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Abstract
Water vapor is one of the most variable components in the earth's atmosphere and has a significant role in forming clouds, 
rain and snow, air pollution, and acid rain. Therefore, increasing the accuracy of estimated water vapor can lead to more 
accurate predictions of severe weather, upcoming storms, and natural hazards. In recent years, GNSS has turned out to be 
a valuable tool for remotely sensing the atmosphere. In this context, GNSS tomography evolved to an extremely promising 
technique to reconstruct the spatiotemporal structure of the troposphere. However, locating dual-frequency (DF) receivers 
with a spatial resolution of a few tens of kilometers sufficient for GNSS tomography is not economically feasible. Therefore, 
in this research, the feasibility of using single-frequency (SF) observations in GNSS tomography as an alternative approach 
has been investigated. The algebraic reconstruction technique (ART) and the total variation (TV) method are examined to 
reconstruct a regularized solution. The accuracy of the reconstructed water vapor distribution model using low-cost receivers 
is verified by radiosonde measurements in the area of the EPOSA (Echtzeit Positionierung Austria) GNSS network, which 
is mostly located in the east part of Austria for the period DoY 232–245, 2019. The results indicate that irrespective of the 
investigated ART and TV techniques, the quality of the reconstructed wet refractivity field is comparable for both SF and DF 
schemes. However, in the SF scheme the MAE with respect to the radiosonde measurements for ART + NWM and ART + TV 
can reach up to 10 ppm during noontime. Despite that, all statistical results demonstrate the degradation of the retrieved wet 
refractivity field of only 10–40% when applying the SF scheme in the presence of the initial guess.
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Introduction

GNSS signals are refracted by the troposphere along their 
path to the receiver. This part of the atmosphere is neutral 
and non-dispersive for radio frequencies up to 15 GHz. This 
refraction is called tropospheric delay, and it is a function 
of the refractive index (N). The tropospheric refractivity is 
characterized by pressure (P), temperature (T), and water 
vapor pressure (e). Roughly 90% of the tropospheric delay 

is related to the hydrostatic component and can be estimated 
with high precision using empirical models (Hopfield 1969, 
Saastamoinen 1973). Conversely, the tropospheric wet part 
cannot be simply modeled with sufficient accuracy due to 
the significant variation of water vapor with time and space 
(Rohm and Bosy 2011). Water vapor plays an essential role 
in the earth's water cycle, and therefore, it is a crucial fac-
tor for weather research and climate studies (Kačmařík and 
Rapant 2012, Lutz 2008, Troller 2004). Traditional methods 
like radiosondes, remote sensing satellites, water vapor radi-
ometer, and lidar can be used for measuring the distribution 
of this parameter in the troposphere (Bai 2004; Nicholson 
et al. 2005; Troller 2004). However, these techniques have 
some limitations and drawbacks, like low spatial–temporal 
resolution or high cost (Bai 2004; Kačmařík and Rapant 
2012, Troller 2004). Nowadays, GNSS data can solve these 
disadvantages and provide continuous scans of the tropo-
sphere at very low costs (e.g., Bevis et al. 1992, Priego 
et al.2017)).Typically, only the Zenith Wet Delay (ZWD) 
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above the GNSS receiver is estimated at any time. As these 
ZWDs denote integral quantities deduced from data of a usu-
ally sparse site network, they do not provide the requested 
3D spatial resolution of wet refractivity. For this reason, in 
recent decades, GNSS tropospheric tomography has been 
developed to resolve the tempo-spatial wet refractivity ( Nw ) 
field. For example, Flores et al. (2000) applied horizontal 
and vertical constraints to reconstruct the tomography field 
using a Kalman filter. Champollion et al. (2005) considered 
the standard atmosphere and meteorological observations 
as a priori constraint to improve the tomography accuracy. 
Rohm and Bosy (2011) used a set of parameters, which had 
been extracted from the analysis of airflow to the tomogra-
phy equations. Adavi and Mashhadi-Hossainali (2014) pro-
posed the model space resolution matrix to determine the 
optimum horizontal resolution for the tomography model. 
This method is based on the dependency of the resolution 
matrix on the property of the tomography design matrix. 
Guo et al. (2016) suggested the optimal method to define the 
optimum weights for tomography equations and constraint 
equations in the tomography problem. In 2018, Zhao et al 
(2018). investigated the impact of multi-GNSS on the GNSS 
tomography solution by considering moderate weights for 
the observation equations derived from multi-GNSS and 
the different constraints. Experiments on the combination 
of GNSS data and Interferometric Synthetic Aperture Radar 
(InSAR) data as input observation information for the tomo-
graphic system were carried out by Heublein et al. (2019). 
Shehaj et al. (2020) presented a new technique based on the 
collocation approach to retrieve the refractivity field from 
GNSS measurements, comparable to typical tomography.

In this method, the area of interest is discretized into 3D 
elements (voxels) in the vertical and horizontal directions. 
In order to reconstruct the wet refractivity field in different 
epochs, the measurements of the Slant Wet Delay (SWD) 
are integrated in the desired period. Therefore, this param-
eter is assumed to be constant in this time window (Rohm 
and Bosy 2011; Troller 2004). The resolution of the recon-
structed wet refractivity is highly dependent on the GNSS 
network density. Consequently, an existing dense GNSS 
network is one of the essential pre-requirements in this 
approach. However, the use of dual-frequency (DF) receiv-
ers is not economically practicable in this regard, as the 
cost of each receiver is remarkably expensive. As an alter-
native, single-frequency (SF) receivers can be considered 
to achieve a sufficient spatial resolution for GNSS mete-
orology (Bai 2004, Deng et al. 2009, Krietemeyer et al. 
2018). Therefore, in this study, we examine the potential 
of SF observations in comparison to DF observations for 
reconstructing the wet refractivity field in an Austrian 
GNSS network with twenty-one stations. To quantify the 
ionospheric delay in the SF processing in precise point 
positioning (PPP) mode, we use the Satellite-specific and 

Epoch-differenced Ionospheric Delay (SEID) model (Deng 
et al. 2009).

Aside from the impact of SF and DF observations on 
the accuracy of ZTD and the wet refractivity field, a sec-
ond essential component in GNSS tomography is inves-
tigated in this research. This second element concerns 
the effect of various regularization techniques, including 
ART methods and TV, by considering SF and DF observa-
tions. Therefore, we first introduce the concept of GNSS 
tropospheric tomography. Then, the estimation of the ZTD 
using SF observations in PPP mode and DF observations 
in double-difference mode are defined. The accuracy of 
estimated ZTD using SF and DF modes is discussed in 
comparison to ZTD derived from the Numerical Weather 
Models (NWM). In this study, we have used the AROME 
(Applications of Research to Operations at MEsoscale) 
model, which is one of the regional NWM models in 
Europe. After that, iterative regularization methods, as 
well as TV techniques, are described in order to recon-
struct the wet refractivity field. The reconstructed wet 
refractivity using different regularization methods on two 
different observation types (SF and DF) is compared to 
radiosonde observations. In the end, the conclusions about 
the obtained results are stated.

Methodology

First, the concept of GNSS tropospheric tomography by con-
sidering horizontal and vertical constraints is introduced. 
Next, estimation of ZTD using PPP strategy and network 
strategy is described, followed by the presentation of the 
iterative techniques and direct technique to retrieve the 
tomography solution. Figure 1 presents the studied schemes 
in this research. As shown in this figure, the impact of using 
SF and DF observations on the ZTD accuracy is investigated 
as a first step. Then, the wet refractivity field is reconstructed 
by considering these two different datasets using the men-
tioned processing strategies.

Table 1 demonstrates various regularization methods in 
order to retrieve the wet refractivity structure. According to 
this table, iterative regularization methods have been com-
pared to the TV technique. In addition, the outputs of the TV 
method have been applied as an a priori field for iterative 
methods.

Overall, the wet refractivity outcome of seven different 
regularization methods has been compared to the radio-
sonde wet refractivity on basis of SF and DF observations 
in this research, which are: (1) Landweber + AROME, (2) 
MART + AROME, (3) ART + AROME, (4) TV, (5) Landwe-
ber + TV, (6) MART + TV, and (7) ART + TV.
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GNSS tropospheric tomography

Using the following definition, the method of tomography is 
applied to reconstruct the spatial structure of the wet refractiv-
ity Nw in the troposphere (Troller et al. 2006):

where dij represents the path length of signal j in model ele-
ment i. In matrix form, Equation 1 reads as:

(1)SWDj = 10
−6

m∑
i=1

Nwidij

(2)��� = AN
�

here A is a structure matrix which links the observation vec-
tor ( ��� ) to the unknown vector ( N

�
 ). The elements of the 

observation vector (SWD) are computed as follows:

where ZTD is the zenith total delay estimated from GNSS 
data processing. Furthermore, ZHD, GNS , and GEW are the 
zenith hydrostatic delay, north–south, and east–west hori-
zontal gradients, respectively. In addition, elv and az are 
elevation and azimuth angles of the individual signal paths. 
VMF and mf g are the corresponding mapping functions to 
convert the ZWD (which is ZTD-ZHD) and the horizontal 
gradients to Slant Wet Delays (SWDs). It should be indicated 
that this research applies the Vienna Mapping Function-1 
(VMF1) and Chen-Herring mapping functions (Böhm et al. 
2006; Chen and Herring 1997). Moreover, the Saastamoinen 
model is used for computing ZHD (Saastamoinen 1973).

In (2), the design matrix A depends on the resolution 
of the model, the satellite constellation, the distribution of 
the GNSS receivers, and the time window of observation 
integration (Bender and Raabe 2007; Troller 2004). Due 
to the incomplete spatial coverage of GNSS signals in the 
model voxels, some of the voxels are under-determined. 
Therefore, the tomographic reconstruction Equation (2) is 
mixed-determined (Menke 2012). Consequently, the forma-
tion of a regular normal equation matrix that can be inverted 
is impossible due to the ill-posedness of (2). To solve this 
issue, constraints have to be added. In this study, we consider 
horizontal and vertical constraints as noted below (Rohm 
and Bosy 2011, Troller 2004, Yang et al. 2018):

where H and V denote coefficient matrices of horizontal and 
vertical constraints, respectively. By combination of (2), (4), 
and (5), the total observation equation of the tomography 
model is given by:

which is used to retrieve the wet refractivity field.

ZTD estimation using GNSS data processing

This section introduces two different strategies for estimat-
ing the ZTD. In the first strategy, the undifferenced PPP 
mode is applied for tropospheric modeling in goGPS soft-
ware using SF observation data (Herrera et al. 2016). The 

(3)
SWD = (ZTD − ZHD)VMF(elv) + mfg(elv)

[
GNScosaz + GEWsinaz

]

(4)0 = HN
�

(5)0 = VN
�
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Fig. 1  Overview of schemes studied in this research

Table 1  Various regularization methods to reconstruct the wet refrac-
tivity field in this research

Regularization 
method

Regularization 
parameter

Initial field

Landweber � ∈ (0, 1] AROME/TV Outputs
MART � ∈ (0, 2] A ROME/TV  

Outputs
ART � ∈ (0, 2∕s2

max
] A ROME/TV  

 Outputs
TV �, � ∈ [24, 213] NONE
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ZTD is derived by processing dual-frequency (DF) observa-
tions with the Bernese GNSS software in the second one.

PPP strategy using SEID algorithm

The ionospheric delay is one of the major error sources in 
GNSS based positioning. For that reason, the ionospheric-
free linear combination (IF LC) built of dual-frequency 
observations is normally used in PPP. Unfortunately, cheap 
SF receivers do not track observations on a second frequency. 
In addition, the accuracy of the ionospheric model should 
be a few tens of TECU in order to achieve promising results 
using SF observations. This quality can neither be provided 
at the moment by well-known broadcast models like Klobu-
char or NeQuick nor by IGS-GIMs. To overcome these dif-
ficulties, Deng et al. (2009) have developed a technique that 
derives a synthetic second frequency from multi-frequency 
receivers located close to the SF receiver using the geometry-
free linear combination. They call this approach the Satellite-
specific and Epoch-differenced Ionospheric Delay (SEID) 
model (see Fig. 2). Hence, with the generated synthetic sec-
ond frequency, it is possible to calculate a PPP solution using 
the ionospheric-free linear combination. By exerting this 
method, Deng et al. (2009) have reached an RMS of 3 mm 
of the ZTD estimates in comparison to ZTD estimates based 
on PPP solutions using real observations on two frequencies. 
The generated synthetic frequency data have been derived 
from reference stations within a distance of 52–75 km.

In this study, data of the four nearby IGS stations GRAZ, 
MEDI, WTZR, and ZIMM were applied together with the 
SEID model to generate the synthetic second frequency for 
the case study stations from which only SF observations 
were used. Due to the fact that goGPS supports SEID only 
for GPS, no other GNSS was included in the analysis. For 
the PPP solution, CNES (Centre National d’Etudes Spa-
tiales) final products available from (Crustal Dynamics Data 
Information System) were used for satellite orbits and clock 
solutions. In this case study, the ZTD was estimated with an 
update rate of 30 s. Then, the estimated ZTD values were 

averaged over every 1 h in order to provide better consist-
ency with the processing of the tomography model.

Network strategy

Generally, the process of ZTD determination by means of 
the Bernese GNSS software in baseline mode is illustrated 
by the flow diagram in Fig. 3 (Dach R et al. 2015). Accord-
ing to this figure, phase and code observations are preproc-
essed, and single-difference observations are created. After 
that, produced data are applied in the GPSEST step. Finally, 
station coordinates and ZTD are estimated.

Final precise orbits and earth rotation parameters pro-
vided from CNES are applied to achieve high precision. 
Ephemeris data are parameterized via the collocation 

Fig. 2  Building L2 observations used in goGPS software (Scheme 1)

Fig. 3  Flowchart of tropospheric parameter estimation using the 
Bernese GNSS software (Scheme 2)
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method in module ORBGEN and interpolated to the desired 
GNSS observations epochs (here 30 s). For datum definition, 
the coordinates of the IGS stations, GRAZ, MEDI, WTZR, 
and ZIMM, were tightly constrained. Besides, the relative 
and absolute a priori ZTD sigmas for all stations were set 
to 5 m and 1 m, respectively. In contrast to the float PPP 
scheme, the phase ambiguities were fixed in the DF scheme. 
In this strategy, ZTD was estimated every 15 min over the 
investigated period. Finally, hourly mean values of the esti-
mated DF ZTDs were calculated to establish better consist-
ency with the tomography model.

Regularization methods

First, some of the iterative regularization techniques (ART, 
MART, and Landweber) are defined. These methods have 
been particularly developed for the tomography reconstruction 
problems and are mostly applicable to such approaches (Aster 
et al. 2013; Landweber 1951). Then, the total variation (TV) 
regularization method is described. This method was first pro-
posed by Rudin et al. (1992) for image denoising problems. 
TV is a nonlinear technique that effectively preserves discon-
tinuities in the model and resists noise (Aster et al. 2013, Karl, 
2005, Lee et al. 2007, Vogel and Oman, 1996).

Iterative regularization methods

The iterative regularization techniques have been denoted 
as one of the most popular and successful methodologies 
to reconstruct the ionosphere's total electron content and, 
recently, the wet refractivity of the troposphere. In these 
techniques, there is no need to invert the design matrix A 
during the reconstruction procedure (Bender et al. 2011). 
The main form of the iterative regularization technique is 
represented as below (Kaltenbacher et al. 2008):

where Gk and k are a correction term and iteration number, 
respectively. Gk can be defined differently according to the 
desired methodology. This algorithm is a kind of closed-loop 
process and it starts with an initial guess for the unknown 
parameters field (Lohvithee 2019), which could be estimated 
from the Numerical Weather Model (NWM). Then, to cor-
rect the estimated wet refractivity field for the next iteration, 
the inconsistency between the estimated wet refractivity field 
and the prior field is computed using (Bender et al. 2011, 
Gordon, 1974; Lohvithee, 2019).

ART—The algebraic reconstruction technique (ART) is 
one of the most popular and frequently used algorithms 
among the different types of iterative methods (Gordon 
et al. 1970). This algorithm can be formulated as shown 
below (Gordon, 1974, Kak and Slaney, 1999):

(7)N
k+1
w

= �
k
w
+ Gk

(
N

k
w
, ���

)

 The ART method covers two loops: The inner loop (index i) 
processes observation by observation. The outer loop (index 
k) is started after applying all SWDs in (8) (Bender et al. 
2011; Xiaoying et al. 2014). � is a regularization parameter 
from (0, 1] and provides the weight of the correction term 
with respect to the initial wet refractivity field (Bender et al. 
2011; Turonova 2011).

MART—In the multiplicative algebraic reconstruc-
tion technique (MART), the proceeding value of the cor-
responding voxel is corrected by multiplication with Gk 
which corresponds to the second factor in (7) (Subbarao 
et al. 1997). In principle, this increases the convergence 
speed compared to additive techniques like ART (Bender 
et al. 2011; Subbarao et al. 1997). This method can be 
accomplished using (Subbarao et al. 1997):

where j is the column number of the voxel. In this method, 
the regularization parameter � is defined within the range of 
(0, 2] (Bender et al. 2011).

Landweber—Landweber is one of the most popular 
iterative regularization methods from the Simultaneous 
Iterative Reconstruction Technique (SIRT) group (Hansen 
1998; Kaltenbacher et al. 2008). In this technique, the sys-
tem of observation equations is solved simultaneously, and 
it is defined as follows (Landweber 1951):

In this algor ithm, �k  is  selected to range 
between 0 < 𝜆 < 2∕s2

max
 where smax is the largest eigenvalue of 

matrix AT
A (Aster et al. 2013).

Total variation method

The TV regularization method has been used in different 
kinds of inverse problems such as CT (computed tomog-
raphy) reconstruction with low signal-to-noise ratio with 
promising results (Defrise et al. 2011; Persson et al. 2001; 
Sidky et al. 2006; Tang et al. 2009). In recent years, the 
TV method has also been applied in ionospheric tomog-
raphy (IED) as well.

The objective function in the TV regularization method 
is given as (Jensen et al. 2012; Lohvithee, 2019; Persson 
et al. 2001; Rudin et al. 1992):

(8)N
k+1
w

= N
k
w
+ �

�
SWDi − ⟨Ai

,N
k
w
⟩∕⟨Ai

,A
i⟩�Ai

(9)N
k+1
wj

= N
k
wj
�
�
SWDi∕⟨Ai

,N
k
w
⟩�

�
�Ai
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�

(10)N
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+ �kA

�(��� − AN
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w
)

(11)J
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Nw
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�
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where 𝜏 > 0 is the regularization parameter and the TV 
norm ( ‖Nw‖TV ) in (11) can be calculated as follows (Pers-
son et al. 2001):

where Di,j,kNwi,j,k is the discrete gradient of Nw at voxel i, j, 
k. Here, the augmented Lagrangian algorithm for TV mini-
mization is used (Li, 2009):

where wi can be obtained as below(Li 2009):

�i,j,k and λ are continuously updated during the minimization 
of (13) at each iteration.

 (Li 2009; Li et al. 2010):

 In (15) and (16), Nw
∗ and wi,j,k

∗ indicate approximate values 
for (13) (Li 2009). Moreover, the barrier parameter � should 
be defined based on the sparsity level of the true solution and 
the noise level in the observation (Li et al. 2010). However, 
the determination of the noise level without accessing the 
exact solution is challenging. According to experience, � 
varies from 24 to 213 , and the best value is chosen subject to 
the RMSE of the recovered field (Li, 2009; Li et al. 2010). 
The value of �i,j,k should also been chosen between 24 and 
213 (Li et al. 2010).

Case study

To analyze schemes SF and DF by applying different regulari-
zation techniques, 21 multi-GNSS stations from the EPOSA 
(Echtzeit Positionierung Austria) GNSS network, which mostly 
covers Austria's eastern part, have been selected. The mean inter-
station distance is about 60 km, with height differences varying 
from 220 to 860 m. The distribution of the EPOSA GNSS sta-
tions and a radiosonde station is shown in Fig. 4.

(12)‖Nw‖TV = ‖��⃗DNw‖1 =
�
i,j,k

‖Di,j,kNwi,j,k‖

(13)

LA

�
wi,j,k,Nw

�
=
�
i,j,k

�
‖wi,j,k‖ − V

T
i,j,k

�
Di,j,kNw − wi,j,k

�

+
�i,j,k

2
‖Di,j,kNw − wi,j,k‖22

�

− �T
�
ANw − ���

�
+

�

2
‖ANw − ���‖2

2

(14)

wi = max

�
‖Di,j,kNw −

�i,j,k

�i,j,k
‖ − 1

�i,j,k
, 0

��
Di,j,kNw − �i,j,k∕�i,j,k

�
‖Di,j,kNw − �i,j,k∕�i,j,k‖

(15)

∼
�i,j,k

iter+1

= �i,j,k
iter − �i,j,k

(
Di,j,kNw

∗ − wi,j,k
∗
)
foralli, j, k

(16)
∼

�
iter+1

= �iter − �
(
ANw

∗ − ���
)

Observations on days 232–245 in August 2019 have been 
chosen due to the unstable weather conditions with high 
and low amounts of precipitation in the period of interest. 
Figure 5 shows variations of precipitation revealed by the 
AROME model and the observed relative humidity calcu-
lated from radiosonde data.

For the tomographic model, the model space resolution 
matrix has been applied in order to choose the optimum hori-
zontal resolution (more details in (Adavi and Weber 2019)). 
According to the obtained results, a horizontal resolution (voxel 
side length) of 60 km has been chosen. The exponential model 
has been used to define the vertical resolution (Manning 2013, 
Möller 2017, Perler 2011) up to a height of 15 km with 9 layers. 
Moreover, the topography of the case study was also taken into 
account. For this purpose, the height of the grid point should be 
computed based on the elevation model of the case study area 
(see (Adavi et al. 2020) for more details). Here, the shuttle radar 
topography mission (SRTM) image has been utilized. Table 2 
shows the selected parameters and corresponding heights in the 
center of voxels in this study. The designed tomography model 
with 60 km horizontal resolution and layers according to the 
table is shown in Fig. 6. In this table, dh(0) is the height differ-
ence between the lowest two layers and qh is the growth factor 
(please see (Perler 2011) for more details).

Furthermore, the time resolution of the designed tomo-
graphic model is selected to be 1 h, which means 24 time bins 
each day. To ensure that the contribution of low elevation rays 
(tracked mostly by reference sites at the border of our model 

Fig. 4  Distribution of GNSS stations of the EPOSA network for the 
case study
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area) which leave the tomographic model via lateral surfaces 
is accounted for correctly, the tomography area was extended 
by a sparse outer voxels model. The horizontal size of these 
boundary zones was chosen 5◦ in this research.

Numerical results

In this section, the accuracy of the reconstructed refractiv-
ity field is evaluated in comparison with the type of observa-
tions (SF and DF) in varieties of the regularization techniques. 
Therefore, the following schemes were considered (Fig. 7).

According to Fig. 7, the first step of all schemes is to select 
the type of observation, which could affect the accuracy and 
precision of ZTD and SWD. To illustrate the mentioned 
impact, the estimated ZTD from SF and DF observations has 
been compared to the ZTD derived by ray-tracing through 
the AROME model. As shown in Fig. 8, the consistency of 
the derived ZTDs by the DF algorithm is higher compared to 
ZTDs calculated from SF data both at midnight and noontime. 
However, the performance of both strategies with respect to 
AROME at noontime is slightly superior compared to mid-
night. However, the inconsistency between the SF ZTDs and 
AROME ZTDs is much more visible in comparison to DF 
ZTDs and AROME ZTDs. This could be explained by con-
sidering the float solution of the PPP ZTD estimation process. 
Moreover, remaining mismodeling of ionospheric variation by 
the SEID algorithm could affect the ZTD solution (Aichinger-
Rosenberger 2021). Nevertheless, the obtained results show 
the potential of the SF observations to estimate ZTD with an 
average RMSE of less than 0.075 m with respect to AROME 
ZTD.

Table 3 summarizes the average RMSE for both SF and 
DF strategies at midnight and noontime during the period of 
interest. The numbers in brackets denote the minimum and 
maximum RMSE among all GNSS stations.

Moreover, Table 4 reports the mean bias during the period 
of interest for SF and DF schemes at midnight and noontime. 
According to this table, the range of bias variations in the 
DF scheme is smaller than that in the SF scheme. Again the 
numbers in brackets denote the minimum and maximum bias 
among all GNSS stations.

Figure 9 represents the time series of SF ZTD and DF ZTD 
for two example stations, GRAZ (height approx. 538 m) and 
TRAI (height approx. 407 m) compared to AROME ZTD dur-
ing the period of interest at midnight and noontime. As shown 
in this figure, the behavior of DF ZTD shows considerable 
similarity with the AROME ZTD. The similarity between the 
time series of SF ZTD and AROME ZTD is also appreciable 
but not as high as for DF ZTD.

In order to gain a better representation of the similarity 
of GNSS ZTD in both schemes and AROME ZTD, Pearson 
correlation has been calculated during the period of interest 
at midnight and noontime for all GNSS stations. Indeed, the 
correlation was estimated per hour between the ZTD series of 
GNSS stations. Table 5 summarizes the mean correlation for 
both schemes during the period of interest. Same as Tables 3 
and 4, the numbers in brackets show the minimum and maxi-
mum correlation among all studied GNSS stations. According 
to these results, DF ZTD is highly similar to AROME ZTD for 

Fig. 5  Variations of relative humidity up to 4  km height (top) and 
average of precipitation within the whole area (bottom) during the 
time of interest

Table 2  Vertical tomography 
models and corresponding 
vertical voxel boundaries

Vertical model parameters Average height of layers [m]

dh(0) = 500m ; qh=1.3; 9 Layers 554,1054,1704,2549,3648,5076,6932,9345,12,482
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both midnight and noontime. For SF ZTD, there is only one 
day with a correlation lower than 50 percent, and for the rest of 
the days, this amount is higher than 50 percent. Therefore, also 
the SF ZTD and AROME ZTD time series show a reasonable 
correlation. The correlation is slightly higher at noontime in 
comparison to midnight.

It has to be highlighted that not only the GNSS ZTDs but 
also deficiencies in the AROME model can cause inconsist-
ency between ZTDs time series. Figure 10 shows the differ-
ences between relative humidity (RH) and temperature (T) of 
the AROME model and RS measurements on DoY 235. As 
can be seen in Fig. 10, the difference between temperature 
profiles of AROME and RS are varying from −2K to 4K . For 
RH profiles, the difference range is changing between 40% 
and 60%. Table 6 summarizes mean RMSE of temperature 
and relative humidity in comparison to RS11035 profiles 
(red star in Fig. 4) during the period of interest. 

In a next step, the accuracy of the reconstructed wet 
refractivity profiles using different strategies has been evalu-
ated by reference radiosonde observations located at Vienna 
airport (RS11035) at hours 00:00 and 12:00 UTC. Figure 11 
demonstrates the average of the mean absolute error (MAE) 
in wet refractivity over the period of interest for the SF and 
DF schemes that apply to different regularization methods 
in order to reconstruct the wet refractivity field. According 
to Fig. 11 (top), the performance of the SF scheme is com-
parable with the DF scheme especially when the AROME 
model is applied as an initial field at midnight. However, 
the differences between SF and DF schemes for the ART 
method were increased in the noontime, and this may return 
to the sensitivity of the ART method to the existing noise in 
SF ZTD. Moreover, the TV regularization method provides 
promising results mainly for the DF scheme. Therefore, we 
could achieve an acceptable reconstructed wet refractivity 
field without the existence of an initial field using this algo-
rithm. In addition, the output of the TV method was applied 

in the ART techniques as an initial guess, which could also 
lead to acceptable results.

In order to discover the overall accuracy of the retrieved 
wet refractivity using the tomography method, the disper-
sion of the different schemes in comparison to the radio-
sonde profile at RS11035 was calculated for the period of 
interest and the studied hours (00:00 UTC and 12:00 UTC). 
Figure 12 shows the scatter plot of wet refractivity for the 
DF scheme (left panel) and for the SF scheme (right panel). 
The y-axis denotes wet refractivity (in ppm) calculated from 
the RS measurements, while the x-axis shows wet refractiv-
ity of the tomographic approach. Each graphic covers 252 
data points evaluated within the 14-day period investigated 
here times the 9 voxels (height layers) above the RS launch 
site times 2 launches per day (14*9*2 = 252). According to 
Fig. 12, the spreading of the reconstructed tomography field 
in the DF scheme is generally smaller than that in the SF 
scheme. The TV algorithm for both the DF and SF schemes 
shows a comparable dispersion to the least-square line. 
The match between RS and reconstructed wet refractivity 
by applying the AROME model as a priori field is closer 
than for other schemes for both the SF and DF strategies. 

Fig. 6  Designed tomography model for the area of interest

Fig. 7  Studied schemes in this research
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Moreover, as shown in Fig. 12, applying TV output as an 
initial field for ART regularization techniques provides rea-
sonable results in both schemes.

To better interpret the obtained results, the slope of the 
least-square line is reported in Table 7. According to this 
table and also Fig. 12, it could be concluded that the perfor-
mance of all ART techniques (ART, MART, and Landwe-
ber) + AROME for the SF scheme is as good as for the DF 

Fig. 8  Average RMSE of ZTD difference at 00:00 UTC (top) and 
hour 12:00 UTC (bottom) determined for days 232–245 for single-
frequency and dual-frequency observations with respect to AROME

Table 3  Mean RMSE over all stations with respect to AROME ZTDs 
for SF and DF schemes during the period of interest

RMSE [meter] Midnight Noontime

SF Scheme 0.085 [0.038 0.130] 0.065 [0.021 0.125]
DF Scheme 0.020 [0.013 0.034] 0.018 [0.012 0.026]

Table 4  Mean bias over all stations for SF and DF schemes during 
the period of interest

Bias [meter] Midnight Noontime

SF Scheme 0.021 [– 0.017 0.230] – 0.022 [– 0.085 0.078]
DF Scheme – 0.009 [– 0.026 -0.002] – 0.006 [– 0.019 0.001]

Fig. 9  Time series of average ZTD using SF and DF schemes for 
GRAZ and TRAI stations at midnight (top) and noontime (bottom)

Table 5  Mean Correlation over all stations for SF and DF schemes 
during the period of interest

Correlation [%] Midnight Noontime

SF Scheme 66 [49 92] 79 [43 93]
DF Scheme 97 [89 99] 97 [94 99]

Fig. 10  Difference of T (left) and RH (right) of the AROME model in 
comparison to radiosonde (RS) observations on DoY 235 at midnight 
(hour 00:00 UTC) at RS11035 location

Table 6  Daily RMSE of AROME meteorological profiles in compari-
son to RS measurements

Parameter Up to 5 km 5 km to 18 km

T [K] Max = 2.33 and Min = 0.35 Max = 2.23 and Min = 0.77
RH [%] Max = 25.52 and 

Min = 7.07
Max = 32.81 and Min = 8.81
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scheme since the slope of the corresponding least-square 
lines is almost close to 1:1. The TV method and ART tech-
niques + TV for both schemes slightly underestimate the wet 
refractivity field. However, the obtained results from these 
methods are also reasonable.

According to the reported values in Table 8, the correla-
tion for different regularization techniques in SF and DF 
schemes is almost higher than 95% except for MART + TV 
in the SF scheme, which is about 93%. Therefore, the 
retrieved wet refractivity for SF and DF schemes using all 
regularization techniques correlates considerably with the 
RS profile.

The average RMSE of wet refractivity for all days consid-
ered for the location of RS11035 is listed in Table 9. It can be 
concluded that the differences of the reconstructed refractiv-
ity profiles by applying the AROME model as an initial field 
(obtained from both the SF and DF schemes) with respect to 
refractivity calculated from RS data are almost small at mid-
night and noontime. In addition, the performance of the TV 
method and TV + ART techniques for SF and DF schemes 
is roughly comparable during the studied epochs. In general, 
as expected, the DF method shows a lower RMSE almost for 
all regularization techniques compared to the SF scheme. 
Nevertheless, even in the SF scheme, the TV method and 
TV + ART techniques could provide reasonable results in 
tropospheric tomography.

The average of bias was also calculated over the study 
period to assess further the accuracy of the reconstructed 
wet refractivity field, using different regularization 

methods in SF and DF schemes. Table 10 summarizes 
the average bias for the location of RS11035 during the 
whole experimental period. According to that, the bias 
of the reconstructed tomography profile using different 
regularization techniques is almost similar for SF and DF 
schemes at midnight and noontime. Same as MAE, the 
bias for ART + AROM and ART + TV during noontime in 
the SF scheme is significant. This could be due to higher 
solar activities during the noontime, which causes noise 
in SF ZTD and consequently SWD observations, since the 

Fig. 11  MAE of the reconstructed wet refractivity profiles for heights 
up to 2  km at 00:00 UTC (top left), 2 to 6  km at 00:00 UTC (top 
right), up to 2 km at 12:00 UTC (bottom left), and 2 to 6 km at 12:00 
UTC (bottom right) at RS11035 location

Fig. 12  Comparison of reconstructed wet refractivity of DF schemes 
(left panel) and SF schemes (right panel) to RS11035 wet refractivity 
during the period of interest
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ART technique is especially sensitive to the existing noise 
in the observations. Moreover, it should be highlighted 
that the correlation between reconstructed profiles and 
RS profiles obtained by various regularization schemes 
in the SF scheme is almost higher than for the DF scheme, 
while bias and RMSE demonstrate different results. This 
may return to the fact that correlation is not sensitive 
to any shift in the reconstructed wet refractivity profile 
with respect to the RS profile. Nevertheless, all statisti-
cal results show promising results using TV and ART 
techniques + TV for DF and SF schemes to reconstruct 
wet refractivity in the troposphere.

Conclusions

In this article, the potential use of SF observations for 
GNSS tomography was studied. In addition, the impact 
of different regularization methods was investigated by 
applying an initial field or not. In this regard, a part of 
the EPOSA GNSS network located in the east of Aus-
tria was utilized to analyze the accuracy of the recon-
structed refractivity field using different strategies. For this 

purpose, two different strategies were applied to estimate 
ZTDs and use the SWDs as an input for the tomography. 
In the first strategy, single-frequency (SF) observations 
were processed using PPP in goGPS software. In the 
second strategy, dual-frequency (DF) observations were 
processed in double-difference mode with the Bernese 
software. Subsequently, we have solved the tomography 
problem using the different regularization methods: ART, 
MART, Landweber, and TV. The AROME model and the 
TV method provided the required initial field for the itera-
tive techniques to analyze the impact of this input on the 
retrieved accuracy of the wet refractivity field. The results 
showed that the AROME ZTD correlate with DF ZTD 
and SF ZTD on average at 97% and 66%, correspondingly. 
However, the reported correlation is not sensitive to a bias 
between the data sets. Analyzing RMSE of the estimated 
ZTDs using SF and DF observations showed that the DF 
scheme provides better results (avg. RMSE 0.019 m) in 
comparison to the SF scheme (avg. RMSE 0.075 m). Fur-
thermore, the bias of SF ZTD was slightly larger during 
noontime which can be explained by the daily solar radia-
tion and consequential complexity to describe the iono-
spheric delay with SEID. Moreover, there might also be 

Table 7  The slope of the least-
square line for all regularization 
methods in SF and DF schemes

Lndw + Arom MART + Arom ART + Arom TV Lndw + TV MART + TV ART + TV

SF 1.00 0.97 0.98 0.90 0.91 0.92 0.91
DF 1.02 0.99 1.01 0.91 0.92 0.91 0.94

Table 8  Correlation coefficient [%] between the reconstructed wet refractivity profile and RS profile using different regularization methods for 
SF and DF schemes during the period of interest

Lndw + Arom MART + Arom ART + Arom TV Lndw + TV MART + TV ART + TV

SF 97.98 98.65 98.56 95.77 96.06 93.21 97.63
DF 97.80 98.42 96.67 94.98 95.23 95.68 95.57

Table 9  Average RMSE [ppm] over 14 days for different schemes of SF and DF modes at the location of RS11035

Lndw + Arom MART + Arom ART + Arom TV Lndw + TV MART + TV ART + TV

00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h

SF 4.51 6.76 4.02 5.37 4.01 9.37 8.52 8.23 7.89 8.24 8.94 6.33 6.11 8.99
DF 4.09 5.94 2.93 4.56 3.32 4.69 7.81 6.85 7.84 6.73 6.37 6.73 4.86 5.04

Table 10  Average bias [ppm] over 14 days for different schemes of SF and DF modes at the location of RS11035

Lndw + Arom MART + Arom TV ART + Arom Lndw + TV MART + TV ART + TV

00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h 00 h 12 h

SF 0.20 1.14 – 1.23 – 0.16 – 0.62 5.88 – 1.52 – 0.84 – 1.34 1.02 – 2.31 – 0.73 – 0.83 5.57
DF 0.38 0.54 0.05 – 0.99 – 0.23 – 0.49 – 1.02 – 1.01 – 1.15 – 0.95 – 0.27 – 2.22 0.67 – 0.40
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artifacts from model deficiencies, e.g., satellite clocks in 
PPP processing. As expected, a successful integer fixing of 
the ambiguities improves the results and leads to a much 
more accurate estimation of the ZTD.

The accuracy of retrieved refractivity fields using various 
regularization methods in SF and DF schemes was assessed 
by RS observations. According to the obtained results, the 
performance of ART techniques (ART, MART, and Landwe-
ber) by applying the AROME model as an initial field was 
comparable for both SF and DF schemes. In addition, the 
accuracy of the reconstructed wet refractivity field using the 
TV method and ART techniques + TV for SF schemes was 
almost as good as for the DF scheme. Moreover, the correla-
tion between retrieved wet refractivity and RS wet refractiv-
ity for all regularization techniques in SF and DF schemes 
was almost higher than 95%. However, a considerable MAE 
and bias for ART + AROM and ART + TV in the SF scheme 
has been detected during noontime. This study showed that 
entering ZTDs calculated from SF data instead of DF data 
yields degradation of the RMSE of the reconstructed profiles 
between 10% and 40% over all investigated regularization 
techniques. In the presence of a reasonable initial field, an 
acceptable reconstruction of the wet refractivity at the level 

of 4–7 ppm wet refractivity field with respect to radiosonde 
profile could be achieved, but also TV + Landweber and 
TV + MART techniques can retrieve wet refractivity pro-
files at 6–8 ppm-level.

In future studies, PPP AR (ambiguity resolution) tech-
niques have to be further investigated to improve ZTD esti-
mates derived from DF or even SF data in future studies. 
Moreover, the tomography approach based on the TV regu-
larization method should be investigated in more extended 
periods and under different weather conditions to prove the 
potential of this method for reconstructing the wet refractiv-
ity field without using any initial field.

Appendix A. RMSE of reconstructed wet 
refractivity field using different schemes

Here, the detailed RMSE for all studied schemes during the 
time of interest is presented. This result has been obtained 
by comparison of the reconstructed wet refractivity file with 
RS11035 at midnight and noontime. See Tables (11, 12, 13 
and 14).

Table 11  RMSE [ppm] of 
reconstructed wet refractivity 
profiles for different 
regularization schemes (SF 
scheme, epoch 00:00 UTC, 
location: profile of RS11035 
launch)

DoY Lndw + Arom MART + Arom ART + Arom TV Lndw + TV MART + TV ART + TV

232 4.92 3.14 2.97 7.05 6.37 8.45 4.54
233 4.30 4.86 4.97 7.76 4.01 7.53 7.86
234 4.53 3.30 2.58 6.19 4.75 9.99 3.72
235 3.86 5.27 7.11 8.64 8.52 16.35 13.48
236 2.41 3.77 5.95 9.73 9.89 11.86 8.24
237 7.09 3.60 4.24 6.42 6.59 11.40 4.88
238 3.94 2.87 3.74 9.67 7.86 11.19 10.13
239 7.90 3.49 3.69 13.63 13.94 9.31 5.80
240 2.13 6.57 2.98 9.93 9.84 8.35 3.01
241 4.62 2.89 2.52 10.05 11.23 2.39 2.37
242 3.93 2.88 3.60 9.21 6.40 8.33 6.79
243 3.47 3.67 3.29 8.13 8.12 7.52 5.29
244 2.62 4.21 1.95 5.18 5.19 5.78 3.51
245 7.35 5.79 6.60 7.62 7.79 6.73 5.90
Mean 4.51 4.02 4.01 8.52 7.89 8.94 6.11
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Table 12  RMSE [ppm] of 
reconstructed wet refractivity 
profiles for different 
regularization schemes (DF 
scheme, epoch 00:00 UTC, 
location: profile of RS11035 
launch)

DoY Lndw + Arom MART + Arom ART + Arom TV Lndw + TV MART + TV ART + TV

232 3.18 1.90 2.05 3.37 3.42 4.04 2.78
233 4.43 2.32 2.66 6.54 6.44 4.50 4.00
234 3.96 2.54 2.12 4.82 4.35 2.66 2.11
235 2.92 2.26 2.19 8.64 8.72 6.48 4.46
236 2.23 2.86 2.96 7.19 6.99 4.39 3.21
237 7.37 4.57 4.77 6.92 6.91 7.75 5.11
238 3.84 2.96 3.68 9.74 9.22 7.66 7.48
239 7.74 3.81 3.75 8.64 8.43 9.74 6.07
240 2.56 1.33 2.66 11.84 11.87 9.20 4.69
241 4.75 4.46 4.87 10.87 10.87 8.02 6.80
242 3.65 3.73 5.00 8.46 10.23 8.95 7.08
243 3.46 1.51 3.03 9.66 9.57 4.50 4.70
244 2.64 2.39 1.83 7.29 7.31 5.16 4.41
245 4.54 4.37 4.93 5.39 5.41 6.05 5.15
Mean 4.09 2.93 3.32 7.81 7.84 6.37 4.86

Table 13  RMSE [ppm] of 
reconstructed wet refractivity 
profiles for different 
regularization schemes (SF 
scheme, epoch 12:00 UTC, 
location: profile of RS11035 
launch)

DoY Lndw + Arom MART + Arom ART + Arom TV Lndw + TV MART + TV ART + TV

232 9.36 6.20 7.01 10.44 9.61 6.40 5.67
233 9.07 6.33 6.68 7.40 6.10 8.95 4.91
234 9.00 8.12 6.58 6.69 7.39 6.74 7.59
235 4.08 5.98 9.12 5.79 5.62 7.68 7.68
236 4.51 2.74 11.22 8.38 8.24 2.05 12.38
237 5.10 2.76 8.37 7.01 7.55 4.70 8.78
238 8.80 6.15 8.08 10.87 11.25 7.10 10.59
239 8.35 6.23 4.43 8.60 7.39 3.66 4.43
240 7.93 5.37 18.17 14.75 15.66 9.26 18.77
241 6.40 7.32 5.49 6.24 6.23 6.61 3.21
242 3.76 1.95 9.66 6.36 7.01 8.47 8.85
243 4.52 3.41 19.38 7.08 6.87 5.91 17.78
244 9.35 7.93 8.60 5.54 6.72 4.52 7.04
245 4.41 4.71 8.33 10.03 9.27 6.59 8.25
Mean 6.76 5.37 9.37 8.23 8.24 6.33 8.99
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