
Sensor Node Fault Detection in
Wireless Sensor Networks

An Immune-inspired Approach

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dominik Widhalm, MSc
Registration Number 11831460

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Mag. DI. DI. Dr. Karl M. Göschka
Second advisor: Ao.Univ.Prof. DI. Dr. Wolfgang Kastner

The dissertation has been reviewed by:

Prof. Andrea Bondavalli Prof. Davide Quaglia

Vienna, 24th August, 2022
Dominik Widhalm

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Dominik Widhalm, MSc

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 24. August 2022
Dominik Widhalm

iii

Acknowledgements

I dedicate this thesis to my grandparents, Adelheid and Alfred. They enabled me to have
the best childhood one can imagine. Most of all, they supported me in learning basic
skills and developing character traits that have significantly shaped my life. For that, I
will be eternally grateful to them.

Similarly, I would like to thank my parents, Doris and Helmut, for their everlasting
support. They allowed me to live my life freely and pursue my own way. But whenever I
needed them, they were there for me and provided support, be it mentally or financially.

The way to a doctoral thesis and the work that goes with it, such as the underlying
research, is far from being trivial. In addition to own high expectations and the constant
pressure of time, disseminating findings at international conferences and scientific journals
is a stressful factor, not least due to significant competition. Therefore, I am unspeakably
grateful for the supervision of my two advisors, Karl M. Göschka and Wolfgang Kastner.
They enabled me to pursue my ideas and supported me along the way with their expertise
and professional experience, both in the good times when my plans worked out and the
bad times, such as when papers got rejected. Looking back, I could not imagine better
advisors than them.

This work has been supported by the Doctoral College Resilient Embedded Systems,
which is run jointly by the TU Wien’s Faculty of Informatics and the University of
Applied Sciences Technikum Wien.

v

Abstract

Sensor node faults are a serious threat to wireless sensor networks. They can cause node
crashes or lead to the transmission of corrupted data. Especially the latter endangers
the quality of subsequent data analyses.

Most related fault detection approaches consider the sensor nodes as black boxes. They
neglect vital information available on the node level. Consequently, most of these
approaches can not distinguish between (i) irregular but correctly sensed data events
and (ii) data corruption caused by soft faults.

In this thesis, we present a fault detection approach that integrates node-level diagnostics
with the characteristics of the sensor data. We utilize this node-level diagnostic infor-
mation to present our fault detection approach, which is inspired by the functioning of
dendritic cells in the human immune system.

We used a tripartite experiment setup consisting of simulations, a lab setup, and a
practical sensor network testbed to evaluate the correctness and efficiency of the developed
approach. The results show that the approach offers a comparably high fault detection
rate in combination with a negligibly low false alarm rate. Moreover, it can reliably
differentiate between correct data events and fault-induced data anomalies. At the same
time, it consumes a reasonably small overhead of resources, especially concerning the
sensor node energy. Also, the approach is generally applicable and minimizes the need
for parameter adjustment and optimization.

vii

Kurzfassung

Fehler in Sensorknoten sind eine ernsthafte Bedrohung für drahtlose Sensornetzwerke.
Sie können zum Absturz der Knoten oder zur Übertragung fehlerhafter Daten führen.
Speziell letzteres gefährdet die Qualität nachfolgender Datenanalysen.

Die meisten bisherigen Fehlererkennungsansätze betrachten die Sensorknoten als Black-
Boxes. Dabei vernachlässigen sie wichtige Informationen, die auf dem Knoten verfügbar
sind. Folglich können die meisten dieser Ansätze nicht zwischen (i) unregelmäßigen, aber
korrekt erfassten Datenereignissen und (ii) Datenverfälschungen aufgrund von Soft-Faults
unterscheiden.

In dieser Arbeit stellen wir einen Fehlererkennungsansatz vor, der Diagnoseinformationen
auf Knotenebene mit den Eigenschaften der gemessenen Sensordaten integriert. Wir
verwenden diese diagnostischen Informationen auf Knotenebene zur Erkennung von
Sensorknotenfehlern in unserem Ansatz, der von der Funktionsweise dendritischer Zellen
im menschlichen Immunsystem inspiriert ist.

Für die Evaluierung der Korrektheit und Effizienz des entwickelten Fehlererkennungsansat-
zes wurde ein dreiteiliger Versuchsaufbau bestehend aus Simulationen, einem Laboraufbau
und einem praktischen Sensor Testnetzwerk verwendet. Die Ergebnisse zeigen, dass der
Ansatz eine vergleichsweise hohe Fehlererkennungsrate in Kombination mit einer vernach-
lässigbar geringen Fehlalarmrate bietet. Darüber hinaus kann dieser zuverlässig zwischen
korrekten Datenereignissen und fehlerbedingten Datenanomalien unterscheiden. Gleich-
zeitig benötigt der Ansatz einen geringen Mehraufwand an Ressourcen, insbesondere
betreffend der Sensorknotenenergie. Zudem ist der Ansatz allgemein anwendbar und
minimiert die Notwendigkeit einer Parameteranpassung und -optimierung.

ix

Contents

1 Introduction 1
1.1 Research Questions . 3
1.2 Methodology . 5
1.3 Contribution . 6
1.4 Thesis Outline . 7

2 Wireless Sensor Networks 9
2.1 Fields of Applications . 10

2.1.1 Environmental Monitoring . 11
2.1.2 Habitat Monitoring . 12
2.1.3 Structural Health Monitoring 12

2.2 Structure and Components . 13
2.2.1 Network Architecture . 14
2.2.2 Sensor Nodes . 15
2.2.3 Node Platforms . 17

2.3 Characteristics and distinct Features 24

3 Anomaly Detection 27
3.1 Challenges in Wireless Sensor Networks 28
3.2 Anomaly Detection Metrics . 30

3.2.1 Data Quality . 30
3.2.2 Correctness . 31
3.2.3 Efficiency . 32

3.3 Taxonomy for Anomaly Detection . 33
3.3.1 Anomaly Classes . 33
3.3.2 Anomaly Degree . 35
3.3.3 Operation Mode . 35
3.3.4 Input Data Instances . 36
3.3.5 Data Correlations . 36
3.3.6 Model Structure . 37
3.3.7 Detection Method . 38
3.3.8 Other Criteria . 43

3.4 Related Work on Anomaly Detection in WSNs 43

xi

3.5 Limits of Anomaly Detection for Fault Diagnosis 44

4 Sensor Node Fault Detection 47
4.1 Danger posed by Node Faults . 48
4.2 Terminology . 49

4.2.1 Chain of Dependability . 49
4.2.2 Anomalies vs. Node Faults . 51
4.2.3 Scope of Considerations . 53

4.3 Fault Taxonomy . 53
4.3.1 Fault Origin . 53
4.3.2 Fault Severity . 54
4.3.3 Fault Type . 55
4.3.4 Fault Persistence . 55
4.3.5 Fault Level . 56
4.3.6 Fault Manifestation . 56

4.4 Related Fault Detection Schemes . 57
4.4.1 Sensor Data Analysis . 58
4.4.2 Group Detection . 59
4.4.3 Local Self-Diagnosis . 60

4.5 Research Gap . 61

5 Artificial Immune Systems 63
5.1 History and Immunological Theories 64
5.2 Unique Properties of the Immune System 66

5.2.1 Nervous, Endocrine-, and Immune System 67
5.2.2 Innate and Adaptive Immunity 68
5.2.3 White Blood Cells . 69

5.3 The Danger Theory . 70
5.3.1 Basic Concept . 71
5.3.2 Immunological Signals . 72
5.3.3 The Role of Dendritic Cells . 72

5.4 Classical AIS Theories . 73
5.4.1 Negative and Positive Selection 75
5.4.2 Clonal Selection . 77
5.4.3 Artificial Immune Networks . 78
5.4.4 Danger Theory-based Approaches 78
5.4.5 AIS Applications in WSNs . 79

5.5 The Dendritic Cell Algorithm . 80
5.5.1 Working Principle . 81
5.5.2 Variants and further Developments 84
5.5.3 Related Work on DCA-based Fault Detection 85
5.5.4 Limitation of current Approaches 86

6 Immune-inspired Node Fault Detection Approach 87

6.1 Considered Fault Models . 88
6.1.1 Ambient Temperature Faults 88
6.1.2 Supply Voltage Faults . 89
6.1.3 Humidity and Vibration Faults 90

6.2 Node-level Diagnostics . 90
6.2.1 Inherently-available Indicators 91
6.2.2 Artificially-added Indicators . 93
6.2.3 Remarks on Fault Indicators 93

6.3 Danger and Safe Indicators . 94
6.4 Modified Runtime DCA . 95

6.4.1 Antigen Definition . 95
6.4.2 Indicator Update . 95
6.4.3 DC Population Update . 96
6.4.4 Sensor Value Classification . 97

6.5 Considerations on the Detection Approach 98

7 Concept Evaluation 99
7.1 The ASN(x) Platform . 100

7.1.1 Design and Components . 101
7.1.2 Node-level Indicators . 105

7.2 Prototype Implementation . 114
7.2.1 Use Case . 114
7.2.2 Sink Node . 114
7.2.3 Cluster Head . 115
7.2.4 Sensor Nodes . 115

7.3 Simulations . 116
7.3.1 Base Datasets . 117
7.3.2 Fault Signatures . 119
7.3.3 Fault Injection . 122
7.3.4 Benchmark . 122

7.4 Lab Experiments . 123
7.4.1 Embedded Testbench . 124
7.4.2 Test Automation . 125

7.5 WSN Testbed . 126
7.5.1 Indoor . 127
7.5.2 Outdoor . 128

8 Result Discussion 129
8.1 Correctness Evaluation . 130

8.1.1 Sensitivity, Specificity, and Accuracy 130
8.1.2 Fault and Event Detection Examples 131
8.1.3 Comparison with alternative Approaches 134

8.2 Efficiency Analysis . 135
8.2.1 Network Traffic Overhead . 136

8.2.2 Memory Consumption . 136
8.2.3 Computation Time . 137
8.2.4 Energy Overhead . 138
8.2.5 Processing Delay . 138

8.3 Lessons learned . 138

9 Summary 141
9.1 Research Findings and Dissemination 142
9.2 Related Work . 144
9.3 Conclusion . 145
9.4 Future Work . 146

List of Figures 147

List of Tables 149

List of Algorithms 151

List of Abbreviations 153

Bibliography 157

CHAPTER 1
Introduction

Our information society is hungry for data. We gather and analyze an ever-increasing
amount of data captured from an expanding number of sources. This data is essential
for a plethora of data services that provide us with insights into existing processes or
predictions for future events, both being used in industry and academia. Examples
include process automation, precision agriculture, or research that leverage the available
data for event detection, trend prediction, process analysis, or decision support. The
data services heavily depend on the input data’s timely availability and fine-grained
quality. Inaccurate or false data leads to erroneous information and can ultimately result
in incorrect findings and/or wrong (counter-)actions.

In this context, wireless sensor networks (WSNs) have become an essential source of
fine-grained data about phenomena or events. Today, they are used in a wide range
of services. WSNs consist of wirelessly connected sensor nodes deployed in an area of
interest to monitor physical quantities close to their source and, thus, providing data with
a high level of detail. In most applications, the sensor nodes perform some (pre)processing
of the measurements and forward the data to central services for further processing (i.e.,
cloud systems). In these central services, the data is eventually fed to statistical, machine
learning, or other methods as part of the data services to extract information.

However, during the data analysis, data instances may deviate from an expected or
previously learned “normal” behavior. The sensor data can have outliers, show suspicious
behavior in the form of offsets and/or drifts, or differ from the data reported by other
sensor nodes in the same neighborhood. As such anomalies can potentially reflect an
event in the observed area, anomaly detection approaches are widely used to detect data
events in WSN applications.

Nevertheless, not all anomalies are related to actual events in the monitored environment;
they can also stem from faults in the data chain. Especially sensor node faults have been
found to negatively impact the overall quality of the data reported by a WSN. Sensor

1

1. Introduction

nodes are dedicated embedded systems with strictly limited resources that often prevent
the use of well-established fault-tolerance concepts such as hardware and/or software
redundancy. Most of all, the energy budget available on the sensor nodes is bounded since
most nodes are battery-powered. They are expected to operate over long times without
the possibility of battery recharging or replacement. Additionally, sensor nodes usually
consist of low-cost components that are prone to experiencing faults when being operated
under the unpredictable and uncontrollable conditions imposed by outdoor environments.
Consequently, proper runtime measures are inevitable to ensure the correctness and
accuracy of the data reported by the sensor nodes.

Over the years, numerous approaches and concepts to tackle the problem of fault detection
in WSNs have been proposed that meet the requirements of sensor nodes. In this context,
concepts inspired by the natural anomaly detection capabilities of the human immune
system have gained broad interest from the research community. The immune system
offers desirable properties for computing systems, such as its widely distributed and
decentralized operation, its ability to perform temporal and spatial correlation, and
its high detection rate with a low false alarm rate. Therefore, many researchers took
inspiration from immune mechanisms when developing novel approaches for fault detection
in resource-constrained systems such as WSNs. However, many of these approaches are
bound to certain assumptions and limitations that hinder their generic applicability. Most
importantly, most of these approaches suffer from an inability to distinguish between
data events and fault-induced data distortion as the sensor nodes are commonly treated
as black boxes. The only way to avoid such misinterpretation is to incorporate vital
information available on the sensor node (i.e., node-level diagnostics).

This thesis presents a fault detection approach that took inspiration from the so-called
danger theory. The danger theory is an immunological theory that highlights the role
of dendritic cells in the human immune system. These dendritic cells perform a kind
of contextual information fusion in the human body to detect circumstances that pose
a threat to the host. Similarly, the presented approach bases its fault detection on
contextual information gathered on the node level. This contextual information is
acquired by combining statistical metrics of the sensor data with node-level diagnostic
data. This immune-inspired fault detection approach improves the detectability of sensor
node faults and enables the distinction between data events and fault-induced deviations.

The concept has been implemented on a self-developed sensor node platform incorporating
several self-diagnostic capabilities. Its correctness and efficiency have been evaluated using
a tripartite experiment setup consisting of (i) simulations using pre-recorded datasets,
(ii) experiments in a controlled lab environment, and (iii) practical WSN deployments,
both indoor and outdoor. The results show that the proposed approach can reliably
detect node faults with high accuracy. It correctly differs between events in the monitored
physical phenomenon and the effects of sensor node faults responsible for a high false
alarm rate in most related fault detection approaches. The approach requires a reasonable
small resource overhead concerning memory and energy overhead. As a result, it does
not negatively influence the sensor nodes’ operation while providing increased reliability.

2

1.1. Research Questions

1.1 Research Questions
The introduction of fault detection capabilities leveraging node-level diagnostics has only
been sparsely discussed in previous literature. Especially immune-inspired techniques such
as those based on the danger theory have hardly been applied for node fault detection.

The detection of erroneous data in WSNs is crucial as they can lead to incorrect models,
wrong findings, or false (counter-) measures. Previous approaches mainly focused on
analyzing the sensor data and neglected valuable information available on the sensor
nodes. In this context, particularly the distinction of anomalies in the monitored physical
phenomena (i.e., data events) from data distortion induced by hardware and/or software
issues (i.e., node faults) is a non-trivial problem.

Consequently, for the adaption and adoption of such immune-inspired principles for
the detection of node faults, several research questions (RQs) have to be answered.
These RQs describe the course of the present dissertation research and highlight the key
issues addressed. A graphical representation of the targeted RQs and their connection is
depicted in Figure 1.1. The particular RQs and their intended artifacts are discussed in
the following. A summary of the contributions of the present work concerning these RQs
is provided in Section 9.1.

Literature Review

Node Fault Detection

Fault Analysis

Research Gap

Fault Classification

DCA Fault Detection

Fault Detectability

Fault Diagnosis

Fault Models

RQ#1 RQ#2 RQ#3 RQ#4 RQ#5 RQ#6

Fault Classes Design Guide Node Diagnostics Detection Concept

Figure 1.1: Dissertation research questions and dependencies

RQ#1: What are the limits of current node fault detection approaches?
Initially, the advantages and disadvantages of previously proposed fault detection ap-
proaches for WSNs were analyzed. In this context, the respective approaches’ underlying
assumptions, limitations, and characteristics were summarized. Additionally, previous
works on fault classes and models were significant for the present work. Identifying the
main drawbacks and limits of previous approaches was mandatory to highlight existing
research gaps that formed the basis of the research presented in this thesis.

3

1. Introduction

RQ#2: Which node faults are prevalent in WSNs?
The second question answered concerns the node faults commonly occurring in WSNs.
Answering this question was mandatory for our fault detection approach to better
understand the faults to be detected. In this context, especially the observability of the
faults’ manifestations was a crucial point to define the information necessary for their
detection. The outcome of this RQ was an overview of node faults and served as a basis
to model the prevalent faults (i.e., fault models).

RQ#3: How can these node faults be classified?
Answering this question included an analysis of possible root causes for the previously
identified node faults and their characteristics. As a result of this, classification of
faults depending on their manifestation on the node level was necessary, i.e., whether
they (i) lead to a permanent or temporary shutdown of the node, (ii) cause an altered
behavior observable by neighbor nodes, (iii) distort the measured value that will be
further transmitted over the network, or (iv) offer no significant effect at all. Based
on the findings from this RQ, the relevant fault classes were identified, and possible
similarities in their root causes and/or manifestations were elaborated.

RQ#4: What effect has the sensor node’s design on node faults?
Based on the findings of RQ#2 and RQ#3, we analyzed the influence of the sensor node’s
software and hardware architecture (i.e., its design) on the previously identified node
faults. In this context, the impact of design choices on the probability and observability
of sensor node faults was of utmost interest. In answering this question, considerations
and guidelines for sensor node hardening were elaborated. This information helps to
decrease the probability of node faults. In addition, unpreventable faults were identified,
and a better understanding of the mechanisms behind these faults was gained. This
information was crucial for defining the diagnostic data required as input for our fault
detection approach.

RQ#5: Which data can be used for node-level fault detection?
Crucial for any fault detection approach is the definition of expressive input data and
their proper mapping to the biological counterparts in the context of an immune-inspired
approach. Previous works have revealed that especially the combination of different input
data can improve the detection’s correctness, that is, increasing the sensitivity while
reducing the false alarm rate (FAR). In this context, the single input data’s aggregation
and possible weighting had to be examined.

RQ#6: How can immune mechanisms be applied to node fault detection?
Finally, the results of the previous RQs led to the development of our immune-inspired
fault detection approach. As a starting point, the core functioning of the dendritic
cell algorithm (DCA) (and its variants) was analyzed concerning its suitability for an

4

1.2. Methodology

immune-inspired sensor node fault detection approach (with due regard to necessary
modifications and adaptations). The approach had to be capable of reliably identifying
sensor node faults. Thereby, it had to (i) have better overall accuracy than related
approaches and (ii) meet the requirements of the sensor node regarding its resource
overhead. Concerning the latter, the approach needed to be lightweight in terms of
resource requirements and energy consumption. Thus, it had to have a low memory
footprint, require moderate processing power, and pose a feasibly small energy overhead.
In other words, the advantages of the resulting approach (i.e., enhanced reliability) had
to justify possibly negative consequences such as a lowered battery life.

1.2 Methodology
The research presented in this thesis mainly follows the design science research method-
ology [1] to answer the aforementioned RQs. Design science is a research methodology
that focuses on the development and validation of prescriptive knowledge. It is especially
suitable for practical engineering problems as it provides guidelines for designing and
evaluating solutions to given problems. For this purpose, it provides six activities guiding
the decision making in design science research (cf. [1]):

1. Problem identification and motivation
2. Define the objectives for a solution
3. Design and development
4. Demonstration
5. Evaluation
6. Communication

The problem identification and motivation (activity 1) and the objectives for the envisioned
solution (activity 2) were discussed in Section 1.1. Both activities are supported by
systematic literature reviews (SLRs) [2] to acquire a profound knowledge of the state-of-
the-art and related work in this field. Also the artifacts to be designed and developed
in the research (activity 3) were described in Section 1.1 and are depicted in Figure 1.1
(dashed boxes at the bottom). Their contribution to the body of knowledge in the field
is summarized in Section 1.3.

To demonstrate that the developed approach solves the stated problem (activity 4) and
to evaluate the approach’s correctness and efficiency (activity 5), a tripartite experiment
setup is used that targets (i) theoretical aspects of the underlying fault detection (using
simulations), (ii) fault-specific details of the node diagnostics (with directed lab experi-
ments), and (iii) general properties of the developed approach when used in a real-world
WSN deployment (by a practical indoor and outdoor WSN testbed). Details on the
experiments are presented in Chapter 7.

Finally, the communication of the findings (activity 6) is discussed in Section 9.1. In
general, the answer to each of the above stated RQs delivers a purposeful artifact that

5

1. Introduction

is appropriately disseminated as publications at scientific conferences and journals or
published as open-source and open-access information on respective online platforms (i.e.,
Github).

As also visible in Figure 1.1, the design science research methodology has an iterative
nature. The activities are not processed linearly from step 1 down to 6. They are repeated
throughout the research for each RQ or specific topic, respectively.

1.3 Contribution
This thesis presents a novel immune-inspired node fault detection approach for WSNs.
The detection utilizes a modified DCA, an algorithm that abstracts the functioning of
dendritic cells in the human immune system. It has shown promising preliminary results
for network anomaly detection in computer and sensor networks. However, the original
DCA is tailored for centralized network intrusion detection systems.

To leverage the working principle of the DCA for fault detection in WSNs, suitable input
data have to be worked out based on which the algorithm can reliably detect sensor
node faults. In the present approach, these input data are derived from self-checks and
diagnostics performed on the sensor node. The combination of such node-level diagnostics
and the DCA for node fault detection has not been addressed in the literature so far.

In contrast to previous fault detection schemes, our immune-inspired approach combines
statistical metrics of the sensor data with node-level diagnostic data to enhance its
detection rate while, at the same time, significantly lowering the FAR. For the latter, it
is crucial to enable the detection to distinguish between data events and fault-induced
anomalies. In addition, previous DCA-based schemes required a significant amount of
manual intervention, e.g., for the mapping of the required input data and their fine-tuning.
As will be presented in this thesis, our approach offers a high degree of generality, hence,
removing most of these manual steps.

The research presented in this thesis includes three main contributions and four additional
contributions. Our main contributions are:

• the elaboration on expressive node-level fault diagnostics
• the development of a sensor node platform facilitating active node-level reliability
• the implementation of a DCA-based sensor node fault detection system that exploits

the combination of sensor data characteristics with node-level diagnostics

Additionally, the contributions include:

• a taxonomy for fault detection schemes in WSNs
• an analysis of the main causes of the prevalent node faults (e.g., undervolting)
• a survey of the characteristics of recent sensor node platforms
• a critical review of the Arduino platform for the sensor node development

6

1.4. Thesis Outline

However, this thesis does not present original research as most of its contributions were
already published in corresponding conference proceedings [3–7] and journal articles [8].
Some parts of this thesis are directly taken from our papers discussing the related
topic. In Section 9.1, the published papers concerning the aforementioned RQs are
listed, and their specific contributions are summarized. As the design science research
methodology involves iterative cycles, some of the RQs are addressed in more than one
publication due to new findings and refinements. Additionally, most of the resources
developed in the course of the research have been made publicly available on Github
under https://github.com/DoWiD-wsn.

1.4 Thesis Outline
The remainder of the thesis is structured as follows. An introduction to wireless sensor
networks (WSNs) is given in Chapter 2. Aside from considerations on the fields of
applications and the architecture of WSNs, especially the specific characteristics of
sensor networks are discussed. Although the chapter mainly summarizes the findings of
respective literature reviews, it also presents an extensive overview and comparison of
recent sensor node platforms. This overview shows the characteristics and properties
of common sensor nodes that are further used for comparison with our self-developed
sensor node platform.

An overview of the state-of-the-art for anomaly detection in WSNs is presented in
Chapter 3. It highlights the challenges for anomaly detection imposed by the specifics of
WSNs, presents standard metrics to assess and benchmark anomaly detection approaches,
and presents our comprehensive taxonomy for anomaly detection for WSNs. Based on
an overview of related works, especially the limitations and drawbacks of current node
fault detection approaches based on anomaly detection schemes are discussed.

Chapter 4 focuses on sensor node faults and their detection in WSNs. It discusses
the corresponding terminology and presents our taxonomy for sensor network faults.
Additionally, it highlights the danger posed by (node) faults for WSNs. Most of all,
related work on fault detection schemes, including their advantages, disadvantages, and
limitations, are elaborated in this chapter.

Immune-inspired approaches have shown promising characteristics for developing lightweight
fault detection systems. Consequently, an overview of the unique properties of the human
immune system (HIS) and their exploitation in artificial immune systems (AISs), or
immune-inspired techniques in general, is presented in Chapter 5. In particular, it focuses
on the danger theory and its computational counterparts, i.e., the dendritic cell algorithm
(DCA). Aside from a summary of related work on DCA-based fault detection, especially
the limitations and shortcomings of current approaches are discussed.

Chapter 6 presents our immune-inspired node fault detection approach that forms the
core contribution of this thesis. First, the models of prevalent faults in WSN that are
targeted by our approach are treated. Then, the developed node-level diagnostics and

7

https://github.com/DoWiD-wsn

1. Introduction

their use in our modified DCA are presented. The chapter closes with a discussion on
the characteristics and properties of our immune-inspired fault detection approach.

The evaluation of our concept is treated in Chapter 7. It presents the setup of our
tripartite evaluation setup and details on the particular experiments (i.e., simulation, lab
experiments, and practical deployments).

Chapter 8 summarizes the results of our evaluation experiments. It presents the approach’s
correctness assessment and efficiency analysis as well as a comparison of our immune-
inspired scheme with alternative approaches. Additionally, the main lessons learned in
the dissertation research are highlighted.

Chapter 9 concludes this thesis by summarizing the main results and research findings,
discusses possible extensions and improvements of our fault detection approach, and
presents future research directions for immune-inspired fault detection in WSNs.

8

CHAPTER 2
Wireless Sensor Networks

One branch of technical systems that emerged from the need for fine-grained data are
wireless sensor networks (WSNs). In the last two decades, WSNs have become an
active research topic with numerous practical applications in industrial automation,
environmental monitoring, and many more (cf. [9]). They mainly consist of sensor nodes
that are deployed close to the monitored physical phenomena to sense specific physical
quantities and forward their measurements to one or more dedicated services (e.g., cloud
systems) for further processing. As a consequence, WSNs provide data with a high level
of detail. Such data is essential for precise and correct data analytical services.

However, the sensor nodes are typically low-cost embedded systems with strictly limited
resources imposing strict limitations and particular features for the WSNs. These
limitations and features impact the processing capabilities of the sensor nodes, their
behavior, and their interconnection. The resulting characteristics and properties of
WSNs distinguish them from traditional computing networks, hence, making a separate
treatment for specific topics (e.g., fault detection) necessary (cf. [10]). Consequently,
the research community targets numerous topics such as low-power wireless technology,
energy-efficient network protocols, node deployment strategies, or sensor node design.

In Section 2.1, we elaborate on the fields of applications of WSNs and their respective
characteristics. The general structure, including standard components and network
architectures, are discussed in Section 2.2. Combining the requirements of the intended
fields of applications with the architectural and technical properties of sensor networks
leads us to the specific characteristics and distinctive features of WSNs (cf. Section 2.3).
These characteristics and features are crucial for understanding the significant danger
that faults in sensor networks, particularly node faults, pose on the data service quality.

9

2. Wireless Sensor Networks

2.1 Fields of Applications

A significant number of fields of application and use cases fall into the realm of WSNs [11],
some of which are already well-established and widely used. The main applications of
WSNs can be categorized as (i) military applications, (ii) health applications, (iii) home
applications, (iv) industrial automation/applications, (v) environmental applications,
and (vi) civil structure monitoring (cf. [12, ch. 2]). All WSN deployments have in
common that they consist of spatially dispersed sensor nodes usually realized by low-
power embedded systems that measure specific physical quantities via attached sensors.
Depending on the application requirements, these sensor nodes are interlinked by near-
field communication (e.g., Zigbee, Bluetooth low energy (BLE)) [13], or low-power
wide-area networks (LPWANs) such as long-range wide-area network (LoRaWAN) [14].

On a general level, most WSN deployments can be categorized into one of two main
applications depending on whether they provide continuous sensing (e.g., environmental or
process monitoring) or perform event detection (e.g., forest fire detection or surveillance).
While both share some common characteristics (such as the network structure), there are
differences in their respective requirements, especially concerning the expected lifetimes,
the communication patterns, and the amount of data to be transferred. Also, the
particular fields of applications differ in the area to cover, the data update intervals, and
the environmental conditions in which the sensor nodes are embedded. These differences
impact the possibility of detecting faults on the node level. For example, continuous
sensing provides the possibility to consider the difference between two consecutive
measurements.

update interval

packet size

packet lossenvironment

lifetime

sh
or
t

lon
g

small

large

sta
ble

unp
red
icta
ble

uncritical

critical

short

long

habitat monitoring

structural health monitoring

environmental monitoring

Figure 2.1: Characteristics of different WSN monitoring applications

10

2.1. Fields of Applications

In this thesis, the focus is laid on monitoring applications that provide continuous sensor
data. Even within the field of monitoring applications, the particular characteristics differ
significantly as quantitatively shown based on the example of environmental, habitat,
and structural health monitoring in Figure 2.1.

Additionally, the advent of the so-called Industry 4.0 has led to an increasing use of sensor
networks in industrial monitoring applications (e.g., predictive maintenance [15]). In
several industrial applications, harsh environmental conditions caused by the electromag-
netic interference of heavy machinery, high ambient temperatures, or strong vibrations
challenge the proper operation of both the sensor nodes and their interlinks.

In this work, environmental monitoring applications are primarily targeted for further
considerations on the fault models of interest and the immune-inspired node fault detection
approach. However, the resulting fault detection approach is generically applicable to
most WSN fields of application, even if they do not report continuous sensor data.

2.1.1 Environmental Monitoring

Environmental monitoring [16, 17] was one of the earliest applications of WSNs. It
refers to any sensor network that monitors certain environmental phenomena or physical
conditions. The intention behind environmental monitoring is to have an additional
source of information for (i) the study of certain phenomena (e.g., temperature changes
for meteorology), (ii) the analysis of physical conditions that may be used for process
optimization (e.g., plant growth for smart agriculture [18, 19]), or (iii) the prediction
of future trends, be it for optimization purposes (e.g., smart traffic systems [20]) or for
hazard mitigation (e.g., forest fire detection systems [21–23]).

In its early years, most monitoring systems were used for air or water quality monitor-
ing [24,25]. Many environmental applications are used as pure information sources and
require human interaction only in case of certain events. However, more and more appli-
cations arise where the monitoring system is part of an automatic or even autonomous
system (e.g., for smart traffic applications [20]).

Environmental monitoring applications usually require long battery lifetimes (often
more than ten years) and typically operate in harsh and unpredictable environments.
The packages transmitted are of comparably small size (few bytes), and the updates
happen, depending on the actual application, in a minute or hour granularity. For most
environmental monitoring applications, the loss of packets is not critical.

In the present work, the practical considerations focus on environmental monitoring used
as part of a smart garden system, that is, a system to monitor and optimize certain
physical conditions related to plant growth. The sensor network delivers information
on the current state of selected conditions. However, the actuator part (e.g., irrigation
system) is not in the scope of this work.

11

2. Wireless Sensor Networks

2.1.2 Habitat Monitoring
WSNs are also broadly used for habitat monitoring which refers to systems used to
monitor the behavior of animals. Their goal is to track and analyze the health and/or
social contacts of certain (groups of) animals. In this context, the two most famous
examples are “The Great Duck Island project” [26] and “ZebraNet system” [27].

The Great Duck Island is a famous breading area of seabirds in Maine, USA. Sensor nodes
were deployed on this island to analyze the nesting behavior of the local seabirds (i.e.,
occupancy of nesting burrows) and the impact of microclimatic factors on the habitat
selection of these seabirds.

The ZebraNet system, on the other hand, was deployed in Kenya to keep track of two
different species of zebras and analyze their natural behavior. With the advent of smart
farming (or smart agriculture), such habitat monitoring systems are also increasingly
used to monitor the health of cattle or sheep herds [28, 29].

Habitat monitoring applications usually have much shorter battery lifetimes than environ-
mental monitoring deployments. Their environment is partly predictable as the animals
usually seek shelter in rough weather conditions. Depending on the actual application,
considerably more data are transmitted. Thus, the packet sizes are much larger than in
most other monitoring fields of application. Also, the updates usually happen in shorter
intervals (seconds to minutes granularity). As with environmental monitoring, the loss of
packets is not critical in most cases.

2.1.3 Structural Health Monitoring
WSNs are also increasingly used in the field of civil structure monitoring in structural
health monitoring (SHM) systems to keep track of the condition of the respective civil
structures. The main advantage of such systems is that they allow a paradigm shift from
“fix-and-fail” to “predict-and-prevent” [30]. In the past, defects in civil structures such as
buildings or bridges have been noticed when they have already manifested themselves on
the surface. At this point, the damage has reached a scale where noticeable consequences
can not be avoided anymore (like underground flooding in case of broken water pipes).
More severe are those cases in which civil buildings collapsed due to structural defects
that went unnoticed for longer times (e.g., the collapse of bridges [31]).

Generally speaking, there are two basic approaches to SHM [32]:

1. direct detection via visual inspection, x-rays, or similar
2. indirect detection by tracking changes in structural properties or system behaviors

While the former usually requires specially trained personnel, the latter is performed by
technical systems in a more autonomous manner. For this purpose, indirect detection
systems use modal parameters such as eigenfrequencies or eigenmodes for the analysis.
Two discriminating factors for the analysis of these parameters are time-scale and the
severity of the change, hence, how fast and to what extent the monitored parameters

12

2.2. Structure and Components

change. As stated in [33], important characteristics of SHM systems are (i) adaptability,
(ii) autonomy, and (iii) reliability. Especially reliability plays a crucial role in many
SHM applications as no data has to be lost since these events happen rarely, cannot be
duplicated, and may contain important information on the health state of the respective
structure [32].

Today, SHM systems enable the permanent monitoring of different assets and the
estimation of their structural health state, thus, proving measures to detect structural
changes even before they significantly affect the performance of respective structures [32].
SHMs based on WSNs are applied to diverse kinds of civil structures, such as buildings [34],
water pipes [35], railway tracks [36], highways [37] or tunnels [38,39]. The most prominent
examples of WSN-based SHM systems are applied to bridges [40–42] as these structures
have a higher risk of defects caused by vibrations (be it from strong wind or the vehicles
moving across it) and the specific form of their architecture.

One of the first successfully applied sensor-based SHM was a setup on the Ben Franklin
Bridge in Philadelphia which started around 2001 [43]. The installation was considered
necessary as a considerable amount of high-speed trains are crossing this 2,918 m-long
bridge regularly, causing significant vibrations whose effect on the bridge’s structure
could not be assessed before.

Another example is the retrofitting of the Tamar Bridge in southwest England with a
SHM in 2001, which was further improved in 2006 and 2009, respectively. The bridge
is a 335 m span suspension bridge whose original structure was opened in 1961. In the
early 2000s, it was strengthened to meet European standards allowing heavy trucks
with a wight of up to 40 tons to pass it. Due to the complexity of the resulting bridge
structure, the SHM was considered relevant to survey the ambient vibration and the
bridge’s reaction to wind, temperature, and cable tension [44].

To date, one of the largest WSN-based SHM deployment was installed by a team of
researchers of the University of California at Berkeley in cooperation with Crossbow
Technology, Inc. in 2006 at the Golden Gate Bridge in San Francisco [32]. In this work,
named the Golden Gate Bridge Project, a total of 64 sensor nodes were deployed on the
2,737 m long bridge in a 46-hop network.

As with environmental monitoring, also SHM applications usually have long battery
lifetimes of several years and are often operated in relatively harsh and unpredictable
environments. The data is transmitted in smaller packages in update intervals of usually
minute granularity. As stated above, the loss of packets is in most cases critical as events
signaling damage must not be missed.

2.2 Structure and Components
WSNs consist of spatially dispersed sensor nodes deployed in an area of interest to
monitor their physical environment. The deployment of a WSN is a difficult and time-
consuming task since several development aspects need to be considered, such as (i) the

13

2. Wireless Sensor Networks

communication technology including security concerns, (ii) the network topology and
routing, (iii) the data storage and analysis, and (iv) the hardware to be used. Depending
on the field of application and use-case specifics, a great variety of WSN architectures
and deployment strategies exist.

However, they all consist of two main parts:

• the sensor nodes and
• the network architecture.

Both parts are equally important for the quality of service provided by the WSN. An
overview of the network architecture is presented in Section 2.2.1. As the focus of this
thesis is on senor node fault detection, a more detailed discussion of sensor nodes is given
in Section 2.2.2 and an overview of recent node platforms is presented in Section 2.2.3.

2.2.1 Network Architecture
For the deployment of WSNs, two main network architecture structures exist, namely
(i) a layered or (ii) a clustered structure. As explained below, both have different
characteristics concerning their components and the underlying network topology.

Layered network architectures consist of a single powerful base station providing the access
point to a large number of sensor nodes. The sensor nodes are commonly connected to
the base station via multi-hop networks where nodes are grouped into layers according to
the hop-count to the base station; thus, the name “layered architecture”. Such network
architectures have primarily been used with in-building sensor networks and military
sensor-based infrastructure (cf. [45]).

The majority of WSNs use a clustered network architecture. In this architecture, sensor
nodes located geographically close to each other are grouped into clusters. Each cluster
usually has one dedicated node (often denoted as cluster head or cluster leader) responsible
for collecting the information from its neighboring sensor nodes and collectively forwarding
the data to one or more central services for further processing. These cluster heads are
often equipped with higher resources than the sensor nodes. An architectural example of
a clustered WSN is shown in Figure 2.2. In the figure, the three clusters depict the three
most common network topologies used in clustered WSNs (i.e., tree, star, and mesh).

As can be seen in Figure 2.2, the term “layer” is also used in clustered WSNs for the
particular stages in the data chain. From a global point of view, the WSN operates at
the boundary of the data-processing chain (at the “edge”) and, thus, the sensor nodes
are sometimes denoted as edge devices. The cluster heads are called edge gateways that,
together with the sensor nodes, form the edge layer. The data collected by the cluster
heads are then either directly forwarded to a cloud system (i.e., central data endpoint) or
pre-processed by intermediate systems before being uploaded to the cloud. In the latter
case, the intermediate systems are commonly referred to as fog devices as they operate
between the edge and the cloud. As shown in Figure 2.2, the number of devices per layer

14

2.2. Structure and Components

ed
ge

lay
er

fog lay
er

clo
ud

lay
er

am
ou

nt
of

da
ta

pe
r t

ra
ns

ac
tio

n

nu
mb

er
 of

 de
vic

es

cluster (tree) cluster (mesh)

sensor node
cluster head

cluster (star)

Figure 2.2: Architectural example of a clustered wireless sensor network

decreases from the edge to the cloud layer, while the amount of data transmitted per
transaction significantly increases.

2.2.2 Sensor Nodes
On the lowest layer, WSNs consist of interlinked low-power embedded systems responsible
for sensing specific physical quantities. These systems are commonly referred to as sensor
nodes or sometimes also called motes1. The sensor nodes are key components of the WSN
and have a significant impact on the network’s performance and accuracy. They differ in
the used hardware components, their size and weight, the supported power sources and
battery lifetimes, and the sensors available or the analog/digital interfaces, respectively.
Choosing suitable hardware components is crucial as they essentially determine the
nodes’ functionality and operational characteristics, including their energy efficiency and
reliability. Regarding the latter, the components heavily influence the probability and
nature of faults that can impair the nodes’ proper function [5]. On the other hand,
high energy efficiency is essential since most sensor nodes are battery-powered, and the
available energy budget is strictly limited.

Typically, sensor nodes have to (i) acquire sensory information of certain physical
quantities, (ii) perform some (pre-)processing of data, (iii) forward their data over
wireless links, and (iv) operate in an energy-efficient manner to ensure long battery
lifetimes. These basic requirements are reflected in the typical components of sensor
nodes. Consequently, the hardware of most sensor nodes can be divided into four basic
blocks as depicted in Figure 2.3, namely (cf. [47]):

(i) a set of sensors (see Section 2.2.2.1),
(ii) a processing unit (optionally with external memory; see Section 2.2.2.2),
(iii) a radio transceiver (see Section 2.2.2.3), and
(iv) a power unit with a power source (i.e., a battery; see Section 2.2.2.4).

1In this context, the term “mote” refers to sensor nodes of minimal size.

15

2. Wireless Sensor Networks

additional units

communication unit

sensing unit

sensors 1, 2, ..., n

ADC

MCU / DSP / FPGA

memory

processing unit

debug interface

...

power unit
power management

antenna

battery

sensor node

Figure 2.3: Basic components of a wireless sensor node (after [46, Fig. 1])

Additionally, the sensor nodes can be equipped with additional units such as a debugging
interface to support the software development or with external power management
capabilities on top of the power units.

2.2.2.1 Sensor Unit

The sensor unit is responsible for acquiring sensory information of specific physical
quantities. Different sensors for various physical quantities are available depending on the
application requirements. These sensors differ in the quality of the provided measurements
(i.e., resolution, accuracy, conversion time) and in the way they provide the measurement
to the subsequent processing unit. Thereby, two basic kinds of sensors can be distinguished:
sensors available as integrated solutions and sensors (or sensory circuits) that output
an analog signal proportional to the measured physical quantity. The former provide
their measurements via a digital interface (e.g., universal synchronous/asynchronous
receiver-transmitter (USART), serial peripheral interface (SPI), or inter-integrated circuit
(I2C)). On the other hand, the latter requires an analog-to-digital converter (ADC) to
make the measurements available to the processing unit that can be either an on-chip
peripheral of the processing unit or a separate hardware component.

2.2.2.2 Processing Unit

The processing unit is the heart of the sensor node and gathers the measurements from
the attached sensors, prepares these values for transmission (possibly including some pre-
processing like normalization, conversion, or plausibility checks), and eventually forwards
the data via the communication unit. While most sensor nodes use a microcontroller unit
(MCU) as a processing unit sometimes extended with external flash memory, there are
also solutions based on digital signal processors (DSPs), field-programmable gate arrays
(FPGAs) or highly-integrated systems-on-a-chip (SoCs) with multicore architectures [48].
Aside from a shorter time-to-market, MCU-based nodes are beneficial due to their low
prices and comparably low power consumption. The majority of MCU-based sensor

16

2.2. Structure and Components

nodes currently either use an 8-bit AVR ATmega, a 16-bit TI MSP430, or a 32-bit ARM
Cortex-M0/M3 MCU [47]. In the last years, a shift towards SoC-based nodes has been
noticed, where the processing and communication unit are both integrated into a single
chip [49].

2.2.2.3 Communication Unit

The choice of the communication unit depends on the transmission medium and the
communication system to be used. Even though the majority of WSNs use radio frequency
(RF)-based communication (e.g., using radio transceivers in the license-free industrial,
scientific and medical (ISM) bands at 868/915 MHz and 2.4 GHz), some utilize other forms
of communication such as ultrasonic-based systems used in submarine WSNs (cf. [50]).
Except for multimedia WSNs, the majority of sensor networks use moderately low
data rates of up to 250 kbit/s. Especially monitoring applications such as environmental
monitoring usually require the transfer of comparably small network packages transmitted
at lower data rates to keep the power consumption at a minimum. Depending on the
range of the communication link, the radio transceivers can have an external, printed
circuit board (PCB), or chip antenna attached. A summary of some commonly used RF
modules can be found in [51], and an overview of wireless standards and technologies
often used in WSNs is given in [47].

2.2.2.4 Power Unit

The power unit is responsible for providing the sensor node’s components with power
usually supplied by a battery. If the node uses energy harvesting (e.g., solar cells), the
power unit must also control the battery’s charging cycles. Especially for sensor nodes
without energy harvesting, the choice of the power unit is often straightforward. Several
nodes have the battery directly connected to the supply rail of the node’s components.
These nodes usually rely on the brown-out detection of components that disables them
in case of a too low supply voltage to avoid unintended effects of a depleting battery
(i.e., sinking battery voltage). Other sensor nodes cope with the effects of a possible
undervolting on a higher level (cf. [52]). However, most sensor nodes use linear regulators
to ensure a stable supply voltage, but at the cost of bad energy efficiency. Especially
ultra-low-power sensor nodes tend to exploit the high efficiency of DC/DC converters
where modern solutions only require a few additional (passive) components.

2.2.3 Node Platforms

Selecting proper hardware components for the sensor nodes is crucial to ensure a reliable
operation (even under harsh environmental conditions) while providing high-quality data.
The hardware selection, however, is not trivial as the sensor node design is challenged
by the tradeoff between low-power operation and sufficient computational performance
and using low-cost components while being small in size [48]. Nevertheless, the most

17

2. Wireless Sensor Networks

essential factor for sensor node design is the limited energy budget. Sensor nodes are
usually battery-powered, and energy harvesting is not always possible or feasible.

Basically, there are three options for the sensor node development, namely:

(i) to build sensor nodes from scratch (custom nodes),

(ii) to utilize a generic embedded platform (semi-custom nodes), or

(iii) to use an available sensor node platform (commercial or academic nodes).

2.2.3.1 Custom Sensor Nodes

Custom sensor nodes are often designed for a particular application and, thus, offer the
highest degree of specialization to the corresponding requirements. Their development
requires considerable time and resources and a certain degree of expertise. Aside from
selecting appropriate hardware components, considerations on the power supply, and
developing the PCB, also the software consisting of an operating system (OS) or mid-
dleware, the sensor drivers, and the communication drivers as well as the respective
toolchain need to be prepared.

2.2.3.2 Semi-Custom Sensor Nodes

Alternatively, the sensor nodes can be developed in a semi-custom fashion with a generic
embedded platform (i.e., development and breakout boards) extended with application-
specific hardware such as a radio transceiver and sensors. Such approaches usually require
less development time than custom sensor nodes and often result in cheaper hardware
costs as many embedded platforms are available at low prices. In addition, many of
these embedded platforms are supported by a large community providing software drivers
and example codes. The most-known generic embedded platforms include Arduino,
BeagleBoard, Raspberry Pi, Teensy, Espressif (ESP), and mbed. However, these platforms
usually target a wide range of applications. Hence, they are not explicitly designed for
low-power sensor node operation. Such platforms often offer high computational power
and particular onboard circuitry supporting the development process (e.g., light-emitting
diodes (LEDs)) at the cost of a (significantly) higher overall power consumption (cf. [6]).

2.2.3.3 Commercial / Academic Sensor Nodes

Many wireless sensor nodes have been developed by universities, research institutions, or
companies in the last two decades. Some of these nodes are (or have been) commercially
available or were even made public as an open-source project. In the research community,
probably the most-famous sensor nodes are the Berkeley motes including the well-known
Mica or Telos motes [49, 53]. The advantage of using such ready-to-use nodes are
the significantly shortened development times and the availability of the core software
components in combination with hardware tailored for the (ultra) low-power requirements
of wireless sensor nodes. On the downside, these nodes are often specific to particular

18

2.2. Structure and Components

use-cases offering moderate flexibility, and several sensor nodes are not publicly available
or not available anymore at all.

2.2.3.4 Node Platform Review

In [8], we conducted a literature review on recent sensor node platforms that extends
the surveys presented in [47, 48,51, 53]. It focuses on sensor nodes that either support
high energy efficiency (i.e., ultra-low-power operation), include techniques for node-level
fault tolerance (i.e., self-diagnostic measures), or both. An overview of sensor nodes
found, their year of publication, and their characteristics are given in Table 2.1. The
overview includes our sensor developed in the course of the present research. Details on
this sensor node, named ASN(x), follow in Section 7.1. However, the overview depicted in
the table focuses on the sensor nodes and excludes information on the radio transceivers
and supported communications standards. For information on the network capabilities
of the sensor nodes, we refer an interested reader to our full review in [8].

The table lists the core components of the sensor nodes, that are, the MCU including
its specifications in terms of central processing unit (CPU) architecture, clock frequency
(FCPU), and available memory (i.e., flash, static random-access memory (SRAM), and
electrically erasable programmable read-only memory (EEPROM)). Also, information on
the nodes’ supply voltage for the core components (Vcore), the supported input voltage
range (Vbat), and the typical power consumption2 in the active and power-saving modes
are listed. However, the radios’ transmit and receive power consumption are neglected in
the table as the values depend on the actual radio settings, such as the transmit power.
Information on these values can be taken from the corresponding datasheets of the radio
transceivers. Additionally, the table lists the voltage regulation technique where:

refers to nodes using a DC/DC converter,
denotes nodes using a linear regulator (e.g., low-dropout regulator (LDO)), and
highlights nodes that have the battery directly connected to the core supply rail.

Next, the columns energy-efficiency and self-diagnostic state to which extent energy-
efficiency was considered in the node design and whether self-diagnostic measures are
included, respectively. In the open source column, the extent to which the sources of the
nodes’ design and software are publicly available are highlighted where:

means that all related information is publicly available,
refers to nodes where only parts are available (mostly the software), and
shows that no information has been made publicly available.

Last, the availability status of the nodes (i.e., whether the nodes are (still) available
on the market) and the price of one sensor node are listed. For commercial nodes, the

2As most authors present the current consumption of their sensor nodes rather than the power
consumption, we calculated the corresponding power by multiplying the given current values with the
nodes’ core voltages to allow for better comparison.

19

2. Wireless Sensor Networks

Ta
bl

e
2.

1:
O

ve
rv

ie
w

of
se

ns
or

no
de

pl
at

fo
rm

s

Se
ns

or
no

de
Ye

ar
M

C
U

/S
oC

Arch.[bit]

FCPU[MHz]

Flash[kB]

SRAM[kB]

EEPROM[kB]

Vcore[V]

Vbat[V]

activemode[mW]

power-saving[µW]
Voltageregulation
Energy-efficiency
Self-diagnostic
Opensource
Available

Pr
ic

e
[$

]

Commercial

U
C

B
er

ke
le

y
Te

lo
sB

[5
4]

20
05

M
SP

43
0F

16
11

16
8

10
72

10
16

3.
0

1.
8–

3.
6

6.
6

20
.1

99
.0

0
ET

H
Zü

ric
h

B
tn

od
e

[5
5]

20
05

AT
m

eg
a1

28
L

8
8

12
8

64
4

3.
3

0.
5–

4.
4

39
.6

99
00

21
5.

00
U

C
B

er
ke

le
y

IR
IS

[5
6]

20
07

AT
m

eg
a1

28
1

8
7.

37
64

0
8

4
3.

0
2.

7–
3.

6
26

.4
26

.4
11

5.
00

SH
IM

M
ER

[5
7]

20
10

M
SP

43
0F

16
11

16
8

48
10

16
3.

3
1.

8–
3.

6
5.

9
16

.8
26

9.
00

O
pe

nM
ot

e
C

C
25

38
[5

8]
20

15
C

C
25

38
SF

53
32

32
51

2
32

–
3.

3
2.

0–
3.

6
42

.9
×

×
Li

be
liu

m
W

as
pm

ot
e

v1
5

[5
9]

20
16

AT
m

eg
a1

28
1

8
14

.7
5

12
8

8
4

3.
0

3.
3–

4.
2

56
.1

99
.0

17
4.

00
Zo

le
rt

ia
R

E-
M

ot
e

[6
0]

20
16

C
C

25
38

SF
53

32
32

51
2

32
–

3.
3

3.
3–

16
66

.0
4.

3
11

2.
00

W
iS

en
se

W
SN

11
20

L
[6

1]
20

19
M

SP
43

0G
29

55
16

16
56

4
12

8
3.

0
1.

8–
3.

6
56

.1
56

.1
48

.0
0

O
pe

nM
ot

e
B

[6
2]

20
19

C
C

25
38

SF
53

32
32

51
2

32
–

3.
3

2.
0–

3.
6

42
.9

4.
3

12
5.

00

Academia

K
m

ot
e

[6
3]

20
07

M
SP

43
0F

16
11

16
8

82
40

10
16

3.
3

2.
3–

6.
0

4.
9

22
.1

37
.8

5
B

ea
st

ie
s

[6
4]

20
08

AT
m

eg
a8

L
8

4
8

33
0.

5
5.

0
7.

0–
20

77
.5

40
00

0
13

9.
00

IN
G

A
[6

5]
20

12
AT

m
eg

a1
28

4P
8

4
12

8
16

4
3.

3
×

61
.7

×
12

0.
00

St
or

m
[6

6]
20

14
AT

SA
M

4L
C

8C
32

48
15

36
64

–
3.

3
1.

8–
3.

6
4.

5
7.

6
50

.0
0

R
aj

u
an

d
Pr

at
ap

[6
7]

20
15

M
SP

43
0F

54
38

16
25

25
6

16
–

3.
3

1.
8–

3.
8

×
×

×
Ze

ni
et

al
.[

68
]

20
15

AT
m

eg
a3

28
P

8
1

32
2

1
3.

0
1.

9–
3.

6
5.

8
15

12
.0

0
pa

nS
ta

m
p

N
R

G
3

[6
9]

20
16

C
C

43
0F

51
37

16
20

32
4

–
3.

3
2.

0–
3.

6
46

.2
8.

3
×

EA
R

N
PI

PE
[7

0]
20

16
AT

91
SA

M
3X

8E
32

84
51

2
10

0
–

3.
3

7.
0–

12
×

×
×

uL
oR

a
[7

1]
20

17
ST

M
32

L0
51

K
8T

6
32

32
64

8
2

3.
3

×
34

.7
1.

2
×

12
.0

0
R

us
u

an
d

D
ob

ra
[7

2]
20

17
ST

M
32

L4
43

R
C

32
80

25
6

64
–

3.
3

×
×

×
×

×
H

am
ilt

on
[4

9,
73

]
20

17
AT

SA
M

R
21

32
48

25
6

32
–

3.
0

×
3.

2
19

.5
25

.0
0

H
az

el
nu

t
[7

4]
20

19
AT

tin
y8

5
8

1
8

0.
5

0.
5

3.
3

×
23

1
65

0
×

R
ap

os
o

et
al

.[
75

]
20

19
M

SP
43

0F
52

29
16

25
12

8
8

–
3.

3
×

×
×

×
B

ab
us

ia
k

et
al

.[
76

]
20

19
AT

m
eg

a3
28

P
8

1
32

2
1

3.
0

1.
5–

3.
6

10
.5

22
.2

11
.0

0
M

EG
A

N
[7

7]
20

20
AT

m
eg

a3
24

PA
8

8
32

2
1

3.
3

×
26

.2
33

.3
20

.0
0

A
SN

(x
)

[8
]

20
21

AT
m

eg
a1

28
4P

8
4

12
8

16
4

3.
3

1.
8–

5.
5

15
.4

12
1.

1
50

.0
0

su
pp

or
te

d
pa

rt
ly

su
pp

or
te

d
no

t
su

pp
or

te
d

–
no

t
av

ai
la

bl
e

×
no

in
fo

rm
at

io
n

av
ai

la
bl

e

20

2.2. Structure and Components

price refers to the cost of one node on the market, while for nodes presented in academic
papers, the cost estimation of the authors is stated. However, in both cases, the actual
costs can vary depending on the distributor of the nodes or hardware components as
well as the PCB manufacturer in the latter case. Also, some nodes come equipped with
several sensors, while others provide the baseboard only. Therefore, the provided values
shall be considered a reference value for coarse comparison.

In our review [8], we found that especially the energy characteristics stated by some
authors have to be taken with care. In some cases, only the consumption of single
components (sometimes just taken from the corresponding datasheets) is stated rather
than the board’s actual consumption, including peripherals and passive components.
Also, the information provided in some of the surveys is incorrect, or at least questionable,
especially if the source of information is missing.

However, the focus of this thesis lies on node-level fault-tolerant sensor nodes that also
allow an energy-efficient operation. Therefore, sensor nodes focusing on energy efficiency
and their power-saving approaches, as well as nodes enabling self-diagnostics to enhance
the WSN’s reliability, are discussed in the following.

Energy-efficient Sensor Nodes
The overview of sensor nodes in Table 2.1 reflects the importance of energy-efficiency
in WSNs. Except for two designs, energy efficiency was at least partly considered in
all nodes. Thereby, two main design criteria are important to ensure energy-efficient
operation, namely:

(i) the duration of the active and the sleep phases (i.e., duty-cycling) and
(ii) the power consumption in both phases (i.e., energy-efficient hardware).

(i) Usually, the hardware components such as the MCU, the radio transceiver, and (where
possible) also the sensors are kept in an active state for as short as possible. The rest of
the time, the components are put to a power-saving or sleep mode to save energy (cf. [78]).
In both states, the power consumption depends on the hardware used in combination with
board assembly-related factors (i.e., passive components) and, in case used, OS-related
characteristics. Consequently, the power consumption needs to be measured on an actual
prototype as the sum of the datasheets’ values is usually much lower than the reality.

Depending on the amount and type of sensors, the complexity of the data processing,
and the communication standard, the active time is markedly smaller than the duration
of the power-saving phase and is usually in the range of several milliseconds up to a
few seconds. As a result, the hardware components also impact the duty-cycling as, for
example, some sensors require a specific conversion time that can significantly prolong
the active phase (e.g., the temperature measurement of the DS18B20 sensor takes up
to 750 ms). On the other hand, the sleep time depends on the application requirements
and is commonly in the range of several seconds or minutes (up to a few hours in rare
cases). Thus, the energy spent in power-saving mode commonly dominates the overall

21

2. Wireless Sensor Networks

power consumption [49]. In this context, previous studies [79] found that one of the
main contributors to active power consumption is wake-up energy. The hardware needs
to be re-started and possibly re-configured for proper functioning during the wake-up.
Additionally, the device may need to re-connect to the network. For example, the authors
of [79] concluded that the length of the sleep phase in IEEE 802.11-based WSNs should
be greater than 30 s with larger values resulting in better energy efficiency.

(ii) Aside from a suitable active/sleep schedule, the choice of hardware also affects the
sensor node’s energy efficiency. Most sensor nodes utilize low-power components (e.g.,
MCU or SoC) that have a comparably low power consumption in the active state, often
in combination with the support of energy-saving (e.g., disabling of unneeded on-chip
peripherals) and power-down possibilities (i.e., sleep modes). Regarding the latter, the
power consumption of the digital circuits (mostly CMOS-based) mainly consists of a static
fraction caused by a certain leakage current, a dynamic part resulting from changes in the
charge of the (usually parasitic) capacitances of the circuitry, and a transient short circuit
power dissipation during the switching. However, the dynamic part dominates the overall
power dissipation. It has a linear dependency on the clock frequency and a quadratic
dependency on the supply voltage. To lower the power demands of the circuitry, both the
frequency and the supply voltage may be decreased (down to certain thresholds). The
runtime adjustment of the frequency is commonly done via dynamic frequency scaling
(DFS) schemes and the adaptation of the supply voltage by dynamic voltage scaling
(DVS) techniques. While DFS is sometimes provided by the MCU/SoC, DVS usually
requires additional onboard circuitry. In the past, DVS approaches applicable to sensor
networks have been proposed that adjust the supply voltage level based on the system
needs down to the minimum threshold specified by the manufacturer [80]. Besides, there
is also so-called “active undervolting” where the supply voltage is even lowered below the
specified minimum voltage level to decrease the power consumption further (cf. [52]).

A suitable hardware selection of the sensor nodes is also relevant for leveraging the
sleep modes of the processing unit (i.e., MCU). Most recent MCUs provide different
power-down modes with different levels of saving potentials by deactivating the clock
source for specific on-chip components. In most power-saving modes, the clock of the
CPU is deactivated. This, however, raises the need for external components able to wake
the MCU up from its deep sleep. To do so, most often low-power real-time clocks (RTCs)
are added to the nodes’ design that can wake the MCU, for example, via an external
interrupt. In such a case, the RTC can quickly become a single point of failure as a
missing wake-up signal can cause the sensor node never to wake up again. Therefore, the
chosen wake-up source and its consequences on the node’s reliability must be carefully
considered.

Coming back to the overview on energy-efficient sensor nodes, we found that the majority
focuses on using (ultra) low-power components in their design [68,71–73,73,76]. Some
authors additionally took the passive hardware components required for proper functioning
into their considerations [68, 73]. Surprisingly, the majority of nodes found use linear
voltage regulators [57,59,60,63–65,69,70,77] or even no regulation at all [54,56,61,67,

22

2.2. Structure and Components

68, 73, 74, 76] instead of low-power DC/DC converters [55, 58, 62, 66, 75]. Especially if
the battery is directly connected to the hardware components’ supply rail, unintended
effects (including soft faults) can happen at the end of the battery life due to a (passive)
undervolting of the components (cf. [4, 52]). Also, the selection of the MCU’s clock
frequency has only been discussed in a few designs [64, 65, 68, 74, 76] by keeping the
frequency as low as possible. Enhanced energy-saving approaches such as DVS (or active
undervolting) were only considered in [52]. The impact of the software design on the
nodes’ overall energy efficiency was only presented in [68, 73] as the majority focused on
the hardware design and left the software to the application developer.

Self-diagnostic Sensor Nodes
While energy efficiency was considered in almost all sensor node designs found in the
literature review, self-diagnostic measures were only partially treated in two cases [65,75].
All other designs relied on implementing reliability measures (e.g., fault detection and/or
tolerance) on a network level rather than the node level. Other network participants
have to mitigate the effects of faults occurring in sensor nodes before the affected data
reach the subsequent data analysis. However, dealing with node faults on the network or
even cloud level faces severe issues concerning the detection of soft faults such as silent
data corruption. As a result, incorporating node-level information in the fault detection
approaches is inevitable (cf. [3, 5]).

In the sensor nodes proposed in [75], a sensor node monitoring agent is deployed in the
firmware of each sensor node that is able to collect specific runtime metrics provided by
the OS or the firmware such as the CPU load (i.e., number of cycles executed by the
MCU), the execution time, and the energy consumed (based on the approach proposed
in [81]). Aside from that, no node-level self-diagnostics were applied.

In the approach proposed in [52] the primary focus is on energy saving by active
undervolting. Thereby, the sensor nodes’ supply voltage is decreased below the minimum
voltage threshold suggested by the manufacturer down to the lowest value that allows a
proper operation. However, this value depends on several factors, including manufacturing-
related characteristics and the ambient temperature. As a result, the voltage level can
drop below the lowest operational point, and the node stops working. Consequently,
the used INGA nodes [65] are equipped with a secondary MCU supplied by a constant
voltage in the safe region. This secondary MCU monitors the primary MCU using spot
tests and resets the supply voltage in case an error is detected, hence, forming a type of
node-level fault detection. The spot tests applied are matrix multiplications checking the
proper functioning of the primary MCU’s arithmetic logic unit (ALU). However, this
approach has two main drawbacks that can endanger the WSN’s reliability, namely:

1. the secondary MCU can be impaired by faults, too, and
2. checking the primary MCU’s ALU alone is insufficient to ensure reliability.

Regarding the latter, in [4] we showed that such a spot-test needs to take all used on-chip
peripherals into account since, for example, the minimum supply voltages for the ADC

23

2. Wireless Sensor Networks

or the USART interface are notably higher than those of the ALU. There are voltage
levels where the ALU properly works, but the ADC and USART do not, and thus, the
system is in a state susceptible to soft faults.

2.3 Characteristics and distinct Features
While WSNs offer a versatile opportunity to acquire qualitative data of diverse physical
conditions, they usually impose strict limitations and particular features that distinguish
them from traditional computing environments [82,83]. These limitations and features
have an impact on the sensor nodes, their behavior, and the network connecting them.

First of all, energy- and resource efficiency are of the highest importance. The nodes of
WSNs are often expected to have battery lifetimes of ten years and more. Wired power
connections or periodical battery charging/replacing are uneconomic or impossible in
most applications. To ensure meeting this requirement, no highly complex algorithms,
protocols, or the like can be used as increased complexity usually comes along with
increased power/resource consumption.

Devices in the fog and cloud layers are usually operated in a controlled environment
(e.g., data centers), have a wired power supply, and are commonly equipped with vast
resources regarding their processing and memory capabilities. On the other hand, the
devices of the edge layer most often operate outdoors with uncontrollable and mostly
unpredictable conditions. While the cluster heads are sometimes powered by a wired
power supply and have moderate resources, the sensor nodes are typically powered by
batteries (with or without the possibility for energy harvesting) and have strictly limited
resources. Additionally, several WSN applications densely deploy the sensor nodes to
cover a wide area and/or have a fine spatial granularity resulting in large numbers of
devices (ranging from tens up to thousands). This, however, usually requires the sensor
nodes to mainly consist of low-cost components to keep the deployment costs as low as
possible.

Directly affected by these limitations are the interconnections of the sensor nodes. As a
result, energy-efficient communication tailored to the specific requirements is essential.
For this reason, different communication standards and protocols are used to fit the given
conditions best.

Near-field communication (e.g., Bluetooth, Zigbee) dominated the early years of WSNs.
Today, several applications also demand long-distance communication [84]. Cellular
networks are usually no option as their transceivers require too much energy. Thus,
specialized long-distance networks with minimum power requirements known as LPWAN
are often used (e.g., LoRaWAN or Sigfox).

As summarized in [85] and [86], besides the strict resource constraints, WSNs entail severe
vulnerabilities associated with their wireless links over open and most often unreliable
communication channels, their highly dynamic network structure, self-organization, and
decentralized management scheme in combination with the harsh environment in which

24

2.3. Characteristics and distinct Features

they are deployed. Especially the harsh environment plays a crucial role for considerations
on WSNs’ architectures and designs. Not only do environmental conditions influence
(or even temporarily prevent) the wireless links between the sensor nodes (like the
temporary blocking of signals by obstacles [87] or the absorption of radio waves by rain
or the surrounding vegetation [88]), they also pose a significant hazard to the sensor
node’s hardware and, thus, its proper operation. The sensor hardware has to operate in
unpredictable and uncontrollable conditions influenced by environmental factors such as
significant fluctuations in temperature, high levels of humidity, or strong vibrations that
pose a severe risk of physical damage to the node. Fluctuations in air temperature and
humidity impose the risk of water condensation inside the sensor node’s housing, leading
to short circuits and damaged components. The situation is even worse in maritime
environments as the combination of sea fog and strong wind results in quick condensation
of salty water and fast oxidation of metallic components [32].

Another critical aspect of the network is the general architecture and topology. While
there are different, sometimes even hybrid approaches available, the majority of WSNs
use either a star-, tree- or mesh network. In many WSN deployments, a significant
number of sensor nodes is deployed in relatively high density to ensure fidelity through
redundancy [89]. For such networks, a static configuration is inefficient, especially
considering that some applications may need to support the mobility of sensor nodes.
Therefore, such networks are usually self-organized and flexible, forming a dynamic
network structure.

As stated in [90], for such large-scale networks, it is inefficient and costly (in terms of
resources) to have all sensor nodes transmit their data directly to the final processing
center (i.e., server/cloud). They suggest that it is more reasonable for energy-constrained
sensor networks to form hierarchical structures where the sensor nodes form clusters and
send their data to a local data aggregation node (i.e., cluster head). This central node is
typically equipped with richer resources and can collect data, do some pre-processing and
then forward relevant data for further processing. Especially in such hierarchical networks,
efficient routing is mandatory to preserve the node’s limited energy resources [91, 92].

In addition to the challenges stated above, sensor nodes are generally designed without
measures for firmware upgrades or bug fixes after deployment or allow upgrades only under
specific conditions. A significant number of sensor nodes run specialized OSs [93,94], such
as TinyOS or Contiki, that are not intended for software modifications at runtime. The
reasons are mainly cost-considerations, power-consumption limitations, or inaccessibility
of the nodes after deployment as well as safety and security aspects.

All of these limitations and unique characteristics of WSN make them a distinct area of
communication systems that requires different treatments in terms of concepts, protocols,
and algorithms applied (cf. [10]). The area of WSNs and its applications have drawn a
significant amount of research interest over the last years as techniques well-established
in other kinds of communication networks are mostly not applicable to WSNs.

25

CHAPTER 3
Anomaly Detection

The threat of faults to the dependability of WSNs and the resulting need for appropriate
counter-measures are well-known and widely-researched topics. Especially the detection
of sensor node faults is crucial for the WSN’s reliability. However, most current node fault
detection approaches rely on data anomaly detection and have significant limitations as
discussed in this chapter.
With more expansive fields of applications and a correspondingly growing number of use
cases for WSNs, appropriate measures to ensure proper functioning, as well as sensor
data correctness, are becoming more relevant. Besides the standard soft- and hardware
verification and testing activities – sometimes augmented with formal methods – especially
runtime measures to detect erroneous behavior/data have become more significant. It is
crucial to ensure high confidence in data correctness as all subsequent data analytics can
only work correctly as long as the input data are accurate and correct. A wrong datum
can influence and alter the outcome, ultimately leading to wrong assumptions, models,
or predictions.
One key issue in dealing with faults is that ground-truth values (i.e., expert or domain
knowledge) are needed to define proper fault models, or more precisely, their effect on
the sensor nodes’ behavior or data. Otherwise, we can only refer to deviations from
expected behavior or model of the phenomenon, hence, the detection of anomalies [95].
As a consequence, anomaly detection is often used for fault detection approaches in
WSNs (cf. [3]). Generally, an anomaly is “[. . .] an observation which deviates so much
from other observations as to arouse suspicion that it was generated from a different
mechanism” [96]. Or to put it into the context of sensor node behavior: “an anomaly is
considered as a state of a given system that is not consistent with the normal behavior of
this system” [97]. In the literature, different terms describing anomalous observations
like outliers, abnormality, aberrant, deviation, peculiarity, or even surprise are used [98].
Although sometimes used interchangeably, not all of these terms refer to the same things
as discussed in this chapter. However, most anomaly-detection approaches leverage

27

3. Anomaly Detection

correlations of the sensors data (e.g., temporal, spatial, or functional) as a substitute for
a missing ground-truth [99].

Anomaly detection schemes comprise techniques and algorithms to detect patterns that do
“not conform to an established, normal behavior” [98]. The primary difficulty in anomaly
detection lies in defining what has to be considered “normal” or in modeling the “normal”
behavior, respectively. Especially the automatic constructions of models of “normality”
from data is not a trivial task due to (i) huge data volumes, (ii) often a highly imbalanced
distribution of available data, (iii) the difficulty in finding the boundaries between what
is considered normal and abnormal, and (iv) the requirements for continuous adaptation
in dynamic systems (cf. [98]). Also, anomaly detection approaches are known to often
produce a high number of wrong alerts (sometimes referred to as “crying wolf” [100]).
Although anomaly detection generally suffers from such issues that make efficient and
thorough anomaly detection a complicated and challenging task, their benefits are
significant enough for numerous researchers to invest effort in this topic. Consequently,
we surveyed anomaly detection techniques with a focus on their applicability for sensor
node fault detection in [3].

3.1 Challenges in Wireless Sensor Networks
To successfully apply anomaly detection to WSNs is by far no trivial task. Anomaly
detection schemes are a complex topic as they have to be able to discover novel events in
a tremendous amount of data. However, in the context of WSNs, several circumstances
make efficient anomaly detection even harder, namely:

• the strictly limited resources of the sensor nodes,
• the restrictions entailed by the sensor nodes’ interconnections,
• the communication patterns used in WSNs, and
• the unpredictable nature of their environment.

Node Restrictions
Sensor nodes are designed to be as energy-saving as possible to ensure the required
lifespans without battery replacement. For this purpose, the computational capabilities,
usable peripheral components, and available memory are strictly limited, making it
impossible to use highly complex and powerful detection schemes as commonly used in
other areas like computer networks. Additionally, WSNs have to deal with wildly varying
numbers of partly heterogeneous sensor nodes ranging from several nodes up to several
thousand nodes per network, thus, presenting a noticeable challenge for the scalability of
the anomaly detection approaches.

For this reason, algorithms are favored that demand low computational power, low
memory, and low energy [101]. Such algorithms are referred to as lightweight and are
characterized by (i) a minimal overhead, (ii) an efficient distribution of work over the

28

3.1. Challenges in Wireless Sensor Networks

single components, and (iii) the primary functions of the system are not adversely
affected [102]. Examples of such lightweight anomaly detection systems in WSNs are
the wrapper-based feature selection algorithm in [103], the lightweight decision tree
classification and detection method in [104], and an approach for anomaly detection by
sensing the nodes’ energy consumption in [105].

Network Restriction
The network interlinking the sensor nodes has strictly limited communication capabilities
affecting the available transfer rates and bandwidths for a maximal energy-saving opera-
tion. While several WSNs offer bi-directional communication, there are still scenarios
where the sensor nodes are equipped with unidirectional communication capabilities,
making the control of the nodes or the triggering of specific actions impossible. Addition-
ally, a vast number of different network protocols are used in WSNs (cf. [89,106–108]).
As a result, it is difficult to develop a generic solution covering all possible protocols.

Communication Patterns
The communication patterns commonly used in WSNs significantly differ from most
other network applications. While computer networks usually have more or less periodic
traffic characteristics, probably with rare bursts in case of node updates/backups, notably
aperiodic traffic is rather the exception and, therefore, often an indication of unusual
network activity. In WSNs, on the other hand, the sensor nodes either send their data
periodically in a continuous “track & report” manner or bursty in the case of certain
events. For this reason, approaches originating from general-purpose computer networks
are mostly unsuitable for WSNs even when leaving their often high power and memory
requirements aside.

Environmental Influences
Sensor nodes are often operated under harsh environmental conditions affecting both
the nodes’ hardware and their wireless communication. The sensor nodes’ hardware
has to reliably operate in unpredictable and uncontrollable conditions influenced by
environmental factors such as significant fluctuations in temperature, high levels of
humidity, or strong vibrations that pose a severe risk of physical damage to the node.
Fluctuations in air temperature and humidity include the risk of water condensation
formation inside the sensor node’s housing that may lead to (temporary) short circuits
and/or damaged components. The situation is even worse in maritime environments as
the combination of sea fog and strong wind results in quick condensation of salty water
and fast oxidation of metallic components [32].

Besides the threat to proper node operation, the environmental factors also have a
heavy impact on the quality of wireless communication like the temporary blocking of
signals by obstacles [87] or the absorption of radio waves by rain and/or the surrounding

29

3. Anomaly Detection

vegetation [88]. As discussed in [109], also the ambient temperature directly influences
the link quality of the WSN’s interconnections.

3.2 Anomaly Detection Metrics
The correctness and efficiency of anomaly detection algorithms and schemes depend
on specific criteria. First of all, the technique used in an anomaly detection system
significantly impacts its overall characteristics. Second, the field of application is a crucial
factor in how good the detection works. With this, factors like how often anomalies
occur and how much they differ from “normal” data are relevant. Also, the way how
the technique is implemented affects the outcome as most of these methods have several
parameters that need to be well adjusted. Nevertheless, the quality of the input data
used to assess an approach also influences the resulting metrics.

Without a proper evaluation, one can make no case about an anomaly detection approach’s
correctness and efficiency, thus, its feasibility and suitability for a specific use-case.
Although numerous papers on anomaly detection present their approach’s correctness,
often expressed in statistical metrics, we argued in [3] that especially for WSNs the
evaluation of approaches also needs to take efficiency metrics (e.g., performance) into
account. Analogously, three criteria for the assessment of detection approaches are
defined in [110, ch. 7]1: (i) the data quality, (ii) the correctness, and (iii) the efficiency.
The corresponding metrics of these criteria with a focus on WSNs are discussed in the
following sections.

3.2.1 Data Quality
The first criterion refers to the quality of the data used to evaluate a given approach.
Selecting representative and qualitative data is essential for a meaningful evaluation. In
this context, well-established benchmark datasets, application-specific practical testbeds,
or real-world deployments can be used.

Over the last years, various benchmark datasets (cf. [111, ch. 9]) have been published
to assess the correctness and effectiveness of detection schemes and to enable the direct
comparison of competing approaches. Most of these datasets offer a multitude of attributes
and are usually well-balanced, considering the contained classes/clusters and/or the
presence of anomalies/outliers.

Practical testbeds and real-world deployment, on the other hand, deliver application-
specific data that can contain data events and occurrences not included in public bench-
mark datasets, such as the effects of node faults that usually have a component-specific
manifestation. As a result, they allow one to assess the detection approach’s behavior in
a specific application context but, on the downside, often impede the comparison with
alternative approaches (except for the case when the acquired data are also assessed with
the implementation of alternative schemes).

1These criteria refer to intrusion detection systems (IDSs), but are likewise valid for anomaly detection.

30

3.2. Anomaly Detection Metrics

3.2.2 Correctness
Correctness metrics such as sensitivity and specificity allow one to make a statement about
the suitability of an approach in detecting the events of interest. Several well-established
metrics exist to evaluate the correctness of anomaly detection schemes (cf. [110, sec. 7.3]).
Most of these common metrics are taken from classical statistics and express certain
ratios of one or more of the following numerical values:

• true positives (TP) are instances correctly classified as anomalous
• true negatives (TN) are instances correctly classified as normal
• false positives (FP) are instances falsely classified as anomalous
• false negatives (FN) are instances falsely classified as normal

The following metrics based on these numerical values are commonly used to assess
anomaly detection approaches. The true positive rate (TPR) (also called detection rate
or sensitivity) expresses how many of the anomalous instances are correctly detected
according to the relation:

TPR = TP

TP + FN
. (3.1)

The higher the value of the TPR the more anomalies are correctly detected.

Similar, the true negative rate (TNR) (or specificity) expresses the ratio of correctly
classified normal instances and is defined as:

TNR = TN

TN + FP
. (3.2)

Again, the higher the value, the more normal instances have been labeled correctly.

Contrary, the false positive rate (FPR) (or fall-out) states how many normal instances
were falsely recognized as anomalous. It is indirectly proportional to the TNR and can
be derived with:

FPR = FP

FP + TN
= 1 − TNR . (3.3)

In the context of anomaly detection, the FPR is often called false alarm rate (FAR) as it
relates to wrongly triggered alerts.

Analogously, the false negative rate (FNR) (or miss rate) shows how many anomalies
were missed. It is indirectly proportional to the TPR and can be derived with:

FNR = FN

FN + TP
= 1 − TPR . (3.4)

For the FPR and FNR a low value is desirable.

To express how good the detection performs for a given task, often the positive predictive
value (PPV) (or precision)

PPV = TP

TP + FP
(3.5)

31

3. Anomaly Detection

and the accuracy (or short ACC)

ACC = TP + TN

TP + TN + FP + FN
(3.6)

are used.

Since anomaly detection is often interpreted as a binary classification task (an event can
be either “normal” or “anomalous”), also the F1 score known from statistical analysis
is preferred over the simple accuracy metric. It is the harmonic mean of precision and
sensitivity and is expressed as

F1 = 2 · TP

2 · TP + FP + FN
. (3.7)

To express the detection characteristics of an anomaly detection scheme, often receiver
operating characteristics (ROC) curves [112] are used. ROC curves are a graphical plot
used in binary classifier systems to show the trade-off between the TPR and the FPR.
In addition, also the area under the ROC curve (AUROC) metric (sometimes simply
called area under curve (AUC)) aims to express an approach’s correctness concerning its
accuracy based on the ROC curve (cf. [113]).

3.2.3 Efficiency

While correctness metrics are often found in related works, most of these contributions lack
considering efficiency measures like stability, timeliness, and performance. Such metrics
are important as the detection of anomalies has to happen timely and properly [114,115].
Especially for WSNs, a proper consideration of the performance and reliability is crucial,
sometimes jointly considered as “performability” (a term coined by Meyer [116]).

In contrast to the correctness metrics mentioned above, efficiency metrics are often depen-
dent on the implementation and partly the prevalent conditions during the evaluation of
the detection system. As an example, the time between the occurrence of an anomaly and
its detection is also an essential aspect of detection systems. For distributed approaches,
information on the number of nodes that correctly identified the anomaly (true-positive
detection) and the number of nodes that falsely classified a normal situation as anomalous
(false-positive detection) also need to be considered when assessing the characteristics of
the system.

However, most importantly, the sensor nodes in WSNs have strictly limited sources;
hence, the efficiency of an approach especially needs to consider the overhead a detection
approach imposes on the systems’ resources. In particular, the memory footprint of the
approach (regarding the consumption of flash, SRAM, and possibly EEPROM memory),
the energy overhead, and an impact on the node’s runtime behavior (e.g., prolongation
of non-sleep phases) are metrics of interest.

32

3.3. Taxonomy for Anomaly Detection

3.3 Taxonomy for Anomaly Detection
Over the last years, a large number of approaches and schemes to detect various kinds of
anomalies in different WSN applications have been developed. With a growing number
of approaches, the need for a proper classification arose. Today, several classification
schemes for anomaly detection approaches exist that often focus on certain aspects of
(i) the anomalies considered, (ii) the locus of the anomalies, or (iii) the area of application
where it is used.

Consequently, we proposed a taxonomy for anomaly detection in WSNs based on previous
surveys and classification schemes augmented with own considerations and findings
in [3]. As depicted in Figure 3.1, parts of this taxonomy have a more general nature.
Unique attributes and characteristics of approaches applicable to WSNs are considered
in the works we based our taxonomy on. Additionally, some categories are not entirely
complimentary as some approaches combine features of different categories. In contrast
to previous taxonomies, we explicitly included bio-inspired detection techniques (i.e.,
computational intelligence (CI)) as some of them offer suitable characteristics for anomaly
detection approaches. Such techniques offer a reasonable compromise between resource
requirements and detection efficiency for several WSNs applications.

Anomaly Detection

Data Anomaly
Network Anomaly

Node Anomaly

Anomaly Class
Scalar

Score-based

Anomaly Degree
Offline
Online

Flow-based
Batch-based

Operation Mode
Univariate

Multivariate

Input Data Instances

Temporal
Spatial
Spatio-Temporal

Contextual Correlation

Functional

Statistical Correlation
Data Correlation

Host-based
Network-based

Centralized
Distributed

Model Structure

Application Domain

Adaptability
Static
Dynamic

Network Architecture
Flat
Hierarchical

OtherOther
Statistical

Information Theoretic

Comp. Intelligence
Other

Machine Learning
Knowledge-based

Detection Method

see Figure 3.2

Figure 3.1: Taxonomy for anomaly detection in WSNs

3.3.1 Anomaly Classes

For WSNs, three basic classes of anomalies are defined, namely (i) data anomalies,
(ii) network anomalies, and (iii) node anomalies (cf. [100]). A similar classification of
anomaly classes was presented in [117] where the authors refer to data anomalies as
“events” and to node anomalies as “noise & errors”. Regarding network anomalies, they
considered “malicious attacks” whereby, as presented below, a much broader range of
anomalies can occur on the network.

33

3. Anomaly Detection

Data Anomalies
Data anomalies are the oldest and most widely researched class of anomalies. Their
study and analysis date back to the early 19th century [118]. Data anomalies refer
to “an observation (or a subset of observations) which appears to be inconsistent with
the remainder of that set of data” [119], thus, sensor readings that deviate from the
expectations.

In WSNs, data anomalies can be caused by miscalibrated sensors, faulty hardware, design
errors, or unusual phenomena in the monitored environment. It is important to note that
data anomalies in sensor readings, be they spatially or temporally, can signify events of
interest in the monitored phenomena.

Network Anomalies
Network anomalies are network activities that deviate from what is considered a “normal”
network behavior/flow, such as (i) loss of connectivity, (ii) intermittent connectivity,
(iii) highly irregular network traffic, (iv) routing loops, or (v) broadcast storms [100]. As
with data anomalies, network anomalies can manifest themselves in a temporal, spatial,
or spatio-temporal manner.

Network anomalies attracted much research interest in the past as the cause for such
irregularities in network behavior often origins from malicious attacks on or intrusions in
a network. Thereby two different kinds of attacks are considered in the literature:

1. internal attacks: Such attacks are performed by nodes that are already part of the
target network (e.g., infected/altered nodes).

2. external attacks: These attacks are performed from outside to gain access to the
target network (e.g., over the Internet).

In WSNs, network anomalies are often caused by physical conditions rather than by
malicious attacks (although the latter happens as well). As mentioned above, the harsh
environment in which some WSNs have to operate is not very beneficial for the wireless
links due to absorbing or blocking effects caused by the surrounding nature. Also, in
some scenarios, the connection to one or more sensor nodes may be ultimately lost
due to unforeseen events. Examples of such events are (i) heavy rain or mudslides
in environmental monitoring applications, (ii) overly heavy tidal forces in maritime
applications, or (iii) the damaging or displacement of nodes in monitoring applications
by uninformed humans or curious animals. Malfunctioning sensor nodes can also cause
irregularities in the (sensor) network due to operational faults or simply because the
node’s battery is running down.

Node Anomalies
Node anomalies are particular hardware or software problems leading to abnormal
behavior of the sensor node (cf. [99]). In this context, two main origins of node anomalies
have to be distinguished, those stemming from (temporarily or permanently) changed

34

3.3. Taxonomy for Anomaly Detection

operational conditions (like the battery is running down) and those caused by actual
defects of the sensor nodes, hence, faults.

While the former is most often an inevitable consequence of regular operation, it can
even be accelerated by malicious attacks on the nodes (e.g., denial-of-sleep attacks). The
latter, on the other hand, can arise from defective hardware, flawed software, and/or a
bad integration of these [100]. As a result, the sensor node can end up with unexpected
system performance (e.g., gradual degradation) that possibly influences the sensor node’s
operation and/or the readings forwarded over the network (i.e., soft faults).

Neighboring nodes can quickly detect faults resulting in node halts or crashes as an
absence of network messages. Nevertheless, the effects of soft faults (e.g., silent data
corruption) are often difficult or even close to impossible to be detected. Thus, they pose
a severe threat to the quality of the service provided by WSNs.

3.3.2 Anomaly Degree

Anomaly detection is often considered as a binary classification problem using a scalar
scale where data instances are either labeled as “normal” or “anomalous”. Several
approaches, however, do not label the data instances but provide a measure on the
degree to which the instance is considered anomalous, thus, providing an anomaly or
outlier score [117]. Usually, a threshold is defined (or learned), which defines the levels
of anomaly scores that need to be treated. For more information on anomaly scoring
techniques, we refer an interested reader to [120].

3.3.3 Operation Mode

Anomaly detection techniques can also be distinguished based on the data sources they
process. In this context, two basic types of detection approaches exist: those using
historical data and those processing real-time data. While historical data (e.g., data
from files or databases) is available as a whole (or at least in blocks), real-time data
(e.g., streaming data) becomes continuously available. Consequently, anomaly detection
systems are categorized as (i) online or (ii) offline approaches [121].

(i) Online approaches analyze the data in real-time by keeping track of currently happening
events (e.g., measurements). Such approaches are often denoted as streaming anomaly
detection (SAD) as they process the incoming data in a streaming fashion. As discussed
in [114], the processing can thereby be done in a continuous manner (i.e., flow-based) or
based on packets of data (i.e., packet- or batch-based).

(ii) Offline techniques, on the other hand, process stored information to decide if an
anomaly has happened. Such offline detection approaches often incorporate more powerful
methods and larger amounts of data.

35

3. Anomaly Detection

3.3.4 Input Data Instances
The anomaly detection approaches can be further categorized depending on the number of
input data attributes that they consider. In WSNs, the sensor data is usually considered
as a continuous stream of integer or real-valued data. A single sensor node can have one
or more sensors equipped, thus, delivering one or more sensor measurements per time
instance.

Consequently, anomaly detection approaches can be divided into techniques considering
single attributes (i.e., univariate data) and techniques that take several attributes into
account (i.e., multivariate data) [117, 121]. The advantage of the analysis of multivariate
data is the possibility to identify anomalies only detectable by leveraging correlations
between the attributes (see Section 3.3.5 and [122]).

3.3.5 Data Correlations
Anomaly detection approaches can also be categorized based on correlations and redun-
dancies in the input data they exploit or dependencies among their attributes in the
case of multivariate data [117]. This differentiation is essential as many of the proposed
approaches base their detection on assumptions made on the nature (or granularity) of
the data, or more precisely, on correlations between several instances [121].

The two main types of correlations leveraged in anomaly detection are [120, 122]: (i) sta-
tistical correlation and (ii) contextual correlation as discussed below.

Statistical Correlations
Statistical correlations refer to relations between the individual data instances of a data
set. Such correlations can be used to identify:

• point anomalies (i.e., individual data instances are considered anomalous concerning
the rest of the data set).

• collective anomalies (i.e., a group of data instances that is considered as anomalous
concerning the rest of the data set).

Contextual Correlations
Contextual correlations make use of dependencies between the history of several sensor
measurements and/or the measurements of neighboring nodes [117]. Four categories of
contextual correlations can be distinguished (cf. [100]):

(i) Temporal correlations
(ii) Spatial correlations
(iii) Spatio-temporal correlations
(iv) Functional correlations

36

3.3. Taxonomy for Anomaly Detection

(i) Temporal correlations consider sensor readings that are temporally ordered and where
a reading is compared to its preceding and subsequent sensor readings. Such correlations
help to identify temporal anomalies possibly manifested as high variability in subsequent
sensor readings, lack of change in sensor readings, gradual reading skews, or out-of-bound
readings [100].

(ii) Spatial correlations allow to detect deviations of sensor readings of one node in
comparison with the data acquired by its surrounding nodes (i.e., neighbors). As a
result, it can be beneficial to take information on the location of the neighbors into
account (e.g., floor plan for indoor applications and geographical attributes for outdoor
deployments).

(iii) Spatio-temporal correlations use a combination of the two types above. The sensor
readings are compared concerning time (temporal) and place (spatial) by considering the
information stored on the sensor node itself and its neighbors. This form of correlation
allows to detect more sophisticated anomalies possibly caused by miscalibrated sensors,
faulty hardware, design errors, or unusual phenomena in the monitored environment.

(iv) Functional correlations exploit relationships and dependencies between several at-
tributes of the sensor data to detect unreasonable or even impossible combinations.
Therefore, additional information on the particular attributes and their relationships is
needed to acquire the required “context”. For example, a temperature reading is related
to humidity and barometric pressure values due to physical laws [117].

3.3.6 Model Structure

Another classification criterion of anomaly detection techniques is the locus of detection.
Here, two kinds of anomaly detection approaches are distinguished (cf. [121, 123]):
(i) host-based and (ii) network-based detection systems.

(i) In host-based or local approaches, the analysis of events and the detection of anomalies
are performed directly on the nodes (in a stand-alone manner).

(ii) Network-based approaches are further divided into centralized and distributed detection
systems [100]. Centralized detection systems are placed on valuable points within the
network where they can monitor the traffic to and from all relevant devices of the network,
possibly by leveraging information from several communication layers [124]. Distributed
approaches, on the other hand, usually rely on the cooperation of several nodes.

As stated in [125], in WSNs usually distributed approaches are preferred over central-
ized solutions since they often require lesser resources as the detection task is shared
between several nodes. Additionally, such approaches usually scale much better with a
growing number of network participants and often offer better robustness, reliability, and
modularity than centralized solutions.

37

3. Anomaly Detection

3.3.7 Detection Method

The most important criterion in choosing an anomaly detection approach is its underlying
detection method or detection strategy in general. In this context, we also consider using
specific metrics to detect anomalies as methods. This category offers the most remarkable
diversity as ideas and concepts from several areas have been adapted and adopted for
anomaly detection. For this reason, many reviews and surveys focus their classification
scheme purely on the detection method applied.

The main classes of methods are depicted in Figure 3.2 which is part of the taxonomy
shown in Figure 3.1. Examples and references for the particular methods can be found in
the surveys and review articles reference in the respective parts as well as in our summary
and comparison of these presented in Section 3.4.

Information Theoretic
Entropy

Kolmogorov Compl.
Information Gain

Fisher score
Chi-squared

Machine Learning

Reinforced Learner
Combination Learner

Hybrid
Ensemble

Semi-Supervised

Hierarchical Clustering
k-means Clustering
Local Outlier Factor
etc.

Unsupervised

Supervised
Rule-based
Nearest Neighbor
Support Vector Machines
Bayesian Networks
etc.

Comp. Intelligence
Granular Computing

Fuzzy Sets
Rough Sets
Shadowed Sets
Probabilistic Reasoning
Neurocomputing
Supervised
Unsupervised

Reinforced
Competitive

Evolutionary Comp.

Artificial Life
Artificial Immune Systems

Swarm Intelligence

Genetic Algorithm
Genetic Programming

Artificial Endocrine Systems

Semi-Supervised

Other
Graph Theory
Game Theory
Cross-Layer
Streaming

etc.

Knowledge-based
Expert System

Rule-based
Ontology-based

State Transition-based
Logic-based

Statistical
Parametric

Gaussian

Non-Parametric
Mixture
Regression

Histogram-based
Kernel-based

Subjective Logic
Time Series Analysis

Markov Process Model
Probabilistic Models

SSA

Spectral Decomp.
Principal Component Analysis

Detection Method

Figure 3.2: Taxonomy for anomaly detection methods

3.3.7.1 Statistical

Statistical anomaly detection methods and algorithms are based on statistical populations
or models. It encompasses techniques such as (i) probability theory, (ii) real analysis,
(iii) measure theory, (iv) asymptotic theory, (v) Markov chains, (vi) martingales, and
(vii) ergotic theory [126]. There are two ways to build the (stochastic) model depending
on which information is used [120]:

• based on a priori information (i.e., parametric modeling), or

• from the data itself (i.e., non-parametric modeling).

Parametric approaches rely on models based on a priori information of the data’s distri-
bution. The most common parametric model is Gaussian distribution [117]. Nevertheless,
also non-Gaussian models such as segmented sequence analysis, regression, or mixture
models have been successfully applied [121].

38

3.3. Taxonomy for Anomaly Detection

Non-parametric approaches do not use any prior knowledge about the data distribution
and build their model based on the input data itself. The two most common non-
parametric techniques are based on histograms or kernel functions [121].

Additionally, probabilistic models (e.g., Markov process models, subjective logic) and
time series analysis to identify abnormal data instances have been proposed [127].

As presented in [114,128], methods based on spectral decomposition can identify deviations
in the input data, too. For this purpose, several attributes of the input data instances
are analyzed to find inherent dependencies. The most prominent of these methods is the
principal component analysis (PCA) that, however, is more often used for dimensionality
reduction of the input data [114] than for anomaly detection.

3.3.7.2 Information Theoretic

Anomaly detection methods based on information theory usually rely on metrics such as
entropy since anomalies are assumed to distort the information content of the input data
instances, thus, altering the entropy. Also, approaches based on Kolmogorov complexity,
information gain, chi-square, or the Fisher score have been proposed [114,129].

3.3.7.3 Knowledge-based

Especially for network anomaly detection, various knowledge-based methods have been
proposed since a portion of the abnormal behavior is caused by malicious attacks on
the network. The characteristics of these attacks are captured and modeled in the
form of rules (possibly with associated knowledge, i.e., expert systems), expressive logic
structures, by leveraging the knowledge of the domain (i.e., ontology-based) as well as by
analyzing the state transitions of the system [110].

3.3.7.4 Machine Learning

Methods based on machine learning (ML) are increasingly used in anomaly detection
since they are often capable of improving their detection accuracy while reducing the
number of false alerts by adapting their model to the characteristics of the system and
environment applied to [110]. Today, several light-weight and energy-efficient ML-based
methods are available [130].

A major distinction in ML techniques is whether pre-knowledge is available and how
feedback is incorporated into the model. ML schemes can be classified as:

1. supervised learner
2. unsupervised learner
3. semi-supervised learner
4. reinforced learner
5. combination learner

39

3. Anomaly Detection

However, most learning techniques require (or implicitly assume) that normal instances
occur far more frequently than anomalies [110].

Additionally, a review article on anomaly detection in WSNs [131] found that the majority
of the approaches used in the past are purely statistical rather than learning-based
methods. The reason for this is that learning approaches usually require more resources
which are often not available in WSNs. Nevertheless, more and more approaches adapt
and adopt ideas and methods from machine learning in resource-constrained environments.

Supervised Learning
Supervised learning techniques require a pre-labeled learning data set from which the
algorithm infers a model based on the relation of input to output data. Thus, the models
resulting from supervised learning are usually referred to as predictive models. The
main learning problem associated with supervised learning is classification. Common
supervised classification techniques suitable for anomaly detection encompass (i) Bayesian
networks, (ii) support vector machines (SVMs), (iii) decision trees, or (iv) rule-based
machine learning algorithms [114,117,120,121]. Although being treated separately in some
surveys [117,121,128], also nearest neighbor algorithms are classification techniques, thus,
supervised techniques. Nearest neighbor techniques identify anomalies by calculating the
distance of the data instances to their respective neighbors. Anomalies are then identified
either distance-based or density-based [114,121].

Unsupervised Learning
Unsupervised learning techniques do not require pre-labeled data. They aim at finding
patterns in data instances in a self-organized manner. Thereby, the data is usually
grouped into clusters depending on the relation of the particular data instances with their
neighboring instances. Standard clustering algorithms include hierarchical clustering,
k-means clustering, density-based clustering, and local outlier factors [114,117,121]. As
the resulting model tries to describe the relationships between the data instances, the
term descriptive model is commonly used.

Semi-Supervised Learning
In semi-supervised learning, the learning process employs unlabeled data in addition to
labeled data, whereby the amount of labeled data is usually much smaller than unlabeled
data. One advantage of such techniques is reducing effort for properly labeling test data,
a task that generally requires human interaction. Examples for approaches that apply
semi-supervised techniques to anomaly detection are discussed in [132,133].

Reinforced Learning
Like in unsupervised learning, also in reinforced learning, no labeled training data set is
required. The model is trained in a goal-oriented manner. It takes decisions (or actions)
to maximize its output or reach a particular objective. Thus, the algorithm learns to

40

3.3. Taxonomy for Anomaly Detection

react to its environment to reach a defined goal properly. Thereby, the decisions are
reinforced by a certain kind of reward or penalty, depending on whether they help to
improve the solution.

Combination Learners
Combination learners leverage the strengths of their parent techniques while minimizing
their limitations and weaknesses [134]. Thereby, such combined techniques have shown to
be often more effective and efficient than their respective parents. As presented in [123],
there are two flavors of combination learners:

• tightly-coupled systems (or hybrid systems) where the techniques are combined
inseparably

• loosely-coupled systems (or ensemble systems) where the techniques are connected,
but distinguishable (like modules)

3.3.7.5 Computational Intelligence

Many learning schemes have been developed over the years that took inspiration from
natural processes. Learning methods inspired by biological phenomena are referred to as
computational intelligence (CI) [135] and belong to the broader class of complex adaptive
systems (CAS). Such techniques usually offer (i) self-similarity, (ii) self-organization,
(iii) emergent behavior, (iv) highly decentralized control, and (v) adaptability [136].

In an extensive survey in [123], Wu and Banzhaf argue that CI and artificial intelligence
(AI) are often used synonymically, whereas there are distinct characteristics between
these two fields. They state that AI and CI differ in their basic approach (top-down
vs. bottom-up modeling), the problem representation (symbolic vs. numeric), and the
cognitive functions applied (high-level vs. low-level). Also, CI is sometimes considered a
synonym for soft computing. However, the former refers to nature-inspired computational
techniques and the latter to the use of approximate calculations for complex computational
problems. However, the boundaries between CI and ML (respectively AI) are not
always apparent. In this work, we follow the classification presented in [135] which
encompasses: (i) granular computing, (ii) neuro computing, (iii) evolutionary computing,
and (iv) artificial life.

Granular Computing
Granular computing describes techniques for arranging entities (so-called granules) based
on their characteristics (e.g., similarity or functional adjacency) [135,137]. One common
problem of anomaly detection approaches is crisp discrimination between “normal” and
“anomalous”. As a result of this, the use of fuzzy rule-based approaches can help to
introduce some “fuzziness” to the distinction [138]. Similarly, other granular concepts
such as rough sets, shadowed sets, or probabilistic reasoning have been used [129,139].

41

3. Anomaly Detection

Neurocomputing
Neurocomputing (i.e., artificial neural networks (ANNs)) encompasses computational
models inspired by the human neuron system [130]. Since ANNs can be used for supervised,
semi-supervised as well as unsupervised learning tasks, they are often counted as ML
techniques. Whether ANNs belong to ML or CI often depends on the characteristics
of the ANN approach used. For supervised learning, two primary models depending
on the type of feedback system are used (i.e., feed-forward and recurrent ANNs) [123].
The two most common unsupervised ANN models are self-organizing maps (SOMs) and
the adaptive resonance theory. In the past, several approaches applying supervised or
unsupervised ANNs for anomaly detection have been proposed [114,138,140] including
deep learning methods (denoted as deep anomaly detection; cf. [141]).

Evolutionary Computing
Evolutionary computing is based on the principle of “survival of the fittest” inspired
by the (natural) selection, crossover, and mutation found in natural systems [134].
Besides the most known genetic algorithms (GAs), there exist more approaches that
exploit evolutionary processes, such as genetic programming (GP) and swarm intelligence
(SI) [136]. In contrast to GAs and GP, the individuals within a swarm interact with each
other rather than being modified by crossover or mutation operators. Although being
usually used for optimization and problem-solving tasks, such evolutionary techniques
have shown beneficial properties for discovering classification rules or clusters for adaptive
anomaly detection [114,123,138,140].

Artificial Life
Artificial life refers to techniques mimicking the behavioral characteristics of natural living
systems. It encompasses techniques such as artificial endocrine systems and artificial
immune systems (AISs).

Artificial endocrine systems are models of the human endocrine system that follows a home-
ostatic regulation approach based on chemical messengers (i.e., hormones) [142]. They
are more suitable for fault-tolerant approaches than anomaly detection techniques [143].

AISs are based on models derived from the human immune system (HIS) [102]. The
immune system is a widely distributed and inherently parallel network of a significant
number of diverse entities. These entities are working simultaneously and in cooperation
with each other to build up a highly complex self-organizing system with properties such
as error-tolerance, adaptation, and self-monitoring [144]. Today, most AIS approaches
are derived from one of four “classical AIS theories” (see Section 5.4):

• negative/positive selection
• clonal selection
• immune network theories
• danger theory

42

3.4. Related Work on Anomaly Detection in WSNs

3.3.7.6 Other Detection Methods

Besides the methods mentioned above, several other techniques have been applied for
the task of anomaly detection, such as graph theory, game theory, and cross-layer
approaches [140] as well as streaming techniques [114] that exploit flow information to
detect deviations.

3.3.8 Other Criteria
Additional characteristics and criteria of anomaly detection schemes are presented in
the following. References to these criteria were only found in a minor number of related
works. However, they still present valid criteria for the classification of anomaly detection
approaches in WSNs and, therefore, have been included in our taxonomy.

3.3.8.1 Adaptability

In some WSN applications, the characteristics of the sensed environment as well as the
operational parameters of the sensor nodes, the “normal behavior”, can change over
time. For this reason, the work in [121] differs between non-adaptive schemes (based on
static models) and adaptive schemes (based on dynamic models). In dynamic systems, a
corresponding updating of the system is crucial to maintain effective anomaly detection.

3.3.8.2 Application Domain

In [122], anomaly detection schemes are additionally classified based on the application
domain for which they were developed. Such a distinction is feasible as different fields of
application exhibit some inherent requirements that need to be considered when choosing
a particular detection scheme (e.g., the criticality of false positives or time restrictions).

3.3.8.3 Network Architecture

A further criterion of anomaly detection schemes is based on the underlying network
architecture. As presented in [115], centralized as well as distributed approaches for
different architectures have been proposed in the past.

3.4 Related Work on Anomaly Detection in WSNs
Over the last years, a significant number of anomaly detection approaches tailored to
the specific needs and requirements of WSNs have been proposed. Applying anomaly
detection in WSNs helps to discover possible attacks or inconsistencies in the network,
identify malicious or faulty sensor nodes or detect corrupted sensor readings. As a
result, the overall energy consumption and, thus, the network’s lifetime can be improved
by mitigating possible attacks, removing impaired sensor nodes, and preventing the
transmission of misleading data (i.e., outliers) [145]. In this thesis, however, we focus on
applying anomaly detection schemes to identify sensor node faults.

43

3. Anomaly Detection

Several classification schemes for anomaly detection have been proposed to cope with
the vast amount of anomaly detection approaches over the years and their particular
characteristics. In [3], we presented a comprehensive overview for anomaly detection
focusing on WSN-specific techniques published in the years 2007–2019. Additionally, we
provided a meta-survey on anomaly detection approaches as summarized in Table 3.1.
In the table, the classification criteria used in the previous works in reference to our
taxonomy [3] are highlighted.

Most of the works classify the anomaly detection approaches based on the underlying
detection techniques, with some of them also taking the model structure into account [86,
93, 115, 122, 123, 125, 130, 147–150, 153]. Hereby, prevalently statistical and machine
learning techniques are discussed [93,117,121,122,146,148,152–154,156], where many
account ANNs as ML rather than CI technique [86,93,100,115,120,147–149,151,153]. As
can be seen in Table 3.1, the most considered class of anomalies are network anomalies
due to the broad use of anomaly detection in network security systems like IDSs [93, 115,
123,125,130,148–151,153]. Surprisingly, the number of works considering correlations
in the input data is lower than expected, although the context is an essential factor
in anomaly detection systems. More extensive classification schemes including a larger
variety of criteria are presented in [100,117,120,140,146,151,152,154]. To date, the most
comprehensive schemes were presented in [121, 129, 139, 156]. However, none of these
other taxonomies covers the complete set of criteria of our taxonomy presented in [3].

3.5 Limits of Anomaly Detection for Fault Diagnosis
Concerning the use of anomaly detection for fault diagnosis in WSNs, only a few anomaly
detection approaches consider fault-induced node anomalies. Only a small number of
approaches incorporated contextual information to detect faulty nodes. As presented
in [117], using spatial similarity of the sensor data from neighboring nodes is one way
to detect erroneous nodes as events in the monitored environment are assumed to be
spatially correlated while faults are not. On the contrary, the work in [100] points out
that detecting fault-induced anomalies or node errors by neighboring nodes may not
work as such defects do not always exhibit any detectable symptoms by other network
participants. Thus, we argue that node anomaly detection approaches need to consider
node-level information. Only such information can help distinguish sensed data events
from fault-induced deviations (i.e., errors).

44

3.5. Limits of Anomaly Detection for Fault Diagnosis
Ta

bl
e

3.
1:

C
la

ss
ifi

ca
tio

n
cr

ite
ria

of
an

om
al

y
de

te
ct

io
n

ta
xo

no
m

ie
s

C
la

ss
M

et
ho

d
O

th
er

A
ut

ho
rs

Ye
ar

Data

Network

Node

Degree

Mode

Data

Corr.

Model

Statistical

Inf.Theory

Knowledge

ML

CI

Other

Adaptability

Application

Architecture

Taxonomy

Se
be

st
ye

n
et

al
.[

12
2]

20
18

Va
sil

om
an

ol
ak

is
et

al
.[

12
5]

#
20

15
×

×
×

W
u

&
B

an
zh

af
[1

23
]#

20
10

×
×

×
Zh

an
g

et
al

.[
14

6]
20

07

Review/Survey

K
um

ar
et

al
.[

14
7]

20
19

K
ur

ni
ab

ud
ie

ta
l.

[1
29

]
20

19
Za

m
in

i&
H

as
he

m
in

ej
ad

[1
39

]
20

19
Zh

an
g

&
X

ia
o

[1
48

]
20

19
A

la
pa

rt
hy

et
al

.[
14

9]
20

18
U

sm
an

et
al

.[
14

0]
20

18
D

uh
an

&
Pa

dm
av

at
i[

15
0]

20
16

C
an

&
Sa

hi
ng

oz
[8

6]
20

15
B

ut
un

et
al

.[
15

1]
20

14
O

’R
ei

lly
[1

52
]

20
14

A
lra

je
h

&
Ll

or
et

[1
30

]
20

13
G

ho
sa

l&
H

al
de

r
[1

53
]

20
13

R
as

sa
m

et
al

.[
12

1]
20

13
Ju

rd
ak

et
al

.[
10

0]
20

11
X

ie
et

al
.[

11
5]

20
11

Li
m

[1
54

]
20

10
Zh

an
g

et
al

.[
11

7]
20

10
C

ha
nd

ol
a

et
al

.[
12

0]
20

09
Fa

ro
oq

i&
K

ha
n

[1
55

]
20

09
R

aj
as

eg
ar

ar
et

al
.[

15
6]

20
09

co
ns

id
er

ed
pa

rt
ly

co
ns

id
er

ed
no

t
co

ns
id

er
ed

×
no

t
ap

pl
ic

ab
le

#
no

t
W

SN
-s

pe
ci

fic

45

CHAPTER 4
Sensor Node Fault Detection

As discussed in the previous chapter, one branch of fault detection schemes originates from
anomaly detection as faults often cause abnormal behavior of sensor nodes (or their data).
However, previous anomaly detection approaches for fault diagnosis have significant
limitations, especially concerning the detection of sensor node faults. Consequently, we
will focus on the peculiarities of sensor node faults and their detection in this chapter.

Wireless sensor nodes are prone to faults due to design issues (i.e., implementation flaws)
or unforeseeable effects caused by the harsh environment. While one may argue that the
former should be taken care of during the development phase, the latter contains highly
dynamic effects caused by the interaction of the hardware components with the physical
circumstances of the surrounding environment and can not be adequately captured with
simulations or the like [99]. For this reason, runtime measures such as diagnostic or
monitoring tools are required to ensure that failures of underlying components do not
significantly influence the availability of the data acquisition service.

The difficulty in dealing with faults in WSNs is their unpredictable and diverse manifes-
tation, often depending on the actual implementation and area of application. In [95],
the authors report that they found faults to appear infrequently, but with no noticeable
spatial or temporal correlation among them. On the other hand, several works concluded
that faults occur regularly in WSNs [99,157]. Several studies confirmed significant changes
in the wireless link quality caused by ambient temperature fluctuations showing diurnal
(day/night) as well as seasonal (summer/winter) patterns [109].

The difference in experiences may stem from different views on the system and inconsistent
use of terms. Several WSN applications use the inherent redundancy provided by densely
deployed sensor nodes to enable some extent of fault tolerance. Such mechanisms help
reduce failures of the data acquisition service by disrupting the propagation of faults
throughout subsequent components. Faults can occur in different parts of the WSN
where uncaught faults can have effects on the overall service. In this thesis, we focus

47

4. Sensor Node Fault Detection

on the effects and the detection of sensor node faults. For a broader discussion on fault
tolerance in WSNs including network and sink faults, we refer to [158,159].

4.1 Danger posed by Node Faults
Sensor nodes are key components of WSNs, and they significantly influence the WSN’s
dependability, especially concerning the reliability of the data sources. They need to
operate in a reliable and energy-efficient way to ensure accurate data acquisition while
operating unattended for long times. These issues pose significant challenges to the
sensor node design as the combination of (i) low-cost components, (ii) limited resources
(especially energy), and (iii) the often harsh environmental conditions make the sensor
nodes susceptible to impaired operation.

First, the hardware and software characteristics of sensor nodes are limiting factors.
WSNs usually involve the deployment of a large number of nodes. This fact implies
that the cost of the sensor nodes has to be as low as possible. The sensor nodes are
usually equipped with low-cost components and strictly limited resources in terms of
processing power and memory sizes to keep the costs low. Additionally, most sensor
nodes are battery-powered and have to run for long times without the need for battery
replacement or manual charging. As a result, the sensor nodes have to be as energy-
efficient as possible, which in turn prohibits the use of resource-intense computations [158].
The strictly limited resources prevent the use of established reliability concepts such as
redundancy by duplication or replication on the node level [160]. At the same time, the
required functionality is becoming more complex [75].

Second, sensor nodes are usually deployed in an uncontrollable and unpredictable outdoor
environment close to the monitored phenomena. The environment poses harsh conditions
for proper operation, such as highly dynamic changes in temperature, high humidity,
vibration or shocks, and the risk of physical impacts caused by animals or the surroundings
(e.g., mudslides). Such effects can neither be entirely foreseen by developers nor completely
covered by prior system tests or simulations. Additionally, environmental conditions
such as high temperatures can accelerate the aging of the hardware components. A
summary of studies on the effects of environmental conditions on sensor nodes can be
found in [157].

On top of that, the limited resources of sensor nodes and the most often unprotected
outdoor deployment make sensor nodes an easy target for attackers. In this thesis, we
focus on node-fault detection and exclude security considerations. For security aspects,
we refer an interested reader to the review on intrusion detection systems in [150].

Due to these reasons, sensor nodes are known to suffer from diverse faults that can affect
(i) their hardware, (ii) their software, and/or (iii) their communication capabilities [158].
While software faults are primarily caused by development flaws or issues in the interaction
with hardware components, the hardware part of the sensor node additionally has to
deal with the imperfections of the natural world manifested as physical faults. Especially

48

4.2. Terminology

temperature-dependent and aging effects have been shown to cause unpredictable behavior
in hardware components regarding their severity as well as frequency and likelihood of
occurrence. As a consequence, faults occurring on sensor nodes are often the norm rather
than the exception, and, thus, the data reported by sensor nodes can become unreliable
and inaccurate [161].

4.2 Terminology

In the context of fault detection in WSNs, several terms and definitions can be found
that are not always used consistently in the literature. Additionally, the proper use of the
corresponding terminology depends on the scope of the target system. For this reason,
we will discuss the terminology used within this thesis in the following. Aside from an
presentation of the basic dependability terminology (Section 4.2.1), we will especially
highlight the relation of anomalies and the effects of faults (Section 4.2.2). In addition,
we define our focus of consideration in Section 4.2.3 to show the boundaries of our target
system and, thus, justify our use of the terms “faults”, “errors”, and “failures”.

4.2.1 Chain of Dependability

Although the majority of works follow the dependability terminology proposed by Avizienis
et al. [162] which also serves as the basis for the notion of dependability defined by the
IFIP Working Group 10.4 on Dependable Computing and Fault Tolerance1, the terms
faults, errors, and failures are sometimes used inconsistently in the literature.

According to [162], a fault is a static defect in software or hardware components that can
be either human-made (i.e., design fault), be related to the imperfections of the natural
world that affect the hardware (i.e., physical faults), or can be caused by the interaction
with external components (i.e., interaction faults). In case of design faults, the term bug
is commonly used. A fault is active if it leads to an error, that is, an incorrect internal
state such as a deviation from correctness or accuracy; otherwise, the fault is dormant.
An error can propagate and ultimately lead to an observable deviation of the component’s
behavior from its specification, which is called a failure.

target system

causation
fault error failure

activation propagation

causation

component

fault error failure
activation propagation causation

fault error failure
activation propagation

component

component

fault error failure
activation propagation

fault error failure
activation propagation

component
causation

Figure 4.1: Fundamental chain of dependability (after [162, Fig. 10 and 11])

1IFIP Working Group 10.4, see https://www.dependability.org/wg10.4/

49

https://www.dependability.org/wg10.4/

4. Sensor Node Fault Detection

As depicted in Figure 4.1, a failure of one component can be the causation of a fault
in a subsequent or superior component. It can eventually lead to the failure of the
target system (i.e., system failure). This effect is covered by the fundamental chain
of dependability and is a crucial issue for reliability considerations. Nevertheless, the
classification of whether an undesired effect counts as fault or failure depends on the
focus of considerations, that is, where the system or component boundaries are drawn.

The larger and more complicated a system is, the higher the probability of faults and,
in turn, the higher the chance that a fault in an underlying component can lead to a
system failure. In the case of a WSN, the situation is even worse as it usually consists
of a large number of components (i.e., sensor nodes and cluster heads) that together
form the system and contribute to the system’s functionality (i.e., complex system).
As shown in Figure 4.2, faults in the sensor nodes can propagate through the network
and, in the absence of countermeasures, can cause the system to operate incorrectly
or even crash completely. For this reason, it is essential to apply specific measures to
prevent the propagation of component failures up to the system level and, thus, make
the system fault-tolerant. Common practices include, for example, redundancy [163,164],
fault detection and mitigation [81,165], or homeostatic approaches [166].

cl
us

te
r h

ea
d

ba
ck

en
d

ne
tw

or
k

se
ns

or
 n

od
e

application / monitoring
end-to-end connection

software
clock sync. queryaggr.

hardware
backend network interface

wireless sensor network interface
CPU

power supply
memory

path
link

software
routing data acqu.MAC

hardware
sensors

battery
enclosure

network int.
memoryCPU

fa
ul

t p
ro

pa
ga

tio
n

Figure 4.2: Fault propagation in wireless sensor networks (after [167, Fig. 1])

Measures to decrease the probability of having faults in a system are referred to as fault
avoidance. Techniques to prevent active faults from causing erroneous systems states
are denoted as fault masking and fault tolerance comprises actions to reduce the risk of
errors leading to failures (see also Figure 4.3).

50

4.2. Terminology

specification
mistakes

implementation
flaws

external
disturbances

component
failures

software
faults

hardware
faults

errors system
failures

fault avoidance fault masking fault tolerance

Figure 4.3: Cause-and-effect relationship of faults (after [168, Fig. 2])

Depending on the level where the fault-tolerant measures are applied, we can distinguish
between:

• system-level fault tolerance,
• network-level fault tolerance, and
• node-level fault tolerance.

However, measures on all levels need to cooperatively work together to achieve a high
degree of reliability. Nevertheless, depending on which level the measures are applied
and where the focus of the system is laid (i.e., the boundaries), the terms faults, errors,
and failures are sometimes confused and, thus, are used inconsistently in the literature.

4.2.2 Anomalies vs. Node Faults
The detection or diagnosis of faults generally suffers from one crucial problem as quoted
from Ni et al. in [99]:

“Unless ground truth is known or given by something with high confidence,
the term fault can only refer to a deviation from the expected model of the
phenomenon.”

Fault detection requires the effects of the considered faults to be known (i.e., their
manifestation in the system behavior or data). Consequently, ground-truth values derived
from expert or domain knowledge are required. If this information is not available, we
can only detect deviations in the behavior (of the system or the data), that is, anomaly
detection (see Chapter 3).

Therefore, the detection of faults is often considered an anomaly detection task and
is purely based on the sensor data. This assumption, however, suffers from a crucial
problem: anomalies do not need to be caused by faulty sensor nodes. They can also
be the result of a rare but proper event in the sensed phenomena [5, 169]. Additionally,
faulty sensor nodes can report incorrect sensor values that mimic non-faulty data [170].

As an example, consider a WSN used to continuously monitor and report the environ-
mental conditions (i.e., temperature) of a particular area of interest. Based on prior

51

4. Sensor Node Fault Detection

domain knowledge, available historical data, or after collecting sufficient data, a model
of the expected (or normal) behavior of the temperature curve can be derived (see the
blue-shaded area in Figure 4.4a). This process is usually done on a central point with
sufficient resources, such as a cloud server. In outdoor applications, the temperature
typically follows a diurnal pattern with day and night cycles. As the WSN continues to
monitor the temperature, continuously new data instances become available depicted as
red dots in Figure 4.4b. When analyzing the newly arriving data regarding the expected
behavior (i.e., the “normal” model), certain deviations can be found in the reported data.
These deviations can be manifested as drifts, offsets, or outliers as shown by the orange
regions in Figure 4.4c.

0 time [h]

am
bie

nt
tem

pe
ra

tur
e [

°C
]

0
–10

10
20
30

12 24 48 72 9636 60 84

(a) Derived model of the “normal” behavior

0 time [h]

am
bie

nt
tem

pe
ra

tur
e [

°C
]

0
–10

10
20
30

12 24 48 72 9636 60 84

(b) Continuous sensor measurements

0 time [h]

am
bie

nt
tem

pe
ra

tur
e [

°C
]

0
–10

10
20
30

12 24 48 72 9636 60 84

(c) Deviations in the data instances

Figure 4.4: Anomaly detection in an environmental monitoring example

The question is whether these anomalies in the sensor data stem from proper but rare
events in the monitored phenomena or are deviations caused by faults in the sensor
network. On the higher level of the data processing chain (e.g., the cloud), both effects are
hard to distinguish or even impossible if no further information is available. For example,

52

4.3. Fault Taxonomy

a spike in the temperature curve may be a strong indicator of a fault, but can also be
caused by direct sunlight that hits the area where the temperature is measured. So far,
the distinction between data anomalies caused by actual events from those resulting
from faults has only been sparsely addressed [171]. However, this distinction is crucial as
anomalies do not need to be caused by faults and, on the other hand, faulty sensor data
can mimic technically valid behavior. For this reason, the ability of a fault detection
approach to distinguish data events from fault-induced variations is within the focus of
this thesis.

4.2.3 Scope of Considerations
In this thesis, we follow the dependability terminology of Avizienis et al. [162]. Our
target system is the entire WSN as it is cooperatively responsible for the data acquisition.
Consequently, failures of the sensor nodes or their components are considered to be faults
from a system-level perspective. To avoid confusion, within this thesis, we use the term
“WSN” to refer to the entire system while the term “network” refers to the interconnects
between the network participants.

4.3 Fault Taxonomy
The sources and manifestations of faults in WSNs are very diverse (cf. [162]). Faults can
originate in different parts of the system, causing failure modes of different severities.
A faulty component does not always cause the system to fail in the same way. In the
following, we discuss the diverse kinds of faults based on the taxonomy of wireless sensor
network faults, which we presented in [8]. A graphical representation of the taxonomy is
depicted in Figure 4.5.

While parts of this taxonomy are generally applicable, it is tailored to the characteristics
of WSNs especially concerning their hardware components, network structures, and fault
types commonly appearing in sensor networks. Such a classification scheme helps develop
appropriate countermeasures as it allows the identification of the relevant fault types,
the components affected, and the level where the measures need to be applied.

Some categories (i.e., fault origin, severity, and persistence) are generally applicable
to various kinds of systems. The categories fault type, level, and manifestations are
system-specific and include unique attributes and characteristics of WSNs. However,
some categories are not entirely complimentary as faults may combine features of different
elements.

4.3.1 Fault Origin
Wireless sensor nodes are embedded systems consisting of tightly integrated software and
hardware components. While the software is usually considered as a single component,
the hardware part can usually be divided into the radio transceiver, the MCU, the sensors,
and the power supply (i.e., battery). Both the software and hardware components can

53

4. Sensor Node Fault Detection

wireless sensor network faults

fault type

software fault

microcontroller
sensors

power / battery

hardware fault
transceiver

fault origin fault severity

Hard Faulthard fault
crash

fail-stop

soft fault

arbitrary

timing
value

fail-silence

fault manifestation

err. data sensing
err. data processing

err. data communication

fault persistence

permanent

transient

fault level

node
link / network

cluster head / fog node
application

data-centric faults
outlier
spike

noise
stuck-at

system-centric faults
calibration

connection / hardware
broken sensor

value out of range
low battery

short circuits

value clipping

solid
intermittent

Figure 4.5: Wireless sensor network fault taxonomy

suffer from various faults where the manifestations depend on the actual origin of the
fault. As shown in Figure 4.3, software mainly suffers from human-made faults such as
specification or implementation mistakes (also called design flaws or simply bugs). On
the other hand, hardware components also have to cope with component failures due to
physical faults.

Aside from supply voltage-related effects, especially the ambient temperature has shown
to cause unpredictable behavior or defects in hardware components [157]. For example,
high ambient temperatures accelerate the aging of the components that bring forward
effects such as hot carrier injection (HCI), time-dependent dielectric breakdown (TDDB),
or negative-bias temperature instability (NBTI). High temperatures further facilitate
hardware-stress-related effects such as increased electromigration or the forming of metal
whiskers.

While design flaws can mostly be targeted with simulations or testing, physical faults
caused by the imperfections of the natural world cannot be adequately captured before
the WSN’s deployment and, thus, runtime measures to enable fault-tolerance are needed.

4.3.2 Fault Severity
Faults do not always cause the system to fail in the same way, neither concerning their
manifestations nor the related severity of their effects. While some faults may not even
be noticeable, others can cause disruptions of the entire sensor network. In this context,
two main groups of faults can be distinguished, namely hard faults and soft faults.

Hard faults include node crashes or the inability of a network participant to communicate
with others, such as fail-stop or fail-silence states. Such faults usually require human
intervention to resolve the situation. However, hard faulty network participants can

54

4.3. Fault Taxonomy

generally be easily detected by their neighbors indicated by an absence of messages over
a certain period.

Soft faults, on the other hand, are a notably greater danger to the data quality of a
WSN. While hard faults usually result in missing data, soft-faulty components continue
to report data but with impaired quality. The effects of soft faults can range from
deviations in the runtime behavior that can cause services to time out, over silent data
corruption by incorrect data sensing or processing up to completely arbitrary effects [172].
In addition, soft faults pose a significant danger as such adverse effects are hard to
detect by other network participants. Without additional information, such as expert-
or domain-knowledge, it is close to impossible to decide whether an anomalous data
instance was caused by a fault or reflects a rare but correct event in the observed
physical phenomena [99]. Consequently, corrupted or even arbitrary sensor readings
can be propagated to the subsequent data processing resulting in wrong decisions or
(counter-)actions. Also, a missing data instance from a hard-faulty sensor node does not
impair the subsequent data processing as much as a corrupted value from a soft-faulty
sensor node. For this reason, especially soft faults are a severe risk to the reliability of
WSNs and pose a crucial challenge for fault-tolerant networks.

4.3.3 Fault Type
Faults appearing in sensor networks can also be described according to their manifestation
in the sensor data and/or the system behavior. As a consequence, there are two views on
the types of fault models for fault detection approaches: data-centric and system-centric
(cf. [99]). However, both views are not disjoint, and most of the faults from one view can
be mapped to faults of the other one (see [99, Table IV]).

The data-centric view describes faults by the characteristics they cause in the data
behavior (diagnostic approach). This approach can also describe faults where there is
no clear explanation of its cause. Examples of data-centric faults are outliers, spikes or
abrupt changes, stuck-at faults, or noise with a high variance.

The system-centric view defines faults based on the effect certain flaws occurring in the
system cause in the data it produces. One of the most common sources for system-related
data distortion are depleting batteries of the sensor nodes or calibration faults of the
sensors used [95]. Also, hardware or connection failures (including short and open circuits)
or environmental conditions such as a value out of sensor range (e.g., clipping) can cause
inaccurate sensor data. However, in contrast to data-centric faults, system-centric faults
depend on the actual system implementation, such as the used hardware components.

4.3.4 Fault Persistence
Another criterion to categorize faults is the persistence of faults. In this context, Avizienis
et al. [162] defined two kinds of faults, namely permanent faults and transient faults.
While the presence of permanent faults is assumed to be continuous in time (Figure 4.6a),
the presence of transient faults is bounded in time (Figure 4.6b).

55

4. Sensor Node Fault Detection

The persistence of faults can be further categorized based on their activation reproducibil-
ity. Faults with reproducible activation patterns are called “solid” (or hard), and those
without systematically reproducible patterns are named “elusive” (or soft). Solid faults
are the result of permanent faults. As discussed in [162], the manifestations of elusive
(permanent) faults and transient faults are similar and, thus, are grouped together as
intermittent faults (Figure 4.6c).

fault

dormant

active

(a) permanent/solid (b) transient (c) intermittent
time

Figure 4.6: Fault categorization based on their persistence

Typical causes of permanent faults in sensor nodes are physical damage or design
flaws. Transient faults can additionally be the result of external circumstances such
as interference. While solid faults permanently affect the sensor nodes’ operation, the
effects of intermittent faults happen sporadically and with varying duration, hence, often
causing an unstable device operation.

4.3.5 Fault Level

As depicted in Figure 4.2, faults happening on lower levels can propagate through
the network affecting subsequent components in the data flow. Thus, faults can also
be categorized based on the location where they originate (or the level, respectively).
Fault tolerance measures can thereby focus on particular parts of the system or several
components of the data (sub)flow.

However, based on the level where the measures are applied, the basic approaches may
differ. While self-check techniques most efficiently detect certain node-level faults, faults
in the links between network participants are better to be captured with group detection
or centralized approaches. Additionally, the higher the network level, the more resources
are usually available and, thus, the more sophisticated measures can be applied. For
example, monitoring and fault diagnosis techniques applied on the cloud level can typically
utilize a certain level of processing power, have significantly more memory available, and
do not need to consider an energy-efficient operation. Devices in the edge layer, on the
other hand, can only use lightweight techniques that do not contravene the resource
limitation of those. As a result, the fault level considered is an essential criterion for
selecting appropriate countermeasures.

56

4.4. Related Fault Detection Schemes

4.3.6 Fault Manifestation

Faults can also be described based on the functionality they impair. The basic functionality
of a sensor network comprises:

• the measurement of certain physical quantities (i.e., data sensing),

• the (pre)processing of the acquired data (i.e., data processing), and

• the forwarding of these data via the network (i.e., data communication).

A fault can affect one or more of these functionalities, possibly with different severity.

An erroneous data sensing can be caused, for example, by sensor hardware failures,
electrical connection issues, or in case the sensed phenomena is outside of the sensor’s
measurement range (or in its saturated area; refer to [99, Fig. 2]). Erroneous data pro-
cessing can be caused by design faults like software bugs or by physical faults affecting the
processing units such as the sensor nodes’ MCU. Errors in data communication can stem
from a wide range of sources. Aside from flaws in the communication protocols, network
attacks or environmental factors can also hinder the proper communication between
participants. Thereby, primarily environmental factors such as the ambient temperature
have been shown to influence (or even temporarily prevent) the communication within
the network (cf. [109,173]).

4.4 Related Fault Detection Schemes
Faults are a severe threat to the sensor network’s reliability. They can significantly impair
the quality of the data provided and the network’s performance in terms of battery
lifetimes. While design faults can be addressed during the development phase, it is nearly
impossible to derive proper models for the effects of physical faults. Such effects are
caused by the interaction of the hardware components with the physical environment
and occur only in natural systems. For this reason, they can not be adequately captured
with well-established pre-deployment activities such as testing and simulations. Hence, it
is necessary to incorporate runtime measures to deal with the multilateral manifestation
of faults in a WSN.

Fault tolerance is not a new topic and has been addressed in numerous areas for a
long time already. Like WSNs, also systems used in automotive electronics or avionics
mainly consist of interconnected embedded systems. Especially in such safety-critical
applications where system failures can have catastrophic consequences, fault management
schemes to mitigate the risks of faults are a must-have. Consequently, the automotive
functional safety standard ISO 26262 provides methods and techniques to deal with the
risks of systematic and random hardware failures. The most commonly applied concepts
are hardware and software redundancy by duplication and/or replication [174]. Similarly,
also cyber-physical systems used in, for example, industrial automation commonly use
duplication/replication to enable a certain level of resilience [163,164].

57

4. Sensor Node Fault Detection

However, redundancy-based concepts often interfere with the requirements of WSNs as
they require a significant overhead regarding the system sizes and costs, but especially
concerning the energy consumption [160]. Therefore, such concepts are hardly suitable
for WSNs. Fault management schemes suitable for sensor networks have to be energy
efficient, provide a suitably high fault detection accuracy, need to be able to cope with the
characteristics of the wireless network, and should not suffer from scalability issues [165].

In the following, an overview of the primary detection strategies of fault management
schemes for WSNs published in the recent past is presented. The majority of approaches
can be classified into three main categories based on their general detection strategy:

1. sensor data analysis (see Section 4.4.1),

2. group detection (see Section 4.4.2), and

3. local self-diagnosis (see Section 4.4.3).

Based on our survey of related sensor node fault detection schemes, we identified the
research gap discussed in Section 4.5. However, for a detailed survey on fault detection
and tolerance schemes applied to WSNs, we refer an interested reader to the literature
reviews presented in [165,175].

4.4.1 Sensor Data Analysis
One way to detect faults in a sensor network is to analyze the data reported by the
sensor nodes. Faults often manifest as anomalies in the sensor data; hence, data anomaly
detection approaches are commonly used [3]. Since faults can have different causes and
result in effects of variable duration and impact, many data-oriented fault detection
approaches leverage correlations available in the sensor data (e.g., temporal, spatial,
or functional) to substitute for missing ground truth. However, to consider temporal
correlations also, previous sensor data are required (i.e., the history). On the other
hand, spatial correlations rely on the data from various sensor nodes within a specific
neighborhood. As a result, many sensor data analysis approaches run centrally on systems
with higher resources, such as the cluster head or even in the cloud layer.

Most of the data-oriented approaches can be categorized into:

(i) statistics-based,

(ii) rule-based,

(iii) time series analysis-based, or

(iv) learning-based methods.

To cover a broader spectrum of faults, to improve the detection rate, or to lower the
false alarm rate, hybrids can be used that combine different methods. An overview
of data-based fault detection approaches can be found in the outlier detection survey
presented in [176] or the review on noise or error detection approaches given in [111].

58

4.4. Related Fault Detection Schemes

(i) In statistics-based detection methods, mostly standard metrics such as the mean, the
variance, or the gradient of the sensor data are considered for detection [177]. Additionally,
there are more sophisticated approaches that, for example, apply the Mann-Whitney U
statistical test or the Kolmogorov-Smirnov test to identify irregularities in the sensor
data [178,179] as well as 3σ-based techniques [180].

(ii) Rule-based methods derive heuristic rules and constraints for the sensor readings often
by exploiting domain or expert knowledge. Such approaches can range from adaptive
thresholds of the sensor data [181] over signature-based fault detection [182] up to
applying distributed state filters on the sensor data [183].

(iii) Time series analysis-based methods leverage temporal correlations in timely ordered
data of one or more sensor nodes collected over an interval of time to predict the expected
values for future data (cf. [184]). An anomaly is then assumed to be the deviation of the
measurements and the predicted values [185].

(iv) Another possibility to infer a model of the “normal” sensor data is the use of learning-
based methods. Based on the derived model, deviations of the actual sensor readings from
the expected values can be detected. Thereby, particularly neural networks [158, 186]
and SVM-based detection approaches [187] have shown to be suitable in identifying
anomalous sensor readings, especially when being augmented with statistical features
as described in [188]. In addition, also approaches based on decision trees have been
proposed for fault detection [189].

However, most data-centric detection approaches consider the sensor nodes as black boxes
and neglect information available on a node level. Consequently, such approaches often
suffer from difficulties in distinguishing anomalies caused by faults from actual events in
the monitored phenomena. In addition, several approaches are not generally applicable
because they require expert/domain knowledge that is often not available or base their
detection technique on application-specific assumptions.

4.4.2 Group Detection
Group detection-based approaches leverage the detection of faults based on the spatial
correlation of sensor data. Such approaches can either be run centrally on, for example,
the cluster head or distributed on several (or even all) network participants. In some
approaches, additional monitoring nodes with higher resources are added to the network
to observe the behavior of their local neighbors. However, group detection approaches
commonly rely on three major assumptions:

(i) the sensor nodes are deployed densely (i.e., the difference in the measurements of
two error-free sensor nodes is negligibly small),

(ii) faults occur rarely and without systemic dependencies (i.e., the number of faulty
nodes is much smaller than the number of non-faulty nodes), and

(iii) faults significantly alter the sensor data (i.e., a faulty sensor reading deviates from
its local neighbors’ proper readings notably).

59

4. Sensor Node Fault Detection

Additionally, some approaches assume that faults occurring in the network are permanent
(cf. [190]); hence, transient and intermittent faults are not considered. Aside from the
approaches’ architecture (i.e., centralized vs. distributed), the approaches differ in the
way they decide on faulty readings (e.g., voting [191], aggregation [192]) and in the
information used for their decision (e.g., sensor readings, battery level, link status). For
example, the battery level in combination with the link status can be used to define the
sensor nodes’ state of health that is then shared with the node’s neighbors (cf. [193]).

To detect faults, the approaches apply (spatial) anomaly detection methods [194], consider
mutual statistical information of the neighbors [169], or use a (dynamic) Bayesian
classifier [161]. The approach proposed in [195] extends a dynamic Bayesian network
with a sequential dependency model separated in time slices where temporal correlations
can be exploited in a single time slice. Spatial dependencies can be treated by exploiting
time slices of different nodes. Another example of group fault detection is the algorithm
presented in [196] that incorporates physical constraints of the monitored phenomena
based on which the Kalman filter estimation value of adjacent nodes is calculated.
Especially AIS-based approaches have properties beneficial to anomaly and fault detection
in WSNs such as the distributed AIS-based fault diagnosis algorithm proposed in [197].

Although showing reasonable detection rates, group-based approaches suffer from sig-
nificant drawbacks stemming from the assumptions mentioned above. For instance, to
ensure that the distance between two neighboring nodes is always small enough to have
negligibly small differences in their measurements would require a large number of nodes
and, thus, would be expensive, and the network may suffer from scalability issues. Also,
the assumptions on the faults cause difficulties as faults have shown to appear frequently
in WSNs and their effects may be subtle such as silent data corruption. Group detection
approaches often require a high communication overhead due to the message exchanges
between the neighboring nodes. Consequently, the energy consumption of the nodes is
significantly increased, resulting in shorter battery lifetimes.

4.4.3 Local Self-Diagnosis
The third main class of fault detection approaches is executed on the nodes locally. In
contrast to the above-presented sensor data analysis and group detection concepts, the
local self-diagnosis is applied close to the source of faults where node-level information
can be used for better fault detection. Since these approaches exploit the nodes’ internal
information (i.e., node-level data), they can be seen as a form of glass-box (or white-box)
runtime testing. In addition, such approaches do not suffer from scalability problems as
the detection is run on the nodes locally.

One possibility for fault self-diagnosis is to run lightweight data-centric techniques on
the nodes that detect statistical deviations in the node’s measurements (i.e., mean and
variance) or perform low-level anomaly detection similar to the methods described in
Section 4.4.1. However, some researchers suggest including node-level information aside
from the sensor readings to analyze the node status at runtime [3,198]. Several works

60

4.5. Research Gap

have been presented in the last years that incorporate such node-level information in their
approach. However, most of them use relatively simple checks based on the remaining
battery charge (measured by the battery voltage level) or the nodes’ link status (e.g.,
received signal strength indicator (RSSI) or signal-to-noise ratio (SNR); cf. [167,199,200]).
In case the nodes are running an OS, also metrics such as the CPU load (i.e., number of
cycles executed by the MCU), the memory consumption, or the execution time available
from the OS have been included in the detection [75, 201]. Aside from information
already available in software, it is also possible to extend the sensor nodes with specific
hardware for fault diagnosis, for example, using a secondary MCU that supervises the
main MCU [202] or a current monitor that allows detecting faults specific to certain
sensors [170].

As with data-centric and group detection approaches, also self-diagnostic techniques are
challenged by the limited resources of the sensor nodes. In the case of local self-diagnosis,
the situation is even worse as the approach is applied on all nodes and, thus, has to be
lightweight and energy-efficient. If additional hardware is required, also the cost factor
has to be kept in mind. As a result, the majority of approaches so far rely on simplistic
checks of, for example, the residual energy or OS-related metrics. Although mentioned
before, incorporating additional node-level information into the fault detection has not
been analyzed yet.

4.5 Research Gap
The research community has broadly targeted the topic of fault detection in WSNs over
the last two decades. However, most related work on sensor node fault detection suffers
from restrictive assumptions and significant limitations that hinder their effective and
efficient use, as discussed in the following.

The majority of related approaches focus on fault models that cause data anomalies
in the reported sensor readings, such as outliers, offsets, or drifts (see Section 4.4.1).
Consequently, these “sensor data analysis” approaches consider fault detection as a
data anomaly detection task performed on the sensor data only. Although several
lightweight online anomaly detection schemes have been proposed in recent years, most
of these approaches require a considerably high resource overhead that conflicts with the
resource limitations of sensor nodes. Additionally, such approaches typically suffer from
a disability to distinguish the effects of environmental events in the sensor data from
data distortion caused by sensor node faults. A reliable distinction between both effects
requires incorporating diagnostic data acquired on a node level.

Group detection approaches, as presented in Section 4.4.2, try to remedy this issue by
considering spatial correlations in the measurements of several sensor nodes within a
specific neighborhood. They mostly build on the assumption that (i) the sensor nodes
are deployed densely, (ii) faults occur rarely and without systemic dependencies, and
(iii) faults significantly alter the sensor data. The former assumption can often not be
adhered to for economic reasons (i.e., deployment costs) and, depending on the size of

61

4. Sensor Node Fault Detection

the area to be monitored, due to possible scalability issues of the underlying network.
Similarly, the second assumption does not hold for all deployments, as reported by previous
studies where node faults were found to occur frequently. And the latter assumption
suffers from the same issue as with the sensor data analysis approaches (see above).
In addition, most of the group detection approaches require an information exchange
between the sensor nodes within a defined neighborhood that requires bidirectional
communication and poses a significant communication overhead (i.e., energy overhead).

The local self-diagnostic approaches discussed in Section 4.4.3 aim at exploiting the
information available on the node level to remedy the drawbacks of sensor data analysis
and group detection schemes. The main difficulty in applying self-diagnostic approaches is
the trade-off between the diagnostics’ expressiveness and the required resource overhead.
Therefore, most self-diagnostic approaches limit their consideration to simplistic checks
of, for example, the residual energy or OS-related metrics. However, we found that such
node-level diagnostics have to consider a broader spectrum of operational parameters
and cover as many functional modules of the sensor node as possible (cf. [4]).

To sum up, an effective and efficient sensor node fault detection scheme needs to distinguish
between data events and the effects of faults on the sensor data. It has to be generally
applicable to not suffer from limitations caused by specific assumptions or restrictions on
the application use cases. Moreover, it should not burden the WSN with high resource
requirements, neither regarding the network (i.e., communication overhead) nor the
sensor nodes (i.e., energy overhead).

62

CHAPTER 5
Artificial Immune Systems

One branch of anomaly detection schemes applicable to the detection of node faults
are artificial immune systems (AISs); or immune-inspired approaches in general. Such
approaches have shown promising capabilities and preliminary results for developing
lightweight fault detection systems. This chapter discusses the underlying biological
principles and the corresponding computational models developed from the human
immune system (HIS).

In [100], the authors claim that “. . . the process for characterizing a sensor network fault
or anomaly is very similar to diagnosing an illness.” Not only the authors of [100] draw
the connection between the task of anomaly or fault detection in computing systems
and the basic principles of immune systems. Similarly, the authors of [203] and [204]
consider the normal behavior of a computer system to be free of anomalous occurrences,
hence, “healthy”. Detecting unhealthy circumstances is precisely what the HIS is doing.
In other words, anomaly detection systems and the HIS share the same goal, which is
to keep the system stable despite a continuously changing environment [205]. Thus,
applying immune-inspired techniques to detect deviations from a “normal” operation
seems reasonable. Regarding the use in WSNs, the authors of [89] go even further and
claim that the basic architecture of sensor networks has a high structural similarity to
the biological cell structure.

For this reason, a new discipline arose in the early 1990s aiming at deriving computational
models inspired by concepts from immunology, namely the field of AISs [206] (also
known as computational immunology or immuno-computing). AISs are bio-inspired
schemes leveraging the immune system’s characteristics for use in computational problem-
solving [207, 208]. The field of AISs encompasses a collection of algorithms that are
models or abstractions of mechanisms observed in the HIS [209–212]. New insights in
the functioning of the HIS and the processes involved to detect infections and regulate
the responses serve as inspiration for novel computational models.

63

5. Artificial Immune Systems

A brief history and the prevalent immunological theories are presented in Section 5.1. The
unique properties of the HIS are discussed in Section 5.2. One of the latest immunological
models, the so-called “Danger Theory”, is presented in Section 5.3. Section 5.4 gives
an overview of the four “classical AIS theories”.. The Danger Theory-based dendritic
cell algorithm (DCA) formed the basis of our immune-inspired fault detection approach.
Details on the DCA and its use for fault detection are presented in Section 5.5.

5.1 History and Immunological Theories
Several works [213–215] define the beginning of immunology with the discovery of the
basic principle of immunization and phagocytosis by Pasteur and Metchnikoff in 1870.
In 1890, von Behring discovered the presence of antibodies in the body of mammals,
followed by the detection of cell receptors by Ehrlich around 1900. Based on the work of
von Behring and Ehrlich, Bordet and Landsteiner found in the 1930s that the antibodies
have a particular specificity. Thus, they only react to certain other types of cells. From
there, it took another 20 years until La Verne and Burnet started to work on a theory
on clonal selection of specific lymphocytes (B and T cells in particular) in the 1950s, on
whose basis Burnet developed the clonal selection theory in 1957 (cf. [216]).

These fundamental discoveries led to the development of the so-called self/non-self (SNS)
model (or “one-signal model”) in 1959 [217]. The name “self/non-self” refers to the basic
process of B cells that is to distinguish between entities that originate from the own
system (“self”) and those that are foreign to the host (“non-self”). Similarly, the name
“one-signal” model originates from the primary hypothesis that the immune reaction is
triggered by recognizing non-self entities. As a result, only one signaling factor is required
to trigger an immune response (see Figure 5.1a).

Soon, the SNS model got challenged by Oudin et al. [218] with questions that the original
model could not answer. As a consequence, Bretscher and Cohn proposed in 1969 their
associative recognition theory, sometimes referred to as “two-signal model” [219]. In
their model, antigen recognition alone is insufficient to trigger an immune response. It
requires a second “signal” which they named help signal as shown in Figure 5.1b. This
help signal is necessary to trigger the B cells. If only signal 1 (antigen recognition) is
present without the secondary help signal, the B cell simply dies.

Meanwhile, Jerne was working on another aspect of the HIS which he published in 1973 as
his idiotypic network theory [220]. Jerne focused on the interaction of the particular parts
of the immune system and suggested that the immune system consists of complementary
idiotypes and paratopes that coexist and form some kind of a formal network. The
idiotypes and paratopes act as stimulatory or suppressive factors in this network. Usually,
these factors are balanced. In case the stimulatory parts become rife, an immune response
is triggered. For a long time, the idiotypic network theory was seen as a competitive
model to Cohn and Bretscher’s associative recognition theory. However, today Jerne’s
propositions on the regulation of the HIS by such an idiotypic network is considered
complementary to the prevalent models of immune response activation [221].

64

5.1. History and Immunological Theories

(a) SNS (1959)

Bacterium

Sig 1
(Stimulation)

B cell

(b) two-signal (1969)

Sig 1

Sig 2 (Help)

Bacterium

Sig 1
(Stimulation)

B cell

T helper

(c) extended two-signal (1975)

Sig 2 (Help)

Bacterium

Sig 1
(Stimulation)

B cell

APC

Sig 2
(Co-stimulation)

Sig 1

T helper

(d) INS (1989)

Sig 1

Sig 2
(Co-stimulation)

T helper

APC

Bacterium

PRR

(e) danger theory (1994)

Sig 1

Sig 2
(Co-stimulation)

T helper

APC

Alarm signal

Distressed
cell

Normal
cell

Figure 5.1: A history of immunological models (after [214, Fig. 1])

Lafferty and Cunningham further refined and extended the two-signal model in 1975 [222].
As depicted in Figure 5.1c, they claimed that the T helper cells themselves need to be
co-stimulated by antigen-presenting cells (APCs) (e.g., dendritic cells (DCs)) to provide
the help signal to the B cells. If the T helper cell sees signal 1 (antigen recognition),
but gets no co-stimulation from an APC, it dies. Consequently, it does not relay the
co-stimulation as a help signal to the B cell, causing this to die, too. Thus, the presence of
two signaling factors in conjunction is needed to trigger an immune response by activating
the B cells: (i) antigen recognition (i.e., the affinity between T cell receptors and certain
antigens) as well as (ii) the co-stimulation by T helper cells.

The extended two-signal model by Lafferty and Cunningham served as a sound basis
for the functioning of the HIS and stayed untouched for quite some time. Later, new
observations on how vaccines worked led to questions not answerable by the model. In
particular, it was found that adjuvants were needed in combination with vaccines to

65

5. Artificial Immune Systems

stimulate immune responses. It was Janeway in 1989 who presented a new, refined
model of the immune system, the infectious non-self (INS) model (cf. [223]) as shown in
Figure 5.1d. This model suggests that the APCs themselves need to be activated before
being able to provide the co-stimulation signal. For this reason, the APCs have their
own form of SNS discrimination that is based on the detection of conserved pathogen
associated molecular patterns (PAMP) (essentially exogenous signals) through pattern
recognition receptors (PRRs).

For a long time, it was believed that the critical element in activating immune responses
is antigen recognition, that is, the discrimination of entities that originated from the
own system (“self”) from those that are foreign (“non-self”). This “self/non-self” view
became increasingly challenged by observations that the model could not explain, for
example, transplants (no attack against “non-self”) as well as tumors or autoimmunity
(both attacks of “self”). Another prominent example is the absence of immune responses
to foreign bacteria in the gut or the food we eat [215]. As a consequence, the model of
the HIS was continuously refined to be able to explain new findings. However, the core
mechanisms remained the discrimination between self and non-self.

This view was significantly changed when Polly Matzinger presented her “danger theory”
in 1994 (cf. [214,224]). According to this theory, the immune system reacts to entities
causing damage rather than those considered foreign. Unlike the INS model, the danger
theory builds upon the suggestion that DCs are natural information fusion entities able
to combine signals from both endogenous and exogenous sources [225]. These signals
either stem from exogenous sources (e.g., foreign bacteria) or from endogenous cellular
signals [214]. The cellular signals are further distinguished based on their origin. As
highlighted in Figure 5.1e, there are signals from distressed or injured cells (necrotic
signals) that imply danger. In contrast, cellular signals from cells that died naturally
(apoptotic signals) present a somewhat safe situation [205].

However, even today, immunologists are not fully sure how the immune system works
in its entirety and which entities and processes are actually involved. So far, the INS
model and the danger theory are two of the most hotly debated theories, and their
basic principles are accepted by the majority of immunologists [226]. Still, the danger
theory implies some problems similar to those of previous immune models. Similar to
the question of how to discriminate self from non-self of the SNS model [211], the danger
theory faces the difficulty of how to distinguish between danger and non-danger [215].

5.2 Unique Properties of the Immune System
The human body is unquestionably one of the most complex systems known to humanity.
There are three main regulation systems in the human body:

• the nervous system,
• the endocrine system, and
• the immune system.

66

5.2. Unique Properties of the Immune System

These three systems are integrated into one ultimate information communication network
within the human body [227]. However, each regulation system has its specific roles
and unique properties. Understanding these unique properties is necessary for building
effective and efficient computational models based on mechanisms and processes observed
in natural systems.

In the following, we will first provide a brief overview of these three regulation systems
in Section 5.2.1. Then, the multi-layer defense mechanism of the HIS is presented in
Section 5.2.2. Finally, the role of leukocytes and, in particular, the lymphocytes is
discussed in Section 5.2.3.

5.2.1 Nervous, Endocrine-, and Immune System
The nervous system is a highly ramified network with hierarchical order controlled by a
central controller (the brain). Information is transported via electrical impulses that can
be amplified or blocked by messengers. The nervous system and particularly the brain
have been used as inspiration for computer scientists for a long time (e.g., in ANNs).

On the other hand, the endocrine system is a regulation system purely based on chemical
messengers (i.e., hormones; cf [228]). These chemical messengers are secreted by different
source organs (called glands) in the human body. The regulation itself happens with
specific feedback loops of the hormones as almost every hormone has a complementary
hormone [229]. The endocrine system tries to establish homeostasis (or feedback inhi-
bition) between the chemical messengers by regulating the secretion of the respective
complementary hormones. The endocrine system has some interesting properties [143]
such as (i) self-organization, (ii) synchronization and (iii) cascading effects that offer
inspiration for certain computational problems.

In [143], Sinha and Chaczko compared the basic structure and working principle of
the endocrine system with large-scale Internet of Things (IoT) infrastructures. Based
on this view, they argue that models derived from the endocrine system offer great
potential to solve problems prevalent in such large-scale networks. For this reason, several
computational models based on the endocrine system have been proposed in the past,
such as the autonomous decentralized system [230–232], the digital hormone system used
for self-organized robot swarms [233–235], the computational model of hormones as first
proposed in [236] and extended in [237], the regulation model of hormones [238,239] as
well as the artificial hormone system [240,241].

The third regulation system, the immune system, is a widely distributed and inherently
parallel network of a significant number of diverse entities. These entities are working
simultaneously and in cooperation with each other to reach the overall goal, to keep the
body healthy [242,243]. It is a decentralized system without a central controlling instance
(such as the brain for the nervous system). One of the most significant advantages of the
HIS is its vast amount of resources. The immune system of an adult consists of around
1012 lymphocytes, 1020 soluble antibody molecules with about 5 million different antibody
types, and a daily turn-over of these components of approximately 2 % (cf. [213]).

67

5. Artificial Immune Systems

Also, the HIS operates on different levels using various components, such as physical
barriers (e.g., skin), chemical barriers (e.g., antimicrobial substances like sweat and saliva),
cellular proteins (e.g., cytokines), and a large number of different cells (e.g., macrophages
and DCs). All these components and their interaction build up a highly complex self-
organizing system with beneficial properties such as error-tolerance, adaptation, and
self-monitoring [144]. Certain parts of the immune system even have learning, memory,
and associative capabilities (cf. [244]).

5.2.2 Innate and Adaptive Immunity

The immune system has an ingenious multi-layer defense mechanism consisting of two
distinct yet interrelated immune mechanisms [245]:

• innate (non-specific) immunity

• adaptive (specific) immunity

The combination and interaction of both forms versatile and efficient protection for the
human body. Both parts of the immune systems use many different cells of diverse
specialization to protect the host efficiently.

5.2.2.1 Innate Immunity

The innate immune system [246] provides non-specific protection and defense mechanisms
as well as general immune responses. There are four types of defense barriers in innate
immunity, namely (i) anatomic, (ii) physiologic, (iii) endocytic & phagocytic, and
(iv) inflammatory [245]. The anatomic barriers (e.g., skin or mucous) prevent the
penetration of foreign entities and, thus, build the first level of defense. Also, innate
immunity consists of a large number of different cells providing a defense against the
general properties of pathogens [247]. Hereby, the APCs (a kind of leukocytes, or more
specifically monocytes) play in important role, especially the DCs (see Section 5.3.3).
The innate immune system is an essential first line of defense against invading pathogens
using generic responses [248]. The innate immune system does not develop memory
and, thus, does not offer specific responses [249]. A review of innate immunity and its
biological principles and properties can be found in [250].

5.2.2.2 Adaptive Immunity

The adaptive immune system [251] provides more specific and compelling response
mechanisms as well as the capability to learn from previous occurrences of pathogens
(i.e., immune memory [252]). It is sometimes called acquired immunity as the specific
responses are developed over the lifetime of the host [144]. The main components of the
adaptive immune system are lymphocytes, in particular B and T cells. In contrast to the
leukocytes constituting to the innate immunity, these cells can evolve over the lifetime of
the host by specializing their receptors [253]. Based on these cells and their contribution

68

5.2. Unique Properties of the Immune System

to adaptive immunity, two primary adaptive immune responses can be distinguished, the
humoral response and the cellular response [249,254,255].

The humoral response, or humoral immunity, refers to the interaction of B cells with
antigens by producing specific antibodies that detect and eliminate foreign entities. B
cells are produced by the bone marrow, where they have to survive a negative selection
process before being released into the bloodstream. This negative selection process is part
of the SNS theory and makes sure that the B cells surviving are self tolerant; thus, they
do not attack native (self) cells. If a B cell matches a particular antigen, they respond by
multiplying themselves by clonal expansion. In this process, B cells divide into several
clones with slightly mutated antibodies to cover a broader spectrum of antigens and
increase the chance of an even better antigen matching [256]. B cells with a high affinity
can evolve to memory B cells capable of identifying the same pathogen much faster in
the future (as the activation and stimulation process is shorter for memory B cells [257]).
Such an immune response from memory B cells is called immune memory (also referred
to as secondary immune response or strong immunity [252]) and provides an essential
characteristic of the adaptive immune system, namely the ability to learn through the
interaction with the environment. Approximately 90 % of the B cells die after their
responses or lifespans, and the rest remain as memory cells [258].

The second adaptive immune response is the cellular response. It refers to the behavior
of T cells that have two main tasks: (i) the detection of intrusions by T helper cells (Th)
and (ii) the attraction of cytotoxic T cells (Tc) for the disposal of infected cells [255]. To
be more precise, the Tc becomes activated on the recognition of infected cells and starts
producing molecules that destroy the infected cell.

Besides Th and Tc, there exists a third type of T cells, the regulatory T cells. These
regulatory T cells exist in two different stages: naive or active [258]. After being produced
in the bone marrow, these regulatory T cells migrate to the thymus where they undergo
a negative/positive selection process similar to B cells (but in the thymus instead of the
bone marrow). Regulatory T cells that survived the selection process and that have not
experienced an antigen yet are called naive T cells. Naive T cells can become activated
T cells if they successfully bind to an antigen in combination with co-stimulation from
an APC (or DC to be precise; see immune models in Section 5.1). Thereby, the degree of
activation depends on the degree of signaling from the DC. In the case of excessive levels
of co-stimulation, the T cells die to prevent overly excessive immune responses, a process
called activation induced cell death [259].

5.2.3 White Blood Cells
Although many cells are involved in immunity, white blood cells build the core of the
immune system. These cells are primarily produced and matured in lymphoid organs
(e.g., thymus or bone marrow) and are categorized in general white blood cells, the
leukocytes, and specific subtypes of white blood cells, the lymphocytes [206]. While
leukocytes form the bases of innate immunity (i.e., monocytes such as macrophages and

69

5. Artificial Immune Systems

APC), the adaptive immune responses are primarily performed by lymphocytes (i.e., T
and B cells as well as natural killer cells) [214]. The three most important white blood
cells for immunity are:

• dendritic cells (DCs) are a particular class of APCs that move in blood and
process information about antigens and dead cells found on their way.

• T cells are produced by the bone marrow and are responsible for destroying
infectious cells.

• B cells are also produced by the bone marrow and stimulate the production of
antibodies.

Due to their way of detecting foreign antigens, the antibodies are often called detectors,
especially in the context of AIS.

Besides the white blood cells, a large number of other cells and molecules are essential
for the functioning of the immune system. Thereby the ligands (or keys) play an
important role as they are responsible for activating the cells’ receptors. As with the
endocrine system, also the immune system contains regulating molecules called cytokines.
Additionally, chemokines are specialized molecules that stimulate cell movement [206].

Altogether the immune system shows characteristics also found in other bio-inspired
systems (as presented in Section 3.3.7.5). As the cells and their interaction share similar
properties with swarm-like systems, the immune system is often considered a swarm
system, too [260]. Also, to detect foreign entities, the immune system uses affinity
measures that are, in their fundamental principle, similar to the fitness function in
GA [254]. A detailed overview of the (natural) immune system can be found in [245,261].

5.3 The Danger Theory
The danger theory states that the immune system does not primarily react to foreignness
but to circumstances that pose a danger to the host. Therefore, it changes the discrimi-
nation of “self from non-self” of the SNS model to a discrimination of “some self from
some non-self” depending on the presence of danger to the system (see Section 5.3.1).
This difference in the antigen discrimination is shown in Figure 5.2, where SNS refers
to the self/non-self model, INS to the infectious non-self model, and DT to the danger
theory. In the figure, a “+” states that the theory reacts to this kind of antigens while a
“–” means that the theory ignores antigens of that kind.

In the danger theory, the danger is represented by the presence of so-called danger
signals in the absence of down-regulating safe signals within a specific area (refer to
Section 5.3.2). These necrotic (danger) signals and apoptotic (safe) signals in combination
with PAMP are integrated by the dendritic cells to instruct the immune system to respond
appropriately. Thus, the dendritic cells are one of the major control mechanisms in
immune systems (cf. Section 5.3.3).

70

5.3. The Danger Theory

a c d e f b

dangerous

infection
(PAMP)

self non-self

a b c d e f
SNS − + − + + +
INS − − − − + +
DT − − + + + −

Figure 5.2: Antigen responses of different immune theories (after [214, Fig. 2])

5.3.1 Basic Concept

While previous immune models often focused on the role of adaptive immunity, Matzinger
also stressed the importance of innate immunity [214,224]. From a biological point of
view, the innate immune system has three main roles [244]:

• defending the host in early stages of infection

• initiation of adaptive immune responses

• determination of the actual type of adaptive response through APCs (i.e., DCs)

In the danger theory, signal two is provided by “professional” APCs, the DCs, which
provide a vital link between innate and adaptive immunity [226]. Due to their way of
collecting and evaluating the information on the current condition of the host, these DCs
are sometimes denoted as the crime-scene investigators of the HIS [262]. Therefore, the
danger theory suggests that there are two key elements responsible for immunity: (i) the
tissue with the signals contained and (ii) the alignment of innate and adaptive immunity
by DCs. The signals are discussed in more detail in Section 5.3.2.

As a result, the danger theory further implies a notable change regarding the control
of immune responses. It highlights the role of the tissue for the immune system as it
suggests that it is the tissue that controls immune responses and the evolution of the
immune system [226,263].

The danger theory was initially hotly discussed within the immunology community and
by far not accepted by all members [264]. However, Matzinger and other advocates of the
danger theory found more and more evidence for their claims as well as observations in
nature that can not be explained by the previously prevalent theories. The danger theory
states that the “foreignness” of a pathogen alone is not enough to trigger an immune
response and that, on the other hand, “selfness” is no ultimate guarantee of tolerance [214].
As shown by Matzinger in [224, 265], changes do happen in the human body over the
lifetime, be it of natural cause (e.g., pregnancy) or due to external intervention (e.g.,
surgeries); thus, the self changes as well. More detailed information on the danger theory
from an immunologist’s view can be found in [214].

71

5. Artificial Immune Systems

5.3.2 Immunological Signals
The danger theory states that the affinity between an antigen and an antibody (“signal
one”) is not enough to trigger an immune response [245,266]. In addition, there needs
to be a co-stimulation by APCs such as the DCs (“signal two”; see Figure 5.1). DCs
reside in the tissue and collect antigenic material and contextual information (commonly
termed signals). According to the danger theory, it is the correlation of the contextual
information (i.e., the signals) that triggers immune responses. Matzinger [224] groups
these signals into three main categories (see also [253]):

• apoptosis: natural death of cells (the “safe signals”)

• necrosis: unnatural death of cells (the “danger signals”)

• PAMP: biological signatures of potential intrusions (e.g., foreign bacteria)

The danger signals can be further divided into (i) endogenous (generated by the body such
as heat shock proteins, nucleotides, neuromediators, and cytokines) and (ii) exogenous
(caused by invading organisms) [267]. These necrotic (danger) signals and apoptotic
(safe) signals in combination with PAMP signals are integrated by the DCs to instruct
the immune system to respond appropriately [253]. For more information on necrosis,
apoptosis, and their processes and characteristics, we refer to [268].

However, Matzinger admits that the exact nature of the danger signals is unclear, resulting
in the above-mentioned difficulty of how to discriminate danger from non-danger [215].
Since the advent of the danger theory in 1994, many signals affecting the DCs have been
empirically revealed [267]. As argued by Aickelin and Cayzer [215], a connection to the
classical SNS theory is to consider the presence of non-self as a kind of danger signal.

5.3.3 The Role of Dendritic Cells
The danger theory focuses on the DCs since they can stimulate naive T cells and thus
initiate primary immune responses [267]. DCs are monocytes (i.e., white blood cells) that
were initially identified by Steinman and Cohn [269] and are native to the innate immune
system [225]. Due to their function, they can be seen as the body’s own intrusion detection
agents [270]. DCs provide a vital link between the innate and the adaptive immune system
as they link the initial detection (innate) to the actual effector response (adaptive) [226].
Additionally, DCs are one of the major control mechanisms in immune systems as they
coordinate the T cell responses by producing certain pro- or anti-inflammatory cytokines
(chemical messengers). Pro-inflammatory cytokines have an activating effect on immune
responses, while anti-inflammatory cytokines have a suppressing effect.

DCs are produced by the bone marrow and exist in three states of maturity with different
functions respectively [250,271]. After being produced, the DCs are in an immature state
(denoted as iDC). The iDCs reside in the tissue and have the primary task of collecting
cellular debris via ingestion [226, 272]. Thereby they collect antigens and receive the
signals mentioned above (i.e., danger, safe, and PAMP). After being exposed to a certain

72

5.4. Classical AIS Theories

quantity of signals, the iDC becomes activated. Exposure to PAMPs accelerates the
process of maturation.

The activated iDC then migrates from the tissue to the lymph nodes where they either
become semi-mature (smDC) or mature (mDC). In case the iDC experienced a higher
concentration of danger-related signals (i.e., a greater quantity of either PAMP or danger
signals), it maturates into an mDC. Otherwise, it becomes an smDC.

In the lymphoid tissues, the smDC and mDC interact with naive T and B cells to either
initiate (in case of mDC) or suppress (in case of smDC) an adaptive immune response. The
naive T cells respond by differentiating further into activated T cells (see Section 5.2.2.2 as
well as [258]). This is achieved by the production of small quantities of anti-inflammatory
cytokines by the smDC and the production of pro-inflammatory cytokines by the mDC
respectively. Also, the mDC produces co-stimulatory molecules that have an amplifying
effect on both the PAMPs and danger signals in the surrounding area [273].

However, also iDC have a suppressing effect as the encounter of iDC with T cells results
in the deactivation of the T cell due to a lack of co-stimulatory molecules or inflammatory
cytokines [272]. The DCs do not perform their function in isolation as there are numerous
of these DCs in the tissue. Thus, they are forming a population-based system offering
high error-tolerance and robustness through diversity as well as a low FAR [270]. Further
information on the DCs functioning with a focus on AIS is available in [274].

5.4 Classical AIS Theories
Since the first AIS emerged in the 1990s, much research has been done in the field.
With growing research interest, the field of AIS became more comprehensive and the
areas of applications more numerous. Generally, research on AISs can be grouped into
three main areas: (i) immune modeling, (ii) theoretical AISs, and (iii) applied AISs
(cf. [275]). Immune modeling is concerned with the biological processes of the HIS
and is predominantly covered by immunologists or biologists. Theoretical AISs take
inspiration from immune models to develop computational models capable of solving
defined problems on a theoretical model. In this context, especially the mapping from
immunological to computational entities remains a problematic task [276]. However,
especially applied AISs have gained popularity over the last years as an increasing number
of use cases and real-world scenarios arose where AIS can be efficiently applied to solve
computational problems [277].

However, over the last two decades, the AIS models have notably evolved. While in
the beginning most AISs mimicked adaptive immune response mechanisms only, today
more models incorporate processes of both the innate and the adaptive immunity. For
this reason, usually models including only adaptive immunity are referred to as first
generation AIS and those that include both are denoted as second generation AIS [206].
One primary reason for this paradigm shift was the findings on the data fusion capabilities
of DCs. Including DCs into an AISs allows the system to correlate data from multiple

73

5. Artificial Immune Systems

noisy sensors that help to improve the overall stability of the AIS, especially in the
presence of unknown time delays of the signals [206].

AIS have characteristics that make them suitable for optimization or anomaly detection
tasks, especially their ability of self-adapting, self-learning, self-organizing, highly parallel
processing, and their distributed coordination [205]. Their efficiency can be further
improved by auxiliary antigen libraries or concepts from the idiotypic network theory
(see Section 5.4.3). AISs also provide mechanisms for self-regulation by adjusting the
lifetime of the cells used and their probability of reproduction [278]. By fine-tuning these
parameters, the performance of AIS can be significantly improved [276]. Additionally,
these regulatory mechanisms allow the system to adapt to dynamic environments, which
in turn is vital as the human body undergoes specific changes over its lifetime [215],
which can also be the case for WSNs.

AISs have shown to perform comparably well on certain benchmark data sets when
compared to existing statistical and machine learning techniques [206]. In some cases,
they even presented a more efficient solution than prevalent techniques. Nevertheless,
many AIS models have some significant drawbacks that limit their applicability. The
most severe ones are their usually high resource consumption (especially for memory)
and their ordinarily bad scaling properties [279]. As an example, the authors of [106]
compared an AIS-based misbehavior detection with a second instance based on an ANN.
They showed that the AIS offers comparable results, in some cases even better than
the ANN, but at the cost of resources, especially memory. In their experiments, the
AIS-based approach required nearly six times more memory than the ANN approach.

Today, most AIS approaches are derived from one of the following four theories, sometimes
called “classical AIS theories” [242]:

• negative/positive selection (mainly based on T cells; see Section 5.4.1)
• clonal selection (mainly based on B cells; see Section 5.4.2)
• immune network theories (i.e., idiotypic network theory; see Section 5.4.3)
• danger theory (i.e., dendritic cell-based algorithms; see Section 5.4.4)

Aside from these common techniques, several other immunology-inspired algorithms and
computational tools have been developed, such as humoral immune response systems [249]
and the pattern recognition receptor model [280]. Review work for general AIS approaches
is given in [242,242,281–284] as well as focused on anomaly detection and IDS in [102,
210,285].

AIS can also be combined with other (learning) techniques to build more efficient
ensemble/hybrid systems. One common goal is to decrease the FAR, which is usually
high in self-organized (unsupervised) approaches. A typical example are immune genetic
algorithms [286–288] for optimization problems as well as to lower the FAR of an
immunity-based anomaly detection system [289]. A more sophisticated approach was
proposed in [290]. This model consists of three evolutionary stages to optimize the overall
performance. These stages are (i) gene library evolution [252], (ii) negative selection [291],

74

5.4. Classical AIS Theories

and (iii) clonal selection [292]. For more examples on ensemble/hybrid AIS, we refer to
the survey on AIS hybrids during the years 2008–2011 presented in [293].

5.4.1 Negative and Positive Selection

In the HIS, negative selection is a process taking place in the bone marrow (for B cells)
or the thymus (for T cells). It uses self/non-self discrimination based on a naive model of
central tolerance developed in the 1950s [258] and, together with clonal selection, forms
the core concepts of the SNS model. The SNS model assumes that the self is defined in
early life, and anything that comes later is considered as non-self [214]. The selection
process aims at eliminating antibodies (i.e., lymphocytes) that are reactive to entities of
the self space. For this purpose, it checks their affinity based on the degree of binding
between, for example, T cell receptors and specific antigens. The antibodies failing the
selection process are removed from the population.

There are two basic selection processes, namely, positive and negative selection. In
positive selection, the antibodies are selected to cover the self space. Thus, only those
who match the self are kept while the others are removed. On the other hand, in negative
selection, the antibodies are selected to match the non-self space. Nevertheless, positive
selection has not been found in the selection of T cells [294]. As a result, the majority of
immune-inspired approaches use negative selection. However, which of these two selection
processes better suits a given task depends on the size of self and non-self, or their ratio,
respectively.

Methods based on negative/positive selection are typically used for classification and
pattern recognition problems (e.g., anomaly detection [295]). In anomaly-based IDS, the
pathogens represent the potential attacks, and the antibodies are a way to identify that
attacks [296].

Inspired by the HIS’ negative selection processes, the first negative selection algorithm
(NSA) model was proposed in 1994 in [291]. The crucial part of the NSA is to find
a suitable mapping from the biological entities (e.g., antigens, antibodies, pathogens)
to the computational problem. In the area of AISs, the antibodies are usually called
detectors as their job is to detect certain circumstances (i.e., the presence of non-self).
The detectors are often represented as feature vectors representing antigenic patterns
able to detect changes in behavior [33]. Often the problem space is represented by an
n-dimensional space, and the detectors are hyperspheres that use a matching rule based
on an individual membership or distance function (e.g., Euclidean distance). In some
NSA-based approaches, immune memory is introduced by promoting detectors that
produce many alarms to memory cells with a lower activation threshold [210].

Basically, the NSA has two important components: (i) the detectors and (ii) the matching
rule. The problem of how to generate detectors to minimize their number while maximizing
the covering of the non-self space is one of the major fields of research for NSA [297,298].
Usually, the number of detectors required to cover a certain self-space grows exponentially

75

5. Artificial Immune Systems

with its size [208]. Also, the shape of the self space and the detectors has shown to have
a significant impact on the number of detectors needed [106].

Related work on the improvement of the detectors focuses on (i) their representation (e.g.,
binary or real-valued; see [299]), (ii) their shape (e.g., hyperspheres or hyperellipsoids;
see [300]), (iii) the parameters involved in their creation [301], (iv) the influence of variable
radius [302] as well as (v) the effects of growing or shrinking the detectors surface [303].
An extensive analysis of the effects of different detectors used in NSA as well as the
development of improved detector generation algorithms is summarized in [97]. Another
way to efficiently cover the entire non-self space is to combine detectors of different types
(with their respective matching rules) to reduce the number of holes [208].

Directly intertwined with detectors are the affinity measures (or matching rules) applied.
As presented in [242], the metric to measure the affinity (similarity) depends on the choice
of vectors attributes as it determines the detectors’ shape space type. In [304], different
detectors shape spaces and suitable affinity metrics are analyzed, such as (i) real-valued
shape spaces (with Euclidean distance or Manhattan distance), (ii) Hamming shape spaces
(with Hamming distance or r-continuous bit rule) and (iii) symbolic shape spaces. Also,
alternative representations have been proposed such as (iv) feature-feature relations [305],
or (v) dictionary-based basis decomposition methods [306]. However, choosing an
expressive metric is a non-trivial task in most cases.

As stated in [307], most works so far used an antigen representation based on binary
feature vectors and applied binary matching rules (e.g., r-contiguous matching [291],
r-chunk matching [299], landscape-affinity matching [308], or Hamming distance matching
rules [308,309] and its variations such as Rogers and Tanimoto (R&T) matching rule [308]).
Especially the r-contiguous matching rule has found application in many NSA-based
approaches [208, 291, 299]. The r-contiguous rule matches two strings if they have an
identical sequence of r bits.

Although approaches based on negative selection had a promising start, they have been
found to have severe problems regarding scalability and coverage [102,211]. As pointed
out in [310], the required amount of detectors to sufficiently cover the non-self space
becomes unmanageable for most problems. The authors of [97] counter this claim and
argue that the problem is not with the algorithm itself, but with unsuitable (binary)
representations of the problem space (see also [311]).

In addition, there are two common problems with the traditional SNS model applied to
AIS, that are a high FPR when using negative selection (leading to missed anomalies)
and a high FNR when applying positive selection (resulting in a high FAR; cf. [215]).
Directly connected with these issues is the problem of a dynamic or changing self as the
SNS model assumes a static self that does not change over the lifetime. One way to cope
with changing selves is the balance the life-cycle of immune cells, enabling an adaptive
coverage of the non-self space [252,312].

Possible solutions to these problems are hybrid approaches. One way to overcome the
difficulties with detector coverage is to apply evolutionary algorithms to continuously

76

5.4. Classical AIS Theories

evolve the detectors, such as GAs [313] or clonal optimization [314]. A prominent example
is the evolutionary negative selection algorithm, a hybrid evolutionary immune algorithm
that was extended with a niching technique to prevent the algorithm from ending up in
a local optima [290]. Also the usage of gene libraries to avoid random detectors at the
initialization is a promising way [210]. These gene libraries lead the generation process
of antibodies and can improve the overall efficiency [315].

Another approach dealing with the problem of crisp transitions between the self and
non-self space is the combination of negative selection with fuzzy rules [316,317]. Such
fuzzy-based NSA have shown favorable characteristics when applied to immunity-based
IDS [316]. For a network IDS, also the efficiency of a hybrid AIS combining positive
and negative selection has been analyzed [318, 319]. Fuzzy rules in combination with
Q-learning were used in the cooperative fuzzy artificial immune system proposed in [108]
that showed superior properties in comparison with other learning techniques (i.e., C4.5
decision tree, artificial immune recognition system (AIRS), clonal selection algorithm
(CLONALG), fuzzy logic controller, and fuzzy Q-learning).

Two of the more complex hybrid approaches are Bayesian artificial immune systems [320,
321] and the complex artificial immune system [322]. The former are based on Bayesian
networks and are intended for solving hard optimization problems. On the other hand,
the complex artificial immune system is a layered model that takes antigens as inputs
and proposes antibodies as output. It is best suited for pattern detection problems as it
can deal with several transformations such as scaling or rotation of patterns.

However, NSAs have been applied to many problems so far, including anomaly detec-
tion [323], fault detection [324] or function optimization [325]. An approach to apply
negative selection to an active defense IDS is presented in [326]. Similarly, an immunity-
based IDS with a multi-agent architecture is shown in [327]. A survey on NSA applications
from 2011 can be found in [328].

5.4.2 Clonal Selection
Clonal selection theory [217,292] is based on the functions of lymphocytes in immune
systems, especially the maturation phase of B cells. The foundation of this theory was
introduced by Burnet in 1957 as an explanation for the observed diversity of antibodies
during an immune response [216]. The clonal selection theory suggests that lymphocytes
activated by antigen-binding trigger a clonal expansion to evolve antibodies with a better
affinity to the present antigens. During this clonal expansion, the lymphocytes undergo
an affinity maturation where they are subject to somatic hypermutation (a mutation of
the cell’s antigen-binding coding sequences) and a subsequent selection mechanism [275].
In hypermutation, the degree of mutation depends on the affinity measure, where a lousy
affinity value results in a higher degree of mutation. As a consequence, the generality
and coverage of the detection are increased through the process of hypermutation [210].

The clonal selection and the algorithms derived from it, like the CLONALG [329], are
commonly applied to optimization problems and clustering problems (such as pattern

77

5. Artificial Immune Systems

recognition) [281]. Additionally, it is often used in conjunction with NSA or an affinity
calculator [252]. As the task of affinity evaluation can be partitioned, a parallel version
of CLONALG was proposed in [330].

As summarized in [149], the original CLONALG has a relatively high FAR and is not able
to cope with dynamic environments. It is impracticable for dense environments making
it not suitable for WSN applications. But it can be deployed in a highly distributed
manner and offers an efficient detection rate. It allows the development of memory
detectors that help to reduce the response time, especially when combined with negative
selection. For this reason, an improvement of the original CLONALG was introduced
in [331]. Another algorithm based on the CLONALG with influences from artificial
immune network (AIN) [332] (see Section 5.4.3) is the artificial immune recognition
system (AIRS) [333, 334], one of the first AIS-based supervised learning algorithms.
In [330], a version of AIRS is presented in which the affinity evaluation is parallelized.

Although clonal selection approaches rather deal with optimization problems, several
attempts of applying it to anomaly or intrusion detection have been proposed (cf. [335]).

5.4.3 Artificial Immune Networks
Artificial immune networks (AINs) are a class of immune-inspired algorithms that are
based on the idiotypic network theory proposed by Jerne [220]. They can be seen as an
extension of the clonal selection with the interaction between the antibodies and antigens,
or B cells respectively [206]. The AIN model was first proposed in [309] followed by the
first AIN algorithm in [336] and an improved version in [337]. Today, one of the most
common AIN-based algorithms is aiNet [338] and its variations [339].

Similar to the clonal selection, AIN-based concepts are usually used for optimization and
clustering problems as well as data visualization and control where they share properties
with ANN [340].

5.4.4 Danger Theory-based Approaches
The unique role of APCs and especially the DCs for (innate) immunity is well known
since Lafferty and Cunningham’s extended two-signal model from 1975 [222]. DCs are
one of the most important immune response regulation mechanisms. Their importance for
the immune system became even more evident with the advent of the danger theory [224].
Since then, several computational approaches based on the danger theory, or the DCs’
functionality have been proposed.

A first in-depth discussion on the potential of the danger theory for AISs was presented
in [144]. The authors stressed on the natural anomaly detection capabilities of DCs and
their possible applications in computing systems. Thereby, especially a low FPR in com-
bination with a high TPR are desirable properties for anomaly detection techniques [253].
The anomaly detection is performed by the DCs by correlating the collected antigens
with the fused contextual signals. It is necessary to consider the signals in combination

78

5.4. Classical AIS Theories

as the analysis of particular signals in isolation is insufficient to indicate anomalies [341]
or to produce classification [209]. Additionally, the danger theory provides a way of
grounding the response by linking it directly to the source for abnormality [144].

Danger theory-based approaches have shown good anomaly detection capabilities while
using minimal resources [144]. In contrast to other immune-inspired techniques, the
danger theory bases its detection on the presence of danger to the host, represented
by so-called danger signals, in combination with an absence of down-regulating safe
signals [270]. Thus, danger theory-based approaches use pre-defined signals to derive
the system’s context and react to “dangerous” states rather than all kinds of deviations.
These signals are collected over time and in different places allowing the system to
leverage spatio-temporal correlation.

Over the years, the danger theory has inspired the development of several AISs. Especially
the unique role of the DCs has paved the way for several novel algorithms such as the
toll-like receptors (TLR) algorithm [342] and the conserved self pattern recognition
algorithm (CSPRA) [280].

The TLR algorithm [342] models the interaction of DC and T cell populations. It uses
binary signals (i.e., present and not-present) to stimulate immune responses in a way
similar to PAMP signals. For more information on the TLR algorithm and the detailed
steps involved, see [343].

Another AIS model influenced by the danger theory is the CSPRA [280]. It allows
detecting anomalies by replicating the negative selection of T cells in combination with
the self pattern recognition of APCs. It adds the APCs part of the function as the
negative selection is naturally involved from the PRR model.

Nevertheless, the main danger theory-inspired algorithm is the dendritic cell algorithm
(DCA) [209,226,253,262,270,274,296,341,344,345] originally proposed in [226] as part of
the so-called “Danger Project” [144]. The DCA is suitable for use in resource-constrained
systems and can perform context-aware anomaly detection. Both are properties desirable
for fault detection approaches in WSNs. For this reason, an introduction to the DCA, its
working principle, its variants and further developments as well as related work for fault
detection are presented in Section 5.5.

5.4.5 AIS Applications in WSNs
As revealed by several reviews [210, 275, 312, 346], the majority of AIS research was
focused either on negative selection or the danger theory. In the field of WSNs, there
is a noticeable trend towards danger theory-based approaches. The reason is mainly
scaling problems of the NSA that is even worse when being applied to real network
traffic [310]. Secondly, the danger theory’s distributed and simple concept is suitable for
most WSN applications [149]. Therefore, we will give a brief overview of the application
of immune-inspired techniques for computational problems in general and specific to the
use in WSNs.

79

5. Artificial Immune Systems

Based on the aim of the HIS to keep the host healthy by eliminating threats to proper
functioning, several researchers claimed that the HIS could be seen as a natural anomaly
detection system [102,210,281]. It can detect pathogens without prior knowledge of their
structure [102] and offers a very low FPR as well as FNR [210]. Thus, making it a perfect
example of a (distributed) anomaly detection system.

In general, AIS-inspired anomaly detection found application in a great number of
different fields [281], such as virus detection [347], intelligent spam mail filter [348], credit
card fraud detection [349] or different other computer security related topics [285,308].

Especially the application of AIS for network anomaly detection, as part of an IDS, has
drawn much attention from the research community [242, 291, 312, 350–352]. In this
context, the expected behavior is usually considered as the self space, and any deviation
from it counts as non-self [136]. To increase efficiency while reducing the FAR, hybrid
approaches can be beneficial (cf. [353]).

For applying AISs to WSNs, the mapping of entities of immunity to those of the WSN is a
crucial task. For network-based approaches, often the antigen is derived from information
extracted from network packets and stored in feature vectors [346]. On the other hand,
host-based systems often use OS-related information such as system calls to derive the
antigens [253]. Examples of immune-inspired IDS applied to WSNs are given in [354,355].

A combination of negative and clonal selection for network anomaly detection in WSNs is
proposed in [276] and an extension of it in [212]. The authors define antigens as random
low-level bit patterns and, as in the HIS, let the immunity-inspired mechanisms take care
of their evolution.

Concerning the use of AISs for fault detection, immune-inspired approaches can also
be used to detect internal deviations rather than focusing on attacks from the outside
(similar to the HIS). In this context, several fault diagnosis systems inspired by the HIS
have been proposed [356]. As with IDSs, also such systems often assume a fault-free
system behavior at the early stages [357]. However, many of these approaches suffer
from a high FPR [358]. Based on immune models, a maintenance architecture able
to detect faulty behavior has been developed [359]. Another network fault diagnosis
approach based on AIS is presented in [360]. Specialized systems to detect hardware
faults are introduced in [360] as well as systems leveraging co-stimulation in [203,361].
The fault detection technique in [362] is tailored for WSNs and consists of a linear vector
quantization-based training phase and a subsequent AIS-based diagnosis mode. Also for
SHM with WSN, some immune-inspired approaches have been proposed [33,363].

As argued in [279], an efficient fault detection system would combine AIS with an artificial
endocrine system. The AIS is suitable for detecting low-level faults that can be corrected
locally, and the artificial endocrine system is better suited to recognize chronic faults.

80

5.5. The Dendritic Cell Algorithm

5.5 The Dendritic Cell Algorithm
The dendritic cell algorithm (DCA) was one of the first algorithms that used the func-
tioning of dendritic cells as suggested by the danger theory for solving computational
problems. Its initial version (also called “classical DCA”) was introduced by Julie Green-
smith in 2005 [226]. The DCA is based on the DCs’s ability to combine multiple signals
to assess the current context of their environment. In contrast to other AISs, it relies on
the correlation of information from the population of DCs rather than pattern matching
based on similarity metrics [253]. Further differences to other AIS algorithms are the
combination of multiple signals from diverse sources as well as the correlation of signals
with antigens in a temporal and distributed manner to form a context-aware anomaly
detection system [209].

To confirm the algorithm’s basic working principle, it was initially used to classify data
provided by the UCI Wisconsin breast cancer dataset with signals derived from the data
attributes. The original intention for the development of the DCA was its use in an
immune-inspired IDS where it has then been applied for the detection of port scans and
the detection of botnets in computer networks (cf. [262]) as well as for attack detection
in an Open Platform Communications Unified Architecture (OPC UA) framework [364].

5.5.1 Working Principle
The DCA describes an abstract model of the functioning of dendritic cells based on
Matzinger’s danger theory [214]. For this purpose, it uses a population of abstracted
dendritic cells, each with (i) a collection of antigens the cell encountered during its life,
(ii) a finite lifetime with a pre-defined threshold, and (iii) a contextual value depending
on the concentration of the input signals as described below. As depicted in Figure 5.3,
the original DCA consists of three main stages [209]:

1. initialization (setting of various parameters),
2. cell update (event-driven update of variables), and
3. data aggregation.

sample signals and antigen

update output and CSM cytokines

assess CYM cytokines

[CSM < threshold] [CSM > threshold] semi-mature DC

assess output cytokines

present antigens
context = 0

present antigens
context = 1

[greater semi-
mature cytokines]

[greater mature
cytokines]

mature DC

initialization of parameters

Stage 1 Stage 2 Stage 3

Figure 5.3: Key features of DC biology used in the DCA (after [270, Fig. 5.3])

81

5. Artificial Immune Systems

5.5.1.1 Cell Update

Until the lifetime of a cell is exceeded (i.e., update stage), each cell iteratively performs
three functions: 1.) the sampling of antigens, 2.) the update of the input signals, and
3.) the calculation of the cell’s interim output signals. The core mechanism of the cell
update stage is the collection of antigens and signals over the DCs’ lifetime. Four types of
input signals are combined to acquire contextual information on the status of the target
system (cf. [226]). They are analog to the natural signals observed in the HIS [224]:

• PAMP (P) – signals that are known to be pathogenic.

• safe (S) – signals that are known to be normal.

• danger (D) – signals that indicate changes in behavior.

• inflammatory (I) – signals that amplify the other signals.

Based on these input signals, the DCA calculates three intermediate output values:

• co-stimulatory molecule (CSM): expresses the cell’s maturation status

• semi-mature value: response to a safe environment

• mature value: response to a dangerous environment

The correlation of input to output signals is shown in Figure 5.4. In this illustration, the
thickness of the lines expresses the transforming weights.

PAMP CSM

Danger

Safe

semi-mature

mature

positive weight
negative weight

Figure 5.4: Abstract model of the DCA signal processing (after [270, Fig. 5.4])

In biology, PAMP are occurrences known to be not produced by the host, hence, a clear
sign of danger [270]. In the DCA, they lead to an increase in CSM and mature output
signals resulting in an earlier maturation with an anomalous context (i.e., mDC). The CSM
expresses the maturation status of the cell, that is, whether the cell is ready for antigen
presentation [270]. Danger signals are indicators of possible anomalies and influence the
CSM and mature output signals, but, as can be seen in Figure 5.4, much lower than
the PAMP signals [270]. On the other hand, safe signals suppress the production of the
mature output signal (negative weight) and cause an increase in the semi-mature output
value. Still, they contribute to the DC’s maturation (i.e., increase of the CSM value).

82

5.5. The Dendritic Cell Algorithm

The intermediate output signals are derived from the input according to the equations
presented in [226]:

Ccsm =
	

2
I�

i=0
Pi + 1

I�
i=0

Di + 2
I�

i=0
Si

· (1 + IC) (5.1)

Csemi−mature =
	

0
I�

i=0
Pi + 0

I�
i=0

Di + 3
I�

i=0
Si

· (1 + IC) (5.2)

Cmature =
	

2
I�

i=0
Pi + 1

I�
i=0

Di + (−3)
I�

i=0
Si

· (1 + IC) (5.3)

where Ccsm, Csemi−mature, and Cmature are the intermediate output signals respectively,
Pi represent the PAMP signals, Di represent the danger signals, Si represent the safe
signals, and IC are inflammatory cytokines. The respective weights of the single terms
(underlined numbers) are based on the suggestions in [341].

One effect present in this equation, but not shown in Figure 5.4, are inflammatory
cytokines (IC) expressing an already ongoing infection. These signals have an amplifying
effect on the other three input signals (i.e., PAMP, danger, and safe).

5.5.1.2 Data Aggregation

As shown in Figure 5.3, when a dendritic cell reaches the end of its life (i.e., its CSM
value exceeds a defined threshold), its interim output signal concentrations are assessed
to define its contextual status (i.e., semi-mature or mature). Based on this information,
the accumulated antigens are classified based on whether more dendritic cells experienced
this antigen in a normal or an anomalous context (i.e., binary classification). In the
case of a dominating semi-mature signal, the group of antigens is assigned a “normal”
context; otherwise, it is assigned an “anomalous” context. As opposed to most other
immune-inspired algorithms, the DCA uses the collected antigens merely for labeling and
tracking of data rather than for detection purposes.

5.5.1.3 Algorithmic Properties

The DCA was initially designed as an offline anomaly detection algorithm to be applied
to network intrusion detection. Due to the replication of the DCs’ functioning, it shows
similarities with certain filtering techniques. In addition, the DCA has lower compu-
tational complexity (in comparison with other ML techniques) and it does not require
extensive training periods [262]. For this reasons, it has also shown preliminary success
in resource-constrained applications such as sensor networks and mobile robotics [270].

Since the lifespan of the individual DC instances is limited and influenced by the
environment, the DCA forms a filter-based correlation algorithm that includes a time
window effect that reduces false positive errors [274]. Experiments on the DCA have
shown a high accuracy [253], but also a comparably high FAR (cf. [108]). Additionally, the

83

5. Artificial Immune Systems

initial DCA does not involve any learning mechanisms regarding the selection, mapping,
and weighting of the signals used, making manual tuning and preparation necessary [345].
Therefore, there is great potential for future improvements regarding the signal sources
and their respective mapping.

5.5.2 Variants and further Developments
The classical DCA gained promising results but contained stochastic elements and
required the fine-tuning of more than ten parameters that made it more challenging to
apply. Consequently, its foundation was theoretically analyzed, and some simplifications
were introduced based on which the deterministic dendritic cell algorithm (dDCA) was
proposed in [262]. The main changes concerned (i) the lifetime of the dendritic cells,
(ii) the way antigens are sampled and stored, and (iii) the processing of the input signals.
Regarding the latter, the calculation of the interim output signals was significantly
reduced to one signal expressing the maturation (lifetime) status of the cell (i.e., co-
stimulatory signal) and a second one keeping track of the experienced system context
(i.e., context value). In the dDCA, the co-stimulatory signal is calculated with

csm = S + D (5.4)

and the context value is expressed as

k = D − 2S (5.5)

where D refers to the sum of danger signals and S to the sum of safe signals, respectively.
The theoretical analysis for the reduction to these two interim signals is provided in [365].
However, for both only the danger and safe signals are used. Thus, the special roles of
the PAMP and inflammatory processes were neglected. As a consequence, the parameters
of the dDCA were reduced to (i) the input signals (danger and safe), (ii) the dendritic
cell population size, and (iii) the lifetime of the single cells. While the input signals
determine the detection capabilities of the dDCA, the population size and lifetime of the
dendritic cells influence the smoothing and noise reduction properties of the algorithm,
both responsible for decreasing the false positives rate (cf. [345]).

The classical DCA and the dDCA were used for a (binary) classification of offline data.
Therefore, all data must be already available when the algorithm is applied. However,
many anomaly detection systems require runtime (or even real-time) detection capabilities.
A first approach to transform the DCA into a runtime detection algorithm by utilizing
segmentation techniques is discussed in [366]. To avoid the need for segmentation, the
authors of [367] proposed the minimized dDCA (min-dDCA). Their min-dDCA replaced
the usual population sampling strategy with a one-to-one correlation between signals and
antigens. Most importantly, they reduced the population size to one single dendritic cell
with a lifetime of one iteration. Thus, the dendritic cell assigns a context to the present
antigen in each iteration. But the runtime processing comes at the cost of missing result
smoothing and noise reduction.

84

5.5. The Dendritic Cell Algorithm

5.5.3 Related Work on DCA-based Fault Detection
So far, the majority of DCA-related works utilized the algorithm for IDS, predominantly
in computer networks. The input signals are mainly derived from the network interface
(e.g., number of messages received during a specific period) and the host operation
system (e.g., process-related meta-information). The inclusion of node-level diagnostic
information is only sparsely addressed in related work.

In the following, an overview of DCA-based fault detection approaches is presented. We
focused on works that base their detection on the concepts inspired by the danger theory
(i.e., dendritic cell behavior) and extend the review of DCA-based methods presented
in [368]. However, an overview of detection approaches based on negative selection, clonal
selection, and immune networks is available in [369, 370]. For a general overview of fault
detection strategies and approaches, we refer an interested reader to the survey on fault
detection in WSNs given in [3, 371].

One of the first works that used the DCA for fault detection was presented in [372].
The authors applied the principles of the DCA on a fault diagnosis system for rotating
machinery in industrial facilities. Their input signals focused on the vibration pattern
acquired from vibration sensors. Five signals derived from the vibration data, such as the
kurtosis, were considered. The authors claimed that their approach achieved an overall
diagnostic accuracy of over 93 %. However, they gave no details on their implementation
and signal combination.

In [373], a DCA-based fault detection system for sensor faults in wind turbines is proposed.
The approach used redundant sensor measurements to acquire the input signals for the
DCA-based fault detection. In addition, the authors compared their approach with a
NSA-based implementation. The results show that both immune-inspired techniques
offer a similarly good fault detection rate, but the NSA suffered from a higher false alarm
rate.

So far, the only work that incorporates node-level information in an immune-inspired
fault detection approach is presented in [374] that was applied to a robotic system.
The authors defined a set of so-called health indicators that are used as input for the
DCA. These health indicators are derived from operational characteristics on the node
level, such as energy consumption, battery level, component temperature readings, and
task completion status. All proposed health indicators are calculated as the difference
between two consecutive measurements. The authors present an extensive analysis of
their approach that resulted in an overall fault detection rate of 98 % with only 0.128 %
false alarm rate.

Similar to the health indicators proposed in [374], we presented our so-called fault
indicators in [5] (see Section 6.2) that we implemented on a wireless sensor node [8]
as described in Section 7.1.2. These fault indicators are also derived from node-level
diagnostics that express possibly abnormal system conditions. In [5], we showed the
ability of our fault indicators to mark potentially faulty circumstances, but did not
incorporate them in an fault detection approach, yet.

85

5. Artificial Immune Systems

5.5.4 Limitation of current Approaches
As stated above, most AISs and immune-inspired approaches are derived from one of the
four “classical AIS theories”. Concerning anomaly or fault detection, primary approaches
based on negative selection (self/non-self discrimination) or techniques based on the
functioning of the dendritic cells (contextual information fusion) have been proposed.
While negative selection techniques dominated the early stages of AIS-based detection
systems, an increasing number of dendritic cell-based algorithms have been proposed over
the years. The reason for this is the usually high memory consumption and comparably
high false positives rate of most negative selection approaches. Both disqualify negative
selection approaches, especially from a meaningful use in resource-constrained systems
like WSNs [149].

In most DCA-based approaches, the definition and pre-classification of the input signals
(e.g., danger and safe) is a manual process that requires a certain level of knowledge
and expertise of the target system. Similarly, the mapping and weighting of the input
signals require manual intervention. In addition, the basic working principle of the DCA
has no learning mechanisms. To cope with these limitations, several works suggested
replacing the classification stage of the DCA with machine learning capabilities (cf. [368]).
Especially the use of fuzzy inference systems has gained promising results [375]. Such
approaches, however, entail a significant overhead on the memory and processing that
prevent them from being used in resource-constrained systems like WSNs.

In addition, most of the proposed approaches, especially those for fault detection, are
based on assumptions that significantly limit their applicability. For example, some
require the WSN to consist of homogeneous sensor nodes with static positions and static
network topology. These limitations are impracticable as real deployments often use
heterogeneous nodes whose interconnects may change over time.

Also, the majority of the DCA-based fault detection systems derive the input signals purely
from the sensor data where the considered fault models assume that faults significantly
alter the sensed data. However, such data analytical detection approaches suffer from a
disability in distinguishing rare but proper events from data anomalies caused by soft
faults (cf. [8, Section 2.4]).

In contrast, our fault detection approach considers sensor data as well as node-level
diagnostic information. For this reason, it can distinguish between the effects of events
and faults in the measured data. Additionally, our approach is generally applicable as it:

• removes the need for domain or expert knowledge,
• does not need manual intervention and analysis,
• can also be used with heterogeneous sensor nodes, and
• is suitable for static and dynamic networks.

Therefore, it does not suffer from the limitations entailed by the assumption of the related
works described before.

86

CHAPTER 6
Immune-inspired Node Fault

Detection Approach

In the previous chapters, we elaborated on the importance of sensor node fault detection
as an inevitable measure for dependable WSNs. Also, we discussed the shortcomings
and limitations of current node fault detection approaches. This chapter presents our
immune-inspired node fault detection approach that remedies several limitations of
previous fault detection schemes.

Our fault detection approach took inspiration from the danger theory and its compu-
tational counterparts, in particular, the deterministic dendritic cell algorithm (dDCA).
One of the main challenges in applying immune-inspired principles to fault detection
systems is to define a suitable mapping from the entities of the HIS to the computational
elements. Concerning the dDCA, especially the definition and mapping of the input
signals is crucial for its proper functioning. In the following, we present our approach
for a dDCA-based fault detection approach applicable to the detection of node faults in
WSNs. We refer to the inputs of the dDCA as indicators rather than signals to avoid
confusion as the term signal usually has another meaning in the areas of computer science
and electrical engineering than it has in immunology. An overview of our approach is
depicted in Figure 6.1.

Σ

Sensor node

Safe indicators

ΣDanger indicatorsFault indicators

Sensor values

Cluster head Sink

Data storage

Data processing

Context
assessment

Sensor node ID Antigens

>
DCs

Figure 6.1: Overview of our immune-inspired fault detection approach

87

6. Immune-inspired Node Fault Detection Approach

In this overview, a clustered WSN architecture is assumed where a dedicated cluster
head forwards the data received from the sensor nodes to a central sink. However, our
approach is not limited to this architecture as the dDCA-based detection can also be
performed on any other system in the data chain able to perform the assessment of
received sensor data (e.g., intermediate node or even the sink).

In the following, we first discuss the fault models considered in our work in Section 6.1.
Our detection approach assumes that a fault is indicated by the presence of danger in
combination with the absence of counteracting safeness; thus, the total value of the
danger indicators is greater than the sum of safe indicators. In this context, our danger
indicators are derived from our node-level fault indicators that we initially proposed
in [5] and that we have implemented on a self-developed sensor node platform [8] (see
Section 6.2). Their aggregation as well as the safe indicators derived from the sensor data
are discussed in Section 6.3. Our modified dDCA with runtime detection capabilities is
presented in Section 6.4. With Section 6.5, we complete the description of our approach
with some reflections on its benefits and limitations.

6.1 Considered Fault Models
Faults can occur on different levels of the WSN due to various reasons and, as a
consequence, can manifest themselves in diverse and often unpredictable ways. It is not
possible to analyze or even model all potential faults that can occur on WSN nodes.
But we can look for qualitative attributes that allow us to reason about possible faults.
Therefore, we concentrate our analysis on the fault models that have been reported to
have commonly happened in different WSN deployments (i.a., [75, 160,173]), namely:

• ambient temperature faults (e.g., extreme values or fluctuations; see Section 6.1.1)
• supply voltage faults (e.g., undervolting; see Section 6.1.2)

In addition, we discuss the effect of high humidity and strong vibrations on the sensor
nodes’ operation in Section 6.1.3. An essential first step to identify available indications
of faults on the node level is to analyze the effects and propagation of named faults
in sensor nodes. Therefore, the selected fault models and their causes and effects are
presented in the following.

6.1.1 Ambient Temperature Faults
Most WSNs are deployed outdoors where the ambient temperature is neither stable
nor precisely predictable. Depending on the geographical location and the place of
deployment, sensor nodes have to deal with extreme temperatures and significant tem-
perature fluctuations. The former may be even worse when the sensor nodes’ enclosure is
exposed to direct sunlight as the infrared radiation can cause high temperatures inside the
housing. Regarding the temperature, fluctuations as high as 34.9 ◦C within one hour have
been reported [109]. These temperatures have a substantial impact on the wireless link
quality [109, 173], but also have a considerable effect on the nodes’ functionality [75, 160].

88

6.1. Considered Fault Models

Besides the temperature changes caused by the environment, some effects can considerably
impact the temperature experienced by a sensor node, such as the heating-up of the
enclosure by direct sunlight. Also, components can suffer from (partial) short circuits
or high loads that can additionally warm up the sensor node. As stated in [376],
the ambient temperature can have a direct influence on the power consumption of
electronic components resulting in an increase of the current of up to 15 times the average
consumption under extreme temperatures, which can result in additional heating of the
sensor node.

As a consequence, temperature-dependent hardware effects or material deformations can
surface that may result in short or open circuits, timing variations, or varying CMOS
threshold voltages. High temperatures also accelerate the aging of hardware components
facilitating effects such as HCI, TDDB, or NBTI. Furthermore, extreme temperatures can
stress the hardware components resulting in increased electromigration or the forming of
metal whiskers. Hence, an analysis of the effects of the temperature on the performance
of wireless sensor nodes is inevitable.

6.1.2 Supply Voltage Faults
Also, the supply voltage significantly impacts the proper functioning of wireless sensor
nodes. This is especially true in WSNs as the sensor nodes are usually battery-powered
with often no or limited power regulation or voltage management capabilities. As a result,
the supply voltage levels can vary, causing different effects in the sensor node.

The main reason for differences in the supply voltage is a depleting battery. Thereby,
the speed of depletion can be influenced by environmental conditions (see above) or
by various kinds of faults occurring on the sensor node, such as (partial) short circuits
caused by humidity in the enclosure. Also, bad connections between the sensor nodes’
components can result in differences in their respective supply voltages.

The main effect caused by varying, or more specifically, sinking supply voltages is an
undervolting of the sensor node. Undervolting refers to the operation of components
with a supply voltage below their nominal supply voltage. Different components react
differently to undervolting. For example, components with brownout detection tend to
shut down before unintended effects can happen. Similarly, components with a voltage
regulator (internal or external) tend to stop working at specific voltage levels, preventing
them from operating at dangerously low voltage levels. If such protection is not available,
components are possibly operated at voltage levels where they can produce wrong results.
Additionally, the components used in a sensor node often have different minimum supply
voltages; thus, there are voltage levels on which some components continue to operate
while others have already stopped working or even show incorrect behavior (cf. [4, 75]).
As a result, the sensor node can report wrong sensor readings.

Rapid changes in the supply voltage can also cause another effect known as power-glitch
(also called VCC-glitch). Since CMOS gates are vulnerable to negative supply voltage
spikes, an abrupt change in the supply voltage level can cause the MCU to skip certain

89

6. Immune-inspired Node Fault Detection Approach

instructions resulting in an altered execution flow. This phenomenon is sometimes
exploited in security attacks. Still, it can also happen unintentionally in sensor nodes
due to rapid voltage changes, such as temporary short circuits caused by humidity in the
enclosure.

6.1.3 Humidity and Vibration Faults
Although previous studies suggest that the main threat for a reliable sensor node operation
stems from unpredictable changes in the node’s ambient temperature and fluctuations
in its supply voltage, other environmental factors also pose a risk to impaired node
functionality. Depending on the deployment area, the sensor nodes may experience high
levels of humidity and/or strong vibrations that pose a severe risk of physical damage to
the node.

In combination with fluctuations in the ambient temperature, high levels of humidity can
lead to the condensation of water inside the nodes’ housing. The soaking of humidity
into the housing can often not be prevented entirely. Specific sensors require direct
contact with the sensed physical quantity (i.e., temperature, relative humidity, or gas
sensors). If this condensation happens on the node’s PCB, there is a significant danger of
(partial) short circuits that can further lead to a damaging of the electrical components.
Additionally, humidity in the sensor area can lead to abnormal sensor readings [377]. As
a result, they can temporarily or even permanently impair the node’s operation. However,
in our outdoor experiments, we have found that even partial short circuits can have
severe long-term effects as they lead to an increased corroding of electrical contacts.

Some WSN applications require the sensor nodes to be deployed in places where strong
vibration can occur. For example, sensor nodes used in SHM or industrial process
automation are susceptible to significant vibration, temporarily as well as permanent.
The vibration causes physical stress on the components and, most of all, on their solder
connections. As a result, the vibration can, either over time or in the case of intense
vibration, damage the connections and/or components. The situation is even worse in
case of manufacturing flaws (i.e., cold solder or dry joint). Consequently, the sensor node
may experience (sporadic) open circuits on its PCB or inside components.

6.2 Node-level Diagnostics
An effective fault detection approach needs to consider node-level diagnostic data that
allow inferring information on the sensor node’s state of operation. As mentioned above,
it is impossible to analyze all faults that can occur on sensor nodes. However, we can look
for qualitative attributes that allow us to reason about possible faults. These attributes
can be seen as node-level symptoms caused by faults (i.e., their manifestation).

An example for such node-level diagnostics are the fault indicators tailored for resource-
constrained sensor nodes that we have initially presented in [8]. These indicators are
metrics derived from self-checks and functional diagnostics performed on the sensor nodes.

90

6.2. Node-level Diagnostics

The indicators are numerical metrics expressing the probability that the sensor node
is currently affected by a soft fault where a higher number means a higher likelihood.
Consequently, we define fault indicators as the subset of node-level data that is capable of
indicating possibly faulty behavior. They aim at supporting the detection of permanent,
transient, or intermittent soft faults to mitigate the risk of silent data corruption. While
a single indicator can already be a good hint for faulty behavior, the real benefit comes
from the fusion of several indicators.

The question remains which data is available on the sensor nodes that can indicate
possibly faulty behavior. So far, most self-diagnostic approaches rely on the monitoring
of the battery voltage as a measure of the remaining energy as well as specific link-related
metrics such as the RSSI. In this section, we show that several more indicators are
available that can be used to augment the detection of soft faults. Thus, they help to
reduce the risk of transmitting corrupted sensor data. We based our work on the fault
indicators partly on the node-centric metrics presented in [378] and the sensor network
features proposed in [99].

The availability and quality of some indicators depend on the hardware used and the
actual application. For this reason, we start by analyzing the possible sources of indicators
for generic and specific data. As depicted in Figure 6.2, we broadly differ between two
categories of fault indicators, namely those which are inherently available and those
that can be artificially added. In the following, we will elaborate on both categories of
indicators and present examples for them.

fault indicator
artificially addedinherently available

common
OS-specific

component-specific

generic
component-specific

domain-specific

Figure 6.2: Fault indicator classification

Depending on application specifics such as the actual components used, more or even
better indicators may be available, especially if specialized hardware or software is
deployed. However, our work provides general considerations and shall serve as a starting
point as we cannot capture all aspects of all possible combinations of applications and
components.

6.2.1 Inherently-available Indicators

The first category of fault indicators is based on data that is inherently available on
the sensor node. For these indicators, no additional hardware is required. Hence, these
indicators are based on data available in the software.

91

6. Immune-inspired Node Fault Detection Approach

As shown in Figure 6.2, the inherently available indicators can be further classified based
on the source of the underlying data. We define four classes of inherent indicators which
are 1) common, 2) OS-specific, 3) component-specific, and 4) domain-specific inherent
indicators.

6.2.1.1 Common Inherent Indicators

These indicators rely on software additions that do not require specific hardware com-
ponents. Such indicators are metrics derived from, for example, the control flow of the
software. For example, we defined an incident counter which is increased by one every
time a function failed (up to a predefined threshold) and decreased if a function returned
with success (the lower boundary is 0). Alternatively, different increment/decrement
values can be assigned depending on the function that failed/succeeded (i.e., its impor-
tance to a proper operation). If the threshold is exceeded, the sensor node is reset. The
decreasing of the counter is necessary not to reset the node in case of transient faults. This
indicator requires the sensor node’s software to have functions that return information
whether the function’s execution was successful or not (e.g., a timeout occurred).

6.2.1.2 OS-specific inherent indicators

In several WSN deployments, the sensor nodes run an operating system (OS) such as
Contiki, TinyOS, RiotOS, or FreeRTOS. Most OSs offer metrics such as CPU utilization
(e.g., task execution and idle times), memory usage (e.g., stack and heap consumption),
number of interrupts, and total operation time. Adding complexity to the node’s software
in the form of an OS or similar offers more potential for fault indicators. However, higher
complexity increases the risk of faults and often requires an energy overhead in relation
to the size of the addition.

6.2.1.3 Component-specific Inherent Indicator

The components of the sensor node (e.g., MCU, radio, sensors) can offer status information
that can be leveraged to derive fault indicators. For example, the IEEE 802.15.4
radio transceiver XBee 3 from Digi provides diagnostic information such as the module
temperature or the supply voltage level. Similarly, most MCUs offer ways to retrieve
their core temperature and/or supply voltage. If at least two different sources for supply
voltage information are available, the difference of both can be used as an indicator, too,
especially if both devices are connected to the same voltage path. Also, the status registers
of the CPUs can be used to infer information on the state of the current operation to
detect, for example, the occurrence of over- or underflows in variable assignments. Some
MCUs provide further helpful information such as the MCU status register (MCUSR)
available in most AVR controllers that gives information on the source of the latest reset
(i.e., watchdog, brownout, external, or power-on).

92

6.2. Node-level Diagnostics

6.2.1.4 Domain-specific Inherent Indicators

Also domain-specific information as utilized in sensor data analysis (cf. Section 4.4.1) can
be used to derive fault indicators [99]. For example, environmental features derived from
the sensor location and observed physical certainties can be exploited. In this context,
considerably large time gradients can be evidence of abnormal behavior as the rate of
change of certain sensor measurements is limited by the natural laws of the observed
phenomena and the characteristics of the sensors used. Abrupt changes in sensor values
can indicate a short circuit in the internal sensor wiring. In contrast to the sensor data
analysis approaches, the domain-specific inherent indicators can be combined with other
indicators to distinguish correct events from fault-induced variations.

6.2.2 Artificially-added Indicators

The second category of fault indicators requires additional hardware and, therefore, are
artificially added to the sensor node. We limit our considerations to artificial indicators
requiring a small amount of additional hardware and feasibly small energy overhead.
Complex circuitry and specialized hardware could offer indicators of high quality. However,
such additions may consume too much energy or significantly increase the cost of the
sensor nodes, which conflicts with their basic requirements.

The artificial indicators can be further divided into two classes: 1) generic and 2) compo-
nent-specific artificial indicators.

6.2.2.1 Generic Artificial Indicators

This class of indicators encompasses possible additions for almost all sensor nodes.
Examples are external power monitors to directly analyze the node’s power consumption
or additional sensors such as temperature sensors to measure the sensor node’s surface
temperature. In both cases, only a communication interface is required that is available
on most sensor nodes. Power monitors such as the INA219 can be used to gain additional
information on the supply voltage and the current consumption, hence, the power used
by the sensor node. Also, adding the measurement of the node’s surface temperature
(e.g., with a thermistor) offers potential for fault indicators, especially in combination
with the core or ambient temperature readings (e.g., their differences).

6.2.2.2 Component-specific Artificial Indicators

Besides the generic additions, there are also hardware additions to the sensor node that
are specific to its components and may therefore not be usable on all sensor nodes.
Examples are external diagnostic hardware for the node’s MCU such as debuggers or
power tracers that usually require specific interfaces to work. Such additions provide
data on the operational state of the node and, thus, can serve as a reasonable basis for
fault indicators.

93

6. Immune-inspired Node Fault Detection Approach

6.2.3 Remarks on Fault Indicators
As stated above, these fault indicators are meant to be additional inputs collected on
each sensor node to support an existing fault detection approach. The actual detection
can happen either locally with self-diagnosis techniques, distributed in group detection
approaches, or a hybrid of both to leverage temporal and spatial correlations. In the
case of self-diagnosis, the fault indicators are evaluated locally and do not cause any
communication overhead. Also, it is unnecessary to define indicators for all connected
sensors; thus, scalability is not impaired. In [5], we showed that adding such fault
indicators to the detection approach enhances its detection rate and allows the distinction
between soft faults and events.

Nevertheless, the fault indicators can be corrupted by faults, too. In such a case, there
are two possible outcomes:

• faulty data are labeled correct
• correct data are labeled faulty

For the former, the reliability of the WSN is as good as without the use of indicators in
the worst case. In the latter case, faulty indicators can lead to a rejection of data (i.e.,
dropping of messages) that reduces the WSN’s availability.

However, in both cases, no corrupted data is caused by the use of the fault indicators.
Also, the indicators are meant as an addition to an existing detection approach. The
benefit of an improved detection rate combined with the ability to differentiate between
faults and events outweighs the risk of discarding data due to faulty indicators.

6.3 Danger and Safe Indicators
The danger and safe indicators are contextual information used by the dDCA to assess
the system’s state of health, that is, fault detection. In our approach, we utilize node-level
diagnostics based on the fault indicators presented in Section 6.2. For the use in our
approach, these fault indicators need to be normalized in the range [0, 1]. Detailed
information on the implemented fault indicators and their normalization is given in
Section 7.1.2. However, our approach is not limited to the use of precisely these fault
indicators. They can be adapted and extended if more suitable indicators are available
on a target platform.

We derive the cumulative danger indicator D with:

D = min
��

χ�
i, 1

�
(6.1)

where χ�
i are the normalized fault indicators. The value of D is directly proportional to

the probability of faulty circumstances on the sensor node (D ∈ R | 0 ≤ D ≤ 1).

While the danger indicators rely on node-level diagnostics, the counter-regulatory safe
indicators are derived from the reported sensor values. Following other DCA-based

94

6.4. Modified Runtime DCA

approaches [372–374], we derive our safe indicators from the difference between successive
sensor measurements where smaller differences are considered safer. Therefore, we base
the safe indicators on the standard deviation σj of N consecutive measurements of
sensor j. However, we express safeness as the absence of significant changes. Therefore,
the maximum deviation of all sensors is decisive for the safe indicator. To avoid an
overreaction to small changes that often happen in sensors due to natural noise, the
maximum deviation is multiplied by a sensitivity factor (qsen ∈ R | 0 < qsen ≤ 1). Finally,
the resulting numerical value is used as the negative exponent of an exponential function
to have a decreasing value in case of higher deviations and limit the resulting numerical
value in the range [0, 1]. Consequently, the aggregated safe indicator for m sensors is
calculated with:

S = e− max(σ1,...,σm)·qsen (6.2)
with (S ∈ R | 0 ≤ S ≤ 1). Our safe indicators assume continuous sensor data. For
discontinuous sensor data, the safe indicators can be derived from other metrics that
express the safeness of operation, such as the distribution and/or amount of events over
time.

6.4 Modified Runtime DCA
The entire process of our modified dDCA works as follows. Every time new data is
received from the sensor nodes, four main tasks are performed:

1. acquire the present antigen
2. update the danger and safe indicators
3. update the population of dendritic cells
4. classify the new sensor values

The single tasks are described in the following, and considerations on the modifications
of the dDCA are discussed.

6.4.1 Antigen Definition
The antigens are used as unique labels for data from one instance to be assessed (i.e.,
sensor node). They have no direct influence on the classification process. In our case,
we used antigens that are based on the lower 32-bit of the media access control (MAC)
address of the used Zigbee radio transceivers as they are (i) unique and (ii) inherently
available on the Xbee modules. Our approach is not limited to Zigbee networks, as the
antigens could also be taken from another source or even be hard-coded; they simply
serve as data labels.

6.4.2 Indicator Update
The update of the indicators is based on the fault indicators and the sensor data received
from the sensor nodes. It follows the procedure discussed in Section 6.2 and 6.3.

95

6. Immune-inspired Node Fault Detection Approach

6.4.3 DC Population Update
The dDCA uses a population of abstract dendritic cells, each storing the antigens they
experienced during their life and the cumulative context defined by the indicators, or
signals, respectively. However, the dDCA and its predecessor, the DCA, are both designed
for static data analysis. The runtime min-dDCA, on the other hand, lost the smoothing
and noise reductions capabilities by using only a single dendritic cell.

To have both runtime processing and the beneficial properties of the population-based
assessment, we modified the min-dDCA by re-introducing a population of dendritic cells
with specific properties. In our approach, a dendritic cell is linked to precisely one antigen
where a maximum of M dendritic cells exists for each distinct antigen. Thus, every
dendritic cell has two properties: (i) the antigen it is linked to and (ii) the danger/safe
context associated with this specific antigen.

We adapted the process of how the population of cells is built so that in every iteration
(i.e., update), a new dendritic cell is created with the currently observed antigen assigned.
If the number of cells for this antigen exceeds the population size M , the oldest cell
linked to this antigen is deleted. Hence, after experiencing the same antigen for the M -th
time, a constant population of M dendritic cells is kept. This procedure is summarized in
Algorithm 6.1 where DC is the population of dendritic cells represented as a list of tuples
(Ag, k), Ag is short for antigen, k is the cell’s context value, and M is the maximum
population size per antigen type. In the algorithm, the filter method returns the subset
of list elements that satisfy the given predicate.

Algorithm 6.1: Update of the dendritic cell population
Input: list of dendritic cells DC : [(Ag, k)],

current antigen Ag�

Output: updated list of dendritic cells DC � : [(Ag, k)]

DC � = DC
Add cell = (Ag�, 0) to DC �

if |DC �.filter(Ag = Ag�)| > M then
Remove oldest cell with Ag = Ag� from DC �

return DC �

Next, the dendritic cells’ context values are updated. These values express the context a
specific antigen was experienced in, that is, whether the antigen was found in a context
with predominantly danger or safe indication. Consequently, the update of the context
values depends on the previously updated values of the indicators. The context value
is updated by adding the difference between the danger and the safe indicator (i.e.,
k = k + (D − S)). Algorithm 6.2 depicts the procedure of the cells’ context update.

By applying this form of dendritic cell population management scheme, a sliding window
of temporally ordered context values is utilized for the subsequent fault classification.

96

6.4. Modified Runtime DCA

Algorithm 6.2: Update of the cells’ context value
Input: list of dendritic cells DC : [(Ag, k)],

current antigen Ag�,
danger and safe indicators D, S

Output: updated list of dendritic cells DC � : [(Ag, k)]

DC � = DC
for cell ∈ DC � do

if cell.Ag = Ag� then
cell.k ← cell.k + D − S

return DC �

The size of the window can be controlled via the maximum population size M (similar
to the original dDCA as analyzed in [345]). Regarding the fault detection accuracy, an
optimal value of M depends on the sensor update interval and the maximum change
of the sensor value to be expected between two successive measurements, both with a
directly proportional relation.

6.4.4 Sensor Value Classification
Whether the present antigen (i.e., sensor node) is considered faulty depends on the
context values of the dendritic cells associated with said antigen. It involves two steps:

• Assess the context value of each associated cell
• Classify the antigen based on the cells’ context labels

Regarding the former, a single cell considers the respective antigen as faulty if the
cumulative context value k is greater than or equal to zero. That implies that the
cell experienced higher values of danger indicators than safe indicators. Otherwise, the
antigen is considered normal as no evidence of faulty behavior has been found. Thus, the
context label Cx of dendritic cell m is determined as:

Cxm =
�

1, if km ≥ 0
0, otherwise

(6.3)

where 1 signals a faulty and 0 a normal context, respectively.

After that, a majority voting of the related context labels Cx is performed to classify the
sensor data as either normal or faulty. To do so, the mean value of Cx of all dendritic
cells linked to the current antigen Ag� is calculated with:

CxAg� = 1
MAg�

MAg��
m=1

Cxm (6.4)

97

6. Immune-inspired Node Fault Detection Approach

where MAg� is the total number of cells with antigen Ag� (MAg� ∈ N | 0 < MAg� ≤ M).
If CxAg� ≥ 0.5, the current antigen and, thus, the corresponding sensor data are labeled
as faulty, otherwise they are considered normal.

Alternatively, the value of CxAg� can be directly used as a fault coefficient, for example,
to weight the corresponding sensor values in the further data processing. Thereby, sensor
values with a lower fault coefficient have a more significant impact on the subsequent
data processing than values considered faulty (i.e., sensor values with a higher fault
coefficient).

6.5 Considerations on the Detection Approach
By applying our modified dDCA, the received data is assessed during runtime and the
sensor data can immediately be classified as either normal or faulty. Thus, we combine
the strengths of the dDCA with those of the min-dDCA, which is a lightweight and
real-time assessment of the diagnostic and sensor data to detect faulty circumstances.

However, our proposed approach includes parameters that need to be adjusted appro-
priately (e.g., maximum population size M , sensitivity factor qsen). Unlike in other
approaches, our modified dDCA requires fewer parameters that are not application-
specific and, thus, can be used in almost all systems once optimal values have been found.
If adaptions of the parameters are necessary to improve the correctness, they can be used
for an entire domain and do not need to be adjusted for every application.

We currently use a unified weighting of the single fault indicators for our danger indicator.
Further experiments may suggest that specific fault indicators are more sensitive to node
faults than others and, thus, a different weighting scheme could score better results.

Additionally, the DCA and most of its variants do not include learning capabilities. A
theoretical analysis of the algorithmic basis revealed that the DCA is, in principle, a
collection of linear classifiers (cf. [368]). As presented in Section 5.5.4, several works
proposed concepts to incorporate machine learning into the DCA for two purposes: (i) an
automated mapping and weighting of the input parameter (i.e., signals or indicators)
and/or (ii) an introduction of immune-memory. The latter refers to the capability of the
system to learn from previous fault encounters to achieve a faster reaction in case the
same situation is experienced again. Currently, neither the automated mapping/weighting
nor the immune memory are included in our approach. However, they are promising
future research directions to improve and extend our concept.

98

CHAPTER 7
Concept Evaluation

In the following, we present the evaluation of our fault detection approach. We show
that it enhances the reliability of the nodes by (i) improving the accuracy of sensor node
fault detection while (ii) posing only a reasonably small resource overhead. To evaluate
our immune-inspired fault detection approach, we used simulations in combination with
an implementation of the entire concept in a practical WSN. The latter consisted of two
parts, namely (i) lab experiments in a controlled environment and (ii) a WSN testbed
(indoor and outdoor). This tripartite experiment setup is necessary as the analysis of
(soft) fault detection in WSNs is a challenging and non-trivial task. The considered faults
depend on many factors influencing the sensor nodes’ operation that can, either alone or
in combination, lead to soft faults such as silent data corruption (cf. Section 6.1).

Each part of this tripartite setup targets a different aspect of the approach evaluation.
The simulation is primarily used to analyze the detection characteristics of our immune-
inspired approach and to compare its detection characteristics with alternative methods.
An investigation of the approach’s reaction to specific fault models is the focus of the
lab experiments where the control over the environment allows us to force the sensor
nodes into particular conditions (i.e., perform physical fault injection). Long-term
characteristics and energy efficiency are targeted in the WSN testbed. Moreover, the
testbed consists of an indoor and an outdoor deployment to evaluate our approach in a
real-world setting where also faults occur that are not covered by our previously defined
fault models. Therefore, our tripartite evaluation considers many factors relevant for
correct and efficient sensor node fault detection.

First, we will present our self-developed sensor node platform, the ASN(x), in Section 7.1.
The design of the ASN(x) includes several diagnostic measures (i.e., fault indicators)
to support the detection of faults with qualitative node-level information. We have
implemented the entire fault detection approach as discussed in Section 7.2. In Section 7.3,
we present the simulation environment used for the correctness analysis and a benchmark

99

7. Concept Evaluation

with alternative fault detection methods. The lab experiments performed are shown in
Section 7.4 followed by details on our indoor and outdoor WSN testbed in Section 7.5.

7.1 The ASN(x) Platform
Applying fault detection on a node level is crucial to improve the WSN’s overall reliability.
Nevertheless, most related sensor nodes in our literature review enable low-power operation
but do not offer node-level fault detection capabilities. That, however, has significant
drawbacks as presented in Section 4.4. To improve the detection of node-level faults and
allow one to distinguish between faults and data events, we argue that it is inevitable to
incorporate self-diagnostic measures into the sensor nodes’ design.

The development of a sensor node from scratch is a complicated task that takes much
time and entails many pitfalls. For this reason, researchers often utilize ready-to-use
sensor node platforms like the Arduino [6]). As presented in Section 2.2.3.4, various
commercial products from different manufacturers have been introduced over the years.
While these node platforms usually are highly optimized and are proven in practical
use, they are often limited in their usage (i.e., tailored for specific applications), require
specific toolchains or programming languages, are difficult to acquire (limited availability
on the market) or are too expensive (refer to Table 2.1). Additionally, several custom
sensor nodes have been used by researchers in the literature. However, most of them
are not publicly available, use obsolete components, or lack support (especially after the
corresponding research projects ended). As a result, finding a suitable platform for WSN
deployments is often not easy but is necessary for practical research.

Based on the concept of fault indicators that we initially proposed in [5] and our findings
on efficient sensor node design in [6], we developed a new sensor node platform named
AVR-based Sensor Node with Xbee radio, or short ASN(x), that is completely open-
source1 and free to use2. As the name implies, the ASN(x) is based on an Atmel AVR
MCU that commonly employ a modified 8-bit Harvard reduced instruction set computer
(RISC) architecture. It enables node-level fault detection by using specialized self-tests
and diagnostic data, a concept we named active node-level reliability. The detection
is based on the use of fault indicators that allow us to infer information on the state
of health of the sensor node’s operation and, in turn, can indicate possibly erroneous
operational conditions. This additional information can be used to augment existing
WSN-specific fault detection approaches (centralized as well as distributed) to improve
the fault detection rate and, most importantly, to enable the distinction between data
anomalies caused by rare events and fault-induced data corruption. Thereby, the fault
indicators require only a justifiable resource overhead to keep the hardware costs as
well as the energy consumption at a minimum while significantly improving the WSN’s
reliability. Security on the device and communication level was not in the focus of our

1The ASN(x) is available at https://github.com/DoWiD-wsn/avr-based_sensor_node.
2Published under the MIT license, see https://choosealicense.com/licenses/mit/.

100

https://github.com/DoWiD-wsn/avr-based_sensor_node
https://choosealicense.com/licenses/mit/

7.1. The ASN(x) Platform

work. However, security and dependability are integrated concepts (cf. [162]); hence,
increased reliability typically also significantly influences security positively.

7.1.1 Design and Components
The ASN(x)3 is a wireless sensor node platform that offers several beneficial features for
sensor nodes as it:

• enables active node-level reliability by incorporating self-check capabilities,
• offers an energy-efficient operation especially suitable for monitoring applications,
• is versatile regarding its usage (i.e., modular expandability),
• is based on current components that are highly available on the market,
• is comparably cheap (less than $50 per node including the radio), and
• is completely open-source published on Github under the MIT license.

As depicted in Figure 7.1, the ASN(x) incorporates the basic components of a wireless
sensor node presented in Section 2.2.2 (see also Figure 2.3), that are:

• a processing unit (see Section 7.1.1.1),
• a sensing unit (see Section 7.1.1.2),
• a power unit (see Section 7.1.1.3), and
• a transceiver unit (see Section 7.1.1.4).

Aside from an onboard temperature sensor (TMP275), the ASN(x) can be freely extended
with application-specific sensors via extension headers with several general-purpose
input/outputs (GPIOs), two one-wire interface (OWI) connectors with separate data
lines, and two two-wire interface (TWI) connectors (i.e., I2C). The ASN(x) can be easily
programmed via a 6-pin AVR in-system programming (ISP) connector. Additionally, for
timestamping purposes or to have an external wake-up source for the MCU, a PCR85263A
low-power RTC is available on the sensor node. Nevertheless, one of the essential features
of the ASN(x) are the self-check measures added to the design to allow node-level fault
diagnosis as presented in Section 7.1.2. The particular units, their components, and their
characteristics are described in the following.

7.1.1.1 Processing Unit

The core of the ASN(x) forms the ATmega1284P, a high-performance 8-bit AVR RISC-
based MCU with rich on-chip peripherals. It has 128 kB ISP flash memory, 16 kB SRAM,
and 4 kB EEPROM. The ATmega1284P can be clocked either by the internal 8 MHz
RC oscillator or an external clock source with up to 20 MHz. In the ASN(x), the MCU
is clocked via an external 4 MHz crystal oscillator. As the MCU can execute most
instructions in a single clock cycle, the processor runs almost 4 million instructions per

3The information in this thesis refers to the hardware revision v1.5 (2022-02) of the ASN(x).

101

7. Concept Evaluation

additional units

communication unit
sensing unit

TMP275

MCU ADCATmega1284P

processing unit

AVR ISP

PCF85263A RTC

self-diagnostics

ASN(x)
Digi XBee 3

power unit TPS63031 2x AA battery

Figure 7.1: Basic components of the ASN(x) sensor node platform

second (MIPS). The ATmega1284P’s operational temperature range is -40 up to +85 ◦C,
which makes it usable for indoor and (most) outdoor applications. Additionally, it offers
many on-chip peripherals such as a 10-bit ADC with eight input channels, 8- and 16-bit
timers, and several communication interfaces (i.e., two USART, one SPI, and one TWI)
while requiring only a minimal amount of external (passive) components. We found
that having two USART interfaces is beneficial for sensor nodes as one is often used to
communicate with the radio transceiver, and a second one is helpful when developing
and debugging the node’s software. Also, the ASN(x) has two user LEDs that can be
physically disconnected if not needed to save energy.

To upload the node software onto the MCU, the 6-pin AVR ISP connector can be used. It
is connected to the MCU’s SPI and allows writing data to the ISP flash memory. However,
a programmer to connect the ASN(x) with the host computer is needed, which is available
for around $20. Alternatively, a bootloader could be used that allows uploading new
programs via USART like it is done with most Arduino boards. Such a bootloader would
occupy a certain amount of flash memory (e.g., 500 bytes in case of an optiboot-based
bootloader4) but would allow to easily update the sensor node’s software with just a
serial connection (e.g., via an FTDI universal serial bus (USB)-to-serial adapter).

One of the essential characteristics of an MCU to be used in wireless sensor nodes is
its power consumption and the availability of suitable power saving modes (i.e., sleep
modes). The ATmega1284P provides six different software-selectable power saving modes
with varying domains of clock remaining active and other wake-up sources for the MCU.
In the most power-saving mode, the power-down mode, the external oscillator is stopped;
only the watchdog timer (WDT) (if enabled) continues to operate. Since almost the
entire MCU core is disabled, only an external event such as an external interrupt, an
TWI address match, or a reset (either external, brown-out, or initiated by the WDT)
can wake the MCU up from this mode. The power consumption of the MCU can be
further decreased by deactivating the WDT and the brown-out detector. Additionally,
the power consumption is affected by the external (passive) wiring.

4For more information on optiboot, we refer to https://github.com/Optiboot/optiboot.

102

https://github.com/Optiboot/optiboot

7.1. The ASN(x) Platform

As sensor nodes in environmental monitoring applications are usually active for a short
time and spend the rest of the time in a sleeping state, a reliable wake-up source allowing
for intervals in the granularity of minutes up to a few hours is needed. For this purpose,
an external RTC is commonly utilized that generates an external interrupt for the MCU
after a defined period. For the ASN(x), we included a PCF85263A low-power RTC that
can be operated either as a calendar-optimized clock or as a stopwatch (i.e., an elapsed
time counter). The stopwatch mode is most suitable to generate a periodic wake-up
signal (i.e., external interrupt) where the desired interval can be easily configured. The
PCF85263A is clocked by an external 32.768 kHz quartz crystal. However, it is of utmost
importance to ensure that the interrupt generated by the RTC reliably wakes up the
MCU (i.e., proper RTC and MCU configuration). Otherwise, the node may end up in a
state where it never wakes up from the power-down mode again.

7.1.1.2 Sensing Unit

The ASN(x) has an onboard TMP275 low-power temperature sensor connected via
TWI/I2C. It enables temperature measurements for ambient temperatures between -40
and +125 ◦C with an accuracy of ±1 ◦C over the full range and ±0.5 ◦C for temperatures
between -20 and +100 ◦C, respectively. The conversion resolution can be configured in
software between 9-bit (0.5 ◦C granularity with 27.5 ms typical conversion time) and
12-bit (0.0625 ◦C granularity with 220 ms typical conversion time). Additionally, it can
be configured for a one-shot temperature measurement mode where the sensor performs
one conversion on demand and remains in a low-power state for the rest of the time.

Since the ASN(x) is meant to be a generic platform for monitoring applications, however,
the sensor node provides interfaces for various types of sensors rather than having
several sensors mounted on the PCB. Thereby, the costs are kept to a minimum as no
unused sensors are included, and similarly, the power consumption is not burdened by
mounted but unneeded sensors. Depending on the application, the sensors required can
be connected to the available pin headers offering GPIOs (9x), ADC inputs (6x) as well
as digital interfaces such as USART (1x), SPI (1x), OWI (2x), and TWI (2x). To connect
the sensors, either cables connected to the pin headers can be used or a sensor add-on5

can be developed. The latter is beneficial if numerous nodes with the same set of sensors
have to be deployed.

Also, some of the self-diagnostic measures (i.e., fault indicators) are sensorial. However,
since their primary purpose is node-level fault detection rather than actual sensor value
monitoring/reporting, we will specifically discuss them in Section 7.1.2.

7.1.1.3 Power Unit

As shown in Table 2.1, most of the available sensor nodes are directly powered by
(two AA) batteries or use linear regulators. Directly supplying the sensor node does not
need any additional hardware for voltage regulation which saves costs and does not add

5An ASN(x) add-on template is provided at https://github.com/DoWiD-wsn/asnx_addon_template.

103

https://github.com/DoWiD-wsn/asnx_addon_template

7. Concept Evaluation

any extra power dissipation. However, this option entails the hazard of undervolting of
the components by a depleting battery that can result in severe soft faults, as we have
analyzed in [4]. This threat is removed by using a linear regulator to ensure a stable
supply voltage at the cost of bad energy efficiency. Those regulators convert the voltage
surplus to heat. Additionally, linear regulators only work as long as the input (battery)
voltage exceeds the desired supply voltage. If the sensor node is supplied with two AA
batteries resulting in a nominal voltage of 3 V, a supply voltage of 3.3 V can not be
realized with a linear regulator.

For these reasons, we employed a single inductor buck-boost DC/DC converter with a
fixed output voltage of 3.3 V in our ASN(x), more specifically, the TPS63031. Due to its
buck-boost capability, a wide input voltage range of 1.8 to 5.5 V is supported with an
input-to-output efficiency of above 65 %. Thus, the input voltage range perfectly fits the
voltage range of two AA batteries/accumulators but also offers the possibility to attach
other forms of energy sources as long as they do not exceed 5.5 V.

The energy efficiency of the TPS63031 mainly depends on two factors, namely the input
voltage and the output current. Regarding the former, the DC/DC converter operates
more efficiently in buck mode, that is, in cases where the input voltage is higher than
the output voltage. When supplied with two AA batteries, the TPS63031 is operated in
boost mode that offers a slightly worse efficiency that is still above 65 % and, thus, much
better than a linear regulator-based solution.

Concerning the output current, the TPS63031 can provide up to 500 mA in boost mode
and even up to 800 mA in buck mode when operated in normal operation mode. Such
high values are rarely needed on sensor nodes. For output currents below 100 mA, the
DC/DC converter offers a power-save mode. In this mode, the converter is operated
asynchronously and stops whenever the output voltage is at or above its nominal value.
Only if the output voltage drops below its nominal value, the converter is started and
ramps up the output voltage for one or several pulses. For an analysis and discussion of
the efficiency of the converter over the full battery-powered supply range as well as the
effects of the power-save mode on the node’s operation, we refer to [8].

7.1.1.4 Transceiver Unit

The ASN(x) has a 20-pin socket with a pin assignment commonly used in XBee through-
hole technology (THT) modules, whereby not all signals are connected to the MCU. In
the current version of the ASN(x), the USART and the SPI signals are connected as well
as the two pins responsible for controlling the pin-sleep functionality, that is, the sleep
request and the sleep indication pins.

Initially, the ASN(x) was designed for using a Digi XBee 3 RF module, hence, the “(x)”
in its name. The module supports different networking protocols (i.e., Zigbee, IEEE
802.15.4, and DigiMesh), where Digi provides a corresponding firmware for each protocol.
For the ASN(x), we currently use the Zigbee firmware to establish a Zigbee 3.0 network.

104

7.1. The ASN(x) Platform

The Xbee 3 module additionally has a BLE interface that can be activated for debugging
or configuration purposes.

However, the XBee modules’ 20-pin footprint and pin layout have become a standard
design. Today, numerous modules featuring different RF technologies are available in the
“XBee” (or sometimes simply “Bee”) layout, such as the Core2530 module6 with a TI
CC2530F256 Zigbee radio. For this reason, the “(x)” in ASN(x) may also be seen as an
abbreviation for “eXtensible” as the sensor node can be easily extended with any radio
transceiver available in the XBee layout. The same concept is also used, for example, in
the Libelium Waspmote to support a wide range of different applications and use cases
with a single hardware platform (cf. [59]).

7.1.2 Node-level Indicators

To the best of our knowledge, the ASN(x) is the first sensor node that enables active node-
level reliability by including node-level fault indicators. Fault indicators are enhanced
self-diagnostic measures added to the sensor node design, both in hardware and in
software as presented in Section 6.2. The diagnostic information obtained from the fault
indicators allows us to infer qualitative data on the sensor node’s operation state. In
other words, they indicate circumstances that facilitate erroneous behavior. These simple
self-checks offer an excellent way to enhance the node’s reliability while only requiring
minimal resource overhead. Sensor data reported in times of active fault indicators are
more likely to be corrupted (or even arbitrary) than data acquired in phases of dormant
fault indicators.

We denote our fault indicators with the Greek letter χ (small chi) due to the name
similarity of our fault indicators with indicator functions used in mathematics that are
commonly represented with the letter χ. In the current version of the ASN(x), eight
different fault indicators are implemented as listed in Table 7.1. Each indicator targets
a different component or operational aspect of the sensor node, as described in the
following. These diagnostic data can either be checked on the sensor node and/or be
sent to other network participants to establish a distributed fault-detection scheme. As
presented in Section 6.2, the fault indicators can be categorized based on whether they
are inherently available on the node (i.e., software metrics) or can be artificially added
(i.e., additional hardware). However, the possibilities of fault indicators are not limited
to the set currently implemented on the ASN(x). There are further sources of node-level
data that could be leveraged for improved fault detection such as those mentioned in
Section 6.2. In [379], also composed indicators are utilized that allow to link couples
of indicators by a given relation. Such sophisticated indicators offer a promising future
research direction.

6For more information on the Core2530 module, see https://www.waveshare.com/wiki/Core2530_(B).

105

https://www.waveshare.com/wiki/Core2530_(B)

7. Concept Evaluation

Table 7.1: Overview of the available ASN(x) fault indicators

Indicator Category Section
χNT Node temperature monitor Artificial generic 7.1.2.1
χV S Supply voltage monitor Inherent component-specific 7.1.2.2
χBAT Battery voltage monitor Artificial generic 7.1.2.3
χART Active runtime monitor Inherent component-specific 7.1.2.4
χRST Reset monitor Inherent component-specific 7.1.2.5
χIC Software incident counter Inherent common 7.1.2.6
χADC ADC self-check Artificial generic 7.1.2.7
χUSART USART self-check Artificial component-specific 7.1.2.8

7.1.2.1 Node Temperature Monitor

The first fault indicator is derived from temperature measurements of the ASN(x)’
components, in particular, the MCU’s surface temperature, the board temperature, and
the radio transceiver core temperature. It is denoted as χNT where “NT” stands for
“node temperature”.

The MCU’s surface temperature (TMCU) is measured via a 103JT-025 thin-film negative
temperature coefficient (NTC) thermistor affixed to the MCU’s surface. To get the
respective temperature, the thermistor is used in a voltage divider in combination with
a 10 kΩ balance resistor placed on the high side (i.e., connected to the supply voltage),
and the thermistor is located on the low side (i.e., connected to ground). The voltage
divider midpoint is connected to the MCU’s ADC. In order not to waste energy, the
voltage divider can be enabled and disabled via an N-channel metal-oxide-semiconductor
field-effect transistor (MOSFET) controlled by a GPIO. We use the Steinhart-Hart
equation to calculate an approximation of the thermistor’s temperature based on the
ADC’s conversion result and the thermistor’s characteristics (i.e., beta value).

The board temperature (TBRD) is provided by the onboard TMP275 temperature sensor
connected to the MCU via TWI. In our setup, we configured the sensor to provide us
with temperature measurements with a 10-bit resolution (0.25 ◦C granularity) that takes
approximately 55 ms for single conversions. As a result, it offers a good balance between
measurement accuracy and the required conversion time.

The radio transceiver core temperature (TT RX) of the XBee 3 module is available as part
of the diagnostic information provided by the module. It can be read from the module
using AT commands (i.e., Hayes commands) issued via the USART interface.

All three temperature measurements are taken from places on the sensor node inside the
node’s housing. Consequently, all three measurements should be pretty similar. While
the absolute value may differ (i.e., have an offset of a few degrees Celsius), the trends of
the temperature measurements should have a negligibly small difference as we expect the
measurements to react to external influences equally. Therefore, the node temperature

106

7.1. The ASN(x) Platform

monitor fault indicator χNT is defined as the standard deviation of the changes of the
three temperature measurements considering two consecutive measurements denoted as
ΔTMCU , ΔTBRD, and ΔTT RX , respectively. χNT is calculated with:

χNT =

�
(ΔTMCU − µNT)2 + (ΔTBRD − µNT)2 + (ΔTT RX − µNT)2

3 (7.1)

where µNT is the mean value of the temperature readings calculated as:

µNT = ΔTMCU + ΔTBRD + ΔTT RX

3 . (7.2)

Thereby, a higher value of χNT indicates a higher probability of experiencing a faulty sys-
tem condition. So far, we use a uniform weighting of the single temperature measurements.
However, a future analysis may suggest using different weights.

Regarding the fault indicator categorization, the node temperature monitor implemented
on the ASN(x) requires additional hardware (i.e., TMP275 temperature sensor, thermistor
circuit) that can be, however, added to almost every sensor node. For this reason, this
fault indicator belongs to the artificial generic indicators.

Some MCUs such as the ATmega328P have a core temperature sensor implemented into
their ADC peripheral and, thus, would allow acquiring the MCU core temperature without
the need of additional hardware. In such a case, a simpler χNT could be implemented
as an inherent component-specific indicator by considering the MCU and radio core
temperatures only.

7.1.2.2 Supply Voltage Monitor

Our previous analysis [5] has shown that aside from the ambient temperature, especially
the supply voltage of the sensor node has a significant influence on its proper operation.
Consequently, our second fault indicator χV S considers the supply voltage on the sensor
node measured by the MCU and the XBee independently.

The supply voltage level of the MCU can be acquired without the need for additional
hardware or circuitry using the on-chip ADC as described in Microchip’s application
note AN2447 [380]. Similar to the temperature, the supply voltage level of the XBee is
provided as a diagnostic value retrievable via an AT command. For this reason, χV S is
an inherent component-specific indicator as the measurements are inherently available
but are specific to the hardware components used.

The onboard DC/DC converter regulates the supply voltage and, in a fault-free operation,
should constantly be 3.3 V (with minor fluctuations). We derive χV S as the absolute
difference between the measured MCU supply voltage (VMCU) and the radio transceiver
supply voltage (VT RX) with:

χV S = |VMCU − VT RX | (7.3)

where the probability of a faulty condition is directly proportional to the value of χV S .

107

7. Concept Evaluation

7.1.2.3 Battery Voltage Monitor

Aside from the supply voltage, also the battery voltage offers vital information on the
node’s state of operation. Thereby, especially the deviation between several consecutive
measurements and the rate of change are essential characteristics. We added a voltage
divider consisting of two 10 kΩ resistors between the battery input voltage (before the
DC/DC converter) and ground-level to measure the battery voltage. The midpoint of
the voltage divider is connected to the MCU’s ADC. As two equal resistor values are
used, the highest voltage level of the midpoint equals

VADC,max = VBAT,max · R2
R1 + R2

= VBAT,max

2 = 2.75 V (7.4)

and, thus, stays below the maximum ADC input voltage of 3.3 V as long as the battery
voltage does not exceed the maximum of 5.5 V. Due to the voltage divider ratio, the
voltage level applied to the ADC is half the level of the battery voltage. Therefore, the
corresponding battery voltage can be calculated with:

VBAT = VADC · 2 · VV S

ADCmax
(7.5)

where VV S is the supply voltage level (i.e., 3.3 V) and ADCmax is the maximum conversion
result depending on the ADC’s resolution (1023 in case of a 10-bit resolution). The
voltage divider can be also be enabled/disabled via an N-channel MOSFET.

We defined the battery voltage monitor fault indicator χBAT to be the standard deviation
of N consecutive measurements7 of the battery voltage as:

χBAT =

���� 1
N

N�
i=1

(VBAT,i − µBAT)2 (7.6)

where µBAT is the mean value of the measurements calculated as:

µBAT = 1
N

N�
i=1

VBAT,i . (7.7)

A higher value of χBAT represents high deviations between consecutive measurements
and, therefore, indicates possibly erroneous circumstances.

An additional voltage divider to measure the battery voltage is used for the battery
voltage monitor that can, however, be added to almost every sensor node. Therefore,
this indicator counts as an artificial generic indicator.

7For the implementation of indicators involving the calculation of the standard deviation of consecutive
values, we suggest using Welford’s online algorithm [381] as presented in [382, p. 232].

108

7.1. The ASN(x) Platform

7.1.2.4 Active Runtime Monitor

The active runtime fault indicator monitors the length of the period the sensor node is
active. The active phase follows pre-defined sequential processing of specific tasks and
should be of constant length in every iteration. Significant deviations in the length of
the active phase can indicate possibly erroneous circumstances.

In the current version of the ASN(x), the active runtime monitor indicator χART is
realized using the 16-bit timer1 peripheral of the MCU. The timer is started as soon as
the node wakes up and stopped shortly before entering power-down mode. The counter
value after stopping the timer is directly proportional to the length of the active phase.
In our implementation, we configured the timer module to run with a prescaler of 1024,
resulting in a tick length of 256 µs for a clock frequency of 4 MHz. The time spent in the
active phase equals the counter value multiplied by the length of a tick. Therefore, the
measurable time interval of the 16-bit timer is [256 µs, 16.78 s]. If other time intervals
(e.g., shorter or longer) are needed, the timer’s prescaler needs to be adjusted.

As we expect the period of the active phase to be of more or less constant length, we
define χART as the standard deviation of N consecutive measurements (measured in
milliseconds). Thereby, we consider the magnitude of the difference rather than the
absolute values, hence, we calculate χART as the common logarithm of the standard
deviation with:

χART = log10

���� 1

N

N�
i=1

(tactive,i − µART)2

 (7.8)

where tactive,i is the length of the i-th measurement and µART is the mean value of the
measurements calculated as:

µART = 1
N

N�
i=1

tactive,i . (7.9)

To avoid negative values of χART , the logarithm is only calculated in case the standard
deviation is higher than one. In case the standard deviation is smaller or equal to one,
µART is defined to be zero as the difference is negligibly small. Again, a higher value
refers to a higher probability of abnormal circumstances possibly caused by faults. In
our implementation, we used five consecutive values (N = 5) for the evaluation of χAT .

As only on-chip resources of the MCU are used, χART refers to an inherent component-
specific indicator. It could be argued that it is an inherent common indicator as almost
all MCUs have timer modules; however, it still depends on the MCU and, thus, is
component-specific.

7.1.2.5 Reset Monitor

A node reset is usually triggered by the hardware or software when a proper operation
can not be continued anymore (such as a watchdog reset). Therefore, a node reset is a

109

7. Concept Evaluation

clear sign of an unsafe operational condition often originating from faults. While the node
may continue its proper operation after a reset, the probability of faulty circumstances is
higher after a reset, especially if several resets happen during a short period. Additionally,
the reason for the reset is relevant in deciding how probable faulty conditions are.

As a consequence, we implemented a reset monitor indicator χRST that is based on the
number of resets happening in a certain timespan and the sources of the resets (e.g., the
MCU module causing the reset). Thereby we leverage the 8-bit MCUSR available on
most AVR MCUs. It provides information on which source caused the latest reset. The
available sources indicated by corresponding flags in the MCUSR are:

• bit 0: power-on reset,
• bit 1: external reset (via the reset pin),
• bit 2: brown-out reset (in case the brown-out detection is enabled), and
• bit 3: watchdog reset.

We defined that the probability of faults is higher after a watchdog reset than after a
power-on reset. Correspondingly, we use the bit position of the flags to weight the reset
sources, where a higher weight refers to a higher probability of impaired operation. The
ATmega1284P also has a flag for resets caused by the Joint Test Action Group (JTAG)
interface (bit 4), but as we do not use JTAG we ignored it. Bits 5 to 7 are not used
and always read as zero. However, the MCUSR needs to be cleared manually to detect
whether new resets have happened since it was last read.

Aside from the reset source, the amount of resets during a specific period is also considered.
For this reason, we implemented χRST as a function based on its previous value, the
current value of the MCUSR, and a time-dependent exponential decay with a pre-defined
rate. In each iteration (active phase), the value of χRST is updated using the following
equation:

χRST,n = χRST,n−1 · λRST + MCUSR (7.10)

where λRST is the inverse decay rate and the initial value χRST,0 = 0. In our implemen-
tation, we defined λRST as 0.92, resulting in a decay of 8 % of the previous value per
iteration. However, to keep the value of χRST during a reset, its value is written to the
EEPROM. Since the EEPROM has a limited number of write cycles, the value is only
updated in the EEPROM if the current value differs from the previous one.

The χRST is categorized as an inherent component-specific indicator as it requires the
availability of EEPROM and reset-related information (such as the MCUSR in case of
AVR MCUs), but does not need additional hardware or circuitry.

7.1.2.6 Software Incident Counter

To monitor the stability of the software execution, we defined an incident counter indicator
χIC that collects information on how many software function calls failed during a specific
period. This counter, however, relies on the availability of corresponding function return

110

7.1. The ASN(x) Platform

values expressing whether the function call was successful or failed. For this reason,
we implemented the majority of our software modules in a way that they provide such
information; that is, if the processing was successful, a pass is returned. In case of
problems (e.g., function timeouts, incorrect responses, failed value checks) the functions
return fail.
Based on these return values, we defined χIC as

χIC,n =

����
χIC,n−1 + 1, if a function returned with fail
χIC,n−1 − 1, if pass AND χIC,n−1 > 0
0, otherwise

(7.11)

where the initial value is χIC,0 = 0. Thereby, a high counter value indicates a rather
unsafe state of operation in which faults are more likely to occur. However, if χIC exceeds
a predefined threshold, the sensor node is reset.
As the incident counter indicator χIC does not require any additional hardware and has
no dependency on the components used, it belongs to the inherent common indicators
that can be added to any sensor node.

7.1.2.7 ADC Self-Check

Our previous research [4] revealed that especially the MCU’s ADC and USART modules
are susceptible to faults caused by fluctuations in the supply voltage and/or temperature.
These modules, however, are essential for the correct operation of the sensor node, and
thus, checking their proper function during runtime is crucial.
To check the ADC module’s operation, we added a voltage divider with a fixed ratio to
the ASN(x) design. The voltage divider is placed between the supply rail and the ground
potential. Its midpoint is connected to the MCU’s ADC. As the ratio of the voltage
divider is fixed, the ADC’s conversion result of the respective channel should be stable
(aside from minimal conversion-related fluctuations).
In the current version of the ASN(x), two 10 kΩ resistors are used. Again, the voltage
divider can be enabled/disabled via an N-channel MOSFET to save energy. The voltage
level at the ADC input depends on the resistor values (R1 = R2 = 10 kΩ) and equals:

VADC,CH0 = VV S · R2
R1 + R2

= VV S

2 . (7.12)

The expected conversion result of the ADC (10-bit resolution and the analog reference
voltage VAREF connected to VV S) equals:

ADCexpected = ADCmax

VAREF
· VADC = 210 − 1

VV S
· VV S

2 ≈ 511 . (7.13)

The ADC self-check indicator χADC is now defined as the deviation of the actual conversion
result from the expected value and is calculated with:

χADC = |ADC − ADCexpected| (7.14)

111

7. Concept Evaluation

where larger values indicate faulty circumstances. Since this indicator requires an
additional voltage divider that can, however, be added to any sensor node with an ADC,
it is an artificial generic indicator.

7.1.2.8 USART Self-Check

Similarly to the ADC self-check, we also implemented a way to evaluate the USART’s
operation for correctness. Thereby, we leverage the availability of two USART modules in
the ATmega1284P, named USART0 and USART1. USART0 is used to communicate with
the XBee radio module, and USART1 can be used for debugging during the development
phase. After deployment, the USART1 can be used to monitor the USART0 interface by
employing a loopback test. To do so, the ASN(x) has two open solder jumpers that can
be bridged to form a loop. After that, every time data is sent via USART0, the same
data should arrive at USART1. Consequently, the USART self-check indicator χUSART

is defined as:

χUSART =
||DT X ||�

i=1
ΔT XRX,i (7.15)

with

ΔT XRX,i =
�

1, if DRX,i = DT X,i

0, otherwise
(7.16)

where DRX refers to the array of bytes received by USART1 and DT X refers to the array
of bytes transmitted by USART0, both regarding the data of one message transmission.
Thus, it expresses the number of bytes that have not been correctly received by the
loopback interface (i.e., USART1).

The implementation of χUSART requires the availability of two USART interfaces
(component-specific) and an external connection between both (loopback; additionally
added). Therefore, χUSART counts as an artificial component-specific indicator.

7.1.2.9 Indicator Normalization

The fault indicators presented above have different value ranges that hamper an automated
analysis. For this reason, we applied feature scaling to the fault indicators to use them
in our dDCA-based fault detection system as described in Section 6.3. In addition, the
resulting real numbers are limited to a maximum value of one to prevent an overreaction
of the indicators. Consequently, the scaled fault indicators are calculated as:

χ�
i = min

	
χi

χi,max
, 1

(7.17)

where χi are the original fault indicators presented above, χi,max are the divisors of the
scale factors, and χ�

i are the resulting normalized fault indicators (χ�
i ∈ R | 0 ≤ χ�

i ≤ 1).
Table 7.2 provides a list of the fault indicators and scale factors used in our approach.
These scale factors are derived from prior empirical analyses using experiments and

112

7.1. The ASN(x) Platform

simulations. In this context, we combined the insights from observations of our practical
testbeds with the results of directed lab experiments to find meaningful thresholds for
the value normalization.

Table 7.2: Scale factor divisors for normalized fault indicators

Indicator Scale factor divisor
Node temperature monitor (χNT) χNT,max = 5 ◦C
Supply voltage monitor (χV S) χV S,max = 1 V
Battery voltage monitor (χBAT) χBAT,max = 1 V
Active runtime monitor (χART) χART,max = 5
Reset monitor (χRST) χRST,max = 25
Software incident counter (χIC) χIC,max = 10
ADC self-check (χADC) χADC,max = 25
USART self-check (χUSART) χUART,max = 5

As an example, we performed several experiments where we controlled the ambient
temperature (maximum values and rate of change) and monitored the temperature
readings used for χNT . We found that the particular sensors reacted differently fast
to the temperature changes. However, these differences mostly stayed within a specific
range. Consequently, a temperature threshold of 5 ◦C for the normalization of χNT was
found to (i) not cause an overreaction in case of normal operation and (ii) provides a
sufficiently large indication in case of abnormal conditions (i.e., operation). Analogously,
also the voltage and time thresholds for χV S , χBAT , and χART have been derived.

The scale factor divisors of χRST , χIC , and χUSART are based on abstract simulations of
the expected indicator behavior and their reaction to specific situations in combination
with a usual update interval in minute granularity. When defining the divisors for
normalization, it has to be minded that the reset monitor (χRST) is significantly influenced
by the application’s update interval, and the software incident counter should be chosen
in relation to the complexity of the node software (i.e., number of function calls).

For χADC , the value of the scale factor divisor depends on the quality of the used ADC.
The more stable the ADC performs, the lower the threshold can be set. Thereby, the
accuracy is commonly expressed as the number of least significant bit (LSB) affected
by internal noise and inaccuracies. In our case, the ADC of the ATmega1284P has an
absolute accuracy of ±2 LSB [383, ch. 21]. Therefore, the ADC’s conversion result can
have a fluctuation of up to 1.5% in regular operation. We added a safety margin on top
and defined the threshold as 5% of the ADC’s maximum value. This threshold was then
evaluated and confirmed by experiments in our lab setup.

113

7. Concept Evaluation

7.2 Prototype Implementation

We have implemented our entire fault detection approach8 according to the procedure
depicted in Figure 6.1. Concerning the architecture of the WSN, we assume a clustered
structure where every cluster consists of precisely one cluster head (CH) and a variable
number of sensor nodes (SNs). Additionally, there is one dedicated sink node (SK) respon-
sible for storing the reported sensor data and providing some basic data visualizations.
The particular implementation of the approach on each of these participants is presented
in the following in a top-down manner (i.e., SK, CH, and SNs).

7.2.1 Use Case

The use case for our implementation was a WSN used in a smart garden system. Such
a system is used to monitor specific physical conditions related to plant growth; thus,
it presents an environmental monitoring system (cf. Section 2.1.1). It aims to increase
the plants’ yield by optimizing the conditions that impact plant growth. Nevertheless,
our work focuses on the sensory part of the smart garden application. Actuators such as
irrigation and shadowing systems are not in the scope of our work.

Several physical quantities directly influence plant growth. The most important ones are
(i) air temperature and humidity, (ii) soil temperature and moisture, (iii) light intensity,
and (iv) nutrient content of the soil. In our implementation, we implemented sensory
information on the first two points, namely air temperature and relative humidity as well
as soil temperature and moisture level. Other quantities can easily be included by adding
corresponding sensors to the sensor nodes.

However, the smart garden only acts as a use case for our fault detection approach.
Therefore, we are interested in the system behavior rather than the information acquired.
The sensor data are collected, but their analysis and knowledge gained from these are
not considered in our work.

7.2.2 Sink Node

The sink node (SK) provides the central point for data storage in our network. Its tasks
included hosting the database (DB), providing data visualization, and making the data
accessible for possible further processing (e.g., data analysis). In our setup9, we used a
Raspberry Pi 3 Model B+.

The SK additionally provided Python 3 scripts to analyze the modified dDCA processing
characteristics by running it on pre-recorded data either provided by the DB (see
Section 7.3) or by the lab experiments (refer to Section 7.4).

8The resources are publicly available as summarized at https://dowid-wsn.github.io/ftdca_landing/
9Detailed information on the setup is available at https://github.com/DoWiD-wsn/RPi_sink_node.

114

https://dowid-wsn.github.io/ftdca_landing/
https://github.com/DoWiD-wsn/RPi_sink_node

7.2. Prototype Implementation

7.2.3 Cluster Head
The cluster head (CH) acted as the gateway between the sensor nodes in its cluster
and the rest of the WSN. As illustrated in Figure 7.2, its main tasks are receiving the
messages from the SNs and storing the data in a DB. Additionally, the CH performed
the modified dDCA to classify the received data as described in Section 6.4 (depicted as
dark boxes in Figure 7.2). Consequently, it received the data from the sensor nodes via
Zigbee, assessed the data, and forwarded the use case-related data in combination with
the class label to the SK via WiFi. Our CH was realized with a Raspberry Pi 3 Model
B+ extended with a Digi XBee 3 radio.

start

initialize modules

startup

delay

yesnetwork / DB
connected?

no

timeout?

yes

no

exit

yes

message
received?

no

message
format ok?

no

yes

get antigen

get context value

update DC population

classify sensor node

store date in DB

main loop

exit

signal handler

close network con.

close DB con.

SIGINT

Figure 7.2: Simplified cluster head software flowchart

We implemented the CH’s functionality as a Python 3 script10 which the cluster head
continuously executed. The script is executed until it is terminated by a process signal
(i.e., keyboard interrupt). Concerning our modified dDCA’s parameters, we found that
M = 3, N = 10 and qsen = 0.1 attained the best results in previous experiments. The
dDCA-based assessment is run centrally on the cluster head for each cluster, where only
the indicators of each particular SN are considered. In a future version, the safe values
of the SN’s neighbors could be incorporated to improve the sensor node fault detection.

7.2.4 Sensor Nodes
Our SNs are based on the ASN(x) platform which we initially presented in [8] (see
also Section 7.1). All sensor nodes were programmed in C-language on the bare metal
(without an OS) following the procedure shown in Figure 7.3. Again, the dark boxes
show the fault detection-specific parts of the software. Each sensor node measured the
environmental conditions (use case data) and performed the node-level diagnostics (see
Section 6.2) based on the fault indicators presented in Section 7.1.2.

If the sensor node software runs into an erroneous situation not resolvable by the software,
the sensor node is reset. Since the AVR MCU does not offer a software reset, we exploited
the watchdog timer (WDT) for this purpose. In case the node shall be reset, the WDT

10For more information, we refer to https://github.com/DoWiD-wsn/RPi_cluster_head/tree/dca.

115

https://github.com/DoWiD-wsn/RPi_cluster_head/tree/dca

7. Concept Evaluation

start

initialize modules

startup

node reset

WDT_INT

yesnetwork
connected?

no

enable WDT

timeout?

yes

no
delay

(re)enable modules

query sensors

calculate indicators enable WDT

timeout?

yes

transmit data

disable modules

yesnetwork
re-connected?

no

no

MCU sleep enable

delay

main loop interrupt service routines

EXT2_INT

MCU sleep disable

run self-diagnostics

Figure 7.3: Simplified sensor node software flowchart

is started and the software waits in an endless loop for the WDT to trigger and reset the
MCU (depicted as “WDT_INT” in Figure 7.3).

Every SN forwarded its data in a defined update interval to the CH via Zigbee and
remained power-saving the rest of the time. For the sleep schedule, the onboard RTC is
used which triggers the MCU’s external interrupt periodically with a defined interval
(see “EXT2_INT” in Figure 7.3). All values were converted and stored as fixed-point
numbers with six fractional bits that provide sufficient granularity and resolution for the
respective value ranges to minimize the memory overhead. The use case-related data were
stored as 16-bit and the indicators as 8-bit variables, thus, having ten and two integer
bits, respectively. These data and a local timestamp (incremental message number) were
then transmitted to the cluster head via Zigbee. The local timestamp is used as a simple
means to detect a loss of messages on the CH. Figure 7.4 shows the resulting message
format, including the size of the respective data fields in bits. In the figure, Tair is the
air temperature, Hair is the relative air humidity, Tsoil is the soil temperature, and Hsoil
is the soil moisture level, respectively.

16 64 16

airT
16

airH
16

soilT soilH
16 16

DiagnosticsUse case dataTimestamp

88
D S

Figure 7.4: Sensor node message format

7.3 Simulations
We ran a set of simulations to assess the detectability of faults when using our fault
detection approach. These simulations used pre-recorded, fault-free datasets (in the
following referred to as “base datasets”) in which faults were randomly injected. We
used three different base datasets, each containing data for a period of seven days (see
Section 7.3.1). In addition, we utilized fault signatures identified in our works in [5, 8] as

116

7.3. Simulations

presented in Section 7.3.2. As described in Section 7.3.3, we used a script to inject these
fault signatures into the base datasets randomly. The resulting “faulty” data were then
fed to our approach and the results were assessed.

7.3.1 Base Datasets
The base datasets form a basis for our simulations by providing data from fault-free
operation (i.e., baseline data). We used three base datasets with different characteristics
regarding the behavior of the sensed phenomena to have a broad basis for assessing our
approach’s fault detection capabilities. In the following visualizations of our datasets,
the measured use-case data combined with the monitored node-level diagnostics and
the resulting danger and safe indicator values are shown. The latter were calculated
according to the scheme discussed in Section 6.3. Concerning the use case date, only the
third dataset contains all sensor data discussed in Section 7.2.4; the first two sets neglect
the soil-specific measurements (i.e., the respective data fields contain only zeros).

The first base dataset was recorded from a sensor node in a living space (i.e., indoor
deployment) between 2021-07-04 06:00 and 2021-07-11 06:00. It contains data from 7
days with an update interval of 10 minutes. As visualized in Figure 7.5, a normal diurnal
pattern with minor magnitude is visible in the sensor data. However, no unexpected or
otherwise noticeable occurrences happened during this time, thus, providing a dataset of
a stable environment.

Figure 7.5: Base dataset with a stable indoor environment

Similarly, the second base dataset depicted in Figure 7.6 was gathered from a sensor

117

7. Concept Evaluation

node in an indoor deployment, but this time in an office between 2021-11-22 00:00 and
2021-11-29 00:00. Unlike the first base dataset, this dataset contains sensor data with an
update interval of one minute (instead of the usual 10-minute interval) to also analyze the
effect of the update interval on the detection process. During this week, the sensor node
was operating in a mostly stable environment but with several events in the recorded data
caused by an irregular opening of nearby windows (i.e., airing of the room). Although
these events are small in their magnitude, they provide deviations from normal behavior
that data-centric fault detection approaches could misclassify. This base dataset provides
a good example of the benefit of combining all sensor readings into our safe indicator.
As can be seen in the plot, the safe indicator reacts to significant deviations in both
the temperature and the relative humidity as well as to smaller changes in single data
streams. Consequently, the minor fluctuations in the relative air humidity measurements
that happened on Nov. 24, 25, and 26 also caused a temporary decrease in the safe
indicator value.

Figure 7.6: Base dataset with several events in an indoor environment

In contrast to the first two base datasets, the third one was recorded from a sensor node
in an outdoor deployment during the late summer of 2021. In particular, it shows the
measurements of a sensor node deployed in a raised bed located in Lower Austria. The
data was recorded between 2021-08-12 04:00 and 2021-08-19 04:00 with a 10-minute
update interval. On 2021-08-16 morning, heavy rain started to fall that lasted for several
days. Consequently, the persistent rain caused substantial deviations in the usually
diurnal pattern in the second half of the dataset, as visible in Figure 7.7.

Such substantial deviations are evident anomalies in the sensor data and lead to false

118

7.3. Simulations

Figure 7.7: Base dataset with strong deviations in an outdoor environment

alarms of most related fault detection schemes, especially those focusing on the sensor
data. A detailed discussion of the results regarding the distinction of data events from
node faults provided by our novel fault detection approach can be found in Section 8.1.

7.3.2 Fault Signatures
Aside from the base datasets, our simulation exploits fault signatures identified in our
works on the detectability of sensor node faults (i.e., fault indicators) in [5] and the use of
this information for fault diagnosis presented in [8]. These fault signatures were extracted
from actual fault actions observed on the sensor nodes during our experiments. The fault
signatures contain two kinds of information: (i) the relative change on the sensor data
and (ii) the reaction of the implemented fault indicators caused by the respective fault
model. We identified five distinct fault signatures originating from different components
of the sensor nodes. The visualizations of the fault signatures provided below show the
relative impact of the fault model on the sensor measurements and the respective values
of the eight implemented fault indicators.

The first fault signature illustrated in Figure 7.8 was caused by a bad electrical connection
of the air temperature sensor and the sensor node (i.e., OWI-based sensor). It caused
transmission problems in the serial communication that resulted in the failing of several
functions in the sensor node software (indicated by χIC) and differences in the onboard
temperature measurements (indicated by χNT) probably caused by partial short circuits
in the sensor’s supply rail. The manifestation of this fault in the sensor data was a

119

7. Concept Evaluation

negative offset of the air temperature measurement.

Figure 7.8: Fault signature of a node fault caused by bad sensor connection

As visible in Figure 7.9, the second fault signature influenced both the air temperature
and relative humidity measurements. This fault was caused by water in the sensor node’s
housing that caused partial short circuits in the sensors’ connection. The battery voltage
monitor (χBAT) reacted to this node fault as the short circuits impaired the underlying
voltage measurements.

Figure 7.9: Fault signature of a sensor fault caused by humidity in sensor housing

Similarly, humidity caused partial and temporary short circuits in the supply of the
air temperature sensor (see Figure 7.10). The short circuits occurred in the connection
between the sensor and the sensor node. Consequently, it caused an impact on the sensor
node observable by the fault indicators. In particular, the node temperature monitor
(χNT) and the supply voltage monitor (χV S) indicated the presence of this fault.

Like in the third fault signature, also in the fourth fault signature, humidity causes
partial short circuits, but this time in the supply of the soil-related sensors (i.e., Tsoil

120

7.3. Simulations

Figure 7.10: Fault signature of an air sensor short circuit caused by humidity

and Hsoil). As shown in Figure 7.11, the fault caused deviations in the sensor readings
and a corresponding reaction of several fault indicators.

Surprisingly, although most of the fault signatures captured are related to humidity, all
of them have a distinct impact on the sensor node’s operation. Consequently, different
fault indicators (and combinations of these) reacted to each fault signature.

Figure 7.11: Fault signature of a soil sensor short circuit caused by humidity

In contrast to the other faults, the fifth fault signature presents a type of fault that does
not cause a reaction of any of the fault indicators implemented. The fault shown in
Figure 7.12 originated from humidity inside the soil temperature sensor that did not cause
any observable symptoms outside the sensor. Consequently, also the fault indicators of
the sensor node did not react. Nevertheless, the reported sensor measurements showed
substantial deviations of more than 60 ◦C between two consecutive measurements.

121

7. Concept Evaluation

Figure 7.12: Fault signature of a sensor communication fault caused by humidity

7.3.3 Fault Injection
Using a Python 3 script11, we randomly injected fault signatures into the base datasets.
For this purpose, the script injected a random number of faults at random positions in
the base dataset. Additionally, the injected faults are labeled accordingly. By running
the fault injection script 20 times per base dataset, we acquired 60 datasets12 with unique
characteristics concerning the amount and type of faults injected.

We then executed our modified dDCA on these “faulty” datasets and stored the fault
context derived by our approach (based on CxAg� ; see Section 6.4.4) along with the input
data. Next, we compared these resulting context values with the fault labels stored during
the fault injection to determine the number of TP, TN, FP, and FN. Based on these
numbers, the approach’s sensitivity (i.e., TPR), specificity (i.e., TNR), and accuracy (i.e.,
F-score) were calculated. The simulation results are discussed in Section 8.1.

7.3.4 Benchmark
Based on the simulation data described before (i.e., base datasets and fault models),
we additionally ran benchmarks to compare the detection correctness of our proposed
approach with alternative methods. We applied three state-of-the-art streaming anomaly
detection (SAD) methods on the 60 “faulty” datasets described in Section 7.3.3. In
particular, we used (i) the Exact-Storm method [384], (ii) the isolation forest algorithm
for streaming data (IForestASD) [385], and (iii) the robust random cut forest (RRCF)
method [386]. that are provided by the PySAD package (cf. [387]).

All of these methods support the detection of anomalies in streams of multivariate data.
To do so, they successively build and update their internal model with newly arriving
data instances. Then, an anomaly score is calculated for the given data instance. If this

11For details, see https://github.com/DoWiD-wsn/asnx_analyses/blob/master/dca/README.md.
12Located at https://github.com/DoWiD-wsn/asnx_analyses/tree/dca-central-analysis/dca/results/.

122

https://github.com/DoWiD-wsn/asnx_analyses/blob/master/dca/README.md
https://github.com/DoWiD-wsn/asnx_analyses/tree/dca-central-analysis/dca/results/

7.4. Lab Experiments

score exceeds a defined threshold, the data instance is labeled as anomalous; otherwise,
it is considered correct. We used a threshold of 90%, stating that the probability of the
data instance being normal is less than 10%.

Additionally, we implemented an outlier detection based on the running standard deviation
of the sensor values within a pre-defined window. In this approach, a data instance is
considered anomalous (or faulty) if the absolute value of the resulting standard deviation
is greater than three (i.e., 3σ-based detection).

By performing fault detection using these alternative methods on the same datasets
used for the correctness evaluation of our approach, we provide an objective base for
the effectiveness assessment of our approach. Moreover, we claim that effective sensor
node fault detection needs to include node-level information, considering only the sensor
data is insufficient. To support our claim, we ran a second set of simulations of the
SAD methods where the node-level diagnostics (i.e., danger and safe indicators values)
were added to the multivariate input data instances. The results of our benchmark with
alternative approaches are discussed in Section 8.1.3.

Nevertheless, the provided benchmark serves as a basis for comparison but is not sufficient
to generically demonstrate the superiority of the proposed approach. To support such a
claim, a comparison with more sophisticated anomaly detection solutions and more fault
models would be necessary.

7.4 Lab Experiments
We used a lab experiment setup to further investigate the effects of the supply voltage
and ambient temperature (separate and in combination) on the sensor node’s operation.
Therefore, our lab experiments focused on the two main fault models described in
Section 6.1 (i.e., ambient temperature and supply voltage faults). For this purpose, we
created a lab setup based on our embedded testbench (ETB) (cf. [8]) that provides a
controllable environment for the sensor nodes (see Section 7.4.1). It offers an adjustable
ambient temperature between 25 and 70 ◦C. Concerning the supply voltage, several supply
channels have been used to either supply the sensor node via the battery voltage input
with a voltage between 0 and 5.5 V, or to directly supply the node bypassing the voltage
regulator (i.e., DC/DC converter) where voltages between 0 and 3.3 V were applied.
We used Python scripts to control the environmental conditions and automate the test
procedures, thus, making our experiments repeatable and reproducible (see Section 7.4.2).

With the lab experiments, we analyzed the behavior of an actual sensor node and,
respectively, our approach to external effects (i.e., environmental events) and internal
disturbances such as (partial) short circuits that could be caused by humidity inside the
node’s housing. Therefore, we performed a kind of physical fault injection by forcing
the sensor node into conditions that endanger its proper functioning. We then manually
analyzed the results to determine how the approach reacts to proper environmental events
in contrast to situations resulting in node faults (i.e., fault-induced deviations).

123

7. Concept Evaluation

With our directed lab experiments, we extended the correctness analysis of our simulations
by evaluating specific corner cases on an actual sensor node. Additionally, we analyzed
the resource requirements to assess the approach’s efficiency. The acquired results and
findings are discussed in Chapter 8.

7.4.1 Embedded Testbench
The embedded testbench (ETB)13 is a platform to enable the testing, analyzing, and
profiling of embedded systems focused on low-power devices such as sensor nodes. We
originally developed the ETB to facilitate the experiments presented in [4]. It was then
continuously extended in our succeeding works in [5–8]. It encompasses a Raspberry Pi
hardware add-on and Python libraries facilitating the experiment creation and execution.
The primary lab experiment setup is shown in Figure 7.13. It consists of one dedicated
sensor node (based on the ASN(x)) and the ETB acting as an experiment controller. In
this setup, the sensor node is equipped with a DS18B20 temperature sensor (used for soil
temperature measurements) as well as an AM2302 and an SHTC3 for air temperature
and relative humidity measurements. The measurement of the soil moisture level was
neglected in this setup. As visible in Figure 7.13, all sensors are duplicated with one
set connected to the sensor node under test and the second connected to the ETB for
reference measurements. Using the reference measurements, we can identify corrupted
sensor data due to node-level effects.

temperature controlled

TWI

GPIO

OWI

SHTC3

AM2302

SHTC3

em
be

dd
ed

tes
tbe

nc
h

(E
TB

)

sta
bil

ize
d p

ow
er

 su
pp

ly

TWI

OWI

GPIO

CPU

UART XBee 3

ASN(x)ATmega1284P Vss VOUT2

Vbat VOUT1

AM2302

DS18B20 DS18B20 OWI

Figure 7.13: Lab experiment setup utilizing the embedded testbench

As shown in Figure 7.14, it offers a voltage scaling module (VSM) consisting of four
independent power outputs, each equipped with a wattmeter. Each power output consists
of a MIC24045 buck converter with a programmable output voltage between 0.64 V and
5.25 V. Using the VSM, we can precisely adjust the ASN(x)’s supply voltage to mimic
the effects of a depleting battery or other effects such as temporary voltage fluctuations
(e.g., caused by short circuits). Additionally, the ETB is equipped with two auxiliary
wattmeters, a four-channel 16-bit ADC, and connectors for various communication

13Information on the ETB are available at https://github.com/DoWiD-wsn/embedded_testbench.

124

https://github.com/DoWiD-wsn/embedded_testbench

7.4. Lab Experiments

interfaces (i.e., USART, SPI, OWI, and I2C). Four dedicated test control signals are
available for low-level experiment control and data exchange with the sensor node. These
signals and the USART interface have MOSFET-based bi-directional level shifters [388]
to prevent effects caused by different voltages of the logic levels.

ADS1115

TCA9548A

Ra
sp

be
rry

 P
i 3

B

vo
lta

ge
 sc

ali
ng

 un
it

MIC24045

INA219
VOUT1

MIC24045

INA219
VOUT2

MIC24045

INA219
VOUT3

MIC24045

INA219
VOUT4

INA219

IN
+

IN
-

AU
X1

INA219

IN
+

IN
-

AU
X2

CH
1

AD
C

CH
2

CH
3

CH
4

lev
el

sh
ifte

rUSART*
CTRL*

TWI
OWI

SPI
USART

ETB

Figure 7.14: Basic components of the embedded testbench

In our lab experiment setup, we can also vary the ambient temperature using a 100 W
infrared lamp in combination with a modified hair dryer (both controlled via a relay card
connected to GPIOs of the ETB). Due to the adjustable environmental parameters, the
lab experiment setup allowed us to analyze the ASN(x)’ behavior during an impaired
operation in a controlled environment. However, as the ETB controls the sensor node
supply voltage and ambient temperature, our experiments can be automated using Python
scripts and, therefore, the experiments are reproducible to better distinguish between
sporadic and recurring effects.

The sensor node was configured to send updates every minute to have data of fine
granularity. Additionally, the ETB kept track of the node’s supply voltage and current
consumption as well as its reference measurements. Concerning the current measurements,
we found that the measurement resolution provided by the ETB of 0.1 mA was too coarse.
The current drawn by the ASN(x) is comparably small, especially when the node is in a
power-saving state (i.e., sleeping). For this reason, we augmented the power consumption
measurements with a Joulescope14 connected between the ETB and the ASN(x). The
Joulescope was configured to monitor the power consumption and the respective electrical
charge consumed during a defined period with a current resolution of 1.5 nA and a voltage
resolution of 0.4 mV, both measured with 2 MS/s and a reduction frequency of 2 Hz.

7.4.2 Test Automation
The ETB was primarily used to analyze specific corner cases conditioned by the com-
bination of environmental factors (i.e., ambient temperature and supply voltage). The

14For information on the Joulescope, see https://www.joulescope.com/ (last accessed on 2022-08-23).

125

https://www.joulescope.com/

7. Concept Evaluation

experiments were repeated several times in different settings to distinguish between
random effects and sporadic external influences. Consequently, developing an experiment
setup that facilitated automated testing was necessary.

For this purpose, we created the ETB that not only provides the hardware platform and
interfaces for embedded system testing but also offers a rich and easily accessible set of
functionalities to support the development and execution of various experiments. While
the hardware modules could have been controlled by any supported programming or
scripting language, we decided to use Python (specifically Python 3) due to its widespread
use and the availability of supportive libraries.

ADS1115 INA219 MIC25045

VSMcore utilsens

BME280DS18B20

JT103

LM75 I2C_helper FCNTMCU_AVR

RPi.GPIOmath.logsys

ossubprocess

smbus

TCA9548A

time.sleep

user experiment application

ETBETB package

Figure 7.15: Software library structure of the embedded testbench

As summarized in Figure 7.15, the ETB provides functionality for the onboard modules
such as the VSM, the power monitors, and the ADC. Several sensors accessible via
different interfaces are also supported by corresponding libraries contained in the ETB
package. Additionally, auxiliary functionality is included, for example, to support the
flashing of firmware on the MCU (provided by the MCU_AVR library), the detection of
available I2C devices (via the I2C_helper library), or the use of our AVR-based frequency
counter15 (included in the frequency counter library, or short FCNT).

7.5 WSN Testbed
Concerning a practical evaluation of our approach, the lab setup allows us to specifically
analyze the effects of the voltage and temperature on the node’s operation. However,
the sources of faults occurring on sensor nodes are of a much more comprehensive range
and include temporal effects as well as network-related influences. For this reason, we
additionally deployed a WSN testbed to give our experiments a broader scope. This
testbed consisted of ten SNs deployed both indoor and outdoor. The WSN testbed
additionally evaluated the system behavior of our approach, including several nodes
and the CH. As presented in Section 7.2.1, our practical experiments were performed
in a smart garden setting where four environmental parameters related to plant growth
were monitored, namely ambient air temperature and relative humidity as well as soil

15The frequency counter module is available at https://github.com/DoWiD-wsn/frequency_counter.

126

https://github.com/DoWiD-wsn/frequency_counter

7.5. WSN Testbed

temperature and moisture level. In the following, the setup of the WSN testbed is
presented. For a discussion of the results and findings, see Chapter 8.

WiFi

ZigBee

SK
DB

SN6

SN5

SN4

SN3

SN2

SN1

CH

Raspberry Pi 3B

Digi XBee 3

ASN(x)

WSN testbed

outdoor

OTR

SN7

SN8

SN10

SN9

indoor

Figure 7.16: Architecture of the indoor and outdoor WSN testbed

The architecture of the WSN is illustrated in Figure 7.16. It shows the indoor deployment
consisting of six SNs and the outdoor deployment consisting of four SNs. In both settings,
the SNs were equipped with an XBee 3 radio configured to transmit at the lowest power
level (i.e., at -5 dBm) to decrease the overall power consumption of the nodes. To ensure a
reliable Zigbee network connection of the SNs placed outdoors, we additionally deployed
an outdoor relay node (OTR) for increased network connectivity. This OTR consisted
of an XBee 3 module operated standalone in a network router configuration and was
supplied by a wired power supply. The CH and SK deployed were implemented as
described in Section 7.2. In contrast to the SNs, the XBee radios of the OTR and CH
use the highest power level available, which is +8 dBm.

7.5.1 Indoor
Our indoor deployment consisted of six nodes (denoted as SN1 to SN6 in Figure 7.16)
that were placed on top of plant pots. The sensor nodes were equipped with DS18B20
temperature sensors to measure the soil temperature and sensors to measure the soil’s
moisture level (i.e., Adafruit STEMMA capacitive soil sensor). Additionally, half of the
nodes were equipped with AM2302 and the other half with SHTC3 digital temperature
and relative humidity sensors. The sensor nodes were first deployed in the living area
of a residential building, where they ran for six months with an update interval of 10
minutes. Then the indoor deployment was moved to an office room and reconfigured to
send updates every 5 minutes (running for ten months).

With the indoor deployment, we analyzed the behavior of the ASN(x) including their fault
indicators during a regular operation in a mostly controlled environment. No extreme
environmental disturbances such as high temperatures or heavy rain compromised the
nodes’ operation in this environment. However, there were some irregularities in the
temperature and the humidity readings caused by the opening of nearby windows.

127

7. Concept Evaluation

Such events are a deviation from an expected (modeled) behavior of the environmental
conditions and could, depending on their scale, be misinterpreted as faults by data-centric
detection approaches. Still, the data acquired from the indoor deployment provide
reference measurements; thus, how the sensor nodes behave in a stable environment.

7.5.2 Outdoor
Especially the harsh conditions posed by the environment of outdoor deployments have
been shown to significantly impact the behavior of sensor nodes and, therefore, the
probability of node faults. For this reason, we deployed four sensor nodes (named SN7
to SN10 in Figure 7.16) in different locations of raised beds planted with different crops.
The raised bed was placed on a south-facing balcony located in Lower Austria. In contrast
to the sensor nodes deployed indoors, where some had a SHTC3 sensor connected, all
four outdoor nodes were equipped with AM2302 sensors. The outdoor testbed was active
during the summer of 2021, where several weather extremes such as sudden heavy rain,
strong winds, and significant temperature fluctuations occurred, which posed perfect
conditions for our evaluation.

In contrast to the indoor deployment, the outdoor installation provided us with data
from sensor nodes in regular operation but in an uncontrolled and harsh environment.
Thereby, especially direct sun radiation and heavy rainfalls posed challenging conditions
for our ASN(x) where the latter also caused the leaking of water into the housing of some
nodes resulting in partial short circuits. By comparing the data from the outdoor with
the indoor deployment, we were able to identify differences in the node/sensor behavior
caused by the environmental influences.

128

CHAPTER 8
Result Discussion

This chapter presents the results of our tripartite evaluation setup described before. We
discuss the main findings of our approach’s fault detection and operational characteristics.
Additionally, we show that our approach indeed remedies the drawbacks of previous node
fault detection schemes indicated by increased detection accuracy.

Two characteristics are of paramount importance for sensor nodes, namely: (i) reliability
and (ii) energy efficiency. Only if both are satisfied the sensor nodes can provide high-
quality data over a long time. Consequently, we evaluated the correctness and efficiency
of our approach in various operational and environmental conditions.

The correctness refers to the approach’s capability to detect faults properly. Standard
correctness metrics include (i) the sensitivity, (ii) the specificity, and (iii) the accuracy of
the approach. High correctness is crucial to ensure the quality of the data provided and,
thus, the WSN’s reliability.

On the other hand, efficiency primarily focuses on the resource overhead of the approach.
Especially in resource-constrained sensor nodes, high efficiency is essential for an approach
to be meaningfully applicable. Moreover, high efficiency is necessary to enable the
sensor nodes’ long lifetimes. In WSN applications, standard efficiency metrics include
network traffic overhead, memory consumption, computation time, energy overhead, and
processing delay (i.e., time until a result is available).

For this purpose, we employed our tripartite experiments described in Section 7. We
have grouped the findings of these experiments in two categories based on whether they
account to:

• the correctness of our detection approach (Section 8.1)
• the efficiency of our implementation (Section 8.2)

Concerning the former, we additionally provide a comparison of our approach’s correctness
with alternatives (i.e., data-centric outlier and anomaly detection) in Section 8.1.3.

129

8. Result Discussion

However, we could not benchmark our approach based on common benchmark datasets
as those datasets do not include the required node-level information. In Section 8.3,
we conclude the discussion of our results with a summary of the main findings and an
exposition of the lessons learned in the course of the present research.

8.1 Correctness Evaluation
Concerning our fault detection’s correctness, we analyzed its ability to detect anomalous
sensor data caused by node faults and distinguish them from abnormal data related
to environmental events. The former is commonly expressed via sensitivity, and the
specificity metric indicates the latter. Accuracy metrics such as the F-score are commonly
used to state the detection’s overall correctness.

In this context, we manually analyzed the results of the lab experiments and the data
obtained from the WSN testbed (i.e., indoor and outdoor deployment) to identify faulty
conditions and the reaction of our approach to those. We found that all data accountable
for node faults were accordingly labeled by our detection approach. Despite extensive
data analysis, no false alarms were found in the gathered data.

In addition, we used numerous simulations based on fault-free datasets in which faults
were randomly injected as described in Section 7.3. The simulations allowed us to
automate the process of fault injection, performing our modified dDCA on the datasets,
and finally assess the results of our approach. In this way, numerous simulations were
performed with reproducible results, thus removing the possibility of human error in a
manual inspection.

8.1.1 Sensitivity, Specificity, and Accuracy

In total, we ran 60 different simulations using three distinct base datasets and five distinct
fault signatures (see Section 7.3.3). We used standard metrics for anomaly and fault
detection techniques to assess the correctness objectively. In particular, we assessed the
sensitivity, specificity, and accuracy of our approach. Regarding the latter, we express the
accuracy with the F-score commonly used in the statistical analysis of fault or anomaly
detection approaches (cf. Section 3.2).

To assess the simulation results, the acquired fault context of each data instance was
compared to the available fault labels. Each data instance was accounted to one of the
following four classes:

• true positives (TP): correctly detected faulty data

• true negatives (TN): correctly identified normal data

• false positives (FP): falsely labeled faulty data

• false negatives (FN): falsely accounted normal data

130

8.1. Correctness Evaluation

Based on these numbers, the sensitivity, specificity, and accuracy of each simulation run
were calculated according to the equations presented in Section 3.2.2. Finally, the results
of the single simulations were aggregated to express the overall correctness of our fault
detection approach, as summarized in Table 8.1. The table shows that the number of
sensor measurements assessed during the simulations varied between 997 sensor readings
for the smallest datasets and 10,078 measurements for the largest datasets.

Table 8.1: Aggregated simulation results

Mean Min Max
Sensor measurements 4,025.67 997 10,078
True positives (TP) 37.78 3 77
True negatives (TN) 3,977.35 905 10,072
False positives (FP) 3.80 0 15
False negatives (FN) 6.73 0 20
Sensitivity (TPR) 0.86 0.70 1.00
Specificity (TNR) 1.00 0.99 1.00
Accuracy (F-score) 0.87 0.67 0.95

The simulations revealed that our fault detection approach favors long-lasting faults due
to the majority voting-based classification process (cf. Section 6.4.4). Depending on the
number of dendritic cells considered for the voting, our approach requires the fault to
stay active for at least

�
MAg�

2

�
update cycles. As a result, faults affecting only a few

measurement cycles can be missed due to the voting characteristic of our approach.

The results of the simulations in combination with the data obtained from the lab
experiments and the WSN testbed show that our approach reliably detects the majority
of faults. Most of all, our approach has shown that it can reliably distinguish between
fault-induced data anomalies and correct but rare events in the monitored physical
phenomenon. This ability is mandatory for a low false alarm rate.

8.1.2 Fault and Event Detection Examples

As described in Section 6, our approach considers sensor data as faulty if they were
acquired in a context dominated by the danger indicator in combination with a low safe
indicator value. An example for such a situation is depicted in Figure 8.1.

In the example shown, the sensor node experienced a node fault caused by condensed
humidity in the node’s housing. During the active fault, incorrect sensor data were
reported as visible as a temporary offset in the temperature curve (Tair). Our approach
correctly identified this node fault as indicated by the resulting fault context Cx. However,
the identification of the fault happened with a short delay due to the voting of the involved
dendritic cells (see Section 6.4.4).

131

8. Result Discussion

Figure 8.1: Example of a detected sensor node fault

Figure 8.2 shows another example of a successfully detected fault that was caused by
a partial short circuit in the board supply rail. The data was obtained in our lab
experiments while directly supplying the node with a constantly decreasing supply
voltage (VBRD) while bypassing the voltage regulator. Additionally, the microcontroller’s
brown-out detection was disabled, which is commonly used to decrease the node’s energy
consumption further. In this example, the ADC self-check (χADC) dominantly indicated
the presence of faulty conditions.

Figure 8.2: Emulation of partial short circuit on board

Due to the combination of the node-level diagnostics with metrics derived from the sensor
data, our approach can also identify faults that manifest as a significantly abnormal
sensor reading even if the danger indicator does not react. As a result, our approach
was able to identify sensor node faults that the fault indicators alone could not (see
Figure 8.3). In the figure, two abnormal spikes in the soil temperature measurement are
visible that, however, did not cause any fault indicator to react. Consequently, also the
aggregated danger indicators stayed at a low value. The fault was still detected thanks to
the sensor data-based safe indicator that dramatically dropped during the fault’s active
time resulting in the successful detection of the fault as indicated by the fault context Cx.

Aside from an effective detection of node faults, our approach does not cause false alarms
in case of rare but proper events, even if they significantly impact the reported sensor

132

8.1. Correctness Evaluation

Figure 8.3: Fault detected by our approach but not the fault indicators alone

data. Figure 8.4 depicts an example where the first half of the seven-day record showed
a typical diurnal pattern. In contrast, the second half was remarkably influenced by
sustained heavy rain. There was no reason to consider these data faulty as the danger
indicator did not react.

Figure 8.4: Example of intense events not causing false alarms

As can be seen in Figure 8.4, the value of S shows fluctuations for both, the first half
with “stable” weather conditions and the second half where heavy rain occurred. This is
due to the way the safe indicator value is derived based on changes in the sensor values.

133

8. Result Discussion

Also during the “stable” half of the dataset, notable diurnal differences between the
air temperature and the related relative air humidity happened that caused the safe
indicator value to temporally decrease. However, these fluctuations did not cause any
false alarm for two reasons: (i) an absence of a danger indicator reaction and (ii) the
smoothing characteristic of the context classification provided by the cell population-based
assessment. Regarding the latter, the smoothing can be adjusted via the maximum
population size M (see Section 6.4.4).

8.1.3 Comparison with alternative Approaches

To objectively assess the detection performance of our approach, we ran a benchmark
with state-of-the-art streaming anomaly detection (SAD) methods and a 3σ-based outlier
detection as described in Section 7.3.4. The benchmarks utilized the same datasets as
used in our correctness analysis presented above; thus, the benchmark results allow an
objective comparison with the alternative approaches. Table 8.2 summarizes the results
of these benchmarks. It contains the mean sensitivity, specificity, and F-score gained by
running the alternative methods on the 60 simulation datasets.

Table 8.2: Summary of comparison results

Excl. indicators Incl. indicators
Method TPR TNR F-score TPR TNR F-score
ExactStorm [384] 0.69 0.90 0.25 0.73 0.90 0.26
IForestASD [385] 0.53 0.86 0.18 0.73 0.88 0.24
RRCF [386] 0.66 0.90 0.22 0.71 0.90 0.22
Standard deviation (3σ) 0.79 0.80 0.29 0.94 0.78 0.32
Our detection approach × × × 0.86 1.00 0.87

The results depicted in Table 8.2 confirm that fault detection based on anomaly or outlier
detection in the sensor data is not sufficient. Although the alternative methods utilized
notably more resources in the detection process, our approach scores a significantly better
accuracy than these alternative methods. These results show that by incorporating
node-level diagnostics sensor node faults can be detected more reliably.

Additionally, the results of the SAD method simulations that included the node-level
indicators in form of the aggregated danger indicator1 are notably better than those
without them. Only in the case of the 3σ-based approach the specificity (i.e., TNR) was
slightly worse due to the inclusion of the indicator value in the running standard deviation
that also affected the assessment of the succeeding data instances. Consequently, these
results support our claim of the inevitability of including node-level information in the
fault detection process. By including such node-level data, the detection of node faults

1The safe indicator was neglected as the sensor values are analyzed by the methods themselves.

134

8.2. Efficiency Analysis

becomes more accurate. Moreover, it allows the approaches to distinguish between the
effects of environmental events from those caused by node faults.

Surprisingly, the 3σ-based approach scored better results than the SAD methods con-
sidered. In this context, we found that the SAD methods suffer from three problems
that negatively impacted the acquired results. First, these methods build their internal
model successively with the incoming data. As a result, the data instances are mostly
considered anomalous in the first few iterations as the internal model is not yet sufficiently
evolved. Second, even when the model has been properly trained, unexpected events
(such as rain) distort the model and cause data instances to be classified incorrectly.
Third, the SAD methods require faults to have a significant influence on the reported
sensor values to be able to detect deviations. However, sensor node faults do not always
cause significant changes in the reported values. The five used fault signatures cover
different manifestations of node faults, including cases where the sensor data are altered
insignificantly. Those faults are almost always missed by the alternative methods used.
As a result, the overall correctness metrics of the alternative methods are mediocre.

8.2 Efficiency Analysis
Aside from assessing the correctness, we also evaluated our approach’s efficiency. For this
purpose, we analyzed the resource footprint of our proposed fault detection including:

• the overhead on the network traffic (Section 8.2.1)

• the memory requirements (Section 8.2.2)

• the impact on the runtime behavior (i.e., computation time; Section 8.2.3)

• the resulting energy overhead (Section 8.2.4)

• the corresponding processing delay of the fault detection (Section 8.2.5)

In the efficiency evaluation presented in the following, a sensor node equipped with
an AM2302 sensor was used. For the measurements of the active processing time and
the power consumption of the sensor node, we used a stabilized power supply and a
Joulescope as described in Section 7.4.1. We measured the duration the nodes spent in
an active state and the corresponding energy consumed. The Joulescope’s software kept
track of the power consumed during the measurements and, thus, measured the consumed
energy (i.e., electrical charge). For the measurements, the sensor node was configured to
send a measurement update every 10 minutes. We calculated the mean average of 20
measurements for each version (i.e., with and without fault detection enabled).

However, we focused our efficiency evaluation on the sensor nodes as their resources
are strictly limited, especially their energy budget. In our implementation, the time
complexity of the cluster head’s part is O(1), and the space complexity grows linear with
the number of sensor nodes (i.e., O(n)). However, the cluster head’s efficiency was not
further analyzed as it had sufficient resources and was powered by a wired power supply.

135

8. Result Discussion

8.2.1 Network Traffic Overhead

For a networked system, considering the impact of an approach on the network traffic is an
integral part of the efficiency analysis. This is especially crucial for WSNs for two reasons:
(i) the network capabilities of the sensor nodes are often limited and (ii) the transmission
of data over the wireless links requires a significant amount of energy. Concerning the
latter, depending on the network interface and its settings, the transmission of a single bit
can cost as much energy as the execution of 800–1000 instructions in the MCU (cf. [389]).
For this reason, it is crucial to keep the overhead on the network messages as small
as reasonably possible. Consequently, we analyzed the network traffic overhead of our
approach.

As shown in the overview depicted in Figure 6.1, our approach requires diagnostic data
from the sensor nodes to be transmitted to the system performing the fault assessment,
such as the cluster head. This diagnostic data consists of the aggregated danger and safe
indicators, which are, as described in Section 7.2.4, transmitted as fixed-point numbers
with six fractional and two integer bits. As a result, two bytes (i.e., 16 bits) have to
be added to each message a sensor node transmits to the cluster head. However, this
overhead is fixed and does not depend on the application domain or the use case.

In our evaluation use-case (smart garden system), each sensor node message contains two
bytes with the local timestamp, eight bytes of use-case data (two bytes per measurement),
and the said two bytes with diagnostic data (see also Figure 7.4). Therefore, our approach
requires a network traffic overhead of 20 % for the presented use case.

8.2.2 Memory Consumption

To evaluate the memory requirements imposed by our approach, we prepared two
versions of the sensor node software, one without and the second with the fault detection
included. Both were compiled with avr-gcc with optimization for size (-Os) and link-
time optimization (-flto). We then obtained the memory requirements of both versions
using the avr-size tool. Table 8.3 summarizes the results of the memory consumption
comparison. It shows the absolute consumption of flash memory (i.e., program space),
SRAM (i.e., data space), and EEPROM as well as the relative consumption (in percent)
concerning the resources available on the used ATmega1284P microcontroller. The
difference expresses the memory overhead imposed by our self-diagnostics.

Table 8.3: Our approach’s sensor node memory consumption

Flash memory SRAM EEPROM
[Byte] [%] [Byte] [%] [Byte] [%]

Detection excluded 6,250 4.8 256 1.6 0 0.0
Detection included 12,578 9.6 331 2.0 4 0.1
Difference 6,328 4.8 75 0.4 4 0.1

136

8.2. Efficiency Analysis

While the consumption of SRAM and EEPROM is negligibly small, the implementation
of our fault detection approach on the sensor nodes requires a considerable amount of
flash memory. This is mainly caused by the multitude of intermediate diagnostic data
calculated in each iteration. However, an approximated overhead of 6 kB flash memory is
acceptable as most modern sensor nodes offer significantly higher resources as presented
in the sensor node platform overview in Table 2.1.

8.2.3 Computation Time
Our detection approach extends the sensor node software with the node-level diagnostics
described in Section 7.1.2. Consequently, it alters the runtime behavior of the nodes. In
this context, it prolongs the time the sensor node is active to perform the diagnostics
(cf. Figure 7.3). During this time, the node consumes more energy than if it was in sleep
mode; thus, it also affects the energy consumption and the battery life. Therefore, we
measured the time the sensor node is active and the energy consumed of (i) a sensor
node without the fault detection added and (ii) a sensor node with the fault detection
activated. The effect of our approach on the nodes’ active phase is discussed in the
following. In Section 8.2.4, the resulting impact on the energy consumption is presented.
A summary of both results is given in Table 8.4.

Table 8.4: Our approach’s sensor node runtime impact

Active time Charge per 1h Est. battery life
[ms] [µAh] [µAh] [h] [years]

Detection excluded 198 0.93 48.8 53,279 6.08
Detection included 204 0.95 51.0 50,980 5.82
Difference 6 0.02 2.2 -2,299 -0.26

The sensor node spent an average of 198 ms in an active state without fault detection
and remained the rest of the time sleeping. With a 10-minute update interval, the sensor
node consumed an average of 48.8 µAh per hour.
On the other hand, the sensor node stayed active for an average of 204 ms with the fault
detection enabled. Therefore, the diagnostics prolonged the active time by 6 ms (equals
3 %). The node with an enabled detection consumed an average of 51.0 µAh per hour,
which equals a plus of 2.2 µAh (or 4.5 %).
At first glance, this overhead appears to be negligibly small. However, when analyzing
the node’s active phase in more detail, we found that the network connectivity of the
used Xbee 3 transceiver in Zigbee configuration requires a minimum active time of the
module. Consequently, the node’s active time also had to exceed a certain threshold.
When analyzing the runtime behavior of the node in more detail using the Joulescope
and specific GPIOs to indicate the current phase of the processing, we found that the
diagnostics actually take an average of about 77 ms. Although the majority of the node-
level diagnostics require simple calculations only, some of them depend on the acquisition

137

8. Result Discussion

of sensory values (e.g., from the ADC peripheral) that take a certain time. Therefore, the
overhead can become more apparent in other use cases or with other network interfaces.

8.2.4 Energy Overhead
Although the impact of the fault detection on the sensor node is justifiably small, it still
causes a shortened battery life. In the following, we show the impact based on estimating
the battery life when powering the sensor node with two Alkaline LR6 AA batteries.
These batteries have a nominal capacity of about 2600 mAh.

By applying a linear approximation, the expected battery lifetime of the node without
our fault detection can be estimated as:

tw/o = 2600 mAh
48.8 µAh · 1 h ≈ 53, 279 h ≡ 6.08 years (8.1)

With the detection enabled, the sensor node would last for:

tw/ = 2600 mAh
51.0 µAh · 1 h ≈ 50, 980 h ≡ 5.82 years (8.2)

As a consequence, the battery life is decreased by approximately 3 months (0.26 years;
see Table 8.4). Nevertheless, the sensor node with the fault detection enabled can operate
for a considerably long time, especially considering that node faults can be detected
during this time.

8.2.5 Processing Delay
On the system where the dDCA-based fault detection is implemented, the assessment
of incoming data consists of a deterministic sequence of computational steps. It neither
requires any lead time nor significant delays in its sequential processing, hence ensuring a
real-time assessment. However, that is not the case in most related DCA-based detection
approaches, where the detection is usually performed offline on an entire dataset.

8.3 Lessons learned
Our tripartite experiments showed that our approach offers promising results as it
requires a justifiable resource overhead and has a high detection accuracy. It confirms
that immune-inspired schemes such as those based on the functioning of dendritic cells
(i.e., DCA-based approaches) have indeed properties beneficial for the fault detection
in resource-constrained systems such as WSNs. However, aside from the contributions
and results previously published in our papers [3–8], two vital lessons were learned in the
course of the present research that will be presented in the following.

After our initial literature review revealed the research gap treated in this thesis, that
is, the detection of sensor node faults by exploiting node-level information, the research

138

8.3. Lessons learned

plan assumed that the most critical part would be the detection algorithm based on a
suitable adoption and adaptation of the DCA (or one of its variants). In this initial plan,
the input data (i.e., node-level fault indicators) fed to the algorithm were considered a
means to an end but were not particularly considered. However, during our research,
we found that it is the other way round: the input data are the essential part, and the
detection algorithm is mostly a vehicle for the automated assessment (cf. Section 8.1.3).
In other words, the best and most efficient algorithm still relies on the quality of the
input data. Therefore, the majority of the work presented in this thesis deals with the
node-level diagnostics (i.e., fault indicators) that made effective and efficient node-fault
detection possible in the first place. Still, the algorithm has a significant impact on the
characteristics of the detection approach and its final results. For example, the drawback
of missing short-term faults by our majority voting-based assessment may be remedied
with a better assessment scheme. This, however, is part of future work and not considered
within this thesis.

The second main lesson refers to utilizing immune mechanisms (or bio-inspired processes
in general) for solving computational problems. As pointed out in related works, the
basic structure of WSNs shows a certain similarity with the biological entities involved
in the HIS. Consequently, it was commonly acknowledged that the key to successfully
applying immune-inspired schemes lies in a suitable mapping of biological entities to
computational counterparts. In this context, we also found that the general characteristics
of the considered biological systems need to be minded. The HIS involves an enormous
amount of various cells where quantity has more effect on the system’s performance than
quality. In computing systems, it is usually the other way round. Although there are
WSN that incorporate thousands of sensor nodes, these numbers are no comparison to
the number of cells cooperatively proving immunity (cf. Section 5.2.1). Consequently,
researchers usually have to develop suitable abstractions of the underlying processes
or need to come up with creative solutions to overcome the limitations of computing
systems.

139

CHAPTER 9
Summary

In this thesis, we have presented our immune-inspired sensor node fault detection approach
for wireless sensor networks (WSNs). Most related approaches base their detection merely
on the sensor data gathered by the sensor nodes. In contrast, our approach additionally
incorporates node-level diagnostics in the decision process. For this reason, our approach
offers higher accuracy than alternative detection approaches, especially concerning its
specificity. Regarding the latter, our approach can distinguish data events from fault-
induced data deviations. This is not possible in most related approaches.

A brief introduction to the importance of fault detection in wireless sensor networks
(WSNs) and an organizational overview of the present thesis were given in Chapter 1.
We described the targeted research questions and the applied methodology to answer
them, resulting in the presented scientific contributions.

Chapter 2 provided a more detailed introduction to WSNs to highlight the particular
characteristics and distinctive features entailed. The provided considerations are essential
to understand better the importance of sensor node fault detection and the challenges
imposed. In addition, we presented a survey on recent sensor node platforms and a
summary of their characteristics.

The detection of node faults is often considered an anomaly detection task and is purely
based on the sensor data, as discussed in Chapter 3. Aside from standard metrics used
in anomaly detection, we presented our taxonomy for anomaly detection in WSNs with
a focus on node-level techniques. As found in our presented meta-survey, most related
approaches suffer from a disability to distinguish the effects of environmental events in
the sensor data from data distortion caused by sensor node faults.

Consequently, we discussed the peculiarities of sensor node faults in Chapter 4 and
presented our taxonomy for the classification of faults on wireless sensor nodes. In
addition, we elaborated on related fault detection approaches for WSNs that can be

141

9. Summary

broadly categorized as either (i) sensor data analysis, (ii) group detection, or (iii) lo-
cal self-diagnosis schemes. However, approaches of all three categories entail specific
assumptions or suffer from certain limitations that hinder their fault detection efficacy.

In the context of resource-efficient fault detection, several approaches were inspired by the
promising properties of the natural anomaly detection performed by the human immune
system (HIS). For this reason, Chapter 5 first presents an overview of immunological
models followed by a discussion of immune-inspired fault detection approaches, in partic-
ular the dendritic cell algorithm (DCA) which is based on the findings of the so-called
danger theory. Additionally, the limitation of current approaches when applied to sensor
node fault detection are treated.

Chapter 6 presented our immune-inspired fault detection approach applicable to the
detection of node faults in WSNs. Our approach remedies several limitations of previous
fault detection schemes, especially concerning the distinction of data events from the
manifestation of sensor node faults. We developed node-level diagnostic metrics denoted
as fault indicators. These fault indicators and statistical metrics derived from the sensor
data are fed to a modified DCA to classify the acquired sensor data as either normal or
faulty in real-time.

The evaluation of our approach, including the concept implementation and our tripartite
experiment setup, is described in Chapter 7. In this chapter, a prototype implementa-
tion of the entire approach is presented that is also publicly available on Github. To
appropriately evaluate our approach, we leveraged a combination of simulations, directed
experiments in a lab setup, and a practical WSN including both an indoor and outdoor
deployment.

The results of our concept evaluation and the corresponding findings are discussed in
Chapter 8. As confirmed by our evaluation, our approach offers a higher detection accuracy
than alternative approaches while it requires a reasonably small resource overhead only.
In addition, we presented lessons learned in the course of the present research.

To complete this thesis, we give an overview of the research findings and our dissemination
in Section 9.1. A summary of related work for sensor node fault detection is shown in
Section 9.2 followed by our conclusion in Section 9.3. Finally, an outlook for future work
is presented in Section 9.4.

9.1 Research Findings and Dissemination
As mentioned in Section 1.3, this thesis mainly presents a summary of work already
published in corresponding conference proceedings and journal articles. In the following,
we provide an overview of the particular publications and their specific contribution to
answering the research questions (RQs) presented in Section 1.1.

In [3], we present a comprehensive taxonomy for anomaly detection in WSNs that mainly
answers RQ#1. It results from extensive initial literature research covering a broad

142

9.1. Research Findings and Dissemination

spectrum of anomaly detection applications, including the detection of faults. The
contributions of [3] include:

• a refined taxonomy extending previous WSN anomaly detection taxonomies
• a meta-survey of reviews on anomaly detection schemes for WSNs
• an elaboration on new insights into (node-level) anomaly detection in WSNs
• a discussion of research challenges concerning node-level anomaly detection

The main reasons, the probability, and the severity of node-faults in WSNs, as well as
the impact of the node’s hardware choices on those, are treated in [4], thus, focusing
on RQ#2 and RQ#4. We found that specific environmental influences are the main
drivers for node faults, aside from design flaws. In particular, the sensor node’s ambient
temperature and supply voltage have significantly impacted their operation’s stability.
Thereby, we explicitly analyzed the effects of so-called undervolting. This effect can
either happen on purpose as part of an energy-saving technique or unintentionally if the
battery runs low. Consequently, the contributions of [4] include:

• an analysis of undervolting on the component- and system-level including on-chip
and onboard component interaction

• an investigation of the stability of the node’s operation at different supply voltage
levels under various ambient temperatures and different clock sources

• an identification of critical voltage regions leading to faults resulting in silent data
corruption that a fault-detection approach can not trivially detect

The previously identified importance of node-level information for efficient and correct
fault detection and possible sources of such information are elaborated on in [5]. It targets
RQ#2, RQ#4, and RQ#5 by introducing a diagnostic concept we named “node-level
indicators”. These indicators form the core of the subsequent fault detection approach. We
showed that suitable fault indicators exist and help distinguish data anomalies between
correct data caused by rare events and erroneous data caused by soft faults. For these
reasons, the contributions of [5] include:

• an analysis of the manifestation and risk of soft faults in wireless sensor nodes
• an inspection of node-level information sources (the fault indicators)
• an evaluation of the benefits of using such fault indicators for soft-fault detection

Although being focused on the Arduino platform, our considerations and findings pre-
sented in [6] resulted in generally applicable sensor node design insights (RQ#4) that
further led to a self-developed sensor node platform. The restrictions and possible
improvements for the use of Arduino in WSNs presented in the paper highlighted crit-
ical aspects of an efficient sensor node design, especially regarding its overall power
consumption and total energy efficiency. The contributions of [6] include:

• a comparison of recent Arduino boards with common sensor nodes
• an analysis of the power consumption of recent low-power Arduino boards

143

9. Summary

• an evaluation of Arduino core software components (e.g., the bootloader)

A comprehensive discussion of node faults in WSNs including a fault taxonomy and
relevant fault models has been published in the journal article in [8]. In addition, the
article presents the aforementioned self-developed sensor node platform that was then
used for the majority of practical experiments. As a result, the article provides answers
to RQ#3 and RQ#5. In addition, our article in [8] provides a summary and extension of
topics previously published in [3–6]. The contributions of [8] include:

• an extensive literature review on recent sensor node platforms
• a comprehensive taxonomy for faults in WSNs
• a practical evaluation of the fault indicator concept proposed in [5]
• a detailed introduction of the ASN(x)
• the introduction of our ETB, a Raspberry Pi hardware add-on for the analysis and

profiling of embedded systems like sensor nodes

Finally, an answer to RQ#6 is presented in [7]. The paper discusses the immunological
background and the theoretical basis for developing our immune-inspired node fault
detection approach that forms the core of this doctoral research. Our key contribution
in [7] is to integrate node-level diagnostics with the characteristics of the sensor data.
Especially the choice and representation of the algorithms’ input data (i.e., node-level
diagnostics) have shown to be crucial for proper functioning. Expressive input data
significantly influences fault detection’s effectiveness, much more than the aggregation by
the algorithm does. Additionally, the paper provides:

• an introduction of our immune-inspired runtime fault detection approach
• a presentation of our implementation of the detection approach
• an extensive quantitative evaluation of our concept

To sum up, the RQs are answered in our publications as follows:

• RQ#1: node fault detection → research gap [3]
• RQ#2: fault analysis → fault models [4, 5]
• RQ#3: fault classification → fault classes [8]
• RQ#4: fault detectability → design guide [5, 6]
• RQ#5: fault diagnosis → node diagnostics [5, 8]
• RQ#6: DCA fault detection → detection concept [7]

9.2 Related Work
In our literature reviews (cf. [3, 8]), the detection of sensor node faults has been found
to be most often considered a data anomaly detection task and is purely performed
on the sensor data. Consequently, related fault detection approaches presented in the

144

9.3. Conclusion

Sections 3.4, 4.4, and 5.5.3 mostly use data anomaly detection schemes to identify
abnormal sensor readings. Utilizing data anomaly detection for fault diagnosis suffers
from a crucial problem: anomalies do not need to be caused by faulty sensor nodes.
Similarly, not all node faults cause distinct irregularities in the reported sensor data.
Therefore, such approaches suffer from a disability in distinguishing between data events
and fault-induced deviations, as discussed in Section 4.2.2.

Also, other related approaches such as those based on group detection or local self-diagnosis
impose limitations and restrictions that reduce their detection accuracy and general
applicability. As summarized in Section 4.5, especially their resource and communication
overhead disqualify them from a meaningful use in most WSN applications.

In contrast, our fault detection approach does not suffer from the limitations entailed
by the assumptions and drawbacks of the related works. It requires a reasonably small
resource overhead and enables the distinction between data events and sensor data
distortion caused by node faults. Additionally, our approach is generally applicable as
it: (i) removes the need for domain or expert knowledge, (ii) does not need manual
intervention and analysis, (iii) can also be used with heterogeneous sensor nodes, and
(iv) is suitable for static and dynamic networks. However, our approach offers a first line
of defense against faults happening in the WSN. The WSN still has to include measures
to deal with faults introduced later in the subsequent data chain as well as to analyze
the provided data and acquire meaningful insights.

9.3 Conclusion

Our approach combines statistical metrics derived from the sensor data with node-level
diagnostics acquired on a node level. Aside from an increased detectability of node faults,
this combination allows our approach to distinguish between actual data events and
fault-related data distortion. That, however, is not possible in the majority of related
fault detection approaches. We have found that the availability of suitable input data
(i.e., node-level diagnostics) is crucial and influences the fault detection effectiveness
more than the actual detection algorithm (i.e., the modified dDCA) does. Our approach
requires a reasonable resource overhead regarding its memory consumption, processing
time, and overall energy requirements. It can be applied to most WSNs as it does not
suffer from the limiting assumptions imposed by several related works. Additionally, the
entire approach has been implemented and is publicly available.

As discussed in Section 6.5, our implementation includes several parameters that have an
impact on the correctness of the fault classification. In contrast to related approaches,
our approach only requires a small number of parameters whose optimal values are not
application-specific. They are generally applicable, or at least for an entire domain
of applications. We performed several experiments and simulations to derive suitable
parameter choices. However, further analyses may propose even better parameter values.

145

9. Summary

9.4 Future Work
Like the original DCA, our approach does currently not incorporate learning mechanisms.
Several works propose to replace the linear classifiers of the DCA with machine learning
algorithms to enable an automated parameter adjustment. Also, learning techniques
could be used to implement an immune memory allowing for faster detection of fault
patterns that have been experienced in the past.

Our fault detection approach focuses on the temporal correlation between the sensor
measurements and the diagnostic data. The dendritic cells in the HIS, however, also
perform a spatial correlation of the information provided. Similarly, the assessment of
the abstract dendritic cells in our approach performed on the cluster head could consider
the measurements of several sensor nodes. To do so, a suitable definition of the antigens
is necessary. It has to facilitate the classification of the sensor values instead of the sensor
nodes, for example, by deriving the antigens from a combination of the sensor values.

So far, we have evaluated our approach based on one type of sensor node with a set of
eight fault indicators. Further experiments with heterogeneous sensor nodes are necessary
to evaluate the approach’s generality. Although the core detection approach (i.e., the
modified dDCA) is generally applicable, the underlying node-level diagnostics used for
the calculation of the danger indicator depend on the used hardware. In this context,
the analysis of further sources of fault indicators such as system features provided by
operating systems or specific middleware are a promising future research direction.

146

List of Figures

1.1 Dissertation research questions and dependencies 3

2.1 Characteristics of different WSN monitoring applications 10
2.2 Architectural example of a clustered wireless sensor network 15
2.3 Basic components of a wireless sensor node 16

3.1 Taxonomy for anomaly detection in WSNs 33
3.2 Taxonomy for anomaly detection methods 38

4.1 Fundamental chain of dependability . 49
4.2 Fault propagation in wireless sensor networks 50
4.3 Cause-and-effect relationship of faults . 51
4.4 Anomaly detection in an environmental monitoring example 52
4.5 Wireless sensor network fault taxonomy 54
4.6 Fault categorization based on their persistence 56

5.1 A history of immunological models . 65
5.2 Antigen responses of different immune theories 71
5.3 Key features of DC biology used in the DCA 81
5.4 Abstract model of the DCA signal processing 82

6.1 Overview of our immune-inspired fault detection approach 87
6.2 Fault indicator classification . 91

7.1 Basic components of the ASN(x) sensor node platform 102
7.2 Simplified cluster head software flowchart 115
7.3 Simplified sensor node software flowchart 116
7.4 Sensor node message format . 116
7.5 Base dataset with a stable indoor environment 117
7.6 Base dataset with several events in an indoor environment 118
7.7 Base dataset with strong deviations in an outdoor environment 119
7.8 Fault signature of a node fault caused by bad sensor connection 120
7.9 Fault signature of a sensor fault caused by humidity in sensor housing . . 120
7.10 Fault signature of an air sensor short circuit caused by humidity 121

147

7.11 Fault signature of a soil sensor short circuit caused by humidity 121
7.12 Fault signature of a sensor communication fault caused by humidity . . . 122
7.13 Lab experiment setup utilizing the embedded testbench 124
7.14 Basic components of the embedded testbench 125
7.15 Software library structure of the embedded testbench 126
7.16 Architecture of the indoor and outdoor WSN testbed 127

8.1 Example of a detected sensor node fault 132
8.2 Emulation of partial short circuit on board 132
8.3 Fault detected by our approach but not the fault indicators alone 133
8.4 Example of intense events not causing false alarms 133

148

List of Tables

2.1 Overview of sensor node platforms . 20

3.1 Classification criteria of anomaly detection taxonomies 45

7.1 Overview of the available ASN(x) fault indicators 106
7.2 Scale factor divisors for normalized fault indicators 113

8.1 Aggregated simulation results . 131
8.2 Summary of comparison results . 134
8.3 Our approach’s sensor node memory consumption 136
8.4 Our approach’s sensor node runtime impact 137

149

List of Algorithms

6.1 Update of the dendritic cell population 96

6.2 Update of the cells’ context value . 97

151

List of Abbreviations

ADC analog-to-digital converter
AI artificial intelligence
AIN artificial immune network
AIRS artificial immune recognition system
AIS artificial immune system
ALU arithmetic logic unit
ANN artificial neural network
APC antigen-presenting cell
ASN(x) AVR-based Sensor Node with Xbee radio
AUC area under curve
AUROC area under the ROC curve
AVR Alf and Vegard’s RISC
BLE Bluetooth low energy
CAS complex adaptive systems
CH cluster head
CI computational intelligence
CLONALG clonal selection algorithm
CMOS complementary metal oxide semiconductor
CPU central processing unit
CSM co-stimulatory molecule
CSPRA conserved self pattern recognition algorithm
DB database
DC dendritic cell
DCA dendritic cell algorithm
dDCA deterministic dendritic cell algorithm
DFS dynamic frequency scaling
DSP digital signal processor
DVS dynamic voltage scaling
EEPROM electrically erasable programmable read-only memory
ETB embedded testbench

153

FAR false alarm rate
FN false negatives
FNR false negative rate
FP false positives
FPGA field-programmable gate array
FPR false positive rate
GA genetic algorithm
GP genetic programming
GPIO general-purpose input/output
HCI hot carrier injection
HIS human immune system
I2C inter-integrated circuit
IDS intrusion detection system
IEEE Institute of Electrical and Electronics Engineers
IForestASD isolation forest algorithm for streaming data
INS infectious non-self
IoT Internet of Things
ISM industrial, scientific and medical
ISP in-system programming
JTAG Joint Test Action Group
LDO low-dropout regulator
LED light-emitting diode
LoRaWAN long-range wide-area network
LPWAN low-power wide-area network
LSB least significant bit
MAC media access control
MCU microcontroller unit
MCUSR MCU status register
min-dDCA minimized dDCA
MIPS million instructions per second
ML machine learning
MOSFET metal-oxide-semiconductor field-effect transistor
NBTI negative-bias temperature instability
NSA negative selection algorithm
NTC negative temperature coefficient
OPC UA Open Platform Communications Unified Architecture
OS operating system
OTR outdoor relay node
OWI one-wire interface

154

PAMP pathogen associated molecular patterns
PCA principal component analysis
PCB printed circuit board
PPV positive predictive value
PRR pattern recognition receptor
RF radio frequency
RISC reduced instruction set computer
ROC receiver operating characteristics
RQ research question
RRCF robust random cut forest
RSSI received signal strength indicator
RTC real-time clock
SAD streaming anomaly detection
SHM structural health monitoring
SI swarm intelligence
SK sink node
SLR systematic literature review
SN sensor node
SNR signal-to-noise ratio
SNS self/non-self
SoC system-on-a-chip
SOM self-organizing map
SPI serial peripheral interface
SRAM static random-access memory
SVM support vector machine
TDDB time-dependent dielectric breakdown
THT through-hole technology
TLR toll-like receptors
TN true negatives
TNR true negative rate
TP true positives
TPR true positive rate
TWI two-wire interface
USART universal synchronous/asynchronous receiver-transmitter
USB universal serial bus
VSM voltage scaling module
WDT watchdog timer
WSN wireless sensor network

155

Bibliography

[1] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee, “A design science
research methodology for information systems research,” J. Manage. Inf. Syst.,
vol. 24, no. 3, pp. 45–77, dec 2007.

[2] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in software engineering – A systematic literature
review,” Information and Software Technology, vol. 51, no. 1, pp. 7 – 15, 2009,
special Section - Most Cited Articles in 2002 and Regular Research Papers.

[3] D. Widhalm, K. M. Goeschka, and W. Kastner, “SoK: A taxonomy for anomaly
detection in wireless sensor networks focused on node-level techniques,” in The
15th International Conference on Availability, Reliability and Security (ARES ’20),
2020.

[4] ——, “Undervolting on wireless sensor nodes: a critical perspective,” in The 23rd
International Conference on Distributed Computing and Networking (ICDCN ’22),
2022.

[5] ——, “Node-level indicators of soft faults in wireless sensor networks,” in The 40th
International Symposium on Reliable Distributed Systems (SRDS ’21), 2021, pp.
13–22.

[6] ——, “Is arduino a suitable platform for sensor nodes?” in The 47th Annual
Conference of the IEEE Industrial Electronics Society (IECON ’21), 2021, pp. 1–6.

[7] ——, “Sensor node fault detection in wireless sensor networks utilizing node-level
diagnostics,” in The 20th ACM Conference on Embedded Networked Sensor Systems
(SenSys’22), 2022, (in review).

[8] ——, “An open-source wireless sensor node platform with active node-level reliability
for monitoring applications,” Sensors, vol. 21, no. 22, 2021.

[9] H. Mahmoud and A. Fahmy, “WSN applications,” in Concepts, Applications,
Experimentation and Analysis of Wireless Sensor Networks. Springer International
Publishing, Nov. 2020.

157

[10] D. Culler, D. Estrin, and M. Srivastava, “Guest editors’ introduction: Overview of
sensor networks,” Computer, vol. 37, no. 8, pp. 41–49, Aug 2004.

[11] A. Ali, Y. Ming, S. Chakraborty, and S. Iram, “A comprehensive survey on real-time
applications of wsn,” Future Internet, vol. 9, no. 4, 2017.

[12] I. Akyildiz and M. Vuran, Wireless Sensor Networks, ser. Advanced Texts in
Communications and Networking. Wiley, 2010.

[13] S. Kharb and A. Singhrova, “Review of industrial standards for wireless sensor
networks,” in Next-Generation Networks, D. K. Lobiyal, V. Mansotra, and U. Singh,
Eds. Singapore: Springer Singapore, 2018, pp. 77–87.

[14] S. Barillaro, S. Rhee, G. Escudero, R. Kacker, L. Badger, and D. R. Kuhn,
“Low-power wide area networks (lpwan) for communications of mobile sensor
data,” in Proceedings of the 2nd ACM/EIGSCC Symposium on Smart Cities and
Communities, ser. SCC ’19. New York, NY, USA: Association for Computing
Machinery, 2019.

[15] J. Zenisek, J. Wolfartsberger, C. Sievi, and M. Affenzeller, “Modeling sensor
networks for predictive maintenance,” in On the Move to Meaningful Internet
Systems: OTM 2018 Workshops, C. Debruyne, H. Panetto, W. Guédria, P. Bollen,
I. Ciuciu, and R. Meersman, Eds. Cham: Springer International Publishing, 2019,
pp. 184–188.

[16] T. Mujawar and L. Deshmukh, “Smart environment monitoring system using
wired and wireless network: A comparative study,” in Atmospheric Air Pollution
Monitoring [Working Title]. IntechOpen, Aug. 2019.

[17] M. F. Othman and K. Shazali, “Wireless sensor network applications: A study in
environment monitoring system,” Procedia Engineering, vol. 41, pp. 1204 – 1210,
2012, international Symposium on Robotics and Intelligent Sensors 2012 (IRIS
2012).

[18] A. Rajput, V. B. Kumaravelu, and A. Murugadass, “Smart monitoring of farm-
land using fuzzy-based distributed wireless sensor networks,” in Lecture Notes
on Multidisciplinary Industrial Engineering. Springer Singapore, Jun. 2019, pp.
53–75.

[19] A. Abid, A. Kachouri, and A. Mahfoudhi, “Anomaly detection through outlier
and neighborhood data in wireless sensor networks,” in 2016 2nd International
Conference on Advanced Technologies for Signal and Image Processing (ATSIP),
March 2016, pp. 26–30.

[20] S. Ullo, M. Gallo, G. Palmieri, P. Amenta, M. Russo, G. Romano, M. Ferrucci,
A. Ferrara, and M. De Angelis, “Application of wireless sensor networks to environ-
mental monitoring for sustainable mobility,” in 2018 IEEE International Conference
on Environmental Engineering (EE), March 2018, pp. 1–7.

158

[21] K. Grover, D. Kahali, S. Verma, and B. Subramanian, “WSN-based system for forest
fire detection and mitigation,” in Lecture Notes on Multidisciplinary Industrial
Engineering. Springer Singapore, Jun. 2019, pp. 249–260.

[22] A. Molina-Pico, D. Cuesta-Frau, A. Araujo, J. Alejandre, and A. Rozas, “Forest
monitoring and wildland early fire detection by a hierarchical wireless sensor
network,” Journal of Sensors, vol. 2016, pp. 1–8, 2016.

[23] K. Bouabdellah, H. Noureddine, and S. Larbi, “Using wireless sensor networks
for reliable forest fires detection,” Procedia Computer Science, vol. 19, pp. 794 –
801, 2013, the 4th International Conference on Ambient Systems, Networks and
Technologies (ANT 2013), the 3rd International Conference on Sustainable Energy
Information Technology (SEIT-2013).

[24] L. Muduli, D. P. Mishra, and P. K. Jana, “Application of wireless sensor network
for environmental monitoring in underground coal mines: A systematic review,”
Journal of Network and Computer Applications, vol. 106, pp. 48 – 67, 2018.

[25] J. Valverde, V. Rosello, G. Mujica, J. Portilla, A. Uriarte, and T. Riesgo, “Wireless
sensor network for environmental monitoring: Application in a coffee factory,”
International Journal of Distributed Sensor Networks, vol. 8, no. 1, p. 638067, Jan.
2012.

[26] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless
sensor networks for habitat monitoring,” in Proceedings of the 1st ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications, ser. WSNA ’02.
New York, NY, USA: ACM, 2002, pp. 88–97.

[27] P. Juang, H. Oki, Y. Wang, Y. Wang, Y. Wang, Y. Wang, Y. Wang, M. Martonosi,
L. S. Peh, and D. Rubenstein, “Energy-efficient computing for wildlife tracking:
Design tradeoffs and early experiences with zebranet,” SIGPLAN Not., vol. 37,
no. 10, pp. 96–107, Oct. 2002.

[28] A. L. Barriuso, G. Villarrubia González, J. F. De Paz, Á. Lozano, and J. Bajo,
“Combination of multi-agent systems and wireless sensor networks for the moni-
toring of cattle,” Sensors (Basel, Switzerland), vol. 18, no. 1, p. 108, Jan 2018,
29301310[pmid].

[29] K. H. Kwong, T. T. Wu, H. G. Goh, B. Stephen, M. Gilroy, C. Michie, and
I. Andonovic, “Wireless sensor networks in agriculture: Cattle monitoring for
farming industries,” PIERS Online, vol. 5, no. 1, pp. 31–35, 2009.

[30] J. Lee, M. Ghaffari, and S. Elmeligy, “Self-maintenance and engineering immune
systems: Towards smarter machines and manufacturing systems,” Annual Reviews
in Control, vol. 35, no. 1, pp. 111 – 122, 2011.

159

[31] J. Scheer and L. Wilharm, Failed Bridges: Case Studies, Causes and Consequences.
Wiley, 2011.

[32] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon,
“Health monitoring of civil infrastructures using wireless sensor networks,” in 2007
6th International Symposium on Information Processing in Sensor Networks, April
2007, pp. 254–263.

[33] B. Chen, “Agent-based artificial immune system approach for adaptive damage
detection in monitoring networks,” Journal of Network and Computer Applications,
vol. 33, no. 6, pp. 633 – 645, 2010, advances on Agent-based Network Management.

[34] M. Giammarini, D. Isidori, E. Concettoni, C. Cristalli, M. Fioravanti, and M. Pieral-
isi, “Design of wireless sensor network for real-time structural health monitoring,” in
2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic
Circuits Systems, April 2015, pp. 107–110.

[35] Z. Liu and Y. Kleiner, “State-of-the-art review of technologies for pipe structural
health monitoring,” IEEE Sensors Journal, vol. 12, no. 6, pp. 1987–1992, June
2012.

[36] M. Rajendra Dhage and S. Vemuru, “Structural health monitoring of railway tracks
using wsn,” in 2017 International Conference on Computing, Communication,
Control and Automation (ICCUBEA), Aug 2017, pp. 1–5.

[37] F. X. Li, A. A. Islam, A. S. Jaroo, H. Hamid, J. Jalali, and M. Sammartino, “Urban
highway bridge structure health assessments using wireless sensor network,” in 2015
IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Jan
2015, pp. 75–77.

[38] A. Zrelli and T. Ezzedine, “Localization of damage using wireless sensor networks
for tunnel health monitoring,” in 2017 13th International Wireless Communications
and Mobile Computing Conference (IWCMC), June 2017, pp. 1161–1165.

[39] J. Joshi, A. Bagga, A. Reddy, D. Akhil, H. Munnangi, B. Nikhil, and J. Reddy,
“Structural health monitoring of earth air tunnel (eat) using wireless sensor network,”
in 2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring
Systems (EESMS), June 2016, pp. 1–5.

[40] P. K. Patil and S. R. Patil, “Review on structural health monitoring system using
wsn for bridges,” in 2017 International conference of Electronics, Communication
and Aerospace Technology (ICECA), vol. 1, April 2017, pp. 628–631.

[41] I. Khemapech, W. Sansrimahachai, and M. Toahchoodee, “A real-time health
monitoring and warning system for bridge structures,” in 2016 IEEE Region 10
Conference (TENCON), Nov 2016, pp. 3010–3013.

160

[42] P. R. Kamble and R. A. Vatti, “Structural health monitoring of river bridges
using wireless sensor networks,” in 2015 International Conference on Pervasive
Computing (ICPC), Jan 2015, pp. 1–5.

[43] S. Arms, J. Galbreath, A. Newhard, and C. Townsend, “Remotely reprogrammable
sensors for structural health monitoring,” Proc. NDE/NDT for Highways and
Bridges, Structural Materials Technology VI, 01 2004.

[44] K. Y. Koo, J. M. W. Brownjohn, D. I. List, and R. Cole, “Structural health moni-
toring of the tamar suspension bridge,” Structural Control and Health Monitoring,
vol. 20, no. 4, pp. 609–625, Mar. 2012.

[45] J. Ding, K. Sivalingam, B. Li, and Y. Hu, “Design and analysis of an integrated mac
and routing protocol framework for wireless sensor networks.” Ad Hoc & Sensor
Wireless Networks, vol. 2, January 2006.

[46] V. Ramasamy, “Mobile wireless sensor networks: An overview,” in Wireless Sensor
Networks - Insights and Innovations. InTech, October 2017.

[47] P. Kumar and S. R. N. Reddy, “Wireless sensor networks: a review of motes, wireless
technologies, routing algorithms and static deployment strategies for agriculture
applications,” CSI Transactions on ICT, vol. 8, no. 3, May 2020.

[48] F. Karray, M. W. Jmal, A. Garcia-Ortiz, M. Abid, and A. M. Obeid, “A compre-
hensive survey on wireless sensor node hardware platforms,” Computer Networks,
vol. 144, 2018.

[49] H.-S. Kim, M. P. Andersen, K. Chen, S. Kumar, W. J. Zhao, K. Ma, and D. E.
Culler, “System architecture directions for post-soc/32-bit networked sensors,” in
Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems
(SenSys ’18). New York, NY, USA: Association for Computing Machinery, 2018.

[50] S. Fattah, A. Gani, I. Ahmedy, M. Y. I. Idris, and I. A. Targio Hashem, “A survey
on underwater wireless sensor networks: Requirements, taxonomy, recent advances,
and open research challenges,” Sensors, vol. 20, no. 18, 2020.

[51] R. P. Narayanan, T. V. Sarath, and V. V. Vineeth, “Survey on motes used in
wireless sensor networks: Performance & parametric analysis,” Wireless Sensor
Network, vol. 8, 04 2016.

[52] U. Kulau, F. Büsching, and L. Wolf, “Idealvolting: Reliable undervolting on wireless
sensor nodes,” ACM Trans. Sen. Netw., vol. 12, no. 2, 2016.

[53] S. Gajjar, N. Choksi, M. Sarkar, and K. Dasgupta, “Comparative analysis of wireless
sensor network motes,” in 2014 International Conference on Signal Processing and
Integrated Networks (SPIN), 2014.

161

[54] TelosB Mote Platform, Crossbow, document Part Number: 6020-0094-01 Rev B.
[Online]. Available: https://www.willow.co.uk/TelosB_Datasheet.pdf

[55] E. Z. BTnode Project, “Btnodes - a distributed environment for prototyping
ad hoc networks,” Online, 2007, accessed on 2021-07-28. [Online]. Available:
http://www.btnode.ethz.ch/

[56] MPR-MIB Users Manual, Crossbow Technology, Inc., June 2007, revision A, PN:
7430-0021-08. [Online]. Available: http://cpn.unl.edu/?q=system/files/devices/
moteManual.pdf

[57] A. Burns, B. R. Greene, M. J. McGrath, T. J. O’Shea, B. Kuris, S. M. Ayer,
F. Stroiescu, and V. Cionca, “Shimmer – a wireless sensor platform for noninvasive
biomedical research,” IEEE Sensors Journal, vol. 10, no. 9, pp. 1527–1534, 2010.

[58] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, “Openmote: Open-source
prototyping platform for the industrial iot,” in Ad Hoc Networks, N. Mitton, M. E.
Kantarci, A. Gallais, and S. Papavassiliou, Eds. Cham: Springer International
Publishing, 2015, pp. 211–222.

[59] Waspmote v15 Datasheet, Libelium Comunicaciones Distribuidas S.L., Febru-
ary 2019, v8.2. [Online]. Available: http://www.libelium.com/downloads/
documentation/waspmote_datasheet.pdf

[60] A. Lignan, “Zolertia re-mote platform,” Online, November 2016, accessed on 2021-
07-28. [Online]. Available: https://github.com/Zolertia/Resources/wiki/RE-Mote

[61] WiSense Technologies, “Wisense wsn1120l datasheet,” December 2019.
[Online]. Available: https://wisense.in/wp-content/uploads/2019/12/WSN1120L_
Datasheet.pdf

[62] “Open mote b user guide,” Industrial Shields, August 2019, sKU: IS.OMB-001,
Rev. 0: 22-08-2019. [Online]. Available: https://www.industrialshields.com/web/
content?model=ir.attachment&field=datas&id=208800

[63] N. Madabhushi, “Kmote - design and implementation of a low cost, low power
hardware platform for wireless sensor networks,” mathesis, Indian Institute
of Technology, Kanpur, 2007. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.135.6395&rep=rep1&type=pdf

[64] A. Hoskins and J. McCann, “Beasties: Simple wireless sensor nodes,” in 2008 33rd
IEEE Conference on Local Computer Networks (LCN), 2008, pp. 707–714.

[65] F. Büsching, U. Kulau, and L. Wolf, “Architecture and evaluation of inga an
inexpensive node for general applications,” in SENSORS, 2012 IEEE, 2012, pp.
1–4.

162

https://www.willow.co.uk/TelosB_Datasheet.pdf
http://www.btnode.ethz.ch/
http://cpn.unl.edu/?q=system/files/devices/moteManual.pdf
http://cpn.unl.edu/?q=system/files/devices/moteManual.pdf
http://www.libelium.com/downloads/documentation/waspmote_datasheet.pdf
http://www.libelium.com/downloads/documentation/waspmote_datasheet.pdf
https://github.com/Zolertia/Resources/wiki/RE-Mote
https://wisense.in/wp-content/uploads/2019/12/WSN1120L_Datasheet.pdf
https://wisense.in/wp-content/uploads/2019/12/WSN1120L_Datasheet.pdf
https://www.industrialshields.com/web/content?model=ir.attachment&field=datas&id=208800
https://www.industrialshields.com/web/content?model=ir.attachment&field=datas&id=208800
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.6395&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.6395&rep=rep1&type=pdf

[66] M. P. Andersen, G. Fierro, and D. E. Culler, “System design trade-offs in a
next-generation embedded wireless platform,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2014-162, 2014.

[67] K. S. Raju and N. V. P. R. Pratap, “A reliable hardware platform for wireless
sensor networks,” in 2015 International Symposium on Advanced Computing and
Communication (ISACC), 2015, pp. 310–314.

[68] M. Zeni, E. Ondula, R. Mbitiru, A. Nyambura, L. Samuel, K. Fleming, and
K. Weldemariam, “Low-power low-cost wireless sensors for real-time plant stress
detection,” in Proceedings of the 2015 Annual Symposium on Computing for Devel-
opment (DEV ’15). New York, NY, USA: Association for Computing Machinery,
2015.

[69] D. Berenguer, “panstamp wiki,” Online, July 2018, accessed on 2021-07-28.
[Online]. Available: https://github.com/panStamp/panstamp/wiki

[70] F. Karray, A. Garcia-Ortiz, M. W. Jmal, A. M. Obeid, and M. Abid, “Earnpipe:
A testbed for smart water pipeline monitoring using wireless sensor network,”
Procedia Computer Science, vol. 96, pp. 285–294, 2016, knowledge-Based and Intel-
ligent Information & Engineering Systems: Proceedings of the 20th International
Conference KES-2016.

[71] H. Sallouha, B. Van den Bergh, Q. Wang, and S. Pollin, “Ulora: Ultra low-power,
low-cost and open platform for the lora networks,” in Proceedings of the 4th ACM
Workshop on Hot Topics in Wireless, ser. HotWireless ’17. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 43–47.

[72] A. Rusu and P. Dobra, “The implementation of an arm-based low-power wireless
process control system,” in 2017 21st International Conference on System Theory,
Control and Computing (ICSTCC), 2017, pp. 666–670.

[73] M. P. Andersen, H.-S. Kim, and D. E. Culler, “Hamilton: A cost-effective, low power
networked sensor for indoor environment monitoring,” in Proceedings of the 4th
ACM International Conference on Systems for Energy-Efficient Built Environments,
ser. BuildSys ’17. New York, NY, USA: Association for Computing Machinery,
2017.

[74] B. Pervan, E. Guberovic, and F. Turcinovic, “Hazelnut - an energy efficient base
iot module for wide variety of sensing applications,” in Proceedings of the 6th
Conference on the Engineering of Computer Based Systems, ser. ECBS ’19. New
York, NY, USA: Association for Computing Machinery, 2019.

[75] D. Raposo, A. Rodrigues, S. Sinche, J. S. Silva, and F. Boavida, “Security and
fault detection in in-node components of IIoT constrained devices,” in 2019 IEEE
44th Conference on Local Computer Networks (LCN), 2019.

163

https://github.com/panStamp/panstamp/wiki

[76] B. Babusiak, M. Smondrk, and S. Borik, “Design of ultra-low-energy temperature
and humidity sensor based on nrf24 wireless technology,” in 2019 42nd International
Conference on Telecommunications and Signal Processing (TSP), 2019, pp. 397–401.

[77] S. Misra, S. K. Roy, A. Roy, M. S. Obaidat, and A. Jha, “Megan: Multipurpose
energy-efficient, adaptable, and low-cost wireless sensor node for the internet of
things,” IEEE Systems Journal, vol. 14, no. 1, pp. 144–151, 2020.

[78] Z. Zhang, L. Shu, C. Zhu, and M. Mukherjee, “A short review on sleep scheduling
mechanism in wireless sensor networks,” in Quality, Reliability, Security and
Robustness in Heterogeneous Systems, L. Wang, T. Qiu, and W. Zhao, Eds. Cham:
Springer International Publishing, 2018, pp. 66–70.

[79] S. Tozlu and M. Senel, “Battery lifetime performance of Wi-Fi enabled sensors,” in
2012 IEEE Consumer Communications and Networking Conference (CCNC), 2012,
pp. 429–433.

[80] A. Pughat and V. Sharma, “Optimal power and performance trade-offs for dynamic
voltage scaling in power management based wireless sensor node,” Perspectives
in Science, vol. 8, pp. 536–539, 2016, recent Trends in Engineering and Material
Sciences.

[81] D. Raposo, A. Rodrigues, S. Sinche, J. S. Silva, and F. Boavida, “Industrial IoT
monitoring: Technologies and architecture proposal,” Sensors, vol. 18, no. 10,
October 2018.

[82] I. F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on
sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114,
Aug 2002.

[83] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the physical world
with pervasive networks,” IEEE Pervasive Computing, vol. 1, no. 1, pp. 59–69,
2002.

[84] D. Ismail, M. Rahman, and A. Saifullah, “Low-power Wide-area Networks: Oppor-
tunities, Challenges, and Directions,” in Proceedings of the Workshop Program of
the 19th International Conference on Distributed Computing and Networking, ser.
Workshops ICDCN ’18. New York, NY, USA: ACM, 2018, pp. 8:1–8:6.

[85] H. M. Salmon, C. M. de Farias, P. Loureiro, L. Pirmez, S. Rossetto, P. H. de A. Ro-
drigues, R. Pirmez, F. C. Delicato, and L. F. R. da Costa Carmo, “Intrusion
detection system for wireless sensor networks using danger theory immune-inspired
techniques,” International Journal of Wireless Information Networks, vol. 20, no. 1,
pp. 39–66, Mar 2013.

[86] O. Can and O. K. Sahingoz, “A survey of intrusion detection systems in wireless
sensor networks,” in 2015 6th International Conference on Modeling, Simulation,
and Applied Optimization (ICMSAO), May 2015, pp. 1–6.

164

[87] L. Paradis and Q. Han, “A survey of fault management in wireless sensor networks,”
Journal of Network and Systems Management, vol. 15, no. 2, pp. 171–190, Jun
2007.

[88] N. Savage, D. Ndzi, A. Seville, E. Vilar, and J. Austin, “Radio wave propagation
through vegetation: Factors influencing signal attenuation,” Radio Science, vol. 38,
no. 5, 2003.

[89] J. Kim, P. Bentley, C. Wallenta, M. Ahmed, and S. Hailes, “Danger is ubiquitous:
Detecting malicious activities in sensor networks using the dendritic cell algorithm,”
in Artificial Immune Systems, H. Bersini and J. Carneiro, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 390–403.

[90] R. Rajagopalan and P. K. Varshney, “Data-aggregation techniques in sensor net-
works: A survey,” IEEE Communications Surveys Tutorials, vol. 8, no. 4, pp. 48–63,
Fourth 2006.

[91] K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor
networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325 – 349, 2005.

[92] A. Ahmadi, M. Shojafar, S. F. Hajeforosh, M. Dehghan, and M. Singhal, “An
efficient routing algorithm to preserve $$k$$k-coverage in wireless sensor networks,”
J. Supercomput., vol. 68, no. 2, pp. 599–623, May 2014.

[93] M. O. Farooq and T. Kunz, “Operating systems for wireless sensor networks:
A survey,” Sensors, vol. 11, no. 6, pp. 5900–5930, 2011. [Online]. Available:
https://www.mdpi.com/1424-8220/11/6/5900

[94] T. Vu Chien, H. Nguyen Chan, and T. Nguyen Huu, “A comparative study on
operating system for wireless sensor networks,” in 2011 International Conference
on Advanced Computer Science and Information Systems, Dec 2011, pp. 73–78.

[95] A. B. Sharma, L. Golubchik, and R. Govindan, “Sensor faults: Detection methods
and prevalence in real-world datasets,” ACM Trans. on Sensor Networks, vol. 6,
no. 3, Jun. 2010.

[96] D. Hawkins, Identification of Outliers, ser. Monographs on applied probability and
statistics. Chapman and Hall, 1980.

[97] F. González, “A Study of Artificial Immune Systems Applied to Anomaly
Detection,” Ph.D. dissertation, The University of Memphis, May 2003. [Online].
Available: http://dis.unal.edu.co/~fgonza/papers/gonzalez03study.pdf

[98] M. L. Shahreza, D. Moazzami, B. Moshiri, and M. Delavar, “Anomaly detection
using a self-organizing map and particle swarm optimization,” Scientia Iranica,
vol. 18, no. 6, pp. 1460 – 1468, 2011.

165

https://www.mdpi.com/1424-8220/11/6/5900
http://dis.unal.edu.co/~fgonza/papers/gonzalez03study.pdf

[99] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi, E. Kohler,
G. Pottie, M. Hansen, and M. Srivastava, “Sensor network data fault types,” ACM
Trans. Sen. Netw., vol. 5, no. 3, Jun. 2009.

[100] R. Jurdak, X. R. Wang, O. Obst, and P. Valencia, Wireless Sensor Network
Anomalies: Diagnosis and Detection Strategies. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 309–325.

[101] R. Roman, Jianying Zhou, and J. Lopez, “Applying intrusion detection systems to
wireless sensor networks,” in CCNC 2006. 2006 3rd IEEE Consumer Communica-
tions and Networking Conference, 2006., vol. 1, Jan 2006, pp. 640–644.

[102] J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, and J. Twycross,
“Immune system approaches to intrusion detection – a review,” Natural Computing,
vol. 6, no. 4, pp. 413–466, Dec 2007.

[103] S. S. S. Sindhu, S. Geetha, and A. Kannan, “Decision tree based light weight
intrusion detection using a wrapper approach,” Expert Systems with Applications,
vol. 39, no. 1, pp. 129 – 141, 2012.

[104] A. Garofalo, C. D. Sarno, and V. Formicola, “Enhancing intrusion detection in
wireless sensor networks through decision trees,” in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 1–15.

[105] C. D. Sarno and A. Garofalo, “Energy-based detection of multi-layer flooding attacks
on wireless sensor network,” in Lecture Notes in Computer Science. Springer
International Publishing, 2014, pp. 339–349.

[106] M. Becker, M. Drozda, S. Jaschke, and S. Schaust, “Comparing performance
of misbehavior detection based on Neural Networks and AIS,” in 2008 IEEE
International Conference on Systems, Man and Cybernetics, Oct 2008, pp. 757–762.

[107] H. Qu, Z. Qiu, X. Tang, M. Xiang, and P. Wang, “Incorporating unsupervised
learning into intrusion detection for wireless sensor networks with structural co-
evolvability,” Applied Soft Computing, vol. 71, pp. 939 – 951, 2018.

[108] S. Shamshirband, N. B. Anuar, M. L. M. Kiah, V. A. Rohani, D. Petković, S. Misra,
and A. N. Khan, “Co-FAIS: Cooperative fuzzy artificial immune system for de-
tecting intrusion in wireless sensor networks,” Journal of Network and Computer
Applications, vol. 42, pp. 102 – 117, 2014.

[109] C. Boano, H. Wennerström, M. Zuniga, J. Brown, C. Keppitiyagama, F. Oppermann,
U. Roedig, L.-A. Norden, T. Voigt, and K. Römer, “Hot packets: A systematic
evaluation of the effect of temperature on low power wireless transceivers,” in
Extreme Conference on Communication. United States: ACM, 2013.

166

[110] M. Bhuyan, D. Bhattacharyya, and J. Kalita, Network Traffic Anomaly Detection
and Prevention: Concepts, Techniques, and Tools, ser. Computer Communications
and Networks. Springer International Publishing, 2017.

[111] B. Chander and G. Kumaravelan, “Outlier detection strategies for wsns: A survey,”
Journal of King Saud University - Computer and Information Sciences, 2021.

[112] F. J. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy estimation
for comparing induction algorithms,” in Proceedings of the Fifteenth International
Conference on Machine Learning, ser. ICML ’98. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998, pp. 445–453.

[113] A. P. Bradley, “The use of the area under the roc curve in the evaluation of machine
learning algorithms,” Pattern Recognition, vol. 30, no. 7, pp. 1145–1159, 1997.

[114] S. Baddar, A. Merlo, and M. Migliardi, “Anomaly detection in computer net-
works: A state-of-the-art review,” Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications (JoWUA), vol. 5, pp. 29–64, 12 2014.

[115] M. Xie, S. Han, B. Tian, and S. Parvin, “Anomaly detection in wireless sensor
networks: A survey,” Journal of Network and Computer Applications, vol. 34, no. 4,
pp. 1302 – 1325, 2011.

[116] J. F. Meyer, “On evaluating the performability of degradable computing systems,”
IEEE Transactions on Computers, vol. C-29, no. 8, pp. 720–731, Aug 1980.

[117] Y. Zhang, N. Meratnia, and P. Havinga, “Outlier detection techniques for wireless
sensor networks: A survey,” IEEE Communications Surveys Tutorials, vol. 12,
no. 2, pp. 159–170, Second 2010.

[118] F. Y. Edgeworth, “On observations relating to several quantities,” Hermathena,
vol. 6, no. 13, pp. 279–285, 1887.

[119] V. Barnett, P. Barnett, and T. Lewis, Outliers in Statistical Data, ser. Wiley Series
in Probability and Statistics. Wiley, 1994.

[120] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
Computing Surveys, vol. 41, no. 3, pp. 1–58, Jul. 2009.

[121] M. Rassam, A. Zainal, and M. Maarof, “Advancements of data anomaly detection
research in wireless sensor networks: A survey and open issues,” Sensors, vol. 13,
no. 8, pp. 10 087–10 122, Aug. 2013.

[122] G. Sebestyen, A. Hangan, Z. Czako, and G. Kovacs, “A taxonomy and platform
for anomaly detection,” in 2018 IEEE International Conference on Automation,
Quality and Testing, Robotics (AQTR). IEEE, May 2018.

167

[123] S. X. Wu and W. Banzhaf, “The use of computational intelligence in intrusion
detection systems: A review,” Applied Soft Computing, vol. 10, no. 1, pp. 1–35,
2010.

[124] A. Amouri, S. Morgera, M. Bencherif, and R. Manthena, “A cross-layer, anomaly-
based IDS for WSN and MANET,” Sensors, vol. 18, no. 2, p. 651, Feb. 2018.

[125] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer, “Taxonomy
and survey of collaborative intrusion detection,” ACM Computing Surveys, vol. 47,
no. 4, pp. 1–33, May 2015.

[126] J. H. Friedman, “Data mining and statistics: What’s the connection,” in Proceedings
of the 29th Symposium on the Interface Between Computer Science and Statistics,
1997.

[127] Z. Ferdousi and A. Maeda, “Unsupervised outlier detection in time series data,”
in 22nd International Conference on Data Engineering Workshops (ICDEW’06),
April 2006, pp. x121–x121.

[128] N. Peng, W. Zhang, H. Ling, Y. Zhang, and L. Zheng, “Fault-tolerant anomaly
detection method in wireless sensor networks,” Information, vol. 9, no. 9, 2018.

[129] K. Kurniabudi, B. Purnama, S. Sharipuddin, D. Darmawijoyo, D. Stiawan, S. Sam-
suryadi, A. Heryanto, and R. Budiarto, “Network anomaly detection research: a
survey,” Indonesian Journal of Electrical Engineering and Informatics (IJEEI),
vol. 7, no. 1, Mar. 2019.

[130] N. A. Alrajeh and J. Lloret, “Intrusion Detection Systems Based on Artificial
Intelligence Techniques in Wireless Sensor Networks,” International Journal of
Distributed Sensor Networks, vol. 9, no. 10, p. 351047, 2013.

[131] S. Rajasegarar, C. Leckie, and M. Palaniswami, “Anomaly detection in wireless
sensor networks,” IEEE Wireless Communications, vol. 15, no. 4, pp. 34–40, Aug
2008.

[132] K. Burbeck and S. Nadjm-Tehrani, “Adaptive real-time anomaly detection with
incremental clustering,” Information Security Technical Report, vol. 12, no. 1, pp.
56 – 67, 2007.

[133] J. Zhang, C. Chen, Y. Xiang, and W. Zhou, “Semi-supervised and compound clas-
sification of network traffic,” in 2012 32nd International Conference on Distributed
Computing Systems Workshops, June 2012, pp. 617–621.

[134] A. L. Buczak and E. Guven, “A survey of data mining and machine learning
methods for cyber security intrusion detection,” IEEE Communications Surveys
Tutorials, vol. 18, no. 2, pp. 1153–1176, Secondquarter 2016.

168

[135] A. Abraham, R. Falcon, and M. Koeppen, Computational Intelligence in Wire-
less Sensor Networks: Recent Advances and Future Challenges, ser. Studies in
Computational Intelligence. Springer International Publishing, 2017.

[136] K. Shafi and H. A. Abbass, “Biologically-inspired Complex Adaptive Systems
approaches to Network Intrusion Detection,” Information Security Technical Report,
vol. 12, no. 4, pp. 209 – 217, 2007.

[137] R. Kozik, M. Pawlicki, M. Choraś, and W. Pedrycz, “Practical employment of
granular computing to complex application layer cyberattack detection,” Complexity,
vol. 2019, pp. 1–9, Jan. 2019.

[138] V. Hajisalem and S. Babaie, “A hybrid intrusion detection system based on ABC-
AFS algorithm for misuse and anomaly detection,” Computer Networks, vol. 136,
pp. 37 – 50, 2018.

[139] M. Zamini and S. M. H. Hasheminejad, “A comprehensive survey of anomaly
detection in banking, wireless sensor networks, social networks, and healthcare,”
Intelligent Decision Technologies, vol. 13, no. 2, pp. 229–270, May 2019.

[140] M. Usman, V. Muthukkumarasamy, X. Wu, and S. Khanum, Mobile Agent-Based
Anomaly Detection and Verification System for Smart Home Sensor Networks.
Springer Singapore, 2018.

[141] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for anomaly
detection: A review,” ACM Computing Surveys, vol. 54, no. 2, mar 2021.

[142] C. Wei, S. Qiang, and X. Z. Gao, “Artificial endocrine system and applications,”
in 2006 Chinese Control Conference, Aug 2006, pp. 1433–1437.

[143] S. Sinha and Z. Chaczko, “Concepts and observations in artificial endocrine sys-
tems for iot infrastructure,” in 2017 25th International Conference on Systems
Engineering (ICSEng), Aug 2017, pp. 427–430.

[144] U. Aickelin, P. Bentley, S. Cayzer, J. Kim, and J. McLeod, “Danger theory: The
link between ais and ids?” in Artificial Immune Systems, J. Timmis, P. J. Bentley,
and E. Hart, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp.
147–155.

[145] M. A. Alsheikh, S. Lin, D. Niyato, and H. Tan, “Machine Learning in Wireless
Sensor Networks: Algorithms, Strategies, and Applications,” IEEE Communications
Surveys Tutorials, vol. 16, no. 4, pp. 1996–2018, Fourthquarter 2014.

[146] Y. Zhang, N. Meratnia, and P. Havinga, A taxonomy framework for unsupervised
outlier detection techniques for multi-type data sets, ser. CTIT Technical Report
Series. Netherlands: Centre for Telematics and Information Technology (CTIT),
11 2007, no. Paper P-NS/TR-CTIT-07-79.

169

[147] D. P. Kumar, T. Amgoth, and C. S. R. Annavarapu, “Machine learning algorithms
for wireless sensor networks: A survey,” Information Fusion, vol. 49, pp. 1 – 25,
2019.

[148] R. Zhang and X. Xiao, “Intrusion detection in wireless sensor networks with an
improved NSA based on space division,” Journal of Sensors, vol. 2019, pp. 1–20,
Apr. 2019.

[149] V. T. Alaparthy, A. Amouri, and S. D. Morgera, “A study on the adaptability of
immune models for wireless sensor network security,” Procedia Computer Science,
vol. 145, 2018.

[150] S. Duhan and P. Khandnor, “Intrusion detection system in wireless sensor net-
works: A comprehensive review,” in 2016 International Conference on Electrical,
Electronics, and Optimization Techniques (ICEEOT), March 2016.

[151] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection systems
in wireless sensor networks,” IEEE Communications Surveys Tutorials, vol. 16,
no. 1, pp. 266–282, First 2014.

[152] C. O’Reilly, A. Gluhak, M. A. Imran, and S. Rajasegarar, “Anomaly detection in
wireless sensor networks in a non-stationary environment,” IEEE Communications
Surveys Tutorials, vol. 16, no. 3, pp. 1413–1432, Third 2014.

[153] A. Ghosal and S. Halder, “Intrusion detection in wireless sensor networks: Issues,
challenges and approaches,” in Signals and Communication Technology. Springer
Berlin Heidelberg, 2013, pp. 329–367.

[154] T. H. Lim, “Detecting anomalies in wireless sensor networks,” Ph.D. dissertation,
University of York, Aug. 2010.

[155] A. H. Farooqi and F. A. Khan, “Intrusion detection systems for wireless sensor net-
works: A survey,” in Communication and Networking. Springer Berlin Heidelberg,
2009, pp. 234–241.

[156] S. Rajasegarar, C. Leckie, and M. Palaniswami, “Detecting data anomalies in
wireless sensor networks,” in Security in Ad Hoc and Sensor Networks. WORLD
SCIENTIFIC, Sep. 2009, pp. 231–259.

[157] A. H. Dehwah, M. Mousa, and C. G. Claudel, “Lessons learned on solar powered
wireless sensor network deployments in urban, desert environments,” Ad Hoc Netw.,
vol. 28, no. C, May 2015.

[158] G. Krivulya, I. Skarga-Bandurova, Z. Tatarchenko, O. Seredina, M. Shcherbakova,
and E. Shcherbakov, “An intelligent functional diagnostics of wireless sensor net-
work,” in 2019 7th International Conference on Future Internet of Things and
Cloud Workshops (FiCloudW), 2019.

170

[159] Z. Alansari, A. Prasanth, and M. R. Belgaum, “A comparison analysis of fault
detection algorithms in wireless sensor networks,” in 2018 International Conference
on Innovation and Intelligence for Informatics, Computing, and Technologies
(3ICT), 2018.

[160] U. Kulau, D. Szafranski, and L. Wolf, “Effective but lightweight online selftest
for energy-constrained WSNs,” in 2018 IEEE 43rd Conference on Local Computer
Networks Workshops (LCN Workshops), 2018, pp. 23–29.

[161] C. Titouna, M. Aliouat, and M. Gueroui, “FDS: Fault detection scheme for wireless
sensor networks,” Wireless Personal Communications, vol. 86, no. 2, Aug. 2015.

[162] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy
of dependable and secure computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, Jan. 2004.

[163] Y. Xu, I. Koren, and C. M. Krishna, “AdaFT: A framework for adaptive fault
tolerance for cyber-physical systems,” ACM Transactions on Embedded Computing
Systems, vol. 16, no. 3, March 2017.

[164] T. Tomiyama and F. Moyen, “Resilient architecture for cyber-physical production
systems,” CIRP Annals, vol. 67, no. 1, pp. 161–164, 2018.

[165] E. Moridi, M. Haghparast, M. Hosseinzadeh, and S. J. Jassbi, “Fault management
frameworks in wireless sensor networks: A survey,” Computer Communications,
vol. 155, 2020.

[166] I. Gerostathopoulos, D. Skoda, F. Plasil, T. Bures, and A. Knauss, “Architectural
homeostasis in self-adaptive software-intensive cyber-physical systems,” in Software
Architecture, B. Tekinerdogan, U. Zdun, and A. Babar, Eds. Cham: Springer
International Publishing, 2016, pp. 113–128.

[167] D. Hamdan, O. Aktouf, I. Parissis, A. Hijazi, M. Sarkis, and B. El Hassan, “Smart
service for fault diagnosis in wireless sensor networks,” in 2012 Sixth International
Conference on Next Generation Mobile Applications, Services and Technologies,
2012, pp. 211–216.

[168] B. W. Johnson, “Fault-tolerant microprocessor-based systems,” IEEE Micro, vol. 4,
no. 6, pp. 6–21, 1984.

[169] M. Z. A. Bhuiyan, G. Wang, J. Wu, J. Cao, X. Liu, and T. Wang, “Dependable
structural health monitoring using wireless sensor networks,” IEEE Transactions
on Dependable and Secure Computing, vol. 14, no. 4, pp. 363–376, 2017.

[170] S. Marathe, A. Nambi, M. Swaminathan, and R. Sutaria, “CurrentSense: A novel
approach for fault and drift detection in environmental IoT sensors,” in Proceedings
of the International Conference on Internet-of-Things Design and Implementation,
ser. IoTDI ’21. New York, NY, USA: ACM, 2021, pp. 93–105.

171

[171] J. Marzat, H. Piet-Lahanier, and S. Bertrand, “Cooperative fault detection and
isolation in a surveillance sensor network: a case study,” IFAC-PapersOnLine,
vol. 51, no. 24, pp. 790–797, 2018, 10th IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes SAFEPROCESS 2018.

[172] G. Kakamanshadi, S. Gupta, and S. Singh, “A survey on fault tolerance techniques
in wireless sensor networks,” in 2015 International Conference on Green Computing
and Internet of Things (ICGCIoT), 2015.

[173] H. Wennerström, F. Hermans, O. Rensfelt, C. Rohner, and L. Nordén, “A long-
term study of correlations between meteorological conditions and 802.15.4 link
performance,” in 2013 IEEE International Conference on Sensing, Communications
and Networking (SECON), 2013.

[174] G. Xie, G. Zeng, J. An, R. Li, and K. Li, “Resource-cost-aware fault-tolerant
design methodology for end-to-end functional safety computation on automotive
cyber-physical systems,” ACM Transactions on Cyber-Physical Systems, vol. 3,
no. 1, September 2018.

[175] T. Muhammed and R. A. Shaikh, “An analysis of fault detection strategies in
wireless sensor networks,” Journal of Network and Computer Applications, vol. 78,
2017.

[176] A. Ayadi, O. Ghorbel, A. M. Obeid, and M. Abid, “Outlier detection approaches
for wireless sensor networks: A survey,” Computer Networks, vol. 129, pp. 319–333,
2017.

[177] W. Li, L. Galluccio, F. Bassi, and M. Kieffer, “Distributed faulty node detection
in delay tolerant networks: Design and analysis,” IEEE Transactions on Mobile
Computing, vol. 17, no. 4, pp. 831–844, 2018.

[178] B. R. Senapati, P. M. Khilar, and R. R. Swain, “Composite fault diagnosis method-
ology for urban vehicular ad hoc network,” Vehicular Communications, vol. 29,
2021.

[179] R. R. Swain, T. Dash, and P. M. Khilar, “A complete diagnosis of faulty sensor
modules in a wireless sensor network,” Ad Hoc Networks, vol. 93, 2019.

[180] P. Yu, S. Jia, and P. Xi-yuan, “A self detection technique in fault management in
wsn,” in 2011 IEEE International Instrumentation and Measurement Technology
Conference, 2011, pp. 1–4.

[181] N. A. M. Alduais, J. Abdullah, A. Jamil, L. Audah, and R. Alias, “Sensor node data
validation techniques for realtime iot/wsn application,” in 2017 14th International
Multi-Conference on Systems, Signals Devices (SSD), 2017, pp. 760–765.

172

[182] Q. yan Sun, Y. mei Sun, X. jiao Liu, Y. xin Xie, and X. guang Chen, “Study on
fault diagnosis algorithm in WSN nodes based on RPCA model and SVDD for
multi-class classification,” Cluster Computing, vol. 22, no. S3, Jan. 2018.

[183] Y. Zhao, X. He, and D. Zhou, “Distributed fault source detection and topology
accommodation design of wireless sensor networks,” in IECON 2017 - 43rd Annual
Conference of the IEEE Industrial Electronics Society, 2017, pp. 5529–5534.

[184] Y. Gao, F. Xiao, J. Liu, and R. Wang, “Distributed soft fault detection for interval
type-2 fuzzy-model-based stochastic systems with wireless sensor networks,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 1, pp. 334–347, 2019.

[185] B. Mali and S. H. Laskar, “Incipient fault detection of sensors used in wastewater
treatment plants based on deep dropout neural network,” SN Applied Sciences,
vol. 2, no. 12, December 2020.

[186] R. Arunthavanathan, F. Khan, S. Ahmed, S. Imtiaz, and R. Rusli, “Fault detec-
tion and diagnosis in process system using artificial intelligence-based cognitive
technique,” Computers & Chemical Engineering, vol. 134, 2020.

[187] A. Theissler, “Detecting known and unknown faults in automotive systems using
ensemble-based anomaly detection,” Knowledge-Based Systems, vol. 123, pp. 163–
173, 2017.

[188] V. Joshi, O. Desai, and A. Kowli, “High accuracy sensor fault detection for energy
management applications,” in 2017 IEEE International Conference on Signal
Processing, Informatics, Communication and Energy Systems (SPICES), 2017, pp.
1–6.

[189] U. Saeed, S. U. Jan, Y.-D. Lee, and I. Koo, “Fault diagnosis based on extremely
randomized trees in wireless sensor networks,” Reliability Engineering & System
Safety, vol. 205, 2021.

[190] S. Chessa and P. Santi, “Comparison-based system-level fault diagnosis in ad hoc
networks,” in Proceedings 20th IEEE Symposium on Reliable Distributed Systems,
October 2001, pp. 257–266.

[191] K. Alshammari and A. E. S. Ahmed, “An efficient approach for detecting nodes
failures in wireless sensor network based on clustering,” in 2017 International
Symposium on Networks, Computers and Communications (ISNCC), 2017, pp. 1–6.

[192] M. Ding, D. Chen, K. Xing, and X. Cheng, “Localized fault-tolerant event boundary
detection in sensor networks,” in Proceedings IEEE 24th Annual Joint Conference
of the IEEE Computer and Communications Societies., vol. 2, March 2005, pp.
902–913 vol. 2.

173

[193] L. Wang, X. Zhang, Y.-C. Tseng, and C.-K. Lin, “Parallel and local diagnostic algo-
rithm for wireless sensor networks,” in 2017 19th Asia-Pacific Network Operations
and Management Symposium (APNOMS), 2017, pp. 334–337.

[194] H. H. Bosman, G. Iacca, A. Tejada, H. J. Wörtche, and A. Liotta, “Spatial anomaly
detection in sensor networks using neighborhood information,” Information Fusion,
vol. 33, pp. 41–56, 2017.

[195] H. Zhang, Y. Jiang, X. Song, W. N. N. Hung, M. Gu, and J. Sun, “Sequential
dependency and reliability analysis of embedded systems,” in 2013 18th Asia and
South Pacific Design Automation Conference (ASP-DAC), 2013, pp. 423–428.

[196] Y. Ji, “Application of fault detection using distributed sensors in smart cities,”
Physical Communication, vol. 46, 2021.

[197] S. Mohapatra and P. M. Khilar, “Artificial immune system based fault diagnosis in
large wireless sensor network topology,” in TENCON 2017 - 2017 IEEE Region 10
Conference, 2017, pp. 2687–2692.

[198] P. Chanak and I. Banerjee, “Fuzzy rule-based faulty node classification and man-
agement scheme for large scale wireless sensor networks,” Expert Systems with
Applications, vol. 45, pp. 307 – 321, 2016.

[199] W. Elsayed, M. Elhoseny, A. M. Riad, and A. E. Hassanien, “Autonomic self-healing
approach to eliminate hardware faults in wireless sensor networks,” in Proceedings
of the International Conference on Advanced Intelligent Systems and Informatics
2017. Springer International Publishing, August 2017, pp. 151–160.

[200] S. Das, P. Kar, and D. K. Jana, “SDH: Self detection and healing mechanism
for dumb nodes in wireless sensor network,” in 2016 IEEE Region 10 Conference
(TENCON), 2016, pp. 2792–2795.

[201] C. Ioannou, V. Vassiliou, and C. Sergiou, “RMT: A wireless sensor network
monitoring tool,” in Proceedings of the 13th ACM Symposium on Performance
Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, ser. PE-WASUN
’16. New York, NY, USA: Association for Computing Machinery, 2016, pp. 45–49.

[202] X. Liu, H. Zhou, S. Xiong, K. M. Hou, C. De Vaulx, and H. Shi, “Development
of a resource-efficient and fault-tolerant wireless sensor network system,” in 2015
2nd International Symposium on Dependable Computing and Internet of Things
(DCIT), 2015, pp. 122–127.

[203] M. Burgess, “Computer immunology,” in Proceedings of the 12th USENIX Con-
ference on System Administration, ser. LISA ’98. Berkeley, CA, USA: USENIX
Association, 1998, pp. 283–298.

174

[204] A. Somayaji, S. Hofmeyr, and S. Forrest, “Principles of a computer immune system,”
in Proceedings of the 1997 Workshop on New Security Paradigms, ser. NSPW ’97.
New York, NY, USA: ACM, 1997, pp. 75–82.

[205] Lu Hong and Jing Yang, “Danger theory of immune systems and intrusion detec-
tion systems,” in 2009 International Conference on Industrial Mechatronics and
Automation, May 2009, pp. 208–211.

[206] J. Twycross and U. Aickelin, “Information fusion in the immune system,” Informa-
tion Fusion, vol. 11, no. 1, pp. 35 – 44, 2010.

[207] M. Burgess, H. Haugerud, S. Straumsnes, and T. Reitan, “Measuring system
normality,” ACM Trans. Comput. Syst., vol. 20, no. 2, pp. 125–160, May 2002.

[208] P. D’haeseleer, S. Forrest, and P. Helman, “An immunological approach to change
detection: algorithms, analysis and implications,” in Proceedings 1996 IEEE Sym-
posium on Security and Privacy, May 1996, pp. 110–119.

[209] J. Greensmith, U. Aickelin, and J. Twycross, “Articulation and clarification of the
dendritic cell algorithm,” in Artificial Immune Systems, H. Bersini and J. Carneiro,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404–417.

[210] U. Aickelin, J. Greensmith, and J. Twycross, “Immune system approaches to
intrusion detection – a review,” in Artificial Immune Systems, G. Nicosia, V. Cutello,
P. J. Bentley, and J. Timmis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 316–329.

[211] S. A. Hofmeyr and S. Forrest, “Immunity by design: An artificial immune system,” in
Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation
- Volume 2, ser. GECCO’99. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999, pp. 1289–1296.

[212] S. Sarafijanovic and J. . Le Boudec, “An artificial immune system approach with
secondary response for misbehavior detection in mobile ad hoc networks,” IEEE
Transactions on Neural Networks, vol. 16, no. 5, pp. 1076–1087, Sep. 2005.

[213] K. Eichmann, Ed., The idiotypic network theory. Basel: Birkhäuser Basel, 2008,
pp. 82–94.

[214] P. Matzinger, “The danger model: A renewed sense of self,” Science, vol. 296, 2002.

[215] U. Aickelin and S. Cayzer, “The danger theory and its application to artificial
immune systems,” CoRR, vol. abs/0801.3549, 2002.

[216] F. M. Burnet, “A modification of jerne’s theory of antibody production using the
concept of clonal selection,” CA: A Cancer Journal for Clinicians, vol. 26, no. 2,
pp. 119–121, Mar. 1976.

175

[217] F. R. Fekety, “The clonal selection theory of acquired immunity,” The Yale Journal
of Biology and Medicine, vol. 32, no. 6, pp. 480–480, Jun 1960, pMC2604340[pmcid].

[218] J. Oudin and P. A. Cazenave, “Similar idiotypic specificities in immunoglobulin
fractions with different antibody functions or even without detectable antibody
function,” Proceedings of the National Academy of Sciences, vol. 68, no. 10, pp.
2616–2620, Oct. 1971.

[219] P. Bretscher and M. Cohn, “A theory of self-nonself discrimination: Paralysis
and induction involve the recognition of one and two determinants on an antigen,
respectively,” Science, vol. 169, no. 3950, pp. 1042–1049, Sep. 1970.

[220] N. Jerne, “Towards a network theory of the immune system,” Annales
d’immunologie, vol. 125C, no. 1-2, p. 373—389, January 1974.

[221] R. Langman and M. Cohn, “The ‘complete’ idiotype network is an absurd immune
system,” Immunology Today, vol. 7, no. 4, pp. 100–101, Apr. 1986.

[222] K. Lafferty and A. Cunningham, “A new analysis of allogeneic interactions,” Aus-
tralian Journal of Experimental Biology and Medical Science, vol. 53, no. 1, pp.
27–42, Feb. 1975.

[223] C. Janeway, “Approaching the asymptote? evolution and revolution in immunology,”
Cold Spring Harbor Symposia on Quantitative Biology, vol. 54, no. 0, pp. 1–13, Jan.
1989.

[224] P. Matzinger, “Tolerance, danger, and the extended family,” Annu. Rev. Immunol.,
vol. 12, pp. 991–1045, 1994.

[225] T. R. Mosmann and A. M. Livingstone, “Dendritic cells: the immune information
management experts,” Nature Immunology, vol. 5, no. 6, pp. 564–566, Jun. 2004.

[226] J. Greensmith, U. Aickelin, and S. Cayzer, “Introducing dendritic cells as a novel
immune-inspired algorithm for anomaly detection,” in Artificial Immune Systems,
C. Jacob, M. L. Pilat, P. J. Bentley, and J. I. Timmis, Eds. Springer Berlin
Heidelberg, 2005.

[227] Q.-z. Xu and L. Wang, “Recent advances in the artificial endocrine system,” Journal
of Zhejiang University SCIENCE C, vol. 12, no. 3, pp. 171–183, Mar 2011.

[228] L. Sherwood, Human Physiology: From Cells to Systems. Cengage Learning, 2015.

[229] J. Neal, How the Endocrine System Works, ser. The How it Works Series. Wiley,
2016.

[230] Ihara and Mori, “Autonomous decentralized computer control systems,” Computer,
vol. 17, no. 8, pp. 57–66, Aug 1984.

176

[231] S. Miyamoto, K. Mori, H. Ihara, H. Matsumaru, and H. Ohshima, “Autonomous
decentralized control and its application to the rapid transit system,” Computers
in Industry, vol. 5, no. 2, pp. 115 – 124, 1984, special Issue: Computers in Japanese
Industry.

[232] K. Mori, “Autonomous decentralized systems technologies and their application
to a train transport operation system,” in The Kluwer International Series in
Engineering and Computer Science. Springer US, 2001, pp. 89–111.

[233] W.-M. Shen and C.-M. Chuong, “The digital hormone model for self-organization,”
in Proceedings of the Seventh International Conference on Simulation of Adaptive
Behavior on From Animals to Animats, ser. ICSAB. Cambridge, MA, USA: MIT
Press, 2002, pp. 242–243.

[234] Wei-Min Shen, Cheng-Ming Chuong, and P. Will, “Simulating self-organization for
multi-robot systems,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol. 3, Sep. 2002, pp. 2776–2781 vol.3.

[235] F. Heylighen, C. Gershenson, S. Staab, G. W. Flake, D. M. Pennock, D. C. Fain,
D. De Roure, K. Aberer, Wei-Min Shen, O. Dousse, and P. Thiran, “Neurons,
viscose fluids, freshwater polyp hydra-and self-organizing information systems,”
IEEE Intelligent Systems, vol. 18, no. 4, pp. 72–86, July 2003.

[236] E. Kravitz, “Hormonal control of behavior: amines and the biasing of behavioral
output in lobsters,” Science, vol. 241, no. 4874, pp. 1775–1781, Sep. 1988.

[237] R. A. Brooks, “Integrated systems based on behaviors,” SIGART Bull., vol. 2,
no. 4, pp. 46–50, Jul. 1991.

[238] O. Avila-Garcia and L. Canamero, “Using hormonal feedback to modulate action
selection in a competitive scenario,” in In From Animals to Animats: Proceedings
of the 8th International Conference of Adaptive Behavior (SAB’04. MIT Press,
2004, pp. 243–252.

[239] ——, “Hormonal modulation of perception in motivation-based action selection
architectures,” Procs of the Symposium on Agents that Want and Like, 01 2005.

[240] U. Brinkschulte, M. Pacher, and A. von Renteln, “An artificial hormone system
for self-organizing real-time task allocation in organic middleware,” in Organic
Computing. Springer Berlin Heidelberg, 2009, pp. 261–283.

[241] A. von Renteln, U. Brinkschulte, and M. Pacher, “The artificial hormone system—an
organic middleware for self-organising real-time task allocation,” in Organic Com-
puting — A Paradigm Shift for Complex Systems. Springer Basel, 2011, pp.
369–384.

177

[242] L. N. de Castro and J. I. Timmis, “Artificial immune systems as a novel soft
computing paradigm,” Soft Computing - A Fusion of Foundations, Methodologies
and Applications, vol. 7, no. 8, pp. 526–544, Aug. 2003.

[243] D. Dasgupta, Artificial Immune Systems and Their Applications. Springer Berlin
Heidelberg, 2012.

[244] Ki-Won Yeom and Ji-Hyung Park, “An artificial immune system model for multi
agents based resource discovery in distributed environments,” in First Interna-
tional Conference on Innovative Computing, Information and Control - Volume I
(ICICIC’06), vol. 1, Aug 2006, pp. 234–239.

[245] R. A. Goldsby and R. A. K. i. Goldsby, Immunology, 5th ed. W.H. Freeman, 2003.

[246] C. A. Janeway, “How the immune system recognizes invaders,” Scientific American,
vol. 269, no. 3, pp. 72–79, Sep. 1993.

[247] C. A. Janeway and R. Medzhitov, “Innate immune recognition,” Annual Review of
Immunology, vol. 20, no. 1, pp. 197–216, Apr. 2002.

[248] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular
Biology of the Cell, 4th ed. Garland Science, 2002.

[249] D. Dasgupta, S. Yu, and N. S. Majumdar, “Mila – multilevel immune learning
algorithm and its application to anomaly detection,” Soft Computing, vol. 9, no. 3,
pp. 172–184, Mar 2005.

[250] J. Twycross and U. Aickelin, “Towards a conceptual framework for innate immunity,”
in Artificial Immune Systems, C. Jacob, M. L. Pilat, P. J. Bentley, and J. I. Timmis,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 112–125.

[251] E. Vivier and B. Malissen, “Innate and adaptive immunity: specificities and
signaling hierarchies revisited,” Nature Immunology, vol. 6, no. 1, pp. 17–21, Jan.
2005.

[252] J. Kim and P. Bentley, “Immune memory and gene library evolution in the dynamic
clonal selection algorithm,” Genetic Programming and Evolvable Machines, vol. 5,
no. 4, pp. 361–391, Dec. 2004.

[253] J. Greensmith, U. Aickelin, and G. Tedesco, “Information fusion for anomaly
detection with the dendritic cell algorithm,” Information Fusion, vol. 11, no. 1, pp.
21 – 34, 2010, special Issue on Biologically-Inspired Information Fusion.

[254] U. Aickelin and D. Dasgupta, Artificial Immune Systems. Boston, MA: Springer
US, 2005, pp. 375–399.

[255] J. M. Vidal, A. L. S. Orozco, and L. J. G. Villalba, “Adaptive artificial immune net-
works for mitigating DoS flooding attacks,” Swarm and Evolutionary Computation,
vol. 38, pp. 94 – 108, 2018.

178

[256] P. J. Delves, S. J. Martin, D. R. Burton, and I. M. Roitt, Roitt’s Essential
Immunology, 13th ed., ser. Essentials. Wiley-Blackwell, 2017.

[257] S. Venkatesan, R. Baskaran, C. Chellappan, A. Vaish, and P. Dhavachelvan,
“Artificial immune system based mobile agent platform protection,” Computer
Standards & Interfaces, vol. 35, no. 4, pp. 365–373, 2013.

[258] R. Coico and G. Sunshine, Immunology: A Short Course, 7th ed., ser. Coico,
Immunology. Wiley-Blackwell, 2015.

[259] D. R. Green, N. Droin, and M. Pinkoski, “Activation-induced cell death in t cells,”
Immunological Reviews, vol. 193, no. 1, pp. 70–81, Jun. 2003.

[260] C. Jacob, S. Steil, and K. Bergmann, “The swarming body: Simulating the decen-
tralized defenses of immunity,” in Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2006, pp. 52–65.

[261] J. Punt, Kuby Immunology. W. H. Freeman, may 2018.

[262] J. Greensmith and U. Aickelin, “The deterministic dendritic cell algorithm,” in
Proceedings of the 7th International Conference on Artificial Immune Systems, ser.
ICARIS ’08. Springer Berlin Heidelberg, 2008.

[263] P. J. Bentley, J. Greensmith, and S. Ujjin, “Two ways to grow tissue for artificial
immune systems,” in Artificial Immune Systems, C. Jacob, M. L. Pilat, P. J.
Bentley, and J. I. Timmis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 139–152.

[264] T. Pradeu and E. L. Cooper, “The danger theory: 20 years later,” Frontiers in
Immunology, vol. 3, 2012.

[265] P. Matzinger, “An innate sense of danger,” Seminars in Immunology, vol. 10, no. 5,
pp. 399 – 415, 1998.

[266] L. M. Sompayrac, How the Immune System Works. Wiley-Blackwell, 2019.

[267] S. Gallucci and P. Matzinger, “Danger signals: Sos to the immune system,” Current
Opinion in Immunology, vol. 13, no. 1, pp. 114 – 119, 2001.

[268] J. F. R. Kerr, C. M. Winterford, and B. V. Harmon, “Apoptosis. its significance in
cancer and cancer therapy,” Cancer, vol. 73, no. 8, pp. 2013–2026, Apr. 1994.

[269] R. M. Steinman, “Identification of a novel cell type in peripheral lymphoid organs
of mice: I. morphology, quantitation, tissue distribution,” Journal of Experimental
Medicine, vol. 137, no. 5, pp. 1142–1162, May 1973.

[270] J. Greensmith, U. Aickelin, and S. Cayzer, Detecting Danger: The Dendritic Cell
Algorithm. London: Springer London, 2008, pp. 89–112.

179

[271] M. L. Kapsenberg, “Dendritic-cell control of pathogen-driven t-cell polarization,”
Nature Reviews Immunology, vol. 3, no. 12, pp. 984–993, Dec. 2003.

[272] J. Kim, J. Greensmith, J. Twycross, and U. Aickelin, “Malicious code execution
detection and response immune system inspired by the danger theory,” CoRR, vol.
abs/1003.4142, 2010.

[273] R. Medzhitov, “Decoding the patterns of self and nonself by the innate immune
system,” Science, vol. 296, no. 5566, pp. 298–300, Apr. 2002.

[274] J. Greensmith, “The dendritic cell algorithm,” Ph.D. dissertation, University of
Nottingham, Oct. 2007.

[275] D. Dasgupta, S. Yu, and F. Nino, “Recent Advances in Artificial Immune Systems:
Models and Applications,” Applied Soft Computing, vol. 11, no. 2, pp. 1574 – 1587,
2011.

[276] J.-Y. Le Boudec and S. Sarafijanović, “An artificial immune system approach
to misbehavior detection in mobile ad hoc networks,” in Biologically Inspired
Approaches to Advanced Information Technology, A. J. Ijspeert, M. Murata, and
N. Wakamiya, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
396–411.

[277] J. Timmis, A. Hone, T. Stibor, and E. Clark, “Theoretical advances in artificial
immune systems,” Theoretical Computer Science, vol. 403, no. 1, pp. 11 – 32, 2008.

[278] T. W. Mak, “Order from disorder sprung: recognition and regulation in the immune
system,” Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, vol. 361, no. 1807, pp. 1235–1250,
May 2003.

[279] M. Read, P. S. Andrews, and J. Timmis, An Introduction to Artificial Immune
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1575–1597.

[280] S. Yu and D. Dasgupta, “Conserved self pattern recognition algorithm,” in Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2008, pp. 279–290.

[281] E. Hart and J. Timmis, “Application areas of ais: The past, the present and the
future,” Applied Soft Computing, vol. 8, no. 1, pp. 191 – 201, 2008.

[282] J. Timmis, P. Andrews, N. Owens, and E. Clark, “An interdisciplinary perspective
on artificial immune systems,” Evolutionary Intelligence, vol. 1, no. 1, pp. 5–26,
Jan. 2008.

[283] S. Forrest and C. Beauchemin, “Computer immunology,” Immunological Reviews,
vol. 216, no. 1, pp. 176–197, Mar. 2007.

180

[284] D. Dasgupta, “Advances in artificial immune systems,” IEEE Computational
Intelligence Magazine, vol. 1, no. 4, pp. 40–49, Nov 2006.

[285] K. P. Anchor, P. D. Williams, G. H. Gunsch, and G. B. Lamont, “The computer
defense immune system: current and future research in intrusion detection,” in
Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.
No.02TH8600), vol. 2, May 2002, pp. 1027–1032 vol.2.

[286] P.-C. Chang, W.-H. Huang, and C.-J. Ting, “A hybrid genetic-immune algorithm
with improved lifespan and elite antigen for flow-shop scheduling problems,” In-
ternational Journal of Production Research, vol. 49, no. 17, pp. 5207–5230, Sep.
2011.

[287] C. A. C. Coello and N. C. Cortes, “Solving multiobjective optimization problems
using an artificial immune system,” Genetic Programming and Evolvable Machines,
vol. 6, no. 2, pp. 163–190, Jun. 2005.

[288] X. Luo and W. Wei, “A new immune genetic algorithm and its application in
redundant manipulator path planning,” Journal of Robotic Systems, vol. 21, no. 3,
pp. 141–151, 2004.

[289] A. Graaff and A. Engelbrecht, “Optimised coverage of non-self with evolved lym-
phocytes in an artificial immune system,” International Journal of Computational
Intelligence Research Research India Publications, vol. 2, pp. 973–1873, 01 2006.

[290] J. Kim and P. Bentley, “Negative selection and niching by an artificial immune
system for network intrusion detection,” in In Late Breaking Papers at the 1999
Genetic and Evolutionary Computation Conference, 1999, pp. 149–158.

[291] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-nonself discrimination
in a computer,” in Proceedings of 1994 IEEE Computer Society Symposium on
Research in Security and Privacy, May 1994, pp. 202–212.

[292] M. Cohn, N. A. Mitchison, W. E. Paul, A. M. Silverstein, D. W. Talmage, and
M. Weigert, “Reflections on the clonal-selection theory,” Nature Reviews Immunol-
ogy, vol. 7, no. 10, pp. 823–830, Oct. 2007.

[293] G. Costa Silva and D. Dasgupta, Handbook on Computational Intelligence. World
Scientific, 03 2016, vol. 2, ch. A Survey of Recent Works in Artificial Immune
Systems, pp. 547–586.

[294] D. Dasgupta and F. Gonzalez, “An immunity-based technique to characterize
intrusions in computer networks,” IEEE Transactions on Evolutionary Computation,
vol. 6, no. 3, pp. 281–291, June 2002.

[295] P. Mostardinha, B. F. Faria, A. Zúquete, and F. V. de Abreu, “A negative selection
approach to intrusion detection,” in Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, pp. 178–190.

181

[296] J. Greensmith, J. Feyereisl, and U. Aickelin, “The dca: Some comparison: A
comparative study between two biologically-inspired algorithms,” CoRR, vol.
abs/1006.1518, 2008.

[297] M. Ayara, J. Timmis, R. Lemos, L. De Castro, and R. Duncan, “Negative selection:
How to generate detectors,” Proceedings of the 1st International Conference on
Artificial Immune Systems (ICARIS), 01 2002.

[298] Lu Hong, “Artificial Immune System for Anomaly Detection,” in 2008 IEEE
International Symposium on Knowledge Acquisition and Modeling Workshop, Dec
2008, pp. 340–343.

[299] J. Balthrop, F. Esponda, S. Forrest, and M. Glickman, “Coverage and generalization
in an artificial immune system,” in Proceedings of the 4th Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO’02. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002, pp. 3–10.

[300] J. M. Shapiro, G. B. Lamont, and G. L. Peterson, “An evolutionary algorithm to
generate hyper-ellipsoid detectors for negative selection,” in Proceedings of the 7th
Annual Conference on Genetic and Evolutionary Computation, ser. GECCO ’05.
New York, NY, USA: ACM, 2005, pp. 337–344.

[301] Jungwon Kim and P. J. Bentley, “Towards an artificial immune system for network
intrusion detection: an investigation of clonal selection with a negative selection
operator,” in Proceedings of the 2001 Congress on Evolutionary Computation (IEEE
Cat. No.01TH8546), vol. 2, May 2001, pp. 1244–1252 vol. 2.

[302] Zhou Ji and D. Dasgupata, “Augmented negative selection algorithm with variable-
coverage detectors,” in Proceedings of the 2004 Congress on Evolutionary Compu-
tation (IEEE Cat. No.04TH8753), vol. 1, June 2004, pp. 1081–1088 Vol.1.

[303] Z. Ji and D. Dasgupta, “Real-valued negative selection algorithm with variable-sized
detectors,” in Genetic and Evolutionary Computation – GECCO 2004. Springer
Berlin Heidelberg, 2004, pp. 287–298.

[304] J. Timmis, P. Andrews, and E. Hart, “On artificial immune systems and swarm
intelligence,” Swarm Intelligence, vol. 4, no. 4, pp. 247–273, Dec 2010.

[305] N. Nanas, V. S. Uren, and A. de Roeck, “Nootropia: A user profiling model based
on a self-organising term network,” in Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2004, pp. 146–160.

[306] C. McEwan and E. Hart, “Representation in the (artificial) immune system,”
Journal of Mathematical Modelling and Algorithms, vol. 8, no. 2, pp. 125–149, Jun
2009.

182

[307] F. González, D. Dasgupta, and J. Gómez, “The effect of binary matching rules in
negative selection,” in Genetic and Evolutionary Computation — GECCO 2003.
Springer Berlin Heidelberg, 2003, pp. 195–206.

[308] P. K. Harmer, P. D. Williams, G. H. Gunsch, and G. B. Lamont, “An artificial
immune system architecture for computer security applications,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 3, pp. 252–280, June 2002.

[309] J. Farmer, N. H. Packard, and A. S. Perelson, “The immune system, adaptation,
and machine learning,” Physica D: Nonlinear Phenomena, vol. 22, no. 1, pp. 187 –
204, 1986, proceedings of the Fifth Annual International Conference.

[310] J. Kim and P. J. Bentley, “An evaluation of negative selection in an artificial
immune system for network intrusion detection,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO. Morgan Kaufmann, 2001, pp.
1330–1337.

[311] J. Balthrop, S. Forrest, and M. Glickman, “Revisiting LISYS: parameters and
normal behavior,” in Proceedings of the 2002 Congress on Evolutionary Computation
(CEC’02). IEEE, 2002.

[312] S. A. Hofmeyr, “An immunological model of distributed detection and its application
to computer security,” Ph.D. dissertation, The University of New Mexico, 1999,
aAI9926862.

[313] X. Z. Gao, S. J. Ovaska, and X. Wang, “Genetic algorithms-based detector gen-
eration in negative selection algorithm,” in 2006 IEEE Mountain Workshop on
Adaptive and Learning Systems, July 2006, pp. 133–137.

[314] X. Z. Gao, S. J. Ovaska, X. Wang, and M. . Chow, “Clonal optimization of negative
selection algorithm with applications in motor fault detection,” in 2006 IEEE
International Conference on Systems, Man and Cybernetics, vol. 6, Oct 2006, pp.
5118–5123.

[315] S. Cayzer and J. Smith, “Gene libraries: Coverage, efficiency and diversity,” in
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 136–149.

[316] J. Gomez, F. Gonzalez, and D. Dasgupta, “An immuno-fuzzy approach to anomaly
detection,” in The 12th IEEE International Conference on Fuzzy Systems, 2003.
FUZZ ’03., vol. 2, May 2003, pp. 1219–1224 vol.2.

[317] F. Gonzalez, J. Gomez, Madhavi kaniganti, and Dipankar Dasgupta, “An evolu-
tionary approach to generate fuzzy anomaly (attack) signatures,” in IEEE Systems,
Man and Cybernetics SocietyInformation Assurance Workshop, 2003., June 2003,
pp. 251–259.

183

[318] F. Esponda, S. Forrest, and P. Helman, “A formal framework for positive and
negative detection schemes,” Trans. Sys. Man Cyber. Part B, vol. 34, no. 1, pp.
357–373, Feb. 2004.

[319] X. Hang and H. Dai, “Applying both positive and negative selection to supervised
learning for anomaly detection,” in Proceedings of the 7th Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO ’05. New York, NY, USA:
ACM, 2005, pp. 345–352.

[320] P. A. D. de Castro and F. J. V. Zuben, “Bais: A bayesian artificial immune system
for the effective handling of building blocks,” Information Sciences, vol. 179, no. 10,
pp. 1426 – 1440, 2009, including Special Issue on Artificial Imune Systems.

[321] P. A. D. Castro and F. J. V. Zuben, “MOBAIS: A bayesian artificial immune
system for multi-objective optimization,” in Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2008, pp. 48–59.

[322] W. Wang, S. Gao, and Z. Tang, “A complex artificial immune system,” in 2008
Fourth International Conference on Natural Computation, vol. 6, Oct 2008, pp.
597–601.

[323] D. Dasgupta and S. Forrest, “An anomaly entection algorithm inspired by the
immune syste,” in Artificial Immune Systems and Their Applications. Springer
Berlin Heidelberg, 1999, pp. 262–277.

[324] A. M. Tyrell, “Computer know thy self!: a biological way to look at fault-tolerance,”
in Proceedings 25th EUROMICRO Conference. Informatics: Theory and Practice
for the New Millennium, vol. 2, Sep. 1999, pp. 129–135 vol.2.

[325] C. A. Coello Coello and N. Cruz Cortes, “A parallel implementation of an artificial
immune system to handle constraints in genetic algorithms: preliminary results,”
in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.
No.02TH8600), vol. 1, May 2002, pp. 819–824 vol.1.

[326] S. Liu, T. Li, D. Wang, K. Zhao, X. Gong, X. Hu, C. Xu, and G. Liang, “Im-
mune multi-agent active defense model for network intrusion,” in Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2006, pp. 104–111.

[327] D. Dasgupta, “Immunity-based intrusion detection system: A general framework,”
The University of Memphis, Tech. Rep., 1999.

[328] Z. Ji and D. Dasgupta, “Revisiting negative selection algorithms,” Evolutionary
Computation, vol. 15, no. 2, pp. 223–251, Jun. 2007.

[329] L. N. D. Castro and F. J. V. Zuben, “The clonal selection algorithm with engineering
applications,” in In GECCO 2002 - Workshop Proceedings. Morgan Kaufmann,
2002, pp. 36–37.

184

[330] A. Watkins and J. Timmis, “Exploiting parallelism inherent in airs, an artificial
immune classifier,” in Artificial Immune Systems, G. Nicosia, V. Cutello, P. J.
Bentley, and J. Timmis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 427–438.

[331] A. Ciccazzo, P. Conca, G. Nicosia, and G. Stracquadanio, “An advanced clonal se-
lection algorithm with ad-hoc network-based hypermutation operators for synthesis
of topology and sizing of analog electrical circuits,” in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2008, pp. 60–70.

[332] J. Timmis and M. Neal, “A resource limited artificial immune system for data
analysis,” Knowledge-Based Systems, vol. 14, no. 3, pp. 121 – 130, 2001.

[333] A. Watkins, J. Timmis, and L. Boggess, “Artificial immune recognition system
(airs): An immune-inspired supervised learning algorithm,” Genetic Programming
and Evolvable Machines, vol. 5, no. 3, pp. 291–317, Sep. 2004.

[334] D. E. Goodman, L. Boggess, and A. Watkins, “An investigation into the source
of power for airs, an artificial immune classification system,” in Proceedings of the
International Joint Conference on Neural Networks, 2003., vol. 3, July 2003, pp.
1678–1683 vol.3.

[335] L. Fang, Q. Bo, and C. Rongsheng, “Intrusion detection based on immune clonal
selection algorithms,” in Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004, pp. 1226–1232.

[336] Y. Ishida, “Fully distributed diagnosis by pdp learning algorithm: towards immune
network pdp model,” in 1990 IJCNN International Joint Conference on Neural
Networks, June 1990, pp. 777–782 vol.1.

[337] J. E. Hunt and D. E. Cooke, “Learning using an artificial immune system,” Journal
of Network and Computer Applications, vol. 19, no. 2, pp. 189 – 212, 1996.

[338] L. N. de Castro and F. J. V. Zuben, “aiNet: An artificial immune network for data
analysis,” in Data Mining. IGI Global, 2001, pp. 231–260.

[339] C. Zhang and Z. Yi, “An artificial immune network model applied to data clustering
and classification,” in Advances in Neural Networks – ISNN 2007. Springer Berlin
Heidelberg, 2007, pp. 526–533.

[340] J. Timmis, M. Neal, and J. Hunt, “An artificial immune system for data analysis,”
Biosystems, vol. 55, no. 1-3, pp. 143–150, Feb. 2000.

[341] J. Greensmith, J. Twycross, and U. Aickelin, “Dendritic cells for anomaly detection,”
2006 IEEE International Conference on Evolutionary Computation, 2006.

185

[342] J. Twycross, “Integrated innate and adaptive artificial immune systems applied
to process anomaly detection,” Ph.D. dissertation, University of Nottingham, Jan.
2007.

[343] U. Aickelin and J. Greensmith, “Sensing danger: Innate immunology for intrusion
detection,” Information Security Technical Report, vol. 12, no. 4, pp. 218–227, 2007.

[344] J. Greensmith and U. Aickelin, “Dendritic cells for real-time anomaly detection,”
SSRN Electronic Journal, 2006.

[345] J. Greensmith, “Migration threshold tuning in the deterministic dendritic cell
algorithm,” in 8th International Conference on the Theory and Practice of Natural
Computing (TPNC’19), vol. 2, 2019.

[346] C.-M. Ou, C. R. Ou, and Y.-T. Wang, Agent-Based Artificial Immune Systems
(ABAIS) for Intrusion Detections: Inspiration from Danger Theory. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 67–94.

[347] R. Chao and Y. Tan, “A virus detection system based on artificial immune system,”
in 2009 International Conference on Computational Intelligence and Security, vol. 1,
Dec 2009, pp. 6–10.

[348] Y. Tan, G. Mi, Y. Zhu, and C. Deng, “Artificial immune system based methods for
spam filtering,” in 2013 IEEE International Symposium on Circuits and Systems
(ISCAS), May 2013, pp. 2484–2488.

[349] M. F. A. Gadi, X. Wang, and A. P. do Lago, “Credit card fraud detection with
artificial immune system,” in Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, pp. 119–131.

[350] D. Dasgupta, “An overview of artificial immune systems and their applications,” in
Artificial Immune Systems and Their Applications. Springer Berlin Heidelberg,
1993, pp. 3–21.

[351] J. Kim and P. Bentley, “An artificial immune model for network intrusion detection,”
Conference on Intelligent Techniques and Soft Computing (EUFIT’99), 10 1999.

[352] A. Boukerche, R. B. Machado, K. R. Jucá, J. B. M. Sobral, and M. S. Notare, “An
agent based and biological inspired real-time intrusion detection and security model
for computer network operations,” Computer Communications, vol. 30, no. 13, pp.
2649 – 2660, 2007, sensor-Actuated Networks.

[353] S. T. Powers and J. He, “A hybrid artificial immune system and self organising
map for network intrusion detection,” Information Sciences, vol. 178, no. 15, pp.
3024 – 3042, 2008, nature Inspired Problem-Solving.

186

[354] M. Drozda, S. Schaust, and H. Szczerbicka, “AIS for misbehavior detection in
wireless sensor networks: Performance and design principles,” in 2007 IEEE
Congress on Evolutionary Computation, Sep. 2007, pp. 3719–3726.

[355] Yang Liu, Yang Liu, and Fengqi Yu, “Immunity-based intrusion detection for
wireless sensor networks,” in 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), June 2008, pp.
439–444.

[356] L. Fasanotti, E. Dovere, E. Cagnoni, and S. Cavalieri, “An Application of Arti-
ficial Immune System in a Wastewater Treatment Plant,” IFAC-PapersOnLine,
vol. 49, no. 28, pp. 55 – 60, 2016, 3rd IFAC Workshop on Advanced Maintenance
Engineering, Services and Technology AMEST 2016.

[357] M. Gong, L. Jiao, W. Ma, and J. Ma, “Intelligent multi-user detection using an
artificial immune system,” Science in China Series F: Information Sciences, vol. 52,
no. 12, pp. 2342–2353, Dec. 2009.

[358] C. Laurentys, R. Palhares, and W. Caminhas, “A novel artificial immune system
for fault behavior detection,” Expert Systems with Applications, vol. 38, no. 6, pp.
6957 – 6966, 2011.

[359] M. Zuccolotto, C. E. Pereira, L. Fasanotti, S. Cavalieri, and J. Lee, “Designing an
artificial immune systems for intelligent maintenance systems,” IFAC-PapersOnLine,
vol. 48, no. 3, pp. 1451 – 1456, 2015, 15th IFAC Symposium onInformation Control
Problems inManufacturing.

[360] H. Yang, M. Elhadef, A. Nayak, and X. Yang, “Network fault diagnosis: An
artificial immune system approach,” in 2008 14th IEEE International Conference
on Parallel and Distributed Systems, Dec 2008, pp. 463–469.

[361] D. W. Bradley and A. M. Tyrrell, “The architecture for a hardware immune system,”
in Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001, July
2001, pp. 193–200.

[362] M. Kayama, Y. Sugita, Y. Morooka, and S. Fukuoka, “Distributed diagnosis system
combining the immune network and learning vector quantization,” in Proceedings
of IECON ’95 - 21st Annual Conference on IEEE Industrial Electronics, vol. 2,
Nov 1995, pp. 1531–1536 vol.2.

[363] W. Liu and B. Chen, “Optimal control of mobile monitoring agents in immune-
inspired wireless monitoring networks,” Journal of Network and Computer Applica-
tions, vol. 34, no. 6, pp. 1818–1826, 2011.

[364] R. Pinto, G. Gonçalves, E. Tovar, and J. Delsing, “Attack detection in cyber-
physical production systems using the deterministic dendritic cell algorithm,” in 25th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), 2020.

187

[365] R. Oates, G. Kendall, and J. M. Garibaldi, “Frequency analysis for dendritic cell
population tuning,” Evolutionary Intelligence, vol. 1, no. 2, pp. 145–157, Apr. 2008.

[366] F. Gu, J. Greensmith, and U. Aickelin, “Integrating real-time analysis with the
dendritic cell algorithm through segmentation,” in Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO ’09. New
York, NY, USA: Association for Computing Machinery, 2009.

[367] C. J. Musselle, “Insights into the antigen sampling component of the dendritic cell
algorithm,” in Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2010.

[368] Z. Chelly and Z. Elouedi, “A survey of the dendritic cell algorithm,” Knowledge
and Information Systems, vol. 48, no. 3, 2015.

[369] S. Mohapatra and P. M. Khilar, Immune Inspired Fault Diagnosis in Wireless
Sensor Network. Springer Singapore, 2020, ch. 5.

[370] R. Rizwan, F. A. Khan, H. Abbas, and S. H. Chauhdary, “Anomaly detection in
wireless sensor networks using immune-based bioinspired mechanism,” International
Journal of Distributed Sensor Networks, vol. 11, no. 10, 2015.

[371] Z. Zhang, A. Mehmood, L. Shu, Z. Huo, Y. Zhang, and M. Mukherjee, “A survey
on fault diagnosis in wireless sensor networks,” IEEE Access, vol. 6, 2018.

[372] D. Cui, Q. Zhang, J. Xiong, Q. Li, and M. Liu, “Fault diagnosis research of rotating
machinery based on dendritic cell algorithm,” in IEEE International Conference
on Information and Automation, 2015.

[373] E. Alizadeh, N. Meskin, and K. Khorasani, “A dendritic cell immune system
inspired scheme for sensor fault detection and isolation of wind turbines,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 2, 2018.

[374] M. Akram and A. Raza, “Towards the development of robot immune system: A
combined approach involving innate immune cells and t-lymphocytes,” Biosystems,
vol. 172, 2018.

[375] N. Elisa, L. Yang, X. Fu, and N. Naik, “Dendritic cell algorithm enhancement using
fuzzy inference system for network intrusion detection,” in IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), 2019.

[376] J. Borgeson, S. Schauer, and H. Diewald, “Benchmarking MCU power consumption
for ultra-low-power applications,” Texas Instruments, White Paper E010208, Nov.
2012.

[377] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons from a sensor
network expedition,” in Wireless Sensor Networks, H. Karl, A. Wolisz, and A. Willig,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 307–322.

188

[378] D. Yuan, S. S. Kanhere, and M. Hollick, “Instrumenting wireless sensor networks –
a survey on the metrics that matter,” Pervasive and Mobile Computing, vol. 37,
2017.

[379] T. Zoppi, A. Ceccarelli, and A. Bondavalli, “Madness: A multi-layer anomaly detec-
tion framework for complex dynamic systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 18, no. 2, pp. 796–809, 2021.

[380] Microchip Technology Inc., AN2447: Measure VCC/Battery Voltage Without Using
I/O Pin on tinyAVR and megaAVR, May 2019, Application Note.

[381] B. P. Welford, “Note on a method for calculating corrected sums of squares and
products,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962.

[382] D. E. Knuth, The Art Of Computer Programming, Volume 2: Seminumerical
Algorithms. Pearson Education, 1998.

[383] ATmega1284P Datasheet, Atmel Corporation, November 2009, 8059D–AVR–11/09.
[Online]. Available: https://ww1.microchip.com/downloads/en/DeviceDoc/
doc8059.pdf

[384] F. Angiulli and F. Fassetti, “Detecting distance-based outliers in streams of
data,” in Proceedings of the Sixteenth ACM Conference on Conference on
Information and Knowledge Management, ser. CIKM ’07. New York, NY, USA:
Association for Computing Machinery, 2007, pp. 811–820. [Online]. Available:
https://doi.org/10.1145/1321440.1321552

[385] Z. Ding and M. Fei, “An anomaly detection approach based on isolation
forest algorithm for streaming data using sliding window,” IFAC Proceedings
Volumes, vol. 46, no. 20, pp. 12–17, 2013, 3rd IFAC Conference on
Intelligent Control and Automation Science ICONS 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474667016314999

[386] S. Guha, N. Mishra, G. Roy, and O. Schrijvers, “Robust random cut forest based
anomaly detection on streams,” in Proceedings of the 33rd International Conference
on International Conference on Machine Learning - Volume 48, ser. ICML’16.
JMLR.org, 2016, pp. 2712–2721.

[387] S. F. Yilmaz and S. S. Kozat, “Pysad: A streaming anomaly detection
framework in python,” CoRR, vol. abs/2009.02572, 2020. [Online]. Available:
https://arxiv.org/abs/2009.02572

[388] H. Schutte, “Bi-directional level shifter for i2c-bus and other systems,” Philips
Semiconductors, Application Note AN97055, 1997.

[389] S. Khan, A.-S. K. Pathan, and N. A. Alrajeh, Wireless sensor networks: current
status and future trends. Taylor & Francis, 2013.

189

https://ww1.microchip.com/downloads/en/DeviceDoc/doc8059.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/doc8059.pdf
https://doi.org/10.1145/1321440.1321552
https://www.sciencedirect.com/science/article/pii/S1474667016314999
https://arxiv.org/abs/2009.02572

Dominik Widhalm
Curriculum Vitae

Education
2018 – 2022 PhD Computer Science, Vienna University of Technology.

participant in the doctoral college Resilient Embedded Systems
2012 – 2014 Master Embedded Systems, UAS Technikum Wien.

passed with highest distinction
2010 – 2012 Bachelor Electronic Engineering, UAS Technikum Wien.

passed with highest distinction
2004 – 2009 Electrical Engineering/Information Technology, HTBLuVA St. Pölten.

passed with highest distinction

Doctoral Thesis
Title Sensor Node Fault Detection in Wireless Sensor Networks: An Immune-inspired Approach

Supervisors Priv.-Doz. Mag. DI. DI. Dr. Karl M. Göschka
Ao.Univ.Prof. DI. Dr. Wolfgang Kastner

Ext. Reviewer Prof. Andrea Bondavalli
Prof. Davide Quaglia

Description In this thesis, a novel sensor node fault detection approach is presented. It integrates
node-level diagnostics with the characteristics of the sensor data to improve the detectability
of faults and, more importantly, to allow to distinguish between the effect of faults and
environmental data events. The approach is inspired by the functioning of dendritic cells
in the human immune system. Nevertheless, the strength of the presented approach lies in
expressive node-level diagnostics rather than deeply embedding immune-related knowledge.

Master Thesis
Title Bridging the Gap between AGENtiX and JAZZ

Supervisors FH-Prof. DI. Dr. Martin Horauer
DI. Mag. Matthias Wenzl

Description This thesis describes the development of a novel testing framework to bridge pre- and
post-silicon verification activities in mixed-signal SoC development flows. Its suitability is
shown based on the verification flow of Infineon Technologies Austria AG where two main
software frameworks are used, namely AGENtiX and JAZZ; hence the name of the thesis.

Achievements
2014 Kapsch Award 2014

2013 & 2014 Merit-based scholarship, Master Embedded Systems

2011 & 2012 Merit-based scholarship, Bachelor Electronic Engineering
2009 OVE GIT-Preis 2009

Experience
Vocational

2018/10 –
today

Researcher, UAS Technikum Wien, Austria.
Doctoral College Resilient Embedded Systems

2017/07 –
2018/10

Researcher, UAS Technikum Wien, Austria.
In a research cooperation with Elektrobit Austria GmbH

2013/04 –
2018/04

Researcher, UAS Technikum Wien, Austria.
In the Josef Ressel Center for Verification of Embedded Computing Systems (funded by CDG)

2012/09 –
2012/12

Junior Researcher, UAS Technikum Wien, Austria.
In the AC-Centrope II research project (funded by EU-EFRE)

2012/03 –
2012/05

Electronic Engineer, Zizala Lichtsysteme GmbH, Wieselburg, Austria.
Student apprentice

Teaching Academic Courses
since 2019 Embedded Systems Software Design, bachelor level course.
since 2017 Wireless Communication Networks & Systems, bachelor level course.
since 2016 Internet of Things Applications, (specialization course), bachelor level course.
since 2016 Embedded Software Testing, master level course.
since 2014 Supervisor of several bachelor/master projects & theses.
since 2013 C & System Programming, bachelor level course.

Publications
Journal Publications

[1] D. Widhalm, K. M. Goeschka, and W. Kastner, “An open-source wireless sensor node platform with
active node-level reliability for monitoring applications,” Sensors, vol. 21, no. 22, 2021.

[2] M. Horauer, D. Widhalm, S. Tauner, and S. Mirtl, “Verification Challenges of Complex System-
on-Chip Devices,” e & i Elektrotechnik und Informationstechnik, vol. 132, no. 6, pp. 269–273,
2015.

Conference Publications
[3] D. Widhalm, K. M. Goeschka, and W. Kastner, “Sensor node fault detection in wireless sensor

networks utilizing node-level diagnostics,” in The 20th ACM Conference on Embedded Networked
Sensor Systems (SenSys’22), (in review), Boston, United States, 2022.

[4] ——, “Undervolting on wireless sensor nodes: A critical perspective,” in 2022 23rd International
Conference on Distributed Computing and Networking (ICDCN), 2022.

[5] ——, “Is arduino a suitable platform for sensor nodes?” In IECON 2021 – 47th Annual Conference
of the IEEE Industrial Electronics Society, 2021, pp. 1–6.

[6] ——, “Node-level indicators of soft faults in wireless sensor networks,” in 2021 40th International
Symposium on Reliable Distributed Systems (SRDS), 2021, pp. 13–22.

[7] ——, “Sok: A taxonomy for anomaly detection in wireless sensor networks focused on node-level
techniques,” in Proceedings of the 15th International Conference on Availability, Reliability and
Security, ser. ARES ’20, Virtual Event, Ireland: Association for Computing Machinery, 2020.

[8] D. Widhalm, S. Tauner, and M. Horauer, “Augmenting Pre-Silicon Simulation by embedding
a Scripting Language in a SystemC Environment,” in Mechatronic and Embedded Systems and
Applications (MESA), 2016 IEEE/ASME 12th International Conference on, Aug. 2016.

[9] S. Tauner, D. Widhalm, and Horauer, “Synchronization Approaches for Testing Mixed-Signal SoCs
under Real-Time Constraints using On-Chip Capabilities,” in Proceedings of the 2015 IEEE Austrian
Workshop on Microelectronics (AUSTROCHIP), Sep. 2015, pp. 36–41.

[10] D. Widhalm, S. Tauner, M. Horauer, A. Schumacher, and A. Haggenmiller, “A Common Platform
for Bridging Pre- and Post-Silicon Verification in Mixed-Signal Designs,” in Instrumentation and
Measurement Technology Conference (I2MTC), 2015 IEEE International, May 2015, pp. 1584–1589.

Conference Poster Presentations
[11] S. Tauner, D. Widhalm, and M. Horauer, Unification of Pre- and Post-Silicon Verification Flows in

Mixed-Signal Designs, Microelectronic Systems Symposium (MESS’16), Apr. 2016.

Theses
[12] D. Widhalm, “Sensor node fault detection in wireless sensor networks: An immune-inspired approach,”

PhD thesis, Vienna University of Technology, Doctoral College Resilient Embedded Systems, Sep.
2022.

[13] ——, “Bridging the gap between agentix and jazz,” Master’s thesis, University of Applied Sciences
Technikum Wien, Jun. 2014.

SW/HW Engineering Skills
Languages C/C++, Assembly (ARM/AVR), Python, Perl, Java, VHDL, SystemC, PHP, AJAX,

Javascript, HTML, CSS, LATEX, AsciiDoc, Markdown
Software Code Blocks, Eclipse, AVR/Atmel Studio, Visual Studio, Matlab/Simulink, LabView, Altera

Quartus & Modelsim, Protel/Altium, Proteus, Mathcad, AutoCAD, ePlan, KiCad

Languages
German native
English excellent command
Russian basic communication skills

Std. Chinese basic communication skills

Interests
Research sensor networks, fault tolerance, anomaly detection, artificial immune systems

Electronics embedded systems, internet of things applications, home automation
Activities running, swimming, hiking, sport climbing, fitness training, ballroom dancing

	Introduction
	Research Questions
	Methodology
	Contribution
	Thesis Outline

	Wireless Sensor Networks
	Fields of Applications
	Environmental Monitoring
	Habitat Monitoring
	Structural Health Monitoring

	Structure and Components
	Network Architecture
	Sensor Nodes
	Node Platforms

	Characteristics and distinct Features

	Anomaly Detection
	Challenges in Wireless Sensor Networks
	Anomaly Detection Metrics
	Data Quality
	Correctness
	Efficiency

	Taxonomy for Anomaly Detection
	Anomaly Classes
	Anomaly Degree
	Operation Mode
	Input Data Instances
	Data Correlations
	Model Structure
	Detection Method
	Other Criteria

	Related Work on Anomaly Detection in WSNs
	Limits of Anomaly Detection for Fault Diagnosis

	Sensor Node Fault Detection
	Danger posed by Node Faults
	Terminology
	Chain of Dependability
	Anomalies vs. Node Faults
	Scope of Considerations

	Fault Taxonomy
	Fault Origin
	Fault Severity
	Fault Type
	Fault Persistence
	Fault Level
	Fault Manifestation

	Related Fault Detection Schemes
	Sensor Data Analysis
	Group Detection
	Local Self-Diagnosis

	Research Gap

	Artificial Immune Systems
	History and Immunological Theories
	Unique Properties of the Immune System
	Nervous, Endocrine-, and Immune System
	Innate and Adaptive Immunity
	White Blood Cells

	The Danger Theory
	Basic Concept
	Immunological Signals
	The Role of Dendritic Cells

	Classical AIS Theories
	Negative and Positive Selection
	Clonal Selection
	Artificial Immune Networks
	Danger Theory-based Approaches
	AIS Applications in WSNs

	The Dendritic Cell Algorithm
	Working Principle
	Variants and further Developments
	Related Work on DCA-based Fault Detection
	Limitation of current Approaches

	Immune-inspired Node Fault Detection Approach
	Considered Fault Models
	Ambient Temperature Faults
	Supply Voltage Faults
	Humidity and Vibration Faults

	Node-level Diagnostics
	Inherently-available Indicators
	Artificially-added Indicators
	Remarks on Fault Indicators

	Danger and Safe Indicators
	Modified Runtime DCA
	Antigen Definition
	Indicator Update
	DC Population Update
	Sensor Value Classification

	Considerations on the Detection Approach

	Concept Evaluation
	The ASN(x) Platform
	Design and Components
	Node-level Indicators

	Prototype Implementation
	Use Case
	Sink Node
	Cluster Head
	Sensor Nodes

	Simulations
	Base Datasets
	Fault Signatures
	Fault Injection
	Benchmark

	Lab Experiments
	Embedded Testbench
	Test Automation

	WSN Testbed
	Indoor
	Outdoor

	Result Discussion
	Correctness Evaluation
	Sensitivity, Specificity, and Accuracy
	Fault and Event Detection Examples
	Comparison with alternative Approaches

	Efficiency Analysis
	Network Traffic Overhead
	Memory Consumption
	Computation Time
	Energy Overhead
	Processing Delay

	Lessons learned

	Summary
	Research Findings and Dissemination
	Related Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Bibliography

