′(z(N+1)
j

) ∂

∂W
(N)
jk

[ nN∑

s=1

W
(N)
js a(N)

s + b
(N)
j

]

= (a
(N+1)
j − yj)g

′(z(N+1)
j

)
a
(N)
k

= δ
(N+1)
j a

(N)
k

Whereby in the last step all terms with index j were summarized in δN+1
j .

Remark 5.16. Let b(N) be the vector of biases used in the last layer of the
neural network. Then the gradient is given by:

∂L(b,W )

∂b
(N)
j

= δ
(N+1)
j

Case 2: The second case deals with those situations where the weights W and
b are not directly but indirectly associated with the loss function. These are
all weights that are used in the hidden layers 1 to N. The calculation of those
gradients relies on the first case and requires several steps.

Remark 5.17. Let z
(N+1)
l be the result of the linear transformation of neuron

l in the N + 1-th layer and W
(N−1)
jk the weight for the j-th neuron in the N-th

layer. Then the partial derivative of z
(N+1)
l with respect to W

(N−1)
jk is given by:

∂z
(N+1)
l

∂W
(N−1)
jk

=
∂z

(N+1)
l

∂a
(N)
k

∂a
(N)
k

∂W
(N−1)
jk

= W
(N)
lk g′

(
z
(N)
k

)
a
(N−1)
k (5.19)
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5. Neural Networks (NN)

Proof.

∂z
(N+1)
l

∂a
(N)
k

=
∂

∂a
(N)
k

[ nN∑

s=1

W
(N)
ls a(N)

s + b
(N)
l

]
= W

(N)
lk

∂a
(N)
k

∂W
(N−1)
jk

= g′
(
z
(N)
k

) ∂

∂W
(N−1)
jk

[ nN−1∑

s=1

W
(N−1)
ks a(N−1)

s + b
(N−1)
k

]
= g′

(
z
(N)
k

)
a
(N−1)
k

Remark 5.18. Let W (N−1) be the matrix of weights used in the last hidden
layer of the neural network. Then the gradient is given by:

∂L(b,W (N))

∂W
(N−1)
jk

= g′
(
z
(N)
k

)
a
(N−1)
k

nN+1∑

l=1

δ
(N+1)
l W

(N)
lk

Proof.

∂L(b,W (N))

∂W
(N−1)
jk

=
∂

∂W
(N−1)
jk

1

2

nN+1∑

l=1

(a
(N+1)
l − yl)

2

=

nN+1∑

l=1

(a
(N+1)
l − yl)

∂

∂W
(N−1)
jk

(a
(N+1)
l − yl)

=

nN+1∑

l=1

(a
(N+1)
l − yl)

∂

∂W
(N−1)
jk

g
(
z
(N+1)
l

)

=

nN+1∑

l=1

(a
(N+1)
l − yl)g

′(z(N+1)
l

) ∂

∂W
(N−1)
jk

z
(N+1)
l

=

nN+1∑

l=1

δ
(N+1)
l

∂

∂W
(N−1)
jk

z
(N+1)
l

= g′
(
z
(N)
k

)
a
(N−1)
k

nN+1∑

l=1

δ
(N+1)
l W

(N)
lk

Where in the last step the result from remark 5.17 was used.

Remark 5.19. Let b(N−1) be the vector of biases used in the last hidden layer
of the neural network. Then the gradient is given by:

∂L(b,W )

∂b
(N−1)
j

= g′
(
z
(N)
j

) nN+1∑

l=1

δ
(N+1)
l W

(N)
lk
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5.2. Train a model

Those results derived in the last section can be used for any number of hidden
layers so that the update process described in remark 5.14 can be slightly
adopted and summarized in algorithm 5.

Algorithm 5 Stochastic gradient descent (SGD) with mini batches [21]

1. Define learning rates α1, α2, ...

2. Initialize weight parameters W and b and reference them by θ.

3. Set a counter: k = 1

4. While stopping criterion is not met

a) Sample a minibatch of m examples from the training set with cor-
responding output values {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}

b) Compute gradient estimate: g = 1
m
∇θ

∑
i L(f(x

(i); θ), y(i))

c) Apply update: θ = θ − αkg.

d) Increase counter: k = k + 1

Remark 5.20. The notation for the computed gradient 1
m
∇θ

∑
i L(f(x

(i); θ), y(i))
in algorithm 5 is just a short form of formulas (5.16) and (5.17).

Remark 5.21. By setting all learning rates equal (e.g. α = α1 = α2 = ... =
αk), exactly the update process described in remark 5.14 is obtained.

Remark 5.22. In practice, the learning rates are often chosen in such a way
that a linear decrease takes place up to a certain number of iterations and then
the learning rates are kept constant.

αk =

{(
1− k

τ

)
α0 +

k
τ
ατ k < τ

ατ k ≥ τ

With α0, ατ and τ set such that:

• ατ is roughly 1 percent of the initial learning rate α0.

• τ is set to the number of iterations required to pass the whole training set
a few hundred times through the neural network.

• α0 does not make the learning process of the model oscillate too much by
setting it too high. Gentle oscillations are okay, but setting α0 properly
is part of a hyperparameter tuning.
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5. Neural Networks (NN)

Remark 5.23 ([21]). A sufficient condition to guarantee that the stochastic
gradient descent algorithm converges is that:

∞∑

k=1

αk = ∞ and
∞∑

k=1

α2
k < ∞

Based on SGD, the algorithm can be optimized in terms of time consump-
tion. By adding a momentum, the learning process can be accelerated and
the undesired case that the algorithm runs into a local minimum is partly
counteracted.

Algorithm 6 Stochastic gradient descent (SGD) with momentum [21]

1. Initialize learning rate α and momentum parameter γ

2. Initialize weight parameter θ and velocity v.

3. Set a counter: k = 1

4. While stopping criterion is not met

a) Sample a minibatch of m examples from the training set with cor-
responding output values {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}

b) Compute gradient estimate: ĝ = 1
m
∇θ

∑
i L(f(x

(i); θ), y(i))

c) Compute velocity update: v = γv − αĝ

d) Apply update: θ = θ + v.

e) Increase counter: k = k + 1

Remark 5.24. The more consecutive gradients point in the same direction,
the greater the updates of the weights become.

Remark 5.25. Usually the momentum parameter γ is initialized with val-
ues like 0.5, 0.9 or 0.99. Adopting γ over time is possible but typically less
important than the linear decay of α shown previously.

In the two algorithms 5 and algorithm 6 presented so far, the learning rate α

is specified globally. As mentioned in remark 5.22 a sequence of learning rates
αi can be defined so that the learning rate is decreasing over time and is then
kept constant after a certain number of iterations. If the idea of globally falling
learning rates αi is taken a step further, a group of algorithms can be presented
which individually adapts the learning rates of every single model parameter.
This then leads to a rapid drop in the individual learning rate for parameters
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5.2. Train a model

Algorithm 7 Adaptive Gradients (AdaGrad) [21]

1. Initialize learning rate α.

2. Initialize Small constant δ used for numerical stabilization. (Suggested
default: 10−7)

3. Initialize weight parameter θ.

4. Initialize gradient accumulation variable: r = 0.

5. While stopping criterion is not met

a) Sample a minibatch of m examples from the training set with cor-
responding output values {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}

b) Compute gradient estimate: ĝ = 1
m
∇θ

∑
i L(f(x

(i); θ), y(i))

c) Accumulate squared gradient: r = r + ĝ ⊙ ĝ

d) Compute update: ∆θ = − α√
r+δ

⊙ ĝ (Division and square root

applied element-wise)

e) Apply update: θ = θ +∆θ.

Algorithm 8 Root mean square propagation (RMSProp) [21]

1. Initialize learning rate α and decay parameter ρ.

2. Initialize Small constant δ used for numerical stabilization. (Suggested
default: 10−6)

3. Initialize weight parameter θ.

4. Initialize gradient accumulation variable: r = 0.

5. While stopping criterion is not met

a) Sample a minibatch of m examples from the training set with cor-
responding output values {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}

b) Compute gradient estimate: ĝ = 1
m
∇θ

∑
i L(f(x

(i); θ), y(i))

c) Accumulate squared gradient: r = ρr + (1− ρ)ĝ ⊙ ĝ

d) Compute update: ∆θ = − α√
r+δ

⊙ ĝ ( 1√
r+δ

applied element-wise)

e) Apply update: θ = θ +∆θ.
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5. Neural Networks (NN)

with large partial derivatives. In contrast, the learning rates of parameters
with comparatively small partial derivatives are changed only slightly. This
approach therefore allows an individual adjustment of the learning rate for each
individual parameter depending on how the corresponding gradient behaves.
Algorithms 7 and 8 show possible implementations of such adaptive learning
approaches.

Remark 5.26. Algorithm 7 implements an adoptive learning rate for each
individual model parameter by summing all previous squared gradients. As the
sum increases with each iteration, this means that the learning rate decreases
monotonically.

The strength of algorithm 7 lies in the fast convergence for convex functions.
Since the entire history of the gradients is always used for the adjustment of the
learning rates through summation, there may be cases in which the algorithm
is trapped in convex sinks. This may be due to the fact that when such a sink
occurs, the individual learning rate has already been reduced so much that this
local minimum cannot be left. Algorithm 8 addresses this problem by making
the adoptive learning rate more flexible.

Remark 5.27. Algorithm 8 uses an exponentially weighted moving average to
adjust the individual learning rates. The decay of the moving average is then
controlled by a new hyperparameter called ρ, with small values increasing the
magnitude of decay.

By using the exponentially weighted moving average, previous gradients are
considered less for the adaptive learning rate the further back in time they
appeared. This means that, in contrast to the AdaGrad method, the individ-
ual learning rate does not have to fall monotonously but can develop more
flexible.

The last algorithm presented here can be seen as a combination of RMSProp
(algorithm 8) and SGD with momentum (algorithm 6). This algorithm, called
Adam, shown in algorithm 9 is fairly new in the field of neural networks and
uses momentum and adaptive learning rates to converge faster and more robust
[27].

Remark 5.28. Since the update process of the biased first moment estimate
in step d) of algorithm 9 can be expressed as st = (1 − ρ1)

∑t

i=1 ρ
t−i
1 gi the

correction term can be derived by:
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5.2. Train a model

Algorithm 9 Adaptive Moments (Adam) [21]

1. Initialize learning rate α. (Suggested default: 0.001)

2. Initialize exponential decay rates for moment estimates, ρ1 and ρ2 in
[0, 1). (Suggested defaults: 0.9 and 0.999 respectively)

3. Initialize Small constant δ used for numerical stabilization. (Suggested
default: 10−8)

4. Initialize weight parameter θ.

5. Initialize 1st and 2nd moment variables s = 0, r = 0.

6. Initialize time step t = 0.

7. While stopping criterion is not met

a) Sample a minibatch of m examples from the training set with cor-
responding output values {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}

b) Compute gradient estimate: ĝ = 1
m
∇θ

∑
i L(f(x

(i); θ), y(i))

c) Increase time step: t = t+ 1

d) Update biased first moment estimate: s = ρ1s+ (1− ρ1)ĝ

e) Update biased second moment estimate: r = ρ2r + (1− ρ2)ĝ ⊙ ĝ

f ) Correct bias in first moment: ŝ = s
1−ρt1

g) Correct bias in second moment: r̂ = r
1−ρt2

h) Compute update: ∆θ = −α ŝ√
r̂+δ

i) Apply update: θ = θ +∆θ. (operations applied element-wise)

j ) Increase counter: k = k + 1
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5. Neural Networks (NN)

E[st] = E

[
(1− ρ1)

t∑

i=1

ρt−i
1 gi

]

= E[gt](1− ρ1)
t∑

i=1

ρt−i
1 + ζ

= E[gt](1− ρt1) + ζ

Where ζ = 0 if the true first moment is stationary and otherwise ζ can be kept
small because of the exponential decay [27].

Remark 5.29. Similarly to remark 5.28 the correction term for the biased
second moment can be derived.

After the basic concepts have been explained, the last section of this chapter
is dedicated to the question how well cash flows can be replicated with neural
networks using different neural networks.

5.3. Cash flow replication

For the analysis of the effectiveness of neural networks in replicating the cash
flows of an insurance portfolio, a subset of an actual insurance portfolio was
used. The portfolio used consists of risk insurance policies, whereby only
policies of the most often sold tariff were included for the evaluations. This
ensures that, if a neural network is successfully trained, a large part of the
risk insurance portfolio can already be covered. In principle, all risk tariffs of
the portfolio can be described with 37 different characteristics. These features
include biometric data such as the sex or age of the insured person as well
as actuarial parameters such as a discount label. The approximately 200,000
policies of the tariff analysed here, can be characterised by the following 17
attributes:

• Policy ID

• Age

• Premium

• Reserve

• Months since policy start

• Surpluses
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5.3. Cash flow replication

• Policy status

• Policy duration

• Premium frequency

• Premium payment period

• Discount indicator

• Sex

• Main contract flag

• Sum assured

• Sales channel

• Type of sale

• Rider premium

Since most of the properties are self-explanatory, only those are briefly outlined
here where there could be some ambiguity. The sales channel is a categorical
variable and indicates how the policy was sold, either through exclusive dis-
tribution or through a broker. The type of sale is also a categorical variable
and indicates how the contract was concluded. That is, whether it is a new
business, a renewal or another type of business transaction. These 17 char-
acteristics were then used to forecast the future portfolio development with
the help of a proprietary projection software called Prophet. With a future
projection period of 60 years and about 60 reporting variables, this results in
hundreds of millions of data points. Since this amount of data could not be
handled with the available resources, especially since the learning processes of
a neural networks would become too costly, there were two simplifications:

• The number of policies was reduced to approximately 25,000.

• The reporting variables were reduced to the mathematical reserve.

The policies were chosen in such a way that they form a group that is as
homogeneous as possible. These are policies that:

• Are in the premium payment period with monthly payments.

• Have no discounts.

• Were sold via a broker.

• Are no renewals.

It can therefore be seen that there have been some limitations in the selection of
policies in terms of discrete features. This fact must be taken into account when
evaluating the results, but should not interfere with the further procedure.

The projection software was then used to forecast the reserve trajectories for
the next 60 years for those 25,000 model points. To be able to check the
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5. Neural Networks (NN)

Table 5.1.: Average relative error between true and predicted values over a
projection period of 60 years.

Configuration

Nodes Network Type
Average Error
Year 1 - 25

Average Error
Year 1 - 60

8 I 1.971% 1.995%
8 II 2.213% 2.467%
20 I 0.963% 1.600%
20 II 3.001% 3.111%
37 I 0.653% 1.341%
37 II 1.714% 2.289%
50 I 0.673% 1.466%
50 II 1.181% 2.151%

quality of the tested neural networks, the data was split into a training and
a test set. For this purpose, 80% of the data points were randomly selected
and assigned to the training set and the remaining 20% to the test set. The
test set was never used to train the neural nets, but was only used once after
training has been finished to check the predictive power. To smooth possible
volatility caused by the random initialization of the weight parameters, each
test configuration was tested 40 times with randomly initialized parameters
and the results were averaged. The two network structures analysed are:

I) 2 hidden layers.

II) 3 hidden layers.

In both configurations, the number of neurons in the hidden layers was the
same for all hidden layers in the network and was increased in steps from 8 to
50. The individual layers used relu (see equation 5.4) as activation function
and initialized the weights uniformly. As batch size 32 was chosen and the
number of epochs was set to 50. As loss function the mean square error was
chosen and as optimization routine the Adam algorithm described in algorithm
9. In addition, a dropout rate of 10% for each layer has been implemented
to prevent the model from overfitting. To ensure the reproducibility of the
results, the random generator was set before each test run. Table 5.1 shows
the averaged relative errors of the eight configurations tested. It is evident
that the relative deviations in the first 25 years are on average lower than over
the entire projection horizon of 60 years. This is due to the fact that the longer
a projection goes on, the more policies have already expired. This means that
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5.3. Cash flow replication

towards the end of the projection there are not so many data points from
which the neural network could learn and therefore the predictive power is
lower. Since over the projection period the number of policies in the portfolio
is decreasing, this means that the absolute values for the cash flows are also
decreasing. A constant deviation in cash flows in absolute terms therefore has a
much greater relative impact at the end of the projection than at the beginning.
However, this phenomenon can be reduced by creating imaginary policies for
the training portfolio that have a particularly long duration. This ensures that
the neural network has enough data points even at the end of the projection
period to learn from and can therefore make better predictions. Of course, this
approach involves additional effort, since policies not in the portfolio must first
be created and then projected into the future. Another finding of table 5.1 is
that those models with network type I achieve better results than those with
type II in all cases. This shows that those nets that have only 2 hidden layers
give better results than those that consist of 3 hidden layers. The number
of neurons within each layer also has an influence on the predictive power of
a neural network. Nets with 8 or 20 neurons per layer perform worse than
those with 37 or 50 neurons per layer as shown in table 5.1. Overall, the best
performance is shown by the configuration with two hidden layers of 37 neurons
each. In this neural network the number of neurons per layer is the average
between the number of input neurons and output neurons. The predicted
values for this configuration compared to the real values are shown in figure
(5.7). A clear deviation in year 10 is striking which can be explained by an
outlier. After the learning process, one of the 40 neural networks was not able
to predict a proper reserve for year 10, so a value of 0 was predicted. If the
hardware is designed for the training of many neural networks, such outliers can
be compensated simply by increasing the number of samples from 40 to 100,
for example. Apart from this outlier, the results up to year 25 are remarkably
good and even after that, the deviations are within reasonable limits. It could
thus be shown that surprisingly good forecasts of future reserve development
are already possible with simple neural networks. Due to the limited technical
possibilities, even for such simple configurations of neural networks as listed
in table 5.1, no extensive tuning of the hyperparameters could be performed.
Based on the configuration with the smallest deviations, an improvement of
the predicted results can be achieved by adjusting the hyperparameters. Some
possible adjustments would be:

• Adjusting the drop out rate for each layer.

• Adjusting the activation function for each layer.
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5. Neural Networks (NN)
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Figure 5.7.: Reserve predicted by neural network with 2 hidden layer with
37 nodes each.

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

6. Conclusion

The aim of this work was to analyse procedures that allow for a compression of
an insurance portfolio. A representative subset of policies should be selected
in such a way that projected cash flows can be replicated as accurately as
possible. A special focus was placed on the high dimensionality of the data
and the associated challenges. The k-means algorithm presented in chapter 3
was particularly convincing due to its simplicity of implementation, but also
had weaknesses. Especially in the case of high-dimensional property spaces,
the curse of dimensionality and the associated difficulty in determining the
optimal number of cluster centres must be emphasized. The non-negative least
squares algorithm presented in Chapter 4 is also well established in practice
and is therefore used in insurance companies. However, numerical instabilities
must be pointed out when using this method and implementations based on
inversions of matrices are strongly discouraged in this context. Instead, it
could be shown that by applying QR-decompositions, significantly more robust
results could be achieved and therefore those approaches are to be preferred.
In the last chapter, neural networks were presented as a method that has so
far received little attention in the insurance sector. With a network consisting
of less than 100 neurons, it is possible to replicate cash flows over a period
of 60 years so well that the deviation is significantly below 2%. Even if these
neuronal networks cannot yet be used to compress portfolios, the potential
applications are interesting. For example, such trained networks could be used
to quickly forecast estimated cash flow patterns for entire portfolios. The
training effort could be carried out in advance in order to receive first results
within minutes after the delivery of the monthly policy data. A more complex
use case of neural networks would be that in which neural networks are used to
estimate important parameters in the context of solvency calculations. Initial
attempts in this direction are promising and require further in-depth analysis
[11].
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Appendix A.

Tables
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A
p
p
en
d
ix

A
.
T
ab

les

month pop 15 pop 70 prem 15 prem 70 prem diff claims 15 claims 70 claims diff

0 1 1
9 0.999834 0.987259 385.60 1128.40 742.80 1.70 130.61 128.91
21 0.977140 0.947577 379.73 1092.63 712.90 4.73 185.70 180.97
33 0.952445 0.905554 370.17 1045.64 675.47 10.08 201.42 191.34
45 0.928273 0.863652 360.80 998.80 638.00 15.22 216.81 201.60
57 0.904661 0.821842 351.64 952.09 600.45 19.87 232.12 212.25
69 0.881638 0.780093 342.69 905.48 562.79 24.11 247.29 223.18
93 0.837332 0.696652 325.47 812.40 486.93 32.45 277.16 244.71
105 0.816021 0.654913 317.19 765.86 448.68 36.70 291.89 255.19
117 0.795253 0.613146 309.11 719.31 410.19 41.02 306.32 265.29
129 0.775013 0.571358 301.25 672.72 371.47 45.41 320.21 274.81
141 0.755288 0.529577 293.58 626.11 332.54 49.85 333.38 283.53
165 0.717332 0.446430 278.82 533.03 254.20 58.90 354.70 295.80
177 0.699076 0.405693 271.73 486.94 215.21 63.50 359.06 295.56
189 0.681284 0.365984 264.81 441.73 176.92 68.15 359.15 291.01
201 0.663944 0.327583 258.07 397.76 139.68 72.83 355.49 282.66
213 0.647046 0.290722 251.51 355.31 103.81 77.54 348.61 271.07
237 0.614523 0.222339 238.87 275.96 37.09 87.12 326.91 239.79
249 0.598856 0.191115 232.78 239.40 6.62 91.79 312.50 220.71
261 0.583562 0.162081 226.85 205.15 -21.70 96.52 295.62 199.10
273 0.568621 0.135426 221.05 173.38 -47.67 101.35 276.01 174.66
285 0.554015 0.111340 215.39 144.32 -71.07 106.29 253.63 147.35
297 0.539728 0.089980 209.85 118.16 -91.69 111.28 228.95 117.68
309 0.000000 0.000000 0.00 0.00 0.00 5983.32 991.18 -4992.14

Table A.1.: Yearly outputs for PVFP-sensitivity analysis based on an interst rate of 2%.
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Appendix B.

Code

1 # The pseudocode for the nnls -algoritm can be found at

2 # https ://en.wikipedia.org/wiki/Non -negative_least_squares

3 nnls_VMF <- function(A, b, Modellpunkte = 0, Fehlertol = 1e-10, MainloopMax =

10000 , InnerloopMax = 1000, Ausgabe = 0) {

4
5 N <- dim(A)[2]

6 # Count the number of zeros per row; if for one row there are N zeros all

policies

7 # produce zeros for that cashflow --> not a relevant information.

8 AnzNull <- rowCounts(A, value = 0)

9 # find those rows which have non -zero values in A and b simultaneously

10 # Those rows have relevant information

11 Zeilen <- (AnzNull != N) & (b != 0)

12 # Reduce A and b to those rows with relevant information

13 A <- A[Zeilen ,]

14 b <- b[Zeilen]

15
16 # Initialize

17 P <- NULL

18 R <- 1:N

19 x <- rep(0, N)

20
21 # Log the number of non -zero entries in x by counting the elements in P

22 nonZeroEntries <- length(P)

23
24 # Log the development of the residuals

25 fitted <- A %*% x

26 residual_tmp <- (b - fitted)^2 %>% sum()

27
28 # Calculate initial Gradient "t(A) %*% (b - A %*% x)"

29 # Since in first iteration x is zero this simplifies to "t(A) %*% b"

30 w <- crossprod(b, A)

31 # Find highest descent

32 wmax <- max(w)

33 Stellen <- -log(Fehlertol , 10)

34 # initialize counter for Main loop

35 Mainloop <- 0

36
37 # initialise variables for the exit -reason

38 jprev <- 0

39 Stabiler_Zustand <- 0

40 Abbruch_Grund <- 0

41
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Appendix B. Code

42 # define the tolerance based on the machine precision

43 TestTol <- .Machine$double.eps * 1000

44
45 # When the user doesn ’t restrict the number of modelpoints then

46 # we set the number of maximal modelpoints to the number of varibles we

47 # want to match.

48 if (Modellpunkte == 0) {

49 Modellpunkte <- dim(A)[1]

50 }

51 ModellpunkteMax <- min (2* Modellpunkte , dim(A)[1])

52
53 # initialize progress bar

54 pb <- winProgressBar(title = "Progress",

55 min = 0,

56 max = Modellpunkte ,

57 width = 600)

58
59 # Mainloop

60 while (( length(P) < ModellpunkteMax) &

61 (Mainloop < MainloopMax) &

62 (Stabiler_Zustand == 0) &

63 (wmax > Fehlertol)) {

64
65 # log development of residuals

66 fitted <- A %*% x

67 resid <- b - fitted

68
69
70 Stabiltest <- 0

71 while (Stabiltest == 0) {

72 j <- which.max(w[R])

73 Kandidat <- R[j]

74 Ptemp <- unique(sort(rbind(P, Kandidat)))

75 # check if det below tolerance , if this is the case then we can ’t invert

76 # t(A) %*% A restricted to the columns of P

77 if (det(crossprod(A[,Ptemp ])) <= TestTol) {

78 w[Kandidat] <- 0

79 } else {

80 Stabiltest <- 1

81 }

82 }

83
84 # if the new candidate is the same as in the last iteration of the loop

85 # a stable state is reached and the optimization is finished

86 if (R[j] == jprev) {

87 #Stabiler_Zustand <- 1

88 }

89
90 #if (Stabiler_Zustand == 0) {

91 if (0 == 0) {

92 jprev <- R[j]

93
94 # move index form R to P

95 P <- unique(sort(rbind(P, R[j])))

96
97 # define restricted matrix A^P

98 AP <- A[, P]

99 s <- rep(0, N)

100 # compute the restricted least squres problem

101 sP <- solve( crossprod(AP), crossprod(AP , b))
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102 # sP <- solve( t(AP) %*% AP , t(AP) %*% b)

103 # sP <- as.matrix(lsfit( AP , b, intercept = FALSE)[[1]])

104 # assign the results of the restriced least squres problem to the

105 # entries of s indexed in P.

106 s[P] <- sP

107 Innerloop <- 0

108
109 # Innerloop

110 while ((min(sP) <= 0) & (Innerloop < InnerloopMax)) {

111 # find indices for negative values

112 neg <- P[sP <= 0]

113 alpha <- min (x[neg] / (x[neg] - s[neg]), na.rm = TRUE)

114 x[P] <- x[P] + alpha * (s[P] - x[P])

115
116 temp <- (round(x[P], Stellen) != 0)

117 AP <- AP[,temp]

118 P <- P[temp]

119 sP <- solve( crossprod(AP), crossprod(AP , b))

120 # sP <- solve( t(AP) %*% AP , t(AP) %*% b)

121 # sP <- as.matrix(lsfit( AP , b, intercept = FALSE)[[1]])

122 s <- rep(0, N)

123 s[P] <- sP

124 Innerloop <- Innerloop + 1

125 } # End Innerloop

126
127 R <- (1:N)[-P]

128 x <- s

129 w <- crossprod(b - AP %*% sP , A)

130 wmax <- max(w)

131 Mainloop <- Mainloop + 1

132
133
134 # logging

135 nonZeroEntries <- rbind(nonZeroEntries , length(P))

136 # Log the development of the residuals

137 fitted <- A %*% x

138 residual_tmp <- c(residual_tmp , (b - fitted)^2 %>% sum())

139
140
141
142 setWinProgressBar(

143 pb ,

144 length(P),

145 title = paste0("Policies ", length(P), " of max. ",Modellpunkte ,

146 " Mainloop: ", Mainloop , " max(w): ", round(wmax , 4)

147 )

148 )

149 } # End Stabiler_Zustand

150 } # End Mainloop

151
152 # close progress bar

153 close(pb)

154
155 # Apply fit and calculate residuals

156 fitted <- A %*% x

157 resid <- b - fitted

158
159 if (Stabiler_Zustand == 1) {

160 Abbruch_Grund <- "stable state"

161 }
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Appendix B. Code

162 else if (Mainloop >= MainloopMax) {

163 Abbruch_Grund <- "main loop max reached"

164 }

165 else if (max(w) <= Fehlertol) {

166 Abbruch_Grund <- "gradient too small"

167 }

168
169 xepsilon <- x

170 Pepsilon <- (1:N)[xepsilon > Fehlertol]

171 xepsilon[xepsilon <= Fehlertol] <- 0

172
173 nnls_VMF.out <- list(

174 x = x,

175 xepsilon = xepsilon ,

176 deviance = sum(resid ^ 2),

177 residuals = resid ,

178 fitted = fitted ,

179 mw = max(w),

180 w = w,

181 passive = P,

182 Pepsilon = Pepsilon ,

183 loops = Mainloop ,

184 nsetp = length(P),

185 Abbruch = Abbruch_Grund ,

186 Entwicklung = nonZeroEntries ,

187 Residual_Entwicklung = residual_tmp

188 )

189
190 class(nnls_VMF.out) <- "nnls"

191 nnls_VMF.out

192 } # End nnls_VMF

Listing B.1: Implementation of Lawson and Hanson NNLS algorithm in R
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