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Abstract— The demands regarding high mix, low volume
manufacturing and faster product life cycles make flexible
production indispensable. Collaborative robots are widely re-
garded as an enabler for this flexible production. Further, they
also achieve the goal of human-centered production envisioned
by Industry 5.0. However, its installation requires significant
efforts by skilled specialists and robotics experts for robot
programming. In order to improve accessibility for shop-floor
workers, the focus in previous works lies on the combination
of graphical/function-based and declarative programming that
supports fast reconfiguration. The business process model
notation (BPMN) was used for the user input of hardware-
independent robot skills. Further, the so-called SAMY-Core
was developed to generate control commands for the respec-
tive hardware. Based on these two components, this work
focuses on the concluding translation of BPMNs to machine
executable processes as the final component within the SAMY
framework to finalize its entire pipeline from the user input
to the hardware-specific code execution. For the translation,
the SAMY-BPMN is processed to a graph, which contains all
skills and can return the correct following actions by means
of states of the robot system. As a result, it is shown that this
translation and thus the entire pipeline is feasible, allowing
non-expert users to change the system both quickly and easily.

I. INTRODUCTION

Increasing global competition, shorter product life cycles
and individual customer requirements demand a high degree
of flexibility in production [1]. Conventional production
systems are proving to be too inflexible in this case, and
thus, the digitalization of the components and intelligent
automation (Industry 4.0) is seen as an enabler. While in
the beginning complete automation was sought to achieve
this flexibility, it quickly became clear that replacing the
human is not considered viable [2]. Thus, human-centered
production is established as one of the three pillars of the
so-called Industry 5.0 by the European Commission [3].

Collaborative robots (cobots) are widely regarded as one
of the enabler for these flexible production requirements
[4], [5]. Unfortunately, the reconfiguration of a human-cobot
workspace still bears various challenges. Robot experts are
usually still needed for programming, and safety would also
have to be determined again by safety experts after each
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adaptation [6]. However, today’s shortage of skilled workers
represents a significant challenge in this area [7].

The research project ”SAMY” aims to address this simpli-
fication of accessibility by automating the modification pro-
cess in control programs of industrial collaborative robotic
systems. Preliminary work in this project found that the
combination of graphical/function-based (e.g., moving and
connecting blocks containing tasks like ”pick&place” in a
two-dimensional working space) and declarative descriptions
(where the work systems’ process chain is described with the
mentioned blocks and not directly programmed in machine
code) form the most effective and robust method for recon-
figuring the work system from a user-centric perspective [8].
From these graphical descriptions, the specific robot code
must be generated subsequently. As a result of this insight,
the SAMY-Editor and the SAMY-Framework (SAMY-Core)
[9] were created. In terms of user-centric programming and
controlling robotic systems, the SAMY-Editor operates as
the frontend using BPMN as the graphical user interface.
Whereas the SAMY-Core acts as the backend to the robot for
generating the machine code and the final control commands
(see figure 1). However, both approaches, using BPMN
as well as states and actions for processing, cannot be
merged trivially. A middleware between the BPMN and the
core is therefore needed. In addition, the translation must
somehow process the BPMN, to provide the right work
system sequence for generating the corresponding robotic
control commands.

Translation SAMY-Core
Robot

Actions

States
SAMY 
BPMN

SAMY-BPMN 
EditorUser

Periphery

Fig. 1. Simplified framework for declarative programming and its trans-
lation to control commands for interaction with periphery

For this reason, this paper describes the process of getting
from a simple graphical user notation to the machine-
readable representation of it. This middleware is needed
to ensure the whole SAMY pipeline (shown in figure 1)
from the user input to the actual signal- and movement-
conversation on the robotic system. For that, the processing
of the graphically described states is needed to ensure a
sequence of actions for controlling a robotic system. The
development necessary for this, to make BPMNs executable,
shows a new approach independent of SAMY.
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II. STATE OF THE ART

Simplifying programming and configuration of industrial
robots is a field of ongoing research, in particular by adding
an abstraction layer [10]. The main idea of this abstraction is,
that many tasks can be represented by a very small number
of predefined skills (e.g., ”move to <position>” and ”pick
up <work piece>”). Thus, these skills represent a hardware
independent solution of programming a robot, where the
available skills are defined by the robot’s hardware and its
sensors. Based on that, the challenge is combining standard-
ized abstractions and getting from simple user notation to
the machine-readable representation of it.

A. Abstraction Layers and Skills-based programming

Hoyos et al. [11] introduce a definition and management
of skills, which can be accessed through some user interface.
The ability to start one skill at a time, allows for a simple
parsing of the abstraction to the machine readable code. The
usage of Google Blockly 1 to simplify the programming by
adding an abstraction layer is reflected upon in [12] and [13].
In this instance, the parsing of the robot application created
through the abstraction layer is bypassed by directly mapping
robot specific source code to the Blockly blocks. Thomas et
al. [14] uses the Unified Modeling Language suitable for
programming (UML/P) to combine the robot code with a
graphical modelling language.

B. BPMN as abstraction layer

The use of BPMN as an abstraction layer to the imple-
mentation of skill-based industrial programming is a novel
approach. Therefore, no existing research can be used as
basis for the conversion and processing of the skills plan.
In addition, the cited papers of the last section use their
development on a specified hardware. Consequently, the
translation to machine readable code is more straightforward.

Dijkman and Van Gorp [15] define rules to rewrite BPMN
2.0 to graphs in the tool GrGen. Raedts et al. [16] developed
a translation between BPMN and Petri nets to verify and
validate models. Further, a conversion between resilient
BPMN and directed graphs was developed by Nordemann et
al. [17], to use graph-based search algorithms on the BPMN.

A different approach is to directly simulate BPMNs.
Pereira and Freitas [18] describe various tools to simulate
BPMN. Pufahl et al. [19] introduce further an extensible
BPMN discrete event simulator. In addition, the development
of a BPMN extension to enable better discrete event
simulation is described by Onggo et al. [20].

The conversion of BPMN to machine readable data
structure is part of extended research. However, the
transcriptions in the cited papers often use sub-types of
BPMNs or specialized tools, which are not applicable in the
case of robotic programming. Furthermore, the research in
the cited papers is focused on economic problems.

III. METHODOLOGY

The targeted translation, from graphical descriptions to
machine readable plans applies to the area of human-centered
reconfiguration and modification, which is hardly tested in
the field of robotic programming. Therefore, an iterative soft-
ware process model with the focus on prototyping and reuse
of software, like Boehm’s [21] spiral model as methodology
to design, build and maintain the concerning interface is
applied. According to Alshamrani [22], the spiral model is
suitable for developing highly customizable software due
to iterative loops, the high amount of risk analysis, and
the ability to react to rapid changes. Exemplary iterative
loops for the development of the translation software are
summarized in table I and table II.

TABLE I
DEVELOPMENT OF TRANSLATION SOFTWARE: ITERATION 1 (CF. [21])

Objectives Translation concept for graphical descrip-
tion to machine readable plan

Constraints BPMN, XML, Python, directed data struc-
ture

Alternatives Petri net/graph, C++/Python
Risks False description of data structure, states,

or transition condition/high implementa-
tion effort

Risk resolution Literature research
Risk resolution results Development-, translation concept

Plan for next phase Implementation of translation concept

Table I shows the translation concept for the graphical
description to a machine-readable plan and includes the
following standards: The BPMN (Business Process Model
and Notation)2 is a graphical notation for processes and
represents the user interface for programming the robotic
system. The BPMN acts as an input for the transformation to
machine-readable plans. The BPMN standard is overlaid with
its own SAMY-BPMN [23]. The transformation requires a
directed data structure, for which a standard graph structure3

is used as a connection component between the BPMN as
user input and the SAMY-Core [9].

TABLE II
DEVELOPMENT OF TRANSLATION SOFTWARE: ITERATION 2 (CF. [21])

Objectives Lossless representation of BPMN to graph
(graph builder)

Constraints BPMN, XML, graph, Python
Alternatives Standard library BPMN to graph/develop

particular translation script + NetworkX
Risks High implementation effort, loss of infor-

mation
Risk resolution Internal discussion, literature research

Risk resolution results Translation class from BPMN to graph
with processing of states & actions

Plan for next phase BPMN processing (graph planner)

1https://developers.google.com/blockly
2https://www.iso.org/standard/62652.html
3https://www.maths.ed.ac.uk/ v1ranick/papers/wilsongraph.pdf
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Table II breaks down the first implementation of the
translation concept involves the development of a graph
builder, which includes the following standards: Storing the
BPMN to XML (Extensible Markup Langage)4, formatting
it to DOM specification (Document Object Model)5 via the
library XML.DOM6 and then processing the document via
Python script to generate the graph is proceeded instead of
using a standard library for building a graph, due to the non
conventional overlay of the BPMN. For the management of
the created graph the library NetworkX7 is used. The result
is a translation class from the BPMN to a graph with the
processing of states and actions.

IV. DEVELOPMENT

The translation and processing of BPMNs are parts of the
connection component between the user interface and the
backend core of SAMY.

Figure 2 shows the architecture of the referred connection
component defined as controller, and the already imple-
mented SAMY interfaces (SAMY-BPMN Editor, SAMY-
Core). The implementation aspect of this work focuses on the
controller, specifically on the development and integration
of the so-called graph planner, as well as the mapper.
A further implementation step is the incorporation of the
already implemented interface to the SAMY-Core. As figure
2 shows, the graph planner and the mapping components
are direct parts of the controller, which is invoked through
the specified interface. The interface and arrows illustrate
definitions for the transition of the already developed SAMY
parts to the controller. These definitions, namely the use of
the SAMY-BPMN on the one hand and the use of states
and actions on the other hand, are the constraints for this
development. The task can therefore be described as follows:
A BPMN is loaded and for each discrete event step, the

4https://www.w3.org/standards/xml/core
5https://www.w3.org/TR/WD-DOM/introduction.html
6https://docs.python.org/3/library/xml.dom.html
7https://pypi.org/project/networkx/
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Fig. 2. Architecture of the controller and the surrounding SAMY interfaces

program is aware of the current action to be executed and
whether the present state meets the transition conditions for
moving on to the next action. In the development phase only
the graph planner is of interest, since the aim of the mapping,
described in greater detail in the next section, is the simple
parsing of the SAMY specific state and action definitions.

A. Approach for developing the middleware

The approach for the implementation of the two main
parts, namely the BPMN transition and the BPMN process-
ing, is dependent on two questions:

• BPMN Translation: How can the BPMN be stored
without loss of information?

• BPMN Processing: How can the translation be simu-
lated?

SAMY-BPMN only uses flow objects and connecting
objects, which are used to describe a flow of connected
activities. Since a flow can contain junctions and loops, a
graph-based data structure is necessary to gain a lossless
representation. The decision was made for a directed graph,
which is processed further. Gateways and variable manip-
ulation tables (VMT) are removed as nodes, to obtain a
representation containing only the action-based nodes. The
removed information is integrated as internal functionality of
the nodes and edges. The nodes fulfil the task of managing
the internal variables and returning its action. The edges are
opened after checking the received state and the internal
variable container. An exemplary depiction of the conversion
can be seen in figure 3.

A

B

C

Variable  
Manipulation Table 

x += 1

x < 5

x >= 5

T2

T3

A

T4
B

T5

C

Node A

action = "A"

getAction():
    x += 1
    return action

Edge T2

state = "Ready"

ready():
    return x < 5 and checkState(state)

T2

T3

T1
T4

T5

T1Start End

Fig. 3. An exemplary depiction of the conversion between BPMN and directed Graphs with its internal class functionality. The internal functionality of
the graph objects is described in pseudo code.
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The logic of the process is stored in the objects of the
graph, which leads to easy processing of the graph. The
initial current node is the start process. Then, at each event,
every originating edge of the current node is provided with
the current state list. After processing the current state list,
the referring edge returns whether the requirements are met
for moving on to the next node. Only if the corresponding
edge is open, can the next node be reached. If the current
node moves forward to the next node, the action request is
invoked for this node, which also updates the variable con-
tainer. As a result, a corresponding skill (e.g., pick&place)
is executed on the robotic system.

B. BPMN Translation

A BPMN model is stored as an XML file, which can be
processed using a DOM. This is used to store each SAMY-
BPMN block type as node and each transition as edge. The
result is a function-less graph with the correct connections
of the BPMN. The nodes and edges both contain an object
which will handle the additional functionality added by
gateways and VMTs. Furthermore, it stores the action type
of the nodes and the transition state of the edges. As a next
step, each gateway and the VMT has to be reworked to
move the functionality into the process nodes. After each
transformation, the redundant gateway nodes are removed
from the graph. This is realized on the basis of the following
rules:

• The VMT is stored in a class and the variables are
updated when the predecessor is visited within the
processing step.

• The conditions for the exclusive gateway are stored in
a list of tuples which get checked to open the edges.

• The combination of edges closing the parallel gateway is
stored for each involved edge, to ensure each transition
is opened, only if all parallel edges are open.

• The loopback gateway does not need extra functional-
ity, therefore solely the predecessor and successor are
linked.

C. BPMN Processing

The BPMN contains three blocks which are of special
importance for the processing. The start block defines the
initialization point of the processing, the end block defines
when the processing is finished and the variable container
includes all variables needed for the processing with their
initial values.

With the start node set as the current node, the process
checks on each state event, if the edges are open. If this
is the case, the current node moves forward, updates the
variable container and returns the action name. Due to
parallel gateways, multiple current nodes are possible, which
have to be managed collectively. To close a parallel gateway,
the list of the parallel edges involved is compared to all
linked open edges of current nodes. If they are a subset, the
associated current nodes can move forward and merge.

D. Integration in SAMY

The core is limited regarding the user friendliness of
describing the actions and states. Therefore, a separate
definition for the creation of the BPMNs can be chosen,
to facilitate the description of the actions and states. This
definition must then be linked to the core actions by a
mapping file. The mapping is stored as a YAML file, which
assigns a SAMY value to each controller specific value. The
mapper can access this file and then map the BPMN actions
to the SAMY actions ”on the fly”.

Since there are no transition states within the BPMN,
own states must be specified based on the resources of the
previous node. For example, a resource could be the robot
itself or integrated sensors and actuators. Each resource is
defined with its state ”Resource:Ready”, to clarify whether
a resource is idle. The state description ”Ready” is arbitrary
and could be anything as long as it is used within the
mappings. These mappings are content of the YAML file,
which stores the correct translation to the SAMY states.

During a triggered state event the mapper is executed twice
(see figure 4). Firstly, it is executed at the beginning to parse

MapperSAMY: State List

Planner

Planner: State List

Mapper BPMN: ActionSAMY: Action

Fig. 4. Mapping pipeline from the SAMY state list to resulting SAMY
action.

the SAMY state list to the defined states of the graph planner
(planner state list). The graph planner can then work with the
mapped states and the actions defined through the BPMN.
Secondly, the mapper is executed at the end to converts the
resulting BPMN actions to the SAMY actions.

V. RESULTS AND DISCUSSION

In order to evaluate the developed translation and mapping
from graphical descriptions to machine readable plans, an
experimental simulation-based use case was generated for
testing the developed controller and the holistic SAMY
pipeline. Executing the graphically described process within
an exemplary use-case shows the translation from declarative
programming and reconfiguration to skill-based processing
of work tasks, for generating robotic applications.

The BPMN of the realized use-case is shown in figure 5.
The robotic task is to sort five objects into two boxes, with
the use of a camera to detect the objects. Overall, ten objects
should be moved, after this, the program stops.

The individual blocks in the BPMN are the robotic tasks
(e.g., Robot:move pick pose) to be implemented. Those tasks
are described as skills within the SAMY context. Loops and
branches defined in the BPMN describe the logic of the entire
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Robot:Move pick pos

Camera:Detect object

Robot:Gripper approach

Robot:Gripper attach

object_count < 5 object_count >= 5

Robot:Move box rightRobot:Move box left

Move:PlaceVMT 
object_count += 1

object_count < 10

object_count >= 10

Variable Container
object_count = {0 ... 10}

VMT 
object_count = 0

Fig. 5. SAMY-BPMN of exemplary use-case for picking and sorting objects

robotic process. For a logical flow, additional variables are
needed, which are defined in the variable container with their
initial values. In this use-case such an additional variable is
utilized to manage the number of objects already sorted (e.g.,
object count < 5). The increasing of the variable is executed
by the VMT.

A direct comparison of the BPMN (Figure 5) and the
graph (Figure 6) shows that on the one hand the skills
still exist as nodes, but on the other hand loop gateways
are no longer depicted in the graph. The visualization of
exclusive gateways is also omitted and instead represented
as logical conditions within the edges. Parallel gateways
only appear as conditions for the parallel edges that are
converging to the same node. An exemplary progression
in the graph from the ”Start” node to the ”Robot:Move
pick pos” node is depicted in Figure 7, which corre-
sponds to a controller call triggered by a state change.
The first block ”[Robot RobotUR5 CRCLStatus=1, Informa-
tionSource Camera Status=0]” describes the physical robotic
system, based on a SAMY state list. In this case, unlike
the camera, the robot is idle and is waiting for the next

instruction. The mapper translates the status of the hardware
to a format readable by the planner. The planner checks
the received state against the existing graph and returns the
action of the next node ”Robot:Move pick pos” if the states
match. Lastly the returned action is mapped back as SAMY
action ”Move-UR5-Pick” to be processed by the SAMY-
Core.

The result of the experimental simulation-based use case
is the correct traversing of the graph from start to finish.
All states and transition constraints are processed and a
SAMY skill is invoked at each node transition, leading to
a sequence of skills that controls the hardware and executes
the corresponding robotic process. Thus, the feasibility of the
simplified reconfiguration of a work system using the SAMY
pipeline is demonstrated, where the work system can now
be easily modified by drag & drop of the individual BPMN
blocks of the process chain (seen in figure 5).

VI. CONCLUSION AND FUTURE WORK

Market demands like high mix, low volume manufacturing
and faster product life cycles will require a more flexible
production system (e.g., human-cobot work system).

Start Robot:Move  
pick_pos

parallel

Camera:Detect  
object

parallel

Robot:Gripper
approach

object_count < 5

object_count >= 5

Robot:Gripper  
attach

Robot:Move  
box_left

Robot:Move
box_right

object_count < 10

object_count 
>= 10

Robot:Move
place 

object_count +=
1

End

Fig. 6. SAMY-BPMN translation into directed graph of exemplary use-case for picking and sorting objects. For easier readability, the class functionality
is written to the corresponding edge or node.
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Mapper

Planner

[Robot:Ready = 1,
Camera:Ready = 0]

Mapper Robot:Move pick_posMove-UR5-Pick

[Robot_RobotUR5_CRCLStatus = 1,
InformationSource_Camera_Status = 0]

Fig. 7. The skills in the BPMN are mapped to SAMY skills in the mapper.

However, the reconfiguration of such systems is still
too complicated and robotics experts are needed.
Therefore, SAMY focuses on the simple programming
and reconfiguration of these work systems. A (non-) expert
creates a simple graphical/function-based SAMY-BPMN
as declarative programming and the SAMY-Core creates
machine-readable code from it. As a contribution to SAMY,
this paper shows the development of the missing connection
component between the SAMY-BPMN and the SAMY-Core.
The developed graph planner generates a graph containing
all skills from the SAMY-BPMN and its sequence. Further,
the controller maps the correct skills from the BPMN to
the SAMY specific skills, knowing the used hardware.
Finally, the interface to the SAMY-Core is done by giving
it the actions in the right sequence according to the given
states of the robot system. The entire SAMY pipeline was
evaluated by an experimental simulation-based use case,
which showed that a translation from hardware-independent
SAMY-BPMN to specific robot skills was done, meaning
that a non-expert could easily reconfigure the work system
using the graphical SAMY-BPMN.

Since the use case is solely simulation-based, for further in
depth evaluation the experimental use case is implemented
in an industrial cobot-application, testing the translation as
part of the holistic SAMY pipeline and the benefiting ease
of reconfiguration in real-world conditions. In addition,
the translation of SAMY-BPMN could be generalized
to standard BPMN to use the presented approach in a
variety of different applications. Thus, BPMNs that are not
cobot-specific could be translated into executable graphs
using this method by adapting the SAMY-specific classes.
In addition, the presented translator can be made more
intelligent (e.g., states as exclusive gateways or swimlanes),
so that also more complex logics can be built.
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oriented architecture based on opc ua (in submission),” International
Conference on Intelligent Robots and Systems (IROS), 2022.

[10] S. Bøgh, O. S. Nielsen, M. R. Pedersen, V. Krüger, and O. Madsen,
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