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Kurzfassung der Dissertation

Die LHC Injektoren am CERN wurden im Rahmen des LHC Injectors Upgrade (LIU) Projektes
neu ausgerüstet um einen Teilchenstrahl mit hoher Brillianz für das Upgrade des LHCs, den
High Luminosity LHC (HL-LHC), bereitstellen zu können. Ein Schwerpunkt dieser Erneuerungen
war der Anschluss des neu installierten 160 MeV H- Linearbeschleunigers Linac4 an den ersten
Kreisbeschleuniger in der CERN Beschleunigerkette, den Proton Synchrotron Booster (PSB). Damit
wird die Injektionsenergie des Boosters von 50 auf 160 MeV erhöht und der relativistische Faktor
𝛽r𝛾2

r verdoppelt. Dies ermöglicht es, leistungsbeeinträchtigende Raumladungskräfte trotz verdop-
pelter Strahlbrillanz auf dem gleichen Niveau wie vor dem Upgrade zu halten. Die neuen Systeme
wurden im Winter 2020/2021 in Betrieb genommen. Ein wesentlicher Teil der Verbindung zwis-
chen Linac4 und PSB ist das neu installierte 160 MeV Ladungsaustausch-Injektionssystem. In
diesem werden während der Injektion die Elektronen des H- Strahles mittels einer Kohlenstofffolie
gestrippt, sodass ein Protonenstrahl in den PSB injiziert wird. Während der Injektion wird der Orbit
des PSB lokal in der horizontalen Ebene verändert, um den zirkulierenden Strahl zum injizierten
Strahl zu leiten. Bei Variation der Amplitude dieser Orbitbeule während des Injektionsprozesses
wird der transversale Abstand zwischen dem injizierten und dem bereits zirkulierenden Teilchen-
strahl verändert. Der zeitliche Verlauf des Amplitudenabfalls kann je nach Strahltyp individuell
eingestellt werden. Dies beeinflusst die Verteilung der Teilchen im transversalen Phasenraum. Die
individuelle Anpassung der Phasenraumverteilung während der Injektion wird phase space painting
genannt. Diese Technik wird im adaptierten PSB benutzt, um die transversalen Eigenschaften der
verschiedenen Strahltypen, welche CERN für die Experimente bereitstellt, zu produzieren.

Diese Dissertation beschäftigt sich mit Lösungsansätzen, um die Inbetriebnahme und den Be-
trieb des neuen Injektionssystems, sowie die Konfiguration der Injektionsschemata zu optimieren
und automatisieren. Im ersten Teil der Arbeit werden selbstkonsistente Vielteilchensimulationen
durchgeführt um adäquate Injektionsschemata für die unterschiedlichen Strahltypen auszuar-
beiten. Diese wurden während der Inbetriebnahme angewandt und die Simulationen mit den
experimentellen Ergebnissen verglichen. Der Fokus dieser Studien liegt dabei auf der Reduktion der
Strahlverluste, welche bei der Produktion von Strahltypen mit hoher Intensität ein limitierender
Faktor sind.
Der zweite Teil der Arbeit untersucht Anwendungsmöglichkeiten maschinellen Lernens und

numerischer Verfahren zur Leistung- und Effizienzsteigerung des neuen Systems. Im Zuge dessen
wird die Realisierbarkeit, Injektionsparameter mithilfe numerischer Algorithmen online zu opti-
mieren, demonstriert. Ein Ersatzmodell des Injektionsprozesses wird mittels maschinellen Lernens
erstellt und verwendet, um die Leistungsfähigkeit unterschiedlicher Optimierungsalgorithmen
offline zu untersuchen. Die Optimierung der Strahldynamik während des Injektionsprozesses
wird abschließend durch Untersuchungen zur Regelung der Generatoren der Injektionskicker-
magnete ergänzt. Diese Studien untersuchen die Parametrisierung und Modellierung komplexer
elektronischer Schaltkreise mittels Neuronaler Netzwerke.
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Abstract

The CERN injector complex was upgraded within the framework of the LHC Injectors Upgrade
project to produce high-brightness beams for the High Luminosity era of the LHC (HL-LHC). A
key aspect of this upgrade is the connection of the newly built Linac4 to the Proton Synchrotron
Booster (PSB) and the related installation of a new 160 MeV H− charge exchange injection system.
Increasing the PSB injection energy from 50 to 160MeV increases the relativistic factor 𝛽r𝛾2

r by a
factor of two, which allows doubling the beam brightness while keeping space charge forces as
before the upgrade.
The new PSB charge exchange injection system was commissioned in winter 2020/2021. It

comprises a graphite foil for electron stripping and a horizontal injection bump to move the
circulating beam to the stripping foil. Customising the field decay of this injection bump dur-
ing beam accumulation, also called phase space painting, enables tailoring the transverse beam
characteristics for the different experiments at CERN.
This thesis investigates solutions for commissioning the new system and pushing its perfor-

mance by efficiently relating the requested transverse beam distributions to optimised operational
paintings and required hardware parameterisations. In the first part, painting schemes for the
different users are developed using self-consistent multi-particle simulations and benchmarked
experimentally during beam commissioning. These studies mainly focus on optimising phase space
painting to reduce space charge effects and minimise losses during the production of high-intensity
fixed target beams.
The second part of the thesis explores novel applications of machine learning and numerical

optimisation techniques to enhance the efficiency and performance of the new system. The fea-
sibility of applying numerical optimisation algorithms for configuring the painting functions is
demonstrated on the machine. The performance of different optimisation algorithms is assessed
and compared offline on a data-driven surrogate model. The beam dynamics studies are com-
plemented by first investigations towards using deep learning concepts to define the electronic
circuit parameterisation of the phase space kicker magnet pulse generators.
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Introduction

CERN Injector Complex

The accelerator complex of the European Organization for Nuclear Research (CERN) comprises a
succession of machines which accelerate charged particle beams to different energies over several
orders of magnitude, as illustrated in Fig. A. The first machine is the linear accelerator Linac4,
which provides an H− ion beam with a kinetic energy of 160MeV, corresponding to approximately
50% of the speed of light. Subsequently, a chain of synchrotrons (i.e. a type of cyclic accelerators)
continues to increase the particle energy before transferring it to the next machine. After passing
through the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and the Super Proton
Synchrotron (SPS), the beam is injected at 450GeV into CERN’s largest accelerator, the Large
Hadron Collider (LHC). LHC increases the particles’ energy up to 7TeV.

The injector chain can be configured to provide beams with user-specific energy, intensity and
beam size to the LHC and the different fixed target experimental facilities (ISOLDE [1], nTOF [2],
East Area [3], North Area [4], AD [5], ...).

LHC Injectors Upgrade

In 2021 the LHC enabled the experimental proof of one of the missing pieces of the StandardModel:
the discovery of the Higgs Boson was announced by both the CMS and the ATLAS experiments [7,
8]. With this first key to understanding the origin of mass and electroweak symmetry breaking, one
of the major goals of the LHC was fulfilled, opening the path for further studies. A higher number
of collisions increase the statistics of these experiments, which allows observation of rare processes
with higher precision. To fully exploit the 14TeV energy regime, an upgrade of the LHC, the
High-Luminosity LHC (HL-LHC), is scheduled to start operation in 2029. The aim is to increase the
luminosity (a measure for the collision rate) by a factor of 5 beyond the design value of LHC [9].
Fulfilling these specifications requires to already inject beams with twice the beam brightness, i.e.
the intensity per cross-section, into HL-LHC. Providing such beams necessitated massive upgrades
of all injectors, which were conducted in the framework of the LHC Injectors Upgrade (LIU, [10])
project. In addition to doubling the beam brightness of HL-LHC beams, the upgraded machines
also facilitate improved beam characteristics for the various fixed target experiments, such as an
increased intensity for the ISOLDE experiment. The upgrades were installed during a shutdown
in 2019-2020 (Long Shutdown 2, LS2) and commissioned in winter 2020/2021. The machines
provided and exceeded the challenging beam specifications for the various users at CERN already
during the first operational year in 2021 [11].
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Figure A: The CERN accelerator complex after the LIU upgrades during LS2 [6]. The PSB and Linac4 are
highlighted in purple shades.

Space Charge in Low Energy Machines

A driving force behind many of the LIU upgrades is direct space charge, which describes the
interaction of the particles with one another in an accelerator (see Section 1.5). The repelling
Coulomb forces between the particles have perturbing defocusing effects on the particle motion,
which depend on the local charge density. The magnitude of the perturbation is proportional to

Δ𝑄 ∝ − 𝑁p+
𝜖n𝛽r𝛾2r

,

with 𝑁p+ being the intensity of the particle distribution and 𝛽r and 𝛾r the relativistic factors. The
normalised emittance 𝜖n is a measure for the transverse beam size, as introduced in Eq. (1.34).
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Figure B: Schematic of the PSB H− injection system (KSW: painting kicker magnets, BSW: injection
chicane). The injected H− beam is marked in red, the circulating p+ beam in blue, the partially stripped H0

beam in pink and the unstripped H− beam in green [10].

This relation shows, that space charge is strongest when producing high-brightness beams (high
charge density) in low energy machines. Optimising the transverse beam distribution to minimise
the local charge density helps to reduce disturbing space charge effects.

The New PSB Injection System and Phase Space Painting

A major aspect of the LIU upgrades was, therefore, to overcome the space charge limitations at
the PSB injection by installing Linac4 [12]. Linac4 replaces Linac2, which injected protons at
50 MeV into the PSB before retiring in 2018. The connection to Linac4 increases the PSB injection
energy from 50 to 160 MeV and hence increases 𝛽r𝛾2

r by a factor of two. This allows doubling the
beam brightness, as required for HL-LHC, while keeping space charge forces at the same level as
pre-LS2.
A key part of the connection to the PSB is the installation of a new charge exchange injection

system (CEI, Fig. B), which replaces a conventional proton multiturn injection. The fundamental
feature of a CEI is the conversion from H− ions to protons during the injection process. The
injected beam passes through a stripping foil, which removes the electrons. The stripped proton
beam is merged to the PSB orbit. Partially (H0) or unstripped (H−) particles are deposited in
the H0/H− dump, an absorber in the injection region. The circulating beam trajectory, i.e. the
reference orbit in the PSB, is deflected horizontally towards the foil by a closed orbit bump during
the injection process.
This system not only facilitates the production of beams with higher brightness for HL-LHC

but is also used for tailoring the wide range of requested transverse beam characteristics for the
different fixed target experiments. The various CERN users require intensities from 𝑁p+ ≈ 1010
to > 1013 p+ per ring and normalised transverse emittances from 𝜖n,rms < 0.7 μm (LHC-like
beams) to ≈ 9-10 μm (high intensity, e.g. for the ISOLDE [1] or nTOF [2] experiment). To
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deliver the requested intensity, beam can be accumulated in the PSB over up to 150 turns, which
corresponds to an injection over 𝑡inj = 150 μs considering the PSB revolution period at injection
energy 𝑡rev ≈ 1 μs. The transverse beam characteristics for each user are customised by defining
the programmable field decay of the horizontal injection bump and hence the offset between
the injected beam and the circulating beam orbit during the injection process. This controlled
tailoring of the transverse beam distribution during injection is referred to as phase space painting.
It enables a reduction of the charge density during beam accumulation, particularly when injecting
high-intensity beams and hence mitigates space charge-induced beam size growth.

Phase Space Painting and Charge Injection Schemes Worldwide

The concept of the H− injection was first demonstrated experimentally at the Novosibirsk Institute
of Nuclear Physics in 1964 by using gas jets for electron stripping [13]. A CEI based on a stripping
foil was first demonstrated at the Zero Gradient Synchrotron Booster ring at Argonne National
Lab in 1972 [14], starting operation in 1976 [15]. Consequently, in the following decades CEI
systems have been implemented in various high-intensity proton machines, covering injected
beam powers ranging from < 0.1 kW to ≈ 1.5MW. Overviews of the various facilities are given,
for example, in [16–19].
The newly gained flexibility of CEI injection systems triggered theoretical and experimental

studies concerning transverse phase space painting. Spallation neutron sources and other high
power facilities have led the way for related multi-particle simulation studies, as the record
power requirements motivated continuous efforts to reduce losses†. These efforts mainly focus on
optimising the injected beam distribution to satisfy the beam requirements at the target, while
mitigating space charge effects, beam halo formation, losses and foil heating.

The modulation of the injected beam position relative to the orbiting beam during phase space
painting can be technologically implemented in different ways. One option is to modulate the
field decay of an injection bump field, another to vary the dispersive orbit due to variation of the
synchrotron guide field. The Spallation Neutron Source accumulator ring at Oakridge National
Laboratory, for example, features exponentially decaying painting bumps, which allow for phase
space painting in both transverse planes.
Suitable transverse painting schemes strongly depend on the system implementation, the

machine state and the requested beam parameters. Although the peak intensity targeted by the
PSB is lower than in the high-power machines mentioned above, it should be noted that the PSB
is a multi-user accelerator. The broad range of transverse beam characteristics requires increased
operational flexibility of the injection system. In the PSB the field decay of the painting bump
is not given by an exponentially decaying function but by a programmable, piece-wise linear
current decay. The CEI at CERN further differs from the facilities mentioned above by the fact
that transverse phase space painting is only possible in the horizontal plane. Implementing a
system for vertical phase space painting as well was not possible given the tight spatial restrictions.

† Related studies were performed e.g. at the ISIS Neutron and Muon Source at Rutherford Appleton Laboratory [20,
21], the Spallation Neutron Source at Oakridge National Laboratory [22–26], the Chinese Spallation Neutron
Source [27–31], the Japan Proton Accelerator Research Complex Rapid Cycling Synchotron [32, 33], in the KEK
Booster Ring [34] or Fermilab [35]. Complementary to simulation results, analytical approximations of the beam
dynamics during CEIs are summarised e.g. in [36, 37].
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However, it is also not required to provide the requested beam intensities in the PSB.

Machine Learning and Numerical Optimisation for Particle Accelerators

The availability of large data sets and computing power is causing a paradigm shift towards
data-driven approaches for modelling and controlling complex systems. Numerical optimisation
and machine learning techniques are increasingly employed in many engineering and industrial
processes, such as particle accelerator technologies. A summary of machine learning opportunities
related to particle accelerators is given e.g. in [38]. The range of applications is broad and ranges
from efficient optimisation of the machine configurations, anomaly detection and time series
forecasting to the substitution of time-consuming simulations and measurements with machine
learning models.

Research Question and Objectives

The new PSB CEI was commissioned during winter 2020/2021. This CEI system is unique in
its flexibility and needs to provide a wide range of user-requested brightness targets. A pulse
generator with a complex circuit parameterisation is required to provide such a programmable,
but precise field decay. This system had not been previously operated at CERN. The drive to
fully profit from the flexibility of programming different phase space painting schemes raises the
following questions:

• What are the optimised phase space painting schemes for the different users?

• Can novel methods from machine learning and numerical optimisation be used to automati-
cally, reliably and efficiently define required phase space painting functions based on beam
instrumentation feedback?

To answer the above questions, studies in both domains, beam dynamics and automation tech-
niques, are of interest:

• Self-consistent space charge simulations of the injection process were performed to develop
phase space painting schemes for the various users and analyse the beam evolution during
the injection process. The developed beam production schemes were implemented during the
beam commissioning period and compared experimentally with first beam measurements.
Several previous references provide a strong base for these beam dynamics studies†. First
painting functions for the different users are presented for example in [44–48]. However,
adapting these concepts to the current machine configurations and furthering the under-
standing of the beam evolution is essential in view of interpreting the beam measurements
during commissioning.

• The application of novel automation methods is investigated to enhance the efficiency and
performance of the new CEI. Derivative-free optimisation algorithms are explored to as-
sess the potential of optimising the injection painting online using beam instrumentation

† For example benchmarking the simulation set-up [39], assessing sources of brightness degradation of LHC beams
due to injection errors and space charge effects [39–42] or specifying the required characteristics and flexibility of
the KSW field decay [43].
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feedback. Supervised machine learning algorithms (Artificial Neural Networks and Random
Forest Regressors) are applied to create data-driven models of the injection process. System-
atically studying the performance of different optimisation algorithms without using beam
resources is one application of such models. Another use case is modelling the complex
dynamical behaviour of the injection kicker generator.

Overall, both enhancing the comprehension of the beam evolution during the injection process
and finding solutions towards automating the phase space painting will enable pushing the beam
performance. Automating the injection set-up will improve also the stability and reproducibility
of results. It will be a key aspect to operating the new PSB and keep improving the performance
in the coming years.

Structure of the Thesis

The thesis is structured into two main parts. Part I investigates the beam dynamics when tailoring
the brightness targets for the various users using numerical simulations, which are compared
to beam measurements during the beam commissioning period. Chapter 1 introduces the main
concepts of beam dynamics and intensity effects. Chapter 2 gives a system layout of the PSB, its new
CEI system and introduces the procedures used for phase space painting. Chapter 3 characterises
and quantifies the main error sources during the PSB injection process using hardware and
beam measurements. The estimated errors are subsequently used as an input for the phase space
painting studies in Chapter 4. This chapter discusses the beam production schemes of different
beam types using self-consistent space charge simulations and measurements. The main focus
of Chapter 4 is the optimisation of the painting schemes, which is required to reduce the losses
during high-intensity beam production.

Part II examines novel concepts using machine learning and numerical optimisation algorithms
to increase the efficiency and performance of the new CEI system. A brief theoretical background
on such methods is given in Chapter 5. Chapter 6 examines the automated optimisation of the
transverse phase space painting for high-intensity beams using numerical optimisers. Finally,
Chapter 7 complements the beam physics studies and investigates the feasibility of applying deep
learning concepts to control the circuit parameterisation of the phase space kicker magnet pulse
generators. A conclusion and outlook to further studies is provided in Chapter 8.
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Chapter 1
Beam Dynamics and Intensity Effects in

Synchrotron Accelerators

The particle motion in an accelerator is mainly driven by the external guiding fields of magnets
and cavities. Additionally, the Coulomb forces between the charged particles generate a self-field.
These so-called space charge forces depend on the beam distribution and can cause perturbations
to the designed particle motion.
This chapter briefly introduces the main beam dynamics concepts which are relevant for

analysing the beam evolution during the PSB CEI process. More detailed derivations can be found
in Appendix A as well as the resources this chapter is based on, i.e. [49–54].

1.1 Particle Motion in an Accelerator and Frenet-Serret
Coordinate System

The force acting on a moving particle with velocity v and charge 𝑞 in electric (E) and magnetic
(B) fields is the Lorentz force FL:

FL = 𝑞 · (E + v × B). (1.1)

In particle accelerators, electric fields E are used to accelerate the particle longitudinally and are
generated by radiofrequency (RF) cavities. Magnetic fields B deflect a moving particle orthogonally
to both B and v and are thus used to guide the transverse particle motion (see Fig. 1.1). Dipoles
are used to bend the particle trajectory. Quadrupoles do not affect the design trajectory but keep
the particles close to it through fields, which are focusing in one and defocusing in the other plane.
Installing a sequence of quadrupoles with alternating gradients allows for the achievement of
a net focusing effect in both planes. Higher-order multipoles are used to correct errors, such as
chromatic aberrations. The ensemble of elements in an accelerator is referred to as the accelerator
lattice.

In beam dynamics, one expresses the particle motion through an accelerator lattice as deviation
from a reference orbit. This trajectory is given by the motion of a particle with ideal parameters in
ideal fields and is mainly dictated by the deflecting dipole magnets. Due to spatial and momentum
offsets or field errors, real particles move close to - but not on - the reference orbit (Fig. 1.2).
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Figure 1.1: Schematic illustration of the main
components of a synchrotron accelerator (not to
scale).
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Figure 1.2: Deviation of the particle trajectory
(solid) from the reference orbit (dashed). Particle
motion is described in the moving Frenet-Serret
coordinate system (𝑥, 𝑦, 𝑧) instead of the laboratory
reference frame (𝑥L, 𝑦L, 𝑧L).

The transverse non-nominal trajectories can be stabilised by the restoring focusing forces of
quadrupole magnets. Consequently, the particle performs an oscillating transverse movement
around the reference orbit, which is called betatron oscillation. It is beneficial to describe these
particle oscillations in the Frenet-Serret coordinate system (𝑥, 𝑦, 𝑧), which is moving with the
reference particle, rather than the laboratory coordinate system (𝑥L, 𝑦L, 𝑧L). The guiding fields
are functions of the location 𝑠 and periodic in a synchrotron. Therefore, it is useful to express the
particle motion using 𝑠 instead of the time 𝑡. Details regarding this transformation to a curved
reference trajectory with independent variable 𝑠 are provided in e.g. [50, Chp. 4.3].

The particle state at location 𝑠 is fully described in the Frenet-Serret coordinate system by the
state vector

x(𝑠) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑥(𝑠)
𝑥 ′(𝑠)
𝑦(𝑠)
𝑦′(𝑠)
𝑧(𝑠)
𝛿(𝑠)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (1.2)

Here, the angle 𝑢′ = 𝑑𝑢/𝑑𝑠 in the transverse planes 𝑢 = 𝑥, 𝑦 is used to characterise the transverse
component of the particle momentum 𝑝𝑢 = 𝑢′ · 𝑝0, with 𝑝0 = 𝑚0𝛾r |v| ≈ 𝑝𝑧 being the reference
momentum of the particle with rest mass 𝑚0. Longitudinally, the particles are described using the
coordinate pair (𝑧, 𝛿), with

𝛿 =
𝑝 − 𝑝0
𝑝0

=
1
𝛽2r

Δ𝐸
𝐸

(1.3)

being the fractional momentum offset of the particle with momentum 𝑝 from the reference
momentum. An alternative measure for the momentum offset is the fractional difference of the
particle energy 𝐸 = 𝐸kin + 𝐸0, Δ𝐸/𝐸 .
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1.2 Transverse Single Particle Motion

1.2.1 Magnetic Multipole Fields

As mentioned above, the transverse motion is directed by the transverse magnetic fields B = ∇×A =
(𝐵𝑥 , 𝐵𝑦 , 0). The magnetic field a particle sees depends on the field type and the transverse position,
i.e. the vertical field component as a function of the horizontal beam position is

𝐵𝑦 (𝑥, 𝑦) = 𝐵𝑦 (0, 𝑥) + 𝑥
𝜕𝐵𝑦

𝜕𝑥
|0,𝑦 +𝑥2 𝜕

2𝐵𝑦

𝜕𝑥2
|0,𝑦 +... . (1.4)

For long and straight multipole magnets (i.e. neglecting edge effects, no longitudinal component),
the magnetic field can be decomposed into multipole fields of different orders 𝑛

𝐵𝑦 (𝑟) + 𝑖𝐵𝑥 (𝑟) = 𝐵ref
∞∑︂
𝑛=1

(𝑏𝑛 + 𝑖𝑎𝑛)
(︃
𝑥 + 𝑖𝑦

𝑅ref

)︃𝑛−1
, (1.5)

with 𝑟 = 𝑥 + 𝑖𝑦 (European convention, see e.g. [55, Chp. 1.2]). 𝑛 = 1 describes a dipolar field
component, 𝑛 = 2 a quadrupolar and so on. The coefficients 𝑏𝑛 and 𝑎𝑛 are called the normal and
skew multipole components and are given relative to a reference dipole field component 𝐵ref,
which is quantified at the (arbitrary) reference radius 𝑅ref. They are connected to the derivatives
of the field components through

𝜕𝑛𝐵𝑦

𝜕𝑥𝑛
|𝑥,𝑦=0= 𝑛!𝐵ref

𝑅𝑛
ref
𝑏𝑛+1 for 𝑛 = 0, 1, ... , . (1.6)

To facilitate a field description independent of the reference momentum 𝑝0 and charge 𝑞, it is
common to scale the multipole fields with 𝑝0/𝑞, which yields the normalised multipole strengths

𝑘𝑛 =
𝑞

𝑝0

𝜕𝑛𝐵𝑦

𝜕𝑥𝑛
|𝑥,𝑦=0= 𝑛!𝐵ref

𝑅𝑛
ref
𝑏𝑛+1 for 𝑛 = 0, 1, ... (1.7)

and normalised skew multipole strengths

𝑘 (s)
𝑛 = − 𝑞

𝑝0

𝜕𝑛𝐵𝑥

𝜕𝑥𝑛
|𝑥,𝑦=0= −𝑛!𝐵ref

𝑅𝑛
ref
𝑎𝑛+1 for 𝑛 = 0, 1, ... . (1.8)

Dipole

A dipole with a horizontally deflecting field B = (0, 𝐵𝑦 = const., 0) bends a particle with
momentum 𝑝𝑧 = 𝑚0𝛾r𝑣𝑧 ≈ 𝑝 and charge 𝑞 onto a circular trajectory with bending radius 𝜌.
Equating the Lorentz and centrifugal force

FL = FCF i.e.
𝑚0𝛾r𝑣2𝑧

𝜌
= |𝑞 | 𝑣𝑧𝐵 (1.9)
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yields the relation
𝜌𝐵 =

𝑝

|𝑞 | . (1.10)

𝜌𝐵 is called beam rigidity and describes the "stiffness" of the particle motion given by its momentum
and charge. The normalised multipole strength is

𝑘0 = 𝐵ref𝑏1 =
𝐵𝑦

𝑝0/𝑞 =
1
𝜌
. (1.11)

Quadrupole

A normal quadrupole with gradient 𝑔 =
𝜕𝐵𝑦

𝜕𝑥
|𝑥,𝑦=0= 𝜕𝐵𝑥

𝜕𝑦
|𝑥,𝑦=0= const. and field B = (𝑦𝑔, 𝑥𝑔, 0)

is characterised by the normalised quadrupole strength

𝑘1 =
𝐵ref
𝑅ref

𝑏2 =
1

𝑝0/𝑞
𝜕𝐵𝑦

𝜕𝑥
|𝑥,𝑦=0= 𝑔

𝑝0/𝑞 . (1.12)

Higher-Order Multipoles

Similar considerations are valid for higher-order multipoles. Note that different from dipoles and
quadrupoles, the field of higher-order multipoles is no longer a linear expressions of the transverse
positions 𝑥 and 𝑦.

1.2.2 Accelerator Hamiltonian

Whereas Newtonian mechanics can be used to derive the equations of motion of a particle in such
external fields, it is beneficial to apply the Hamiltonian formalism instead (see Appendix A.1, [55,
Chp. 2] or [56, Chp. 3.7] for more details). When considering only small deflections from the
reference orbit (paraxial approximation), the Hamiltonian for elements with respective normalised
multipole strengths 𝑘𝑛 can be approximated as

�̃� ≈ 1
2
(︂
𝑝2𝑥 + 𝑝2𝑦

)︂
+ 𝑥2

2𝜌2 − 1
𝛽r𝜌

𝑥𝛿 + 𝑘1
2

(︁
𝑥2 − 𝑦2

)︁ + 𝑘2
6

(︁
𝑥3 − 3𝑥𝑦2

)︁ + ....

kinematic dipole quadrupole sextupole

(1.13)

Here, 𝑝𝑢 and 𝛿 = 𝛽rΔ𝑝/𝑝0 are the transverse and longitudinal canonical momenta normalised to
𝑝0, as introduced in Appendix A.1.

1.2.3 Linear Transverse Particle Motion

The equation of the particle motion through a magnetic element can be derived by applying
Hamilton’s equations Eq. (A.7) to Eq. (1.13). For a lattice consisting only of dipolar and quadrupolar
fields, this yields a linear equation of motion, also known as Hill’s equation

𝑥 ′′ −
(︃
𝑘1(𝑠) − 1

𝜌2

)︃
· 𝑥 = 𝑥 ′′ + 𝐾𝑥 (𝑠) · 𝑥 =

𝛿

𝜌
. (1.14)
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1.2 Transverse Single Particle Motion

It describes the betatron motion of a particle in the horizontal plane. The homogeneous part of
this equation can be interpreted as the equation of a harmonic oscillator with varying focusing
strength 𝐾𝑥 (𝑠). 𝐾𝑥 (𝑠) depends on the position 𝑠 in the lattice and is given by the normalised
quadrupole strengths 𝑘1(𝑠) and the weak focusing effect 1/𝜌2 of the dipolar fields. The transverse
motion is coupled to the longitudinal plane by the inhomogeneity 𝛿/𝜌. This causes dispersive
effects, which are described in more detail below.
If there are no dipoles in the vertical plane, i.e. no bending and 𝜌 → ∞, the vertical Hill’s

equation simplifies to the homogeneous equation

𝑦′′ + 𝑘1(𝑠)𝑦 = 𝑦′′ + 𝐾𝑦 (𝑠)𝑦 = 0. (1.15)

The homogeneous solution of these linear differential equations is a quasi-harmonic oscillation in
the transverse planes, with s-dependant amplitude. This motivates the common ansatz

𝑢(𝑠) =
√︁
2𝐽𝑢𝛽𝑢 (𝑠) cos

(︁
𝜇𝑢 (𝑠) + 𝜙𝑢,0

)︁
. (1.16)

𝐽𝑢 and 𝜙𝑢,0 are integration constants determined by the transverse initial conditions of the particle
at 𝑠0 (compare [49, Chp. 2.II]). The parameters 𝛽𝑢 (𝑠) and 𝜇𝑥 (𝑠) are functions of 𝑠 and depend
on the focusing properties 𝐾 (𝑠). 𝛽𝑢 (𝑠) describes the amplitude modulation and 𝜇𝑢 (𝑠) the phase.
Floquet’s theorem [57] states that the amplitude of oscillations with periodic focusing strength
𝐾 (𝑠) = 𝐾 (𝑠 + 𝐿) has the same periodicity and hence 𝛽(𝑠) = 𝛽(𝑠 + 𝐿) (see [49, Chp. A.1] for
details).

1.2.4 Dispersion

Particles with a fractional momentum offset 𝛿 experience a non-nominal deflection by a dipole.
These dispersive effects are formalised in the inhomogeneity of Hill’s equation Eq. (1.14). The
solution

𝑢(𝑠) = 𝑢𝐻 (𝑠) + 𝑢𝐼 (𝑠) =
√︁
2𝐽𝑢𝛽𝑢 (𝑠) · cos

(︁
𝜇𝑢 (𝑠) + 𝜙𝑢,0

)︁ + 𝐷𝑢 (𝑠) · 𝛿 (1.17)

couples the longitudinal plane (𝛿) to the transverse plane (𝑢). 𝐷𝑢 (𝑠) is a property of the bending
and focusing elements of the lattice and is called Dispersion function (compare [49, Chp. 2.IV]). If
there are no bending dipoles in the vertical plane 𝐷𝑦 = 0.

1.2.5 Transfer Maps

The solution to Hill’s equation can be summarised in the transfer map

x(𝑠1) = M (𝑠1 ← 𝑠0; x0), (1.18)

which propagates a particle with state vector x(𝑠0) from 𝑠0 to 𝑠1. In the particular case of linear
motion, the transfer map takes the form of a matrix

x(𝑠1) = M · x(𝑠0). (1.19)
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The propagation from location 𝑠0 to 𝑠𝑁 is obtained by combining the transfer matrices of the
passed sequence of elements

⎛⎜⎝
𝑢(𝑠𝑁 )
𝑢′(𝑠𝑁 )

𝛿

⎞⎟⎠ = M(𝑠𝑁 ← 𝑠𝑁−1)...M(𝑠2 ← 𝑠1) · M(𝑠1 ← 𝑠0) · ⎛⎜⎝
𝑢0(𝑠0)
𝑢′0(𝑠0)

𝛿

⎞⎟⎠ . (1.20)

1.2.6 Twiss Parameters

The analytic expressions one obtains by combining transfer matrices for a long sequence of
elements between two observation points become rather complex. This motivates the Twiss
parameterisation, a formalism which simplifies the propagation of a particle with initial conditions
(𝑢, 𝑢′) (𝑠0) to any location 𝑠1.
The basis for the Twiss formalism is to write the betatron motion as an oscillation with 𝑠-

dependant amplitude proportional to 𝛽(𝑠), as introduced in Eq. (1.16). Inserting this ansatz into
Hill’s equation Eq. (1.14) yields the relation

𝛽𝑢 (𝑠)𝜇′
𝑢 (𝑠) = 1 (1.21)

between the phase 𝜇𝑢 (𝑠) and the amplitude 𝛽𝑢 (𝑠). With the knowledge of 𝛽𝑢 (𝑠) along the ring,
the phase difference Δ𝜇𝑢 between two locations can be integrated as

Δ𝜇𝑢 (𝑠1, 𝑠0) = 𝜇1 − 𝜇0 =
∫ 𝑠1

𝑠0

𝑑𝑠

𝛽𝑢 (𝑠) . (1.22)

Two further parameters

𝛼𝑢 (𝑠) = −1
2
𝑑𝛽𝑢
𝑑𝑠

and 𝛾𝑢 (𝑠) = 1 + 𝛼2
𝑢

𝛽𝑢
(1.23)

are introduced, which allows the expression of the transfer matrix between 𝑠0 and 𝑠1 through
𝛽𝑢 (𝑠𝑖), 𝛼𝑢 (𝑠𝑖), 𝛾𝑢 (𝑠𝑖) = 𝛽𝑖,𝑢, 𝛼𝑖,𝑢, 𝛾𝑖,𝑢 (here listed without the dispersive contribution)

M(𝑠1 ← 𝑠0) =

⎛⎜⎜⎜⎜⎜⎝

√︄
𝛽1,𝑢
𝛽0,𝑢

(cosΔ𝜇𝑢 + 𝛼0,𝑢 sinΔ𝜇𝑢)
√︁
𝛽1,𝑢𝛽0,𝑢 sinΔ𝜇𝑢

𝛼0,𝑢 − 𝛼1,𝑢√︁
𝛽1,𝑢𝛽0,𝑢

cosΔ𝜇𝑢 − 1 + 𝛼0,𝑢𝛼1,𝑢√︁
𝛽1,𝑢𝛽0,𝑢

sinΔ𝜇𝑢
√︄

𝛽0,𝑢
𝛽1,𝑢

(cosΔ𝜇𝑢 − 𝛼1,𝑢 sinΔ𝜇𝑢)

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝
√︁
𝛽1,𝑢 0

− 𝛼1,𝑢√︁
𝛽1,𝑢

1√︁
𝛽1,𝑢

⎞⎟⎠ ·
(︃

cosΔ𝜇𝑢 sinΔ𝜇𝑢
− sinΔ𝜇𝑢 cosΔ𝜇𝑢

)︃
·
⎛⎜⎜⎜⎝

1√︁
𝛽0,𝑢

0
𝛼0,𝑢√︁
𝛽0,𝑢

√︁
𝛽0,𝑢

⎞⎟⎟⎟⎠ =
T (𝑠1)−1R(Δ𝜇)T (𝑠0).

(1.24)
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1.2 Transverse Single Particle Motion

Normalised phase spaceReal phase space

Figure 1.3: Real (left) and normalised (right) trace space ellipse of a particle beam.

It has to be noted, that this expression is valid for multiple elements with different focusing
and deflecting properties between the two observation points. The variables 𝛼𝑢, 𝛽𝑢 and 𝛾𝑢 are
uniquely defined at each location 𝑠 by the properties of these lattice elements and are called
Twiss parameters or Courant-Snyder parameters. One can compute the Twiss parameters for a
lattice using different optics codes, such as MAD-X [58]. Using the computed parameters, the
coordinates 𝑢(𝑠1) and 𝑢′(𝑠1) can be determined at any location in the accelerator for a particle
with initial conditions 𝑢(𝑠0) and 𝑢′(𝑠0).

1.2.7 Phase Space

The conjugate coordinate pairs (𝑥, 𝑝𝑥), (𝑦, 𝑝𝑦) and (𝑧, 𝛿) can be illustrated in a phase space portrait,
which is specific for each location 𝑠 along the synchrotron. Recording the phase space coordinates
of a particle over multiple revolutions (𝑥, 𝑝𝑥) (𝑠 + 𝑛 · 𝐿) results in the phase space trajectory of this
particle at the respective location, also called Poincaré map. In linear beam dynamics, the resulting
trajectory in phase space is an ellipse with orientation and eccentricity, which are specific for the
location 𝑠 in the lattice and given by the Twiss parameters 𝛼(𝑠), 𝛽(𝑠), 𝛾(𝑠) (Fig. 1.3, left).
In many practical applications it is useful to work with the space (𝑢, 𝑢′) instead. Despite this

being technically called trace space, it is often referred to as phase space as well.

1.2.8 Normalised Coordinates and Normalised Phase Space

Eq. (1.24) shows that one can decompose the transfer matrix into a transformation T (𝑠𝑖), which
is a function of the local lattice properties, and a rotation matrix R, which depends on the phase
advance Δ𝜇𝑢 = 𝜇𝑢 (𝑠1) − 𝜇𝑢 (𝑠0). Applying this local transformation to the phase space vector
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yields the so-called normalised coordinates
(︂
𝑢, 𝑢′

)︂
(︃
𝑢

𝑢′

)︃
= T (𝑠) ·

(︃
𝑢
𝑢′

)︃
=
⎛⎜⎜⎜⎝

1√︁
𝛽0,𝑢

0
𝛼0,𝑢√︁
𝛽0,𝑢

√︁
𝛽0,𝑢

⎞⎟⎟⎟⎠ ·
(︃
𝑢
𝑢′

)︃
. (1.25)

The respective normalised phase space is illustrated in Fig. 1.3 (right). Note that for linear motion
R describes a clockwise rotation on a circle in normalised phase space.

1.2.9 Propagation of the Phase Space Ellipse, Courant-Snyder Invariant and
Action

The eccentricity and orientation of the ellipse depend on the local focusing properties and propa-
gate along the accelerator (see e.g. in [50, Chp. 8.1.2]). The area of the phase space ellipse is a
constant of motion under the influence of only conservative forces, also known as Courant-Snyder
Invariant,

𝛾𝑢2 + 2𝛼𝑢𝑢𝑢
′ + 𝛽𝑢𝑢

′2 = const. = 2𝐽𝑢 . (1.26)
In normalised phase space, this yields

𝑢2 + 𝑢′2 = const. = 2𝐽𝑢 . (1.27)
√2𝐽𝑢 is the radius of the circle in normalised phase space. 𝐽𝑢, first introduced as integration
constant in Eq. (1.16), is the action of the particle with the initial conditions (𝑢, 𝑢′) (𝑠0) and
is constant for linear motion. Nonlinear forces, however, distort the phase space trajectory and
𝐽𝑢 ≠ const.

1.2.10 Tune and Working Point

One betatron oscillation has a phase advance of Δ𝜇 = 2𝜋. The number of betatron oscillations
during one revolution is called betatron tune, or simply tune, and is given by the normalised phase
advance over an entire turn

𝑄𝑢 =
1
2𝜋

∫ 𝑠+𝐿

𝑠

𝑑𝑠

𝛽𝑢 (𝑠) . (1.28)

The tune pair (𝑄𝑥 , 𝑄𝑦) in a machine is determined by the chosen quadrupole settings and is
called working point (WP). Typical WPs of the PSB during post-LS2 operation are 𝑄𝑥 = 4.1 − 4.4
and 𝑄𝑦 = 4.17 − 4.45.

1.2.11 Chromaticity

The focal length of quadrupoles, similar to the bending angle of a dipole, changes with the beam
energy. Off-momentum particles experience a non-nominal focusing, which results in a deviation
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1.2 Transverse Single Particle Motion

Figure 1.4: Propagation of the trace space ellipse when passing drift spaces and a focusing quadrupole.
The shaded area illustrates the beam envelope.

of the particle tune. The chromaticity

𝑄 ′
𝑢 =

𝜕𝑄𝑢

𝜕𝛿
=

1
4𝜋

∫ 𝑠+𝐿

𝑠
𝛽𝑢Δ𝐾𝑢 (𝑠)𝑑𝑠. (1.29)

describes the difference of a particle tune from its nominal tune due to a momentum offset. The
normalised chromaticity is

𝜉𝑢 =
𝑄 ′

𝑢

𝑄𝑢
. (1.30)

Beams have a finite momentum spread, as outlined in Section 1.3. In a machine with non-zero
chromaticity, this results in a spread of tunes around the WP. Generally, sextupoles can be used to
correct the chromaticity. However, the available sextupole correctors in the PSB only allow for
chromaticity correction in one plane, either horizontal or vertical.

1.2.12 Perturbed Particle Motion and Resonances

Up to this point, a perfect machine without imperfections or nonlinearities has been assumed
when describing the linear betatron motion. However, imperfections such as alignment errors,
field errors or power converter ripples perturb the particle motion. Consideration of such errors is
crucial as the particle experiences erroneous kicks at every revolution. The respective kicks can
add up or cancel each other over multiple turns, depending on the characteristic of the field error
(dipolar, quadrupolar etc.) and the particle tune.

Formally, such imperfections and deviations from the linear motion are included in the Hamilto-
nian treatment by means of perturbation terms (see Appendix A.1.2). It is instructive to compare
these perturbation terms to external driving forces of a harmonic oscillator: if the eigenfrequency
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Figure 1.5: Tune diagrams displaying resonances up to 2rd order (left), 3rd order (center) and 4th order
(right). Systematic resonances are displayed in red. Solid lines refer to normal and dashed to skew resonances.

of the driving term matches the harmonic oscillation frequency (tune), the motion can get excited
and particles lost. Such instabilities are called resonances.

The frequencies driven by the perturbations must differ from the betatron frequencies to provide
a stable particle motion. From the Hamiltonian treatment, one can derive the resonant condition

𝑚 · 𝑄𝑥 + 𝑛 · 𝑄𝑦 = 𝑝, with integers 𝑛, 𝑚 and 𝑝 > 1. (1.31)

It defines the tunes (𝑄𝑥 , 𝑄𝑦), at which particles are excited by a specific resonance. The various
resonances can be visualised in the tune diagram, Fig. 1.5.
The parameters 𝑛, 𝑚 and 𝑝 classify the type of the resonance: |𝑚 | + |𝑛| is the order. 1st-order

resonances are mostly driven by dipolar errors and are also called integer resonances. 2nd-order
resonances, also called half-integer resonances, are mostly driven by quadrupolar errors. Resonances,
for which𝑚 and 𝑛 have the same sign are called sum resonances. Difference resonances have different
signs of 𝑚 and 𝑛. Additionally, one distinguishes between normal (𝑛 is even) and skew (𝑛 is odd)
resonances, which are respectively driven by normal and skew multipole components. If 𝑝 = 𝑗 · 𝑃
is a multiple 𝑗 = 0, 1, ... of the periodicity 𝑃 of the machine (𝑃 = 16 in the PSB, compare
Section 2.2), resonances are called systematic. Resonances, for which both 𝑛 ≠ 0 and 𝑚 ≠ 0,
impact the betatron oscillation in both transverse planes and are called coupling resonances.
The WP (𝑄𝑥 , 𝑄𝑦) of a synchrotron is chosen to stay clear of resonances. Fortunately, not all

resonances are present in a machine: the relevant resonances depend on machine-specific errors
and the effectiveness of the compensation schemes and vary in strength. Integer and half-integer
resonances are the most dominant. Further, note that rather than being a line as illustrated in
Fig. 1.5, resonances exhibit a finite thickness. This so-called stopband width depends on the
strength of the resonance.

Resonances in the PS Booster

Figure 1.6 illustrates the dominant resonances observed post-LS2 in the upgraded PSB (ring 3),
which are experimentally determined using loss maps [59]. For the first time, these studies reveal
resonances up to the 4th order in all rings. Whereas compensation schemes are successful in
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1.3 Longitudinal Particle Motion

(a) Without correction. (b) With octupoles and sextupoles for the simultaneous
correction of the 3rd and 4th-order normal resonances.

Figure 1.6: Loss maps resulting from dynamic tune scans in PSB ring 3. The transverse tune space is
colour-coded using the loss rate variation. Resonance lines up to the 4th order are plotted, normal in solid
lines and skew in dashed. The non-systematic resonance lines are plotted in blue and the systematic, the
coupling resonance in this case, in red [59].

globally compensating 3rd-order resonances (skew and normal), 4th-order resonances could only
be partially compensated due to limitations in the octupole corrector strength [59].

1.3 Longitudinal Particle Motion

The longitudinal particle motion is predominantly driven by the electric field of the RF cavities,
which has a sinusoidal form

𝑉 (𝑡) = 𝑉 sin (𝜔RF · 𝑡) = 𝑉 sin (Φ(𝑡)) (1.32)

with frequency 𝜔RF and amplitude 𝑉 . The frequency must be a multiple of the synchrotron
revolution frequency 𝜔0 of the reference (synchronous) particle, i.e.

𝜔RF = ℎ · 𝜔0. (1.33)

ℎ is the harmonic number of the applied RF field. The synchronous particle passes the cavity
always at the same phase Φ𝑠 (𝑡). Particles in a real distribution, however, differ from the reference
particle by 𝛿 and Δ𝑧. Δ𝑧 can be equally expressed as time difference Δ𝑡 or phase offset ΔΦ, with
which the particle arrives at the RF cavity, and 𝛿 by Δ𝐸 .

Figure 1.7 [60] illustrates the sinusoidal RF voltage (top) and the longitudinal phase space
(bottom) for a beam, which is not accelerated. The synchronous particle with 𝜔0 arrives every
turn at Φ𝑠 = 0 and 𝑉 = 0 (no acceleration). Asynchronous particles arriving with ΔΦ experience
a different voltage and hence acceleration (or deceleration) compared to the reference particle.
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Figure 1.7: A) Longitudinal particle motion for a single harmonic non-accelerating RF bucket. Particles,
which arrive before or after the synchronous particle experience a voltage other than the reference voltage
and conduct synchrotron oscillations. Top: RF voltage with 𝜔RF. Bottom: longitudinal phase space with
stable particle trajectories (closed lines inside the yellow bucket) and unstable trajectories of off-bucket
particles [60]. B) Separatrix of a single harmonic (ℎ = 1) and double harmonic (ℎ = 1 + 2) bucket.

Particles withΔ𝐸 ≠ 0 have a revolution time different from the reference particle due to differences
in velocity and/or path length (dispersion) and arrive each turn at a different phase.

There is a range of acceptable ΔΦ and Δ𝐸 combinations, which yield stable oscillations around
the reference particle (synchrotron oscillation). The stable region in phase space is called bucket
(yellow in Fig. 1.7) and is characterised by the RF voltage and frequency. Off-bucket particles
become unstable and get lost in the machine aperture due to transverse dispersive effects. The
separation between stable and unstable motion is called separatrix (dashed line in Fig. 1.7). In a
multi-harmonic RF system, one combines RF waves with different harmonics, phases and voltages.
The shape of the separatrix changes significantly when superposing the different potentials, as
illustrated in Fig. 1.7b.

1.3.1 Longitudinal Filamentation, Line Density and Coasting Beam

The beam is injected from Linac4 into the PSB in chopped bunches (see Section 2.1), which have
an approximately parabolic energy profile and uniform phase population. This distribution is not
perfectly matched to the bucket, as illustrated in Fig. 1.8a (40 turns after injection, when injecting
beam over 35 turns). Longitudinal forces are nonlinear, which yields a spread in synchrotron
oscillation frequencies for particles with different longitudinal actions. This drives a redistribution
in phase space until equilibrium is reached (longitudinal filamentation). The histograms in Fig. 1.8
(top) illustrate the evolution of the longitudinal density, also called line density 𝜆(𝑠), during the
filamentation process. In the PSB, double (or even triple) harmonic buckets are commonly used to
reduce the line density along the bunch. If the RF system is switched off, the bunch spreads out
over the entire circumference. The resulting unbunched distribution is uniform with 𝜆(𝑧) = const.
and is called a coasting beam.

20



1.4 Transverse Beam Distributions

Separatrix

λ(s)=const.

(a) Turn 10.

Off-bucket losses

λ(s)≠const.

(b) Turn 2000.

Figure 1.8: Longitudinal filamentation in a double harmonic bucket, for the injection of an LHC-type beam
into the PSB. Beam is injected over 32 turns. The line density 𝜆(𝑧) changes during filamentation. Particles,
which are injected outside the bucket (corners in a) become unstable (off-bucket particles in b) and will be
lost around turn 5000 due to increased energy offsets and dispersive effects.

1.4 Transverse Beam Distributions

The descriptions of the transverse dynamics up to now concerned the motion of a single particle in
external fields. The multiple particles of a beam are distributed in phase space, each with different
betatron actions and phases and respective Courant-Snyder invariants. This section introduces
quantities and methods to characterise the transverse properties of the entire particle distribution.

1.4.1 Emittance

The area 𝐴 of the ellipse circumscribing the phase space occupied by all the trajectories of the
individual particles is a measure for the beam size. It is quantified by the beam emittance 𝜖

𝐴 = 𝜋𝜖 . (1.34)

For decoupled planes, one can define three independent emittances (𝜖𝑥 , 𝜖𝑦 for the transverse
and 𝜖𝑧 for the longitudinal plane). The transverse emittances are given in units of 𝜋mmmrad
(when referring the area 𝐴) or mmmrad, which is also noted as µm. It is often compared to the
temperature of the particle beam. The more diffuse a beam, the larger its area in phase space and
thus its emittance. 𝜖rms is constant for linear motion, similar to the Courant-Snyder invariant of a
single particle.

There are various ways to quantify the emittance from measurement and simulation results. In
this thesis, the following two descriptions are used:

• Root-mean-square (rms) emittance: The statistical way to describe the area occupied in
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phase space is

𝜖𝑢,rms =
√︂⟨︁

𝑢2
⟩︁⟨︁
𝑢′2

⟩︁ − ⟨︁
𝑢 · 𝑢′⟩︁2. (1.35)

The second moments of the betatronic distribution are related to the 𝛼𝑢 (𝑠), 𝛽𝑢 (𝑠) and 𝛾𝑢 (𝑠)
by

𝜎2
𝑢,rms =

⟨︁
𝑢2
⟩︁
= 𝜖 𝛽𝑢 (mm2) (1.36)⟨︁

𝑢′2
⟩︁
= 𝜖𝛾𝑢 (mrad2) (1.37)⟨︁

𝑢𝑢′
⟩︁
= −𝜖𝛼𝑢 (mmmrad). (1.38)

• Emittance based on Gaussian fit: Populated tails, measurement noise or simulated large
amplitude particles can distort the rms width 𝜎𝑢,rms estimates significantly. Therefore, it is
also common to retrieve 𝜎𝑢,fit by fitting a Gaussian function to the profile. The resulting
emittance reconstruction using Eq. (1.36) is labelled as 𝜖𝑢,fit in this thesis.

The Courant-Snyder invariant and the emittance are only invariant for constant 𝑝0. When
accelerating a particle beam, 𝑢′ decreases due to 𝑝𝑢 = 𝑝0𝑢′ = 𝑚0𝑐𝛽r𝛾r𝑢′. The related decrease
of the transverse beam size is known as adiabatic damping. However, the area enclosed by (𝑢, 𝑝𝑢)
stays constant also for varying 𝑝0. One therefore defines the normalised emittance

𝜖𝑢,n = 𝛽r𝛾r𝜖𝑢 (1.39)

as energy independent measure for the beam size. 𝜖 is referred to as geometric emittance in this
context. Normalised emittances requested by the post-LS2 PSB users span ≈ 1 to 9 µm.

Dispersive Beam Size

The definition above is based on the second moment of the betatronic distribution. However,
dispersion 𝐷 causes an additional transverse spread proportional to the relative momentum
spread 𝛿 ≠ 0. When reconstructing the emittance from measured transverse beam distributions, it
is, therefore, necessary to deconvolve the dispersive contribution prior to computing the emittance.
Assuming a Gaussian betatronic and momentum distribution, one can use the standard Gaussian
subtraction

𝜎2
𝑢,𝛽 = 𝜎2

𝑢,meas − 𝜎2
𝑢,disp. = 𝜎2

𝑢,meas −
(︃(︃
𝑑𝑝

𝑝

)︃
rms

· 𝐷𝑢

)︃2
. (1.40)

This approach is experimentally also applied in first orderwhenmeasuring non-Gaussian betatronic
and/ormomentum distributions, but it has to be kept in mind that errors are introduced, as analysed
in detail in [61]. Deconvolution algorithms are proposed to provide higher accuracy in emittance
reconstructions [62]. However, these algorithms also assume either the betatronic or momentum
distribution to be Gaussian. More details are given in the overview in [63].
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Emittance Measurements

Emittance measurements are conducted by measuring the beam width 𝜎rms or 𝜎fit using inter-
cepting devices such as wire scanners or scintillator screens screens (see e.g. [64]). Knowing the
𝛽𝑢 and 𝐷𝑢 at the location of the measurement device (e.g. the wire scanner), one can compute
the emittance using

𝜖𝑢,n =
𝜎2
𝛽

𝛽𝑢
𝛽r𝛾r. (1.41)

Without prior knowledge of the optics functions, one requires profile acquisitions at multiple
locations or with different focusing settings to reconstruct the emittance (e.g. quadrupole scan, 3
or 4 screen method, see [49, Chp. 2.5]).

1.4.2 Transverse Distributions

Control over the transverse distribution is essential to provide the specification for the respective
experiments. Additionally, different distributions significantly impact the forces within the particle
bunch, such as space charge forces, as will be discussed in Section 1.5.2.

A common distribution in many machines is the bivariate Normal distribution, i.e. Gaussian in
both planes 𝑢 = 𝑥, 𝑦,

𝑛(𝑥, 𝑥 ′, 𝑦, 𝑦′; 𝑠) = 1
4𝜋2𝑎𝑥𝑎𝑦

𝑒
−
1
2
⎛⎜⎝
𝐽𝑥
2𝑎𝑥

+
𝐽𝑦

2𝑎𝑦
⎞⎟⎠. (1.42)

The factors 𝑎𝑥 and 𝑎𝑦 are scaling factors for the respective plane. Several nonlinear effects such
as space charge forces can drive the population of non-Gaussian tails. Such tails can be quantified
in various ways e.g. using residuals, the ratio between 𝜎fit and 𝜎rms or fits with the q-Gaussian
distribution (see Appendix A.2 or e.g. [65] for details on the q-Gaussian distribution).
Particle beams are called rms equivalent in case of equal 𝜖rms and intensity, despite being dis-

tributed differently (see e.g.[66] for more details). Many properties of real beams can be assessed
using a simplified theoretical rms equivalent distribution, such as the Kapchinsky–Vladimirsky
distribution (K-V, Fig. 1.9a)

𝑛(𝑥, 𝑥 ′, 𝑦, 𝑦′; 𝑠) = 1
𝜋2𝑎𝑥𝑎𝑦

𝛿

(︃
𝐽𝑥
2𝑎𝑥

+ 𝐽𝑦

2𝑎𝑦
− 1

)︃
. (1.43)

This distribution is purely theoretical and cannot be realised in practice. However, it is commonly
used for analytic derivations of e.g. space charge forces in rms equivalent beams. The particles are
uniformly distributed in the transverse phase spaces. Each particle has the same sum of horizontal
and vertical action 𝐽𝑥 + 𝐽𝑦. In the 4-D space (𝑥, 𝑥 ′, 𝑥, 𝑦′), it describes a hollow hyper-ellipsoid
with uniform surface density. Note that here 𝛿 is the Dirac delta function. There is no 6-D variant
of a K-V distribution.
Figure 1.9 illustrates rms equivalent Gaussian and K-V distributions for optics parameters in

the PSB injection system. The maximum charge density is lower for a K-V than the Gaussian
distribution, which will be of importance when discussing space charge effects.
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(a) Kapchinsky–Vladimirsky distribution.
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(b) Bivariate Normal distribution.

Figure 1.9: Examples for rms equivalent transverse distributions: illustration of the (𝑥, 𝑦) and (𝑥, 𝑥 ′) spaces
and the respective horizontal profiles. The parameters are similar to LHC-like emittances at PSB injection
energy: 𝜖𝑥,n,rms = 𝜖𝑦,n,rms = 2 µm, 𝛽r = 0.52, 𝛽𝑥 = 5.7m, 𝛽𝑦 = 4.5m, 𝛼𝑥 = 0.2 rad, 𝛼𝑦 = 0.2 rad.

1.4.3 Evolution of Multi-Particle Distributions and Liouville’s Theorem

In a linear machine, every particle of the distribution can be described by an ellipse with similar
eccentricity and orientation (but different phase and action). The entire distribution is consequently
characterised by the ellipse circumscribing all individual particle ellipses. In the presence of
nonlinearities, however, different forces act on particles with different actions, which drives a
redistribution of the particles and the area covered in phase space deviates from an ellipse.
However, according to Liouville’s theorem the volume occupied in 6𝐷 phase space can be distorted
due to nonlinearities but does not change under the presence of only conservative forces (i.e.
when the equations of motion can be derived from a Hamiltonian; compare [67, Chp. 2]).

1.4.4 Intensity and Beam Brightness

An important quantity in accelerator physics is the beam brightness, which is a measure for the
beam density, i.e. intensity (number of particles) 𝑁p+ per emittance (beam size)

𝐵 =
𝑁p+

0.5
(︁
𝜖𝑥 + 𝜖𝑦

)︁ . (1.44)

The intensities delivered from the PSB post-LS2 span a range 𝑁p+ ≈ 1010 to > 1013 p+ per ring.
The beam intensity can be measured with beam current transformers (BCT, see [64]).
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1.5 Collective Effects and Space Charge

Figure 1.10: Coulomb forces between two point-like particles with equal charge 𝑞1 = 𝑞2 = 𝑒, moving on
parallel trajectories with 𝑣1 = 𝑣2 = 𝑣 [68].

1.5 Collective Effects and Space Charge

So far, all of the discussed effects involve the individual motion of single particles in external guiding
fields. Additionally, it is crucial to consider collective effects, which originate in the interaction
of the particles with one another and the surroundings and therefore depend on the particle
distribution. One of these effects, especially prominent in machines with low energy and high
brightness, is space charge. Direct space charge describes the interaction of particles in a bunch
with each other. Indirect space charge concerns the interaction of the charged particle beam with
image charges and currents, which are induced by the beam distribution itself in the beam pipes.
In this thesis, the discussion is restricted to direct space charge effects. This section summarises
the impact of direct space charge on particle distributions and mitigation techniques. More details
are given e.g. in [66–69].

1.5.1 Forces Between Two Point-Like Charges

In a particle beam, equally charged particles move on (approximate) parallel trajectories with
similar velocities 𝑣, as illustrated schematically in Fig. 1.10. The particles with charge 𝑞 = 𝑒
experience Coulomb repulsion due to the similar charge polarity, but magnetic attraction due to
the parallel movement. The net force acting between the two particles with distance 𝑟 in the lab
frame acts in radial direction and can be derived as [67, see e.g.]

𝐹𝑟 =
𝐸𝑟

𝛾2r
=

𝑒

4𝜋𝜖0𝛾r𝑟2
, (1.45)

with the vacuum permittivity 𝜖0. This expression is proportional to ∝ 1/𝛾2
𝑟 . The net force hence

vanishes for relativistic energies with 𝑣 → 𝑐, as the Coulomb repulsion and the magnetic attraction
compensate each other (see Fig. 1.10). Space charge effects are therefore only relevant at low
energies.
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Figure 1.11: Tune footprints for different scenarios. Left: linear lattice (only dipoles and quadrupoles),
without space change; center: K-V distribution in a linear lattice with space charge forces; right: bi-Gaussian
distribution, yielding nonlinear space charge forces, in a linear lattice. Adapted from [67, 68].

1.5.2 Direct Space Charge Tune Spread

This Coulomb repulsion has a defocusing effect in both planes. Consequently, compared to a linear
machine without space charge, in which the tune is given by the external quadrupole settings
(Fig. 1.11, left), space charge causes a reduction of the particle tune (Fig. 1.11, centre and right).
The net field that a test particle sees and the consequent tune reduction depends on the entire
particle distribution and cannot be calculated analytically for real distributions. However, several
approximations can be made, for example by using rms equivalent model distributions. The force
on a particle in a K-V distribution (uniformly charged cylinder with radius 𝑎 and constant line
density 𝜆 = const.) can be derived as (see e.g. [68])

𝐹𝑥 =
𝜆𝑒

2𝜋𝜖0𝛾2r 𝑎2
𝑥 (1.46)

𝐹𝑦 =
𝜆𝑒

2𝜋𝜖0𝛾2r 𝑎2
𝑦. (1.47)

It is linear in 𝑥 and 𝑦 and can be compared to the defocusing effect of a quadrupole in both
planes. The consequent tune reduction can be obtained by adding the space charge contribution
as a perturbation term to the Hamiltonian or the equations of motion. For a K-V distribution, the
perturbation term is a quadrupolar error and the tune shift

Δ𝑄𝑢,KV = − 𝑟0𝑅

𝑒𝛽r𝛾2r

𝜆

𝜖𝑢,n
, 𝑟 < 𝑎, (1.48)

equal for all particles (Fig. 1.11, center). 𝑅 denotes the machine radius and 𝑟0 = 𝑒2/(︁4𝜋𝜖0𝑚0𝑐2
)︁
=

1.54 × 10−18m the classical particle radius.
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Figure 1.12: Transverse 𝑥-𝑦 (left), longitudinal Δ𝐸-𝑧 (center) and tune distribution 𝑄𝑥-𝑄𝑦 (right) for
an LHC-like beam in the PSB. Particles from a slice of the longitudinal distribution are highlighted and
colour-coded according to the transverse radial component.

However, coasting beams with nonuniform transverse distribution (e.g. Gaussian) generate
nonlinear forces and hence a different detuning for each particle (Fig. 1.11, right). This gives rise
to a distribution of tunes rather than a tune shift, the incoherent tune spread. For small transverse
amplitudes 𝑟 ≪ 𝜎𝑢 in a Gaussian transverse distribution, one can linearise the force to obtain the
detuning of particles close to the core as

Δ𝑄𝑢,Gauss-max = − 𝑟0𝑅

𝑒 𝛽r𝛾
2
r

𝜆

𝜖𝑢,n
· 2 , 𝑟 ≪ 𝜎𝑢 . (1.49)

II

I IV

III
The following key points are highlighted:

I The detuning is always negative, i.e. direct space charge effects always defocus in both
planes and reduce the betatron oscillation frequency.

II The space charge forces are dominant at low energy and vanish for 𝑣 → 𝑐 due to the
dependence Δ𝑄 ∝ 1/𝛽r𝛾2

r (when expressed using 𝜖n).

III The space charge effects are directly proportional to the intensity (here given by the longi-
tudinal line density 𝜆) and indirectly to the transverse emittance. The detuning increases
with the beam brightness.

IV The maximum detuning of a beam with Gaussian cross-section is approximately twice the
tune shift of an rms equivalent K-V distribution. This can be explained by the increased
charge density in the Gaussian beam core. In contrast to that, a K-V distribution gives rise
to the smallest possible tune spread.

The simulated tune footprint for a bi-Gaussian LHC-like beam in the PSB beam is illustrated in
Fig. 1.12 and is analysed in detail e.g. in [60, Chp. 4]. The particles are colour-coded according
to the position in the bi-Gaussian transverse distribution (for a single slice from the longitudinal
distribution at 𝑧 ≈ 0m). The tune shift is the largest for particles in the beam centre (red) and
the smallest for the tails (dark blue). For nonconstant longitudinal line densities 𝜆 ≠ const., as
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present in a real machine, each longitudinal slice at 𝑠 experiences a different detuning depending
on 𝜆(𝑠).

1.5.3 Particle-In-Cell Simulations

Space charge is a collective effect and it is, therefore, necessary to compute the propagation of
the entire particle ensemble rather than tracking individual particles.

In the CERN injector chain, pyORBIT [70] is used for space charge simulations. This is a python
wrapper for the Particle-in-Cell (PIC) solver PTC-ORBIT [71]. The PIC method is a so-called
self-consistent method and is based on the following concepts:

• The large number of real particles is represented by a smaller number of macroparticles with
extrapolated properties, i.e. "particle clumps".

• Each of these macroparticles is propagated individually through the external guiding fields
using a tracking code, here PTC [72].

• The propagation is regularly halted at nodes, at which the macroparticle distribution is
mapped onto a mesh (grid) to obtain a local charge density estimate.

• At each node, a field solver solves Maxwell’s equations to obtain the space charge field
based on this meshed density estimate. In pyORBIT, the ORBIT code provides a 2.5D-Fast
Fourier Transform (FFT) Poisson solver to estimate the nonlinear local space charge forces.
These are subsequently applied as additional force kicks before propagating the particle
distribution to the next node.

Such self-consistent methods hence derive the space charge field directly from the locally
observed particle distribution. They are computationally expensive but do not require any ap-
proximation regarding particle distributions, in contrast to other techniques (e.g. frozen approach
based on the Bassetti-Erskine formula [73]).

Using MADX-PTC [58] one can create a realistic machine model, which is subsequently used in
pyORBIT. This enables the inclusion of time-varying fields, scattering effects of the stripping foil,
apertures, edge effects, magnetic field and alignment errors.

1.5.4 Space Charge Driven Resonances and Emittance Exchange on the
Montague Resonance

So far, machine imperfections and magnet nonlinearities have been introduced as the primary
driving term for resonances. In addition to these external forces, resonances can be driven by the
space charge potential itself: the distribution and hence space charge potential is modulated with
the focusing properties of the machine. It is therefore periodic with the lattice structure and can
drive single particle resonant effects. Assuming frozen space charge and a symmetric, bi-Gaussian
beam, which is matched to the machine optics, these resonances can be derived by including the
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terms of the expanded space charge potential (compare [74])

𝑉𝑆𝐶 (𝑥, 𝑦) = − 𝜆𝑟0
𝛽2𝑟𝛾2

𝑟

∫ ∞

0

1 − 𝑒
−

𝑥2

2𝜎2
𝑥 + 𝑡

−
𝑦2

2𝜎2
𝑦 + 𝑡√︂(︁

2𝜎2
𝑥 + 𝑡

)︁ · (︁2𝜎2
𝑦 + 𝑡

)︁ 𝑑𝑡,

= − 𝜆𝑟0
𝛽2𝑟𝛾2

𝑟

(︄ (︃
𝑥2

𝜎𝑥
(︁
𝜎𝑥 + 𝜎𝑦

)︁ + 𝑦2

𝜎𝑦
(︁
𝜎𝑥 + 𝜎𝑦

)︁ )︃ −(︄
(2𝜎𝑥 + 𝜎𝑦)𝑥4

12𝜎3
𝑥

(︁
𝜎𝑥 + 𝜎𝑦

)︁2 + (2𝜎𝑥 + 𝜎𝑦)𝑦4
12𝜎3

𝑦

(︁
𝜎𝑥 + 𝜎𝑦

)︁2 + 𝑥2𝑦2

2𝜎𝑥𝜎𝑦
(︁
𝜎𝑥 + 𝜎𝑦

)︁2 )︄ + ...

)︄
(1.50)

as perturbation terms to the nonperturbed Hamiltonian [75] (see e.g. [76, Chp. 2.1] or [77] for
more details). The pseudo-octupole term 𝑉𝑆𝐶 ∝ 𝑥2𝑦2 (∝ 𝐽𝑥 · 𝐽𝑦 after the Floquet transform)
drives the 4th-order single particle difference resonance

2𝑄𝑥 − 2𝑄𝑦 = 0. (1.51)

Particles close to 𝑄𝑥 = 𝑄𝑦 interact with this so-called Montague resonance [75]. This results in a
coupled motion between the two transverse planes characterised by an exchange between the
actions 𝐽𝑥 and 𝐽𝑦. This effect is particularly prominent for "flat beams", which have a small tune
spread in one and a large tune spread in the other plane due to the unequal emittances. To avoid
undesirable emittance exchange, the overlap of the tune spread with the coupling resonance is
often avoided in operation by choosing unequal (split) tunes 𝑄𝑦 and 𝑄𝑥 .

As mentioned above, the derivation of this single particle resonant effect assumes frozen space
charge for a symmetric, bi-Gaussian beam, which has constant longitudinal line density and is
matched to the machine optics. Such a beam has unchanged charge distribution and no coherent
beam movement. However, this image is hardly realistic, especially not directly after injection.
A coherent motion, e.g. oscillation of an initially mismatched beam, drives time-varying forces,
which can also excite the Montague resonance. It is not possible to approximate these effects using
the frozen space charge approach. Self-consistent modelling, e.g. with a PIC code, is required.
A detailed discussion of emittance exchange in anisotropic beams, which goes beyond the here
presented treatment as a single particle resonance phenomenon, is given in [69].

1.5.5 Impact on Machine Performance and Mitigation

For large tune footprints, i.e. Δ𝑄 → 0.5, it becomes not possible to avoid interaction of all detuned
particles with strong resonances, mainly integer and half-integer, as illustrated schematically in
Fig. 1.13 for 𝑄𝑥 = 4.4, 𝑄𝑦 = 4.55. Particles from the beam core that are excited by resonances
are driven to the outside of the distribution, causing an emittance growth (case A in Fig. 1.13),
beam brightness reduction and hence also reduction of the tune spread. This space charge-driven
emittance growth takes place until the maximum detuning is reduced to a level, which avoids
any further interaction of core particles with such resonances. Interaction of the distribution

29



Chapter 1 Beam Dynamics and Intensity Effects in Synchrotron Accelerators

3.6 3.8 4.0 4.2 4.4 4.6
Qx

3.6

3.8

4.0

4.2

4.4

4.6
Qy

B

A

A

B

Figure 1.13: Interplay of a large tune footprint with resonances. The horizontal half-integer resonances are
indicated in blue, and the integer resonances in orange. In this scenario, the beam core (red shaded area,
same colour code as in Fig. 1.12) interacts with the integer resonances, causing emittance growth and a
consequent brightness and tune spread reduction (case A). The particles in the tails (blue shaded area)
interact with the half-integer resonances, the tails get populated and the particles are lost in the machine
aperture.

tails (minimum detuning, close to the nominal WP) with strong resonances populates these tails
further until particles are eventually lost in the machine aperture (case B in Fig. 1.13).
Overall, this explains the often quoted space charge limit of a synchrotron: Δ𝑄max ≈ 0.5 is

considered to be the maximum acceptable detuning for providing a steady particle distribution
without emittance growth and particle losses. Space charge is therefore a limiting factor when
producing high brightness beams in low energy machines. However, Eq. (1.49) inspires several
common mitigation techniques, which help to reduce the tune spread to a certain extent and push
the delivered bream brightness, such as increased injection energy, smaller machine circumference,
reduced line density or reduced transverse charge density. The latter is targeted by phase space
painting, i.e. optimisation of the transverse distribution during the injection process. As discussed
in Section 1.5.2, a minimised tune footprint could be theoretically obtained by generating a
uniform transverse distribution.

1.6 Particle-Matter Interactions with Thin Scatterers such as
Stripper Systems

Ion beams can be intercepted by a thin scatterer, such as a beam screen for measurements or a
stripping foil in a CEI. The impacting ions undergo inelastic and elastic interactions with the electric
field of the target atoms, which cause energy deposition in the target, distort the beam distribution
and cause losses in the surrounding machine elements. Generally, the energy deposition in the
target and the scattered distributions depend on several factors, such as beam energy, emittance,
intensity and material properties of the target. The main particle-matter interaction mechanisms
for low energy ion beams with a stripping foil are outlined below.
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Figure 1.14: H−, H0 and p+ yield as a function of stripping foil thickness for an 160MeV H− beam
impacting a carbon foil [78].

Electron stripping of the impacting H− beam: The electrons of the impacting H− beam are
stripped in collisions with electrons or nuclei of the carbon foil. The probability of obtaining H−,
H0 and p+ when impacting a foil with thickness 𝑑 with an H− beam can be computed using the
cross-sections for one- and two-electron stripping. For the PSB stripping foil, this is done in [78]
and illustrated in Fig. 1.14. The H−, H0 and p+ yields depend on the foil thickness, the material
and the energy of the impacting beam. The chosen foil thickness for a CEI must be large enough
to achieve negligible probabilities of H0/H− survival (blue and red lines in Fig. 1.14). In the PSB,
a foil thickness of 200 µg cm−2 to provide a p+ yield of > 99%.

Single and multiple Coulomb scattering: The impacting ions experience elastic scattering by the
Coulomb interaction with the Carbon atoms of the foil, which is known as Rutherford or Coulomb
scattering. Due to the lower mass of the incoming particles, energy transfer can usually be neglected
in such collisions. Each single scattering event, however, adds a small angular deflection to the
original particle trajectory. During the passage of a thin scatterer a particle experiences multiple
such elastic small angle deflections. Simulation codes such as pyORBIT [70]† or FLUKA [80, 81],
repeat the single Coulomb scattering event multiple times during a foil passage, generating at
each step a random scattering angle and random distance to the next scattering event.
The majority of the scattering events result in small scattering angles. The combined net

deflection Θ from the original particle trajectory as a cumulative effect of multiple small scattering
angles can be analytically approximated, which is known as multiple Coulomb scattering. The
cumulative angle is normally distributed (central limit theorem; usually valid for more than
† In this thesis the Simple Scattering Model is applied, which is based on [79]. pyORBIT also provides a Full Scattering
Model, which additionally simulates nuclear scattering events and energy loss. However, this model uses Moliere’s
Gaussian approximation for the multiple Coulomb scattering and is thus not applicable for low energy beams
impacting thin stripping foil [39].
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Figure 1.15: Angular distributions of the scattering angles obtained for a 160MeV H− beam impinging a
carbon foil. The histograms (grey and green) show the simulated particle distribution after the respective
foil passage. The multiple Coulomb Gaussian approximation with logarithmic correction is illustrated in
red. The analytic approximation for the large angle single Coulomb scattering distribution is marked in blue
(dashed).

20 scattering events [79]). The expected scattering angle
√︂
< Θ2

MC > (projected onto a plane, e.g.
𝑢 = 𝑥, 𝑦) obtained when a particle beam with momentum 𝑝 intercepts a target with length 𝑙target
is approximated by Moliere’s formula [82] with logarithmic correction for thin targets [83]√︂

< Θ2
MC > =

13.6
𝑝 [MeV]𝛽r𝑐

√︄
𝑙target
𝐿rad

·
(︃
1 + 0.038 · ln 𝑙target

𝐿rad

)︃
. (1.52)

The radiation length 𝐿rad = 19 cm is specific for the target material, i.e. here carbon. In a CEI, the
circulating beam crosses a stripping foil with thickness 𝑑 multiple, i.e. 𝑁F, times. The total ‘target
thickness´ is consequently 𝑙target = 𝑁F · 𝑑.
This approximation is valid for the core of the resulting angular distribution but does not

represent the tails. These are dominated by rare large angle single Coulomb scattering events due
to small impact parameters, as analytically formulated in [84, Chp. 13]. Large angle scattering
events cause beam loss, which is analysed in [78] for the PSB injection system and aperture.

The transition between the single and multiple Coulomb scattering distributions (plural scatter-
ing) depends on the thickness of the target and the beam energy. Figure 1.15 shows the expected
distribution of scattering angles for parameters, which are similar to the PSB injection process:
an 160MeV H− pencil beam impinges a 200 µg cm−2 (Fig. 1.15a) or ≈ 50mg cm−2 carbon foil
(Fig. 1.15b). The latter is equivalent to ≈ 250 crossings of the PSB foil.

The distribution of the resulting scattering angles can be obtained using simulation codes, e.g.
pyORBIT (grey in Fig. 1.15) or FLUKA (green) [85]. It can be seen, that the core of the simulated
distribution can be approximated by Molière’s formula with logarithmic correction (Eq. (1.52),
red), whereas the tails follow the single Coulomb scattering distribution ([84, Chp. 13]; blue,
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dashed). It is evident, that with increasing foil passages (i.e. thicker equivalent target thickness),
Molière’s formula with logarithmic correction becomes more accurate for the entire distribution.

Nuclear scattering: Both, inelastic and elastic nuclear scattering yield particle loss due to large
angle scattering. For the PSB, these losses are estimated to be O(10−5-10−4) [78] and are not
considered further in this thesis.

Foil heating and energy loss straggling: Inelastic collisions with the electrons of the target
atoms result in energy loss of the particle beam and foil heating. In the PSB, the expected peak
foil temperature during high-intensity beam production was estimated to be ≈ 650K [78]. This is
low compared to temperatures of ≈ 1500K, which are required in high power facilities such as
spallation neutron sources. Foil heating is not expected to be problematic for the foil’s lifetime
or performance in the PSB. The average energy loss for a single foil passage in the PSB injection
was estimated as 𝑑𝐸 = 0.96 keV, which was shown to be negligible in first order for the beam
production in the PSB [78].
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Chapter 2
The New PSB Injection System as Part of

the LHC Injectors Upgrade

Connecting Linac4 to the PSB and the related increase in injection energy allows for doubled
beam brightness, as required for HL-LHC [9], while maintaining the tune-spread induced by space
charge as pre-LS2 (∝ 𝑁p+/(𝛾2

r 𝛽r) ≈ −0.5). The charge exchange mechanism is further significant
for reducing losses during the injection of high-intensity beams. Accumulating high intensities
over multiple turns in a conventional multi-turn injection system, as done pre-LS2, produces high
losses at the required septum (see [86] for more details). With the new CEI system, similar beams
can be generated while keeping losses during the injection process within < 1% (a few percent
along the cycle).
This section provides a brief introduction to both the Linac4 and the PSB and highlights the

relevant machine parameters, with a particular focus on the new injection system and phase space
painting.

2.1 Linac4

Figure 2.1 displays the 86m long Linac4 [12] and its location on the CERN site. The first stage after
the H− source [12, Chp. 2.1], the radiofrequency quadrupole (RFQ) [12, Chp. 2.2], accelerates
a pulse with ≈ 600 µs length to 3 MeV. The beam subsequently passes the chopper line [12,
Chp. 2.3], which is described in more detail in Section 2.3.1. The following structures (i.e. a
drift tube linac, a cell-coupled drift tube linac and Pi–mode structures [12, Chp. 2.5-2.7]) bring
the then already bunched beam to the final energy of 160MeV. A debuncher cavity [12, Chp.
2.8] is programmed pulse-per-pulse to modify the beam energy spread according to user-specific
requests. The beam has a natural energy spread of 250 keV, which is altered operationally between
≈ 100-440 keV [87] by the debuncher cavity. Table 2.1 summarises the main Linac4 parameters,
including the performance and settings during the first post-LS2 operational year (2021) [88].
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(a) Accelerating cavities of Linac4 [89]. (b) Satellite view of the CERN infrastructure.

Figure 2.1: CERN’s newest accelerator Linac4 provides 160 MeV H− ions.

Table 2.1: Linac4 parameters [12] and operational performance in 2021 [88, 90, 91].
Parameter Unit Value
Linac4 parameters
Length m 86
Ion species - H−
Output energy MeV 160.7
Bunch frequency MHz 352.2
Maximum repetition rate (i.e. cycles / second) Hz 2
Operational repetition rate (i.e. cycles / second) Hz 0.83

User-specific settings 2021 (pulse-per-pulse)
Chopping factor - 0.3-0.7
Energy spread after debuncher cavity keV 100, 280 and 440

Performance in 2021 [88]
Natural energy spread before debuncher cavity keV 250
Source current mA 35
RFQ current mA 28
Normalised rms emittance H / V µm <0.3 / 0.3
Shot-to-shot intensity fluctuations % < 2
Shot-to-shot energy fluctuations keV < 100
Shot-to-shot transverse position mm <1.5
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2.2 Proton Synchrotron Booster

(a) The four PSB rings, with the main dipoles (green)
and quadrupoles (orange) [92].

(b) The new PSB injection system during the installation
phase in 2019, displaying the 16 BSW magnets (4 per
ring) in blue [93].

Figure 2.2: The CERN PSB in its tunnel (a) before and (b) during the upgrades during LS2 (2019/2020).

2.2.1 Layout

The PSB has a circumference of 157 m with the unique property that it consists of four superposed
rings to accelerate beams simultaneously (Fig. 2.2). It is divided into 16 equal sections, also called
periods (labelled as P01-P16, Fig. 2.3), i.e. segments with similar lattice structure and symmetric
optical properties. Each period comprises two main dipoles for horizontal bending, two focusing
and one defocusing quadrupole. Dipole and multipole corrector magnets are installed in the
straight sections between the main dipoles and quadrupoles for enhanced beam control. The
main parameters are summarised in Table 2.2. Beam position (BPM) and beam loss monitors
(BLM) are installed in each period, which enables the acquisition of the transverse position and
the beam losses at the respective location (yellow scatter markers for BPM-1 to BPM-16 and green
for the BLMs in Fig. 2.3). A more detailed layout is provided in [94, 95].

The entire PSB cycle lasts 1.2 s. In this thesis, time in ms relative to the start of the cycle (C-time)
is used to refer to time instances within the cycle. The beam is injected at the cycle time 275ms,
which is labelled as C275. It takes 530ms to accelerate beam from 160MeV to 2GeV. Extraction
takes place at cycle time 805ms (C805).

2.2.2 PSB History and Upgrades

The PSB was first inaugurated in 1972 to increase the PS injection energy by pre-accelerating a
beam up to 800 MeV. Soon after, an energy upgrade increased the extraction energy to 1 GeV
(1988). During that time, the only recipient of PSB beams was the PS. In 1992, the PSB also
started to deliver beam to the ISOLDE facility. With the motivation to produce adequate beams
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Figure 2.3: Optics and synoptic layout of the PSB. Top: synoptic layout, displaying the dipoles (white)
and quadrupoles (red). Center and bottom: Twiss parameters for optics configurations as applied during the
injection of fixed target beams (𝑄𝑥 = 4.22,𝑄𝑦 = 4.45). The 16 periods with similar lattice structures are
separated by the dashed lines. The injection region in P01 is highlighted by the grey shaded region.

for the LHC era starting in 2008, the extraction energy of the PSB was increased another time to
1.4 GeV in 2000 [96]. The last major upgrades of the PSB, which were conducted in 2019 and
2020 as part of the LIU project, include among others:

• Upgrades of the injection line (BI line) and injection period (see Section 2.3): Apart
from the installation of the new CEI system, significant modifications were also required in
the transfer line between Linac4 and PSB (BI Line) due to the higher injection energy and
the increased beam rigidity.

• Upgrades of the PSB rings and the extraction lines: The extraction energy is increased
from 1.4 GeV to 2 GeV to reduce space charge effects during PS injection. The required
modifications include a new power converter system, a new magnet powering scheme [10,
Chp. 3.6] and the installation of a new wideband RF system based on Finemet® magnetic
alloy [97, 98]. Additionally, modifications in the PSB extraction line were necessary to meet
the requirements of the increased beam rigidity.
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Table 2.2: PSB parameters before and after the LIU upgrades [10].
Parameter Unit Value
Circumference m 157.08
Radius m 25
Rings # 4
Ion species - p+
Bunches per ring at injection #/ring 1
Bunches per ring at extraction #/ring 1 - 2
Cycle length s 1.2
Typical tunes at injection - 𝑄𝑥 ≈ 4.1-4.4

- 𝑄𝑦 ≈ 4.17-4.45
- 𝑄𝑠 ≈ 0.001

Pre-LS2 Post-LS2
Injection energy MeV 50 160.7
Extraction energy GeV 1.4 1.4 (ISOLDE) and 2.0 (PS)
𝛽r, 𝛾r at injection - 0.31, 1.05 0.52, 1.17
𝛽r, 𝛾r at extraction to PS - 0.92, 2.5 0.95, 3.13
𝛽r, 𝛾r at extraction to ISOLDE - 0.92, 2.5 0.92, 2.5
Revolution frequency at injection MHz 0.577 0.994
Revolution frequency at extraction MHz 1.75 1.75 (ISOLDE) and 1.8 (PS)
Intensity per ring p+/ring 0.5-1000 × 1010 0.5-1600 × 1010*
H: normalised emittance 𝜖n,𝑥 µm ≈1-15 ≈0.5-10
V: normalised emittance 𝜖n,𝑦 µm ≈1-9 ≈0.5-6
RF system harmonics - ℎ = 1, 2 and 16 Multi-harmonic

* Final target. In 2021, operation with maximum 𝑁p+ = 1 × 1013 p+.

2.3 The PSB Injection Process and Beam Transfer from Linac4

2.3.1 Linac4 Pulse Structure and Intensity Injected per Turn

The number of protons injected into each PSB ring depends on the current delivered from Linac4.
In Linac4, it is possible to remove part of the pulse at 3MeV using the chopper [12, Chp. 2.3].
This electrostatic kicker is located in the low energy segment of Linac4 and transmits only the
segments of the Linac4 pulse, which are requested by the PSB. This facilitates to inject the beam
directly into the PSB RF bucket and reduces losses during the beam transfer and injection process
at 160MeV. The chopping factor (𝐶𝐹) quantifies the fraction of the transmitted beam current
𝐼 (𝑡) and is related to the intensity injected during each PSB turn by [99]

𝑁𝑝+
PSB turn =

1
proton charge

∫ 𝑡rev

0
𝐼 (𝑡)𝑑𝑡 = 1

1.6 × 10−19
(︁
𝐶𝐹 · 𝐼peak · 𝑡rev,PSB

)︁
. (2.1)
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Figure 2.4: Linac4 current and beam chopping pattern measured for a high-intensity user, when injecting
with 𝐶𝐹 = 0.6 over 80 turns into each PSB ring (ISOLDE in 2022; representative for the state in 2021).

𝐼peak is the peak current of the unchopped beam at the PSB injection (𝐼peak = 26mA in 2021) and
𝑡rev = 1.006 µs the PSB revolution time at injection energy. The 𝐶𝐹 is customised for each user,
with typical values between 0.3-0.7. Figure 2.4a shows the current seen by the BPMs in the beam
transfer to the PSB, which clearly features the chopped beam pattern (here for a high-intensity
beam with injection over 80 turns into each ring and 𝐶𝐹 = 0.6). Figure 2.4b illustrates the
respectively average current measured in Linac4 directly after the source (green, -35mA), after
the RFQ (red,-28mA) and after the chopper (blue,-16.3mA). The current after the chopper (blue)
exhibits the pulse segments separated for the four rings.

2.3.2 The New Charge Exchange Injection System

The chopped beam is injected into the PSB via the new CEI. A schematic of the new injection
system is described in the Introduction (Fig. B). The system comprises a carbon stripping foil and
a horizontal orbit bump to deflect the circulating towards the injected beam. The closed orbit
bump has a nominal amplitude of Δ𝑥 = −81mm at the foil and is created by two sets of magnets,
the painting kicker (KSW, Δ𝑥KSW = −35mm bump, yellow in Fig. 2.1) and the injection chicane
magnets (BSW, Δ𝑥BSW = −46mm bump, blue in Fig. 2.1).

Injection Chicane with H0/H− Dump

The injection chicane comprises four short rectangular dipole magnets in the injection region,
each providing a 66 mrad deflection angle. The first BSW magnet (BSW1) acts as a magnetic
septum, dividing the circulating beam’s high-field region from the field-free region for the injected
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Figure 2.5: Horizontal orbit in P15-P02 during the injection process. The top displays the synoptic layout
(white: main dipoles; red: focusing and defocusing quadrupoles, yellow: programmable painting kickers
(KSW); blue: chicane magnets (BSW)), the half-aperture is indicated in black. The injection bump is
generated by the KSWs (nominal deflection of -35 mm at the foil) and the BSWs (-46 mm at the foil). The
KSW and hence the closed orbit decays during phase space painting (grey, dashed orbits). The injected
beam is indicated in red.

H− beam. BSW2 and BSW3 are identical to guarantee symmetry. BSW4 additionally contains
the H0/H− dump for absorbing un- and partially stripped particles. The BSW bump amplitude
of 𝐴BSW = −Δ𝑥BSW = 46mm is constant during the first 150µs of the cycle (maximum time of
the injection process) and decays subsequently within 5ms. Spatial restrictions in the injection
region required the magnets to be installed within 2.6m straight section, limiting the system
length of each magnet to 0.373m (BSW1) and 0.380m (BSW2-4) [100]. The edge focusing of
these strong, short rectangular BSWs yields quadrupolar field perturbations in the vertical plane.
Additionally, ramping down the magnet current generates eddy currents in the metallic chambers,
which induce a sextupolar field component [41]. Both effects result in a vertical 𝛽-beating, which
is compensated in operation using k-modulation, as described in [101].

Painting Bump and Phase Space Painting

The term phase space painting refers to the controlled tailoring of the (transverse) phase space
distributions when injecting over multiple turns. Modulating the amplitude of the closed orbit
bump during the injection process modifies the offset between the newly injected (red) and
the already circulating beam (grey). Each new Linac4 bunch is hence injected with an average
customised action ⟨𝐽𝑥⟩, distributing the particles in phase space. The phase difference between
the already circulating and the newly injected particles is given by the machine tune.
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Inj. beam
Inj. beam

(a) With space charge: nonlinear forces immediately cause beam filamentation.

Inj. beam
Inj. beam

(b) Without space charge: Distinct area of each injected bunch in phase space.

Figure 2.6: Horizontal phase space painting in the PSB. For this illustration, a painting function (i.e. KSW
field decay) as shown in Fig. 2.6 is applied with a vertical offset of Δ𝑦 = 6mm. The subfigures show the
beam distribution in the different phase spaces at the location of the foil after 20 injected turns. The
bunches injected between turn 1 and 20 are indicated by colour. The distribution of the newly injected
particles is highlighted in black and enclosed by a circle. The stripping foil is indicated by the grey shaded
area.

The PSB injection system employs horizontal phase space painting through customised program-
ming of the KSW bump field decay. The vertical beam size can be tailored by defining a fixed offset
Δ𝑦 (or angle Δ𝑦′), using two corrector magnets at the end of the injection line. The horizontal
orbit evolution during phase space painting for high-intensity beams is illustrated in Fig. 2.5 by
the grey, dashed lines (plot one orbit every 5 µs). Figure 2.6 illustrates the painted phase space
after 20 µs, when applying the painting function from Fig. 2.7a. The bunches injected during each
turn are colour-coded. When comparing the phase space simulated with (Fig. 2.6a) and without
space charge (Fig. 2.6b), one can see that the nonlinear space charge forces immediately cause
beam filamentation.

In the long term, it is foreseen to also implement longitudinal painting, i.e. injecting each
Linac4 bunch with different energy offsets. Longitudinal painting helps to fill the longitudinal
bucket homogeneously and to reduce the peak line density 𝜆. It was not operational in the PSB
during commissioning and operation in 2021 and is therefore not considered further in this thesis.
However, it will be essential to increase the intensity and brightness reach of the various PSB
users in the future [60].

42



2.3 The PSB Injection Process and Beam Transfer from Linac4

0 25 50 75 100 125

time ( s)

10

20

30

40

K
S
W

 a
m

p
li
tu

d
e
 (

m
m

)

e.g. injection 
over 80 turns

Injected
H  beam
position

Circ.
p +  beam
position

A0

(A1,t1)

slope2

s
lo
p
e
1

(A2,t2)

x

Foil
90

80

70

60

50

x
 (

s
F
o
il
) 

(m
m

)

(a) Painting function (i.e. KSW amplitude) as applied for
high-intensity fixed target beam. The right axis shows the
resulting horizontal beam position of the circulating beam
at the location at the foil (KSW + BSW bump).

0 100 200 300 400 500 600

time ( s)

10

0

10

20

30

K
S
W

 a
m

p
li
tu

d
e
 (

m
m

)

High brightness
 beams (on-axis injection)

High intensity beams 
 (horiz. painting)

A0

(A1,
t1)

(A2,t2)

(A3,t3)

(b) KSW decay for different users.

Figure 2.7: Programmable KSW amplitude decay during the injection process.

Characteristic of the KSW Magnet Field Decay

The painting kicker field modulation during injection is controlled by piece-wise linear functions.
Figure 2.7a illustrates the time evolution of the closed orbit at the location of the stripping foil, for
a generic KSW field decay as required for high-intensity beams. The field decay is defined by the
time-current markers 𝑃𝑖 at time 𝑡𝑖 with the KSW bump amplitude 𝐴𝑖 = −Δ𝑥KSW,foil. The maximum
bump amplitude 𝐴0 dictates the offset between the circulating and injected beam when injecting
the first bunch. The horizontal phase space distribution and the resulting painted beam size are
mainly tailored by setting slope 1 through setting the amplitude-marker pair 𝐴1 and 𝑡1. Slope 2
(𝐴2, 𝑡2) controls the subsequent intensity accumulation. 𝑡2 marks the end of the injection process
and is set equal to number of PSB revolutions during beam accumulation (up to 𝑡2 = 150 µs).
After injection, the circulating beam is moved away as fast as possible from the foil for most beams
to mitigate beam degradation and scattering losses due to additional foil crossings. The bump
decays within ≈ 10 µs to 𝐴3 = −9.2mm, which is fixed for all waveform types. The bump decays
to negative amplitudes to minimise the interaction of the beam with the stripping foil after the
injection process, while the BSW is still at maximum amplitude. From there the amplitude finally
decays to 𝐴4 = 0mm within 1ms, counteracting the decay of the injection chicane (which starts to
decay after the injection process) during the same time interval. Based on user-specific definition
of 𝑃0, 𝑃1 and 𝑃2 the remaining markers 𝑃3 and 𝑃4 are computed automatically. The specified
amplitude during the field decay is < 1%.
The KSW magnet parameters can be found in [102]. New pulsed magnet current genera-

tors [103] were developed to provide the high flexibility and precision of the magnet current
decay needed for phase space painting, which are described in more detail in Section 7.1.

Stripping Foil

The stripping foil in the PSB is made out of carbon (for reasons of thermal and mechanical stability,
high sublimation temperature and radiation resistance) [104]. The thickness 𝑑 = 200 µg cm−2 is
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Figure 2.8: Stripping foil exchange mechanism, which is installed in each PSB ring. (a) Rotating stainless
steel belt, (b) the holders with stripping foils, (c) ultra-high vacuum compatible microswitches, (d) membrane
potentiometers to determine the precise position of the foil holder [104].

(a) Type 1: XCF-200 (b) Type 2: MLG-250 (c) Type 3: GSI-200

Figure 2.9: Different stripping foil types installed in the PSB in 2021.

driven by efforts to maximise the stripping efficiency (> 98%) while minimising beam degradation
due to foil scattering [78]. In 2018/2019 foils of different manufacturers were qualified regarding
stripping efficiency and mechanical resistance in a test stand installed in the Linac4 transfer
line [105, 106] and suitable foil types were subsequently installed in the PSB.

Each PSB ring houses a stripping foil exchange mechanism (Fig. 2.8) with 6 installed stripping
foils. This mechanism enables fast foil exchange during operation without requiring any machine
intervention and downtime. Table 2.3 lists the characteristics of the foils installed in the foil
loaders in PSB in 2021.

Table 2.3: Characteristics of the stripping foils installed in the PSB in 2021.
Type Thickness Description
1 / XCF-200 200µg cm−2 Arc evaporated amorphous Carbon [107]
2 / MLG-250 240µg cm−2 Multilayer Graphene [108]
3 / GSI-200 200µg cm−2 Arc evaporated amorphous Carbon [109]
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(a) Example for Linac4 pulse structures and the respective BI.DIS
timings: (A) standard operation with 65–100 injected turns per
ring, (B) operation with 0 injected turns for R3.

(b) The BI.SMV vacuum tank assembly. The
beam is separated into four separate lines to
inject beam into R4 (red), R3 (green, no kick),
R2 (white) and R1 (blue).

Figure 2.10: Distribution kicker and septa to separate the beam into the four rings in the BI line [10].

2.3.3 Beam Transfer from L4 to PSB (BI Line) and Orthogonal Steering

The BI line is the transfer line between Linac4 and the PSB. A full layout of the BI line can be
found in [110] and [10, Fig. 3.17].

Beam Separation Scheme in the BI Line

The BI line houses the beam separation scheme to distribute the Linac4 pulses into the respective
PSB rings, which comprises vertical beam distribution kickers (BI.DIS) and vertical septummagnets
(BI.SMV, see Fig. 2.10). The BI.DIS is a system of five pulsed ferrite core kickers, which produces
the initial vertical kick to separate the time-resolved slices of the Linac4 pulse to different vertical
positions at the entrance of the septa. The total kick required for the separation is produced
by combining the waveforms of four individual BI.DIS modules. The trigger timings of the four
modules relative to each other depend on the pulse length, which is to be injected into each PSB
ring (see [10, Sec. 3.2.2.2]).

Matching and Orthogonal Steering

After being separated at the BI.SMV, the beam proceeds in four individual vacuum pipes. Each of
these lines is controlled by individually powered magnets. Individually powered quadrupoles are
used to match the injected beam optics to the circulating beam. Dipolar corrector magnets steer
the beam to the PSB reference orbit to minimise injection errors and oscillations.
The last two corrector magnets upstream of the injection insertion are used to independently

control the user-specific offset and angle between injected and circulating beam trajectory. This is
referred to as orthogonal steering and is used when tailoring the respective distribution (mainly
vertical, i.e. define Δ𝑦 and Δ𝑦′).
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Injection Precision During the PS Booster

Commissioning

In the ideal case, a particle beam is injected into a synchrotron with a matched phase space
distribution. This means, that it is injected precisely onto the design trajectory and with the Twiss
parameters, which are present in the synchrotron at the location of the injection system. However,
injection imprecisions cause a mismatch of the injected distribution, which can result in unwanted
emittance and/or halo growth. Such errors include steering errors, optics errors or multiple
Coulomb scattering at the stripping foil.

It is important to note, that for the production of the operational beams in the PSB, such
injection errors are only of secondary importance. The evolution of the operational transverse
beam sizes is either driven by phase space painting or space charge effects. If a painted distribution
is affected by systematic injection errors, the painting settings can be adapted to compensate for
the mismatch. For high-brightness beam types, the space charge-driven emittance growth usually
conceals mismatched-driven emittance and/or halo growth. To state an example: previous multi-
particle simulation studies analysed the impact of injection offsets for the high-brightness LHC25
beams with 𝑁p+ = 3.52 × 1012 p+ per ring, at a WP of 𝑄𝑥 = 4.43 and 𝑄𝑦 = 4.60 [60, Chp. 7.3].
These studies concluded, that for such intensities, no significant brightness and tail degradation is
expected even for large steering offsets of Δ𝑦 < 2mm and Δ𝑥 < 3mm. Operationally, injection
errors are most relevant, but also not critical, for low-intensity, low-emittance beams, which are
injected over a single PSB turn.

However, when discussing the painting schemes for the various beam types in Chapter 4,
awareness of the expected error sources is an important input to improve the comparison between
simulation and measurement results. As part of commissioning the new system, this chapter
hence characterises the anticipated injection imprecisions. The studies are mainly performed
for ring 3, as this is the ring used for the beam production studies in Chapter 4. The discussion
focuses on steering errors and ripples (Section 3.2) and foil scattering-induced emittance growth
(Section 3.3).
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3.1 Impact of Injection Imprecisions in the PSB

A beam which is injected into a synchrotron with a mismatch regarding the design distribution,
such as a transverse offset in Fig. 3.1, starts oscillating around the closed orbit. In a perfect
machine with no nonlinearities and zero chromaticity, each particle (and hence the centroid of
the injected beam) would proceed to perform linear betatron oscillations around the reference
orbit. In a real machine, however, a spread of the individual particle tunes, which can occur due to
e.g. nonlinearities in magnetic fields, chromaticity or space charge forces, causes a beam dilution
in phase space. This process takes place until equilibrium is reached and the particles are equally
distributed over all phases. The oscillation amplitude of the beam centre-of-mass decays and the
emittance increases. This process is called phase-mixing or filamentation and is explained in more
detail e.g. in [111].
The equilibrium distribution after filamentation is often non-Gaussian and depends not only

on the mismatch but also on the mechanisms, which are dominant during phase-mixing. This
decoherence process can be significantly affected by coherent and incoherent tune shifts due to
direct and indirect space charge effects and their respective complex interplay with chromatic
decoherence (see e.g. [112–114]). One of the occurring phenomena is the interaction of the single
particle motion with the periodic space charge potential modulation, which is caused by the co-
herent oscillation of the mismatched beam. The periodic envelope modulation can cause resonant
excitations of particles if their tune is close to the tune of the coherent oscillation, and hence drive
halo build-up, as shown e.g. in [113, Chp. B]. Note that this excitation depends on both the chro-
matic and the space charge tune spread as the tune of the single particle 𝑄 = 𝑄0 − Δ𝑄inc + Δ𝑄 𝜉

is determined by the tune set by the quadrupoles (𝑄0), the incoherent space charge (Δ𝑄inc) and
the chromatic tune shift (Δ𝑄 𝜉 ).

Beams produced in the PSB span a wide range of brightnesses, longitudinal momentum spreads
andWPs. Space charge forces, tune,momentum distribution and chromatic tune spread are specific
for each beam type and consequently also the impact of injection errors. A brief example for how
the same error (here Δ𝑦 = 3mm, corresponding to ≈ 2𝜎𝑦,L4) can result in different core and tail
distributions for different intensities is provided in Fig. 3.1. The beam parameters correspond
to different beams along the LHC brightness curve, which are injected on-axis over 1-33 turns
(see Section 4.4 and Table 4.6 for more details and machine configurations). Figure 3.1 illustrates
the normalised vertical phase space evolution for 1, 3 and 17 injected turns, with (coloured) and
without (grey) steering errors. Figure 3.2 shows the tune footprints and vertical beam centroid
oscillation for the respective cases.
Figure 3.1a: injecting 𝑁p+ ≈ 10 × 1010 p+ over 1 turn without including space charge

in simulations. Phase mixing is driven by the chromatic tune spread (𝜉𝑣 = −14 and
Δ𝑝/𝑝rms = 1.5× 10−3). Due to the different tunes, the particles redistribute equally over all
phases while preserving the action. This results in the population of a torus in phase space
with respective non-Gaussian tails.

Figure 3.1b: injecting 𝑁p+ ≈ 10 × 1010 p+ over 1 turn with space charge. Space charge
changes the dynamics drastically. The decoherence rate slows down and a large halo is
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(a) 1 turn (𝑁p+ = 10 × 1010 p+) injected with Δ𝑦 = 3mm, simulated without space charge.

0.005 0.000 0.005

y (m1/2)

7.5

5.0

2.5

0.0

2.5

5.0

y
′
 (

m
1

/2
)

1e 3 Turn 10

y=3mm y=0mm

0.005 0.000 0.005

y (m1/2)

7.5

5.0

2.5

0.0

2.5

5.0

y
′
 (

m
1

/2
)

1e 3 Turn 30

y=3mm y=0mm

0.005 0.000 0.005

y (m1/2)

7.5

5.0

2.5

0.0

2.5

5.0

y
′
 (

m
1

/2
)

1e 3 Turn 5000

y=3mm y=0mm

(b) 1 turn (𝑁p+ = 10 × 1010 p+) injected with Δ𝑦 = 3mm, simulated with space charge.
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(c) 3 turns (𝑁p+ = 30 × 1010 p+) injected with Δ𝑦 = 3mm, simulated with space charge.
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(d) 17 turns (𝑁p+ = 170 × 1010 p+) injected with Δ𝑦 = 3mm, simulated with space charge.

Figure 3.1: Simulated vertical filamentation when injecting LHC-like beams of different intensities with
a vertical steering offset of Δ𝑦 = 3mm (𝑎𝑦 ≈ 2𝜎𝑦,L4) into the PSB. For each scenario, the normalised
vertical phase space is shown after 10 (left), 30 (centre) or 5000 PSB turns (right).
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(b) Tune footprints after 500 turns.

Figure 3.2: Vertical injection oscillations and tune footprints when injecting LHC-like beams of different
intensities with a vertical steering offset of Δ𝑦 = 3mm (𝑎𝑦 ≈ 2𝜎𝑦,L4) into the PSB (SC: space charge).

generated due to the interplay between coherent motion, chromatic and space charge
detuning [113, 114]. The beam core of the filamented and the matched distribution are
similar. However, the tails of the mismatched, filamented distribution are significantly
enhanced.

Figure 3.1c: injecting 𝑁p+ ≈ 30 × 1010 p+ over 3 turns with space charge. The three mis-
matched bunches are injected with different vertical phases, as given by the vertical tune
(here 𝑄𝑦 = 4.45). The beam is consequently more evenly distributed in phase space, which
suppresses the coherent movement of the centre-of-mass and hence the resonant excitation
and halo build-up. In this case, the steering offset causes growth of the beam core.

Figure 3.1d: injecting 𝑁p+ ≈ 170 × 1010 p+ over 17 turns with space charge. Out of the
presented cases, this is the only operational scenario. It corresponds to the injection of
BCMS beams for LHC (see Section 4.4). The high brigtness increases the incoherent tune
spread to Δ𝑄𝑦 ≈ 0.8 and Δ𝑄𝑥 ≈ 0.55 at 𝑄𝑥 = 4.4, 𝑄𝑦 = 4.45. The emittance grows
due to the interaction of particles in the beam core with the integer resonances. The space
charge-driven is similar to the offset-driven emittance growth. The injection error does
consequently not impact the final profile significantly.

Analytic Estimates For Emittance Growth Without Space Charge

Without space charge, it is possible to derive the maximum rms emittance growth due to injection
imprecisions by considering the redistribution of the individual particle phases while keeping the
action constant, as e.g. shown in [111]. The obtained equations are listed below. It should be
noted that these analytical approximations have to be considered with caution if space charge is
present. Space charge can alter both the rms emittance growth and the beam profiles, as shown
schematically above. The rms emittance growth estimates do not necessarily represent the growth
of the beam core. Here, these approximations are solely applied to assess the order of magnitude
of the anticipated beam degradation.
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3.1 Impact of Injection Imprecisions in the PSB

Table 3.1: Maximum imprecisions*, which were considered and specified in previous PSB injection studies [60,
99, 115]. The analytical approximations for the consequent emittance growth assume (Δ𝑝/𝑝)rms = 1.5×10−3
and 𝜖0,n,rms = 0.3 µm.
Variable Nominal optics at

the foil (4.4 / 4.45)
Errors in the
PSB for 15%

𝛽-beat

Errors of the injected
beam

𝚫𝜖n,rms
(µm)

𝛽𝑥 (m) 5.5 4.7/5.8 3.8/7.2 (i.e. ±30%)
𝛼𝑥 (rad) 0 ±0.15 ±0.25 H: < 0.1

𝛽𝑦 (m) 3.5 3/3.7 2.4/4.6 (i.e. ±30%)
𝛼𝑦 (rad) 0 ±0.15 ±0.25 V: < 0.1

𝐷𝑥 (m) -1.22 ±0.1 -1.7/0.7 (Δ𝐷𝑥 = ±0.5)**
𝐷 ′

𝑥 (rad) 0 ±0.015 0 H: ⪅0.1

𝐷𝑦 (m) 0 0 ±0.5**
𝐷 ′

𝑦 (rad) 0 0 0 V: ⪅0.1

Δ𝐸 (keV) 0 0 100 H: < 0.05
𝑥 (mm) 0 ±0.15 ±2**
𝑥 ′ (mrad) 0 ±0.04 0 H: 0.5

𝑦 (mm) 0 0 ±2**
𝑦′ (mrad) 0 0 0 V: 0.6

* Conservative limits.
** The quoted offset represents a combination of Δ𝑢 and Δ𝑢′; the dispersion a combination of Δ𝐷 and Δ𝐷 ′.

Steering errors are errors in the position or angle of the injected beam relative to the closed
orbit trajectory, i.e. 𝑢1 ≠ 𝑢0 and/or 𝑢′1 ≠ 𝑢′0 (𝑢 = 𝑥, 𝑦). 𝑢1 labels the injected and 𝑢0 the closed
orbit parameters. The resulting growth of 𝜖rms can be derived as (𝜖 refers to 𝜖rms in Eqs. (3.1)
to (3.4))

𝜖new
𝜖0

= 1 + 1
2
Δ𝑢2 + (𝛽0Δ𝑢′ + 𝛼0Δ𝑢)2

𝛽0𝜖0
= 1 + Δ𝑢2 + Δ𝑢′2

2𝜖0
. (3.1)

Similarly, optics mismatches, i.e. when 𝛼1 ≠ 𝛼0 and/or 𝛽1 ≠ 𝛽0 yield

𝜖new
𝜖0

=
1
2

(︄
𝛽0
𝛽1

+ 𝛽1
𝛽0

(︃
𝛼0 − 𝛼1

𝛽0
𝛽1

)︃2
+ 𝛽1
𝛽0

)︄
, (3.2)

dispersion mismatch (𝐷1 ≠ 𝐷0 and/or 𝐷 ′
1 ≠ 𝐷 ′

0)

𝜖new
𝜖0

= 1 + 1
2
Δ𝐷2 + (𝛽Δ𝐷 ′ + 𝛼Δ𝐷)2

𝛽𝜖0

Δ𝑝
𝑝

2
, (3.3)

and energy mismatch
𝜖new
𝜖0

= 1 + 1
2
𝐷2

𝛽𝜖0

Δ𝑝
𝑝

2
. (3.4)
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Table 3.1 lists the maximum injection imprecisions, which were considered and specified in
previous studies [60, 99, 115], and the analytic estimate for the consequent rms normalised
emittance growth Δ𝜖n,rms. The quoted emittance growth corresponds to the maximum value
obtained for the listed mismatch ranges.

The results highlight that steering errors are the largest anticipated source of beam degradation.
Furthermore, studies performed within the framework of this thesis focus on the different painting
schemes, which rely on the variation of the trajectory offsets. For these reasons, this chapter
focuses on the characterisation of steering errors. The impact of optics, dispersion and energy
mismatches are of second order and subject to further studies. However, it has to be noted for
completeness that the strong edge effects of the distribution septum cause differences in optics
and dispersion in the four transfer lines. Given the initial conditions from Linac4 [116] and the
available matching quadrupoles in the transfer lines, it is challenging to match the optics and
dispersion for all four transfer lines simultaneously. The optics and dispersion mismatch for other
rings can exceed the values stated in Table 3.1. This is valid particularly for the transfer lines to
R1 as the respective beam experiences the largest deflection by the septum. Nevertheless, as the
beam production measurements performed in Chapter 4 focus on R3, optics errors are not further
considered in this thesis.

3.2 Characterising Sources of Steering Errors and Ripples

Trajectory offsets of the injected beam are caused by quadrupole misalignments or errors and
ripples in the bending fields of the PSB, Linac4 and the transfer line. To minimise these errors, the
injected beam position is steered to the circulating beam with the steering program YASP [117].
This program observes the betatron oscillation of the injected beam around the reference orbit
(see e.g. [111, Chp. 3.1]). The magnetic fields of the steering magnets required to minimise this os-
cillation are computed using model-based trajectory correction algorithms, such as MICADO [118]
or Singular Value Decomposition (SVD) [119]. This steering is performed when injecting beam
over a single turn. Ripples along the pulse cause a modulation of the transverse position when
injecting over multiple turns and have to be therefore considered when quantifying the anticipated
errors. However, it is highlighted again, that beams, which are injected over multiple turns are
less sensitive to errors due to the larger beam size. In addition to systematic steering imprecisions,
random errors occur on a shot-to-shot basis due to fluctuations in the BPM acquisition, the Linac4
and PSB trajectories.

This section describes the main anticipated sources for steering errors and ripples. To provide a
quantification independent of the observation point, the error in the plane 𝑢 = 𝑥, 𝑦 is expressed
in units of beam sigma

Δ𝑎𝑢/𝜎𝑢,L4 =

√︄
𝛾𝑢 · Δ𝑢2 + 2 · 𝛼𝑢Δ𝑢Δ𝑢′ + 𝛽𝑢 · Δ𝑢′2

𝜖𝑢
, (3.5)

following the procedure from [120]. Here, the reference beam size is based on the matched Linac4
emittance 𝜖0,n,rms = 0.3 µm. The results are summarised in Tables 3.2 and 3.3.
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Figure 3.3: Random shot-to-shot trajectory fluctuations: horizontal (black) and vertical (red) distribution of
the random injection errors in units of beam sigma with 𝜖0 = 0.3 µm, observed over 2000 acquisitions. The
dashed lines indicate the average reconstructed error. The inset axis show the measured remnant injection
oscillations in the 16 BPMs of the PSB (solid) and the modelled oscillation based on the reconstructed
error (dashed).

3.2.1 Description of Steering Error and Ripple Sources

Random Shot-to-Shot Trajectory Fluctuations (Vertical and Horizontal, Random)

Random errors occur on a shot-to-shot basis due to fluctuations of the BPM acquisition, the Linac4
and PSB trajectories. To quantify these errors, the injection oscillations are acquired 2000 times
over ≈ 12h. The average of all acquisitions is considered as reference steering and subtracted.
For each shot, MAD-X [58] is used to determine the injection errors (𝑥, 𝑥 ′) and (𝑦, 𝑦′), which
reproduce the remnant oscillation. Figure 3.3 displays the distribution of reconstructed errors
given in units of beam sigma. The average error is indicated by the dashed lines and subsequently
listed as the expected random error: 𝑎𝑥/𝜎𝑥,L4 = 0.2 and 𝑎𝑦/𝜎𝑦,L4 = 0.1. For an LHC-like WP
(𝑄𝑥 = 4.4, 𝑄𝑦 = 4.45), this corresponds to offsets at the foil of Δ𝑥 = 0.3mm and Δ𝑦 = 0.1mm,
which is negligible and does not impact the beam production.

Steering Precision (Horizontal and Vertical, Systematic)

Such random shot-to-shot fluctuations limit, together with reconstruction and model errors, the
achievable steering precision. In 2021 operation, injection oscillations could be reproducibly
minimised to amplitudes < ±0.5mm in both planes. Using the machine model in [95, "PSB
2021: LHC-injection optics"], this corresponds to 𝑎𝑥/𝜎𝑥,L4 ≈ 0.3 and 𝑎𝑦/𝜎𝑦,L4 ≈ 0.2, which are
subsequently considered as systematic steering errors.

Distribution Kicker Flat-Top Ripples (BI.DIS10, Vertical, Systematic)

The distribution kickers in the BI line produce the initial vertical kicks to separate the beam into the
four PSB rings by combining the waveforms of four individual kicker modules (see Section 2.3.3).
The trigger timings of the four modules relative to each other depend on the number of turns
injected into each PSB ring, as illustrated in Fig. 3.4a (here injecting over 17µs per ring, as done
for operational BCMS beams). Each of the generators produces a current 𝐼DISi with a reproducible
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Figure 3.4: Distribution kicker flat-top ripples: schematic overview and impact on steering errors.

flat-top ripple, which is within the specifications ofΔ𝐼DISi/𝐼DISi = ±1% [121]. Figure 3.4a (bottom)
shows the measured current of the four individual power converters when normalising it to the
current after the rise time. This ripple causes a modulation of the vertical beam position along
the injected pulse. The resulting total erroneous kick the beam experiences is a consequence of
the superposition of the four kicker module flat-top ripples and hence specific for each injection
configuration.
Steering is performed with the beam, which is injected over the first PSB turn (black scatter

marker in Fig. 3.4a). The insets in Fig. 3.4a show the effective miskick of the subsequent bunches
relative to this reference bunch, when injecting over 17 turns into each ring. The anticipated
distribution of the injection offsets when injecting over 5-150 turns is summarised in Fig. 3.4b.
The values are given in units of Δ𝑎𝑦/𝜎𝑦,L4 and are estimated using 𝛽𝑦 = 44m at the distribution
kicker [95, "PSB 2021: LHC-injection optics"]. The resulting offsets are within ±0.75𝜎𝑦,L4 in all
rings, which corresponds to Δ𝑦 ≈ ±1mm at the injection foil. The average offsets when injecting
over multiple turns are marked by the circles in Fig. 3.4b. The maximum average error modelled
in all rings is listed in Table 3.3 as an indication of the expected systematic error contribution
from the distributor.

Distribution Septum Flat-Top Ripples (BIr.SMV10, Vertical, Systematic)

The vertical distribution septum (see Section 2.3.3) also features a reproducible flat-top ripple,
which can be approximated by a sine wave with 10 kHz oscillation frequency and a peak-to-peak
amplitude of < 0.025%, as specified in [122]. The beam going to ring 3, i.e the ring in which
the beam production studies are performed, is not deflected and septa ripples are therefore not
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Figure 3.5: Trajectory modulation along the Linac4 pulse, observed with beam position monitors (BPMs)
at the beginning of the BI-line, i.e. upstream of the distribution septa and kickers. Top: transverse position
modulation along the part of the pulse, which is injected into R4 (over 33 turns) and R3 (over 64 turns,
with Δ𝐸rms = 250 keV energy spread). Bottom: position error of each Linac4 bunch relative to the steering
bunch, i.e. the beam injected over the first PSB turn in each ring. The error is reconstructed using the
offset variation between LTB.BPM30 and the respective BI BPMs and the optics model of the transfer line.
The dashed lines show the reconstructed offset of each individual bunch. The solid lines display the average
steering offset when injecting beam over multiple turns.

further considered here†.

Modulation of the Position Along the Linac4 Pulse (Horizontal and Vertical,
Systematic)

Various sources in Linac4 already upstream of the beam distribution system can cause a systematic
modulation of the position along the delivered Linac4 pulse. This modulation is partially corrected
by an adaptive feed-forward system. Figure 3.5 (top) illustrates the horizontal and vertical ripples
measured at several BPMs just before (LTB.BPM30) and at the beginning of the BI-line (BI.BPM00-
30, upstream of the distributor and the septum), when injecting beam over 33 turns into R4 and
over 64 turns into R3. As steering is performed in each ring using the beam, which is injected from
Linac4 over the first PSB turn, it is of interest for injection precision studies to consider the position
modulation relative to this reference bunch. The measured transverse positions and the modelled
Twiss parameters [123, "PSB Injection - AD Stitched, optics for 100 kV debuncher voltage"] at

† The septa provide a kick of −163.7mrad to bend the beam vertically into R1, −129.5mrad into R2 and 129.5mrad
into R1. The effective error seen by the beam depends on the trigger timing between the septa and the distributors
and is hence specific for different numbers of injected turns. However, the maximum anticipated error for ring 1, 2
and 4 is Δ𝑎𝑦/𝜎𝑦,L4 ⪅ 0.2, which is operationally acceptable.
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Figure 3.6: Quantification of the non-nominal kick introduced during the decay of the KSW bump in 2021
for 𝑄𝑥/𝑄𝑦 = 4.22/4.39.

the respective BPMs are used to reconstruct this error in units of beam sigma (using Eq. (1.24)).
The results are illustrated in Fig. 3.5 (bottom) using the dashed lines. The solid lines indicate the
cumulative average offset when injecting over 𝑡 µs. This procedure is subject to uncertainties in
the BPM acquisitions and the modelled optics during the commissioning phase. This can also be
seen by the different results when reconstructing the same position modulation with different
BPMs. The average standard error obtained over all acquisitions is 𝜎𝑎𝑦/𝜎𝑦 ≈ 0.022. However,
this approximation suffices to quote an expected average position error when injecting multiple
bunches, as reported in Tables 3.2 and 3.3.

Mismatch During the KSW Decay (Horizontal, Systematic)

Another source of injection mismatch was identified during beam commissioning connected to
the decay of the KSW bump. Figure 3.6a shows the horizontal turn-by-turn (TbT) beam position
measurements at the 16 ring BPMs during the first 400 µs after injection. In this example, the KSW
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3.2 Characterising Sources of Steering Errors and Ripples

bump is programmed to decay after 100 µs. This decay is particularly prominent when looking at
the BPMs, which are within the KSW bump (BPM1 and BPM16). These measurements reveal an
erroneous horizontal kick, which occurs during the KSW decay (slope 3, here from 100-111 µs)
and increases the horizontal oscillation amplitude. This observation suggests a discrepancy in
the decay of the four KSW magnet currents, which is subject to future studies. As input for the
painting studies, the erroneous kick is quantified here by comparing the action 𝐽𝑥 and phase
Φ𝑥 directly before (𝜏0 = 65-90 µs) and after the decay (𝜏1 = 125-150 µs). These are determined
from the measured oscillation using a sinusoidal fit (Fig. 3.6b)†

𝑥𝜏,osc (𝑡) =
√︁
2𝐽𝑥,𝜏 · 𝛽BPMi · sin

(︁
2𝜋 · (︁𝑡 · 𝑄𝑥,𝜏 − 𝜙𝜏

)︁ )︁
. (3.6)

The erroneous kick can be derived in normalised coordinates using

Δ𝑥 ′
2
= 2𝐽𝑥,1 + 2𝐽𝑥,0 −

√︁
2𝐽𝑥,0 ·

√︁
2𝐽𝑥,1 · cos (2𝜋 · (𝜙0 − 𝜙1)), (3.7)

as displayed schematically in Fig. 3.6c. This reconstruction is performed in all rings, for all BPMs.
For each acquired shot, the average and standard error for the 16 different BPMs are estimated and
displayed in Fig. 3.6d. The individual lines correspond to multiple acquired shots. The estimated
horizontal error in units of beam sigma is 𝑎𝑥/𝜎𝑥,L4 ≈ 0.7.

Systematic Drifts and Shot-to-Shot Fluctuations due to External Influences on Linac4
and PSB Orbit Stability (Horizontal and Vertical)

The reported Linac4 trajectory stability was 1-3mm peak to peak in 2021 [88, 90]. Systematic
shot-to-shot variations are mainly attributed to magnetic stray fields of elements pulsing for
neighbouring machines and transfer lines (e.g. the main magnets of the PS). Automated tools
help to monitor and correct such errors [88] and are therefore excluded during the measurements
of the beam production schemes presented in this thesis.

3.2.2 Summary of Expected Errors in Ring 3

Tables 3.2 and 3.3 summarise the identified horizontal and vertical average steering errors when
injecting beams with different batch lengths. The systematic error sources are combined using a
the root of the sum of squares. The resulting expected steering offsets are within the specified
limits of Δ𝑢 ⪅ 2mm and are hence not expected to impact the performance of the operational
beams.

When injecting beam over a single turn, all systematic errors originating in the Linac4 and the
BI line can be compensated by steering. The remaining error sources are the steering imprecision,
shot-to-shot fluctuations (which are both negligible) and the systematic mismatch during the
decay of the KSW in the horizontal plane. When injecting over multiple turns, the horizontal and
vertical beam positions are modulated due to various error sources in Linac4 and the BI line. This
trajectory modulation is especially prominent in the vertical plane. The resulting systematic errors
† Note that the commonly applied Fast Fourier Transform (FFT) analysis for estimating action and phase from TbT
data is not applicable in this case due to the small number of signal sample points (here 𝑁 = 25). The limited
spectral resolution yields significant systematic errors.
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Table 3.2: Main contributions to horizontal delivery imprecision into the PSB (𝜎𝑥,foil = 1.65mm).
Type Error source Unit Injection over N turns/ring

N=1 5 10 35 80
Random Injection oscillation jitter 𝜎𝑥,L4 0.2 0.2 0.2 0.2 0.2
Systematic Steering precision 𝜎𝑥,L4 0.3 0.3 0.3 0.3 0.3
Systematic KSW decay 𝜎𝑥,L4 0.7 0.7 0.7 0.7 0.7
Systematic Drift along L4 pulse 𝜎𝑥,L4 0 0.15 0.15 0.15 0.15

Random Random error 𝜎𝑥,L4 0.2 0.2 0.2 0.2 0.2
Systematic Total syst. error (sum) 𝜎𝑥,L4 0.76 0.8 0.8 0.8 0.8

Table 3.3: Main contributions to vertical delivery imprecision into the PSB (𝜎𝑦,foil = 1.3mm).
Type Error source Unit Injection over N turns/ring

N=1 5 10 35 80
Random Injection oscillation jitter 𝜎𝑦,L4 0.1 0.1 0.1 0.1 0.1
Systematic Steering precision 𝜎𝑦,L4 0.2 0.2 0.2 0.2 0.2
Systematic Distribution kicker 𝜎𝑦,L4 0 0.3 0.3 0.5 0.5
Systematic Drift along L4 pulse 𝜎𝑦,L4 0 0.3 0.2 0.2 0.2

Random Random error 𝜎𝑦,L4 0.1 0.1 0.1 0.1 0.1
Systematic Total syst. error (sum) 𝜎𝑦,L4 0.2 0.5 0.5 0.6 0.6

depend on the number of turns, over which beam is injected into each ring. Particular attention to
these modulations has to be given when injecting high-brightness beams over 2-10 PSB turns, due
to the small produced beam size but the large overshoot of the various power converter ripples.
The listed errors are worst-case estimates and more detailed studies considering different

trigger timings, verified optics models and the phase advance between the different elements will
give a more precise knowledge about the error distribution for future studies. Additionally, it is
encouraged to complement to presented studies by systematically assessing the impact dispersion
and optics mismatch, particularly for R1, R2 and R4.

3.3 Emittance Growth due to Multiple Coulomb Scattering at the
Stripping Foil

Another source of emittance growth during the PSB injection process is multiple Coulomb scattering
at the stripping foil (Section 2.3.2). The generated blow-up has a Gaussian characteristic and can
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Table 3.4: Configurations for measuring the foil scattering-induced emittance growth.
Parameter Unit Value
Injected intensity p+ 1.5 × 1011
Number of injected turns 3
Estimated (average) injection errors (see Section 3.2)
Horizontal mm 1-1.5
Vertical mm 0.5-1
Injection painting settings
Horizontal painting offset Δ𝑥 mm 0 (on-axis)
Vertical painting offset Δ𝑦 mm 0 (on-axis)
Number of foil crossings 𝑁F - 1-150
PSB settings
𝑄𝑥/𝑄𝑦 at injection (set) - 4.17/4.23
𝛽-beating correction - no
𝑄𝑥/𝑄𝑦 at injection (modelled and measured) - 4.17/4.25
𝑄𝑥/𝑄𝑦 at extraction - 4.17/4.23
Values for analytic approximations
𝛽𝑥 at the foil (modelled at injection) m 5.7 (±10%)
𝛽𝑦 at the foil (modelled at injection) m 4.0 (±10%)
Thickness of the carbon stripping foil µg cm−2 200 (±10%)
Expected incoherent tune spreads at injection
|Δ𝑄𝑥,max |/|Δ𝑄𝑦,max | for 𝑁𝑡 ⪅ 50 turns - ⪆ 0.15 / ⪆ 0.2
|Δ𝑄𝑥,max |/|Δ𝑄𝑦,max | for 𝑁𝑡 ⪆ 50 turns - ⪅ 0.15 /⪅ 0.2

be analytically approximated through

𝜖𝑢,new = 𝜖𝑢,0 + 𝛽𝑢,foil
2 < Θ2 > (3.8)

in the respective plane 𝑢 = 𝑥, 𝑦 (see e.g. [111]). The squared rms scattering angle < Θ2 > ∝ 𝑁F ·𝑑
is defined in Eq. (1.52). Note that the emittance increase is proportional to the number of foil
crossings 𝑁F, the foil thickness 𝑑 and the 𝛽𝑢,foil-function at the foil.

The flexibility to customise the number of foil crossings enables us to experimentally characterise
the installed foils concerning scattering-induced emittance growth for the first time and assess
their impact on beam degradation [124].

3.3.1 Methodology

Table 2.3 lists the three foil types used operationally in 2021. Two foils of each type are installed
per ring. The different foils are characterised by measuring the beam emittance as a function of the
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Figure 3.7: Emittance growth due to multiple Coulomb scattering at the PSB stripping foil. Left: transverse
emittances for an increasing number of foil passages 𝑁F (foil type 3). Right: transverse emittances obtained
for different foil types in case of 𝑁F = 150 foil passages.

number of foil passages of the circulating beam, which are set to 1-150 crossings by programming
the KSW decay accordingly.

The machine configurations and beam parameters are summarised in Table 3.4 and correspond
to an INDIV-like beam set-up (see Section 4.5): beam with an intensity of 𝑁p+ = 1.5 × 1011 p+ is
injected on-axis over 3 PSB turns. The set WP (𝑄𝑥 = 4.17, 𝑄𝑦 = 4.23) is constant over the cycle.
The vertical 𝛽-beating, which is introduced during the first 5ms due to the edge effects and eddy
currents of the injection chicane magnets, is not corrected in these measurements. The resulting
modelled and measured vertical tune at injection is, therefore, 𝑄𝑦 = 4.25 (compare [101]).
The beam profiles are measured using wire scan acquisitions at the end of the cycle (C795,

i.e. at extraction energy). The emittances 𝜖n,fit are retrieved by fitting a Gaussian function to the
measured profile. Especially for multiple foil crossings one obtains Gaussian beam profiles without
tails and hence 𝜖n,fit ≈ 𝜖n,rms. The measured emittances are benchmarked with analytic estimates
and multi-particle simulations. Analytically, the emittance growth (Eq. (3.8)) is computed using
the scattering angle obtained from Molière’s formalism with logarithmic correction for thin targets
Eq. (1.52). In the PTC-pyOrbit [70] simulations, foil scattering is included through repeated single
Coulomb scattering [79]. The rms width of the resulting distribution approaches Eq. (3.8) for
multiple foil passages. The simulations are conducted for the first 5ms of the cycle (up to C280).
Based on the chosen WP evolution, no significant emittance degradation is expected between the
acquisition times of the simulation (C280) and measurements (C795).

3.3.2 Results and Discussion

Figure 3.7 displays the emittance as a function of the number of foil crossings 𝑁F for the GSI-200
foil (type 3, see Table 2.3). Good agreement is found between the analytical, simulation and
measurement results for 𝑁F > 30-50. Both the anticipated linear dependence on the foil crossings
and the magnitude of the horizontal and vertical emittance growth are well reproduced. For less
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than 𝑁F < 30-50 foil crossings, the measured are larger than the simulated emittances. This can
be explained by emittance growth due to injection mismatches and/or space charge (compare
Section 1.5.5). Space charge-driven emittance growth on the vertical integer resonances is also
obtained in simulations for 𝑁F < 30 (black circles in Fig. 3.7). 𝛽-beating can explain discrepancies
between measurements and simulations due to a change of optics at the foil compared to the
simulated 𝛽𝑥 = 5.7m and 𝛽𝑦 = 4m. Including ±10% 𝛽-beating and a 10% discrepancy in the foil
thickness yields analytic parameter uncertainties as indicated by the shaded intervals in Fig. 3.7.

For future operational decisions, it is of interest to compare the different foil types regarding their
scattering properties. Figure 3.7 (right) displays the respective emittance growth for 𝑁F = 150,
averaged for multiple foils of the same type (four foils per type in ring 2 and 3). The blow-up
generated for all foils is consistent with the model and within specifications. The smallest emittance
growth is obtained with the GSI-200 foil (type 3), followed by the XCF-200 (type 1). The multi-
layer graphene foil MLG-250 yields the largest emittance increase. This foil has a thickness of
250 µg cm−2, but is stated to correspond to carbon with a thickness of 200 µg cm−2 [108]. For
𝑁F = 150, the difference between the emittance growth induced by GSI-200 and MLG-250 is
0.4µm in the horizontal and 0.3µm in the vertical plane.

3.4 Conclusion and Outlook

Characterising the main sources of injection imprecision is an essential part of beam commissioning
and input for subsequent beam production studies, particularly for low-intensity and low-emittance
beams.
During the PSB injection into ring 3, steering errors and ripples are the main sources of

brightness degradation. The main error in the horizontal plane is a mismatch, which occurs during
the KSW decay. The vertical steering imprecision is dominated by reproducible ripples of the beam
distribution system and the position modulation along the L4 pulse. The quantified errors are
within specifications and are therefore not expected to impact the performance of the operational
beams. However, the estimated values will be used as input when comparing simulations and
measurement results in Chapter 4.

Another source of beam degradation in a CEI system is foil scattering-induced emittance growth.
A first experimental assessment verifies that all installed foils are within specifications and produce
an emittance growth as anticipated from simulations. No significant scattering-induced beam
degradation is expected for any foil type when producing high-brightness LHC-type beams (see
Section 4.4). Follow-up studies beyond the commissioning period are encouraged to further
improve the comparison with the theoretical models. A key component will be correcting the
𝛽-beating induced by the injection chicane to increase the certainty of 𝛽𝑢 at the foil.
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Chapter 4
Transverse Emittance Tailoring with the

New PSB H− Injection System

The flexibility to apply transverse phase space painting during the PSB injection process paves
the way for delivering more customised beam distributions to the various users. At the same time,
the new system requires a fundamental redesign of the injection schemes compared to the pre-LS2
operation with the conventional multiturn injection.
This chapter outlines selected simulation and measurement results for commissioning the

painting schemes and tailoring the requested beam distributions. The presented studies focus on
high-intensity beams for the ISOLDE facility (Section 4.3), high-brightness beams for the HL-LHC
era (Section 4.4) and LHC Single Bunch Beams (Section 4.5). The challenges posed to achieve
and push beyond the specified brightness and intensity targets are highlighted. Automatically
adapting the developed painting schemes based on beam instrumentation feedback and changing
user requests will become a key aspect for increasing the operational efficiency in the future. The
concepts introduced in this chapter form a basis for the development of respective numerical
optimisation frameworks, which are further discussed in Chapter 6.

4.1 Target Beam Characteristics

4.1.1 Objective and Investigated Beam Types

The first objective for commissioning the beam production schemes with the new CEI system and
hence the primary purpose of these studies is to reproduce the pre-LS2 beam performance for all
beam types. The respective parameter set is outlined in Table 4.1. It should be noted, that selected
target values differ from pre-LS2 specifications, as they are adapted to the new beam production
schemes in the entire injector chain and the upgraded PSB (new aperture bottlenecks). For all
beam types, the aim is to achieve the listed brightness targets while limiting the losses to a
few per cent. Tailoring these target emittances is achieved by customising the KSW modulation
functions and the vertical offset Δ𝑦 of the injected beam (compare Section 2.3.2 and Fig. 2.7). For
the scope of this chapter, the various beam types are categorised regarding beam requirements
and transverse painting strategies:
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Table 4.1: Target beam characteristics at extraction for the various PSB users in 2021: the
respective pre-LS2 values are listed for comparison if the specifications differ.

Beam type 𝑁p+ / ring
(1010 p+)

𝜖𝒙,n,fit
(µm)

𝜖𝒚,n,fit
(µm)

𝜖long
(eVs)

Harm.
number

at injection

LHC single bunch 0.5-12 0.8-2.5 0.8-2.5 0.2-0.3 1
LHCPROBE 0.5-2 0.8 0.8 0.2 1
LHCINDIV 2-12 <2 <1.5 0.3 1
LHCINDIV_VDM 10 ∼2.5 ∼2.5 0.3 1

LHC Beams 40-340 0.6-2 0.6-2 0.9-1.3 1, 1+2
2018: LHC 25ns DB_A/B 165 ∼2 ∼2 1.3 1
2018: LHC 50ns DB_A/B ∼80 ∼1.5 ∼1 1.3 1
2018: BCMS 25ns DB_A/B 85 <1.1 <1.2 0.9 1
2018: LHC 8b4e_BCS 45-60 ∼0.6 ∼0.6 ∼0.82 1
2018: LHC 8b4e DB_A/B ∼165 ∼2 ∼2 1.3 1
2021: HL-LHC 342 <1.7 <1.7 1.5 (-3) 1+2
2021: BCMS 171 <1.36 <1.36 1.5 (-3) 1+2

Fixed target beams 50-1000 0.6-2 0.6-2 0.9-1.3 1, 1+2
Antiproton Decelerator
2018: AD 400±50 9 5 <1.3 1+2
2021: AD 400±50 <9 <5 <1.3 1+2

East Area
EAST 50-67 <1.5 <1.5 <1.3 1

SPS fixed target beams
2018: SFTPRO_MTE 600 ∼6-8 ∼5-6 1.3 1+2
2021: SFTPRO_MTE <600 <10 2.5-3 1.3 1+2

n_TOF
2018: TOF 850 11 9 1.7 1+2
2021: TOF 850 <10* <6* 2.5 1+2

ISOLDE
2018: NORMGPS/HRS 900 <15 <8 <1.8 1+2
2021: NORMGPS/HRS 900 <10 <6 <2.2** 1+2
STAGISO 1.4GeV ∼200/350 <10 <6 <1.8 1+2

* In 2021 established beam sizes after injection and long-term target beam sizes at extraction [91].
** Agreement on new, relaxed longitudinal beam specifications during the 2021 beam commissioning [91].
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4.2 Methodology for Comparing Multi-Particle Simulations with Measurements

Section 4.3 - Fixed target beams: The fixed target experiments request different intensities
and transverse emittances, which are tailored by customised horizontal painting and vertical
injection offsets. For several high-intensity users efforts aim to increase the delivered intensity
per cycle while minimising losses (e.g. towards 𝑁p+ > 1 × 1013 p+ per ring for ISOLDE
users).

Section 4.4 - LHC high-brightness beams: An on-axis injection in both planes is foreseen as
a baseline, meaning that no transverse painting is applied. Injection studies during beam
commissioning focus on minimising emittance degradation due to injection errors, such as
the imprecisions discussed in Chapter 3.

Section 4.5 - LHC single bunch beams: In selected cases, LHC requests single bunch beams
with low intensity but blown-up Gaussian transverse profiles. The produced emittances
should be similar to those of high-brightness LHC beams. The requested characteristics are
established by combining emittance growth from transverse offsets and multiple passages
through the stripping foil.

4.2 Methodology for Comparing Multi-Particle Simulations with
Measurements

Measurements of the painting schemes are performed for the various users as part of the post-LS2
commissioning. The measurements are compared to multi-particle simulations using the PTC-
pyORBIT simulation framework of the upgraded PSB [125] with the 2021 aperture model [95]. The
simulations are performed for the first 5-30ms of the cycle, using similar machine configurations
as in operation. Scattering at the stripping foil is incorporated using the simple scattering model of
pyORBIT, which repeats a single Coulomb scattering event multiple times during a foil passage.
The simulation model also includes optics perturbations, which are introduced during the first
5ms by the injection chicane (edge effects and eddy currents during the decay). For selected users,
if explicitly mentioned, the octupole and sextupole strengths of the multipole correctors are set to
reproduce the resonances as observed in the PSB ring 3 in 2021 [126].

These simulations serve as a guideline to interpret the experimental observations. The expected
injection errors as identified in Chapter 3 are listed for all studies and used to explain discrepancies
between simulations and measurements. If explicitly mentioned, these errors are included in the
simulations by adapting the painting accordingly.

When qualitatively comparing simulated and measured profiles, the simulated betatronic distri-
butions 𝑓𝛽,sim(𝑢) are transformed to the configurations of the measurements with

𝑓sim(𝑢) = 𝑓𝛽,sim(𝑢) ·
√︄

(𝛽r𝛾r)sim · 𝛽𝑢,WS
(𝛽r𝛾r)meas · 𝛽𝑢,sim + 𝐷WS · 𝑔dpp, meas, (4.1)

considering the optics functions at the location of the simulation results 𝛽𝑢,sim and the wire
scanner (𝛽𝑢,WS, 𝐷𝑢,WS), the respective relativistic factors 𝛽r𝛾r and the momentum distribution
measured at the C-time of the measurement 𝑔dpp, meas.
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(a) Pre-LS2: conventional 50 MeV multiturn injection. (b) Post-LS2: 160 MeV CEI system.

Figure 4.1: Intensities measured in the PSB and transfer lines for ISOLDE beams before (2018) and after
the upgrade (2021): the distributions show all cycles recorded over an entire operational year. The intensities
are measured in the injection line (blue), in the PSB after the injection process (green), in the PSB before
the extraction process (yellow) and in the transfer line to the ISOLDE facility (red).

4.3 High-Intensity Fixed Target Beams

This section discusses phase space painting schemes for fixed target beams using the example of
high-intensity ISOLDE users. The ISOLDE beam facility [1] requests a high current on the target,
which will eventually require the PSB to push the delivered intensity from the currently operational
𝑁p+ = 0.8-1 × 1013 to 1.6 × 1013 p+ per ring [10]. Reducing the charge density during beam
accumulation through phase space painting is crucial for minimising the space charge detuning
and the consequent emittance growth and/or losses due to interaction of the detuned protons
with betatronic resonances (compare Section 1.5.5).

4.3.1 Targets and Restrictions for the ISOLDE Beam Production

Pre-LS2, injecting ISOLDE beams with the conventional multiturn injection caused 30-40 % losses,
predominantly during injection at the septum but also during RF capture and along the cycle. These
losses are evident in the histograms in Fig. 4.1a, which display the combined intensities recorded
in all four PSB rings and the transfer lines over the entire 2018 run (𝑁p+ = 0.8-1 × 1013 p+ per
ring). Figure 4.1b shows that the aim to provide similar intensities as pre-LS2 with the new CEI
system, while keeping losses in the PSB globally to a few per cent, was achieved in 2021.

This section compares simulations and measurements to study the impact of different injection
painting settings on the loss rates and transverse profiles. The studies focus on the operational
intensities of 0.8-0.9 × 1013 p+ per ring, injected over 80 turns. The general parameters applied
during these studies are listed in Table 4.2 and motivated by loss reduction studies [127]. Fig-
ure 4.2a shows the intensitymeasured along the cycle for suchmachine configurations and different
paintings. It can be seen, that the intensity evolution is dominated by two loss mechanisms, which
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Table 4.2: Target characteristics and general machine configurations for producing high-intensity
ISOLDE beams in post-LS2 painting studies (2021).
Parameter Unit Value
Target
Target emittances 𝜖𝑥,n / 𝜖𝑦,n µm / µm <10 / <6
Intensity per ring (2021) p+ 0.8-1.0 × 1013
Intensity per ring (long term target) p+ 1.6 × 1013
Maximum losses along the cycle % 5-10

Linac4 settings (machine development studies 2021)
Number of injected turns - 80-90
Injected intensity p+ 0.8-0.9 × 1013
Energy spread of injected beam 𝑑𝐸rms keV 280
Chopped bunch length µs 0.6

PSB settings
Harmonic of RF bucket at injection (voltage program as in
Fig. B.1a) - 2
𝑄𝑥/𝑄𝑦 at injection (set tune) - 4.22/4.36
𝛽-beating correction enabled - no
𝑄𝑥/𝑄𝑦 at injection (modelled tune) - 4.22/4.38
𝑄𝑥/𝑄𝑦 at injection (measured tune) - 4.22/4.39
𝑄𝑥/𝑄𝑦 at extraction - 4.17/4.23

are both affected by the originally tailored transverse distribution†:

• Aperture limitations during the injection and extraction process cause losses of < 1%.

• The majority of the losses, i.e.⪆ 2-3%, are caused along the cycle by trapping of particles in
the tune spread tail on strong resonances. Figure 4.2b shows the respective simulated tune
spreads after 25ms. Due to the high beam brightness as well as the resonances present in the
machine, it is not possible to place the full footprint in a tune space free of resonances [91,
127]. The WP is chosen as𝑄𝑥 = 4.22 and𝑄𝑦 = 4.36‡ to cross only the 4th-order resonances,
4𝑄𝑦 = 17 and 2𝑄𝑥 + 2𝑄𝑦 = 17 (green in Fig. 4.2b) and the 3rd-order skew resonance,
3𝑄𝑦 = 13 (yellow, dashed) during the tune ramp. Further, the energy spread of the injected
beam was reduced from the originally foreseen 𝑑𝐸rms = 440 keV to 280 keV. This reduces
the losses, which occur due to periodic resonance crossing in the presence of space charge

† Loss mechanisms which are not sensitive to the transverse painting settings are not further included in this section.
However, these losses are either not dominant for operational ISOLDE beams (e.g. large angle Single Coulomb
scattering at the stripping foil causing < O(0.1)% losses or longitudinal out-of-bucket losses) or mitigated by
adequate operational settings (e.g. transverse instabilities cured by WP choice and transverse feedback).

‡ Note that the vertical 𝛽-beating introduced by the chicane is not corrected in these studies, causing 𝑄𝑦 = 4.39
during the injection process.
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Figure 4.2: Intensity evolution along the PSB cycle for different injection paintings at 𝑄𝑥 = 4.22, 𝑄𝑦 = 4.36:
applying a vertical offset has a significant effect on the observed loss rates (KSW: 𝐴0 = 35mm, 𝑡1 = 10 µs,
𝑡2 = 80 µs, 𝐴1 = 𝐴2 = 20mm).

as shown in literature [128].

The aim when optimising the painting is thus to establish a beam cross-section within the aperture
limitations while minimising the space charge forces. The latter aims not only to reduce the
footprint but to limit the interaction of both the tune spread core and tails with strong resonances
for a given WP (Fig. 4.2b) [129].

It has to be noted that general machine optimisation studies [59, 91, 127], including resonance
compensation, correction of the 𝛽-beating introduced by the injection chicane, WP settings and
tuning of the longitudinal distribution, are continuously ongoing. However, the painting concepts,
which will be discussed in this section are transferable to evolving machine configurations or
intensities when respectively adapting the painting functions.

The studies performed at the operational WP and intensity will be complemented by selected
painting studies with reduced intensity at 𝑄𝑥 = 4.14 and 𝑄𝑦 = 4.22, i.e. a WP below the
mentioned 3rd and 4th-order resonances. These tests aim to verify loss patterns due to exceeding
beam sizes and transverse distributions without the influence of the mentioned resonances.

Aperture Considerations and Expected Loss Maps

The main goal for the ISOLDE beam production is the reduction of losses. The delivered transverse
emittances are not a design parameter per se but rather a consequence of this loss optimisation
and beam size limitations in the machine. To enable a correlation of painted beam sizes and loss
levels in the subsequent studies, the main anticipated aperture bottlenecks in the machine are
introduced in this segment.
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(b) 𝑡 = 100 µs; 𝐴KSW = 21.5 mm.
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(c) 𝑡 = 120 µs; 𝐴KSW = −9 mm.

Figure 4.3: Horizontal beam envelope in the injection region when injecting high-intensity fixed target
beams with 𝜖𝑥,n,rms = 9 µm. The black line indicates the closed orbit, which is created by the KSW and
BSW orbit bumps. Yellow: Gaussian horizontal distribution with a margin for orbit and alignment errors;
blue: simulated distribution; pink: simulated distribution with a margin for orbit and alignment errors. The
anticipated aperture bottlenecks are (A) the focusing quadrupoles and (B) the beam scrapers of main
dipoles within the bump.

Horizontally, the acceptance is limited in the injection region during the painting process.
The vertical limit is the upgraded recombination septum in the extraction line. Previous studies
analysed the acceptance of the PSB based on Gaussian beam distributions to guide the design
phase of the LIU upgrade. These conservative estimates yield maximum allowed normalised
1𝜎 emittances of 𝜖𝑥,n,max = 9 µm [46] and 𝜖𝑦,n,max = 6 µm [130] in order to fit the beam into
the horizontal 4𝜎𝑥,max and vertical 2.5𝜎𝑦,max acceptance, respectively. A new absorber system
comprising a movable and a fixed mask was consequently installed during LS2 in P08 based on
these estimates. The fixed mask (TSAB8L4) features per design an acceptance of 4𝜎𝑥,max and
3.5𝜎𝑦,max at injection energy. When inserting the movable mask (TSAA8L4), the acceptance is
reduced to 3.5𝜎𝑥,max and 2.5𝜎𝑦,max [131].

Figure 4.3 visualises the simulated horizontal beam envelope during the injection process, when
painting a beam with 𝜖𝑥,n, rms = 9 µm and 𝜖𝑦,n, rms = 6 µm†. This plot shows, that the horizontally
painted distribution can feature strongly under-populated tails. The envelope is thus smaller than
for a Gaussian beam with similar 𝜖n,rms (yellow), which is computed using

𝐸𝑛𝑣𝑢 = 3 · √︁𝛽𝑢𝜖𝑢 + 𝐷𝑢 · 𝑑𝑝/𝑝max + 𝑥err,tot,

with the 2021 optics model [95, "psb/2021/scenarios/isolde/0_injection"]. The total transverse
error 𝑥err,tot combines mechanical alignment (Δ𝑥mech = 1mm) and orbit errors (Δ𝑥orb = 5mm ·√︁
𝛽𝑢/𝛽𝑢,max).
† Injection of 𝑁p+ = 1.15 × 1013 p+ per ring over 100 turns with 𝐼L4 = 25mA, 𝐶𝐹 = 0.7, 𝑑𝐸rms = 440 keV. Painting
with 𝐴0 = 35mm, 𝐴1 = 𝐴2 = 21.5mm 𝑡1 = 10 µs, Δ𝑦 = 7mm at 𝑄𝑥 = 4.22, 𝑄𝑦 = 4.45.
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(b) 𝑡 = 1ms.
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(c) 𝑡 = 5ms.

Figure 4.4: Vertical profile and beam envelope at the location of the mask (P08) during the first 5 ms of the
high-intensity fixed target beam production with 𝜖𝑦,n,rms = 6 µm. The black line indicates the closed orbit.
The aperture limitations of the moveable and fixed mask are indicated in red and pink, respectively. Yellow:
Gaussian vertical distribution with a margin for orbit and alignment errors; blue: simulated distribution;
pink: simulated distribution with a margin for orbit and alignment errors.

The 3𝜎 Gaussian reference envelope (yellow) is compared in Fig. 4.3 with envelopes containing
99.7 % of the simulated beam distributions, without (blue) and with (pink) orbit and alignment
errors. In the multi-particle simulations, the distribution is retrieved at each turn at the location
of the injection foil. The respective 6D distribution is consequently linearly mapped along the PSB
using Eq. (1.24) to produce the envelopes plotted in Fig. 4.3.
The large amplitude of the KSW bump during beam accumulation, 𝐴KSW ≈ 18-25mm, limits

the aperture at the elements within the bump over a few tens of turns. The main bottlenecks are
observed in the focusing quadrupoles BR.QFO11 and BR.QFO162 up- and downstream of the
injection region (Fig. 4.3, A) as well as the beam scrapers of the main dipoles in P01 and P16,
BR.SPSCRAP11 and BR.STSCRAP162 (Fig. 4.3, B). After the end of beam accumulation the KSW
decays to negative amplitudes for a few hundred turns (𝐴KSW ≈ −9 to 0mm, Fig. 4.3c). During
this time, the same elements limit the acceptance, but on the other side of the machine axis.
The vertical acceptance bottleneck is the newly installed beam absorber in P08. Figure 4.4

illustrates the vertical beam envelope in P08 after 1ms and 5ms. The vertical profiles are closer to
a Gaussian distribution than in the horizontal plane and hence the limit of 𝜖𝑦,n,rms ≈ 6 µm more
accurate.
Additionally to the non-Gaussian characteristic, it should be noted that painting can produce

beams with a quasi rectangular 𝑥-𝑦 cross-section while the apertures of some elements are circular
or elliptical. When discussing different painting schemes below, emphasis will therefore be put on
the evolution of the 𝑥-𝑦 cross-section at the location of the bottlenecks.

The simulated cumulative loss map (Fig. 4.5a) and temporal loss evolution (Fig. 4.5b) confirm
that, after the initial horizontal beam loss related to the injection process, the majority of the
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Figure 4.5: Simulated loss locations and evolution for high-intensity beams: results for a beam with
𝑁p+ = 1.15 × 1013 p+ per ring, injected over 100 turns with 𝐼L4 = 25mA, 𝐶𝐹 = 0.7, 𝑑𝐸rms = 440 keV.
Painting with 𝐴0 = 35mm, 𝐴1 = 𝐴2 = 21.5mm 𝑡1 = 10 µs, Δ𝑦 = 7mm at 𝑄𝑥 = 4.22, 𝑄𝑦 = 4.45.

simulated losses are expected vertically at the absorber. Potential longitudinal off-bucket particles
are lost at the horizontal aperture of the absorber after a fewms.

4.3.2 Painting Scenarios

When discussing the impact of painting setting variations on the resulting beam and loss distribu-
tions, both during injection and along the cycle, it is essential to highlight the different effects,
which contribute to the transverse beam evolution during the first milliseconds. These effects
mainly include emittance growth purely defined by the applied painting actions, beam core and/or
halo growth caused by the interaction with (mainly integer) resonances or emittance exchange
due to interaction with the space charge-driven Montague resonance 2𝑄𝑥 − 2𝑄𝑦 = 0, Eq. (1.51).
This section exemplifies the dynamics for different painting scenarios using multi-particle

simulations. The machine configurations correspond to operational settings, as listed in Table 4.2,
i.e. 𝑁p+ ≈ 0.8 × 1013 p+ injected over 80 turns at 𝑄𝑥 = 4.22 and 𝑄𝑦 = 4.36. The examined
painting settings are summarised in Table 4.3 and Fig. 4.6 and are chosen to produce comparable
transverse profiles and rms emittances after 25ms despite triggering different growth mechanisms.
Exceptions are cases B and E, which are producedwith extreme painting settings and only presented
for illustrative purposes. The evolutions of the phase spaces, profiles, envelopes and tune spreads
are illustrated in Figs. 4.7 to 4.10. Intermediate paintings can result in a combination of the
presented examples.

A. Painting-driven emittance evolution in both planes (Fig. 4.7): This scenario has been tar-
geted in all previous phase space painting studies for the PSB injection system [44–48]. It aims at
fully defining the beam distribution through the painting settings rather than the interaction of
the beam core with the integer resonances. Minimising the incoherent tune spread to avoid the

71



Chapter 4 Transverse Emittance Tailoring with the New PSB H− Injection System

Table 4.3: Transverse painting parameters for cases A to E and the corresponding simulation results (KSW
set to 𝐴0 = 35 mm, 𝑡1 = 10 µs in all cases).
Case 𝐴1

(mm)
𝐴2
(mm)

𝚫𝒚
(mm)

𝜖𝒙,n,rms
at 25ms
(µm)

𝜖𝒚,n,rms
at 25ms
(µm)

x-y
cross-section
at injection

Losses
after

200µs (%)

Losses
after 5ms

(%)
A 21 21 6 ≈8.6 ≈4.3 Rectangular 0.13 0.26
B 29 29 0 ≈9 ≈5.8 Ellipse 0.2 1.25
C 23 23 0 ≈9 ≈4.3 Ellipse 0.14 0.2
D 27 15 0 ≈8.9 ≈4 Ellipse 0.08 0.12
E 16 16 11 ≈17.6 ≈9.2 Rectangular 1 2.5
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Figure 4.6: Transverse painting parameters for the examples presented in case A to E.

integer resonances (here Δ𝑄𝑥 ⪅ 0.2 and Δ𝑄𝑦 ⪅ 0.4) requires painting sufficiently large beam
sizes in both planes. The phase spaces painted in this example feature a hollow characteristic
during the injection process (Fig. 4.7a), which filaments to a more uniform distribution during
the first milliseconds. Horizontally, this structure can be optimised by variation of 𝑡1, 𝐴1 and 𝐴2
to target a more uniform distribution already during painting.

The large actions, with which the bunches are injected in both planes create a quasi rectangular
𝑥-𝑦 cross-section during beam accumulation (red scatter markers Fig. 4.7a). The red contours in
Fig. 4.7c show, that this cross-section reduces the vertical acceptance in the elliptical aperture of
the beam scrapers SPSCRAP11 and STSCRAP162 at the end of beam accumulation. Furthermore,
these particles experience a small detuning in both planes and are prone to particle trapping at
the mentioned 3rd and 4th-order resonances during the tune ramp (yellow and green in Fig. 4.7a).

B. Space charge-driven emittance evolution in both planes (Fig. 4.8): This case is only listed
for academic purposes and is not considered a realistic operational scenario. Failing to reduce
the charge density when painting insufficiently large beam sizes causes incoherent tune spreads
of Δ𝑄𝑥 ≈ 1, Δ𝑄𝑦 ≈ 1 after injection. Both the beam core and the tails interact with strong
resonances in the entire tune space, particularly the integer resonances, which results in an
uncontrolled blow-up of the emittance, halo formation and losses at the beginning of the cycle.
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(a) Emittance and intensity evolution. Phase space and tune
distributions are highlighted at turn 70 and 5000.

(b) Transverse profile evolution. The PSB
acceptance at the respective turn is marked
in grey with a 5 mm margin for orbit and
alignment errors in light grey.

(c) 99.7 % 𝑥-𝑦 envelopes at the bottlenecks
(light grey: 5 mm margin), indicating p+ be-
yond this aperture by scatter markers.

Figure 4.7: Transverse dynamics during the first 5 ms for case A (painting-driven emittance growth).

Note that in the operational tune regime of the PSB, with both tunes being close to 4, the integer
resonances are strong as 4𝑄𝑥 = 16 and 4𝑄𝑦 = 16 are systematic resonances of even order and
can hence be driven by space charge [76, 132].

In addition to losses due to excitation on resonances, such paintings also produce higher loss
rates due to acceptance limitations during the injection process, as listed in Table 4.3. The space
charge-driven growth of the horizontal halo occurs already during beam accumulation, while the
amplitude of the KSW bump is at high values (red envelope in Fig. 4.8c with 𝐴KSW = 29mm).
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(a) Emittance and intensity evolution. Phase space and tune
distributions are highlighted at turn 70 and 5000.

(b) Transverse profile evolution. The PSB
acceptance at the respective turn is marked
in grey with a 5 mm margin for orbit and
alignment errors in light grey.

(c) 99.7 % 𝑥-𝑦 envelopes at the bottlenecks
(light grey: 5 mm margin), indicating p+ be-
yond this aperture by scatter markers.

Figure 4.8: Transverse dynamics during the first 5 ms for case B (space charge-driven emittance growth).

C. Coupling-driven emittance evolution (Fig. 4.9): Painting an initially flat beam aims at avoid-
ing the rectangular characteristic of the transverse distribution, which is obtained in case A.
Injecting vertically on-axis (Δ𝑦 ≈ 0) results in a large vertical tune spread, the interaction of
the beam core with the vertical integer resonances and a consequent space charge-dominated
emittance growth in the vertical plane. In the horizontal plane, however, a large painting offset
Δ𝑥Sl2 is applied, aiming for painting-driven horizontal emittance growth. The horizontal tune
spread is minimised and interaction with the horizontal integer resonances is avoided.
Such paintings can be strongly impacted by the interaction with the space charge-driven

Montague resonance, which is indicated by the red, dashed line in Fig. 4.9a. The initially painted
flat 𝑥-𝑦 cross-section is still recognisable at turn 30 in Fig. 4.9a. Increasing the intensity during
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(a) Emittance and intensity evolution. Phase space and tune
distributions are highlighted at turn 30, 70 and 5000.

(b) Transverse profile evolution. The PSB
acceptance at the respective turn is marked
in grey with a 5 mm margin for orbit and
alignment errors in light grey.

(c) 99.7 % 𝑥-𝑦 envelopes at the bottlenecks
(light grey: 5 mm margin), indicating p+ be-
yond this aperture by scatter markers.

Figure 4.9: Transverse dynamics during the first 5 ms for case C (coupling-driven emittance growth).

beam accumulation results in faster growth of the vertical compared to the horizontal tune spread
during the first 100 turns. This drives not only vertical emittance growth at the vertical integer
resonances but also emittance exchange at the Montague resonance. Transverse coupling already
starts during beam accumulation (i.e. around turn 30), transferring horizontal to vertical action.
The horizontal tune spread can consequently increase beyond Δ𝑄𝑥 > 0.2, despite the large
painting settings. Particles congregate close to the horizontal integer resonances already during
beam accumulation, causing newly injected particles to be piled up at the same location in the
horizontal phase space. The increased local charge density is indicated by the yellow scatter
markers at turn 30 and 70 in Fig. 4.9a.
Coupling at the Montague resonance continues to drive a transfer from horizontal to vertical
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(a) Emittance and intensity evolution. Phase space and tune
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Figure 4.10: Transverse dynamics during the first 5 ms for case D.

action, also after injection. This forms a high-density island in the horizontal plane, which is
marked in cyan at turn 5000 in Fig. 4.9a (compare [33]).

Adapting the horizontal painting, mainly the amplitude and/or the gradient of slope-2, changes
the ratio of vertical and horizontal tune spread and consequently the extent of coupling. It is
enhanced for paintings with constant KSW amplitude during beam accumulation, i.e. 𝐴1 ⪆ 𝐴2,
as most particles are injected at similar densities, causing equivalent horizontal detunings and
probabilities for action transfer to the vertical plane.

However, no significant implication of this coupling-driven beam evolution is identified for the
operational performance, i.e. the loss rates and the resulting beam profiles after > 30ms. The
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Figure 4.11: Transverse dynamics during the first 5 ms for case E.

rectangular characteristic of the 𝑥-𝑦 cross-section is successfully avoided. Compared to case A,
the acceptance during painting increases. At the same time, the accumulation of particles in the
vicinity of the resonances during the tune ramp decreases while providing similar emittances and
envelopes as in case A.

D. Painting-driven in the horizontal and space charge-driven evolution in the vertical plane
(Fig. 4.10): This case aims at painting a flat beam, as in C, while minimising the creation of
high-density islands due to emittance exchange. As in case C, the beam is injected vertically on-axis.
Horizontally, however, the painted action is gradually increased during beam accumulation by
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setting 𝐴1 ≫ 𝐴2. This allows spreading the ratio Δ𝑄𝑥/Δ𝑄𝑦 ≈ const. during beam accumulation
and reduces the number of particles trapped at the Montague resonance. The phase spaces and
profiles (Fig. 4.10) show that such painting results in a more uniform distribution already after
injection. Out of all investigated cases, this painting yields the largest acceptance during the
injection process, as indicated by the acceptance in the profile plot Fig. 4.10b, and the smallest loss
rates during and after injection as listed in Table 4.3. Alternatively to varying slope-2, modifying
𝑡1 or setting 𝐴2 ⪅ 𝐴1, respectively, can also reduce the interaction with the Montague resonance.

E. Exceeding paintings, hollow beams and filamentation-driven beam evolution (Fig. 4.11):
This scenario is listed to complement the other cases and is not realistic in operation. The beam is
injected with exceeding actions in the horizontal and vertical plane, larger than in case A. The
painted beam distribution is extremely hollow and asymmetric. For such extreme painting cases,
the transverse beam evolution can be driven by beam filamentation. As described in Chapter 3,
this beam dilution in phase space is affected by the coherent beam oscillation, the incoherent
space charge and the chromatic tune spread. Such a scenario is illustrated in Fig. 4.11, which
shows the redistribution of the particles in horizontal phase space during the first 200 µs. In the
presented case, the profile after filamentation has a more triangular characteristic, instead of the
more uniform horizontal distribution achieved through painting in e.g. case A.

4.3.3 Methodology for Measurements

During the post-LS2 commissioning, it was possible for the first time to experimentally assess these
painting schemes in the PSB and demonstrate the discussed impact on loss rates and transverse
beam distributions. The measurements aim to probe the entire range from controlled, painting-
driven emittance growth to uncontrolled SC driven emittance growth (cases A to E) by varying the
painting settings Δ𝑦, 𝐴1 and 𝐴2.

Painting Settings

In all measurements, 𝐴0 is set to match the design position of the injected beam and minimise
injection oscillations. Slope-2 is characterised in this chapter using the average offset of the orbit
to the newly injected beam

Δ𝑥Sl2 = 𝐴0 − 𝐴1 + 𝐴2
2 (4.2)

and the gradient

𝑘Sl2 =
𝐴2 − 𝐴1
𝑡2 − 𝑡1

. (4.3)

Applying optimisation algorithms in Chapter 6 will demonstrate that the sensitivity to variations
in 𝐴0 and 𝑡1 is comparatively small. 𝐴0 and 𝑡1 are therefore left constant in the studies presented
in this section.

78



4.3 High-Intensity Fixed Target Beams

Beam Observables

The painting settings will be evaluated regarding several beam loss, intensity and beam size
observables:

• Loss fractions: The operationally relevant figure of merit and objective to minimise is the
total loss fraction, which is obtained using the intensity measured in the transfer line and
the PSB ring. The intensity is acquired using beam current transformers (BCT). The fraction
of particles, which is lost at injection and in the cycle up to a specified C-time 𝑡 is defined as

𝐿𝑡 =
𝑁p+,INJ − 𝑁p+,BR,𝑡

𝑁p+,INJ
, (4.4)

with 𝑁p+,INJ being the intensity of the H− beam measured in the BI line (indicated in grey
in Fig. 4.2a) and 𝑁p+,BR,𝑡 the intensity, which is observed with the ring BCT at the cycle
time 𝑡. The total loss fraction along the entire cycle is labelled as 𝐿C805 and is computed
using the intensity measured with the ring BCT just before extraction, i.e. at C805. 𝐿C275
describes the losses, which occur during the injection process and the first ms of the cycle
and is estimated using the acquisition of the ring BCT after injection, i.e. at C275.

• Loss distribution: The BLMs in the injection region, the ring and the extraction line are
used to obtain spatial loss distributions (see Fig. 2.3). These loss patterns are analysed to
verify the modelled bottlenecks for different painting settings.

• Transverse beam profiles: The transverse distributions are measured with the newly in-
stalled LIU wire scanner [133]. Measurements are mainly performed close to the end of the
cycle (C770). Acquiring the profiles at the PSB extraction energy minimises distortions of
the profiles due to multiple Coulomb scattering at the wire. Further, acquisitions just before
the extraction process enable an analysis of the acceptance limitations in the extraction line.
Additionally, measurements in the first half of the cycle aim at evaluating the profiles during
the tune ramp (Fig. 4.2a, bottom), particularly at C350 in the vertical plane. Acquisitions at
earlier cycle times are discarded, as the profile degradation by multiple Coulomb scattering
at the wire increases with decreasing energy. This scattering distortion is more prominent
in the horizontal than the vertical plane due to the larger beam size, Horizontal reference
measurements during the tune ramp are therefore conducted only at C400. The emittances
are computed in first approximation based on Eq. (1.41). The momentum distribution at the
cycle time of the wire scan is reconstructed using longitudinal tomography [134] (Fig. B.2).
The betatronic transverse beam sizes are reconstructed using the standard Gaussian subtrac-
tion of the dispersive contribution Eq. (1.40), despite the betatronic and longitudinal profiles
being non-Gaussian. However, the error, which is consequently introduced, is accepted as
these first emittance acquisitions mainly aim to identify space charge and painting-driven
regimes and conduct a verification of the expected beam sizes and bottlenecks. Still, to
reduce the error the focus is put on horizontal measurements at C770, due to the more
Gaussian momentum distribution and the smaller energy spread (compare Fig. B.2).
The intensity in the tails is integrated to correlate the loss patterns in the ring and trans-
fer lines to the transverse distributions. The cut-off thresholds 𝑢thres for this integration
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(a) Top: measured intensity along the cycle (1𝜎 error bar, injection:
C275, extraction: C805). The injected intensity is indicated by the
grey bar. Bottom: modelled tune evolution. The vertical tune at
C275 is 𝑄𝑦 ≈ 4.24 due to the uncorrected 𝛽-beating induced by
the injection chicane.

(b) Simulated maximum tune shifts after
5 ms for different paintings (x: bare tune).
Experimentally observed 3rd and 4th-order
resonances (yellow and green) are avoided at
this working point.

Figure 4.12: Impact of different injection painting settings on intensity evolution and tune spread for
𝑄𝑥 = 4.14, 𝑄𝑦 = 4.22 and 𝑁p+ = 380 × 1010 p+ per ring.

𝑁p+ (𝑢 > 𝑢thres) are chosen based on the acceptance limitations discussed in Section 4.3.1:
𝑥thres = 3𝜎𝑥,ref,𝛽 in the horizontal and 𝑦thres = 2.3𝜎𝑦,ref,𝛽 in the vertical plane. 𝜎𝑢,ref,𝛽
refers to the betatronic beam size for the respective reference emittances 𝜖𝑥,n,ref = 10 µm
and 𝜖𝑦,n,fref = 6 µm.

Simulation Settings

Comparative simulations are performed with the inclusion of several machine errors. Firstly, the
multipole strengths as listed in Table 4.5 [126] are included to drive the relevant 3rd and 4th-order
resonances, which were observed in ring 3 in 2021 [59]. Secondly, the painting is corrected for
observed injection errors: the injection imprecisions studies presented in Section 3.2.2 (Table 3.2)
conclude that a horizontal error of 1-1.5 mm is expected in measurements, mainly due to the
mismatch during the KSW decay. The effective average offset during painting Δ𝑥Sl2 is consequently
larger than set experimentally. To account for this mismatch, 1mm is added to Δ𝑥Sl2 in simulations.
This means, thatmeasurements with 𝐴1,sim, 𝐴2,sim are compared to simulations with 𝐴1,meas−1mm
and 𝐴2,meas−1mm. The values stated in the thesis correspond to the experimentally set amplitudes
𝐴1,meas, 𝐴2,meas.

4.3.4 Measurements at 𝑄x = 4.14, 𝑄y = 4.22

As introduced above, for the operational WP (𝑄𝑥 = 4.22, 𝑄𝑦 = 4.36) and intensity (𝑁p+ =
0.8-0.9 × 1013 p+ per ring) the majority of the losses are expected to occur along the cycle by
trapping of particles in the tails on strong resonances. Before focusing on these operational
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Table 4.4: Parameters for phase space painting studies at 𝑄𝑥 = 4.14, 𝑄𝑦 = 4.22.
Parameter Unit Values
Number of injected turns - 38
Intensity per ring p+ 0.38 × 1013
Movable mask state - inserted

Estimated (average) injection errors (see Section 3.2)
Horizontal mm 1-1.5
Vertical mm 0.5-1

Injection painting settings
H: KSW - 𝑡1 (length of slope-1; painting) µs 10
H: KSW - 𝐴0 (bump amplitude) mm 35
H: KSW - 𝐴1 (amplitude end of slope-1) mm 19-27
H: KSW - 𝐴2 (amplitude end of beam accumulation) mm as 𝐴1
V: orthogonal steering - Δ𝑦 mm 0-10

PSB settings
Harmonic of RF bucket at injection (voltage program as in Fig. B.1a) - 2
𝑄𝑥/𝑄𝑦 at injection (set tune) - 4.14/4.22
𝛽-beating correction - no
𝑄𝑥/𝑄𝑦 at injection (modelled tune) - 4.14/4.24
𝑄𝑥/𝑄𝑦 at injection (measured tune) - 4.14/4.24
𝑄𝑥/𝑄𝑦 at extraction - 4.17/4.23

parameters, selected studies at a WP below the observed resonances are presented, i.e. when
setting 𝑄𝑥 = 4.14 and 𝑄𝑦 = 4.22 (𝑄𝑦 = 4.24 during the injection process due to the 𝛽-beating
introduced by the injection chicane). These measurements simplify the comparison between
expected loss levels in simulations and measurements because the losses occur predominantly due
to beam size limitations within the first 1ms, as evident in Fig. 4.12. Further, the transverse profiles
are not affected by the tail population due to interaction with the observed 3rd and 4th-order
resonances.

To facilitate investigation of the painting-driven emittance growth regime also at this lower WP
the incoherent tune spread is reduced by injecting a reduced intensity of 𝑁p+ = 380 × 1010 p+ per
ring over 38 turns. The respective parameter set is listed in Table 4.4. The vertical and horizontal
offsets are varied between Δ𝑦 = 0-10mm and Δ𝑥Sl2 = 8-16mm, respectively.

Results and Discussion

Figure 4.12 displays the intensity evolution along the cycle as well as the simulated maximum
tune shifts after 5ms for different painting settings, which are colour-coded by the applied vertical
offset Δ𝑦. All losses occur during the injection process and the first ms in the PSB, no further
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(a) Transverse emittances for different horizontal paintings (x-axis) and vertical offsets (colours). The measured
emittances at C770 (solid) are compared to respective simulation results at C280 (dashed).
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(b) Horizontal profiles (colour: measurement; black: simulations, grey, dashed: Gaussian fit to measured profile).
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(c) Vertical profiles (colour: measurement; black: simulations, grey, dashed: Gaussian fit to measured profile).

Figure 4.13: Impact of different injection painting settings on transverse emittances and profiles at
𝑄𝑥 = 4.14, 𝑄𝑦 = 4.22 (𝑁p+ = 380 × 1010 p+ per ring).

losses are observed along the cycle. Figure 4.13a illustrates the measured (solid lines, C770) and
simulated (dashed lines, C300) rms emittances for the respective injection settings. The measured
rms emittances are within 𝜖𝑦,n,rms ≈ 7-14 µm in the horizontal and 𝜖𝑥,n,rms ≈ 3.5-8 µm in the
vertical plane. The transition from space charge to painting dominated emittance increase can
be recognised in Fig. 4.13a at Δ𝑥Sl2 ⪆ 10-12mm, starting from which the horizontal beam size
increases with increasing horizontal offset. Vertically, this transition is observed for Δ𝑦 ⪆ 6mm.
The profiles are plotted for selected examples, i.e. the marked paintings 1-5, to compare the
measured (coloured; Gaussian fit in grey, dashed lines) with the scaled, simulated (black) profile.
Overall, for most paintings, a good agreement is found between simulated and measured beam
profiles and emittances. The following agreements and disagreements are highlighted:

Painting 1: 𝚫𝒚 = 0mm and 𝚫𝒙Sl2 = 8mm, as in case B. The simulated and measured beam
profiles are in agreement. Both feature an increased beam core size and underpopulated
tails, as expected for space charge-driven emittance growth due to the interaction of the
beam core with the integer resonances.
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Sim. Simulations

Figure 4.14: Correlation between transverse beam sizes and loss rates at 𝑄𝑥 = 4.14, 𝑄𝑦 = 4.22 (𝑁p+ =
380 × 1010 p+ per ring), in simulations (circles) and measurements (stars). The scatter markers are
colour-coded by the vertical offset.
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Figure 4.15: Loss maps for different paintings at 𝑄𝑥 = 4.14, 𝑄𝑦 = 4.22 (𝑁p+ = 380 × 1010 p+ per ring).
The losses for the 16 probed painting are recorded at each beam loss monitor (measurements) and in each
PSB period (simulations). The results are displayed using the bar plot, where each bar corresponds to one
painting setting, colour-coded by the vertical offset.

Painting 2: 𝚫𝒚 = 10mm and 𝚫𝒙Sl2 = 8mm. This case causes painting-driven emittance growth
in the vertical and space charge-driven growth in the horizontal plane. For such paintings,
the disagreement between simulated and measured profiles and emittances is largest, i.e.
Δ𝜖𝑢,n,rms ≈ 2 µm. The horizontal beam size is underestimated in simulations, whereas the
vertical beam size is overestimated.

Painting 3: 𝚫𝒚 = 0mm and 𝚫𝒙Sl2 = 16mm, as in case C. Applying large paintings in the
horizontal plane but Δ𝑦 = 0 causes an overlap of the tune spread with the Montague
resonance and hence emittance transfer from the horizontal to the vertical plane. This is
evident in the vertical beam size, which is Δ𝜖𝑦,n,rms ≈ 1 µm larger compared to painting (1)
in measurements. The horizontal profile exhibits the more uniform characteristic as tailored
by the applied painting.

Painting 4: 𝚫𝒚 = 6mm and 𝚫𝒙Sl2 = 16mm, as in case A. Applying also a large vertical off-
set causes painting-driven emittance growth in both planes. The horizontal emittance is
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≈ 2 µm larger compared to painting (3), due to the mitigated emittance transfer from the
horizontal to the vertical plane.

Painting 5: 𝚫𝒚 = 10mm and 𝚫𝒙Sl2 = 16mm, as in case E. Applying extreme painting off-
sets in both planes creates a hollow, asymmetric distribution. The beam evolution of the
transverse distribution is dominated by the interplay of chromatic and space charge effects
during filamentation. The resulting distribution has a triangular shape both in measurements
and simulations.

Figure 4.14 displays the correlation of the horizontal (left) and vertical (right) beam size
with the measured loss rates 𝐿C805 for the different paintings. The measurements are colour-
coded by the vertical offset Δ𝑦. The plots additionally display the simulated losses after 30ms
using the star-markers in the respective colour. The measured losses are within 0-2.5% and
the simulated losses within 0-1% for all probed paintings. The comparison of the losses to the
transverse emittances shows that the losses increase with increasing vertical beam size, both in
measurements and simulations, but do not correlate with the horizontal beam size. The majority of
the losses are, therefore, attributed to the vertical acceptance limit. Losses significantly increase for
𝜖𝑦,n,rms ⪆ 6 µm, as expected from the aperture studies. For all paintings, the majority of the losses
are measured at the loss monitor in P01, rather than at the beam loss monitor downstream of the
mask. In simulations, however, the vertical losses are recorded at the mask. Orbit and alignment
errors are not included in the simulations, which can explain that the measured bottleneck is
observed in P16-P01 instead of at the mask. The losses, which are measured in BLM15 occur
during the extraction process and are therefore not expected to occur in simulations.

4.3.5 Measurements for the Operational Working Point (𝑄x = 4.22, 𝑄y = 4.36)

The presented painting observations at a WP below the 3rd and 4th-order resonances facilitated an
analysis of the losses due to acceptance limitations and exceeding beam sizes. These studies are now
expanded by measurements at operational intensities and at the operational WP. Here, the focus
is put on investigating the impact of the painting on the losses, which occur along the cycle due to
the particles in the tails being trapped on strong resonances. The general machine configurations
and measurement parameters are listed in Table 4.2 and Table 4.5, respectively. For these settings,
two painting regimes are probed:

Scan 1: sensitivity to Δ𝑦 and Δ𝑥Sl2 for 𝑘Sl2 = 0mm/µs.

Scan 2: sensitivity to 𝑘Sl2 and Δ𝑥Sl2 for constant Δ𝑦 = 0mm (vertical on-axis injection).

Impact of Painting on Transverse Beam Distributions

Similar to the studies presented above, Fig. 4.16 compares the measured and simulated emittances
for different combinations of Δ𝑦 and Δ𝑥Sl2 (Scan 1 in Table 4.5). Whereas the general sensitivity
of the emittance to painting variations agrees between measurements and simulations, numerical
differences up to Δ𝜖𝑥,n,rms = 2 µm are observed in the horizontal plane. Generally larger emit-
tances are simulated than measured. This difference can be caused by various systematic errors
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Table 4.5: Phase space painting studies with operational ISOLDE beams.
Parameter Unit Scan 1 Scan 2
Ring - 3
Movable mask state - inserted
Number of injected turns - 80
Injected intensity p+ 805 × 1010 840 × 1010

Estimated (average) injection errors (see Section 3.2)
Horizontal mm 1-1.5
Vertical mm 0.5-1

Input to reconst. the resonances identified in [59] (before) after compen. in sim.
Octupoles: 𝑘3 ONO4L1 m−4 3.51 (14.04)
Octupoles: 𝑘3 ONO12L1 m−4 1.8 (15.85)
Skew sextupoles: 𝑘2,S XSK2L4 m−3 0.0012 (0.0077)
Skew sextupoles: 𝑘2,𝑆 XSK6L4 m−3 0.002 (-0.0162)
H: KSW - 𝐴0 mm 35
H: KSW - 𝑡1 (length of slope-1; painting) µs 10 18
H: KSW - 𝑡2 (end of beam accumulation) µs 80 80
H: KSW - 𝐴1 (amplitude end of slope-1) mm 30 to 21 30 to 13
H: KSW - 𝐴2 (amplitude end of beam accum.) mm as 𝐴1 𝐴1 to 𝐴1-11
V: orthogonal steering - Δ𝑦 mm 0-6 0

H: KSW - gradient of slope-2 𝑘Sl2 mm/µs 0 0 to -0.2

Pa
in
tin

g

H: KSW - average offset of slope-2 Δ𝑥Sl2 mm 5-15 5-22
Emittance measurements during the tune ramp, i.e. at C350 (V) and C400 (H)
Momentum spread 𝑑𝑝/𝑝rms 10−3 ≈ 1.27 ± 0.01 ≈ 1.27 ± 0.01
H: emittance, Gaussian fit 𝜖𝑥,n,fit µm ≈ 9-14 ≈ 10-21
V: emittance, Gaussian fit 𝜖𝑦,n,fit µm ≈ 6 ≈ 5.5-8
H: emittance, rms 𝜖𝑥,n,rms µm ≈ 7.5-10.5 ≈ 8-15
V: emittance, rms 𝜖𝑦,n,rms µm ≈ 4.5-5.5 ≈ 4-6.5

Emittance measurements before extraction, i.e. at C770 (H and V)
Momentum spread 𝑑𝑝/𝑝rms 10−3 ≈ 1.1 ± 0.06 ≈ 1.1 ± 0.06
H: emittance, Gaussian fit 𝜖𝑥,n,fit µm ≈ 9-14 ≈ 9-20
V: emittance, Gaussian fit 𝜖𝑦,n,fit µm ≈ 6 ≈ 5.8-7.4
H: emittance, rms 𝜖𝑥,n,rms µm ≈ 7.5-10.5 ≈ 7.5-15
V: emittance, rms 𝜖𝑦,n,rms µm ≈ 4.5-5.5 ≈ 4.8-6.5

Re
su

lts

Total loss fraction 𝐿C805 % 2.6-7.5 2.5-16
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(b) Vertical beam sizes and profiles.

Figure 4.16: Transverse emittances and profiles for different injection painting settings (Scan 1 , Table 4.5)
at 𝑄𝑥 = 4.22, 𝑄𝑦 = 4.36 (𝑁p+ = 810 × 1010 p+ per ring). Left: simulated (dashed) and measured (solid)
transverse emittances. Emittances obtained for different vertical offsets Δ𝑦 = 0, 3, 6mm are plotted in
different colours. Centre and right: simulated and measured profiles for two selected settings, which are
representative for space charge (1: Δ𝑦 = 6mm, Δ𝑥Sl2 = 5mm) and painting-driven emittance growth (2:
Δ𝑦 = 6mm, Δ𝑥Sl2 = 21mm) in the horizontal plane, respectively.

(mainly errors in the 𝛽-function at the wire scanner, scattering at the wire scanner and errors
when subtracting the dispersive contribution). Reducing these errors to improve the emittance
measurements for the painted ISOLDE beams goes beyond the stage of beam commissioning and
is subject to further studies.

For large vertical offsets (Δ𝑦 = 6 mm, red curves in Fig. 4.16, left) the transition from space
charge to painting-driven emittance growth in the horizontal plane is observed atΔ𝑥Sl2 = 8-11mm,
both in measurements and simulations. The characteristic of the measured profiles for painting
(marker 2) and space charge-driven (marker 1) emittance growth is again well reproduced in the
simulations.

The sensitivity of the vertical emittance to the horizontal painting due to emittance transfer is
evident both in the simulations (dashed) and the measurements (solid). Here, this can account for
vertical emittance variations up to Δ𝜖𝑦,n,rms ≈ 1 µm, despite constant vertical offsets. Especially
for small horizontal paintings, the impact of the horizontal painting on 𝜖𝑦,n,rms is larger than the
effect of applying vertical offsets Δ𝑦 = 0-6mm. This is again an indication of the sensitivity to the
space charge-driven coupling resonance in these machine configurations.
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Figure 4.17: Total loss fraction 𝐿C805 for different horizontal and vertical injection painting settings at
𝑄𝑥 = 4.22, 𝑄𝑦 = 4.36, with 𝑁p+ = 810 × 1010 p+ per ring.

Impact of Painting on Loss Patterns

The most relevant observable for ISOLDE beam production is the total loss fraction 𝐿C805, which
is illustrated in Fig. 4.17 for different horizontal and vertical paintings (Scan 1). For the probed
paintings, the total loss fractions range from ≈ 2.6 to ≈ 9%. It can be seen, that for small horizontal
paintings (case B: space charge-driven blow-up of 𝜖𝑥) losses decrease when applying vertical offsets
Δ𝑦 > 0mm, which reduces the charge density in the vertical plane. On the other hand, in the case
of large horizontal paintings (case A,C,D,E: painting dominated blow-up of 𝜖𝑥) losses increase
with increasing Δ𝑦. In this experiment, a minimal total loss fraction 𝐿805, min ≈ 2.6 ± 0.2 % is
obtained for a vertical on-axis injection (Δ𝑦 = 0mm) and a horizontal painting at the transition
from space charge to painting dominated regime (Δ𝑥Sl2 = 11mm).
These results demonstrate a significant sensitivity of the losses, which occur during the tune

ramp, on the applied vertical offset. This motivates a more detailed look at the vertical tail
population for the different painting settings. Figure 4.18 compares the scaled, simulated (C300)
and measured (C350) tail population for selected, extreme painting cases. Additionally, the
simulated tune footprints, emittance and intensity evolution are shown for reference. The profiles
are compared to a Gaussian reference distribution for 𝜖𝑦,n = 5 µm. The respective residuals are
plotted to accentuate the tail population. The following observations are highlighted:

• The paintings, which result in high loss fractions, feature a higher density of particles in
the vertical tails, in both the simulations and measurements†. These particles experience a
smaller tune shift and are hence more likely to be trapped at the observed 3rd and 4th-order
resonances.

• It has to be noted that the measured high loss rates, which are observed during the tune
ramp for the different paintings could not be reproduced in the current simulation set-up

† As the wire crosses the beam in Fig. 4.18 from right to left, the right side of the profile (𝑦 = 5 to 10 mm) is
considered less affected by distortions due to multiple Coulomb scattering.
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(a) Δ𝑥Sl2 = 5 mm.
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(b) Δ𝑥Sl2 = 14 mm.

Figure 4.18: Comparative multi-particle simulation results for selected painting settings (Scan 1) at
𝑄𝑥 = 4.22, 𝑄𝑦 = 4.36 (𝑁p+ = 810 × 1010 p+ per ring). Left: simulated tune footprints at C300.
Resonances observed 2021 in the PSB and relevant for this WP are highlighted in green (4th) and dashed,
yellow (3rd-order skew resonances). The legend lists the measured total loss fractions 𝐿C805 for the respective
case. Centre: measured (C350) and simulated (C300) vertical profiles and residuals, compared to a Gaussian
with 𝜖𝑦,n = 5 µm (black, dashed). Right: simulated rms emittance and intensity evolution up to C300. The
emittances measured at C350 (V) and C770 (H) are displayed with scatter markers.

(Fig. 4.18, right). However, attempting to reproduce these losses in simulations by e.g.
reviewing the strength of the included multipole errors goes beyond the commissioning
period and the scope of this thesis. In this context, it should also be noted that the resonances
are characterised experimentally at injection energy, whereas most of the losses occur at
higher energies [126].

Scan 2 in Fig. 4.19 follows up on these results by varying Δ𝑥Sl2 and 𝑘Sl2 to investigate the
paintings with a vertical on-axis injection in more detail (flat paintings, cases B, C and D). It
is evident, that whereas Δ𝑥Sl2 clearly affects the loss rates, the impact of the gradient 𝑘Sl2 is
negligible in first order. The KSW waveforms for the different cases are illustrated in Figs. 4.19a
and 4.19b and colour-coded by the losses.
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Figure 4.19: Impact of different horizontal injection painting settings (𝐴1 and 𝐴2) on the total loss fraction
at 𝑄𝑥 = 4.22, 𝑄𝑦 = 4.36 (𝑁p+ = 840 × 1010 p+ per ring). The respective KSW settings are illustrated at
the top.

Correlation Between Loss Patterns and Beam Profiles for Different Paintings

For the operational WP, the cumulative loss distribution in the PSB ring (Fig. 4.20) is as anticipated
in simulations (Fig. 4.5a), with the majority of the dose recorded in the BLMs downstream of
the mask (i.e. BLM-8L4 and BLM-9L2). In the future, it would be interesting to combine multiple
loss and current measurements to optimise not only the total loss rate but also the temporal and
spatial loss distribution. This motivates a comparison of the various transverse beam size and loss
metrics for different Δ𝑥Sl2. The presented results are averaged over all 𝑘Sl2 (Δ𝑦 = 0mm, scan 2),
as illustrated in Fig. 4.19d. The full response surfaces similar to Fig. 4.19d are displayed for all
quantities in Appendix B.2.

Firstly, Fig. 4.21 provides a comparison between the total loss fraction, vertical beam size and
the vertical tail population. On the one hand, it shows a significant impact of the horizontal
painting on the vertical emittance, causing variations up to Δ𝜖𝑦,n,fit ≈ 2 µm. On the other hand,
it is evident that the loss fraction one obtains for different paintings correlates with the vertical
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Figure 4.20: Loss patterns measured in the PSB during the production of high-intensity ISOLDE beams:
during the first 2-10 ms (left) and along the entire cycle (right). The losses are acquired with the ionisation
chamber BLMs in each PSB period.
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(b) Profiles measured at C770.

Figure 4.21: Sensitivity of the total loss fraction (left axis), the integrated vertical tail population (right
axis) and the vertical emittance (Gaussian fit; right axis) to horizontal paintings with Δ𝑥Sl2.

tail population rather than the emittance. The minimum 𝜖𝒚,n,fit does not correspond to solutions
with minimised losses. This trend is already observed in the measurements performed during the
tune ramp (C350), but is even more pronounced in the profiles acquired before extraction (C770,
Fig. 4.21b).
Figure 4.22a shows a similar analysis for the horizontal plane. Here, the evolution of the

horizontal tail population and emittances are comparable, which is also a result of the large
variation in horizontal beam sizes and the generally underpopulated horizontal tails. The balance
between mitigating space charge effects and painting an increased beam envelope when increasing
the Δ𝑥Sl2 is located at Δ𝑥Sl2 ≈ 15mm. Unlike the vertical plane, the horizontal beam size does
not correlate with the total loss fraction over the entire range of painting settings. While the
losses and the vertical beam size increase significantly in the space charge regime, the horizontal
emittance does not increase to the same relative extent. This is consistent with the expectation
that the losses occur in the vertical plane.
Figure 4.22b compares the horizontal beam size and the losses recorded during the injection

process at a BLM, which is installed in the injection region (BLM.1L2.2). These results show a
clear increase in losses when reducing the horizontal offset Δ𝑥Sl2 during painting, as expected
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(b) Losses in the injection region (BLM.1L1.2, left), horiz.
emittance and the envelope at the quadrupole in P01
during beam accumulation, approximated by 𝐴KSW +
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Figure 4.22: Sensitivity of the total loss fraction, losses in the injection region and the horizontal profiles
to horizontal paintings at 𝑄𝑥 = 4.22, 𝑄𝑦 = 4.36 (𝑁p+ = 840 × 1010 p+ per ring).
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(a) Losses observed in the BLM downstream
of the recombination septum (left) and vertical
tail population (right).

5 10 15 20

xSl2 (mm)

20

40

60

80

100

120

E
x
tr

. 
lo

s
s
e
s
; 

B
E
3

4
-1

0
 (

m
G

/s
)

Space charge
regime

Painting
regime

20

40

60

80

100

120

E
x
tr

. 
lo

s
s
e
s
; 

B
T
3

4
-2

0
 (

m
G

/s
)

0.00

0.25

0.50

0.75

1.00

1.25

H
. 

ta
il
s
 @

 E
x
tr

. 
(p

+
)

1e10

(b) Losses observed directly after the extraction upstream of
the recombination septum (left) and horizontal tail population
(right).

Figure 4.23: Sensitivity of losses in the extraction line (left axes) and the transverse tail populations (right
axes) to horizontal paintings at 𝑄𝑥 = 4.22, 𝑄𝑦 = 4.36 (𝑁p+ = 840 × 1010 p+ per ring).

from simulation results (injection losses in case B). The losses increase linearly with decreasing
Δ𝑥Sl2 due to the large amplitude of the KSW bump and the related reduced horizontal acceptance
during beam accumulation.
Finally, Fig. 4.23 compares the dose rates measured in the extraction and recombination line

to the transverse tail populations at extraction. It can be seen, that for the employed machine
configurations, the minimum loss fraction along the PSB cycle coincides with the minimum losses in
the extraction line. The dose rates recorded by the BLM downstream of the recombination septum,
i.e. the anticipated vertical bottleneck (BT.BLM-30) correlate with the vertical tail population.
The dose rates in the BLMs directly after the extraction, upstream of the recombination septum

91



Chapter 4 Transverse Emittance Tailoring with the New PSB H− Injection System

(BE.BLM34-10 and BT.BLM34-20) correlate with the horizontal tail population, hinting at the
presence of a horizontal acceptance limitation.

4.3.6 Conclusion and Outlook for High-Intensity Beam Production Studies

The new PSB CEI facilitates tailoring of the transverse phase space distribution during injection of
high-intensity fixed target beams. The impact of different transverse painting programs for ISOLDE
beam production is discussed using multi-particle simulations and validated by first experimental
results during beam commissioning.
These results confirm, that in the present operational configuration, most of the losses are

obtained as expected along the cycle due to excitation of the transverse tails by betatronic
resonances rather than aperture limitations during the injection process. The losses are within
the budgets of < 1% during the injection process and < 5-10% along the cycle. The results
demonstrate that the painting settings significantly affect both the losses along the cycle and
during the injection process.
It is empirically shown, that it is not beneficial to paint large transverse emittances in both

planes (and hence paint a quasi rectangular distribution), as the reduced initial tune spread
both horizontally and vertically results in more particles being trapped on the observed 3rd and
4th-order resonances. Minimised losses are obtained when programming a horizontal painting,
which balances space charge and painting-driven horizontal emittance growth while injecting
vertically on-axis.

Another important result is, that the losses recorded at the aperture bottlenecks during the
injection and extraction process can be successfully correlated to the transverse tail population in
the respective plane.
The painting functions, which are configured to produce the requested beam characteristic,

may need to be adapted when changing the operating conditions such as injected intensity, WP,
energy spread or resonance compensation This sensitivity of the optimised injection settings
to varying operational conditions makes automatic tuning of injection settings attractive. The
results presented in this section serve as a basis for developing an automated optimisation setup
in Chapter 6.

4.4 LHC High Brightness Beams

The aim of the LIU upgrade was to double the maximum brightness of the LHC beams. The LHC
beams produced in the PSB span different intensities. The main operational beam types are the
BCMS beams with 1.7 × 1012 p+ per ring, which request emittances within 𝜖𝑥,𝑦,𝑛 < 1.5 µm and
the LHC25 beams with 3.52 × 1012 p+ per ring and emittances within 𝜖𝑥,𝑦,n < 2 µm.

The machine configurations applied during commissioning in 2021 are listed in Table 4.6 [90].
The WP is set to 𝑄𝑥 = 4.4 and 𝑄𝑦 = 4.43 (similar to pre-LS2) to maximise the beam brightness.
The WP allows staying below the half-integer resonance to be less sensitive to machine imper-
fections [90, 101]. The energy spread of the Linac4 beam is set to Δ𝐸rms = 440 keV. The double
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Table 4.6: Target characteristics, configurations and injection parameter settings for producing LHC
beams during post-LS2 beam commissioning (2021).
Parameter Unit Baseline value
Target
Target emittances 𝜖𝑥,n / 𝜖𝑦,n µm LHC25: < 2; BCMS: < 1.5
Target intensity 1012 p+ LHC25: 3.52; BCMS: 1.7

Linac4 settings
Number of injected turns - LHC25: 35; BCMS: 17
Energy spread of injected beam 𝑑𝐸rms keV 440
Chopped bunch length µs 0.7

Estimated (avg.) inj. errors (see Section 3.2)
Horizontal mm 1-1.5
Vertical mm 0.5-1

Injection painting settings
H: constant KSW amplitude: 𝐴0 = 𝐴1 = 𝐴2 mm 35 (i.e. on-axis)
H: 𝑡1 = 𝑡2 = number of injected turns µs LHC25: 35; BCMS: 17
V: orthogonal steering, Δ𝑦 mm 0 (i.e. on-axis)

PSB settings
Harmonic of RF bucket at injection (voltage pro-
gram as in Fig. B.1b) - 2
𝑄𝑥/𝑄𝑦 at injection (set) - 4.4/4.43
𝛽-beating correction - no
𝑄𝑥/𝑄𝑦 at injection (measured) - 4.4/4.46
𝑄𝑥/𝑄𝑦 at extraction - 4.17/4.23

harmonic bucket at injection is designed to minimise the longitudinal line density and hence the
space charge detuning at the beginning of the cycle [135]. When implementing the correction of
the vertical 𝛽-beating induced by the injection chicane and respectively adapting the WP [101],
the produced beams met the LIU brightness targets already in 2021, as shown in [90, 101].

The Linac4 beam is injected into the PSB over up to 35 turns. The baseline injection procedure
is to not apply any painting, but to inject the beam on-axis both horizontally and vertically. Several
studies indicate that in certain machine configurations, e.g. when injecting with smaller energy
spread, applying injection paintings or offsets of Δ𝑢 ≈ 1-2mm can be beneficial for increasing the
brightness [136]. However, this is considered a beyond-baseline injection procedure and is to be
investigated in more detail in further studies. As most relevant for the commissioning period, this
section focuses on characterising the impact of injection errors on brightness degradation and tail
population in measurements.
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4.4.1 Impact of Steering Errors on Brightness Curve

The general assessment of injection imperfections in Chapter 3 identified steering errors and field
ripples as the main potential sources of brightness degradation during the PSB injection process.
Optics mismatches and emittance growth due to foil scattering play a less pronounced role and
are hence not taken into account in this section.
Previous multi-particle simulation studies analysed the impact of injection offsets mainly for

LHC25 beams with 𝑁p+ = 3.52×1012 p+ per ring, e.g. [60, Chp. 7.3]. It was shown in simulations
that for such intensities, no significant brightness and tail degradation is expected for injection
errors of Δ𝑦 < 2mm and Δ𝑥 < 3mm. The studies were performed at a WP of 𝑄𝑥 = 4.43 and
𝑄𝑦 = 4.60.
However, injection errors mainly affect LHC beams with lower intensities, e.g. BCMS, due to

the smaller space charge-driven emittance growth. This section provides a first experimental
assessment of the beam degradation due to injection errors, not only for the maximum but for
various intensities along the LHC brightness curve. The results are related to the discussion on
beam filamentation in Section 3.1, which showed that the same error can result in different core
and tail distributions depending on the beam intensity.

Methodology

The impact of steering errors on the LHC brightness curve is experimentally assessed for machine
configurations as listed in Table 4.6. Prior to the measurements, the injection oscillations are
minimised to < ±0.5mm, as described in Appendix B.1.1. The order of magnitude of the remnant
injection errors is characterised in Chapter 3 and listed in Table 4.6.
During the measurements, the beam is injected into the PSB with additional, programmed

steering errors. The applied errors are Δ𝑥 = 0-4mm and Δ𝑦 = 0-3mm, which corresponds to
Δ𝑎 = 0, 0.65, 1.3 and 1.95𝜎𝑢 in units of beam sigma. The respective emittances are estimated
from the measured profiles using a Gaussian fit. The dispersive contribution to the beam size is
removed with the standard Gaussian subtraction (Eq. (1.40)). The tails are quantified using a
q-Gaussian fit (see Appendix A.2). It should be noted, that in these measurements, the horizontal
q-factor is obtained from the horizontal profile without prior deconvolution of the dispersive
contribution. The absolute value of the horizontal q-factor does hence not describe solely the
betatronic horizontal tails. However, these tests aim to compare the relative impact of the different
steering errors, which is still reflected by the relative change of the q-factor.

Results and Discussion

Figure 4.24a illustrates the measured impact of injection errors on the brightness curve. The
LIU brightness target is indicated by the black line for different intensities. When injecting low
intensities over a few turns, the theoretically achievable brightness is limited by the injected
emittance 𝜖𝑥,n ≈ 𝜖𝑦,n ≈ 0.3 µm and foil scattering.

The blue curve represents the measurements of an on-axis injection without additionally applied
steering offsets. For low intensities, the average emittance lies Δ𝜖 (𝑥+𝑦)/2,n ≈ 0.5 µm above the
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Figure 4.24: Impact of injection errors on the LHC brightness curve. The emittance is obtained using a
Gaussian fit of the beam core. The transverse tails are quantified using the q-factor. Note that the horizontal
q-factor is computed without deconvoluting the dispersive contribution.

injected emittances. This ‘emittance plateau’ can be partially caused by the systematic injection
errors presented in Tables 3.2 and 3.3, particularly the mismatch during the KSW decay.

The green, yellow and red lines show the brightness curve, measured when applying additional
horizontal and vertical steering offsets. Figures 4.24b and 4.24c show the respective q-factors in
the horizontal and vertical plane. The following observations are highlighted:

A Low intensity (injection over a single turn): Injecting 𝑁p+ ≈ 10 × 1010 p+ per ring over
a single turn yields an average transverse beam size of (𝜖𝑥,n + 𝜖𝑦,n)/2 ≈ 0.6 µm.
Applying additional steering errors does not increase themeasured beam core size (Fig. 4.24a)
but rather the beam halo. The increase of the transverse tail population is represented by
the q-factor, which increases by 20% in both planes when applying maximum injection
errors (yellow in Figs. 4.24b and 4.24c).

B Injection of higher intensities over multiple turns:When injecting higher intensities over
multiple turns, the applied steering errors cause growth of the beam core rather than the
halo, as also discussed in Section 3.1.
No significant emittance increase is obtained for errors of Δ𝑥, 𝑦 ≈ 1mm (green curve).
For medium intensities of 𝑁p+ ⪅ 1 × 1012 p+ per ring, the emittance starts to increase for
injection errors larger than Δ𝑥, 𝑦 ≈ 2mm (red curve). For operational intensities (BCMS
and HL-LHC beams, 𝑁p+ > 1.7 × 1012 p+ per ring) only extreme errors in the range of
Δ𝑥 > 2.5mm and Δ𝑦 > 2mm cause a measurable emittance growth.
For all errors, the q-factor is smaller compared to case A in both planes due to the increased
blow-up of the beam core. It is interesting to note, that the vertical q-factor decreases
for larger steering offsets (due to the larger emittance), whereas the horizontal q-factor
increases.
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4.4.2 Conclusion and Outlook for High-Brightness LHC Beams

The presented injection studies concerning the production of high-brightness LHC beams focus on
assessing the sensitivity of the LHC brightness curve to injection imprecisions. For non-operational,
low-intensity beams (i.e. injection over a single turn), injection errors cause an increase in the
beam halo rather than the beam core. For medium and large intensity ranges, errors cause an
increase in the beam core size, which is represented by an ‘emittance plateau’ in the brightness
curve. Beams with operational intensities are not sensitive to realistic steering errors, as space
charge becomes the dominant source for emittance growth. For both BCMS and HL-LHC only
extreme errors in the range of Δ𝑥 > 2.5mm and Δ𝑦 > 2mm cause a measurable emittance
growth. Note that these steering offsets are applied in addition to the systematic injection errors
caused by injection imprecisions, which are discussed and quantified in Chapter 3.

4.5 LHC Single Bunch Beams

LHC and SPS regularly request low intensity (2-12 × 1010 p+), single bunch beams, which are
used for example prior to filling the LHC, for commissioning or machine development studies.
The transverse characteristics of these beams are already established in the PSB (Table 4.1).

The LHCPROBE or Pilot are low intensity and small emittance beams (< 0.8 µm). LHC Individual
Bunch Physics Beams (LHCINDIV), on the other hand, are beams which have a transverse emittances
similar to LHC beams (1-2 µm), but significantly lower intensities, i.e. 2-12 × 1010 p+ per ring.
A particular variant of the LHCINDIV beam is the LHCINDIV_VDM beam, which is provided for
the Van der Meer scan [137] in the LHC. This method calibrates the luminosity in colliders by
measuring the collision rate while sweeping the two colliding beams transversely across each other.
It requires hence a beam with large emittance, moderate intensity and a specifically Gaussian
beam profile [138].
This section reviews proposed beam production procedures using the new CEI and identifies

related challenges. The injection schemes are required to
• facilitate flexible and reproducible tailoring of the wide range of transverse emittances

despite the low brightness and
• assure Gaussian transverse profiles, particularly for LHCINDIV_VDM beams.

4.5.1 PILOT/PROBE

To produce the small emittance LHCPROBE and Pilot beams a single turn (≈ 5.5 × 1010 p+ per
ring) is injected on-axis into the PSB. The intensity is subsequently fine-tuned using longitudinal
shaving [135]. The achievable smallest transverse emittance mainly depends on the respective
Linac4 parameters. Imprecisions during the injection process, such as residual steering errors, shot-
to-shot fluctuations or optics mismatch, can further deteriorate the transverse beam characteristics.
While, in this case, mismatches do not increase the size of the beam core 𝜖fit significantly, they
contribute to intensely populated transverse tails, as discussed in Chapter 3.
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Table 4.7: Target characteristics, configurations and injection painting settings for producing LHCINDIV
beams during post-LS2 beam commissioning (2021).
Parameter Unit Baseline value
Target
Emittance 𝜖𝑥,n / 𝜖𝑦,n µm / µm 1-2 / 1-2
Injected intensity p+ 1.5 × 1011

Linac4 settings
Number of injected turns 3
Energy spread of injected beam 𝑑𝐸rms keV 100
Chopped bunch length µs 0.333

Estimated (average) injection errors (see Section 3.2)
Horizontal mm 1.-1.5
Vertical (injection over 1 turn, PILOT) mm < 0.5
Vertical (injection over 3 turns, LHCINDIV) mm 0.5-1

Injection painting settings
Number of foil passages 𝑁F - 50-150
KSW: decay at 𝑡1 = 𝑡2 µs as 𝑁F
V: orthogonal Steering Δ𝑦 mm 0-4
H: orthogonal Steering Δ𝑥 (or ≡ 𝐴0 = 𝐴1 = 𝐴2 = 35 − Δ𝑥) mm 0-3

PSB settings during beam measurements
Harmonic of RF bucket at injection (voltage program as in
Fig. B.1c) - 1
𝑄𝑥/𝑄𝑦 at injection (set) - 4.17/4.23
𝛽-beating correction - no
𝑄𝑥/𝑄𝑦 at injection (measured) - 4.17/4.25
𝑄𝑥/𝑄𝑦 at extraction - 4.17/4.23

Modelled parameters for analytic approximations
𝛽𝑥 / 𝛽𝑦 at the foil during injection m 5.7 / 4.0(±10%)
𝛼𝑥 / 𝛼𝑦 at the foil during injection rad 0 / 0
Thickness of the carbon stripping foil µg cm−2 200 (±10%)

Foil parameters during measurements
Installed foil type during measurements - GSI-200 (slot 6)
Approximate operational age of the foil months 5
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4.5.2 LHCINDIV and LHCINDIV_VDM

Pre-LS2 the production scheme for LHCINDIV and LHCINDIV_VDM beams (hereinafter collectively
referred to as INDIV) relied on injecting similar intensities as for nominal LHC beams from Linac2
into the PSB, i.e. 150-180 × 1010 p+ per ring over 1.8-2.5 turns. The beam size was consequently
established by space charge-induced emittance growth, as for the nominal LHC beams. Most of
the beam was subsequently lost close to injection energy through a slow RF capture. The intensity
was fine-tuned with longitudinal shaving, the emittance with transverse shaving (compare [138]).

With the new injection system, the aim is to tailor these beamswithout injecting and subsequently
losing this exceeding intensity. Low intensities 𝑁p+ = 5.5-16.5 × 1010 p+ per ring, i.e. less than
10% of the intensities from pre-LS2, are injected over 1-3 turns. As pre-LS2, the intensity is then
fine-tuned to 2-12 × 1010 p+ per ring through longitudinal shaving. The smaller intensity and
increased injection energy lower the incoherent space charge tune footprint. Relying, as pre-LS2,
on the integer resonances to produce emittances with ≈ 2 µm would require WPs close to the
integer tunes. However, the emittance evolution with the WP is remarkably nonlinear, as shown
in simulations in [139]. Small tune fluctuations could cause large variations in the transverse
emittances, which would pose a challenge for reproducibility.

Emittance and Profile Tailoring Using Injection Offsets and Foil Scattering

The new CEI system allows to establish the transverse characteristics through manipulating the
injection settings instead: the emittances are tailored in a controlled way using a combination
of injection mismatches and multiple Coulomb scattering at the stripping foil (see Sections 1.6
and 3.3). The related injection configurations are accordingly the number of foil crossings 𝑁F and
the transverse offsets Δ𝑢 (𝑢 = 𝑥, 𝑦) between the injected beam position and the closed orbit at the
stripping foil. The analytic approximations Eqs. (3.1) and (3.8), which are based on phase-mixing
without space charge effects, are combined to provide an estimate for the anticipated upper limit
of the rms emittance growth (not necessarily 𝜖fit of the beam core, see Section 3.1)

𝜖𝑢,n ≈ 𝜖𝑢,n,0 + 𝑤scat · 𝛾r𝛽r2 ⟨Θ2⟩ref · 𝑁F · 𝑑 · 𝛽𝑢 + 𝑤off

(︃
𝛾r𝛽r
2

)︃
· Δ𝑢

2

𝛽𝑢
. (4.5)

𝜖𝑢,n,0 ≈ 0.3 µm is the emittance of the injected beam and 𝑑 the foil thickness. ⟨Θ2⟩ref is the
linearised squared rms scattering angle per unit length, if ⟨Θ2⟩ref · 𝑁F · 𝑑 is the total squared
scattering angle for 𝑁F passages of a foil with thickness 𝑑. 𝑤scat and 𝑤off are the weights for
combining the two contributions. Here, we assume 𝑤off, 𝑤scat = 1. Equation (4.5) is further based
on the assumption that 𝛼𝑢,foil ≈ 0, as expected for nominal machine configurations.

The injection offsets drive a blow-up, which is proportional to ∝ 1/𝛽𝑢. The scattering-induced
emittance growth, however, is proportional to ∝ 𝛽𝑢. Figure 4.25 illustrates the expected emittance
growth for different combinations of 𝑁F, 𝛽𝑢 and Δ𝑢. The 𝛽-functions for the range of operationally
employed WPs are indicated by the grey shaded intervals. These estimates show, that extreme
offsets between Δ𝑢 ≈ 4-6mm would be required to increase the injected emittance of 𝜖𝑥,𝑦,rms ≈
0.3µm to the requested ≈ 2µm by merely applying injection paintings or offsets. However, the
multi-particle simulations presented in Fig. 4.26a demonstrate, that such offsets can lead to
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(b) 𝑁F = 150 foil passages.

Figure 4.25: Analytic approximations for tailoring the transverse characteristic of LHCINDIV beams using
a combination of foil scattering and steering offsets; Eq. (4.5).
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(a) 𝑁F = 5 foil crossings, Δ𝑥 = 7mm and Δ𝑦 = 4.5mm.
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Figure 4.26: Multi-particle simulations for tailoring LHCINDIV beams during the PSB injection using (a)
only injection offsets and (b) a combination of injection offsets and foil crossings. Top: transverse emittance,
intensity and phase space evolution during the first 500 turns (0.5 ms); bottom: transverse beam profiles
after 0.5 ms compared to the Gaussian fits (black). The residuals are plotted in grey (right axis).

99



Chapter 4 Transverse Emittance Tailoring with the New PSB H− Injection System

5 0 5

1e1

0

2

C
n
t.

 (
a
.u

.)

1e4

50 0 50

z (m)

1

0

1

d
E
 (

M
e
V

)

Cnt. (a.u.)

(a) Longitudinal phase space and sep-
aratrix during filamentation.

0

10

C
n
ts

.
4.0 4.5

Qx

3.75

4.00

4.25

4.50

Q
y

t=250 s

t=500 s

0 10

Cnts.

(b) Tune diagram for 𝑁F = 5 foil
crossings (Δ𝑥 = Δ𝑦 = 0mm).

0

25

C
n
ts

.

4.0 4.5

Qx

3.75

4.00

4.25

4.50

Q
y

t=250 s

t=500 s

0 25

Cnts.

(c) Tune diagram for 𝑁F =
150 crossings (Δ𝑥 = Δ𝑦 = 0mm).

Figure 4.27: Longitudinal phase space and tune footprints when injecting LHCINDIV beams with different
injection parameters: the time instances during longitudinal filamentation, at which the simulated line
density is largest (blue) and smallest (pink) are highlighted.

unacceptable tails after filamentation, while the Gaussian core maintains an insufficient emittance
of 𝜖𝑥,𝑦,fit ⪅ 1µm.

To guarantee a Gaussian profile, the majority of the requested emittance blow-up is instead
established through multiple Coulomb scattering (Fig. 4.26b). The resulting emittance growth is
proportional to 𝑁F and 𝛽𝑢 and hence larger in the horizontal than in the vertical plane. Transverse
offsets of Δ𝑢 ≈ 0-4mm can be subsequently applied to the injected beam to provide the remaining
emittance growth and fine-tune the target emittance in both planes. To state an example, the
emittance target of ≈ 2µm in both planes is achieved in simulations when applying for example
𝑁F = 150 foil crossings, Δ𝑥 = 2.5mm and Δ𝑦 = 3mm.

Passing through the stripping foil multiple times causes beam loss due to large angle single
Coulomb scattering, inelastic and elastic nuclear scattering. The respective particles are lost mainly
in the vicinity of the injection region. The loss level is in first order proportional to the number
of foil hits. For 150 foil passages, loss fractions of ≈ 1-1.5% are expected, which corresponds to
O(109) p+ per ring (Fig. 4.26b). These loss rates are negligible compared to losses, which occur
when injecting high-intensity beams, i.e. O(1011) p+ per ring.

The operational WP for the INDIV production is set to𝑄𝑥 = 4.17,𝑄𝑦 = 4.23 to avoid interaction
with the 2𝑄𝑥 +2𝑄𝑦 = 17 resonance (compare Fig. 1.6). Figure 4.27c demonstrates that one avoids
interaction with major resonances for the baseline injection configurations, i.e. 𝑁F = 100-150 foil
crossings. The line density varies significantly during longitudinal filamentation [135]. The
consequent maximum and the minimum incoherent tune spread differ by a factor of ≈ 2 and are
observed after ≈ 250 and ≈ 500 turns, respectively. |Δ𝑄𝑢,max | during this process depends on
the beam brightness, which has been priorly established through foil scattering, as illustrated in
Fig. 4.27c for ≈ 1.5 × 1011 p+ injected over 3 turns.
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4.5.3 Measurements

Motivation and Methodology

The proposed injection procedure is validated experimentally during beam commissioning, with
machine configurations as listed in Table 4.7. This study is performed for injection over only
1 turn (𝑁p+ = 0.5 × 1011 p+, as Pilot) and 3 turns (𝑁p+ = 1.5 × 1011 p+, as LHCINDIV). The
measurements focus on applying a vertical rather than a horizontal steering offset. This ensures
that the entire beam intercepts the stripping foil in each foil passage, also when applying large
offsets. One can consequently equate the assumed foil hits per proton with the number of foil
crossings 𝑁hits ≈ 𝑁F, independent of the applied injection offsets.
The transverse beam profiles are acquired using wire scan measurements at two cycle times

(C290, 25ms after injection and C770, 35ms before extraction). However, the characteristic of
the results does not significantly differ for these two time instances. To simplify the presentation
of the results, only the measurements at C770 are listed in this section.

The size of the beam core is quantified using 𝜖fit. Different figures of merit have been considered
for quantifying the tail population. A q-Gaussian fails to fit light tails with large amplitudes
when analysing simulation results for extreme offsets. In these tests, the tails are therefore
simply quantified using the ratio of the rms beam size 𝜎𝑢,rms and the beam size obtained when
performing a Gaussian fit of the beam core 𝜎𝑢,fit. For each configuration, the results are averaged
over 3 acquisitions.

Results

𝑁p+ = 0.5 × 1011 p+, injected over 1 turn, (Fig. 4.28): The results demonstrate a general
agreement between the measurements (solid) and the simulations (dashed). All steering offsets
Δ𝑦 only increase the vertical tail population but not 𝜖fit (see Chapter 3). The ratio 𝜎rms/𝜎fit, which
is used to quantify the tails, decreases with the number of foil crossings due to the increasing 𝜎fit.
The absolute value of this ratio mainly differs between measurements and simulations for extreme
offsets (Δ𝑦 = 6mm; yellow in Fig. 4.28). Such paintings yield light tails with large amplitudes in
simulations, which are difficult to detect experimentally.

It should be noted, that when not passing the foil multiple times (𝑁F = 5), the profiles feature
tails also when not applying any offset, i.e. Δ𝑦 = Δ𝑥 = 0mm. This is indicated by the ratio
𝜎rms/𝜎fit > 1 in this case. An example profile is shown in blue in Fig. 4.28b. These tails are
assumed to be caused by a combination of Linac4 tails and injection mismatches (Fig. 3.6). For
𝑁F ⪆ 50 these tails vanish due to the blown-up beam core (grey in Fig. 4.28b).

𝑁p+ = 1.5 × 1011 p+, injected over 3 turns, (Fig. 4.29): Figure 4.29 depicts a similar agree-
ment between simulations and measurements when injecting 1.5× 1011 p+ over 3 turns (LHCIN-
DIV). It can be seen, that for all 𝑁F, injecting with an offset Δ𝑦 causes mainly emittance growth
but not a halo formation. As discussed in Chapter 3, this is likely to be attributed to the more
even distribution of the 3mismatched bunches in phase space and the consequently reduced
coherent oscillation. The results show, that applying offsets in addition to configuring 𝑁F allows
us to flexibly fine-tune 𝜖𝑦,fit independent of 𝜖𝑥,fit over the operational range, without generating
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(a) Left: emittance obtained through a Gaussian fit. Right: 𝜎rms/𝜎fit as a measure for the tails. The profiles are
measured before extraction (C770, solid) and simulated up to C290 (dotted).
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Figure 4.28: Transverse LHCINDIV beam characteristics for different PSB injection settings: 𝑁p+ =
0.5 × 1011 p+ injected over 1 turn.

major tails. The remaining light tails are not only affected by the injection offsets but also by the
interplay of the tune spread, which itself depends on the painting settings Δ𝑢 and 𝑁F, with the
integer and the coupling resonances. It is not possible anymore to make the simple statement
that applying a larger offset increases the tail population.

It should be noted, that a small number of foil crossings (here 𝑁F = 5) and small offsets
(Δ𝑦 = 0-2mm) result in interaction of the beam core with the integer resonances in these
measurements (compare Fig. 4.27b). The affected data samples are excluded, as indicated by the
grey shaded area in Fig. 4.29.
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Figure 4.29: Transverse LHCINDIV beam characteristics for different PSB injection settings: 𝑁p+ =
1.5 × 1011 p+ injected over 3 turns. Left: emittance obtained through a Gaussian fit. Right: 𝜎rms/𝜎fit as a
measure for the tails. The profiles are measured before extraction (C770, solid) and simulated up to C290
(dotted).

4.5.4 Conclusion and Outlook for LHC Single Bunch Beams

A new procedure to tailor the transverse characteristics of the LHC Single Bunch beams with the
new PSB CEI is proposed using multi-particle simulations and verified through measurements. It is
demonstrated that beams can be delivered over the entire requested emittance range (0.8-2.5µm)
by controlling the number of foil crossings in combination with transverse injection offsets. The
stochastic nature of the foil scattering induced emittance growth yields relatively Gaussian beam
profiles in the transverse plane, also for non-Gaussian input distributions.
The delivered Pilot beam emittances of 𝜖𝑢,fit ≈ 0.4-0.5 µm (if not blown-up on purpose with

additional foil crossings) are well within specifications of 𝜖𝑢,fit < 0.8 µm. Steering errors or shot-
to-shot fluctuations will not significantly impact the measured 𝜖fit but only the tail population.

For LHCINDIV and LHCINDIV_VDM beams, simulations and measurements demonstrate that it
is possible to flexibly fine-tune the requested transverse emittances, without generating major
tails. To state an example, an LHCINDIV beam with 𝜖𝑢,fit ≈ 2 µm could be operationally tailored
using 𝑁F = 150 foil passages, Δ𝑥 = 0mm and Δ𝑦 = 4mm.
It has to be noted that using this production scheme alone, it is not possible to produce beam

profiles with underpopulated tails compared to a Gaussian. In case of such a requirement, e.g. due
to additional tail generation along the injector chain, options are to remove tails using transverse
shaving or set the WP closer to the integer stop-band.

4.6 Conclusion and Outlook

This chapter presents simulation and measurement results for tailoring the transverse beam
distributions as requested by the various CERN users during the PSB injection process.

For high-intensity fixed target beams the objective is tominimise the overall loss rates. Simulation
and measurement results show that in the present operational configuration, most of the losses
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are obtained as expected along the cycle due to excitation of the transverse tails by betatronic
resonances rather than aperture limitations during the injection process. The losses are within
the budgets of < 1% during the injection process and < 5-10% along the cycle. The results
demonstrate that the painting settings significantly affect both the losses along the cycle and during
the injection process. It is empirically shown, that it is not beneficial to paint large transverse
emittances in both planes (and hence paint a quasi rectangular distribution), as the reduced
initial tune spread both horizontally and vertically results in more particles being trapped on
the observed 3rd and 4th-order resonances. Minimised losses are obtained when programming a
horizontal painting to balance space charge and painting-driven horizontal emittance growth,
while injecting vertically on-axis.

For high-brightness LHC beams, an analysis of the sensitivity of the brightness curves to injection
errors is provided to identify acceptable error margins for different intensities. For both BCMS and
HL-LHC only extreme errors in the range of Δ𝑥 > 2.5mm and Δ𝑦 > 2mm cause a measurable
emittance growth.

LHCINDIV beams are produced using a new injection scheme. The requested transverse beam
sizes and Gaussian profiles are tailored using controlled foil-induced emittance growth in combi-
nation with steering offsets. It is demonstrated in both simulations and measurements that one
can flexibly fine-tune the requested transverse emittance range by adjusting the offset and the
number of foil crossings, without generating major tails.

For most users, the required painting functions are sensitive to varying operational conditions
and may have to be adapted in operation. Investigating solutions towards efficiently, reliably and
automatically adapting the injection settings online based on beam instrumentation feedback will
be a key aspect for pushing the operational performance of the PSB and is discussed in Part II.
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Chapter 5
Theoretical Background on Numerical

Optimisation and Machine Learning

The availability of large data sets and computing power is causing a paradigm shift towards
data-driven approaches for modelling and controlling complex systems. Also in engineering and
industrial processes, such as particle accelerator technologies, numerical optimisation and machine
learning (ML) techniques are increasingly employed. This chapter gives a brief introduction to
the main concepts of supervised learning (Section 5.1) and numerical optimisation (Section 5.2),
which are subsequently applied in Chapters 6 and 7 to enhance the performance of the new PSB
injection system.

5.1 Supervised Learning Methods

An extensive introduction to ML techniques and its three main subfields (supervised, unsupervised
or reinforcement learning) can be found e.g. in [140–143]. The studies presented in the Chapters 6
and 7 are based on supervised algorithms, which are statistical methods for creating a data-driven
model 𝑓 (x) : R𝑛 → R𝑚

ŷ = 𝑓 (x) (5.1)
to predict the output y ∈ R𝑚 of a relation

y = 𝑓 (x), (5.2)
which is difficult or impossible to model using analytic or numerical computations. x ∈ R𝑛 are the
input variables, also called features. During the learning phase, the model is trained using a set of
labelled training data (xtrain, ytrain) with known in- and outputs. The parameters of the model are
adapted to minimise the error between predicted ŷ and labelled, known outputs ygt. The latter is
also referred to as ground truth and is the target one aims to predict with the supervised machine
learning algorithm. The error is quantified by the loss or cost function

L(ŷtrain, ytrain,gt). (5.3)
The model structure can be altered by model-specific parameters, so-called hyperparameters. A

labelled validation data set xval, yval, which is not used during the training step, is used to assess
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Figure 5.1: Variance-bias tradeoff for different model complexities. The blue and green data points
correspond to classes 0 and 1, respectively. The top row shows the training data samples and the estimated
decision boundaries for different model complexities. The centre row illustrates how unseen test data samples
will be classified based on the trained decision boundaries. The bottom plot displays the training (dashed)
and validation (solid) loss as a function of the model complexities.

the performance of the model and to tune hyperparameters. In the end, the performance of the
final learned model is quantified using a test set xtest, ytest, which is independent of the training
and validation sets. The final model can be applied to predict the output of unlabeled, new data
samples.
There are a variety of widely distributed algorithms for supervised learning, such as support-

vector machines, artificial neural networks or random forests. The methods can be applied in a
similar way as classification or regression models. The main difference is that in classifiers 𝑦𝑖 is a
categorical variable (mostly 𝑦𝑖 ∈ {0, 1} or 𝑦𝑖 ∈ {−1, 1}), whereas regression models predict 𝑦𝑖 ∈ R.
This thesis applies artificial neural networks and random forests, which are briefly explained in
the following subsections.

5.1.1 Model Complexity, Bias and Variance

Regulating the model complexity is a key task in creating any ML model. It can be tuned using a
set of architecture parameters (hyperparameters), which are specific to the respective algorithm.
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The model must be sufficiently complex to correctly map the characteristics of the data space (e.g.
nonlinear decision boundaries) while being general enough to mitigate overfitting to the training
dataset. The related prediction errors are described by the bias and variance. The bias

Bias
(︂
𝑓 (x)

)︂
= E[ 𝑓 (x) − 𝑓 (x)] (5.4)

describes the systematic difference between the predicted outputs 𝑓 (X) and the ground truths
𝑓 (X) [140, 141]. It increases with decreasing model complexity (e.g. a linear decision boundary
for a nonlinear problem), as the model fails to map the data distribution correctly. The variance

Var
(︂
𝑓 (x)

)︂
= E[ 𝑓 (x)2] − E[ 𝑓 (x)]2 (5.5)

describes the deviation of the test error when training the model with different training sets. It
increases with increasing model complexity (e.g. a high-order polynomial decision boundary) due
to overfitting. A model aims at keeping the variance small to facilitate generalisation to unseen
datasets.
Minimising the overall error by balancing the two error contributions is known as variance-

bias tradeoff (Fig. 5.1, see e.g. [140, Chp. 5.5.2]). Figure 5.1 (bottom) schematically displays
a common evolution of training and validation error for increasing model complexity. It can be
seen, why it is essential to assess the model performance using independent datasets, which are
not used for training. The error estimated using the validation dataset is the smallest for specific
model complexity, beyond which it can increase due to overfitting to the training dataset.

Many machine learning methods use randomly selected subsets of the training dataset during
each training iteration and keep the remaining samples to compute the validation error (e.g.
mini-batch gradient descent in ANN, out-of-bag error for random forests).

5.1.2 Neural Networks and Deep Learning

One of the most prominent classes of ML algorithms are artificial neural networks (ANN) with
the subfield of deep learning (see [144] for a broad introduction). The name refers to the fact
that these networks are based on the connection of many "neurons", which are inspired by signal
processing and learning in human brains. Original proposals for suchmethods go back to the 1940s,
often also known under different names (e.g. cybernetics in the 1940s-1960s and connectionism
in the 1980s-1990s) [144, Chp. 1.2.1]. However, the field stagnated due to lacking computing
hardware and access to sufficient training data. This changed in the last two decades, causing
deep learning to celebrate a resurgence since the early 2000s with an increased number of real-
world applications. Main advances were driven by the fields of speech and image classification,
in which ANNs solved problems conventional algorithms had failed at. The increasing dataset
sizes facilitated increased model sizes and complexities and consequently improved prediction
accuracy. A historical overview of the development and the impact of ANNs is given for example
in [144, Chp. 1].
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Figure 5.2: Schematic of a multilayer perceptron (MLP) with two hidden layers (left) and examples for
common activation functions (right).

Multilayer Perceptrons

The most conventional architectures are deep feedforward networks, also known as multilayer
perceptrons (MLP) [144, Chp. 6]. An example is illustrated in Fig. 5.2. The input features are fed
to a network of connected processing nodes, which are structured in one or multiple hidden layers
(here 𝑘 = 2). Each neuron transforms the input it obtains using a custom (mostly nonlinear)
activation function. The outputs of the different neurons are linearly combined using customisable
weights and fed as input to the neurons of subsequent hidden layers. Multiple such layers can be
combined to eventually predict the output values ŷ. This process can be written as

ŷ = 𝑓𝑘 (wk..., 𝑓2 (w2, 𝑓1 (w1, x))) . (5.6)

The main concepts of any neural network are as follows:

• Weights: The matrix w 𝑗 contains the weights of the connection between the neurons from
the (j-1)-th to the 𝑗 -th layer.

• Hidden units and activation function: The response of a neuron (also called hidden unit)
to inputs is defined by the activation function 𝑓 (·), which is usually nonlinear. Typical
activation functions are rectifier linear unit (ReLU), hyperbolic tangent (tanh) or logistic
sigmoid functions, as illustrated in Fig. 5.2 (right). See [144, Chp. 6.3] for details.

• Cost (loss) function: The prediction accuracy, i.e. the deviation of the predicted solution
from the ground truth, is quantified by a loss function L(ypred, ygt). A standard loss function
used for regression problems is the Mean Squared Error [144, Chp. 6.2.1].

• Gradient-based learning, backpropagation and learning rate: During the training pro-
cess, the weights of the ANN are adjusted to minimise the loss functionL and hence optimise
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the function approximation. This is done by combining the concept of backpropagation [144,
Chp. 6.5] with an optimisation algorithm, such as stochastic gradient descent [144, Chp.
8]. Backpropagation uses the partial derivatives 𝜕L

𝜕𝑤𝑖 𝑗
to assess the impact of the individual

weights on the total prediction error. The optimisation algorithm subsequently updates the
weights during each training step to minimise the error. The learning rate is a hyperparame-
ter, which defines the step size of the optimisation algorithm. Setting a learning rate, which
is suitable for the problem, is fundamental for efficient training of an accurate network.

• Regularisation: Creating a complex network with multiple layers allows to model complex
relations. However, such networks are prone to overfitting. Regularisation techniques are
required to minimise the model variance [144, Chp. 7]. One option is to add a regularisation
term to the loss function

L = Lpred + Lreg, (5.7)
which drives the weights closer to the origin. A common choice is the 𝐿2-regularisation [144,
Chp. 7.1.1]

Lreg = 𝜆 ·
∑︂
𝑖

𝑤2
𝑖 , (5.8)

also known as weight decay with the weighting factor 𝜆. A complementary approach is to
include so-called dropout layers [145] after selected hidden layers. These dropout layers
set weights between two neurons to 0 and hence deactivate this connection on a random
basis [144, Chp. 7.12].

• Model architecture: A key aspect to solving a problem using ANNs is selecting a suitable
model architecture, such as the number of neurons, hidden layers and the activation functions
of the MLP. [144, Chp. 6.4] summarises the motives behind choosing deep networks with
multiple layers, which often outperform shallow networks with wider layers. However, ANN
architectures can be creatively expanded and the way to connect the different units can be
altered. Modern models often go beyond the "vanilla", fully connected MLP and for example
skip or repeat certain connections. Specific network structures are optimised for problems
related to time series prediction (e.g. long short term memory or recurrent neural networks)
or image recognition (convolutional neural networks).

The universal function theorem [146] states, that any function can be approximated using a
vanilla MLP. Evidently, this is a theoretical result. Estimating the required network structure and
training the weights is a nontrivial task for many real-world applications and requires a large
amount of training data [144, Chp. 6.4.1].

5.1.3 Random Forests as Example for Ensemble Methods

Another prominent supervised learning method is random forest regression and classification [147].
A random forest is an ensemble method based on binary decision trees. Decision trees belong to
the most trivial classifiers and split the feature space based on a sequence of binary decisions,
each carried out considering a subset of descriptors (see Fig. 5.3). At each node, the data is split
into two subsets, according to a criterion which is found to separate the samples in the best
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Figure 5.3: Simplified illustration of a random forest classifier or regressor consisting of 𝑁T trees.

possible way. With every decision the tree grows deeper and the purity of the nodes increases.
The growing process is finished when a termination criterium is met, such as all the samples in a
node belonging to the same class. This terminal node is also called leaf. Decision trees are "weak"
classifiers. They exhibit low bias (if they are grown sufficiently deep) because with each node
the model can be adapted better to the training data. However, they also exhibit high variance
as fully grown trees overfit by design. The idea behind ensemble methods is to combine several
weak models with low bias but high variance, such as decision trees, into an ensemble to create
an improved overall model. Each of the weak models is trained using a different subset which is
drawn with replacement from the training dataset (also known as bootstrap sampling).

The remaining data samples, which are not used to train this specific tree, are called out-of-bag
samples xoob and are used as a validation set to estimate the prediction error.

Combining multiple weak models, which are trained with different bootstrap samples, is called
bootstrap aggregation or bagging [148]. The variance of each tree is assumed to be 𝜎2 and the
positive pairwise correlation 𝜌 (ŷTr-A, ŷTr-B) = 𝜌 of tree A and B. The variance of the mean of 𝑁T
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trees with variance 𝜎2 is then†

Var
[︄
1
𝑁T

𝑁T∑︂
𝑏=1

𝑓 (xoob,𝑏)
]︄
=

1
𝑁2

T
Var

[︄
𝑁T∑︂
𝑏=1

𝑓 (xoob,𝑏)
]︄
=

=
1
𝑁2

T

(︄
𝑁T∑︂
𝑏=1

Var
(︂
𝑓 (xoob,𝑏), 𝑓 (xoob,𝑏)

)︂)︄
+

1
𝑁2

T

(︄
𝑁T∑︂

𝑏1=1

𝑁T∑︂
𝑏2≠𝑏1;𝑏2=1

Var
(︂
𝑓 (xoob,𝑏1), 𝑓 (xoob,𝑏2)

)︂)︄
=

1
𝑁2

T

(︁
𝑁T · 𝜎2 + 𝑁T · (𝑁T − 1)𝜌𝜎2)︁ = 𝜎2𝜌 + 1 − 𝜌

𝑁T
𝜎2.

(5.9)

Equation (5.9) demonstrates that the variance decreases with increasing 𝑁T. Furthermore, it
has to be emphasised that if 𝜌 is not negligibly small (much smaller than 1), the first term in
Eq. (5.9) limits the effect of averaging the predictions of the tree ensemble. It is therefore essential
to minimise the positive pairwise correlation 𝜌 of the decision trees. See [140, Chp. 9.2], [149]
and [140, Chp. 16] for more details on decision trees and ensemble learning, respectively.
Random forests are such bagged tree ensembles with one additional tweak to reduce the

correlation of the individual trees: the splitting conditions on each node are trained using only a
randomly selected subset 𝑚 < 𝑑 instead of all 𝑑 features. Thus, different splitting conditions are
found for each node, resulting in differing trees and minimised pairwise correlation 𝜌. The main
model hyperparameters are

• the number of trees 𝑁T, which needs to be sufficiently large to decrease the model variance
(see [140, Chp. 5.2]),

• the number of variables 𝑚 ≤ 𝑑, which are randomly selected at each node to train the
respective splitting decision (see [140, Chp. 5.3., 5.4.1]),

• the parameters defining the depth and hence the bias of each tree (e.g. the maximum depth
of a tree, the minimum number of samples per final node or the required purity per node,
see e.g. [149]).

Random forests have evolved to one of the state of the art ML methods, which handle nonlinear
data, for both classification and regression and are nowadays applied in various fields. Significant
advantages are the robustness concerning the hyperparameter settings, high-dimensional datas-
paces and insensitivity to data-scaling and missing data points. Random forests can therefore
be applied in a wide range of applications without extensive hyperparameter tuning or data
preprocessing. However, as the separation of the parameter space is based on comparing the
†

𝜌 (ŷTr-A, ŷTr-B) =
cov (ŷTr-A, ŷTr-B)

𝜎2
Tr-A𝜎

2
Tr-B

If 𝜎2
Tr-A = 𝜎2

Tr-B = 𝜎2 and 𝜌 (ŷTr-A, ŷTr-B) = 𝜌, it follows that cov (ŷTr-A, ŷTr-B) = 𝜌𝜎2.
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Figure 5.4: Surrogate models as substitutes for expensive measurement or simulation results.

feature values, random forests used for regression, i.e. random forest Regressors (RFR) cannot
extrapolate beyond unseen training data. Furthermore, the performance decreases for imbalanced
or skewed datasets.

5.1.4 Surrogate Models Based on Supervised Learning Methods

A complex system, such as the loss response to the transverse injection painting, is often expensive
and time-consuming to evaluate. A surrogate model 𝑓 (also called emulator, approximation model
or response surface model, see Fig. 5.4) approximates the input/output behaviour of the complex
system 𝑦 = 𝑓 (x) by 𝑦 = 𝑓 (x) ≈ 𝑦. It is faster and cheaper to evaluate than the original system
and is therefore used as a substitute in time-consuming studies, e.g. sensitivity studies, parameter
optimisation or algorithm performance assessment. Supervised machine learning algorithms, such
as RFR or ANN, are commonly used for developing such surrogate models.

5.2 Numerical Online Optimisation of Particle Accelerators

The other method applied to optimise the performance of the new injection system is numerical
optimisation. An optimisation problem P can be generally formulated as

P : min
x

𝑓0(x) : R𝑛 → R𝑚 (5.10)a

subject to 𝑐𝑖 (x) ≤ 0. (5.10)b
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Figure 5.5: Schematic of numerical optimisation problems, with convex (left), nonconvex (centre) and
noisy (right) objective functions. Constraints can restrict the search space to feasible solutions.

The aim is to efficiently estimate the n-dimensional parameter set x ∈ R𝑛 (feature vector), which
minimises the objective function(s) 𝑓0(x) ∈ R𝑚, while respecting any constraints 𝑐𝑖 on the allowed
parameter range (Fig. 5.5). Such problems exist in many variations and differ e.g. in dimensionality
or characteristic of the objective function. An extensive introduction can be found in [150]. There
is no single optimisation method that performs best on all kinds of problems ("there is no free lunch"
theorem [151]). To select a suitable method for solving a specific task P, it is necessary to first
comprehend the problem characteristic. Common criteria to classify the type of an optimisation
problem are as follows:

• Black-box versus model-based: Most complex industrial and laboratory settings aim at
optimising a problem in which the underlying function cannot be accessed directly. There
is no analytical model of the objective and/or the constraints available, only the observed
output. Such tasks are known as black-box (BB) problems. The lack of a model makes the
application of derivatives during the optimisation process challenging. Derivatives would
need to first be computed using multiple function evaluation, which is often not feasible
in real-life applications as they aim at solving a problem as efficiently as possible. Solving
BB problems therefore mostly relies on derivative-free optimisation methods. Optimising
injection painting functions without an analytic formula, using loss measurements as a
response, is such a BB problem.

• Dimensionality of the feature space, single-objective andmulti-objective optimisation:
The dimensionality of the problem is given by the number of input and output features. A
single-objective problem aims at optimising a single output variable 𝑦 ∈ R. Multi-objective
optimisation targets the simultaneous optimisation of multiple output variables y ∈ R𝑚.

• Continuous versus discrete: This distinction refers to the characteristic of the search space,
i.e. if the variables which are to be optimised are discrete or continuous.

• Convex versus nonconvex (multi-modal): The response of the objective to the feature
combinations, i.e. the response surface is convex if the objectives and constraints are convex
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functions of the features. A convex problem has a single minimum, whereas nonconvex
functions feature multiple local minima (see Fig. 5.5, centre).

• Unconstrained versus constrained: Industrial and real-life optimisation problems are often
constrained, which means that system properties such as hardware limitations restrict the
search space of the feature variables (see Fig. 5.5, left). Feature bounds

𝑐𝑖 (x) : 𝑎 ≤ 𝑥𝑖 ≤ 𝑏 (5.11)

are constraints, which only depend on a single decision variable. Such bounds are often
supported internally by algorithms such as most methods of the scipy-optimization pack-
age [152]. Constraints on the other hand are limitations on combinations of the decision
variables. These are generally included in optimisation environments by the penalty method.
In case the optimiser proposes a solution xreq., which violates any of the constraints, it
is corrected to xreq. → xset to comply with the accepted feature domain. The objective
function is then evaluated for the corrected feature vector, but expanded by a penalty term
𝑔(xreq., xset) to include information about the constraint violation

𝑓 (xreq.) = 𝑓0(xset) + 𝜉 · 𝑔(xreq., xset) (5.12)

with a tunable penalty factor 𝜉.

• Cost of sample evaluation: An important property of an optimisation problem and cri-
terium for selecting suitable algorithms is the cost of a function evaluation, i.e. the compu-
tation or acquisition time.

• Noisy versus noise-free: In a noisy optimisation problem the objective function is disturbed
by simulation or measurement noise, e.g. for additive and normally distributed noise

˜︁𝑓0 (x) = N (︁
𝑓0, 𝜎

2
𝑛

)︁
. (5.13)

˜︁𝑓0 (x) is the noisy and 𝑓0 (x) the bare objective function, as illustrated in Fig. 5.5 (right).
The noise amplitude 𝜎𝑛 can be quantified using the noise level 𝛼, which sets the noise in
ratio to the expected range of the explored objective function [153], i.e.

𝜎𝑛 = 𝛼 · |𝑚 − 𝑓 (xmin) | , (5.14)

where 𝑓 (xmin) is the (approximate or expected) minimised objective and 𝑚 the expectation
value over 𝑛expl. randomly sampled values

𝑚 =

𝑛expl.∑︁
𝑗=1

˜︁𝑓 (︁x 𝑗
)︁

𝑛expl.
. (5.15)
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5.2.1 Performance Metrics for Assessing Optimisation Algorithms

Optimisation algorithms aim at solving a problem in as few steps as possible (sample efficiency)
and/or finding the minimum as accurately and reliably as possible. The performance of different
algorithms has to be therefore compared using criteria for efficiency, success rate and reliability,
as summarised in [154, Chp. 4], [155].

The incumbent solution x∗ is the best solution seen up to a certain step, i.e. the solution which
has resulted in the smallest (noisy) objective evaluation ˜︁𝑓 (x∗). As the absolute function minimum
is normally not known, the solutions are usually classified as successful if the found objective falls
within a certain range. Similar as for the noise level, this range can be specified based on the
tolerance 𝜏, which describes the fraction of the expected objective range |𝑚 − 𝑓 (xmin) |, i.e.

succesful if 𝑓 (x∗) < 𝜏 · |𝑚 − 𝑓 (xmin) | . (5.16)

5.2.2 Derivative-Free Numerical Optimisation Algorithms

The phase space painting optimisation relies on derivative-free (DF) optimisation algorithms due to
the expensive and noisy function evaluation. Such methods work without gradient estimation and
are dealt with extensively in the literature, e.g. [156–158]†. There are various ways of categorising
DF optimisation methods.

Local versus Global Optimisers

One distinction is made between algorithms searching for global optima of a multi-modal function
(global optimisers, GO) and local optimisers (LO). For finding a global solution, the optimiser
needs to balance exploitation, i.e. intensifying the search in regions with known small objective
values, and exploration, i.e. searching in regions that have not been explored before [161]. If the
initial sampling points are chosen appropriately, LO can still find the global minimum to sufficient
accuracy and can be more efficient than GO due to the focus on exploitation. To avoid stagnation in
a local optimum, hybrid solvers combine the efficient exploitation of a local solver with stochastic,
global exploration steps, which are triggered when the local solver stagnates [161].

Model-Based versus Direct-Search Methods

Another way to categorise optimisation methods is the distinction between model-based and
direct-search methods [156, 159, 162]. Broadly speaking, direct-search methods directly compare
the evaluated sample points with each other to determine appropriate candidate points for the
subsequent iterations. Contrary, model-based methods consider the objective to be locally smooth
and approximate it locally by a surrogate model, which can be created through e.g. interpolation or
regression. The selection of the next candidate point is based on this model rather than the direct
sample acquisitions. One class of model-based algorithms is called trust-region method [163], which
† The terms derivative-free optimisation, derivative-free algorithms and BB optimisation are inconsistently used in
literature, as discussed in [159, 160]. Contrary to the here applied terminology, several resources reserve the term
derivative-free optimisation for deterministic algorithms, for which mathematical convergence to a critical point can
be proven and a stopping criterion established [156].

117



Chapter 5 Theoretical Background on Numerical Optimisation and Machine Learning

assumes that a model is valid within a certain neighbourhood (trust-region) of the current solution.
The algorithm searches for a minimum within this neighbourhood to propose a subsequent
candidate point. Depending on the obtained objective reduction, this point can be accepted or
rejected, and the trust-region radius increased or decreased for the subsequent steps.

5.2.3 Selected Optimisation Algorithms

Several local and global optimisation algorithms will be investigated in Chapter 6 for optimis-
ing the injection painting and are briefly introduced below. The algorithms are selected based
on operational availability [164] or recommendations from literature for related applications,
e.g. [165–168].

Local Optimisers

• Nelder-Mead (NM), published initially in 1965 by John Nelder and Roger Mead [169], is
a widely popular algorithm and is often referred to as simplex search. It is a direct-search
method that evaluates the objective on the vertices, i.e. the corner points, of a simplex (the
generalisation of a triangle in the 2-dimensional space, i.e. n+1 affinely independent points
in the n-dimensional search space). Based on the difference between these acquisitions, the
constructed simplex is contracted, expanded or reflected in the next iteration. The original
algorithm becomes inefficient for high-dimensional problems. Gao et. al. [170] proposed
Adaptive Nelder-Mead (ANM), an extension in which the algorithm parameters for expansion,
contraction, and shrinking are adapted to the dimensionality of the problem.

• Powell, also called conjugate direction method, is an adaption of Powell’s method [119, 171],
one of the earliest DF optimisers. A bi-directional search minimises the objective along each
direction of a set of conjugate search vectors. The obtained minimum along each line is
the starting point for the search along a new, conjugate search vector. The directions of the
search vectors are updated during the minimisation process.

• COBYLA (Constrained Optimisation BY Linear Approximation) is a model-based trust-
region method, which uses linear interpolation of the vertices of a simplex for local function
approximation [172–174]. Of the listed methods, only COBYLA facilitates the definition of
constraints and not only feature bounds.

• pyBOBYQA [165, 175] is an adaptation of Powell’s Bound Optimisation BY Quadratic
Approximation (BOBYQA [176]) algorithm. It is a trust-region method similar to COBYLA.
The main difference is that it employs a quadratic instead of a linear function for the local
surrogate model. A trust-region step then proposes the following candidate point based on
this model.

Global Optimisers

• pyBOBYQA with multiple restart mechanisms: The local pyBOBYQA solver can be ex-
panded to a hybrid solver by including a mechanism, which forces multiple restarts in order
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to escape local minima [175] and stagnation due to noisy observations [165]. In this work,
this variant is referred to as pyBOBYQA-noise-global.

• Surrogate-based optimisation (SBO): Using all of the already acquired data points, SBO
constructs a global, not just a local, surrogate model to resemble the BB function. This
surrogate model is then used to select subsequent candidate points, which either aim at
improving the model or estimating the minimum. The model is constantly being updated
and retrained with the newly acquired samples. SBO is a broad topic, with many different
potential methods for creating the surrogate (e.g. radial basis functions, Gaussian processes,
random forests), initial sampling strategies and methods for searching for new candidate
points. Instructive introductions can be found e.g. in [177, Chp. 10] and [178]. A common
SBO is Bayesian Optimisation [179], which usually uses Gaussian processes for the surrogate
model.

5.2.4 Noise Reduction Techniques

In the presence of noise, many DF methods are prone to stagnation at incorrect solutions, despite
not relying on derivative information, as illustrated in red in Fig. 5.6a. Different strategies for
solving such noisy problems have been proposed and studied in the literature.

1. Many methods focus on reducing the noise level by statistical resampling, i.e. acquiring the
noisy objective function ˜︁𝑓 𝑗 (x𝑖) multiple times with 𝑛SA acquisitions per step. In each step,
the sample average

˜︁𝑓 (xi) =
𝑛SA,𝑖∑︁
𝑗=0

˜︁𝑓 𝑗 (x𝑖)
𝑛SA,𝑖

(5.17)

is used to approximate the noise-free objective 𝑓 (xi). Figure 5.6 (yellow and blue) shows
how increasing 𝑛SA decreases the noise level to 𝛼/√𝑛SA and increases the accuracy of the
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found solution. In general, to reliably guarantee convergence to a certain tolerance level 𝜏,
the effective noise level after statistical resampling needs to be 𝛼/√𝑛SA ≪ 𝜏.

2. Other, often complementary, approaches adjust the algorithms themselves to decrease their
sensitivity to noise. This is often done for model-based methods. In a noise-free setting,
such methods use interpolation to create the local (mostly linear or quadratic) model. In
the presence of noise, one can increase the robustness by replacing the local interpolation
model with a local regression model [165]. However, creating the regression model requires
an increased number of optimisation steps compared to the interpolation model.

3. Yet another approach is to combine the local solver with a restart mechanism, which is
triggered when stagnation is detected. This strategy can be compared to the restarts, which
hybrid solvers trigger for finding a global minimum. Different studies demonstrate that this
can be a cheap option to enhance the robustness and can perform superiorly compared to
sampling and regression techniques [165].

Generally, when optimising an expensive, noisy objective function, one has to balance between
the number of exploration/exploitation steps 𝑛steps and the resampling rate 𝑛SA [165, 180] to
minimise the total number of acquisitions 𝑛acq

𝑛acq =
𝑛steps∑︂
𝑖=0

𝑛SA,𝑖
𝑛SA=const.→ 𝑛SA · 𝑛steps. (5.18)

• Large 𝑛steps facilitates a wider exploration of the parameter space. The individual acquisitions
have a higher noise level.

• Large 𝑛SA reduces the noise level of each acquisition. However, depending on the noise level,
this can require many acquisitions per optimisation step, hence fewer total optimisation
steps are feasible.

Various resources (e.g. [181]) explore different strategies for adapting 𝑛SA(𝑖) at each optimisation
step depending on the algorithm progress.
To provide an example, Fig. 5.7 illustrates the convergence behaviour of pyBOBYQA, a trust-

region method, in a noisy environment. In Fig. 5.7b, pyBOBYQA is applied in its default configu-
ration as a local solver (without a restart mechanism). A high sampling rate 𝑛SA = 40 acquisitions
per step is used to reduce the noise level. In Fig. 5.7a on the other hand, the extension pyBOBYQA-
noise-global is used, which replaces the local interpolation with a regression model and triggers
restart in case of stagnation. In this case, a lower sampling rate (𝑛SA = 40 acquisitions per step) is
applied. The optimiser takes more steps in the second scenario, because of the regression model
and the multiple restarts. The total number of acquisitions required to find the function minimum,
however, is similar due to the different sampling rates.
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Chapter 6
Towards Injection Painting Using

Derivative-Free Optimisation Algorithms

Numerical optimisation algorithms are increasingly employed to enhance the operational and
commissioning efficiency of particle accelerators. Online optimisation based on beam instrumen-
tation feedback is often a noisy, expensive to evaluate BB problem, which requires the application
of efficient DF methods. An example of such an optimisation problem is tailoring the transverse
beam distributions during the PSB injection process. A reliable framework to tune the painting
functions based on pulse per pulse modulation user requests will become a key aspect for improving
operational performance.

This chapter discusses the characteristics of the injection optimisation task to identify suitable
optimisation strategies (Section 6.1) and experimentally demonstrate the feasibility of automated
injection painting (Section 6.2). The data samples, which are acquired during the first beam tests
are used to train a surrogate model using supervised ML algorithms (Section 6.3 ). This surrogate
model facilitates systematic studies for a more in-depth comparison of the algorithm’s reliability
and efficiency without using physical resources (i.e. beam time on the accelerator). The respective
results serve as a guideline for future PSB injection optimisations or similar applications in particle
accelerator operation (Section 6.5).

6.1 Problem Characteristic of the Painting Optimisation

The loss rates, which are obtained during high-intensity beam production, are the consequence of
a complex interplay of space charge effects, machine errors and beam size limitations. The studies
presented in Section 4.3 showed, that the loss rates are significantly affected by the transverse
injection painting settings. Here, we aim to develop a framework (Fig. 6.1), which automates the
optimisation of the injection configurations. Such a system will help to achieve an efficient beam
set-up and minimise losses during operation. Similar to many other optimisation applications in
accelerator control, which are based on beam instrumentation feedback, this is amulti-dimensional,
constrained, single-objective, continuous, noisy, expensive to evaluate, nonconvex, DF, BB optimisation
problem:
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Figure 6.1: Application of numerical optimisation algorithms for tuning the PSB injection painting settings.

Input Features

The variables to be optimised are the injection settings, which control the phase space painting
in the horizontal and vertical plane (see Fig. 2.7 and Section 2.3.2). The studies presented in
this thesis aim at simultaneous optimisation of all 5 available painting parameters. Depending on
the target distribution, it can be of advantage to reduce the dimensionality of the feature space
and conduct the optimisation on a (transformed) subset x̂ = ℎ (x) ∈ R𝑑 with 𝑑 < 5. For high
intensity ISOLDE beams, this can mean for example optimising 𝐴1, while keeping 𝑡1, Δ𝑦, 𝑘Sl2
and 𝐴0 constant (based on the insights obtained in Section 4.3.5). However, this chapter aims at
providing a general guideline for tuning the painting schemes in case of novel user requests. The
search space is therefore not priorly restricted.

Objective Function

The objective function is continuous and is computed using beam instrumentation feedback, e.g.
BCT and BLM readings. The loss function is here defined by the total loss fraction 𝑓0(x) = 𝐿C805
(see Eq. (4.4)). Depending on the requirements, future implementations may expand this loss
function to facilitate solving multiple objectives, such as various intensity, loss and profile mea-
surements, at once.

It should be noted, that the results presented in Section 4.3 indicate that the objective function
is essentially convex over a wide range of the parameter space. However, given the dimensionality
and the complexity of the problem (interplay of different loss mechanisms, coupling between
horizontal and vertical planes, ...), the existence of local minima within the search space cannot
be excluded. The objective function is therefore assumed to be multi-modal and not convex.
One of the fundamental challenges of this optimisation problem is the high noise level, as

illustrated in Fig. 6.2. The correlation between the intensity measured in the injection line
and the ring (Fig. 6.2b) shows that the majority of the noise can be attributed to shot-to-shot
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Figure 6.2: Noise characteristic of the objective function (𝐿C805) for automated phase space painting
(ISOLDE beam type, operational configurations as listed in Table 6.1).

jitters rather than measurement noise. The noise is considered to be additive and normally
distributed (Eq. (5.13)). For an injected intensity of 𝑁p+,INJ = 0.9 × 1013 p+ in ring 3, the noise
level is estimated in measurements as 𝛼 ≈ 0.07 (see Eq. (5.14)). Figure 6.2c shows the resulting
Gaussian noise distribution of the objective†.

Evaluation Cost and Sample Efficiency

A new acquisition with beam can be expected every 5-60 s in the PSB. This high evaluation cost
of the objective function makes sample efficiency a key aspect when assessing the operational
applicability of different algorithms.

Bounds and Constraints

Constraints arise from hardware limits of the KSW generator or user-specific operational boundaries
(e.g. see Table C.1 for a list of the restrictions, which are to be considered for the ISOLDE painting
optimisation). The constraints are included in the loss function using a single penalty term, which
is computed through the integrated difference between the amplitude of the invalid, requested
KSW decay 𝐴KSW, req.(𝑡) and the set waveform 𝐴KSW, set(𝑡)

𝑓 (x) = 𝑓0(x) + 𝜉𝑝 · 𝑝2 (6.1)a

with 𝑝 =
∫ 𝑡2

0

|︁|︁(𝐴KSW, req.(𝑡) − 𝐴KSW, set(𝑡)
|︁|︁ 𝑑𝑡. (6.1)b

† Here, 𝑚 and consequently 𝛼 (Eq. (5.14)) are computed using the exploration steps of the pyBOBYQA algorithm
with 𝜌beg = 0.5.
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Table 6.1: Phase space painting for ISOLDE beams with numerical optimisation algorithms: machine
configurations and results.

Parameter Unit Set 1 Set 2 Set 3 Set 4
Ring - 2 3 3 3
Number of injected turns - 90 90 100 110
Injected intensity 1010 p+ 920 910 1012 1115

Result: minimised 𝐿C805 % 3.9 2.4 3 4.5

6.2 First Results With Online Painting Optimisation

Generic beam tests are performed on the machine to generally assess the feasibility of automatically
optimising the PSB injection painting. The majority of these tests focus on optimising the painting
when injecting ISOLDE-type beams with 𝑁p+ = 0.9 × 1013 p+ per ring, with machine settings
similar as in the studies presented in Section 4.3 (Tables 4.1 and 4.5). The optimisation is performed
using the Generic Optimisation Frontend and Framework (GeOFF) from the CERN operations
group [164]. The results of these experiments help to characterise the general convergence
behaviour, identify challenges and probe the structure of the data space. These first tests are
performed using a selection of the algorithms listed in Section 5.2.3 with settings as listed in
Table 6.2.

Figure 6.3 illustrates the convergence behaviour, which is observed in the PSB for different
algorithms and resampling rates. The painting functions, which are set during the various opti-
misation runs in ring 3 are displayed in Fig. 6.4a and are colour-coded by the resulting losses,
which range from < 2.5% (blue) to ≈ 4 to > 15% (red). The optimised painting settings for the
different machine configurations, such as rings and intensities, are extracted and compared in
Fig. 6.4b. The following observations can be summarised from these first tests:

• All of the tested algorithms manage to reduce the losses along the cycle to < 2.8% within 30-
100 steps. This corresponds to ≈ 300-500 acquisitions, considering the different statistical
resampling rates.

• Considering the applied hyperparameters, the local solvers Powell’s Method and COBYLA
terminate after around 30 steps, before being able to converge to the function minimum.
pyBOBYQA-noise-global on the other hand continues the search due to the implemented
restart mechanism and finds painting settings with lower loss rates of ≈ 2.5% .

• When comparing the functionminima,which are found for the various operational conditions,
it is evident that the minimised loss rates differ in the different rings (e.g. 2.3% in ring 3
compared to 4% in ring 2, see Table 6.1). This is expected due to differences in errors
and resonance compensation in the four rings. However, the characteristic of the optimised
painting configurations stays similar for different rings and intensities.
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configurations.

• The jitter in the convergence plot highlights the high noise level of the objective function,
despite the already applied statistical resampling.

Whereas these first results show, that loss optimisation is feasible with different algorithms, they
also raise questions about estimating the ideal sampling rates, algorithms and hyperparameters
to find the minimum in as few steps as possible.

6.3 Surrogate Model for Offline Performance Tests

Conducting systematic tests on the machine to address these questions is infeasible because of
limited beam time and drifts in the machine’s performance, which occur due to external factors
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Figure 6.5: Performance evaluation of the surrogate model created by the random forest regressor (using
300 trees, a minimum number of 6 samples per leaf and 3 out of 5 features per split).

when measuring over multiple days. The data samples, which are acquired during the first beam
tests are therefore used to train a surrogate model using a RFR [147], which is described in
more detail in Section 5.1.3. This choice is based on several criteria. Firstly, the RFR handles
nonlinear data, as required for modelling the PSB injection dynamics. As an ensemble method,
it is generally more robust to overfitting, noisy datasets, missing data or feature scales. Last but
not least, a major advantage is its insensitivity to hyperparameter settings. The reliable and
straightforward implementation of this algorithm makes the presented approach generalisable to
other optimisation applications in controlling large-scale industrial or scientific facilities.

Specifics of the Training Data Set and Model Parameters

The training dataset† is obtained from the first online optimisation attempts and is therefore highly
imbalanced, with the majority of the samples being acquired at low objective values between
𝐿C805 ≈ 2.5-5%. Even though RFR are comparably robust to outliers, the data acquisitions with
high losses 𝐿C805 > 5% can distort the prediction in the vicinity of theminimum. These samples are
therefore removed before training the model. The parameters for training the RFR (𝑛𝑇 = 300 trees,
minimum 6 samples per leaf, 4 out of 5 features per split) are tuned to reduce the model variance
rather than decrease the bias. While this mitigates overfitting and the introduction of artificial
local minima, the increased bias results in a systematic prediction inaccuracy especially for data
samples with relatively large and small objective values (see Fig. 6.5b). However, apart from such
deviations for extreme objective values, the modelled data space is sufficiently close to the real
data space to allow employing this model for offline tests. Finally, additive Gaussian noise with
𝛼 = 0.07 is added to the surrogate model to mimic the real optimisation environment, based on
the noise estimates presented in Section 6.1,

† The training data set consists of 1800 samples and is split into 85% training and 15% test data samples.
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Figure 6.6: Response surfaces of the noise-free surrogate model, illustrating a 1- and 2-dimensional
parameter variation around a proposed solution. Exemplary solutions obtained when running the optimiser
(here pyBOBYQA without restarts) multiple times with different starting points are indicated by the
scatter markers and colour-coded by the classified level of accuracy, i.e. green for high-accuracy solutions
𝑓 (x) < 2.65%, yellow for low-accuracy solutions 𝑓 (x) < 2.73% and red for noncleared samples with
𝑓 (x) > 2.73%. Plotting script modified from [182].

Assessing the Characteristic of the Response Surface using the Surrogate Model

The surrogate model (Fig. 6.6) further assists in comprehending the structure of the data space.
Figure 6.6 shows the noise-free response surface, which is obtained from the surrogate model for
a 1D and 2D parameter variation around the approximated function minimum [182]. In each
subplot, one or two features are varied, while the remaining features are kept at the values of
the incumbent solution. In agreement with the results presented in Section 4.3.5, the response
surfaces clearly show the flat characteristic of the minimum, the increasing losses with increased
vertical offset Δ𝑦, the convex dependence on the combination of 𝐴1 and 𝑘Sl2 and the comparably
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small impact of 𝐴0 and 𝑡1. The flat minimum is a major challenge for finding efficient optimisation
routines and is relevant for tuning the optimiser’s hyperparameters.

6.4 Testing Methodology and Performance Metrics

The surrogate model is subsequently used to systematically assess the performance of different
algorithms offline, using a procedure as outlined below.

6.4.1 Assessed Optimisation Algorithms and Configurations

The investigated algorithms belong to the most common local and global single-objective, DF,
nonlinear, nonconvex methods and are listed in Table 6.2 (see Section 5.2.3 for a brief intro-
duction). These algorithms have been considered because of operational availability [164] or
recommendations from literature for related applications, e.g. [165–168]. Evidently, there are
numerous other eligible algorithms, which can be explored operationally in future studies, as
listed e.g. in [159].

Table 6.2 references the utilised algorithmic implementations and lists the applied configurations,
which are obtained from a rough hyperparameter tuning. The major alterations to the default
parameters are as follows:

• Algorithmic implementations: Several local DF methods require an initial search range
or step size parameter, which defines the search space exploration during the initialisation
phase before the algorithm exploits a (local) minimum. This range is set using the initial
trust-region radius 𝜌beg for pyBOBYQA and COBYLA, initial step size for Powell’s Method and
initial simplex size for Nelder-Mead. In our case, the highest performance is achieved with
a large initial search range, such as approximately 25% of the feature range (𝜌beg = 0.5 for
𝑥𝑖 = [−1, 1]).
When applying the pyBOBYQA adaptation for noisy applications (pyBOBYQA-noise [165]),
the expected additive noise amplitude 𝜎𝑛/√𝑛SA should be explicitly specified. This activates
a restart mechanism once the last 𝑛𝑘 objective values (i.e. the samples used for the local
regression model) are within this noise level [165].
pySOT [183] is a state-of-the-art surrogate optimisation package. It is selected as a repre-
sentative for SBO due to reported good performance for noisy, expensive BB problems [165].
Parameters as configured in [165] are used without further tuning, i.e. a radial basis sur-
rogate model with a DYCORS search strategy [184] and a latin hypercube sampling. SBO
is a broad topic with a wide range of different solvers, surrogate modelling and sampling
strategies. A dedicated study to explore such solvers in detail goes beyond the scope of this
thesis but is strongly encouraged.

• Termination criteria: Optimisation processes, especially for global solvers, are often termi-
nated because of reaching a pre-defined number of maximum function calls. This budget is
set to 104 objective evaluations for the offline tests using the surrogate model (including
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Table 6.2: Overview of the derivative-free numerical optimisation algorithms, which are applied in the PSB
injection painting optimisation environment.
Algorithm Impl. Type Hyperparameters and options
pyBOBYQA [165]

v1.3
Trust region (quadratic
approximation)

Initial trust-region radius 𝜌beg = 0.5

COBYLA [152]
v1.8.0

Trust region (linear
approximation)

Initial trust-region radius 𝜌beg = 0.5

Powell’s
Method

[152]
v1.8.0

Direct search
(bi-directional line
search)

Adaptive
Nelder-
Mead

[152]
v1.8.0

Direct search (simplex
based pattern search)

Initial simplex with step-size ℎ 𝑗 = 0.4
for feature bounds of (−1, 1)

pyBOBYQA
with restart

[165,
175]
v1.3

Trust region (quadratic
approximation) with
restart mechanism

Initial trust-region radius 𝜌beg = 0.5,
noise- and global-flag enabled,
additive_noise_level= 𝜎𝑛/√𝑛SA

pySOT [183]
v0.3.3

Surrogate optimisation Radial basis function surrogate,
DYCORS [184] strategy, initial design
of 2 · 𝑑 + 1 latin hypercube points

statistical resampling) to avoid premature termination of an algorithm. Nevertheless, the
study aims to identify solvers and configurations, which achieve a sufficient objective reduc-
tion as efficiently as possible. Therefore particular attention is given to the performance,
which the optimisers achieve within 𝑛acquisitions ⪅ 300 acquisitions.
Local model-based and direct-search methods base the termination criteria additionally
on a tolerance parameter 𝑡𝑜𝑙. It describes the minimum distance in feature space between
two subsequent function evaluations (or minimum trust-region radius 𝜌end) and triggers
termination once it is reached. To prevent early termination, which would distort the
comparison of local solvers, small tolerance levels of O(10−4) are chosen for all local solvers.
However, it should be noted that for operational purposes, a minimum tolerance/trust-region
radius of 𝜌end = 0.005 proved to be suitable.

6.4.2 Test Data and Performance Metrics

Each algorithm is tested for the same set of 𝑁𝑠 = 100 randomly generated start configurations,
as recommended in [154, Chp. 3-4]. These initial settings are uniformly sampled from a 20%
vicinity around the centre of the feature range and reflect for example user-dependant changes in
feature bound settings and shifts in the response surface due to varying machine configurations.
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The performance of the algorithms is compared using criteria for efficiency and reliability [154,
Chp. 4], [155].

Measuring Reliability

Following the studies presented in [155], the reliability is measured using the clearance rate

𝐶𝑅 =
𝑛succ. (𝜏)

𝑁𝑠
. (6.2)

This quantity describes the proportion of cases 𝑛succ. in which the algorithm converges to an
acceptable solution. The acceptable solutions are defined by the tolerance 𝜏 (see Eq. (5.16)).
Note that for tests on the surrogate model, the noise-free objective value 𝑓 (x∗) of the incumbent
solution is known and is hence considered for assessing the success in Eq. (5.16).
To account for the flat characteristic of the function minimum, it is of interest to distinguish

solutions with high and low accuracy. Converging to the region of the flat minimum, but not
necessarily the optimum value within this region, is considered as low-accuracy solution and given
by the tolerance 𝜏 = 0.2, which corresponds to solutions with 𝑓 (x) < 2.73%. High-accuracy
solutions are expected to converge to the vicinity of the global optimum (green markers in Fig. 6.6),
given by 𝜏 = 0.1 and hence 𝑓 (x) < 2.65%. These regimes are illustrated in Fig. 6.6 by yellow
and green markers, respectively. The red markers indicate unaccepted solutions.

Measuring Efficiency

The efficiency is measured by the required number of function evaluations (i.e. number of PSB
cycles) needed to reach a specific clearance rate 𝐶𝑅. To simplify the comparison, statistical
resampling with a constant resampling rate 𝑛SA is considered. The number of required function
evaluations is consequently determined by Eq. (5.18).

Reporting the Results Using Data Profiles

The tradeoff between efficiency and reliability can be illustrated using data profiles [185], which
display the clearance rate 𝐶𝑅 as a function of the number of function evaluations, as shown
in Fig. 6.7a. The area under the curve (𝐴𝑈𝐶)

𝐴𝑈𝐶 =
1

𝑛aq,max

∫ 𝑛aq,max

1
𝐶𝑅(𝑛acq) · 𝑑𝑛acq (6.3)

is used to compare the data profiles quantitatively. For the here presented analysis a maximum
of 𝑛aq,max = 5000 objective evaluations is considered for computing the 𝐴𝑈𝐶. When comparing
multiple optimisation methods (Fig. 6.7a), the best performing resampling rate 𝑛SA (i.e. with the
highest 𝐴𝑈𝐶) is considered for each method.
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6.5 Offline Tests Using the Surrogate Model

Figure 6.7a compares the performance of the different algorithms using data profiles. For each
algorithm, the statistical resampling rate 𝑛SA, which gives the highest 𝐴𝑈𝐶 is considered in this
comparison. The sensitivity of the 𝐴𝑈𝐶 on the statistical resampling rate is portrayed in Fig. 6.7b
for the individual methods. The corresponding data profiles are presented in Appendix C for
reference.

Low-Accuracy Solutions (𝜏 = 0.2)

It can be seen that for low-accuracy solutions all presented methods manage to reach a 𝐶𝑅 > 0.8
within 𝑛acq < 1000 steps. The best performance is achieved using the local solver ANM, which
achieves 𝐶𝑅 > 0.95 within 𝑛acq ≈ 150 steps. The global solvers pyBOBYQA-noise-global and
pySOT approach 𝐶𝑅 > 0.95 within 𝑛acq ≈ 400 and 800 steps, respectively. These three methods
are less sensitive to noise and do not require a large statistical resampling rate. The highest
𝐴𝑈𝐶 is consequently obtained for 𝑛SA = 3-5 acquisitions per step. This resampling rate is mainly
required to reduce the noise level to 𝛼/√𝑛SA ≪ 𝜏.
The local optimisers pyBOBYQA, Powell’s Method and COBYLA only achieve a clearance rate

of 𝐶𝑅 = 0.8-0.9, and this within 𝑛acq = 1000 acquisitions. For pyBOBYQA and COBYLA, the low
sample efficiency can be attributed to the high 𝑛SA = 30-50 acq./step, which is required because of
the low robustness to noise. For Powell’s method, on the other hand, the best performance is still
achieved with a low resampling rate (𝑛SA = 5 acq./step). In this case, the low sample efficiency can
be ascribed to the larger number of 𝑛step during the initial search in each direction. However, from
a practical point of view, it should be noted that the efficiency of Powell’s method strongly depends
on the configured initial directions, especially when targeting low-accuracy solutions. There is
potential to increase the efficiency of Powell’s method by including prior information about the
feature space in the initial directions, e.g. select the directions of highest feature importance,
i.e. Δ𝑦 and 𝐴1, as first search directions 𝑥1 and 𝑥2.

High-Accuracy Solutions (𝜏 = 0.1)

For high-accuracy solutions, only the global solvers (pySOT and pyBOBYQA-noise-global) as well
as the local heuristic ANM achieve a clearance rate of 𝐶𝑅 > 0.7. However, converging to these
solutions takes up to 𝑛acq → 2500 acquisitions. The impact of the noise level on the performance
is similar as for low accuracy solutions. The main difference is that the optimum number of
acquisitions per step is shifted towards higher values for all algorithms. This is consistent with the
fact, that one can only expect to reliably solve the problem to an accuracy 𝜏 ≫ 𝜎𝑛/√nSA.

Summary of Results and Equivalent Machine Time

Overall, it is observed that ANM outperforms the other tested methods if the aim is not to
find the global minimum but rather to quickly achieve an acceptable reduction in the objective
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Figure 6.7: Comparing the performance of different optimisation algorithms on the surrogate model: high
(left) and low-accuracy solutions (right).

function, e.g. here find low-accuracy solutions with 𝜏 ≈ 0.1-0.2. This is also repeatedly reported
in literature e.g. [119]. The quick improvement in the first steps is also attributable to the fact,
that in the majority of the cases only one or two objective evaluations are required for each
algorithmic iteration, which is the evaluation of a new simplex in case of ANM. The here presented
results demonstrate again, why ANM is widely used in many engineering problems when to aim
is to provide a quick, acceptable reduction of the objective. However, the hyperparameter tuning
showed, that it is essential to start the optimisation with an initial simplex, which covers a wide
range of the parameter space, e.g. with a simplex length of ≈ 20% of the feature range in this
application. This requirement is particularly attributed to the flat minimum.

The performance of pyBOBYQA-noise-global is generally very comparable with ANM. However,
to increase its efficiency it is beneficiary to explicitly set a noise level, which triggers a restart in
case of stagnation due to noise. Further, for low-accuracy solutions, pyBOBYQA-noise-global loses
to ANM because of the longer initialisation phase. For 5 dimensions the initialisation phase of
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pyBOBYQA-noise-global takes 21 steps. This corresponds to 𝑛acq = 84 acquisitions when acquiring
4 samples per step. Reducing the statistical resampling rate during this initialisation phase will
yield a significant improvement in efficiency.
The surrogate-based optimiser pySOT achieves a similar 𝐶𝑅 as pyBOBYQA-noise-global for

both low and high accuracy. However, in the applied configuration it requires approximately
twice the number of function evaluations. Still, as the hyperparameters are set purely based on
literature [175], without further fine-tuning, this is a promising result and motivates further
investigation of SBO methods. These solvers become of particular interest, considering that a
model can be pre-trained with priorly acquired results or surrogate models. This can reduce the
initialisation phase significantly.

Tables 6.3 and 6.4 summarise the results for low and high-accuracy solutions, listing the 𝐴𝑈𝐶
and the number of acquisitions 𝑛acq, which are required to clear the problem with 𝐶𝑅 > 0.95 and
𝐶𝑅 < 0.7, respectively. Based on the assumption that one acquisition (i.e. a new PSB cycle and
measurement) is obtained every 30 s, the number of acquisitions is converted to an equivalent
machine time. This indicates, that also for such a low cycle rate, low-accuracy solutions can
be achieved within 1 h, whereas high-accuracy solutions can be achieved within one shift, e.g.
overnight.

Table 6.3: Performance summary for different optimisers when targeting low-accuracy solutions. The
equivalent time 𝑡eq. corresponds to the machine time required for 𝑛acq steps assuming one acquisition (PSB
cycle) every 30 s.
Optimiser AUC nSA naq.

𝐶𝑅>0.9
teq.
(h)

Potential improvements

ANM 0.99 5 150 1.3 Adaptive nSA
pyBOB.-noise-glob. 0.97 4 400 3.3 Adaptive nSA
pySOT 0.94 3 780 6.5 Adaptive nSA, pre-learned model
pyBOBYQA 0.77 50 - -
COBYLA 0.74 5 - -
Powell 0.74 30 - - Choose initial search directions
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Table 6.4: Performance summary for different optimisers when targeting high-accuracy solutions. The
equivalent time 𝑡eq. corresponds to the machine time required for 𝑛acq steps assuming one acquisition (PSB
cycle) every 30 s.
Optimiser AUC nSA naq.

𝐶𝑅>0.7
teq.
(h)

Potential improvements

pyBOB.-noise-glob. 0.72 9 1070 9 Adaptive nSA
ANM 0.70 15 1185 10 Adaptive nSA
pySOT 0.63 3 2350 20 Adaptive nSA, pre-learned model
pyBOBYQA 0.29 10 - -
COBYLA 0.19 60 - -
Powell 0.16 70 - Choose initial search directions

6.6 Conclusion and Outlook

Automating the transverse painting optimisation at the PSB injection based on user request
and beam instrumentation feedback is fundamental for increasing operational efficiency and
performance. Such a system can be for example employed to minimise beam loss during high-
intensity beam production. As a proof of concept, different derivative-free optimisation algorithms
are applied in the PSB. An acceptable loss reduction is achieved within a few hundred objective
evaluations. As in most laboratory and industrial optimisation applications, the major challenges
turn out to be the high noise level and the expensive function evaluations. In order to guarantee
convergence to acceptable solutions, we either require the selected algorithm to be robust to
noise (e.g. SBO, pyBOBYQA with extension for noisy applications, ANM) or reduce the noise level
through statistical resampling. The data samples, which are acquired during the first experimental
optimisation runs, are used to train a data-driven surrogate mode. This proved to be an efficient
way of improving and assessing the performance of various algorithms and settings offline, without
the need for physical resources like beam time. These tests clearly show that balancing noise
reduction (resampling) with enhanced noise exploration (increased number of steps) is crucial for
maximising efficiency and is specific to each solver.

The results presented in this chapter could be used to assess the feasibility of implementing a
model-free controller in operation, for example using reinforcement learning or extremum-seeking
controllers. This would allow maintaining the objective minimum, which has been previously
found using the above-described methods instead of going through the full optimisation process
again.

136



Chapter 7
Deep Learning for Electronic Circuit

Parameterisation of the Painting Kicker
Magnets

The in-house KSW generator design allows for programming the wide range of user-specific
KSW field decays. This programmable field decay provides high operational flexibility but results
in complex generator parameterisation. Numerous input parameters such as switching delays,
capacitor voltages and amplifier analogue input voltages have a nonlinear effect on the output
current and make an analytical description of the full electrical circuit difficult. A PD (proportional
and derivative) feedback loop and a linear power amplifier are currently used in operation to
achieve the required current precision of ±1% for controlling the phase space painting schemes
for the various users.
The complex parameterisation and the demand to reliably generate user-specific piece-wise

linear waveforms with 1% precision on a pulse per pulse basis make the KSW generator an
interesting test bench to investigate control concepts based on supervised ML algorithms. An
overview of data-driven methods to control dynamic systems can be found in [142]. In the long
term, such methods could pave the way to e.g. substitute the implementation of a feedback
loop or even be a generic way to solve similar tasks. At its core, parameterising the KSW is an
inverse problem, which aims at identifying system parameters based on the observed system
response. Solving such problems using deep learning [186] has gained much attention recently,
also profiting from the advances in novel physics-guided (PGNN,[187]) or physics-informed neural
networks (PINN, [188]).
This chapter investigates the feasibility of modelling and controlling the circuit parameterisa-

tion using supervised learning techniques as an alternative solution to the control based on a
feedback loop. Section 7.1 provides an introduction to the generator layout and lists the hardware
parameters, which are to be controlled. Section 7.2 outlines the investigated model structures,
which are trained in Section 7.3 and assessed in Section 7.4.
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Figure 7.1: Schematic of the 400 A KSW generator: the coloured boxes highlight the four generator stages,
which are switched on and off to create the custom current slopes highlighted in Fig. 7.2 [103].
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7.1 KSW Generator Layout and Control

Figure 7.2: KSW magnet current, generator voltage waveform, amplifier input voltage and IGBT switch
times for an ISOLDE-type painting function [103].

7.1 KSW Generator Layout and Control

The KSW pulse generator consists of four stages with pre-charged high voltage capacitors 𝐶𝑖

(Fig. 7.1), as described in detail in [103]. The stages are connected in series and are successively
switched to the magnet in order to generate the required painting kicker magnet current 𝐼KSW
(Fig. 7.2). All descriptions in this chapter focus on the generation of an ISOLDE-like waveform,
but similar concepts are valid for other waveform types.

• Stage 1 is active during the initial current rise (turn-on) and current decays slope 1 and
slope 2. It comprises two capacitors, which generate a positive output voltage,𝐶1 for turn-on
and 𝐶5 for the flat-top and the flat current segment between 𝐼1 and 𝐼2 (slope 2).

• Stage 2 generates a negative output voltage to create the fast current decay during slope 3.
It consists of two switching stages in series with the capacitors 𝐶2𝑎 and 𝐶2𝑏.

• Stage 3 is switched on to obtain the current decay during slope 1. The required negative
output voltage is generated by the pre-charged capacitor𝐶3.𝐶3 alone is sufficient to generate

139



Chapter 7 Deep Learning for Electronic Circuit Parameterisation of the Painting Kicker Magnets

Table 7.1: KSW generator control parameters to be predicted by the machine learning model.
Value Unit Stage Remark Predict

Ca
pa

cit
or

vo
lta

ge
s

𝑉C1 V 1 Turn-on yes
𝑉C2a V 2 Slope 3 yes
𝑉C2b V 2 Slope 3, same as 𝑉C2b no
𝑉C3 V 3 Slope 1 yes
𝑉C5 V 1 Flat-top, slope 1 and 2 yes

Bi
ts 𝑐4𝑎 - 3 Change stage 3 capacitance no

𝑐4𝑏 - 3 Change stage 3 capacitance no

IG
BT

tim
in
gs

𝑡R,1 µs 1 𝑡2, beginning slope 3 yes
𝑡R,2 µs 2 Turn-on yes
𝑡R,3 µs 3 𝑡0, beginning slope 1 yes
𝑡LEN,1 µs 1 𝑡3, end slope 3 yes
𝑡LEN,2 µs 2 𝑡2, end slope 2 yes
𝑡LEN,3 µs 3 𝑡1, end slope 1 yes

Lin
.

Am
pl. tLA µs 4 Entire waveform yes

VLA µs 4 Entire waveform yes

slope 1 with a fast current decay

(Δ𝑖/Δ𝑡)1 = − 𝐼0,KSW − 𝐼1,KSW
𝐼0,KSW · 𝑡1,KSW (7.1)

and short duration. The maximum charging voltage, in this case, is 1.2 kV. To provide a
slope 1 with longer duration but lower Δ𝑖/Δ𝑡1, additional capacitors 𝐶4𝑎 and 𝐶4𝑏 can be
connected in parallel to 𝐶3. In this case, the charging voltage is limited to 500V. The bits
𝑐4𝑎, 𝑐4𝑏 control the connection of these additional capacitors and are set depending on the
requested Δ𝑖/Δ𝑡1.

• Stage 4 consists of a linear power amplifier. The applied analogue amplifier input voltage is
set as a series of time-amplitude markers (here 15 points 𝑃LA𝑖 = (𝑡LA,𝑖, 𝑉LA,𝑖) with 𝑖 = 1-15)
to correct for nonlinearities in the output current (v𝑃, green in Fig. 7.2).

Depending on the time markers 𝑡𝑖 of the requested current waveform, IGBT switches are
programmed to activate the respective stages 𝑠 = 1 to 3 by setting the rising edge 𝑡R,𝑠 and
the length 𝑡LEN,𝑠 of the control signal (bottom in Fig. 7.2). The required timings orient on the
respective time instances 𝑡𝑖, but need to be advanced by a time shift Δ𝑡 ≈ O (µs) to account for
delays of IGBT and gate drivers.
The programmable features are summarised in Table 7.1, i.e. IGBT switch timings, capacitor

charging voltages, control bits for defining the capacitance of stage 3 and the amplifier input
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voltage array. The dynamics of such a system can be mathematically formalised using state space
theory [189, 190] as

𝑑x
𝑑𝑡

(𝑡) = A · x(𝑡) + B · u(𝑡). (7.2)

x is the state vector and describes the system state at time 𝑡 (i.e. here the magnet currents). The
input u(𝑡) is the driving term of the system at time 𝑡 (i.e. here the piecewise linear sum of the
generator forward voltage and the amplifier voltage). The system matrix A defines the dynamic
behaviour. It depends on the inductors, capacitors and resistors of the stages, which are active
to produce the respective slope. B is the control matrix Solving these equations to define the
required amplifier and capacitor voltages is a complex task. Further, the dynamics cannot be
modelled using this formalism during the transition between the individual stages, due to IGBT
switching losses and related fast voltage drops. Initial attempts to identify the required circuit
parameters for a specific waveform are presented in [189]. However, the pressing need for an
accurate current and linearity control eventually motivated the implementation of an analogue
feedback loop based on a PD controller [103] instead.

7.2 Machine Learning Model Overview

An alternative approach to the control using the feedback loop could be to estimate the required
circuit parameters using an ML model. Ideally, such a model predicts the parameters, which are
required to produce the linear current decay, as requested by the user. Given the constraint of
linearity, the target waveform for operational applications is fully defined by the 8 time-amplitude
markers (𝐴0, 𝐴1, 𝐴2, 𝐴3, 𝑡1, 𝑡2, 𝑡3, 𝑡4). However, the majority of the hardware parameterisations
and hence also the training data samples, result in nonlinear current evolutions (mainly slope 2
and 3). The input to the ML model is therefore the entire waveform 𝐼KSW(𝑡) as a time series and
not just the 8 time-amplitude markers (red box in Fig. 7.3). The waveform can be parameterised
by 𝑛 features through various preprocessing techniques to reduce the dimensionality of the input
feature space. The overall model 𝑓

𝑓 : R𝑛 → R𝑚 (7.3)
subsequently aims at mapping these 𝑛 inputs to 𝑚 = 40 output features (4 capacitor voltages, 6
switch timings and 15 × 2 time-amplitude coordinate pairs for the amplifier waveform, green box
in Fig. 7.3 and Table 7.1). Part of the predicted output, i.e. the amplifier input voltage, can be
alternatively formulated as time series.
The ideal charging voltages produce a waveform close to, but not exactly, the linear target

waveform, also without feeding an analogue input voltage to the amplifier. The amplifier voltage
subsequently solely corrects for nonlinearities and remaining errors. It is therefore of interest, to
model the generator dynamics without the amplifier voltage as the first proof of concept. Two
networks are trained to solve the forward and inverse problems for operating the generator
without the amplifier input voltage.

• Step I predicts the hardware parameters for a given input waveform (without analogue
amplifier input voltage).
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Figure 7.3: Artificial neural networks for predicting the circuit parameterisation of the KSW generators.

As the amplifier input voltage is missing in this model, it will not be possible to predict a hardware
parameterisation, which generates a piece-wise linear current decay. However, the predicted
parameterisation is supposed to produce a waveform close to the linear target waveform.

• Step II predicts the output waveform, which is expected for a given circuit parameterisation.

In the overall picture, Step II can be applied to predict the waveform, which is expected to be
produced by the predicted hardware parameters. Assuming that the accuracies of the models in
step 1 and 2 are sufficient, the difference between the nonlinear predicted and the linear target
waveform could subsequently be used in

• Step III, to predict the analogue waveform required to correct the discrepancies and non-
linearities.

The first tests, which are presented in this chapter focus on creating models for steps I and II.
In the long term, efforts will aim at combining steps I to III into a single model. However, the
proposed modular approach is chosen here to simplify these first studies. Additionally, modelling
the contribution of the generator forward and the amplifier voltage independently can simplify
the application of underlying partial differential equations based on Eq. (7.2) when using PINNs
in future studies.
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Finally, it should be noted that training data samples with close to ideal hardware parameters
are sparse. Extrapolating the predicted hardware parameters to these unseen regions is expected
to be one of the major challenges of training an accurate ML model.

7.3 Methodology

The main model parameters of both models for step I and II are summarised in Tables 7.2 and 7.3.
The respective design choices are motivated in the following subsections. The pyTorch [191] and
scikit-learn [192] libraries are used for creating the model and preprocessing the data, respectively.

7.3.1 Training Data, Input and Output Feature Space

The labelled training and test data are acquired by pulsing a test generator [103] with different
circuit control parameters. The pulse cycle takes 1.2 s, which enables the acquisition of large
amounts of training data in reasonable time periods, i.e. 72000 samples within 24 hours. The here
presented first feasibility tests are performed using a comparably small data set of 4000 samples,
which is divided into 10% test and 90% training data.

The models are trained for ISOLDE-type waveforms with a fixed configuration of stage 3 (𝑐4𝑎 = 1
and 𝑐4𝑎 = 1). Setting the capacitance for a specific waveform through the control bits is a design
choice. The required parameters, the resulting dynamics and hence also the ANN weights change
with altered stage 3 capacitance. The trained models are therefore limited to KSW operation with
similar stage 3 capacitance. However, the same concepts can eventually be applied to train models
for different control bit configurations.

7.3.2 Data Preprocessing

Examples for the acquired waveforms (without amplifier voltage) are illustrated in Fig. 7.4a.
Beam is here injected at 𝑡 = 0 µs. The rising edge of the current waveform (turn-on, 𝑡 < 0 µs) is
not specified by the operationally requested waveform. The first step of preprocessing is therefore
the extraction of the time period, in which the KSW current decay is specified by the user request
(Fig. 7.4b). The subsequent preprocessing step aims at reducing the dimensionality of this cut
waveform. This can be achieved through several techniques, such as wavelet and Fourier transform
or dimensionality reduction using convolutional neural input layers (see [142, Chp. 5] for an
overview). Because of its simplicity, the dimensionality reduction is performed in this study using
a principal components analysis (PCA) [193] based on the implementation in [191, 194]. The first
30 principal components (PC) yield a good reconstruction of the original waveform, as illustrated
in Fig. 7.4c. Using less PCs results in a misrepresentation of the sharp transitions between the
individual slopes. Higher-order PCs solely reproduce the noise of the acquired current and do
not provide additional information. Performing the PCA reduces the dimensionality of the input
feature space in model 1 and output features space in model 2 from 800 time steps to 𝑛 = 30 PCs.
The PCs and hardware features are subsequently standardised before being fed to the MLPs.
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(c) Projection to first 𝑛PCA = 30 PCs
(features: 𝑑 = 30 PCs).

Figure 7.4: Preprocessing steps prior to creating a machine learning model of the KSW generator control:
𝑑 refers to the dimensionality of the feature space after the respective preprocessing step.

7.3.3 Model Architecture and Loss Function

Fully connected MLPs are chosen as initial architectures for both models, as outlined in Tables 7.2
and 7.3. The number of hidden layers and units are estimated on a trial-and-error basis and are
subject to optimisation in further studies. The leaky-ReLU [195], which was originally introduced
to mitigate performance limitations due to dying neurons in case of poor weight initialisation
or data normalisation, is implemented as activation function. A batch normalisation layer [196]
is included prior to every nonlinear operation (i.e. leaky ReLU activation) to accelerate and
stabilise the training process. Two dropout layers with a dropout rate of 50% are included to
avoid overfitting the training data. Training is performed using backpropagation and the AdamW
optimiser [197]. The applied learning rates (Tables 7.2 and 7.3) are empirically estimated.

For both models, the error between the prediction y and the ground truth 𝑦gt over 𝑁 samples is
quantified using the Mean Squared Error

Lm1 =

𝑁∑︁
𝑗

(︃
𝑚=10∑︁

𝑖
(𝑦𝑖 − 𝑦𝑖,gt)2

)︃
𝑁

+ 𝜆 · Lreg, (7.4)

as it is a generic loss function for regression problems. Lreg with 𝜆 = 0.1 is the 𝐿2-regularisation
term (Eq. (5.8)), which is included to mitigate overfitting. When predicting the waveform in
model 2, an additional term is added to the loss function based on the difference between the
original 𝐼gt(𝑡) and the reconstructed current waveform 𝐼 (𝑡)

Lm2 = 𝜂1 ·

𝑁∑︁
𝑗

(︃
𝑚=30∑︁

𝑖
(𝑦𝑖 − 𝑦𝑖,gt)2

)︃
𝑁

+ 𝜂2 ·

𝑁∑︁
𝑗

(︃
𝑛𝑡∑︁
𝑡
(𝐼𝑡 − 𝐼𝑡 ,gt)2

)︃
𝑁

+ 𝜆 · Lreg. (7.5)

The custom weights are chosen as 𝜂1 = 750 and 𝜂2 = 1 to balance both error contributions.
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Table 7.2: Network architecture and training param-
eters for predicting the hardware parameters from
the target waveform (step I).

Operation Dimensions
Input 30

Dense-1 -
Batch Norm.-1 500
Leaky ReLU-1 (0.01) 500

Dense-2 -
Batch Norm.-2 500
Leaky ReLU-2 (0.01) 500
Dropout-2 (50%) 500

Dense-3 -
Batch Norm.-3 500
Leaky ReLU-3 (0.01) 500
Dropout-3 (50%) 500

Dense-4 -
Batch Norm.-4 300
Leaky ReLU-4 (0.01) 300

Dense-5 -
Output 10

• Input: PCs of target waveform
• Output: circuit parameters
• Learning rate: 5 × 10−5

• Batch size: 400
• Epochs: 500

Table 7.3: Network architecture and training param-
eters for predicting the current waveform generated
by the given hardware parameters (step II).

Operation Dimensions
Input 10

Dense-1 -
Batch Norm.-1 1000
Leaky ReLU-1 (0.01) 1000

Dense-2 -
Batch Norm.-2 1000
Leaky ReLU-2 (0.01) 1000
Dropout-2 (50%) 1000

Dense-3 -
Batch Norm.-3 1000
Leaky ReLU-3 (0.01) 1000
Dropout-3 (50%) 1000

Dense-4 -
Batch Norm.-4 500
Leaky ReLU-4 (0.01) 500

Dense-5 -
Output 30

• Input: circuit parameters
• Output: PCs of predicted waveform
• Learning rate: 5 × 10−5

• Batch size: 400
• Epochs: 700
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Figure 7.5: Step I: predicting the hardware parameters from a given current decay. The scatter markers
Dat-A to C (green, blue, yellow) indicate selected samples, which are illustrated in Fig. 7.7 as examples.
The dashed lines represent ±7% of the prediction range.

7.4 Results and Discussion

7.4.1 Step I: Predicting the Hardware Parameters

The performance of the inverse model, i.e. predicting the hardware parameters from a given current
decay, is displayed in Fig. 7.5. The validation error stagnates after approximately 400 epochs
(Fig. 7.5a)†, with an approximate CPU clock time of 1 s per epoch‡. Figures 7.5b and 7.5c illustrate
the difference between selected real and predicted output features, i.e. the hardware parameters
which are to be determined. The illustrated examples are representative of the remaining features.
The residual errors are within ±7% of the parameter range (𝑦𝑖,gt,max − 𝑦𝑖,gt,min) for all variables 𝑖,
which is indicated by the black, dashed lines in Figs. 7.5b and 7.5c.

7.4.2 Step II: Predicting the Waveform From Hardware Parameters

Figure 7.6 illustrates the performance of the forwardmodel, i.e. predicting the current decay, which
is generated by given hardware parameters. The validation error stagnates after approximately
500 epochs (Fig. 7.6a). The difference between the real and the predicted output variables of
the MLP, i.e. the 30first, standardised PCs, is shown in Fig. 7.6b. As expected, the prediction
accuracy is highest for the first PCs, which have the largest impact on reconstructing the waveform.
Figure 7.6c displays the reconstructed and the original current decay for the samples, which are
indicated by the scatter markers in Figs. 7.5b and 7.5c. The residual errors of the reconstructed

† The training loss is larger than the validation loss during training due to the regularisation terms and dropout
layers, which alter the loss function during training but not validation.

‡ Estimated using time.process_time() of [198].
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current decay are for the majority of the cases within ±3% The reconstruction error is largest at
the transition between the individual switching stages (𝑡0, 𝑡1, 𝑡2, 𝑡3).
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(c) Reconstructed (red) versus original (black) current decays for selected samples (Dat-A to Dat-C). The residuals
(grey) are illustrated using the right axis.

Figure 7.6: Step II: predicting the output current produced by given hardware parameters.

7.4.3 Combination of Step I and II: Forward and Inverse Prediction

Finally, step I and II are combined to reconstruct the current decay based on the predicted instead of
the measured hardware parameters. The results are illustrated in Fig. 7.7 for the test samples Dat-A
to Dat-C. Note that the residuals are illustrated using a different scale than in Fig. 7.6c. For Dat-A
(green), the accuracy is similar to predicting the waveform from the original hardware parameters.
Dat-B (blue) and Dat-C (yellow) are selected as examples of cases in which the combination
of step I and II causes significantly larger errors than predicting the waveform directly from
the original hardware parameters. The respective samples are highlighted by scatter markers in
Figs. 7.5b and 7.5c. It is evident, that the error for predicting the hardware parameters is the
smallest for Dat-A (green), and approaches ±7% of the parameter (here voltage) range for Dat-B
and Dat-C. Reducing the prediction error of Step I will therefore be a key step to increasing the
accuracy of such a combined model.
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Figure 7.7: Step I+II: predicting the current decay, which is expected from the predicted hardware parameters.
Reconstructed (red) versus original (black) current decays for Dat-A to Dat-C. The residuals (grey) are
illustrated using the right axis.

7.5 Conclusion and Outlook

First ML models were developed to investigate a generator circuit parameterisation using super-
vised learning methods. These first approaches target predictions of both the forward (predict
dynamical behaviour, i.e. current output) and the inverse problem (predict system parameters, i.e.
charging voltages and switching times). Both models apply a PCA to reduce the dimensionality of
the current waveform and standard MLPs for the prediction.

The results show, that even such simple models with relatively small data sets allow us to model
the system dynamics in both directions. However, the remaining prediction errors are still too
large to make this model operationally relevant. Future studies based on these first models will
use larger training datasets and aim at systematically investigating techniques to increase the
model accuracy, including the preprocessing and scaling steps.
Regarding the ANN itself, including system information via the state-space representation

through PINNs is a promising approach. Such networks can be related to modelling the current
waveforms using recurrent or long short-term memory neural networks. However, a key challenge
for such approaches based on time series will be the correct identification and distinction of
the individual stages. The system properties and hence the differential equations change when
switching the stages on and off, which depends on the set switching times. Finding a way to
automatically map these time intervals to different PINNs and connecting ANN nodes for the time
series prediction accordingly is not trivial. The second open challenge is to model the analogue
amplifier input voltage, which is required to correct nonlinearities in the output waveform. In
addition to applying PINNs, acquiring suitable training data with different amplifier input voltage
will be a key aspect of training a respective model. We propose to increase the number of relevant
training samples using an optimisation algorithm or reinforcement learning during training data
acquisition.
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The new PSB H− charge exchange injection system was commissioned in winter 2020/2021
and is now used to tailor the transverse phase space distributions of the various beam types at
CERN. The requirement to flexibly and reliably produce beams over the requested wide range
of brightness targets comes at the cost of an increased complexity when defining the suitable
injection painting schemes and required hardware settings.

Part I

Part I of this thesis is concerned with defining and optimising the phase space painting schemes,
which are required for tailoring the different user-specific beam distributions. Self-consistent
space charge simulations of the injection process were performed to study the beam evolution
and loss distributions during and after the injection process. Injection painting schemes were
proposed based on these simulation studies and implemented during beam commissioning. The
experimental results were subsequently used to validate the simulation results and fine-tune the
injection configurations, which are now used operationally in the PSB. The beam production
studies presented in this thesis focus on three beam types: high-intensity fixed target beams,
high-brightness HL-LHC beams and LHC single bunch beams.
Phase space painting is particularly relevant for reducing the losses during the production of

high-intensity fixed target beams. Simulations and measurements showed that in 2021 most
losses were obtained along the cycle due to the excitation of the transverse tails by betatronic
resonances. The minority of the losses were attributed to acceptance limits of the machine. The
losses of the operational beams were within the budgets of < 1% during the injection process
(aperture bottlenecks) and < 5-10% along the cycle (resonances).

It was experimentally demonstrated that the chosen transverse painting schemes affected both
the losses along the cycle and during the injection process, causing variations in the total loss rate
from 2 to > 15% in operation. The proposed optimised painting functions for a given working
point aimed not only at reducing the incoherent tune spread and fitting the beam into the machine
acceptance but also at compromising the interaction of the tune spread core and tails with strong
resonances. The results showed that aiming at painting-driven emittance growth in both planes
was not beneficial. The increased number of particles with large transverse actions and hence
smaller detuning increased the loss rates due to excitation by betatronic resonances during the
tune ramp. The losses could be minimised when targeting the transition from space charge to the
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painting-driven emittance growth in the horizontal while injecting on-axis in the vertical plane.
Thoroughly benchmarking the simulation results with measurements goes beyond the com-

missioning period. The results presented in this thesis motivate studies in several aspects (e.g.
deconvoluting the horizontal betatronic and dispersive beam size, correcting the measurements
for wire-scattering induced emittance growth or facilitating beam size measurements shortly after
injection). Solving these issues will impact the quality of the measurement results and make phase
space painting in the PSB an exciting field for beam physics research in the coming years.
In 2021, LHC beams were injected into the PSB without painting, i.e. on-axis. The respective

injection studies focused on assessing the beam degradation due to injection imprecisions, such
as foil scattering or steering errors. The impact of steering errors on emittance growth and halo
formation for different intensities along the LHC brightness curve was estimated in simulations
and measurements. It was shown, that LHC beams with operational intensities (HL-LHC with
𝑁p+ = 3.53 × 1012 p+/bunch and BCMS with 𝑁p+ = 1.72 × 1012 p+/bunch) were not disturbed
significantly by steering errors of Δ𝑥, 𝑦 ⪅ 2mm. Additionally, the installed stripping foils were
assessed concerning emittance growth due to multiple Coulomb scattering. As all foils were within
specifications, producing an emittance growth as anticipated from simulations. Consequently, no
significant scattering-induced beam degradation is expected for the high-brightness LHC-type
beam production.
A new injection scheme was proposed for producing LHC single bunch beams: the requested

transverse beam sizes and Gaussian profiles could be tailored using a combination of emittance
growth due to foil scattering and steering offsets. It was demonstrated in both simulations and
measurements that it was possible to flexibly fine-tune the requested transverse emittance range
without generating significant tails by adjusting the steering offset and the number of foil crossings.
The stochastic nature of the foil scattering-induced emittance growth yields beam profiles close to
a Gaussian distribution in the transverse plane, also for non-Gaussian input distributions.

Part II

The proposed painting functions for the various users are sensitive to changes in the operational
conditions or user requests. Finding solutions to efficiently and reliably adapt the injection settings
and the related hardware parameters based on pulse-per-pulse beam instrumentation feedback
will push the operational performance of the PSB in the coming years. Part II therefore investigates
automation methods to increase the efficiency, reliability and stability of the new injection system.
One promising approach for increasing operational efficiency is to automate the injection

painting set-up using derivative-free numerical optimisation algorithms. A respective framework
was developed and applied for tailoring the high-intensity fixed target beam distributions. The
first tests successfully demonstrated the feasibility but also identified the challenges, which must
be overcome to make such a system operationally applicable. The objective function features a
high noise level, a flat minimum and is expensive to evaluate. Conducting systematic tests with
different algorithms on the machine to address these issues is infeasible because of limited beam
time and machine drifts in when measuring over multiple days. Therefore, a supervised machine
learning algorithm was used to train a data-driven surrogate model. This model allowed tuning the
optimiser’s hyperparameters and performing systematic studies offline without needing physical
resources like beam time. The random forest regressor proved to be a robust method for creating
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such a model and is recommended to be applied for similar applications. The surrogate model
was used to compare the performance of several derivative-free algorithms. The results showed
that choosing appropriate noise reduction strategies and resampling rates is specific for each
solver and crucial for maximising efficiency. Out of the tested algorithms, acceptable optimisation
reliability, accuracy and efficiency were obtained with the solvers pyBOBYQA (with extension for
noisy applications), adaptive Nelder Mead and the surrogate-based optimiser pySOT. With these
solvers, optimising the injection painting based on beam instrumentation feedback is feasible
within several tens to a few hundred function evaluations (PSB cycles), also when allowing the
variation of all 5 injection painting parameters. Even higher efficiency can be achieved when only
optimising a subset of the painting settings. The results presented in this thesis and the developed
surrogate model can be used to assess the feasibility of implementing a model-free controller,
such as reinforcement learning or extremum-seeking controllers. This would allow maintaining
the objective minimum, which was previously found using the numerical optimisation algorithm,
instead of going through the entire optimisation process again.

The custom magnet current decays for phase space painting are generated by a complex pulse
generator. The magnet current is controlled by programming numerous input parameters, such as
capacitor loading voltages, IGBT switch times and amplifier input voltages. All parameters have a
nonlinear effect on the magnet current, which makes the generator control using an analytical
description of the full electronic circuit complicated. A proportional and derivative feedback loop
is therefore used in operation to provide current waveforms with the required precision. This
thesis investigates the feasibility of using a control based on a supervised learning model as an
alternative to the control based on a feedback loop. Using a simplified generator configuration
for these first tests, it was demonstrated that multilayer perceptrons were able to replicate the
dynamics in both directions, i.e predicting the hardware parameters to generate a specific output
current and vice versa. The presented models did not achieve the prediction accuracy required
for operational application but are a foundation for further improvement using advanced deep
learning techniques (e.g. physics-guided or informed neural networks or time series prediction).
A promising factor for creating more accurate and reliable models in future studies is that a
large amount of training data is easily obtainable by pulsing the generator with different input
parameters. However, whereas such datasets contain many samples with general parameters, they
lack data points with the operational target parameterisation. This problem can be overcome
in the future by using an optimisation algorithm or reinforcement learning when acquiring the
training data.

Overall, the beam dynamics studies presented in this thesis were a crucial contribution to
efficiently configure the machine during beam commissioning. The proposed injection schemes
were a key aspect for reliably producing beams with the user-specific brightness targets already
during the first operational year of the upgraded PSB. Furthermore, the presented results are a
basis for pushing the beam performance in the coming years, such as the intensity of the high-
intensity fixed target beams. The studies on automating the injection painting set-up will be an
important foundation for increasing the operational efficiency of the PSB. Lastly, the feasibility
tests for using neural networks to model and control complex electronic circuits, such as the
painting kicker generator, lay the foundation for developing a generic way to solve similar tasks
using machine learning techniques in the future.
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Appendix A
Transverse Beam Dynamics

A.1 Hamiltonian Formalism in Particle Accelerators

The Lagrange andHamiltonian formalisms are powerful concepts introduced in classical mechanics,
which simplify the formulation of the equations of motions for dynamic systems with constraints,
e.g. the thread of a pendulum or the external fields in a particle accelerator. General background on
Hamiltonian mechanics can be found in various textbooks, such as [199, Chp. 7]. The Hamiltonian
description of accelerator physics is described e.g. in [55, Chp. 2],[49, Chp. 2.1] or [50, Chp.4.4 ]

The Hamiltonian of a relativistic charged particle with charge 𝑒 in an electromagnetic field is

𝐻
(︁
𝑥, 𝑃𝑥 , 𝑦, 𝑃𝑦 , 𝑠, 𝑃𝑠; 𝑡

)︁
=

√︃
𝑐2

(︂
P − 𝑒

𝑐
A
)︂2 + 𝑚2

0𝑐
4 + 𝑒Φ. (A.1)

Here, Φ is the electric potential and A the magnetic vector potential.

P = 𝑚v + 𝑒A = 𝜷r𝛾r𝑚0𝑐 + 𝑒A (A.2)

is the canonical momentum, which differs from the mechanical momentum 𝑚 · v.
For the application in particle accelerators, several transformations are applied to this Hamilto-

nian, as outlined in detail in [55, Chp. 2]:

• Change independent variable from 𝑡 to 𝑠: For the description of the beam transport in
a particle accelerator it is useful to transform Eq. (A.1) to a Hamiltonian, in which the
longitudinal distance 𝑠 is the independent variable and 𝑡 the third coordinate, particularly
when the guiding fields (cavities, magnets) are periodic functions of 𝑠.

• Transformation to the Frenet-Serret coordinate system, i.e. the coordinate system mov-
ing with the reference particle (see Section 1.1).

• Expression by the longitudinal coordinate pair 𝛿 and 𝑧: A canonical transformation
allows describing the particle by the longitudinal coordinates

𝑧 = 𝑠/𝛽r − 𝑐𝑡, (A.3)
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i.e. the longitudinal difference of a particle position relative to the reference particle, and

˜︁𝛿 =
𝐸

𝑐𝑃0
− 1

𝛽r

,

(A.4)

i.e. the respective energy deviation. The resulting generalised coordinate and momenta
pairs are (𝑥, 𝑝𝑥), (𝑦, 𝑝𝑦) and (𝑧, 𝛿)

• Scaling with reference momentum and paraxial approximation: The Hamiltonian is
often additionally scaledwith the reference momentum 𝑝0. This simplifies the approximation
by Taylor series expansion for particles with small deviations from the reference particle
(paraxial approximation). The scaled canonical momenta, Hamiltonian and vector potentials
are ˜︁𝐻𝑠 = 𝐻𝑠/𝑝0

a = 𝑒/𝑝0 · A

˜︁𝑝𝑥 =
𝑃𝑥

𝑝0
=

𝛽𝑥,r𝛾r𝑚𝑐 + 𝑒𝐴𝑥

𝑝0
.

(A.5)

The resulting Hamiltonian to describe the movement of a relativistic, charged particle in elec-
tromagnetic fields relative to the reference trajectory in the Frenet-Serret coordinate system is

˜︁𝐻𝑠, 𝛿

(︂
𝑥, ˜︁𝑝𝑥 , 𝑦, ˜︁𝑝𝑦 , 𝑧,˜︁𝛿; 𝑠)︂ = −𝑝𝑠 =

˜︁𝛿
𝛽r

−
(︃
1 + 𝑥

𝜌

)︃ √︄(︃˜︁𝛿 + 1
𝛽r

− 𝑒Φ
𝑐𝑝0

)︃2
− (˜︁𝑝𝑥 − 𝑎𝑥)2 −

(︁˜︁𝑝𝑦 − 𝑎𝑦
)︁2 − 1

𝛽2r 𝛾2r
−
(︃
1 + 𝑥

𝜌

)︃
𝑎𝑠 .

(A.6)

The conjugate coordinate pairs (𝑥, ˜︁𝑝𝑥), (𝑦, ˜︁𝑝𝑦) and (𝑧,˜︁𝛿) are transformable to the commonly
used pairs (𝑥, 𝑥 ′), (𝑦, 𝑦′) and (𝑧, 𝛿). When applying Hamilton’s equations

𝑞𝑖 =
𝜕𝐻

𝜕𝑝𝑖

−𝑝𝑖 = 𝜕𝐻

𝜕𝑞𝑖
,

(A.7)

to this Hamiltonian, one obtains the respective equations of motion. 𝑞 and 𝑝 are the respective
conjugate coordinates.

A.1.1 Paraxial Approximation, Action-Angle Coordinates and Floquet
Transform

The resulting equations of motion are generally nonlinear - even in drift spaces. Nevertheless, the
equations can be simplified given that the transverse momenta are usually much smaller than
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A.1 Hamiltonian Formalism in Particle Accelerators

the total momentum 𝑝0 and hence ˜︁𝑝𝑢 ≪ 1. For drifts, dipoles and quadrupoles, this paraxial
approximation can be used to derive equations of motion,which are linear in the canonical variables.
However, rather than linearising the equations of motion obtained from the Hamiltonian Eq. (A.6),
the Hamiltonian (Eq. (A.6)) itself is expanded up to second order in all dynamical variables. The
linearised equations of motions are subsequently directly obtained when applying Hamilton’s
equations to this approximated Hamiltonian. Derivations of such approximated Hamiltonians for
several elements can be found in [55, Chp. 3]. The Hamiltonians for a drift space, a dipole and a
quadrupole are ˜︁𝐻Drift ≈ 1

2˜︁𝑝2𝑥 + 1
2˜︁𝑝2𝑦 + ˜︁𝛿2

2𝛽2r 𝛾2r
+ O(3)

˜︁𝐻Dip ≈ 1
2˜︁𝑝2𝑥 + 1

2˜︁𝑝2𝑦 + 𝑥2

2𝜌2 − 1
𝛽r𝜌

𝑥˜︁𝛿 + ˜︁𝛿2
2𝛽2r 𝛾2r

+ O(3)

˜︁𝐻Quad ≈ 1
2

(︄˜︁𝑝2𝑥 + ˜︁𝑝2𝑦 + 𝑘1
(︁
𝑥2 − 𝑦2

)︁ + ˜︁𝛿2
𝛽2r 𝛾2r

)︄
+ O(3).

(A.8)

These expressions are derived using the magnetic rigidity Eq. (1.10) as well as the definition of
normalised multipole strengths 𝑘𝑖 from Eq. (1.11). For sextupoles and higher-order multipole
fields, higher-order terms need to be considered in the Hamiltonian, which yields nonlinear
equations of motion.

Disregarding the term describing the longitudinal motion as well as the coupling of transverse
and longitudinal motion, one can write the two-dimensional Hamiltonian for the linear, transverse
betatron motion in general form as [49, Chp. 2.4]

�̃�Lin ≈ 1
2
(︂˜︁𝑝2𝑥 + ˜︁𝑝2𝑦 + 𝐾𝑥 (𝑠)𝑥2 + 𝐾𝑦 (𝑠)𝑦2

)︂
, (A.9)

with the focusing strengths 𝐾𝑥,𝑦 (𝑠).
The fact that linear motion describes a circle in normalised phase space (see Section 1.2.8)

motivates a canonical transformation from Cartesian coordinates (𝑥, 𝑥 ′) to radial coordinates,
so-called action-angle coordinates (𝐽,Φ) (see [49, Chp. 2.4]) The transformed linear Hamiltonian
of the transverse motion in one plane is

𝐻 (𝐽,Φ, 𝑠) = 𝐽

𝛽(𝑠) . (A.10)

𝐻 (𝐽,Φ, 𝑠) is independent of Φ(𝑠) for linear motion and therefore the action 𝐽 (𝑠) = const.
a constant of motion. However, the Hamiltonian and the phase Φ(𝑠) still depend on 𝑠. The
Hamiltonian is hence not a constant of motion itself. A transformation for solving this problem
is the Floquet transform (see e.g. [200, Chp. 3.2] or [49, Chp. 2.4]). In short, one conducts a
canonical transformation to change the independent variable from 𝑠 to the orbiting angle Θ = 𝑠/𝑅
with the average accelerator radius 𝑅. This transformation is particularly useful as the transformed
linear Hamiltonian

�̄� = 𝑄 · 𝐽 = const. (A.11)
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Appendix A Transverse Beam Dynamics

becomes a constant, with the orbital angle Θ as the new independent variable. This yields a
periodicity in the phase coordinate Θ, which becomes useful as it facilitates the decomposition of
higher-order terms and field errors into a Fourier series.

A.1.2 The Perturbed Hamiltonian

Nonlinear fields, field and alignment errors are generally small compared to the main linear
guiding and focusing fields. [201] explains in detail, how such imperfections and deviations from
the linear motion can be included as perturbation terms 𝐻1 in the Hamiltonian

𝐻 = 𝐻0 + 𝐻1 = 𝑄𝑥𝐽𝑥 +𝑄𝑦𝐽𝑦 + 𝐻1, (A.12)

with 𝐻0 being the unperturbed Hamiltonian of the linear motion. The perturbation term can be
expressed as a series of polynomials in 𝑥, 𝑝𝑥 , 𝑦 and 𝑝𝑦

𝐻1(𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦;Θ) =
∑︂
𝑁

𝑁∑︂
𝐽 ,𝐾 ,𝐿,𝑀=0

𝐽+𝐾+𝐿+𝑀=𝑁

𝑏 (𝑁 )
𝐽 ,𝐾 ,𝐿,𝑀 (Θ) · 𝑥𝐽 𝑝𝐾𝑥 𝑦𝐿𝑝𝑀

𝑦 , (A.13)

which can be written using the Floquet transform as

𝐻1(𝐽𝑥 , 𝐽𝑦 ,Φ𝑥 ,Φ𝑦;Θ) =
∑︂
𝑁

∑︂
𝑁

𝑁∑︂
𝑗 ,𝑘,𝑙,𝑚=0

𝑗+𝑘+𝑙+𝑚=𝑁

ℎ (𝑁 )
𝑗𝑘𝑙𝑚(Θ)𝐽 ( 𝑗+𝑘)/2𝑥 𝐽 (𝑙+𝑚)/2

𝑦 𝑒𝑖[ ( 𝑗−𝑘)𝑄𝑥+(𝑙−𝑚)𝑄𝑦]Θ.

(A.14)
Developing the coefficients ℎ (𝑁 )

𝑗𝑘𝑙𝑚(Θ), which contain the information of the perturbing potential,
into a Fourier series yields

𝐻1 =
∑︂
𝑁

∑︂
𝑁

𝑁∑︂
𝑗 ,𝑘,𝑙,𝑚=0

𝑗+𝑘+𝑙+𝑚=𝑁

𝑞∑︂
−𝑞

ℎ (𝑁 )
𝑗𝑘𝑙𝑚𝑞𝐽

( 𝑗+𝑘)/2
𝑥 𝐽 (𝑙+𝑚)/2

𝑦 · 𝑒𝑖[ ( 𝑗−𝑘)𝑄𝑥+(𝑙−𝑚)𝑄𝑦+𝑞]Θ. (A.15)

Assuming that the actions 𝐽𝑥 and 𝐽𝑦 only change little during one oscillation, one neglects high-
frequency terms as mainly low-frequency terms

( 𝑗 − 𝑘)𝑄𝑥 + (𝑙 − 𝑚)𝑄𝑦 + 𝑞 → 0 (A.16)

perturb the particle motion. Introducing the integers ±𝑛𝑥 = 𝑗 − 𝑘 , ±𝑛𝑦 = 𝑙 − 𝑚 and 𝑝 = ±𝑞 > 0,
one obtains the resonance condition

𝑛𝑥𝑄𝑥 + 𝑛𝑦𝑄𝑦 = 𝑝 (A.17)

which is interpreted in Section 1.2.12.
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Figure A.1: Q-Gaussian distributions with different parameters.

A.2 Q-Gaussian Distribution

The q-Gaussian distribution is given by the probability density

𝑓 (𝑥) =
√︁
𝛽𝑞𝐺

𝐶𝑞
𝑒𝑞

(︁−𝛽𝑞𝐺 · 𝑥2)︁ , (A.18)

based on the q-exponential function

𝑒𝑞 (𝑥) =
⎧⎪⎪⎨⎪⎪⎩

exp (𝑥) , for 𝑞 = 1
(1 + (1 − 𝑞) · 𝑥)1/(1−𝑞) , for 𝑞 ≠ 1 and (1 + (1 − 𝑞) · 𝑥) > 0
0 , for 𝑞 ≠ 1 and (1 + (1 − 𝑞) · 𝑥) ≤ 0

(A.19)

and the normalisation factor

𝐶𝑞 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2√𝜋

(3−𝑞)√1−𝑞
Γ
(︂ 1
(1−𝑞)

)︂
Γ

(︃ 3−𝑞
2(1−𝑞)

)︃ , for −∞ < 𝑞 < 1
√
𝜋 , for 𝑞 = 1√︂
𝜋

𝑞−1
Γ

(︃ 3−𝑞
2(𝑞−1)

)︃
Γ
(︂ 1
(𝑞−1)

)︂ , for 1 < 𝑞 < 3

. (A.20)

The tails are characterised by the single parameter 𝑞, with 𝑞 = 1 for a Gaussian distribution, 𝑞 > 1
for over- and 𝑞 < 1 for underpopulated tails. For a given 𝑞-factor, 𝛽𝑞𝐺 > 0 defines the maximum
amplitude of the distribution. The standard deviation can be computed for limited ranges as

𝜎𝑞𝐺 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√

𝛽𝑞𝐺 · (5−3𝑞) , for 𝑞 < 5/3
∞ , for 5/3 ≤ 𝑞 < 2
undefined , for 1 < 𝑞 < 3

(A.21)
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Appendix B
Supplementary Materials: Beam

Measurements

B.1 Machine Configurations

B.1.1 KSW Reference Amplitude and Steering of the Injected Beam

In preparation for all measurements, the injected beam is steered to the nominal position at
the foil using the BTV installed in the injection region. This corresponds to an expected off-
set of 𝑥on−axis = −81 mm, with simulated KSW and BSW contributions of 𝑥KSW = −35 mm and
𝑥BSW = −46 mm, respectively. Subsequently, the injection oscillations are minimised by adapt-
ing the KSW amplitude and the angle of the injected beam. The KSW amplitudes, which are
required to minimise the injection oscillations are referred to as on-axis amplitudes 𝐴0,on−axis. For
the machine configurations in 2021, these amplitudes differed up to 2mm from the modelled
𝐴0,on−axis = 35 mm, as listed in Table B.1. The difference can be explained by various machine
imperfections (closed orbit errors, alignment errors of the injection region, rotational alignment
errors of KSW, calibration errors or KSW kicks and quadrupole focusing strengths in P1 and P16).
In the experimental results presented in this thesis, 𝐴0,on−axis mm is considered to correspond
to 𝐴0 = 35 mm in simulations and referenced accordingly. Table B.1 further lists the requested
and measured KSW currents. All acquired currents at flat-top are within the specified accuracy of
±1%.

B.1.2 Longitudinal Settings

Figure B.1 illustrates the programmed RF voltage of the first (pink) and second harmonic (yellow)
for the ISOLDE, LHC and INDIV beams. The longitudinal phase space can be reconstructed from
measurements using longitudinal tomography [134]. Figure B.2 shows the longitudinal phase
space for different users, which is reconstructed at the cycle times of the wire scan measurements.
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Table B.1: KSW configurations in the measurement campaigns: KSW amplitudes 𝐴0(on-axis) and related
currents 𝐼KSW, which are required to minimise injection oscillations when steering the injected beam to the
reference position at the stripping foil (𝑥Foil = −81mm). The set WP is 𝑄x/𝑄y = 4.22/4.36. The measured
WP is 𝑄x/𝑄y = 4.22/4.39, as the 𝛽-beating induced by the BSW is not corrected.

Ring A0
on-axis (mm)

IKSW; set (A)
1L4, 2L1, 16L1, 16L4

IKSW; meas. (A)
1L4, 2L1, 16L1, 16L4

1 35.4 37.9, 324.3, 370.2, 27.7 38.0, 323.9, 369.6, 27.6
2 34.5 37.0, 316.0, 360.8, 27.0 37.0, 315.5, 360.6, 27.0
3 33.8 36.2, 309.6, 353.5, 26.5 36.2, 308.1, 350.7, 26.2
4 33.1 35.5, 303.2, 346.2, 25.9 35.6, 302.2, 346.4, 25.9

400 600 800

Cycle time (ms)

0

5

10

15

20

V
o
lt

a
g
e
 (

k
V

)

V(h=1) V(h=2) Vtot

(a) ISOLDE

400 600 800

Cycle time (ms)

0

5

10

15

20

V
o
lt

a
g
e
 (

k
V

)

V(h=1) V(h=2) Vtot

(b) LHC

400 600 800

Cycle time (ms)

0

5

10

15

20

V
o
lt

a
g
e
 (

k
V

)

V(h=1) V(h=2) Vtot

(c) LHCINDIV

Figure B.1: PSB voltage programs for ISOLDE, LHC and INDIV beams in 2021.
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B.1 Machine Configurations

(a) ISOLDE, C400 (beginning of cycle) (b) ISOLDE, C770 (end of cycle)

(c) LHC, C770 (end of cycle) (d) INDIV, C770 (end of cycle)

Figure B.2: Tomographic reconstruction of the longitudinal phase space at the cycle times, at which the
ISOLDE, LHC and LHCINDIV profile measurements are performed.
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(d) Tail population with 𝑦 > 𝑦thres, C350
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Figure B.3: Overview of various intensity and profile measurements when producing ISOLDE beams with
different horizontal paintings (vertical on-axis injection, Scan 2).

B.2 High-Intensity Beam Painting Measurements

Figures B.3 and B.4 complement the in Section 4.3.5 presented results by illustrating the response
of various beam loss, intensity and profile measurements to horizontal painting variations (Scan 2,
Table 4.5). These measurements are the basis for the results presented in Figs. 4.21 to 4.23.
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Figure B.4: Overview of various loss measurements when producing ISOLDE beams with different horizontal
paintings (vertical on-axis injection, Scan 2).
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Appendix C
Supplementary Materials: Injection

Painting using Numerical Optimisers

C.1 Operational Constraints

Table C.1 summarises the bounds and constraints, which have to be respected when applying
numerical algorithms to automate the injection painting optimisation for ISOLDE beams. The
bounds and constraints are determined by operational or hardware limits.

Table C.1: Phase space painting with numerical optimisation algorithms: feature constraints as determined
by operational (OP) and hardware limits (HW).

Features and constraints Unit Lower bound Upper bound
Op. Hw. Op. Hw.

Feature bounds (algorithm)
𝐴0 mm 24 - 37 41**
𝐴1 mm 16 - 34 -
𝑡1 µs 6 5 30 30
𝑘Sl2 mm/µs −0.178 -0.18 0 0
Δ𝑦 mm -2 d.o.s* 7 d.o.s*

Additional constraints (penalty term)
(𝐴1/𝐴0)min 𝐴1 > (𝐴1/𝐴0)min · 𝐴0 - 0.4 0.3 0.98 0.99
𝑘Sl1,max 𝐴1 > 𝐴0 + 𝑘Sl1,max · 𝑡1 mm/µs −2.18 -2.2
𝐴2 mm 0 0 𝐴1 𝐴1
* Depends on the reference steering of the injection beam.
** Depends on the WP.
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(a) pyBOBYQA with re-start (𝜌beg = 0.5)
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(b) pySOT (Radial Basis Function surrogate and DYCORS sampling strategy)

Figure C.1: Performance of different global optimisation algorithms on the surrogate model: sensitivity to
statistical resampling rates.

C.2 Sensitivity to Noise Levels and Statistical Resampling Rates

Figures C.1 and C.2 complement the in Section 6.5 presented results by illustrating the data
profiles for the different algorithms with varying resampling rates and hence effective noise levels.
The 𝐴𝑈𝐶 of these data profiles is summarised in Fig. 6.7b.
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C.2 Sensitivity to Noise Levels and Statistical Resampling Rates
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(a) pyBOBYQA (𝜌beg = 0.5)
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(b) Powell’s Method
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(c) COBYLA (𝜌beg = 0.5)
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(d) Adaptive Nelder-Mead

Figure C.2: Performance of different local optimisation algorithms on the surrogate model: sensitivity to
statistical resampling rates.
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