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Kurzfassung

Diese Arbeit beschäftigt sich mit dem Phänomen der marginalen, d. h. lokalen, Ablösung

von laminaren Grenzschichtströmungen entlang glatter Oberflächen. Da solche Zustände, in

Form von Ablöseblasen, im Allgemeinen als instabil bezüglich gewisser Störungen gelten und

daher den Prozess der Transition zur Turbulenz auslösen können, liegt das Hauptaugenmerk

hier auf instationären, (lokal) dreidimensionalen Strömungen.

Durch die Assoziation der Strömungsablösung mit negativen Werten der Wandschub-

spannung ist es zielführend die Zeitentwicklung dieser genauer zu Untersuchen. Das dafür

notwendige Cauchy Problem wird mittels der Methode der angepassten asymptotischen

Entwicklungen aus den Navier-Stokes-Gleichungen bei unendlich hohen Reynoldszahlen

hergeleitet. Dabei ergibt sich eine Integro-differentialgleichung die hier erstmals durch einen

neuen, eleganteren Zugang über die Fredholmsche Alternative ermittelt wird.

Durch verwenden von Operatorsymbolen und der Dispersionsrelation lässt sich zeigen,

dass das Cauchy Problem nicht sachgemäß gestellt ist. Für die deshalb notwendige Regulari-

sierung werden zwei unterschiedliche Methoden gewählt – a) Diskretisierung des Problems

und b) Verwenden von Regularisierungsoperatoren. Durch numerische Berechnungen kann

hier gezeigt werden, dass, abgesehen von Diskretisierungsfehlern, beide Verfahren dieselben

(regularisierten) Lösungen liefern. Ferner konvergieren solche Lösungen zu Lösungen des

ursprünglichen Problems im Grenzwert verschwindender Regularisierung.

Um die regularisierten Lösungen in das physikalische Konzept einzupassen, werden Terme

höherer Ordnung der asymptotischen Entwicklungen des Strömungsfeldes ermittelt, welche

zeigen, dass sich die Stromlinienkrümmung in der Grenzschicht in, mit der äußeren Potential-

strömung wechselwirkenden Druckstörungen wiederspiegelt. Durch deduktives Einarbeiten

dieser in das Grundproblem, kann dann dessen sachgemäße Gestelltheit gezeigt werden.

Da das (regularisierte) Cauchy Problem im weiteren Sinne in die Klasse von Reaktions-

Diffusions-Gleichungen fällt, wird für gewisse Anfangsbedingungen eine Singularität in

endlicher Zeit angenommen, was durch numerische Experimente bestätigt wird. In der Nähe

des Entstehungszeitpunkts der Singularität lässt sich weiters eine selbstähnliche Struktur

finden, die, wie heuristisch gezeigt wird, sogar eindeutig ist.

Solch auftretende Singularitäten stehen im Zusammenhang mit dem Zusammenbruch (d.

h. nicht gleichmäßigen Gültigkeit) der asymptotischen Entwicklungen. Als Folge werden neue

Zeit- und Ortskalen induziert, welche in dem hier betrachteten Fall zu einem nichtlinearen

”Triple-Deck” Problem führen, das die selbstähnliche Struktur als Anfangswert besitzt.

Der zweite Teil der Arbeit beschreibt in allen Details die verwendeten numerischen Me-

thoden. Dazu werden sogenannte rationale Chebyshev Polynome auf R
n definiert, um Kollo-

kationsschemata, basierend auf orthogonalen Projektionen, entwickeln zu können. Als Grund-

lage werden klassische Konvergenzresultate im L2 und L∞ Sinne für diese neue Klasse von

vollständigen Orthogonalsystemen bewiesen. Weiters wird auf die notwendigen Beschränkt-

und Kompaktheitseigenschaften der involvierten Operatoren eingegangen.



Abstract

This study deals with the phenomenon of marginally, i.e. locally separated laminar boundary

layer flows along smooth surfaces. Such occurrences, in form of separation bubbles, are

generally regarded as unstable with respect to certain perturbations and hence can describe

what is known as transition to turbulence. Thus, this treatise is mainly concerned with

unsteady, three-dimensional flows.

As separation regions can be associated with negative values of the wall shear stress,

it is important to study its time evolution. In doing so, we deduce the according Cauchy

problem from the Navier-Stokes equations at high Reynolds numbers by applying the method

of matched asymptotic expansions. To derive the governing integro-differential equation a

new, elegant approach utilizing the Fredholm alternative is presented.

Operator symbols and the dispersion relation then prove the general ill-posedness of the

Cauchy problem. Therefore, it has to be regularized, which is done by a) discretization and b)

using regularizing operators. Numerical calculations show further that, modulo discretization

errors, these two methods yield the same solutions. Also, such solutions converge to solutions

of the original problem for vanishing regularization.

To embed the regularized solutions into the physical concept, higher order terms of the

original asymptotic expansions of the flow field are derived. Here the streamline curvature in

the boundary layer appears in form of interacting (with the potential flow region) pressure

disturbances. By deductively including these in the original problem one can again show its

well-posedness.

Since the (regularized) problem belongs in principle to the class of reaction-diffusion

equations, one can expect, for certain initial conditions, a finite time singularity to occur.

This is then confirmed by numerical computations. Furthermore, near the blow-up time one

can find a self-similar blow-up profile, which is heuristically shown to be unique.

Such singularities indicate the breakdown (i.e. non-uniform validity) of the asymptotic

expansions. They also induce new spatio-temporal scales resulting here in a nonlinear ”triple-

deck” problem, for which the blow-up profile proves to be an initial condition.

The second part of this treatise describes in all detail the methods used for setting up the

numerical schemes. Here, what are known as rational Chebyshev polynomials are defined on

R
n, such that one can develop collocation schemes based on orthogonal projections. As a

basis, classical convergence results in L2 and L∞ are proved for this new type of complete or-

thogonal systems. Necessary boundedness and compactness results for the involved operators

are presented as well.
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1 General Introduction and Motivation

One might say, the study of fluid mechanics started as early as somewhere around 250 BC,

when Archimedes discovered some basic principles of hydrostatics. Since then the subject of

fluid mechanics has flourished to be as multifaceted as physics and mathematics themselves.

As a consequence many renowned physicists and mathematicians published a vast number

of textbooks and chapters introducing the principles of fluid mechanics from lots of different

angles.

With the works of Bernoulli, Euler, Navier, Poisson and Stokes (to name just a few) the

playing field became even larger by further developing the concepts of conservation laws and

differential equations describing the underlying physics in a formal language. But not only

this theoretical side, also the practical applications, experiments and engineering works lead

to fruitful results, further ramifications and (most importantly for the present treatise) to

the need of a deeper theoretical understanding.

Contemporary research areas dealing with or applying fluid mechanics in general go from,

say designing aircrafts, studying combustion processes, conducting wind tunnel experiments,

developing computer codes by applying numerical analysis and linear algebra, to using topol-

ogy, algebra and functional analysis to prove existence and uniqueness results for certain

Navier-Stokes or Euler problems or applying singular perturbation techniques diving deeper

into boundary layer theory. Despite this huge variety of interests and utilized methods there

is one common denominator, posing as an open problem, for all the afore-mentioned fields of

study – turbulence.

It is yet to be fully understood how to properly describe turbulence per se or even to

predict and characterize the onset of transition to turbulent flows. Common approaches,

presented in, e.g. Landau & Lifshitz (1959) or Marchioro & Pulvirenti (1994), are stability

theory, dynamical systems, ergodic and chaos theory on the one side and statistical mechanics,

measure and probability theory and stochastic processes on the other. Unfortunately, they

all do not necessarily yield satisfying results for all the areas of application. A major issue

here might be the fact that we are still missing an answer from the very basis, namely the

existence and uniqueness of smooth solutions of the three-dimensional initial-boundary value

problem of the Navier-Stokes equations for smooth data. Other (e.g. regarding weak solutions

or breakdown) descriptions of this problem can be found in the official problem description

by Charles F. Fefferman at the Clay Mathematics Institute. Most interestingly here is the

fact that in two dimensions one even has strong solutions for the Navier-Stokes equations for

all times 0 < t < ∞, whereas for the three-dimensional problem so far one can only show

existence and uniqueness of strong solutions on t ∈ [0, T ), where T might be finite (see Sell

& You (2002) for more details).

Although the approach in this work comes from a completely different angle – the sepa-

ration of a laminar boundary layer from the surface – it is still aiming to gain insight into

the phenomenon of transition to turbulence. As it is well-known, the notion of a boundary

layer stems from Ludwig Prandtl, who, in his seminal work in 1904, heuristically and exper-
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imentally discovered the appearance of a thin viscous layer near the surface in an otherwise

irrotational flow. To be more specific, one considers viscous fluids at asymptotically large

Reynolds numbers, where the velocity at the surface shall vanish entirely (i.e. no-slip con-

dition). Since such a flow can be regarded as ideal, i.e. satisfying the Euler equations (cf.

Landau & Lifshitz (1959)), the decrease of the velocity to zero happens in a thin layer ad-

jacent to the surface. By (reasonably) arguing the vertical velocity component to be small

within this layer, one immediately arrives at the equations describing the boundary layer

presented by Prandtl. It was not until the development of the techniques of singular pertur-

bations and matched asymptotic expansions (cf. Eckhaus (1973)) that one was able to base

this arguments on profound mathematical grounds. Furthermore, owing to those techniques,

the phenomenon of separation of flows past blunt bodies (well established experimentally),

could now also be investigated much more systematically and deductively (see Sychev et al.

(1998)).

Here we are interested in separation (from smooth surfaces), since it has been observed

that it might trigger transition to turbulence. This question became much more prominent

with the development and the design of airfoils. In this case, if not leading to turbulence,

separation can still significantly influence the flight performance due to the increase of drag

and loss of lift forces. In aerodynamics, where high velocities and low viscosities are the

dominant fluid flow characteristics, the Reynolds number Re can be assumed to be high,

such that it is reasonable to study the limit Re → ∞. Consequently one obtains a singular

perturbation problem, as this parameter appears in the viscous (highest order) term of the

Navier-Stokes equations. This is the point where Prandtl’s heuristic concept and the physical

argumentation given, e.g. in Landau & Lifshitz (1959) can be shown to be equal to the results

from the perturbation analysis. Eventually, it has been established that the flow outside the

viscous layer is irrotational and inviscid (i.e. potential flow).

Increasing the angle of attack of the airfoil, the appearance of so-called laminar separation

bubbles near the leading edge has been observed. It may have a significant influence on the

overall flow past the airfoil and, as mentioned above, may lead to higher drag forces. In its

initial stages such a bubble is short compared to the chord length of the airfoil, with almost

negligible effect on the flow behavior. But as short bubbles only exist within small angle of

attack variations, such situations are critical, since for larger angles of attack the bubbles

burst, resulting in large, non-negligible separation regions.

These critical stages are commonly referred to as cases of marginal separation, which,

for being at the verge of a bubble burst, are often seen to trigger the transition process

to turbulence. It is thus of high importance to understand the physics underlying it. It

has been shown, e.g. in Sychev et al. (1998) in a very deductive manner, that the theory

of marginal separation is embedded into the classical (Prandtl) boundary layer concept.

However, in some vicinity of the separation region, the hierarchical structure of the boundary

layer breaks down due to a singularity occurring in the flow description. As a remedy, the
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concept of viscous-inviscid interactions has been successfully introduced, using the method

of matched asymptotic expansions, see Section 2.1 for more details and some references.

A typical aspect of asymptotic expansions is the search for points or regions where they

might break down, i.e. being non-uniformly valid. These can be found by looking for singu-

larities appearing in the solutions, which, as the title of this treatise suggests, shall be done

in the following. To make this more accessible to the reader, we provide some guidelines to

the structure of this work.

How to read this treatise

As we have mentioned above, transition to turbulence is one of the most important occur-

rences in the field of fluid dynamics. Since, owing to the mathematical analysis done for the

Navier-Stokes equations, turbulence is strongly connected to unsteady, three-dimensional

flows, the main aims of this treatise are to extend existing results for unsteady, planar

marginally separated flows to unsteady, (locally) three-dimensional set-ups.

It is well-established that a finite time singularity occurs in the solutions of the asymp-

totic expansions of two-dimensional velocity fields within the theory of marginal separation.

Also, this singularity has been shown to admit a unique self-similar structure, which can

be utilized to obtain shorter spatio-temporal scales and an according non-linear triple-deck

stage, emerging from the blow-up. We refer the reader to Sections 2.1, 2.3.3 and 2.4 for some

references and details to the existing results.

Therefore, in very general, three main objectives are investigated in this work: (i) finding

solutions, using special numerical techniques, to the fundamental Cauchy problem of marginal

separation and determine conditions for the finite time blow-up, (ii) deriving the scales and

equations associated with the blow-up scenario to compute, again numerically, the blow-up

profile and see whether it is unique and self-similar and (iii) dealing with the question if, and

in what sense, a flow description beyond blow-up can be established.

To start with (i), we consider the locally three-dimensional Cauchy problem and find

sufficient conditions for solutions to terminate in a singularity. Thus, in Section 2.1 we

present a novel technique to derive the equation governing this initial value problem. Finding

solutions, where the local qualitative and quantitative behavior is of interest, is necessarily

a substantial numerical task. Ergo, we put some emphasis on novel methods, deploying

polynomial approximations, as derived in this treatise. They are even novel in the sense that

the very mathematical basis has not yet been described in a comprehensive and applicable

manner in the existing literature. Thus, we shall provide this in full detail in Section 3, which

is written in a ”stand-alone”, self-contained and general fashion, such that it can be easily

adapted to various other numerical problems in science and engineering.

To then demonstrate the applicability and convergence of the technique, in Section 2.2

we apply it to the according steady problem for the two- and three-dimensional flows, with

the advantage of having independent reference solutions from previous works.
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The most important issue is that of the ill-posedness of the Cauchy problem. Thus,

we devote Section 2.3.1 to study its characteristics, ramifications and resolution in terms

of regularizations. Furthermore, these rather theoretical aspects are then shown how to be

utilized for numerical calculations, which further provide exact mathematical meaning to the

solutions. Moreover, in Section 2.3.2 a whole new approach to a possible regularization is

presented. It is shown that by expanding the flow field to higher orders and applying the

matched asymptotic expansion technique, a connection of regularizing operators to the curva-

ture of the streamlines in the boundary layer can be found. This concludes the longstanding

discussions on the overall physical meaning of time dependent solutions in the theory of

marginally separated flows.

Having found a well-posed problem, were solutions converge (in some sense) to solutions

of the original Cauchy problem, the proposed finite time blow-up scenario can be studied.

Therefore, in Section 2.3.3 we start with showing how, where and when this singularity

appears. To proceed with (ii) of finding a self-similar structure, we use the (numerical) data

from computing the time evolution as close as possible to the blow-up point and depict it

in similarity variables. This yields the convergence of the time dependent solutions to some

stationary profile. To gain more information on this structure, an equation is presented

governing the exact shape of such a profile. Eventually, we establish the uniqueness of the

complete self-similar structure and its blow-up profile.

Section 2.4 concludes with some further considerations regarding (iii), i.e. possibilities to

extend the study beyond the finite time blow-up. Here one might be interested in continuing

the solutions of the Cauchy problem for long times or in deriving a new triple-deck stage, valid

after the blow-up. Also, some issues on the stability of the singularity shall be addressed.

Overall, Section 2 as a whole is aimed to be self-contained, with only weak connections

made to the numerical analysis from Section 3, such that the reader not interested in the

details of the computations may stop after the above mentioned conclusions. Still, a few

comments on the structure of Section 3 are in order.

Therein, we start with extending the quasi-comprehensive knowledge on classical Cheby-

shev polynomials, defined on the unit hypercube, to the n-dimensional Euclidean space.

Section 3.2 then continues with some basic properties of projection operators comprising

the extended polynomials in R
n and some new results regarding convergence rates of both

approximation and interpolation operators in some L2 and L∞ spaces.

In virtue of the equations dealt with in Section 2, especially with respect to the involved

operators, Section 3.3 provides some theorems on boundedness and compactness of integral

operators. The reader accepting the convergence of the approximation strategy and being

rather interested in how to actually apply it to the equations from Section 2, or in general to

integro-differential equations, is referred to Section 3.3.2. Therein we show in detail how the

finite-dimensional system is obtained. Also, difficulties and special issues arising from the

properties of the integral operators and possible remedies are explained. Finally, a Nyström

based approach, used for the equation of the blow-up profile, is described in Section 3.4.
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2 Marginal Separation Theory

Studies of flow separation from smooth surfaces can be connected to high Reynolds number

aerodynamics and airfoil theory. In fact, if the airfoil is thin, i.e. the thickness is about one

tenth of the chord length, we say β, the thickness parameter, shall be given by this ratio

and additionally shall tend to zero. Assuming further a parallel, inviscid flow enclosing the

airfoil and the angle of attack α to be of order β, then the velocities and the pressure (in two

dimensions) may be written as

u ∼ u∞ + βu1(x, y), v ∼ βv1(x, y), p ∼ βp1(x, y),

see Figure 1 in Section 2.1 for the relation of the velocities and the coordinates.

Remark 2.1. When studying Navier-Stokes dynamics from a theoretical or mathemati-

cal viewpoint, there is no need to mention that all involved quantities are, of course, non-

dimensional, cf. Sell & You (2002). Nevertheless, such an assumption is not necessarily a

trivial one. In fact, the Reynolds number is the result of substituting the suitably scaled,

dimensional coordinates, the velocity and the pressure field into the original Navier-Stokes

equations, see Equation (2.2). Consequently, the Reynolds number then reads

Re =
u∞L
ν

, (2.1)

with L being some characteristic length and ν the kinematic viscosity. It is due to this

relation that one has to be careful when making assertions about the state of a flow at a

certain Reynolds number. Ruban (1981), for example, uses the radius of the leading edge of

an airfoil, while Stewartson et al. (1982) take the chord length for L. In aerodynamics, with

the free-stream velocity u∞ being comparably high and the viscosity small, one can argue to

have high Reynolds number flows for both characteristic length scales.

N.b.: In all what follows we assume the appearing quantities to be non-dimensionalized in

the above mentioned manner.

Experiments showed for α being small enough for the flow to be fully attached to the

airfoil, one has an advantageous ratio of lift to drag forces, admitting good flight performances.

By increasing α one can observe a sudden change of the flow situation at the leading edge –

the appearance of a short separation bubble enclosing recirculating flow, i.e. the flow separates

locally from the surface. This we shall call the separation angle αs. The short bubble has

almost no effect on the surrounding flow and hence could be neglected. But as this state is,

on the one hand, highly unstable, meaning that small disturbances, such as e.g. sound waves,

can cause this bubble to burst and to either form a larger bubble, extending over a significant

part of the airfoil, or to result in full separation. On the other hand, short bubbles only exist

in a short range of variation of the angle, i.e. if α exceeds some αc > αs, the bubble bursts

without any further outer influences. Such a situation may have severe consequences on the

flight performance (known as aerodynamic stall) or may lead to transition to turbulence.
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It is thus necessary to theoretically understand the mechanisms behind flow separation and

this is best done at critical conditions, i.e. α ∈ [αs, αc), which is called marginal separation (see

the original works by Ruban (1981) and Stewartson et al. (1982)). A more precise definition

for the cases of marginal separation will be given in Section 2.1. As we will demonstrate in

the following sections, the advantage of studying the case of marginal separation is that one

does not have to deal with turbulence models or have to include large separation regions. By

being at the verge of separation, the classical laminar boundary layer theory, supplemented

with interaction concepts, provides the necessary frame work. It shall be noted that leading

edge separation at airfoils is not the only case where marginal separation can occur, this also

happens in channel flows with suction slots or for backward facing steps, where the relative

suction rate and the step height to length ratio, respectively, take the role of the angle of

attack above. This is why in the next section, when deriving the fundamental equations,

we will just assume the existence of such a control parameter and its critical value. Clearly,

bubble bursting and transition to turbulence are inherently unsteady and three-dimensional

effects, thus the main aim of this treatise is to generalize well-established results for planar

flows to unsteady, (locally) three-dimensional problems in a way, such that the previous

two-dimensional results are included as special cases.

2.1 The Triple-Deck of Marginal Separation

It has been established in the original papers (see Ruban (1981) and Stewartson et al. (1982))

that the asymptotic description of marginally separated boundary layer flows leads to a

so-called triple-deck interaction structure. In the following, we shall paraphrase the main

ideas presented in these works to demonstrate how the three decks or layers emerge. The

aim is, among other things, to show that this (unique) structure does not come from any

modeling assumptions but from purely physical and mathematical (using matched asymptotic

expansions) reasoning. A thorough and detailed deduction can be found in Sychev et al.

(1998) and Ruban (2010), and for comparison reasons, we adopted the notations used therein.

Furthermore, we will deploy a recently developed, elegant approach to derive the fundamental

equations governing the (local) flow properties, the deduction of which, so far, needed heavily

involved technical procedures.

Let us first set up the coordinate system, see Figure 1, and define the notions upstream and

downstream. We say, for a given velocity field u∗ the components (u∗, v∗, w∗) are functions

of the coordinates (x∗, y∗, z∗). Since in many theoretical studies, but also in real applications

the oncoming, unperturbed flow is considered uni-directional, e.g. u∗ = (u∗, 0, 0) (or has

only comparably small v and w components), downstream means in direction of u and vice

versa for the notion upstream. Consequently we call x the streamwise and z the spanwise

coordinates. Note that the asterisk has no special meaning here and in the following and was

chosen purely for the sake of readability of the upcoming asymptotic expansions.

For the following deduction we assume u∗ := (u∗, v∗, w∗) = u∗(x∗, y∗, z∗, t∗) and p∗ =

p∗(x∗, y∗, z∗, t∗) satisfy the Navier-Stokes equations for incompressible, transient flows on
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Figure 1: The orthogonal coordinate system with origin at the surface and an according flow field.

(x∗, y∗, z∗) ∈ Ω ⊂ R
3 with a given suction or blowing velocity v∗w = v∗w(x∗, z∗, t∗) at the

surface y∗ = 0 and a Reynolds number Re, defined as in (2.1), assumed to be large. The

governing equations together with the initial and boundary conditions hence read

∂t u
∗ + u∗ · ∇u∗ = −∇p∗ +Re−1∆u∗

divu∗ = 0



 on Ω × [0, T ]

u∗ = (0, v∗w, 0) at y∗ = 0 ∀x∗, z∗, t∗

|u∗| → 1, p∗ → 0 as y∗ → ∞
u∗ = u∗0 at t∗ = 0 on Ω

(2.2)

For the sake of comprehensibility and conciseness (and also for historical reasons) say, for the

moment, u∗ = (u∗, v∗) = u∗(x∗, y∗) on Ω = [0,∞)2, meaning steady and planar flows. In the

limit Re → ∞ this then yields the Euler equations (i.e. the Laplace term is canceled out),

which cannot satisfy the no-slip boundary conditions at the surface y∗ = 0. We have thus

obtained a singularly perturbed problem, where applying the techniques provided in Eckhaus

(1973) suggests to find the so-called significant degeneration. The resulting scaling factor for

the boundary layer variable and the appropriate asymptotic expansions is well-known and

given as

u∗ ∼ u0(x
∗, y), v∗ ∼ Re−1/2v0(x

∗, y), p∗ ∼ p0(x
∗, y), y = Re1/2y∗,

where u0, v0 and p0 satisfy the classical boundary layer equations in (x∗, y), subject to the no-

slip condition. By denoting Ue = Ue(x
∗) to be the velocity at y∗ = 0, the Bernoulli equation

and the matching condition with u0 yields u0 = Ue as y → ∞ and ∂x∗p0 = −Ue∂x∗Ue.

This shows the hierarchical structure of classical boundary layer theory, meaning that the
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outer flow solution can be determined independently and its solution is then imposed via the

matching procedure onto the boundary layer.

Remark 2.2. In case of non-flat surfaces bounding the flow (cf. Figure 1), e.g. an airfoil,

one would have to use curvilinear coordinates for the Navier-Stokes equations, which then

include the local curvature. It can be easily seen, in case of moderately curved surfaces, the

curvature terms to be a higher order effect in the according boundary layer equations.

A very useful characteristic to study boundary layer flows is known as the wall shear

stress or skin friction, given as

τ(x∗) ∝ ∂yu0(x
∗, y)

∣∣
y=0

, (2.3)

which is generally regarded to be positive along x∗ for an attached boundary layer, whereas

(for steady flows) the situation of τ ≤ 0 (in some regions) is seen as equivalent to separation

of the boundary layer from the surface. The seminal work by Goldstein (1948) shows, under

the circumstances of a sufficiently strong adverse pressure gradient ∂xp > 0, there exists a

point x0, such that τ ∝ √
x0 − x as x → x0. The flow description develops a square-root-

singularity and the solution ceases to exist ∀x > x0 (e.g. it becomes imaginary). Note that

singularity here includes discontinuities, unbounded derivatives and so forth. In essence,

one can conclude that near a point of separation the hierarchical structure of the boundary

layer concept is no longer valid. This goes even further, for Stewartson (1970) showed the

singularity is inevitably present in strongly adverse pressure situations and cannot be removed

by including the viscous-inviscid interaction technique.

Suppose we have a parameter k, connected to the geometry or given flow conditions

(e.g. the angle α or the height of a backward facing step, as mentioned above), such that

τ = τ(x∗, k) and

∃ k0, x
∗
0 : τ(x∗0, k0) = 0 and τ(x∗, k0) > 0 ∀x∗ 6= x∗0. (2.4)

Additionally say ∀k < k0, τ(x
∗, k) is everywhere positive, such that a solution exists for all

x∗ and the boundary layer concept holds, meaning we have a fully attached flow. We refer to

the limiting, critical case k = k0 as marginal separation (with immediate reattachment). This

now provides a precise definition for the marginal separation cases at the leading edge of an

airfoil, i.e. for the existence of short separation bubbles when α ∈ [αs, αc), as mentioned in

the introduction. As a consequence, the corresponding singularity occurring in the solution

is weaker than the Goldstein singularity. In fact, it has been shown in the original works

by Ruban (1981) and Stewartson et al. (1982), in situations where k is close to, but still

greater than k0 it is possible to extend the solution continuously through the point of zero

skin friction (using the interaction concept). If k is significantly larger than k0 the flow is

fully (or largely) separated (with the appearance of the Goldstein singularity), where the

point of separation lies upstream of x∗0 (cf. α > αc for an airfoil).
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The investigation is hence continued with assuming

∆k := k − k0 → 0,

i.e. being infinitesimally below critical conditions, where solutions of the boundary layer

equations exist along the whole x-axis and passing to the limit k → k0. Since the velocity

and pressure field are sufficiently smooth for k < k0, we can expand both into a Taylor

series for small ∆k, where the zeroth order terms shall satisfy the classical boundary layer

equations, subject to the no-slip condition. It has been presented in very detail by Ruban

(2010) that the boundary layer has to be split into various regions when approaching the

point of zero skin friction in order to satisfy the no-slip condition at y = 0 and the matching

condition u0 = Ue at the outer edge of the boundary layer. What happens is that the viscous

part diminishes as the separation point is approached and a mainly inviscid boundary layer

remains, with the thickness of the viscous sublayer decreasing according to

y = O
(
(x∗0 − x∗)1/4

)
.

Let us further consider the linear term in the Taylor series (with respect to ∆k) in the

vicinity of x∗0 in the form of an asymptotic series as x∗ → x∗0. It has been shown in the afore-

mentioned works that the linear term for x∗ → x∗0 is not asymptotically small compared to the

zeroth order solution. Thus, one can argue a reinvestigation of the viscous sublayer connected

to the main part of the boundary layer to be needed in a vicinity of x∗0. Additionally, the

pressure gradient perturbation can be seen to become unbounded in the present set-up as

x∗ → x∗0. But this means that the boundary layer induces a pressure perturbation, which

starts to influence the leading order boundary layer solution (so far assumed to be given

via the outer potential flow). Also, the streamlines in the boundary layer at x∗0 (due to the

singular behavior of the solution) experience a kink (or a discontinuity in their gradient),

which creates infinitely large perturbations in the outer flow. At this point, viscous-inviscid

interaction needs to be introduced, meaning that in some region around the point of zero skin

friction the boundary layer starts to interact with the outer flow regime. Taking into account

the gradient of the induced pressure perturbations order of magnitude estimates yield for this

interaction region

|x∗0 − x∗| = O(Re−1/5), with ∆k = Re−2/5k1, (2.5)

where k1 remains an order one quantity as Re→ ∞, see Ruban (1981).

As mentioned above, the boundary layer near the point of separation consists of a main

part and a viscous sublayer, whereas within the proposed interaction region, the outer flow

has to be included as well, since only therein the displacement of the streamlines transfers

into (simultaneously present) pressure perturbations (yielding the viscous-inviscid interaction

concept). Thus, this interaction region consists of three layers, which is termed a triple-deck

structure. Note that outside this interaction region the hierarchical concept of boundary layer

theory remains valid. The crucial conclusion of this whole deduction is, that the interaction
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only takes place between the viscous sublayer and the outer flow. Also, due to this procedure,

solutions can be continuously extended through the point of zero skin friction in the case of

the weak singularity for k close to, but greater than k0.

In knowing the triple-deck structure to play the main role in our treatise, we will state

the scalings and expansions in all three layers explicitly, since this builds the basis of deriving

the fundamental equations of marginal separation theory. To be more general, this shall

be done for the unsteady case, which was first studied in Ruban (1982) and Smith (1982)

for planar flows. Also, as transition to turbulence is always viewed as a three-dimensional

process, z dependency shall be taken into account as well. This may be realized via locally

three-dimensional perturbation devices, such as a surface mounted hump h = h(x, z, t) and

a blowing/suction slot with vw = vw(x, z, t). Note that these devices enter the problem by

modifying the solid boundary and the boundary conditions, cf. Braun & Kluwick (2002) and

references therein.

Obviously, with the rescaled original independent variables x∗, y∗, z∗ in the interaction

region, the domain Ω for the Navier-Stokes equations (2.2) is given henceforth as Ω :=

R× R
+ ×R. We set the perturbation parameter ǫ := Re−1/20, such that the coordinates are

scaled as (indices 1, 2, 3 denoting the upper, main and lower deck, respectively and the point

of zero skin friction is shifted into the origin)

t∗ = ǫ−1t, x∗ = ǫ4x, z∗ = ǫ4z, y∗ =





ǫ4y1

ǫ10y2 + ǫ14h

ǫ11y3 + ǫ14h

(2.6)

Remark 2.3. The scaling for the proposed hump, or say local, smooth alteration of the

surface, regarding its height, is chosen, as stated in Braun & Kluwick (2002), such that the

resulting pressure perturbations are of the same order as the perturbations stemming from

the interaction process.

Figure 2 shows a sketch of the triple-deck structure in accordance to the coordinate

scalings above. If not otherwise stated, in what follows the individual expansion terms in

these decks are assumed to depend on (x, yi, z, t) and the asymptotic expansions are taken in

principle from Braun & Kluwick (2004) and references therein.

What has been presented so far in this section was merely an excerpt of the comprehensive

and physically deductive derivation of how and in what form the three decks actually emerge

from the singular perturbation problem for the Navier-Stokes equations, as presented in very

detail in Sychev et al. (1998) and even more so in Ruban (2010) (although only for the

steady, planar case). The same holds for the explicit, individual description of the flow field

expansions in the decks, as given below. This means that we refrain from stating all the

equations with their boundary and/or matching conditions for each deck, and rather provide

only those, necessary to deduce the fundamental problems of marginal separation.

(i) The upper deck. Here one essentially has a potential flow region. That is at

the leading order a constant (within the interaction region), uni-directional velocity field is

10



upper deck

main deck

lower deck

I

II

III

(a) x

y

Figure 2: The triple-deck structure of the interaction region. I–III indicate the potential flow, the
main part of the boundary layer and the viscous sublayer, respectively, upstream of x∗0 = 0, with a
recirculation region (local separation bubble) (a).

prescribed, i.e. (u1, v1, w1) = (U00, 0, 0) and all spatial coordinates scale with the same power

of the Reynolds number. Note that U00 is Ue evaluated at x∗0. The pressure at leading order

has to be constant, which can be easily calculated applying Bernoulli’s equation to the upper

deck and the far field given in (2.2). Thus, we state the expansions to be

u1 ∼ u10 + ǫ4u11 + ǫ10u12

v1 ∼ ǫ4v11 + ǫ10v12

w1 ∼ ǫ10w12

p1 ∼ p10 + ǫ4p11 + ǫ10p12

(2.7)

where, by substituting (2.6) and (2.7) into (2.2) and taking into account the afore-mentioned,

one obtains

u10 = U00

p10 =
1 − U2

00

2

u11 = −U01x

v11 = U01y1

p11 = p00x.

The imposed pressure gradient p00 (at y1 = 0, to be precise) is obviously constant within the

interaction region and consequently U01 = p00/U00. The next higher order terms, induced

through the interaction, then have to satisfy

div (u12, v12, w12) = 0,

U00∂xu12 = −∂xp12

U00∂xv12 = −∂y1p12

U00∂xw12 = −∂zp12

⇒ ∆p12 = 0.

As expected, from the potential flow assumption, the induced pressure p12 has to satisfy the

Laplace equation on the half space y1 > 0 subject to Neumann boundary conditions, i.e.

∆p12 = 0 on Ω, ∂y1p12 = −U00∂xv12 at y1 = 0. (2.8)
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Green’s function for this Neumann problem is given as

G(ξ1, ξ3, ξ2;x, y1, z) = − 1

4π

(
1

|(x, y1, z) − (ξ1, ξ3, ξ2)|
+

1

|(x,−y1, z) − (ξ1, ξ3, ξ2)|

)
.

In general a solution can be derived to be p12 =

∫
(p12∂nG−G∂np12) dξ1dξ2, such that with

∂n = −∂y1 and ∂y1G = 0

p12(x, y1, z, t) =

∫

R2

G(ξ1, 0, ξ2;x, y1, z)∂y1p12(ξ1, 0, ξ2, t) dξ1dξ2

and consequently

p12(x, 0, z, t) =
U00

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
∂ξ1v12(ξ1, 0, ξ2, t) dξ1dξ2. (2.9)

To arrive at the governing equations and problems addressed in this treatise, one does not

need to calculate the remaining terms of the upper deck expansions, meaning that having the

above description of the pressure perturbation p12, shall be sufficient, as will become clear

later.

(ii) The main deck. Although here the expansions assume the form of the classical

boundary layer description (at the leading order), that is, the leading term of the streamwise

component u2 only depends on y2, while the vertical component v2 and y2 scale with Re−1/2,

thus leading to Prandtl’s equations (with no w2 component present), this layer is actually

inviscid, as deduced in Sychev et al. (1998). Consequently, u20 represents the boundary layer

velocity profile at the verge of separation and, as can be inferred from the coordinate scalings

for t and z in (2.6) and the expansions below, the main deck remains two-dimensional and

steady at the leading order. This is in agreement with the assumptions of a two-dimensional

outer flow and only locally three-dimensional perturbations. The expansions thus read

u2 ∼ u20 + ǫ4u21

v2 ∼ ǫ10(v21 + h21)

w2 ∼ ǫ10w21

p2 ∼ p20 + ǫ4p21 + ǫ10p22.

(2.10)

The velocity profile u20 =: U0(y2) is the same as for the planar flow case, where one can

use the usual stream function and the matching condition to obtain its asymptotic behavior

(see Sychev et al. (1998))

U0(y2) ∼
p00

2
y2
2 as y2 → 0

U0(y2) → U00 as y2 → ∞.
(2.11)

The function h21 can be determined, as done in Braun & Kluwick (2002), by using

Prandtl’s transposition ”theorem”. It asserts the boundary layer equations to remain in-
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variant if the confining wall is shifted by a smooth function with small enough curvature.

This assertion has been extended in Glauert (1957) to three-dimensional, compressible flows.

In essence we have from these results that for an original boundary layer solution (u, v,w)

on (x, y, z) ∈ Ω, a shifted velocity field (ū, v̄, w̄) on ȳ = y − h(x, z, t) given as

ū = u, v̄ = v + ∂th+ u∂xh+ w∂zh, w̄ = w

satisfies the same equations as (u, v,w) on (x, ȳ, z) ∈ Ω. Thus, by applying the coordinate

scalings, which transfer the time and z derivative of h into higher order terms, we have

h21 = u20∂xh. Since u20 = U0(y2),

h21(x, y2, z, t) = U0(y2)∂xh(x, z, t). (2.12)

As for the pressure expansions one can readily see the well-known fact of p2 being constant

across the boundary layer (at every x) and from the matching requirement p1
!
= p2 as y1 → 0

and y2 → ∞ the expansion terms of p1 and p2 are mutually equal in this limit. Furthermore,

p1 at y1 = 0 thus determines p2 for all y2.

Having established the leading order term U0 and the behavior of the pressure, substi-

tution of the expansions (2.10) into (2.2) reveals the equations for the next higher order

terms
div (u21, v21) = 0

U0∂xu21 + v21U
′
0 = U ′′

0 − p00

U0∂xw21 = −∂zp22,

where combining the conservation of mass and the first momentum equation gives

v21(x, y2, z, t) = −U0(y2)


∂xA(x, z, t)

p00
+

y2∫

0

U ′′
0 (s) − p00

U2
0 (s)

ds


 . (2.13)

Remark 2.4. At this point, the function A = A(x, z, t) above represents an integration

constant stemming from generally solving the according momentum equation. Therefore,

it remains undetermined. Here we enter the crucial part of marginal separation and the

whole present treatise, namely finding and solving the governing problem for A. As has been

mentioned in the original works, e.g. Stewartson et al. (1982), and can also be easily seen

from the definition (2.3), the integration constant A possesses a physical interpretation, that

is it is proportional to the wall shear stress (its streamwise component, to be precise)

τ = (τx, τy, τz), τx(x, z, t) ∝ ∂yu
∣∣
y=0

∝ A(x, z, t).

Furthermore, there is also a connection to the so-called displacement thickness, more precisely,

A also describes (negative corrections) of the local displacement thickness and is therefore

also called displacement function. Ergo, within the context of the flow being at the verge of
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separation, or at a potential bubble bust, the (local) structure and time evolution of A can

qualitatively describe these crucial processes.

Mentioned at the end of the description of the upper deck problem, for deriving the

governing equations not all expansion terms have to be given in closed formulae, hence the

main deck is sufficiently characterized at this point.

(iii) The lower deck. In classical boundary layer theory, seen as a singular perturbation

of the Navier-Stokes equations (2.2), the boundary layer plays the crucial part, i.e. taking care

of satisfying the no-slip condition at the surface. With the proposed triple-deck structure,

the boundary layer, that is the main deck, acts rather as a ”transfer-layer”, meaning that

the interaction actually takes place between the lower deck (as a viscous sublayer) and the

outer flow. This becomes immediately clear from the y2 independence of the pressure p2, as

mentioned above.

We shall write the lower deck expansions as

u3 ∼ ǫ2u30 + ǫ5u31 + ǫ8u32

v3 ∼ ǫ12(v31 + h31) + ǫ15(v32 + h32)

w3 ∼ ǫ8w32

p3 ∼ p30 + ǫ4p31 + ǫ10p32,

(2.14)

where it is now necessary to find the governing equations for the terms subscripted with 32,

especially since p32 represents the induced pressure (perturbations), which are transmitted

to the upper deck. For y3 → ∞ and y2 → 0 the matching condition gives p3 = p2 and, as

done above, substitution into (2.2) yields

u30 = p00
y2
3

2

u31 = Ay3

v31 = −y
2
3

2
∂xA

h31 = p00
y2
3

2
∂xh

h32 = Ay3∂xh. (2.15)

The problem governing the shape and evolution of the function A can be derived by formu-

lating the equations for (u32, v32, w32). The new and crucial part is that no knowledge of

the solution for this higher order terms is needed explicitly, or in other words, the governing

equation for A is a solvability condition for the equations of these velocities.

To proceed, we utilize the idea presented in Braun et al. (2012) (for the two-dimensional

case) to derive the solvability condition for the lower deck problem in terms of A, thus avoiding

the rather tedious procedure followed by Stewartson (1970), Stewartson et al. (1982), Smith

(1982) and Ruban (1982) (for planar flows). So far, to the authors knowledge, only the

method of these works was used to gain the steady and unsteady problem for A (even for

the three-dimensional case studied in e.g. Braun & Kluwick (2004) and Duck (1990)). The

new idea, as was further shown, is generic in the sense that it need not be modified to
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obtain equations for higher order correction terms of the wall shear stress in the triple deck

expansions.

From (2.14) one immediately has ∂xu31+∂yv31 = 0 and thus there exists a streamfunction

Ψ1 with ∂y3Ψ1 = u31, −∂xΨ1 = v31 (w31 ≡ 0). Obviously Ψ1 is the same as in the planar

flow case, satisfying the same problem, that is

LΨ1 = 0, L := ∂3
y3

− p00
y2
3

2
∂2

xy3
+ p00y3∂x

Ψ1 = ∂y3Ψ = 0 at y3 = 0,

Ψ1 = A
y2
3

2
as y3 → ∞





∀x, z, t.
(2.16)

Assume now ψ = ψ(x, ·) ∈ L2(R) with respect to x, such that the Fourier transform (see

(2.54)) ψ̂ = ψ̂(k, ·) and its inverse exist. Then

F(Lψ) = L̂ψ̂(k, ·) =

(
d3

dy3
3

− p00
y2
3

2
(ik)

d

dy3
+ p00y3(ik)

)
ψ̂,

where L̂ is now an ordinary differential operator with respect to y3.

Define for some a, b ∈ L2(R+), not necessarily real valued (hence the bar denotes the

complex conjugate),

〈a, b〉y :=

∞∫

0

a(y)b̄(y)dy.

The equation in problem (2.16) obviously gives

F(Lψ) = L̂ψ̂ = 0, (2.17)

where the boundary condition for large y3 require A to be Fourier transformable with respect

to x (which might have to be understood in a distributional sense).

Let φ ∈ L2(R+), as smooth as necessary, then

〈L̂ψ̂, φ〉y = 〈ψ̂, L̂∗φ〉y +B(φ̄, ψ̂) = 0, (2.18)

denoting the function comprising the boundary terms from the integration by parts as B, see

Braun et al. (2012) for some more details. It is thus obvious that the homogeneous problem

(2.17) and its adjoint have at least one non-trivial solution. Furthermore, we formally claim

that the (finite) number of linearly independent solutions for both problems is equal.

Let us now continue with the formulation of the governing equations for the next higher

order terms in (2.14). The conservation of mass

∂xu32 + ∂y3v32 + ∂zw32 = 0 (2.19)
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can be readily deduced, as well as the momentum equations

p00
y2
3

2
∂xu32 + p00y3v32 − ∂2

y3
u32 = −∂xp32 − y3(∂tA− p00∂th) −

y2
3

2
A∂xA

p00
y2
3

2
∂xw32 − ∂2

y3
w32 = −∂zp32

(2.20)

subject to

u32 = 0

w32 = 0

v32 = vw





at y3 = 0, ∀x, z, t, (2.21)

where vw is the scaled suction or blowing velocity introduced in (2.2).

One of the advantages of two-dimensional flows, from a technical viewpoint, is the exis-

tence of a streamfunction, satisfying the conservation of mass identically and yielding only

one momentum equation. Therefore, in order to deploy the idea in Braun et al. (2012), we

define

w̆32 :=

∫ x

−∞
∂zw32 and ŭ32 := u32 + w̆32

(2.19)⇒ ∂xŭ32 + ∂y3v32 = 0,

where differentiation with respect to z and integration with respect to x in the second equation

in (2.20) yields

p00
y2
3

2
∂xw̆32 − ∂2

y3
w̆32 = −

x∫

−∞

∂2
zp32dξ =: −p̆32.

By adding this to the first equation in (2.20) we obtain

p00
y2
3

2
∂xŭ32 + p00y3v32 − ∂2

y3
ŭ32 = −∂xp32 − p̆32 − y3(∂tA− p00∂th)︸ ︷︷ ︸

=:−b2

−y
2
3

2
A∂xA. (2.22)

A shift of the unknowns ŭ32 and v32 (cf. Sychev et al. (1998)) of the form

ŭ32 =
a2

0

24
xy4

3 +
a2

0p00

4480
y8
3 +

A2 − 2a0a1k1 − a2
0x

2

2p00
+ ũ32

v32 = − a2
0

120
y5
3 − 2A∂xA− 2a2

0x

2p00
y3 + ṽ32

and substitution into (2.22) gives

p00
y2
3

2
∂xũ32 + p00y3ṽ32 − ∂2

y3
ũ32 = −b2 (2.23)

where

ũ32 = −A
2 − 2a0a1k1 − a2

0x
2

2p00
, ṽ32 = vw at y3 = 0.

The constant k1 represents the rescaled difference of the control parameter for separation to

its critical value, see (2.4) and (2.5), and a0 and a1 are (undetermined) integration constants

16



appearing in higher order expansion terms of the solution of the viscous sublayer ahead of

the point of zero skin friction, see Figure 2, region III and Sychev et al. (1998).

Next we introduce a function Ψ2, mimicking a streamfunction, i.e.

∂y3Ψ2 = ũ32

−∂xΨ2 = ṽ32

(2.23)⇒ p00
y2
3

2
∂2

xy3
Ψ2 − p00y3∂xΨ2 − ∂3

y3
Ψ2 = −b2,

and consequently we arrive at the problem for the next higher order unknowns in terms of

Ψ2 reading

LΨ2 = b2

∂y3Ψ2 = −A
2 − 2a0a1k1 − a2

0x
2

2p00

−∂xΨ2 = vw



 at y3 = 0, ∀(x, z, t),

(2.24)

which is in complete accordance to the two-dimensional case. Moreover, reasonably assuming

b2 ∈ L2(R) with respect to x gives the inhomogeneous problem L̂ψ̂ = b̂2 for some ψ ∈ L2(R).

Say, for the moment, such a ψ exists, then from (2.18), necessarily

〈b̂2, φ〉y = 〈ψ̂, L̂∗φ〉y +B, (2.25)

where the right hand side equals B(φ̄, ψ̂), for all φ̄ solving the homogeneous adjoint problem

and ψ̂ solving the inhomogeneous problem above. By viewing L =
∑

|k| ak(x, y)∂
k
xy , where the

principal part has a3 ≡ 1, yields L to be elliptic and thus the Fredholm alternative for elliptic

operators shows (2.25) to be also sufficient for solvability of the inhomogeneous problem.

Remark 2.5. As we have pointed out earlier, the homogeneous equation L̂ψ̂ = 0 and its

adjoint L̂∗φ̄ = 0 have at least one non-zero solution with respect to y3, for all k, z, t, where

consequently the question of uniqueness of the inhomogeneous problem L̂ψ̂ = b for a given

b = b(y, ·) ∈ L2(R+) remains. In fact, one has that if the homogeneous, adjoint problem

has only the trivial solution, there exists a unique solution for L̂ψ̂ = b. Since we are only

interested in the mere existence of a solution, the Fredholm alternative provides a sufficient

criterion for the present case.

One can find, as done in Braun et al. (2012), a solution to L̂∗φ̄ = 0 in closed form given

as (the bar again denotes the complex conjugate)

φ̄(k, y3, z, t) = c(k, z, t)(ik)1/8 y
3/2
3 K1/4

(
y2
3

√
p00ik/8

)
=: c(k, z, t)φ̃(k, y3),

with K1/4 denoting the modified Bessel function of the second kind and c being the unde-

termined integration ”constant”. It is straight forward to see the L2 integrability of φ̃ on

y3 ∈ [0,∞), as required (in fact, φ̃ decays exponentially as y3 → ∞). Therefore, in virtue

of the solvability condition (2.25) considered for (2.24) and taking the expression for the
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boundary terms B from Braun et al. (2012) yields

〈b̂2, φ〉y =

∞∫

0

b̂2 cφ̃ dy3 = B(cφ̃, Ψ̂2). (2.26)

Remark 2.6. Having said nothing about L2 integrability of b2 with respect to y3, the meaning

of the inner product on the left hand side above is still to be considered. From (2.22) it

becomes clear that the violation of the integrability, if so, can only come from insufficient

decay of b2 at zero and/or infinity. On the other hand, the existence (per se) of the integral

defining this inner product is clear from the behavior of φ̃ at the boundaries. Following the

overall deduction this existence is in fact sufficient for the result presented below to have the

correct meaning.

With this remark, we assert a necessary and sufficient condition for the existence of Ψ2

(satisfying (2.24)) is given by the second equality in (2.26), which certainly holds if one

equates the left and right hand side excluding the undetermined function c. Furthermore,

we additionally assumed all modifications leading to this condition to be set in L2(R), ergo

the inverse Fourier transform and the convolution theorem can be applied with respect to x,

leading to
∞∫

0

b2 ∗ F−1φ̃ dy3 = F−1
(
B(φ̃, Ψ̂2)

∣∣
y3=0

)
.

We reasonably assume the functions on the left hand side to be smooth enough, such that the

order of the Fourier transform, the convolution and the inner product integral can be arbi-

trarily interchanged. On the right hand side it is important to evaluate B (i.e. its arguments)

at y3 = 0 before applying the inverse Fourier transform. In concrete, that is substituting b2

from (2.22) and using

Φ(x, y3) := F−1φ̃ = c1
y2
3

x5/4
exp

(
−c2

y4
3

x

)
1[0,∞)(x)

with again referring to Braun et al. (2012) for the details and the values of the all the constants

ci appearing, this reads

c3∂y3Ψ2

∣∣
y3=0

− c4

x∫

−∞

1

(x− ξ)1/4
∂ξΨ2

∣∣
y3=0

dξ =

= c5

∫

R

∞∫

0

Φ(x− ξ, y3)
(
∂xp32 + p̆32 + y3(∂tA− p00∂th)

)
dy3dξ.

(2.27)

Remark 2.7. The fractional integral on the left hand side stems from, given a < 1,

F−1
(
(ik)af̂

)
= F−1

(
(ik)1−a(ik)f̂

)
= F−1(ik)1−a ∗ ∂xf . In the following sections we will
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provide a precise meaning of such integrals in terms of Abel operators and their symbols (see

Sections 2.3.1 and 3.3.1).

Substituting further the boundary conditions from (2.24), using

∞∫

0

y2e−y4/xdy =
1

4
x3/4Γ(3/4) and

∞∫

0

y3e−y4/xdy =
x

4
,

and deploying the affine transforms for the unknown functions and variables presented in

Sychev et al. (1998) and Braun & Kluwick (2004) eventually yields

A2 − x2 + Γ = −λ
x∫

−∞

∂xp32 +
∫ ξ
−∞ ∂2

zp32dζ

(x− ξ)1/2
dξ − γ

x∫

−∞

∂t(A− h)

(x− ξ)1/4
dξ−

− γ

x∫

−∞

vw

(x− ξ)1/4
dξ,

(2.28)

with λ and γ being positive and Γ ∈ R denoting the rescaled control parameter, i.e. k1 in

(2.5). Note that the fractional integral for the pressure stems from the characteristic function

1[0,∞) in Φ and the convolution of the pressure terms in (2.27) with x1/2.

In order to obtain a problem purely in terms of A as the unknown, one needs to relate A

to the pressure p32. The result for p12, Equation (2.9), has been established to match with

p22 (in the limit y1 → 0, y2 → ∞) and consequently with p32 (as y3 → ∞, y2 → 0), such that

we will henceforth call p32 the interaction pressure pi. Since v12 therein is undetermined, the

matching condition v12
!
= v21 + h21 as y1 → 0 and y2 → ∞, which consequently has to hold

for the according derivatives with respect to x as well, i.e.

∂xv12(x, 0, z, t)
!
= ∂xv21(x, y2, z, t) + ∂xh21(x, z, t) as y2 → ∞,

provides an appropriate relation. From (2.13) and (2.12), taking into account U0(y2) → U00

as y2 → ∞ and using again the affine transform, the interaction pressure reads

pi(x, z, t) = − 1

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
∂2

ξ1(A− h) dξ1dξ2. (2.29)

Remark 2.8. It is important to note at this point that in all the considerations above

initial conditions (for the velocity and pressure field) were never taken into account. From

a physical and historical viewpoint this relates to the initial studies of the steady problem,

which were later extended to unsteady situations. Hence, one might claim the time evolution

to only make sense when applying unsteady perturbations to steady states. Mathematically,

obviously, an initial condition for (2.28) remains as arbitrary as initial conditions for (2.2),

cf. Section 2.3.
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Overall, what has been deduced as a solvability condition for the velocity field of the

viscous wall layer is thus regarded as the fundamental problem of marginally separated flows.

By providing all necessary theoretical instruments, such as a control parameter Γ and flow

control devices h and vw, solving this problem yields criteria for detecting when and where

the flow breaks down.

It is easily seen from the triple-deck structure and the resulting fundamental equations

derived in this section that, in principle, the three-dimensionality stems from involving z

dependent perturbations (in form of the hump and the suction slot). Otherwise, from a

heuristic viewpoint, there is no reason for the viscous sublayer to develop z dependency. This

becomes even more obvious when considering the problems and results presented in Sections

2.2 and 2.3. Such a (naive) conclusion might not hold for values of Γ being near critical

conditions, by which we mean the existence of an upper bound for Γ (cf. the bifurcation

diagram in Figure 4), above which no real, planar steady state solutions exist and three-

dimensionality might be inherently present (if we allow for pressure perturbations with respect

to z, cf. p̆32 in (2.27)).

Gaining insight into the local behavior of solutions of (2.28) is necessarily a numerical

task, even in the case of the according steady problems. Hence, in the next section we present

a novel computation technique based on polynomial approximations to establish sufficient

accuracy and convergence results, such that for the main investigation, regarding the Cauchy

problems, a consistent spatial discretization can be assumed. Also, from here on, references

to (spatially) two-dimensional (planar) and three-dimensional problems are always in virtue

of the according flow field, even though the actual problems with respect to the unknown A

are independent of y.

2.2 Steady Problems

It is common practice in fluid dynamical research to start theoretically investigating certain

physical set-ups and the according problems by considering steady state solutions. This

is partly due to an easier comparison to experiments. Also, it is not hard to imagine the

difficulties arising in experiments when studying unsteady effects by simultaneously avoiding

the involuntary inclusion of disturbances. Moreover, stationary solutions, mostly given as

numerically computed data, are always the starting point of all sorts of stability analysis.

Some spacial kinds of instabilities will be presented in Section 2.3.

It is quite obvious, when considering the structure of (2.28) that a good working nu-

merical method is the almost exclusive way to establish some knowledge on the important

characteristics of A, such as the domain of its negative values. Although numerical solu-

tions of the steady problems are well-known, we shall reinvestigate them in the following,

mainly to demonstrate the qualities of the novel numerical technique developed and analyzed

in Section 3. In doing so, it is preferable to combine the fundamental problem (2.28) and

(2.29) into one equation. From the right hand side in (2.28) it is obvious that the unknown

A assumes an at most linear growth at infinity. Thus, with the decay of the kernel in (2.29)
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the boundary terms when integrating by parts vanish and consequently, assuming sufficient

differentiability, the pressure terms in (2.28) can be replaced by the accordingly modified

term from (2.29). Defining polar coordinates (x, z) → (r, φ) and setting ∂t(A − h) = 0, we

finally say A = A(x, z) shall satisfy the following problem in R
2

A2 − x2 + Γ =
λ

2π

x∫

−∞

1

(x− s)1/2

∫

R2

∂3
ξ1

+ ∂ξ1
∂2

ξ2

|(s, z) − (ξ1, ξ2)|
A(ξ1, ξ2)dξ1dξ2 ds+ g(x, z)

A(x, z) ∼ c(φ)r as r → ∞.

(2.30)

The far field condition above just indicates an at most linear growth behavior, depending on

φ. Alternatively, considering the x and z coordinate separately, we write this condition as

A(x, z) = O(|x|) as |x| → ∞, A(x, z) <∞ as |z| → ∞. (2.31)

One can identify the one-dimensional integral above as an Abel operator and the double

integral as the two-dimensional Riesz potential. For the general definitions and some basic

boundedness and compactness properties of such operators, we refer to Section 3.3.1 (e.g.

Theorems 3.32 through 3.38). Thus, in the following we will regard the fundamental problem

as an integro-differential equation written as

A2 − x2 + Γ =
λ

2π
J 1/2
−∞R1

(
[∂3

x + ∂x∂
2
z ]A
)
(x, z, t) + g(x, z), (2.32)

Remark 2.9. The function g above contains the hump and/or the suction/blowing device

(cf. the deduction in Section 2.1), and hence one can view g as a general inhomogeneity

or forcing term. Due to the linearity of the right hand side operators in (2.32) it follows

immediately that the argument A− h, as used in the deduction for (2.28) and (2.29), can be

separated. Viewing such a hump as a surface mounted obstacle it can act as a flow control

device, i.e. shifting or delaying separation of the laminar boundary layer. More details on

these subjects can be found in Braun & Kluwick (2002).

The according two-dimensional or planar problem, originally derived and investigated in

Ruban (1981) and Stewartson et al. (1982) (with g ≡ 0), for A = A(x) in R reads

A2 − x2 + Γ = λ

∞∫

x

1

(s− x)1/2
A′′(s)ds + g(x)

A(x) = O(|x|) as |x| → ∞,

(2.33)

where the dash denotes derivatives with respect to x and again an Abel operator appears on

the right-hand side above, such that the equation can be rewritten as

A2 − x2 + Γ = λJ 1/2
∞
(
A′′)(x) + g(x). (2.34)
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Remark 2.10. It does not come as a coincidence that the left hand sides of (2.33) and

(2.30) are identical, since in both problems the outer flow field (cf. the leading order of the

upper and main deck descriptions in Section 2.1) is assumed to be parallel and planar. In

fact, the only difference, which can be most easily seen from the novel deduction of (2.28)

and (2.29), between the two- and three-dimensional problem here lies in the term p̆32, which,

by containing derivatives with respect to z, vanishes for planar flows. The necessary change

in the relation for the interaction pressure (2.29) when independent of z can be readily seen

from the modifications done in Remark 2.14.

Remark 2.11. The previous remark stands in contrast to what has been studied in Duck

(1989), where an overall three-dimensional (although z-symmetric) set-up is prescribed. The

fundamental equations therein are given similarly to (2.28) and (2.29), where the latter is

identical in both cases. What distinguishes locally and globally three-dimensional flows lies

exclusively in the left hand side of the fundamental problem, which explicitly depends on x

and z in Duck (1989). Although the far field condition in (2.30) remains the same, in the

case of global three-dimensionality a relation similar to (2.31) cannot be derived. For further

(numerical) treatment of the problem, Duck (1989) reformulated the combination of the Abel

operator and the Riesz potential into one double integral with a more involved kernel function

(see Remark 3.66). For the approach in this treatise such a description does not lead to any

simplification and hence was not adopted.

Remark 2.12. Form the partial derivatives on the right hand side in (2.32) we assume

classical solutions of the equation to be at least three times continuously differentiable on

R
2. The at most linear growth given as a far field condition in (2.30) or (2.31) thus renders

the argument [∂3
x + ∂x∂

2
z ]A(x, z) of the integral operators bounded and continuous on R

2,

with a decay rate of r−2 (in principle). Therefore, using the fact that combinations of

compact and bounded operators are compact, one can claim permissible (classical) solutions

to satisfy the requirements of Theorems 3.32, 3.33 and 3.38 and assert the right hand side

operators to form a compact mapping (cf. the argumentation on compactness of singular

integro-differential operators on Lyapunov curves between Sobolev and Lp spaces presented

in Mikhlin & Prößdorf (1980)). The two-dimensional case (2.34) can be argued analogously.

Remark 2.13. The knowledge whether the operators involved are bounded or compact can

be crucial to the existence and uniqueness of solutions and to the convergence of approxima-

tions. Equations of the first kind, for example, are ill-posed if the operator is compact, but for

equations of the second kind, compactness implies existence and uniqueness (in most cases).

Additionally, regarding approximation procedures, boundedness can often be necessary and

compactness even sufficient for convergence (cf. the general results in Hackbusch (1995)).

Most authors, when treating singular integral equations, deal mainly with Abel or Cauchy

type equations. Hence, it is worth mentioning the more general approach used in Prößdorf

(1974). Therein results regarding solutions, i.e. invertibility of the involved operators, are

found in terms of operator algebras and the notion of the symbol. The latter will be utilized

in Section 2.3.1 to deal with the well-posedness of Cauchy problems.
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Remark 2.14. The problems (2.33) and (2.30) are consistent in the sense that assuming A =

A(x) equivalence of (2.30) and (2.33) can be proved. Obviously, for the far field condition,

this is trivially satisfied. Considering the right-hand sides in both equations, we have (for an

argument function depending only on x)

λ

2π

x∫

−∞

1

(x− s)1/2

∫

R2

1√
(s− ξ1)2 + (z − ξ2)2

∂3
ξ1f(ξ1)dξ ds =

= − λ

2π

x∫

−∞

1

(x− s)1/2

∫

R2

s− ξ1

((s− ξ1)2 + (z − ξ2)2)3/2
∂2

ξ1f(ξ1)dξ ds =

= − λ

2π

x∫

−∞

1

(x− s)1/2

∫

R

(s − ξ1)∂
2
ξ1f(ξ1)

∫

R

1

((s − ξ1)2 + (z − ξ2)2)3/2
dξ2

︸ ︷︷ ︸
=2/(s−ξ1)2

dξ1 ds =

= −λ
π

x∫

−∞

1

(x− s)1/2

∫

R

∂2
ξ1
f(ξ1)

s− ξ1
dξ1 ds = −λ

π

∞∫

x

∂2
ξ1f(ξ1)

x∫

−∞

1

(s− ξ1)(x− s)1/2
dξ1

︸ ︷︷ ︸
=−π/

√
ξ1−x

ds =

= λ

∞∫

x

1

(ξ1 − x)1/2
∂2

ξ1f(ξ1)dξ1,

where we used integration by parts in the second line. By assuming f to be twice continuously

differentiable and its second derivative to decay to zero, Theorem 3.40 shows the existence of

the resulting integral and hence the modifications for the third line are justified, where the

appearing integrals are regarded as their Cauchy principal value, if necessary.

Numerical Solutions

Solutions of (2.33) and (2.30) are almost comprehensively treated, using various kinds of

numerical schemes (see e.g. Stewartson et al. (1982), Brown & Stewartson (1983), Sychev

et al. (1998), Scheichl et al. (2008), as well as, Duck (1989), Braun & Kluwick (2002) and

references therein). In the following we shall present a novel technique based on polynomial

approximation and spectral collocation, which works equally well for both situations and, as

will be shown, the method for the three-dimensional problem can be directly applied to the

two-dimensional case. In principle, we use the steady problems to establish convergence of

the polynomial scheme, with the advantage of having independent reference solutions.

The very basis of the approach is presented in Section 3. Therein, Section 3.1 states

the main properties of rational Chebyshev polynomials, Section 3.2 then provides conver-

gence rates and results in terms of truncated sums and projections, as well as interpolation

operators. Section 3.3 contains necessary characteristics of the involved operators and the
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essentials of setting up the actual collocation algorithm as well as some general consistency,

stability and convergence considerations.

Problems (2.33) and (2.30) are defined in an unbounded domain, where the unknown

function admits an algebraic far field behavior. Thus, the above mentioned rational Chebyshev

polynomials are the most appropriate basis functions. As shown in Theorem 3.1 and Lemma

3.4, these polynomials form a complete orthogonal set in the weighted Lebesgue space L2
u(Rn),

with u(x) =
∏n

i=1 1/(1 + x2
i ). Although such spaces allow for functions to grow (weakly) at

infinity, due to the given asymptotic behavior in (2.33) and (2.30), one cannot expect the

function A to lie in these spaces. From (2.31) it is clear that A = A(·, z) remains bounded

and hence we can subtract the growth with respect to x, such that

A(x, ·) = B(x, ·) +
√

1 + x2, B(x, ·) = O(|x|−1) as |x| → ∞. (2.35)

It is now reasonable to assume B ∈ L2
u(R2), satisfying the modified equation (subject to

the far field above)

B2 + 2
√

1 + x2B + Γ + 1 =
λ

2π
J 1/2
−∞R1

(
[∂3

x + ∂x∂
2
z ]B
)
(x, z) + f(x) + g(x, z), (2.36)

where the function f results from substituting (2.35) into the right-hand side of (2.32).

Remark 2.14 shows, for functions independent of z, the right-hand side operators in (2.32)

to be reduced to the right-hand side in (2.34) and consequently

f(x) = λJ 1/2
∞
(
(1 + x2)−3/2

)
, (2.37)

which can be given in terms of hypergeometric functions or elliptic integrals using some

(computer) algebra.

According to Theorem 3.1, Lemma 3.4 and Theorems 3.5 and 3.6 one can approximate B

by BN using the rational Chebyshev polynomials Ri as defined in Section 3.1 in (3.1), such

that

BN (x, z) = PNB(x, z) =

Nx∑

i=0

Nz∑

k=0

aikRi(x)Rk(z), (2.38)

with BN reasonably expected to converge to B. The operator PN is the orthogonal projection

given in Lemma 3.7. We also applied here the definition of multivariate polynomials (3.10),

which can be seen as a tensor basis description.

Note that by saying Nz = 0 in (2.38) we immediately obtain the one-dimensional ex-

pansion, since R0 ≡ 1. Additionally, in virtue of computational costs, we will treat Nx, Nz

independently (in contrast to the argumentation in Section 3). With Theorem 3.6 show-

ing the coefficients aik to be unique and independent of N , we have a good, heuristic and

easy-to-test convergence criterion.

Remark 2.15. As established in Remark 2.12 one can expect the operators on the right

hand side in (2.36) to be compact between the space of three times continuously differen-
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tiable functions with at most linear growth at infinity and the space of bounded, continuous

functions where a limit exists at infinity.

This certainly holds for a function B as in (2.35) when assuming A to be a classical solution

(i.e. satisfying all differentiability requirements). The convergence rate of the series expan-

sion, also taking into account the decay rate of B, can then be estimated using Lemmas 3.9

and 3.10 and Theorem 3.11, which show, that one actually works on the Sobolev-type space

Hr
u,A, defined in (3.19). Consequently, due to the comparably slow decay at infinity of B,

with respect to the requirement to lie in Hr
u,A, we cannot expect the usual exponentially fast

convergence such expansions provide on bounded domains. This is supported by Theorem

3.15, where the decrease in the absolute value of the expansion coefficients also depends on

the far field behavior of the function. Still, uniform convergence of the approximation, ac-

cording to Theorem 3.13, can be assumed. We might regard this as even more important than

fast convergence rates in Sobolev spaces, since for physical interpretations of the solutions,

pointwise and uniform accuracy is crucial.

In virtue of the spectral collocation scheme set up below, one normally assumes functions to

be continuous and to have finite L∞ norm. Thus we shall note, that the involved operators

are compact (or at least bounded) in such function spaces, where then consistency follows

immediately (see Section 3.3).

Remark 2.16. Problems (2.33) and (2.30) are, above all, nonlinear. It is well established in

the field of spectral methods that nonlinear equations (or nonlinear terms) are best treated

using interpolation, meaning that Galerkin and collocation methods are not the best choice

(see Sections 3.2.2 and 3.3.2). On the other hand, interpolation introduces the so-called

aliasing error (cf. Section 3.2.2), which is essentially the difference between evaluating the

coefficients in (2.38) exactly and approximately. But, as proved in Theorems 3.22 through

3.24, this error is of the same order of magnitude as the error made by truncating the

expansion series.

The advantage of using interpolation (with function values being the discrete unknowns)

lies in the evaluation of the nonlinearity, where this is done by simple pointwise calculations.

It is obvious, having the additional integrals, that the Galerkin approach becomes heavily in-

volved, even for weak nonlinearities (as the quadratic term here). Collocation lies somewhere

between these two, as the coefficients are the unknowns, but the equation system is set up

by pointwise evaluation.

We start with the two-dimensional case, where (with respect to (2.38))

B(x) ≈ PNB(x) =
N∑

i=0

aiRi(x)

and substitution into (2.36) yields

(
PNB(x)

)2
+ 2
√

1 + x2

N∑

i=0

aiRi(x) + Γ + 1 = λ
N∑

i=0

aiJ 1/2
∞
(
R′′

i

)
(x) + f(x) + g(x).
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For reasons explained in Remarks 3.34 and 3.40 and Section 3.3.2, we take the zeros xj of

RN+1, given via Lemma 3.2(ix), as the collocation points to obtain further

(
PNB(xj)

)2
+

N∑

i=0

ai 2
√

1 + x2
j︸ ︷︷ ︸

=:sj

Ri(xj)︸ ︷︷ ︸
=:Cji

+Γ +1 =

N∑

i=0

ai λJ 1/2
∞
(
R′′

i

)
(xj)︸ ︷︷ ︸

=:Kji

+f(xj)+g(xj), (2.39)

for j = 1, . . . , N + 1, which reads in matrix vector form, denoting the vector a := (ai) etc.,

(
C a
)2

+ (Cs) a+ Γ + 1 = K a+ f + g, (2.40)

with the matrix Cs defined via its elements Csij := sjCji. Here, apart from dealing with the

nonlinearity, the obvious substantial task is obtaining the matrixK in a fast and accurate way.

The according procedures are presented in detail in Section 3.3.2. Analogously, substituting

(2.38), with N = (Nx, Nz), into (2.36) and evaluating at the zeros (xj , zl) of RNx+1RNz+1

yields

(
BN (xj , zl)

)2
+ 2
√

1 + x2
j

Nx∑

i=0

Nz∑

k=0

aik Ri(xj)Rk(zl)︸ ︷︷ ︸
=:Cijkl

+Γ + 1 =

=

Nx∑

i=0

Nz∑

k=0

aik
λ

2π
J 1/2
−∞R1

(
[∂3

ξ1 + ∂ξ1∂
2
ξ2 ]Ri(ξ1)Rk(ξ2)

)
(xj , zl)

︸ ︷︷ ︸
=:Kijkl

+f(xj) + g(xj , zl),

(2.41)

where one can immediately see, by abbreviating the matrices as in the two-dimensional case,

we obtain the same description for the discrete equations, i.e. (2.40).

Note that a = (aik) is now a (possibly rectangular) matrix. By writing a as a vector,

one can arrange the Cijkl in a (Nx + 1)(Nz + 1) × (Nx + 1)(Nz + 1)-matrix, such that C a =

BN (xj , zl), as required. This is done analogously for Kijkl, where the entries are obtained by

the method described in Section 3.3.2. Thus, in (2.40) one just has to substitute C, (Cs),

K and g with the matrices approximating the operators in (2.33) or (2.30) and gains the

according coefficients a. Furthermore, methods for solving (2.40), derived in the following,

hold for arbitrarily sized (quadratic) matrices.

For an easy and efficient handling of the matrix-vector terms and equations presented in

the whole treatise, the numerical linear algebra packages provided by the NAG (”Numerical

Algebra Group”. www.nag.co.uk) have been utilized.

As mentioned on several occasions in the introductory paragraphs and remarks of this

subsection, the necessary results regarding the properties of the operators and the spectral

collocation method are provided in Section 3.3.2, such that consistency of the numerical

schemes described here follows immediately.

Remark 2.17. An important advantage of spectral collocation methods can be observed at

this point. In setting up the equations system above we never have used any type of boundary
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conditions or imposed the far field behavior of the unknown function B. This is in virtue of

the fact that the expansion (2.38) is assumed to be uniformly convergent, implying that a

consistent scheme yields the same behavior at infinity for BN (N ≫ 1) as in B. For the sake

of completeness it shall be noted that if one would want to impose certain values at infinity,

this can be done by either using another set of collocation points (the extrema of RN , for

example, are distributed up to the boundary) or by modifying the polynomials themselves,

such that every polynomial satisfies the boundary conditions individually.

Remark 2.18. Solving (2.40) requires an iteration scheme for the quadratic nonlinearity.

By taking An+1 = An + δA for the original unknown function, while assuming δA to be

small in some sense, then substituting this ansatz into (2.32) or (2.34) and canceling the

(δA)2 term, yields an iteration procedure for An (the same holds for B, where δB = δA).

This can be formally interpreted as using the Frechét derivative of the nonlinearity, which

results in Newton’s method. If we then repeat the modifications above, assumingB as the new

unknown (i.e. substitution into the expansion and evaluation of the equation at the collocation

points), we arrive at the exact same system as if starting from (2.40) and substituting an+1 =

an + δa and eventually defining the iteration procedure. The commutativity of linearization

(or Frechét differentiation) and discretization, as we have just argued, has been mentioned

in Golberg (1979), with a general treatment given by Ortega & Rheinboldt (1966).

The iteration scheme can thus be obtained to read

(
C an

)2
+ (Cs) an + (Cs) δa+ 2(C an)(C δa) + Γ + 1 = K an +K δa+ f

⇒ δa =
[
2C anC + (Cs) −K

]−1(
K an −

(
C an

)2 − (Cs) an + f − Γ − 1
)

iterate an → an + δa.

(2.42)

Consistency of the scheme, as has been mentioned above, is clear at this point and hence

we shall now make a few comments on convergence, whereas stability, although being a non-

negligible topic in numerical analysis, will not be addressed, since a consistent method, if it

converges, is stable (cf. also Lemma 3.28). A classical convergence proof will not be given,

instead we heuristically show convergence via computing concrete solutions.

The projection method applied here transfers the unknowns from infinite dimensional

function spaces to sequences of coefficients. Define, for the multi-index i = (i1, . . . , in) (see

Remark 3.7) and a := (ai)|i|≥0

ℓ1(Nn) := {a : ‖a‖ℓ1 =

∞∑

|i|=0

|ai| <∞} and ℓ2(Nn) := {a : ‖a‖2
ℓ2 =

∞∑

|i|=0

|ai|2 <∞},

then, from Parseval’s identity, cf. Theorem 3.8, we have that if f ∈ L2
u, the coefficients ai,

(uniquely) defining PNf , are in ℓ2. In other words, if the components of the solution vector

a from (2.40) (obtained via (2.42)) are square summable for all N , then the discretization

converges in L2
u. Furthermore, if the components are absolute summable, we even have
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uniform convergence (cf. Remark 3.21). Necessarily, for a ∈ ℓ1 (and consequently in ℓ2), the

ai have to form a null sequence.

Yet another way is to utilize the fact that a sequence converges if and only if it is a Cauchy

sequence. Thus, with respect to the L2 norm and without loss of generality say N > M , then

‖PNB − PMB‖2
u = ‖

N∑

i=M

aiRi‖2
u

Parseval
≤ c

N∑

i=M

a2
i , (2.43)

such that, if we find an N0, where, given an arbitrary ǫ > 0,
∑N

i=M a2
i < ǫ for all N,M > N0,

then (formally) the scheme converges in L2. The same can be done in the supremum norm.

Finally, one can assert that by having a consistent scheme, if it converges in the sense that

calculated solutions for various N satisfy the criteria derived above, it converges to a (or the)

solution of the original problem.

As for the iteration scheme (2.42), one can set δBN =
∑
δaiRi, where the iteration

obviously terminates if δBN ≡ 0 and since the only possible expansion of the zero function

is all δai = 0, we have
∑
δa2

i = 0. By being more precise, one has to add that δa depends

on the iteration step n, such that δan forms a (null) sequence with respect to n and hence

a further requirement could be the error δan to decrease (strictly) monotonically for all n

greater than some n0. Overall we impose the stopping criterion on δa at the iteration step

ns as
N∑

i=0

δa2
i < ǫ and δanցs in ℓ2, n0 ≤ n ≤ ns. (2.44)

Note that one could alternatively consider the termination criterion in ℓ1, which can slow

down the iteration process, without gaining more accuracy for the solution a. Setting ǫ in

(2.44) at the order of magnitude of the machine precision, typically ǫ ≈ 10−16, and using

N > N0 yields sufficiently accurate solutions.

Remark 2.19. A serious issue with the procedure (2.42) combined with the criteria (2.44) is

the choice of the initial vector a0. Since the iteration is in fact a Newton method, the initial

guess has to be close (in some sense) to the solution in order for the process to converge.

The method developed in Powell (1970) remedies this disadvantage. Therein it was also

shown, that the proposed hybrid method converges (under certain requirements) even if

the elements of the Jacobian matrix are calculated approximately. The routine HYBRD1,

developed in Moré et al. (2000) and implemented in the NAG packages mentioned above,

utilizes Powell’s method, such that the user only has to provide the equation system in the

form of, e.g. (2.40). Due to the convergence proof for the iteration given in Powell (1970),

we have an independent test for solutions obtained via (2.42).

In the following we will show the results of some concrete computations for the problems

(2.33) and (2.30) using Powell’s hybrid method as described in Remark 2.19 and the iteration

scheme (2.42). The notions upper branch and lower branch shall refer to the bifurcation

diagram in Figure 4 (for more details on this subject see, e.g. Stewartson et al. (1982) and
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Brown & Stewartson (1983) for the two-dimensional case, as well as Duck (1989) and Braun

& Kluwick (2002) for the three-dimensional problem).

Say Γ = 2, g ≡ 0 and take C,K from (2.39). Naturally, one starts with the initial vector

a0 ≡ 0 to see whether the iteration converges. Table 1 shows the ℓ2 norm of δan for various

N (meeting the criteria (2.44)). The (almost perfect) quadratic convergence of the scheme

(2.42) is striking (as expected, since it is essentially a Newton method). In addition, this

means that a ≡ 0 is already close to the solution.

n / N 10 20 40 160

1 2.81 × 10−1 2.82 × 10−1 2.83 × 10−1 2.83 × 10−1

2 2.42 × 10−2 2.41 × 10−2 2.41 × 10−2 2.41 × 10−2

3 2.22 × 10−4 2.24 × 10−4 2.24 × 10−4 2.24 × 10−4

4 1.82 × 10−8 1.87 × 10−8 1.87 × 10−8 1.87 × 10−8

5 1.22 × 10−16 1.27 × 10−16 1.27 × 10−16 1.27 × 10−16

Table 1: Iteration error ‖δan‖2

ℓ2 for various N with initial guess a0 ≡ 0.

One can also infer from Table 1 that the iteration not only converges per se (in terms of

∃ns ≪ ∞) but also with Nր (considering the lines in the table as sequences in terms of N).

Thus we have established the convergence of the iteration.

As for the solution ans
we have the criteria of convergence (as a Cauchy sequence cf.

(2.43)) in the ℓ1 and ℓ2 norm, see Table 2, and the uniqueness of the coefficients themselves,

which are given in Table 3.

N / norm ‖ · ‖2
ℓ2 ‖ · ‖ℓ1

10 0.48170 1.46535

20 0.48280 1.50366

40 0.48353 1.53942

80 0.48372 1.55689

160 0.48377 1.56593

320 0.48378 1.57039

Table 2: ℓ norms of the solution ans

for various N .

With the difference ‖a2N −aN‖ℓ (as elements of a Cauchy sequence in N) from the results

in Table 2 we have

norm / N 10 20 40 80 160

‖ · ‖2
ℓ2 1.1 × 10−3 7.3 × 10−4 1.9 × 10−4 5 × 10−5 1 × 10−5

‖ · ‖ℓ1 3.8 × 10−2 3.6 × 10−2 1.7 × 10−2 9 × 10−3 4.5 × 10−3

,

where one can see the slower convergence in the ℓ1 norm.
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N a0 a1 a2 a3 a4 a10 a20

10 −0.5930 −0.1893 0.2123 0.1077 0.1630 0.0065 −
20 −0.5902 −0.1879 0.2161 0.1094 0.1680 0.0113 0.0009

40 −0.5896 −0.1878 0.2173 0.1094 0.1693 0.0128 0.0043

80 −0.5894 −0.1878 0.2177 0.1095 0.1696 0.0132 0.0047

160 −0.5894 −0.1878 0.2177 0.1095 0.1697 0.0133 0.0048

320 −0.5894 −0.1878 0.2178 0.1095 0.1697 0.0133 0.0048

Table 3: Some coefficients of the solution ans

for various N .

For small i the coefficients of the solution (ai) do not necessarily form a monotone de-

creasing sequence (as can be seen in Table 3), as one would infer from Theorem 3.15. The

results therein are of asymptotic kind, meaning that they only hold for i ≫ 1. Say i ≥ 20,

cf. Table 3, then the coefficients satisfy |ai| ≤ 10−2 and therefore they do not contribute to

the characteristics of the solution BN , but the assertion in Theorem 3.15 becomes applicable.

Furthermore, we have that the graphs of A = A(x) plotted in Figure 3 using N = 40 poly-

nomials are practically indistinguishable from the graphs using N = 320 polynomials, which

also becomes obvious when considering the change in the leading coefficients from Table 3.

(Even using only 10 polynomials yields an acceptable solution). For the sake of completeness

we mention that the Powell method yields the exact same coefficients as the Newton iteration.

Previous works, e.g. Stewartson et al. (1982), suggest at least one other solution for certain

values of Γ in (2.33). To obtain such solutions we make an educated guess for the starting

vector a0 for the iteration scheme (2.42), say a0 = −1, a1 = −1 and ai = 0 otherwise. As

mentioned in Remark 2.19 the Newton algorithm is very sensitive with respect to the initial

guess and therefore imposing this a0 did not lead to convergence (independently of N). The

Powell algorithm, on the other hand, did stop at an acceptable solution using N = 40. Then,

taking this solution as the starting vector for N = 10, . . . , 320, we are again able to show

convergence of the Newton iteration, see Table 4.

N / norm ‖ · ‖2
ℓ2 ‖ · ‖ℓ1

10 5.31191 5.80099

20 5.33291 6.30836

40 5.34614 6.35881

80 5.34667 6.37136

160 5.34681 6.37918

320 5.34684 6.38336

Table 4: ℓ norms of the (lower branch) solution ans

for various N .
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By calculating again the difference ‖a2N − aN‖ℓ, as done above, we have

norm / N 10 20 40 80 160

‖ · ‖2
ℓ2 2.1 × 10−2 1.3 × 10−2 5.3 × 10−4 1.4 × 10−4 3 × 10−5

‖ · ‖ℓ1 5.1 × 10−1 5 × 10−2 1.3 × 10−2 7.8 × 10−3 4.2 × 10−3

.

Thus, convergence for the second solution is also (heuristically) shown and we shall provide

again the leading coefficients, see Table 5.

N / ai a0 a1 a2 a3 a4 a10 a20

10 −1.5818 −1.0007 0.6846 0.6986 0.7324 −0.1461 −
20 −1.5726 −1.0308 0.6244 0.6655 0.7285 −0.1150 0.0337

40 −1.5742 −1.0324 0.6276 0.6675 0.7299 −0.1108 0.0288

80 −1.5741 −1.0323 0.6279 0.6675 0.7302 −0.1104 0.0291

160 −1.5740 −1.0323 0.6280 0.6675 0.7303 −0.1103 0.0293

320 −1.5740 −1.0323 0.6280 0.6675 0.7303 −0.1103 0.0293

Table 5: Some coefficients of the (lower branch) solution ans

for various N .

Comparing Tables 3 and 5 it is clear that the lower branch solutions need more polynomials

to achieve a certain accuracy. This is also obvious from the shape of the graphs in Figure 3.

Considering the leading coefficients with respect to the above mentioned Cauchy criterion,

Table 5 also shows that for a given ǫ the appropriate N0 is definitely higher in case of lower

branch than for upper branch solutions.

To show that the Newton method is in fact able to obtain lower branch solutions, we use

a0 to a4 from Table 5 and ai = 0 otherwise as the staring vector and run the iteration for

the usual N . Interestingly, the convergence depends strongly on these a0, . . . , a4 in the initial

guess, rather than on N , meaning that if we use only a0, a1 from Table 5, the iteration does

not stop, independently of N . Table 6 depicts the difference in number of iteration steps and

ℓ2 norms of δan between taking a0 through a4 from Table 5 at N = 40 and taking a0 through

a3 at N = 80. This again emphasizes the sensitivity of the Newton iteration.

Figure 3 shows upper and lower branch solutions of problem (2.33) for Γ = 2, found by

using N = 40 polynomials for BN in (2.38), where the coefficients are taken from Tables 3

and 5, and finally A from (2.35).

The existence of multiple solutions for various Γ has been studied for example in Stew-

artson et al. (1982) and Brown & Stewartson (1983) using finite difference and trapezoidal

quadrature methods. The obvious part of the bifurcation (sometimes called fundamental

curve) is plotted in Figure 4, which is best obtained by incrementally increasing Γ , taking

the previous solution as the initial guess for Γ ± ∆Γ , starting somewhere on the upper and

lower branch, respectively.
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n / N 40 80

1 8.82 × 10−1 1.26 × 100

2 1.37 × 10−1 2.42 × 10−1

3 7.24 × 10−3 2.59 × 10−2

4 4.54 × 10−5 5.71 × 10−4

5 4.06 × 10−10 6.17 × 10−8

6 6.83 × 10−20 1.28 × 10−15

7 − 9.79 × 10−31

Table 6: Iteration error ‖δan‖2

ℓ2 for N = 40 and N = 80 with different initial guesses.
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Figure 3: Solutions A(x) of (2.33) for the upper (a) and lower (b) branch at Γ = 2.

From the fundamental curve one can claim that there exists a certain value Γc, above

which no (real) solutions can be found. Interestingly, with the approximations used (i.e.

polynomial collocation), the Newton and the Powell iterations do not diverge for Γ greater

than this maximum value. The error δa, on the other hand, does not satisfy (2.44) and

therefore convergence can also not be observed. The MINPACK scheme provided in Moré et

al. (2000), employing the Powell algorithm, does stop somehow, suggesting the existence of

possible local minima. As described in Powell (1970), procedures relaxing the iteration steps

can be prone to stop at such minima. But eventually, from the non-decreasing error of the

Newton method, we assert the non-existence of solutions.

Remark 2.20. Note the negative values of A in Figure 3(b) indicate the existence of a

separation bubble, whereas the upper branch solution at Γ = 2 is fully attached. This

already shows the sensitivity of the marginal separation steady states regarding potential

bubble burst, since it is not clear which of the multiple solutions is physically realized when

setting Γ at a certain value. We will show, on the other hand, in Section 2.3.1 that the upper
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Figure 4: Part of the bifurcation occurring in (2.33), shown as A(0) versus Γ

branch is stable in some sense, rendering the lower branch unstable. Moreover, from Figure

4 one can claim situations with separation bubbles of a certain size to be prone to burst.

Overall, we have presented enough evidence to claim convergence for the iteration pro-

cedure and the approximation using the polynomial expansion (2.38) for Nz = 0. Since the

only difference when computing solutions to (2.41) lies in the matrices C and K, it is now

sufficient to obtain similar tables as Table 2 and Table 3 when solving (2.41) to claim the con-

vergence of the approximation (2.38) in the three-dimensional case. In addition, this shows

the applicability of the algorithms from Section 3.3.2 yielding K.

For comparison reasons (i.e. with results presented in Braun & Kluwick (2002)), we show

solutions of equation (2.41) for Γ = 1, including a forcing term of the form

g(x, z) = − λ

2π
J 1/2
−∞R1 [∂3

ξ1 + ∂ξ1∂
2
ξ2 ]h(x, z), (2.45)

with h representing the hump at the surface (see Section 2.1) given as

h(x, z) = 4(1 − x2)3 1[−1,1](x) exp(−z2).

The formula for g is due to the original argument A− h in the fundamental equation (2.28),

where such a local alteration of the surface has to be smooth enough, or say, has to satisfy a

certain boundedness regarding its curvature, such that it leaves the boundary layer equations

invariant. To calculate g(xj , zl), i.e. evaluating the forcing at the collocation points, we say

g(x, z) ≈
N∑

i,j=0

bijRi(x)Rj(z),
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and compute bij using Lemma 3.19. From Theorems 3.23 and 3.24, the smoothness of h and

its rapid decay, we assert spectral convergence of the approximation above (cf. Remark 3.16),

meaning very view polynomials are sufficient for the necessary smallness of the discretization

error of the forcing term to be negligible. To obtain the forcing matrix g from (2.45), one

can now use the same algorithm yielding K (as mentioned above).

In virtue of Section 2.3, Remark 2.25, the unknownB shall be approximated by a weighted

Chebyshev series

BN (x, z) =
1√

1 + x2

Nx∑

i=0

Nz∑

k=0

aikRi(x)Rk(z), (2.46)

where, due to the z-symmetry of the perturbation g, we only need to consider even k in BN .

Table 7 depicts the summability of the coefficients (aik) in (2.46) and Figure 5 shows the

according solution of (2.41) including the forcing term (2.45).

N / norm ‖ · ‖2
ℓ2 ‖ · ‖ℓ1

40/8 1.86254 5.09231

60/20 1.83234 5.26795

60/30 1.82945 5.32358

80/40 1.87524 5.38463

100/24 1.84692 5.65930

120/40 1.86450 6.11253

Table 7: ℓ norms of the solution (aik) for various N = (Nx, Nz).

The somewhat irregular convergence behavior in Table 7, in contrast to the two-

dimensional case, cf. Table 2, stems from the varying resolution of the perturbation g (i.e.

the distribution of the collocation points), and the fact that the gradients and curvatures of

the solution with respect to the x-coordinate change stronger than in z direction, see Figure

5. For this reason we compared the graphs of A(x, z), using (Nx, Nz) = (80, 40), (100, 24)

and (120, 40), with the result presented in Braun & Kluwick (2002), which all turn out to be

virtually indistinguishable.

Another way to claim summability, is to consider the convergence and uniqueness of the

leading coefficients (see Table 8). Due to the weighted expansion (2.46) and the far field

behavior of B, cf. (2.35), one cannot expect a fast decrease of |aik| as i, k → ∞ (as given

in Theorem 3.15). Hence, to assert absolute summability (i.e. to have uniform convergence),

much more polynomials are needed than given in Table 7. Square summability, on the other

hand, can be easily seen from Figures 6, 7 and 8.

Since the computational costs in the three-dimensional case grow quadratically compared

to its two-dimensional equivalent, we consider the connection between these two to show the

validity of the approximation algorithm from Section 3.3.2. As mentioned earlier, setting

Nz = 0 in the expansion (2.38) yields its two-dimensional analogue, such that solving the

three-dimensional case (equation (2.41) with its according scheme) for Nz = 0 must give the
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Figure 5: Solid: solution of (2.30) with (Nx, Nz) = (120, 40), dashed: solution of (2.33) with N = 40.

N / aik a00 a02 a10 a12 a20 a22 a30

40/8 −0.37009 −0.12296 −0.44428 0.23478 −0.74872 0.54053 0.17932

60/20 −0.34859 −0.12598 −0.44340 0.23391 −0.74536 0.53794 0.17579

60/30 −0.34588 −0.12480 −0.44346 0.23359 −0.74583 0.53628 0.17540

80/40 −0.37393 −0.10902 −0.44265 0.23619 −0.75279 0.53761 0.18176

100/24 −0.35751 −0.12292 −0.44483 0.23509 −0.74742 0.54022 0.17536

120/40 −0.36665 −0.11541 −0.44694 0.23562 −0.75327 0.53473 0.17551

Table 8: Some coefficients of the solution (aik) for various N = (Nx, Nz).
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Figure 6: Solution |aik| at k = const, i = 0, . . . , 120 for (Nx, Nz) = (120, 40). Left: k = 0, right:
k = 2, dashed line: 1/i.

exact same solution as when solving (2.39), cf. Remark 2.14. Table 9 depicts the ℓ norms for

(ai0), i = 0, . . . , Nx as the solution of (2.41) at Γ = 2 with g ≡ 0.
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Figure 7: Solution |aik| at i = const, k = 0, . . . , 40 (even), for (Nx, Nz) = (120, 40). Triangles: i = 0,
diamonds: i = 1, circles: i = 2, squares: i = 3, dashed line: 1/i.
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Figure 8: Solution |aik|2 vs. κ = i Nz + k, k = 0, . . . , 20, i = 0, . . . , 120, for (Nx, Nz) = (120, 40),
dashed line: 1/κ.

Nx / norm ‖ · ‖2
ℓ2 ‖ · ‖ℓ1

20 1.41689 2.22812

40 1.43700 2.26451

80 1.40001 2.27665

160 1.41831 2.40480

Table 9: ℓ norms of the solution (ai0) for various Nx and Nz = 0.
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For convergence being not as obvious here as, for example, in Table 2, we further compare

the leading coefficients for various Nx to the according solution of (2.39) using N = 160

polynomials, see Table 10 and Figure 9.

Caveat: Although the solution A = A(x) here is exactly the same as in Figure 3, the

coefficients are different due to the weight used in (2.46).

Nx / aik a00 a10 a20 a30 a50 a60

20 −1.05158 −0.38061 −0.37543 0.06666 0.11112 0.04507

40 −1.06006 −0.38033 −0.37566 0.07123 0.11676 0.04679

80 −1.04417 −0.37623 −0.37642 0.06875 0.11470 0.04443

100 −0.99730 −0.37386 −0.38242 0.05415 0.10167 0.03698

150 −1.04909 −0.38316 −0.38214 0.06203 0.10826 0.04002

160 −1.04993 −0.37814 −0.37720 0.06969 0.11593 0.04536

Table 10: Convergence of some coefficients of the solution (ai0) for various Nx with Nz = 0 in
comparison to the solution from the two-dimensional algorithm at N = 160 (last line).
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Figure 9: Solution A(x) from three-dimensional scheme, with Nz = 0 and Nx = 20 (dashed), Nx = 40
(dotted), Nx = 150 (solid, almost indistinguishable from A(x) (solid) as in Figure 3(a) gained with
N = 40).

Finally, by having established all necessary convergence properties of the Chebyshev ex-

pansions, we shall emphasize the small equation systems (when compared to the deployed

schemes in previous works) needed to obtain the required accuracy of the solutions. This

then becomes more important in Section 2.3, where the above algorithms will be used for the

spatial discretizations of time dependent problems, hence making it possible to obtain fast

explicit and implicit Euler procedures.

37



Remark 2.21. In Fromme & Golberg (1979) it was mentioned that from a converging

Galerkin scheme one can assert the general existence and uniqueness of a solution (in terms

of function spaces). Since collocation methods can be viewed as Galerkin methods, with

the inner product integrals approximated by quadrature schemes, cf. Remark 3.40, we can

formally claim existence of solutions to problems (2.33) and (2.30) in a subspace of L2
u (with

respect to the differentiability requirements).

Remark 2.22. An interesting test case is to set g ≡ 0 in (2.41) and to start the iteration

procedure with an initial guess independent of z. According to Remark 2.14 for such functions

the three-dimensional problem reduces to its two-dimensional equivalent. This means, if the

approximation is done correctly and accurately, the iteration, although performed for (2.41),

should yield the same solution as if done for (2.39). This has been tested with Nx = 100 and

various Nz and initial guesses for the Newton scheme, yielding satisfying results, i.e. steady

(upper branch) solutions, as shown in Figure 3. If Γ is chosen near its critical value Γc (cf.

Figure 4) it is highly likely that the two-dimensional solutions will not be obtained by the

three-dimensional scheme as the calculations in Braun & Kluwick (2002) demonstrate.

2.3 Cauchy Problems

In this section we deal with the main objective of the present treatise, namely Cauchy prob-

lems, their well-posedness and the finite time blow-up of certain solutions. Mentioned in

Remark 2.8, initial conditions imposed on these Cauchy problems are yet to be determined

and, as we will demonstrate in Section 2.3.1, may be subject to some restrictions, additionally

to the physical meaning they shall have, as will be seen in Section 2.3.3.

The initial value problem per se, including a far field condition, is given via (2.28) and

(2.29). In complete accordance to Section 2.2 the interaction pressure can be substituted into

(2.28), thus yielding one equation governing time dependent solutions to the steady states

shown in the previous section. Given the polar coordinates (x, z) → (r, φ), A = A(x, z, t)

shall satisfy following problem in R
2 × [0, T ]

A2 − x2 + Γ =
λ

2π

x∫

−∞

1

(x− s)1/2

∫

R2

∂3
ξ1

+ ∂ξ1
∂2

ξ2

|(s, z) − (ξ1, ξ2)|
A(ξ1, ξ2, t)dξ1dξ2 ds−

−γ
x∫

−∞

1

(x− s)1/4
∂tA(s, z, t) ds + g(x, z, t)

A(x, z, 0) = A0(x, z), in R
2

A(x, z, t) ∼ c(φ)r as r → ∞, in [0, T ].

(2.47)

The far field condition expressed in Cartesian coordinates can obviously be taken from the

steady problem, i.e. (2.31) and g again summarizes the forcing contributions from the pro-

posed hump and/or suction/blowing devices (see Section 2.1).
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As done in Section 2.2 we rewrite the equation in (2.47) by identifying the Abel operators

and the Riesz potential as

A2 − x2 + Γ =
λ

2π
J 1/2
−∞R1

(
[∂3

x + ∂x∂
2
z ]A
)
(x, z, t) − γ J 3/4

−∞
(
∂tA

)
(x, z, t) + g(x, z, t). (2.48)

The planar problem in R × [0, T ] has originally been derived in Ruban (1982) and Smith

(1982) (without including the perturbation g) and is governed by

A2 − x2 + Γ = λJ 1/2
∞
(
∂2

xA
)
(x, t) − γ J 3/4

−∞
(
∂tA

)
(x, t) + g(x, t), (2.49)

subject to A(x, 0) = A0(x) and A(x, t) = O(|x|) as |x| → ∞.

Remark 2.23. Similarly to the steady case, problem (2.47) can be transformed into (2.49)

by assuming a solution to be independent of z. Also, as described in Remark 2.11 the global,

(z-symmetric) three-dimensional set-up studied in Duck (1990) contains the same operators,

such that the difference lies only in the explicit z dependence of the left hand side.

Remark 2.24. To utilize what has been presented in Remarks 2.12 and 2.13 in terms of

function spaces for solutions, we consider (as is often done in the theory of evolution equations)

the problem (2.48) as an ordinary differential equation with values in some Banach space X,

i.e. A : [0, T ] → X is continuously differentiable and the right hand side operators map

their domain onto X as well. Obviously, as mentioned in Remark 2.12, X is the space of

bounded, continuous functions with an existing limit at infinity. Normally, one also requires

the initial condition A0 to lie in the domain of the operators, but under certain conditions

such assumptions can be weakened (cf. the definition of a classical solution of abstract Cauchy

problems (2.62)). Here we will confine the set of initial conditions to the domain of the integro-

differential operators, i.e. three times continuously differentiable functions with at most linear

growth at infinity. (In Section 2.3.3 we will be even stricter and only allow for physically

meaningful initial values.)

The properties of the operators in (2.48) on the given function spaces (cf. Remark 2.13) can

only provide a quite general insight into the structure of the problem and possible solutions.

But since we are also interested in certain local qualitative and quantitative characteristics

of solutions (relating to specific initial conditions), a numerical treatment of (2.47) is needed.

As done in Section 2.2 we want to use a polynomial collocation method in spatial coordi-

nates, which is usually set up in, e.g. (Cl(R
2), ‖·‖∞), for all t > 0 and hence needs an at least

bounded unknown function, cf. Remark 2.15. As shown in (2.35) it is sufficient to subtract

the linear growth
√

1 + x2, obtaining the new unknown B = B(x, z, t). Thus, by expanding

B into a Chebyshev series with respect to (x, z) we inherit all the convergence properties

presented in the study of the steady problem in Section 2.2.
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Reformulating the Cauchy problem in terms of B gives

B2 + 2
√

1 + x2B + Γ + 1 =
λ

2π
J 1/2
−∞R1

(
[∂3

x + ∂x∂
2
z ]B

)
(x, z, t)−

− γ J 3/4
−∞
(
∂tB

)
(x, z, t) + f(x) + g(x, z, t)

B(x, z, 0) = B0(x, z) <∞ in R
2

B(x, z, t) <∞ as (x2 + z2) → ∞
B(x, ·) = O(|x|−1) as |x| → ∞

}
in [0, T ],

(2.50)

with f taken from (2.37), such that

B(x, z, t) ≈ BN (x, z, t) =
1√

1 + x2

Nx∑

i=0

Nz∑

k=0

aik(t)Ri(x)Rk(z), (2.51)

cf. (2.46), where the coefficients aik = aik(t) are now functions of time. Considering z-

symmetric disturbances g, we only need to sum over even polynomials in z, i.e. k is even. By

setting Nz = 0 we obtain the expansion for the unknown B in its two-dimensional version.

Remark 2.25. The weight function (1+x2)−1/2 stems from the operator J 3/4
−∞ acting on the

time derivative and thus it is only necessary in the unsteady problem. As shown in Section

3.3.2, Remark 3.51, a weight function is needed in order to make the Abel integral acting on

rational Chebyshev polynomials exist. Furthermore, if the function to be expanded satisfies

B ∼ |x|a as |x| → ∞, a being less than the negative exponent of the operator, then the weight

is given as (1 + x2)−b, 2b+ a ≤ 0, 2b being greater than the exponent of the operator. Here

this means, for B(x, ·) = O(|x|−1), a = −1 < −3/4, such that 3/8 < b ≤ 1/2. Hence, b = 1/2

is an appropriate choice, although one has to expect slower convergence rates of the sums in

(2.51), since they now have to assume a non-zero constant at infinity, cf. e.g. Theorems 3.16

and 3.17.

Substituting the expansion (2.51) into problem (2.50) yields (using the same notation as

in (2.39) through (2.41))

(
Cw a(t))2 + 2C a(t) + Γ + 1 = K a(t) −D

d

dt
a(t) + f + g, (2.52)

where Cw denotes the matrix gained from (2.51) with Ri(x) replaced by (1 + x2)−1/2Ri(x).

The same has been done for K, as explained in detail in Section 3.3.2, i.e. equation (3.114)

and what follows. The set-up of the matrix D = γRk(zl)J 3/4
−∞
(
(1 + ξ2)−1/2Ri(ξ)

)
(xj) is also

shown in Section 3.3.2, i.e. equation (3.106) and Remarks 3.52 through 3.55.

As for the two-dimensional equivalent of (2.52) with Nz = 0, it is obvious that the

structure in principle remains the same, and the only relevant changes occur in K, which is

built as described in (3.113) and Remark 3.56, and in D, where Rk(zl) becomes R0 = 1.
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To fully discretize (2.52) one still needs to employ an approximation for the time derivative
d
dt , but before doing so, we have to consider the aspect of well-posedness of (2.47), which is

done in the following section.

2.3.1 Ill-Posedness and Regularized Dynamics

For (nonlinear) Cauchy problems (involving partial differential equations) the question of

existence and uniqueness is governed by the Cauchy-Kowalewsky theorem, if the Cauchy

data, given on an analytic, noncharacteristic hypersurface, and the coefficients are analytic.

Another, maybe even more important question, was raised in Hadamard (1923). He

argued that approximating non-analytic data by analytic ones is not so much about how

little the data is altered, but whether the solutions would change much. Hadamard presented

his famous example of the Cauchy problem for the Laplace equation in Zürich 1917, which

demonstrates that a third requirement (besides existence and uniqueness) should be imposed

on Cauchy problems - continuity with respect to given functions. Later this was paraphrased

as continuous dependence on the data, which might include coefficients of the differential

operators, and is now commonly known as well-posedness.

Furthermore, due to the connection of partial differential equations and the according

initial-boundary-value problems to physics and mechanics, Hadamard (1923) subsequently

assumed, as a rule, every treated Cauchy problem to be ”correctly set”, i.e. well-posed. As

a definition, ill-posed problems are regarded as those, violating at least one of the three

requirements stated above.

Petrowsky (1937) defines the Cauchy problem for u, with initial data φ, to be correctly

set if (formally speaking)

i) for some initial data φ̄, which differs only by an ǫ from φ, there exists only one solution

ū and

ii) for every η there exists a δ, such that the difference of ū and u is less than η, if φ̄ is as

close as δ to φ.

He then proved for general, quasilinear Cauchy problems, by means of Fourier expansions

(without terming them as such), that the Fourier coefficients ai(k) of the solution satisfy

∑

i,k

|ai(k)(t)|2 ≤ ect
(
c1
∑

i,k

|ai(k)(0)|2 + c2

t∫

0

∑

i,k

|fi(k)(τ)|2dτ
)
, (2.53)

where fi(k) are the Fourier coefficients of a (if present) inhomogeneity, and c, c1, c2 are positive

constants. Using Parseval’s identity and the L2 norm (which Petrowsky stated as the ”growth

rate of an integral”) yields the well-known result for well-posed systems of evolution problems
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(in Banach spaces)

∑

i

‖ui(t)‖2 ≤ ect
(
c1
∑

i

‖ui(0)‖2 + c2

t∫

0

∑

i

‖fi(τ)‖2dτ
)
.

Item ii) in Petrowsky’s requirement for well-posedness, with the set of initial data ui(0), is

now obvious from such an inequality.

Next we apply this fact to a homogeneous partial differential initial value problem to

derive a very simple necessary (and in some cases sufficient) condition for well-posedness.

Given a function f and variables k, x ∈ R
n, with the usual inner product denoted by 〈·, ·〉,

the Fourier transform shall be defined as

F(f)(k) :=

∫

Rn

f(x)e−i〈k,x〉dx. (2.54)

Consider a linear, partial differential evolution equation of the form

∂tu = P(∂x)u (2.55)

subject to some initial condition u0, where P denotes a polynomial (of arbitrary, finite degree)

with real, constant coefficients. As it is well-known for smooth functions f (with sufficient

decay)

F(∂m
x f) = (ik)mFf, (2.56)

where for the multi-index m = (m1, . . . ,mn) ∈ N
n, ∂m

x =
∏

j ∂
mj
xj and (ik)m =

∏
j(ikj)

mj .

Formally, applying the Fourier transform (with respect to x) to (2.55) yields (denoting Fu =

û)

∂tû = P(ik)û ⇒ û(k, t) = û0(k)e
P(ik)t.

Hence, a condition for well-posedness can be readily deduced from (2.53), i.e.

∑

k

|û(k, t)|2 =
∑

k

|û0(k)|2|eP(ik)t|2 ≤ c21e
2c2t

∑

k

|û0(k)|2, ∀t

if and only if

|eP(ik)t| ≤ c1e
c2t ∀k, t, (2.57)

or, necessarily,

ℜP(ik) ≤ const., ∀k ∈ R
n, (2.58)

meaning that the real part of the complex polynomial has to be bounded from above.

Remark 2.26. For the sake of simplicity consider the polynomial in one dimension. Writing

it explicitly as

P(ik) = a0 + a1(ik) + a2(ik)
2 + · · · + am(ik)m
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shows that for the boundedness condition (2.58) it is sufficient to check only the boundedness

for the highest derivative (of which the real part is non-zero).

Replacing f by ei〈k,x〉 in (2.56), without using the Fourier transform, shows that changing

from differentiation to multiplication also holds for these exponential functions with the exact

same Fourier multipliers, i.e.

∂m
x e

i〈k,x〉 = (ik)mei〈k,x〉. (2.59)

Originated from physical problems the notion of dispersion relations is often used to consider

the behavior of disturbances in evolution equations, i.e. introducing the perturbation ũ(x, t) =

eλtei〈k,x〉, λ ∈ C, substitution into (2.55) yields

ei〈k,x〉 ∂te
λt = eλt P(∂x)ei〈k,x〉

and hence,

λeλtei〈k,x〉 = P(ik)eλtei〈k,x〉 ⇒ λ = P(ik).

As a necessary condition for well-posedness ũ obviously has to remain bounded (or even

decay) for all times, meaning that the real part of λ has to be bounded from above for all k,

i.e.

ℜλ = ℜP(ik) ≤ const., ∀k ∈ R
n, (2.60)

which is the exact same condition as (2.58), derived from the Fourier transformed equation.

Remark 2.27. Some authors use the ansatz function e±iλtei〈k,x〉 to derive the dispersion

relation, which changes the left hand side in (2.60), but not the actual condition. Say λ =

λr + iλi, thus ±iλ = ±iλr ∓ λi, such that the imaginary part of λ is responsible for the

boundedness of ũ. Therefore, for the exponent ±iλ the condition reads

∓ℑλ = ℜP(ik) ≤ const.

Thus, from expanding a possible solution into a Fourier series and continuing with its coeffi-

cients (i.e. applying a Fourier transform to the whole equation) one obtains the exact same

conditions as if substituting a perturbation ansatz of the form shown above. The advan-

tage of the dispersion relation can be best seen in the case of nonlinear problems, where a

linearization around some steady state has to be performed.

Let a (weakly nonlinear) Cauchy problem be given as

∂tu = P(∂x)u+ u2

and u(x, t) = u0(x) + ũ(x, t), then ũ satisfies

∂tũ = P(∂x)ũ+ 2ũu0,
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where a Fourier transform would introduce the problem of dealing with the term F(ũu0),

which, in general, leads to F(ũ) ∗ F(u0), and one cannot always assume u0 to be Fourier

transformable. On the other hand, assuming ũ(x, t) = eλtei〈k,x〉, as above, one has

λ eλtei〈k,x〉 = P(ik) eλtei〈k,x〉 + 2u0 e
λtei〈k,x〉, (2.61)

with the dispersion relation yielding ℜλ = ℜP(ik) + 2u0(x). Although this means that the

behavior of the disturbance depends on u0, for well-posedness one still needs the upper bound

for ℜP(ik). Hence, using the dispersion relation ansatz easily shows that nonlinearities do

not change the requirements for well-posedness, just maybe enhance or delay the (temporal)

growth of perturbations.

Excursus I: Abstract Cauchy Problems

In modern mathematics, where evolution equations are often formulated as ordinary differen-

tial equations in Banach spaces, the concept of well-posedness has to be generalized in a way,

such that the above mentioned partial differential equations and the according conditions can

be treated as special cases.

We will now present, in a short and formal manner, the main aspects of these general-

izations, where more details of the theory (which is beyond the scope of this treatise) can be

found e.g. in Engel & Nagel (2000).

Let us define an abstract Cauchy problem as the initial value problem given by

∂tu(t) = Au(t), t ≥ 0,

u(0) = u0.
(2.62)

With X being some Banach space, we further assume the initial value u0 ∈ X, A : D(A) → X

to be a linear operator and call u : R
+ → X a classical solution of the Cauchy problem, if

it is continuously differentiable with respect to X, u(t) ∈ X, ∀t ≥ 0 and (2.62) holds. The

usual definition of a strongly continuous semigroup
(
T (t)

)
t≥0

then gives u(t) = T (t)u0.

Remark 2.28. Note that this definition does coincide with the requirement for classical

solutions of (2.47), cf. Remark 2.24, where we assumed the solution to map [0, T ] continuously

differentiable onto X. Here, since T (t) is (strongly) continuous in t, it is sufficient to require

u to lie in X at all times.

As it is well-known, if A is a closed operator, which generates a strongly continuous

semigroup, then there exists a unique solution of (2.62) for every u0 ∈ X. For the continuous

dependence on the data, Engel & Nagel (2000) proved the equivalence of the generation of

the semigroup with the assertion that A has a dense domain and for every sequence of initial

values (vn) ∈ X, with limn→∞ vn = 0, it follows that limn→∞ u(t, vn) = 0, uniformly in

compact intervals [0, T ]. Using this as a definition of well-posedness Engel & Nagel (2000)

essentially proved
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Lemma 2.1. For a closed operator A the associated abstract Cauchy problem is well-posed,

if and only if A generates a strongly continuous semigroup on X.

Let us denote such a semigroup by
(
T (t)

)
t≥0

, then (under certain conditions on A) the

semigroup can be expressed as an exponential T (t) := eAt with a solution given by u(t) =

T (t)u0 (cf. matrix exponentials in systems of ordinary differential equations and the Hille-

Yosida theorem for contraction semigroups). Furthermore, there exist constants ω ∈ R and

M ≥ 1 such that

‖T (t)‖ ≤Meωt, ∀t ≥ 0. (2.63)

Then the infimum ω0 of the set

{ω ∈ R : ∃Mω ≥ 1, such that (2.63) holds for Mω} (2.64)

is called (exponential) growth bound. Combining this with the fact that for λ ∈ C, ℜλ > ω,

we have λ ∈ ρ(A), i.e. the resolvent set, and defining the spectral bound

s(A) := sup{ℜλ : λ ∈ σ(A)}, σ = C\ρ,

one readily obtains −∞ ≤ s(A) ≤ ω0 <∞.

Eventually, by relating P(ik) to the spectrum of the differential operator P(∂x), we have

found the more or less exact same conditions for well-posedness in the abstract Cauchy

problem setting as for classical partial differential initial value problems, cf. (2.57) and (2.58).

This can be shown to also hold for a broader class of operators, see Lemma 2.4.

Moreover, as proved in Engel & Nagel (2000), replacing the partial differential operator

∂x by (ik), denoting a(k) := P(ik) (also allowing for complex coefficients) and defining A via

these multipliers (cf. (2.56)), the equivalence

A generates a strongly continuous semigroup ⇔ sup
k∈Rn

ℜ a(k) <∞ (2.65)

holds for all such A acting on L2(Rn).

Remark 2.29. The equation for the Cauchy problem stated in (2.47) or (2.48) is inhomo-

geneous and therefore one has to make the connection to according inhomogeneous abstract

problems by assuming the homogeneous problem to be well-posed, where a possible solution

is given by the variation of parameters formula, i.e.

u(t) = T (t)u0 +

t∫

0

T (t− s)g(s)ds, ∀t ≥ 0,

with g containing all inhomogeneous terms. Such a description is often called mild solution,

where further details can again be found in Engel & Nagel (2000).

End of Excursus I
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Motivated by simple partial differential equations and their Cauchy problems we have estab-

lished necessary and sufficient conditions for well-posedness via the boundedness of strongly

continuous semigroups, which relates to the boundedness of associated Fourier multipliers.

To extend this to the operators involved in the problems stated in (2.48), i.e. combinations

of singular integral and classical differential operators, we need certain properties of such

integrals.

One of the earliest works dealing with Fourier transforms and multipliers of (singular inte-

gral) operators is that of Mikhlin (1936). He introduced the notion of a symbol of an operator

and first mentioned that sums and products of (singular) integral operators correspond to

the sums and products of their according symbols.

This has been considered further, providing more details, in the monograph of Mikhlin

(1965), where the important connection to the Fourier transform has been made, resulting in

the fact that the symbol of a singular integral operator coincides with the Fourier transform

of its kernel. That is, let K be a singular integral operator with kernel K then the symbol

sb(K) can be given as (see Mikhlin (1965))

sb(K) = FK.

Thus, for f in a suitable function space, another form to represent K would be

Kf = F−1sb(K)Ff. (2.66)

N.b.: This is actually a very general and often used form to view operators (and combinations

thereof), which possess a symbol.

Furthermore, it is now completely obvious how sums and combinations of operators are

connected to their symbols, e.g.

F
(
(K1 + K2)f

)
=
(
FK1 + FK2

)
f =

(
sb(K1) + sb(K2)

)
Ff,

F
(
K1(K2f)

)
= sb(K1)F(K2f) = sb(K1)sb(K2)Ff.

With the use of the Fourier transform it becomes clear why Mikhlin (1965) only considered

actual singular integrals, meaning that the kernel is given as

K(x− y) =
u(θ)

rn
, r = |x− y|, θ = (x− y)/r, (2.67)

where u is called the characteristic, which does not depend on the pole (cf. the Riesz trans-

forms defined in Remark 3.62, as well as Theorem 3.40 and the treatise of Calderon &

Zygmund (1952)). In this case Mikhlin (1965) showed, that the combination of two such

singular operators (and the multiplication of their symbols) commute. For weakly singular

kernels, e.g. the one defining the Riesz potential operator (3.98), the Fourier transform and

hence the symbol have to be considered in a distributional sense, see Remark 2.31 below.
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Remark 2.30. Although using the Fourier transform to gain symbols of (singular integral)

operators is a very well established and practicable technique, associating symbols with op-

erators can be understood in a much broader sense. Mikhlin & Prößdorf (1980) introduced

the symbol as an element of a symbol ring r, which is the image of a homomorphism h from

the ring of linear operators R. One then consequently has for a ∈ r, A ∈ R that there

exists exactly one a, such that h(A) = a (the image of A) and at least one A being the

pre-image of a. Also, if A,B ∈ R, a, b ∈ r and h(A) = a, h(B) = b then h(A + B) = a + b

and h(AB) = ab. We shall refrain from paraphrasing more details presented in Mikhlin &

Prößdorf (1980) and just finally mention that the symbol ring r is by far not unique. If the

ring r1 is the homomorphic image of r, then r1 can also be taken as a symbol ring for R.

Next we apply the results above to the operators appearing in (2.32) and (2.48) (as well

as their two-dimensional equivalents). As shown in Gorenflo & Vessella (1991) the Fourier

transform of the Abel kernel, KA(x) = H(x)xα−1, see (3.96) for the definition, is

F(KA) = Γ(α)(ik)−α = sb(J α
−∞) (2.68)

and analogously sb(J α
∞) = Γ(α)(−ik)−α. Here, for definiteness, we set (cf. Gorenflo &

Vessella (1991))

(±ik)−α = |k|−α exp(∓iαπ
2
sgn(k)).

Similarly the Fourier transform of the Riesz potential kernel, KR(x) = |x|α−n, can be calcu-

lated (distributionally) to be

F(KR) = γ(α)|k|−α = sb(Rα), (2.69)

see (3.98) for the definition.

As demonstrated in equations (2.59) through (2.60) the ansatz function eλtei〈k,x〉 and the

resulting dispersion relations yield the boundedness condition for the multipliers in the same

way as the Fourier transform does. Therefore, we want that approach to be applicable to

integral operators as well. The following lemma states the straight forward extension of the

multiplier property in (2.59).

Lemma 2.2. Let K be an integral operator with a convolution kernel K, of which the Fourier

transform exists (in some sense). Then

Kei〈k,x〉 = F(K)ei〈k,x〉

holds for all x, k ∈ R
n.

Proof. To see this, we simply modify

Kei〈k,x〉 =

∫

Rn

K(x− y)ei〈k,y〉dy =

∫

Rn

K(y)ei〈k,x−y〉dy =
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=

∫

Rn

K(y)ei〈k,x〉e−i〈k,y〉dy = ei〈k,x〉
∫

Rn

K(y)e−i〈k,y〉dy = ei〈k,x〉F(K),

such that substitution of (2.68) and (2.69) shows the validity of Fourier multipliers for integral

operators.

Remark 2.31. Equation (2.69) actually represents a formal application of the Fourier trans-

form, where Stein (1970) proved the precise meaning of it in a distributional sense. We shall

paraphrase the main idea of this result. Let φ lie in the Schwartz space of rapidly decaying

functions, then the assertion of γ(α)|x|−α being the Fourier transform of |x|α−n is understood

as

|x|α−n = F−1(F|x|α−n)
formally

= F−1(γ(α)|k|−α),

with the second equality actually meaning

∫
|x|α−nφ(x)dx =

∫
γ(α)F−1(|k|−α)φ(x)dx =

∫∫
γ(α)|k|−αei〈k,x〉dk φ(x)dx =

=

∫
γ(α)|k|−α

∫
φ(x)ei〈k,x〉dx dk =

∫
γ(α)|k|−αF(φ)dk,

such that |x|α−n is the inverse Fourier transform of γ(α)|x|−α in the sense of distributions.

Remark 2.32. For the Abel kernel there is another, constructive way, to prove Lemma 2.2.

Consider

∫
(x− y)neikydy =

=

∫
(x− y)neikxe−ik(x−y)dy = eikx(ik)−(n+1)

∫
(x− y)n(ik)n+1e−ik(x−y)dy =

= eikx(ik)−(n+1)

∫
((x− y)ik)n(ik)e−ik(x−y)dy,

where the coordinate transform t = ik(x− y), dy = −(ik)−1dt then yields

eikx(ik)−(n+1)

∫
(−1)tne−tdt = eikx(ik)−(n+1)Γ(n+ 1, t),

with Γ(n, t) being the incomplete gamma function, such that Γ(n, 0) = Γ(n). In case of the

Abel operator n = α− 1, 0 < α < 1, and hence

J α
−∞(eikx) = eikx(ik)−α

(
Γ(α, 0) − Γ(α, i∞)

)
= Γ(α)(ik)−αeikx,

since Γ(n, i∞) = 0 if n < 1 (and analogously for J α
∞).

Remark 2.33. The connection, or even say equivalence, between the symbol of a (singular

integral) operator and the Fourier multiplier property, as well as the abstract multiplication

semigroup, lead to the common agreement of also calling (ik)m in (2.56) the symbol of the

derivative operator ∂m
x .
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Denoting any type of operator possessing a symbol by A, we have (
∑∏

symbolizes all

appearing sums and combinations of the operators)

F
(∑∏

Ajf) =
(∑∏

sb(Aj)
)
F(f),

for f in a suitable function space and at least for integro-differential operators

(∑∏
Aj

)
ei〈k,x〉 =

(∑∏
sb(Aj)

)
ei〈k,x〉 (2.70)

holds.

Finally we restate a necessary condition for well-posedness of evolution problems involving

all kinds of combinations of Aj as

ℜ
∑∏

sb(Aj)(k) ≤ const. ∀k ∈ R
n. (2.71)

Remark 2.34. The study of singular integrals and their symbols also lead to the development

of the theory of pseudo-differential operators. For the sake of completeness we shall briefly

demonstrate the relation of such operators to the operators in equations (2.49) and (2.48).

If m is a real number then Sm = Sm(Rn × R
n) is the set of all a ∈ C∞(Rn × R

n) such that

for all multi-indices γ, δ there exists a positive constant C

∣∣∂γ
x∂

δ
ξa(x, ξ)

∣∣ ≤ C(1 + |ξ|)m−|δ|, ∀x, ξ ∈ R
n, (2.72)

where C might depend on γ, δ. Sm is then called the space of symbols a of order m.

Let a ∈ Sm and f be in the Schwartz space then (with f̂ denoting the Fourier transform of

f)

Af(x) := (2π)−n

∫

Rn

ei〈x,ξ〉a(x, ξ)f̂(ξ)dξ (2.73)

defines a pseudo-differential operator of order m, with Af being again in the Schwartz space.

The above definitions are taken from the renowned monograph of Hörmander (1985).

Since A maps the Schwartz space into itself, by ignoring the factor (2π)−n, which is due to

different definitions of the Fourier transform, one can rewrite (2.73) in the form

F(Af) = a(x, k)(Ff)(k),

which shows the relation to singular integrals and classical derivatives, cf. (2.56) and (2.66).

Allowing the symbol a to also depend on x is in accordance to non-constant coefficient

derivative type operators and singular integrals, where the characteristic depends on x, cf.

(2.67).

Considering the symbols sb(J α
±∞) ∝ (±ik)−α as well as sb(Rα) ∝ |k|−α in virtue of the

boundedness condition (2.72) readily shows, that singular integrals are not pseudo-differential

operators. On the other hand, it is straight forward to show, that every classical derivative
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operator P(∂m
x ) (allowing also for non-constant coefficients) is in fact a pseudo-differential

operator.

Furthermore, combinations of derivatives with singular integrals, as those appearing in the

equations considered here, cannot be regarded as pseudo-differential operators (at least not

in the sense of Hörmander), since higher derivatives of terms like |k|α, α /∈ N, will eventually

lead to a singularity of the symbol at k = 0 and consequently violate (2.72).

However, some authors still view operators associated with non-smooth symbols as pseudo-

differential operators, if the exponent α is at least greater than one, i.e. if at least one order

of differentiation appears.

Remark 2.35. A probably more appropriate way to view operators with symbols of the

form |k|α, α ∈ R
+, is via the notion of fractional derivatives. In this context a combination

such as ∂n
xJ α

−∞, is sometimes called Weyl fractional derivative of order n− α, in contrast to

Riemann-Liouville fractional derivatives, where the bounds of the integral are finite.

Another important type of derivatives are that of Caputo, as given, for example, in Podlubny

(1999),

−∞Dα
t f(t) =

1

Γ(n− α)

t∫

−∞

f (n)(τ)

(t− τ)α+1−n
dτ, n− 1 < α < n,

such that one can easily show, for α→ n, −∞Dα
t → dn/dtn.

Thus, for example, ∞D
3/2
t (omitting the constant 1/Γ(1/2)) yields the same operator as

J 1/2
∞ ∂2

x, which appears in (2.34). Further properties of fractional calculus can also be found

in Podlubny (1999). It is worth mentioning that he devoted a chapter to what is known as

spectral relationships. That is certain fractional integrals applied to special types of orthog-

onal polynomials yield again sets of orthogonal polynomials. Interestingly such relationships

only exist for operators on bounded intervals, so that they cannot be applied to the cases in

Section 3.3.2.

We will now show how all the above mentioned applies to the Cauchy problem (2.47). Let

us start with the two-dimensional analogue (2.49). First formally inverting J 1/4
−∞ and writing

the time derivative term on the left hand side, to gain a typical evolution equation, yields

∂tA = λ
γ

[
J 3/4
−∞
]−1 J 1/2

∞
(
∂2

xA
)
(x, t) + F (A), (2.74)

where F (A) contains the nonlinearity and the inhomogeneity, cf. Ruban (1982).

Remark 2.36. The formal inversion of an Abel integral operator has been demonstrated in

Gorenflo & Vessella (1991), by an actual inversion of the integral. A much easier way to do

this is with respect to its symbol (and since it is only a formal inversion we need not to worry

about the applicability of the Fourier transform). Thus, for 0 < α < 1,

sb

([
1

Γ(α)J
α
−∞
]−1
)

= sb( 1
Γ(α)J

α
−∞)−1 = (ik)α = (ik)(ik)α−1 =
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= 1
Γ(1−α) (ik) Γ(1 − α)(ik)α−1

︸ ︷︷ ︸
=sb(J 1−α

−∞ )

,

where we finally obtain [
1

Γ(α)J
α
−∞
]−1

= 1
Γ(1−α) ∂xJ 1−α

−∞ . (2.75)

Note that we have taken into account the constants involving the gamma function, such that

the formula coincides with the result given in Gorenflo & Vessella (1991).

As for the commutativity of classical derivatives with fractional integrals we refer to Pod-

lubny (1999). Additionally, Prößdorf (1974) relates the inversion to the symbol by proving,

e.g. for Wiener-Hopf equations on R
+, that for bounded operators with absolute integrable

kernels the (one-sided) inverse is bounded if and only if the symbol does not have any zeros

on [−∞,∞]. This does in fact also hold for the Abel operator above (as shown in Gorenflo

& Vessella (1991) via the ill-posedness of equations of the first kind on L2).

It has been demonstrated above, cf. (2.61), when considering the conditions for well-

posedness we do not need to take into account the additional term F in (2.74). Thus,

in virtue of abstract Cauchy problems and Fourier symbols we say (omitting all positive

constants)

A2D :=
[
J 3/4
−∞
]−1 J 1/2

∞ ∂2
x ⇒

sb(A2D) = (ik)3/4(−ik)−1/2(ik)2 = (ik)3/4(−ik)3/2
(2.76)

and as established in (2.65) in connection with (2.71), we calculate

ℜ sb(A2D) = ℜ |k|9/4ei sgn(k) 3π
8 = |k|9/4 cos

(
3π
8

)
︸ ︷︷ ︸

>0

, (2.77)

which proves that no upper bound for the real part of the symbol can be found ∀k ∈ R.

Thus, the Cauchy problem associated with (2.49) is ill-posed in general.

Performing the same modifications in (2.48) yields (relating (x, z) with (k, l) in the Fourier

transform and omitting positive constants)

A3D :=
[
J 3/4
−∞
]−1J 1/2

−∞R1 (∂3
x + ∂x∂

2
z ) ⇒

sb(A3D) = (ik)3/4(ik)−1/2(k2 + l2)−1/2((ik)3 − ikl2) = −(ik)5/4(k2 + l2)1/2,
(2.78)

and by again considering

ℜ sb(A3D) = −ℜ |k|5/4ei sgn(k) 5π
8 (k2 + l2)1/2 = −|k|5/4(k2 + l2)1/2 cos

(
5π
8

)
︸ ︷︷ ︸

<0

, (2.79)

general ill-posedness can be inferred as well.
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Remark 2.37. Say Ast is a solution of the steady problem (2.33) and A(x, t) = Ast(x) +

Ã(x, t), assuming the perturbation to be small, |Ã| ≪ 1, then Ã has to satisfy

∂tÃ = λ
γ

[
J 3/4
−∞
]−1 J 1/2

∞
(
∂2

xÃ
)
(x, t) − 2/γ

[
J 3/4
−∞
]−1

ÃAst.

As mentioned above, to derive the dispersion relation one substitutes Ã(x, t) = eωt+ikx, such

that (omitting all positive constants)

ω = sb(A2D) − 2(ik)3/4Ast, (2.80)

where we have assumed a plane-parallel, unperturbed flow, such that Ast = const., as given

in Ruban (1982), which is valid for large, negative Γ . Therein k was further assumed to be

real and positive. In Ryzhov & Smith (1984) a similar relation has been calculated, where Ast

was replaced by a linear approximation. Both works mention the occurrence of instabilities

for a certain range of k, whereas only Ryzhov & Smith (1984) put this in the context of

incorrectly posed Cauchy problems.

For the three-dimensional problem (2.47), a relation of the form (2.79) has never been

derived so far, although numerical solutions and further studies for the steady and unsteady

case have been presented, e.g. in Duck (1989), Duck (1990), Braun & Kluwick (2002) and

Braun & Kluwick (2004), where the question rather is and remains, in which sense (if any)

do solutions have to be understood.

We will delay the theoretical investigation of ill-posed problems and first present some

illustrations by numerically solving (2.49) and (2.47), i.e. by fully discretizing (2.52). Say

tm = m∆t, a(tm) = am,
d

dt
a(t)

∣∣∣∣
tm

≈ am+1 − am

∆t

then the explicit Euler forward scheme for (2.52) reads

am+1 = am + ∆tD−1[K am + f + g −
(
Cw am)2 − 2C am − Γ − 1], (2.81)

which applies to both (2.49) and (2.47), as explained in the previous section. The matrix D

can very well be expected to be non-singular for all (Nx, Nz), although one shall carefully

consider the issues mentioned in Gorenflo & Vessella (1991), since this represents a formal

inversion of an Abel operator, cf. (2.75).

From the analysis presented in, e.g. Gottlieb & Orszag (1977) and Hesthaven et al. (2007)

one can reasonably assume the Chebyshev collocation method combined with the Euler for-

ward time integration to be conditionally stable for well-posed problems, i.e. as long as a

certain restriction on the time step ∆t is satisfied (cf. CFL conditions). In one space di-

mension such a condition might read ∆t ≤ cN−p, p depending on the spatial operator (for

example, p = 2 for a simple advection operator and p = 4 for linear diffusion problems, see

e.g. Canuto et al. (2006) for more details).

52



The scheme for the fully discretized two dimensional problem (2.49), with results de-

picted in Figure 10 using the parameters N = 50 (left), N = 100 (right) and ∆t = 10−8, can

be expected to lie within the stability region of the method, provided the according prob-

lem is well-posed. Thus, we conclude that the oscillations shown are not due to numerical

instabilities, but come exclusively from the ill-posedness.

What can be further inferred from Figure 10 is that when such problems are numerically

solved with a direct method (i.e. the explicit scheme in (2.81)), the better the resolution (i.e.

the higher the spatial accuracy) the worse the instabilities, meaning here, that they grow

faster (cf. t = 1.2 × 10−2 on the left versus t = 4 × 10−3 on the right). Gorenflo & Vessella

(1991) made a similar assertion for solving Abel equations of the first kind.

Another aspect relates directly to the dispersion relation and the symbol of the (fractional)

derivative operator. Due to the parabolic-type shape of the real part, cf. (2.77), one can see

that larger k result in larger ω in (2.80), i.e. the disturbances grow faster. Since k can

be (formally) associated with the coefficient of the polynomial of degree k (for Chebyshev

expansions are directly linked to Fourier series, as mentioned, e.g. in Mason & Handscomb

(2003)), one can readily explain the different behavior for N = 50 and N = 100 in Figure 10.

N.b.: The connection to Fourier analysis, with the conclusion of instabilities getting worse

with higher spatial resolution, is also the reason for the stability condition (for well-posed

problems) to become stricter if more polynomials are used.
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x
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Figure 10: Solution of (2.49) using an explicit Euler scheme, ∆t = 10−8, Γ = 2, g ≡ 0, A0(x) =√
1 + x2 (dashed). Left: N = 50, t = 10−2 (small oscillations), t = 1.2 × 10−2 (large oscillations).

Right: N = 100, t = 3 × 10−3 (small oscillations), t = 4 × 10−3 (large oscillations).

A similar situation can be observed in the three-dimensional case, i.e. the explicit Euler

scheme shows fast growing disturbances. In Figure 11 we plotted a solution of (2.47), with

an initial condition of the form

A0(x, z) =
√

1 + x2 +
z2 − 1√

1 + x2(z2 + 1)
, (2.82)
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which comes from setting a02 = 1, aik = 0 otherwise, in (2.51). Up to t ≈ 5 × 10−3 the

solution A = A(x, z, t) remains almost equal to A0 (dashed lines in Figure 11) and then, in

full agreement with the dispersion relation (cf. the symbol in (2.79)), disturbances start to

grow.
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A(x, 0, ·)
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A(0, z, ·)

A(1.5, z, ·)

Figure 11: Solution of (2.47) using an explicit Euler scheme, (Nx, Nz) = (35, 40), ∆t = 10−5, Γ = 2,
g ≡ 0, A0 from (2.82), at t = 5 × 10−3 (dashed) and t = 1.5 × 10−2 (solid)

Remarkable about the situations illustrated in Figures 10 and 11 (considered as solutions

of (2.50)) is that the data, i.e. the initial condition, is analytical in the two-dimensional

case (all ai = 0, hence B0 ≡ 0) and smooth in the three-dimensional case, i.e. B0 =

(1 + x2)−1/2R2(z) (cf. (2.82)). Also, as the unknowns are the coefficients, the initial data

are prescribed with exact values. We therefore conclude that with the discretization per se,

meaning solutions for t > 0 are only approximately represented, sufficient perturbations are

introduced.

Remark 2.38. As shown in Remark 2.14 the operator J 1/2
−∞R1 (∂3

x + ∂x∂
2
z ) is equivalent

(modulo some constants) to J 1/2
∞ ∂2

x when acting on functions independent of z. In the

unsteady problem this means we solve problem (2.50), g ≡ 0, for solutions in R
2 with B0 =

B0(x). Despite the growing instabilities (using e.g. (Nx, Nz) = (50, 20)) the solution mimics

a behavior of A(x, z, t) = A2D(x, t) + Ã(x, z, t), with |Ã| ≪ 1 and A2D being almost equal

to the solution in the left graph in Figure 10 (cf. also Remark 2.22). Then, before the whole

solution A may develop visible z-dependence, it gets destroyed by the heavy oscillations in x.

Comparing this observation with Figure 11 we assert that the approximation of J 1/2
−∞R1 (∂3

x+

∂x∂
2
z ) is accurate enough not to introduce too much artificial z-dependence to purely x-

dependent solutions, even though, the approximated operator itself initiates disturbances in

z. Furthermore, since the real part of the symbol (2.79) is linear in |l|, but ”a little more

than” quadratic in |k|, the ill-posedness is much more severe with respect to x.

After Hadamard presented his seminal example for the Cauchy problem of the Laplace

equation, it became common practice (see e.g. Hadamard (1923) and Petrowsky (1955)) to
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first prove continuous dependence on the data and hence, to only treat well-posed problems

by arguing that everything else would be unphysical.

It was not until the second half of the twentieth century when a theoretical basis for inverse

problems started to develop. The two most prominent examples are integral equations of the

first kind, see e.g. Gorenflo & Vessella (1991), where the operator is compact between the

considered function spaces, and the Cauchy problem of the backward heat equation, sometimes

more generally also called final value problem.

The monographical work by Tikhonov & Arsenin (1977) was the first summarizing the, at

that time, established knowledge on improperly posed problems. Therein it was stated that

the notion of ill-posedness shall always be connected to the function spaces the problem is

considered in. That is, speaking in the most general way, given a mapping φ : X → Y , with

(X,Y ) being metric spaces, such that the problem of finding x when given y, i.e. φ(x) = y

is ill-posed in some subspaces (X1, Y1), might very well be well-posed on other subspaces

(X2, Y2) or in different metrics. To work on metric spaces is necessary, since one needs a

precise meaning of the distance between various given data and their according solutions (cf.

conditions i) and ii) from Petrowsky (1937) stated above).

Remark 2.39. For the class of abstract Cauchy problems such as (2.62) (which also contains

problem (2.47)), the inverse of the mapping φ is the strongly continuous semigroup
(
T (t)

)
t≥0

,

where we have shown above, via the symbols (2.77) and (2.79) and the equivalence (2.65), that

the Cauchy problems dealt with here are ill-posed on L2(R2), i.e. T (t) is unbounded (and thus

discontinuous) on every bounded time interval, cf. (2.63). As mentioned in Remarks 2.12 and

2.15 a classical solution is actually expected to lie in a subspace (due to the differentiability

requirements), where it is reasonable to assume the existence of smaller subspaces for solutions

(and initial data) in which the problem (2.47) is well-posed. On the other hand, the question

of the meaning of such restrictions with respect to the (physical) interpretation of the solutions

remains.

Finding subspaces in which the considered problems are well-posed has been termed

selection method in Tikhonov & Arsenin (1977), where the following lemma was proved,

providing a very basic assertion.

Lemma 2.3. Suppose that a compact subset X of a metric space X0 is mapped onto a subset

Y of a metric space Y0. If the mapping X → Y is continuous and one-to-one then the inverse

mapping Y → X is also continuous.

Proof. see Tikhonov & Arsenin (1977)

In other words, if we allow only for solutions lying in a compact subset, we obtain an

admissible set of initial data, on which the mapping is continuous, i.e. the solutions depend

continuously on the data. Such a result is obviously only the theoretical basis for selecting

appropriate spaces and metrics and does not give a concrete strategy.

Remark 2.40. An attempt to impose or derive some restrictions on solutions of (2.49) has

been made in Ryzhov & Smith (1984) by providing, as an example, a concrete formula for a
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possible disturbance Ã (cf. Remark 2.37), such that FÃ has compact support. As mentioned

further therein, a compact support of the Fourier transformed perturbation is sufficient, but

not necessary, for it to remain bounded (on finite time intervals). Braun & Kluwick (2004),

on the other hand, remarked that solutions, when being in L1 with respect to x, decay to

zero in its Fourier transformed representation, which stands as a necessary but not sufficient

condition, since nothing can be said about the rate of decay, which has to be faster than |k|9/4,

according to (2.79). What remains is the slighter, but still unbounded growth of disturbances

with respect to |l|.

Remark 2.41. Concluding from the previous remark, we claim that for most problems

(especially in physics and engineering) Lemma 2.3 is more or less inapplicable (as was also

stated in Tikhonov & Arsenin (1977)), either due to the involved operators or due to the set

and structure of the initial data. As said, because of the real parts of the symbols (2.77)

and (2.79), regarding the Fourier transform of possible solutions of (2.48) and (2.49) the

requirement of either compact support in R and R
2, respectively, or fast enough decay, is

sufficient.

For the sake of completeness it is worth mentioning that another remedy would be to

bound derivatives of solutions (up to some order and in a certain way) on bounded time

intervals. Thus, oscillations of the form shown in Figure 10, for example, are not permissible

to occur in solutions. This can be associated to the decay of the Fourier transformed repre-

sentation via the concept of Gevrey classes and ultradistributions, which are often found in

connection with pseudo-differential operators. Since this subject is beyond the scope of this

treatise, we shall only mention (see, e.g. Rodino (1993)) that if the Fourier transform of a

function f belongs to the dual of the Schwartz space, satisfying for C and ǫ > 0

|F(f)(k)| ≤ Ce−ǫ|k|1/s
,

then f lies in the Gevrey class Gs(Rn), i.e. for every compact subset K ⊂ R
n there exists a

positive constant c, such that ∀x ∈ K and multi-indices m

|∂m
x f(x)| ≤ c|m|+1(m!)s,

consequently providing bounds on the derivatives and/or sufficient decay for the Fourier

transformed solutions.

Lemma 2.3 and Remarks 2.40 and 2.41 are of rather theoretical nature, in the sense that

there exist initial data and according solutions for which the Cauchy problem (2.47) and its

two-dimensional analogue are well-posed, but they do not include any instruction on how

to choose appropriate initial data in concrete, let alone possible schemes to depict solutions

approximately.

Moreover, if one would impose some restrictions on the solution, such as compact support

in its Fourier transformed or choosing a certain Gevrey class, an argument has to be found

on how to relate this to the physics the solution shall describe. Another question remains
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on whether the impositions are too strict, such that one can only obtain a small part of the

information the problem actually contains.

For this reason one shall always take into consideration the fact that investigating ill-

posed problems in applications is two-fold. On the one side, a theoretical study has to be

done on how or in which sense the problem is improperly posed or unstable, as has been

presented so far in this section, on the other side, appropriate methods have to be found

or developed to actually find qualitative and/or quantitative descriptions of initial data and

solutions, without being too restrictive. Such strategies are now commonly referred to as

regularization methods.

It was stated in Tikhonov & Arsenin (1977) that in most applied problems, as the one

studied here, the set, in which possible solutions are expected to lie, is not compact. Thus,

as argued before, considering the problem only on compact subsets might leave out just the

information one wants to obtain. Such problems were termed genuinely ill-posed, for which

the concept of regularizing operators was introduced.

Given the equation Ax = y, such that the exact solution x∗ corresponds to the datum y∗

and metrics ρX and ρY , then an operator B(y, α) is said to be regularizing in a neighborhood

of x∗ if

i) there exist numbers α0, δ0, such that B is defined for any α and y with 0 < α < α0 and

ρY (y, y∗) < δ0;

ii) there exists an α(δ), such that for every ǫ > 0 there is a number δ(ǫ) < δ0, where for

ρY (y, y∗) < δ(ǫ) and an xα ∈ X, ρX(xα, x
∗) < ǫ holds.

We then call xα = B(y, α(δ)) the regularized solution and α the regularization parameter.

Remark 2.42. As mentioned in Tikhonov & Arsenin (1977) a regularizing operator is not

uniquely associated to a given equation and vice versa. Also, one can choose α(δ), such that

for δ → 0 (i.e. in the limit of exactly given data), the regularized solution approaches the

exact one, i.e. ρX(xα, x
∗) → 0. It was thus proved in Tikhonov & Arsenin (1977) that if for

an operator B
lim
α→0

B(Ax, α) = x

holds for every x ∈ X, B is a regularizing operator for Ax = y.

Tikhonov & Arsenin (1977) further develop methods of constructing regularizing operators

and finding the optimal value of the parameter α. We shall not go into such details and

continue with how to regularize Cauchy problems of evolutionary equations.

In virtue of the definition above Lavrent’ev et al. (1986) demonstrated for the abstract,

homogeneous Cauchy problem (2.62) with A positive, self-adjoint and unbounded (e.g. the

negative Laplacian) and thus rendering the problem ill-posed on [0, T ], the operator

B = eAt
(
I + µ(t)eAT

)−t/T
, µ(t) =

δ

M
(1 − t/T )−2+t/T (2.83)
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to be bounded and regularizing in the sense that for initial data ‖u0,δ − u0‖ ≤ δ, ‖Bu0,δ −
u(t)‖ → 0 on [0, T ), as δ → 0. Here I is the identity and M is an upper bound for solutions

u on [0, T ]. Since B(t) is a strongly continuous semigroup, not quite practicable in this

representation, Lavrent’ev et al. (1986) further approximated B by a polynomial in eAT and

t, and together with the spectral description obtained a more applicable form.

Other works on regularizing abstract Cauchy problems, e.g. Showalter (1974), use the

technique of quasireversibility (a notion owing to the works of R. Lattès and J.-L. Lions).

Roughly speaking, this method adds or subtracts terms multiplied by a (small) parameter

to the equation, such that the thus resulting operator generates a semigroup on the desired

function spaces.

Obviously, the extension to inhomogeneous problems can be made, see e.g. Campbell Hetrick

& Hughes (2007), who regularized the initial value problem (with −A generating a semigroup)

∂tu(t) = Au(t) + h(t), u(0) = u0  ∂tv(t) = f(A)v(t) + h(t), v(0) = u0, (2.84)

with f(A) generating a semigroup (e.g. f(A) = A−αA2), such that the problem for v is well

posed and proving that v is close to u in some norm on [0, T ). This has then been successfully

applied to the backward heat equation, i.e. −∆ is replaced by −∆ − α∆2.

It is worth mentioning that all these methods fall into the category of regularizing operators,

demonstrating again the multiple possibilities to regularize an ill-posed problem.

Although, with using regularizing operators, one is able to circumvent the difficulties

in ill-posed problems, by obtaining stable (in some sense) approximate solutions, close to

the sought ones, they do not necessarily result in a practicable scheme to actually calculate

solutions (in some sense).

We will hence distinguish two strategies. One is to regularize the problem via the analysis

above and then to solve the approximate problem with established discretization techniques.

The other is to first discretize (or approximate) the ill-posed problem and then stabilize the

finite-dimensional version. Eventually, in an appropriate limit, both approaches should yield

the same, or at least very close, solutions.

The first method has been successfully applied to the backward solution of parabolic

problems in e.g. Eldén (1982), where (2.83) was used on t ∈ [0, 1] to describe the well-

posed approximation, which was then further discretized, in the spectral representation of

the semigroup, by Padé approximation in time (of which the backward Euler procedure is a

special case). There are, of course, other possibilities to first approximate and then discretize

as shown, for example, in Jonas & Louis (2000), where the concept of mollifiers was used.

Such an approach falls into the class of filter methods. The monograph of Louis (1989)

provides a good introduction (among other techniques) to such types of regularization.

Remark 2.43. Restrictions to solutions with compact support (or fast decay) in their Fourier

transform (cf. Remarks 2.40 and 2.41) can be viewed as a filter method. In fact, instead of

only allowing for solutions with compact support, one could introduce a ”cut-off”-function
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(i.e. a filter), such that all solutions obtained by some method using this filter automatically

have this compact support. The general idea, as presented in Louis (1989), is to consider the

so called singular system of the generalized inverse (i.e. minimizing functional) and then cut

off the growing part of the singular values.

We have now gathered sufficient mathematical information to assert that the Cauchy

problems (2.48) and (2.49) can be regularized by adding or subtracting an appropriate higher

derivative term on the right hand side, cf. (2.84). The idea obviously is to replace the

equation in (2.50), such that the Cauchy problem becomes well-posed for the same set of

initial conditions. This is, of course, everything but a unique way, and hence we need some

constraints. By generalizing the equivalence (2.65) we get

Lemma 2.4. Let the operator T (t) be defined via T (t)u := eAtu, u ∈ L2(Rn). If A possesses

a symbol sb(A), then A generates a strongly continuous semigroup on L2(Rn), if and only if

the real part of sb(A) is bounded from above. Thus
(
T (t)

)
t≥0

is continuous on L2 for every

finite time t ≤ T . Additionally, the spectra of A and sb(A) are equal.

Proof. This has essentially been proved in Engel & Nagel (2000). Although the assertion was

shown for the case of classical derivative operators the argumentation is the same. For the

sake of completeness we shall summarize the main idea. The symbol sb(A) regarded as a

(continuous) function on R
n generates a strongly continuous semigroupM(t) (a multiplication

semigroup, to be precise), if and only if sup(ℜ sb(A)) <∞ over all k ∈ R
n.

Since F is an isomorphism on L2, we have that the strongly continuous semigroup T (t) =

F−1M(t)F is given by the generator B = F−1sb(A)F . By using the alternative description

of operators from (2.66) we also have A = F−1sb(A)F . The equality of the spectra follows

immediately.

From Lemma 2.4 we infer that by altering the right hand side derivative type operator

in (2.50), such that its symbol satisfies the requirements, we obtain a well-posed problem,

which we then numerically solve by the usual combination of spectral collocation in spatial

coordinates and a time marching scheme. But this imposes a constraint on finding the

appropriate higher derivative terms, that is, the order of differentiation should be as small as

possible, otherwise the restrictions on the discretization parameters become too strong.

An educated guess thus yields −α∂3
xB for the two-dimensional and α(−∂3

x + ∂2
z )B for

the three-dimensional problem, with α being the (usually small) regularization parameter.

That these derivatives are of higher order than the original ones is straight forward and with

Remark 2.26 it should suffice to consider the real parts of their symbols. But due to other

aspects, discussed later, we shall give the full formulae for the new overall right hand side

operators.

Caveat: Neither the signs nor the order of differentiation in those higher derivative terms

have any special meaning so far. They were just chosen in such a way that one can find the

required upper bounds and to work as ”mollifying” as possible for the numerical calculations.
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For the new symbols, we define, in accordance to (2.76) and (2.78),

A∗
2D :=

[
J 3/4
−∞
]−1

(
J 1/2
∞ ∂2

x − α∂3
x

)

A∗
3D :=

[
J 3/4
−∞
]−1

(
J 1/2
−∞R1 (∂3

x + ∂x∂
2
z ) + α(−∂3

x + ∂2
z )

)
,

(2.85)

such that (omitting the usual constants)

sb(A∗
2D) =(ik)3/4(−ik)3/2 − α(ik)15/4 ⇒ ℜ sb(A∗

2D) = |k|9/4(c1 − c2|k|3/2)

sb(A∗
3D) = − (ik)5/4(k2 + l2)1/2 − α(ik)15/4 − α(ik)3/4l2 ⇒

ℜ sb(A∗
3D) = c1|k|5/4(k2 + l2)1/2 − c2|k|15/4 − c3|k|3/4l2,

with c1, c2 = c2(α), c3 = c3(α) being positive.

Remark 2.44. The real part of sb(A∗
2D) is obviously bounded from above, since

c1 − c2|k|3/2 ≥ 0 ⇔ |k| ≤ (c1/c2)
2/3,

but, we shall mention this for later discussions, there exist intervals where the real part

of the symbol is positive. As for sb(A∗
3D), we consider its real part in polar coordinates

(k, l) 7→ (r, φ), obtaining

ℜ sb(A∗
3D) = r9/4| cos(φ)|3/4

(
c1| cos(φ)|1/2 − c2r

3/2| cos(φ)|3 − c3r
1/2 sin(φ)2

)
,

where it is easy to see that some finite R(φ) exists, such that

c1| cos(φ)|1/2 − c2r
3/2| cos(φ)|3 − c3r

1/2 sin(φ)2 ≥ 0 ⇔ r ≤ R(φ).

Thus we have again an upper bound for the real part and some regions, where the real part

is positive.

Overall, the regularizing operators generate strongly continuous semigroups on L2 and hence,

from Lemma 2.1 the associated homogeneous Cauchy problem is well-posed.

Lemma 2.4 cannot be extended in a straight forward manner to hold on L∞(Rn), since it

needs the isomorphism of the Fourier transform. To show the boundedness of the semigroup

T (t) in the L∞ norm, we employ a different strategy. Application of the Fourier transform

to (2.62) obviously yields T (t)u = F−1(esb(A)t) ∗ u. Consider

|T (t)u| = |F−1(esb(A)t) ∗ u| ≤ ‖u‖∞
∫

|F−1esb(A)t(x)|dx = ‖u‖∞‖F−1esb(A)t‖L1 , (2.86)

such that the inverse Fourier transform of the exponential of the symbol needs to be absolute

integrable for all t < T . For symbols of the form −|k|λ, 1 < λ ≤ 2 this has been proved in

Droniou et al. (2002) (on the real line), where they additionally showed that the L1 norm
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is equal to one ∀t > 0, i.e. the semigroup remains bounded in the long time limit and

furthermore, a maximum principle holds in such cases.

To relate this to the present problem we state

Lemma 2.5. The regularizing operator A∗
2D defined in (2.85) generates a strongly continuous

semigroup on L∞(R) for t < T .

Proof. One needs to show condition (2.86) to be satisfied by the symbol of the operator.

First, boundedness follows from

∣∣∣∣
∫
esb(A

∗
2D)teikxdk

∣∣∣∣ ≤
∫ ∣∣esb(A∗

2D)teikx
∣∣dk =

∫ ∣∣esb(A∗
2D)t

∣∣dk,

since |esb(A∗
2D)t| = eℜ sb(A∗

2D)(k)t <∞, ∀k and decays faster than |k|−1 at infinity (see Remark

2.44). In other words, esb(A
∗
2D)t ∈ L1(R), which is necessary for the inverse Fourier transform

to exist. As for the decay in terms of x, we use integration by parts twice, where the boundary

terms vanish due to the strong decay of the exponential, yielding

∣∣∣∣
∫

R

esb(A
∗
2D)teikxdk

∣∣∣∣ =
1

x2

∣∣∣∣
∫

R

∂2
ke

sb(A∗
2D)teikxdk

∣∣∣∣ ≤
1

x2
‖∂2

ke
sb(A∗

2D)t‖L1 .

Calculating |∂2
ksb(A∗

2D)| one can readily deduce the existence of the L1 norm. The estimate of

quadratic decay with respect to x of the term on the very left hand side finishes the proof.

Remark 2.45. In contrast to the symbols considered in Droniou et al. (2002), the semigroup

generated by A∗
2D does not remain bounded as t → ∞ because of the positive parts of the

symbol (cf. Remark 2.44). Droniou et al. (2002) also mentioned for results in more than one

dimension, e.g. for the semigroup generated by A∗
3D, a proof as done above becomes heavily

involved. Although having esb(A
∗
3D)t ∈ L1(R2) is again straight forward, using integration by

parts to obtain asymptotic estimates for the decay with respect to x is not recommendable.

Still, we can expect the inverse Fourier transform of esb(A
∗
3D)t to decay sufficiently fast in x

and hence has finite L1 norm.

Remark 2.46. To show well-posedness on [0, T ) for the whole regularized problem (i.e. using

the operators in (2.85) in (2.48)) one needs to consider the mild formulation of the solution

B(t) = eA
∗tB0 +

t∫

0

eA
∗(t−s)F (B)ds, (2.87)

where F includes all other terms appearing in (2.50) (and its two-dimensional analogue).

From the (local) Lipschitz continuity of the nonlinearity in B and the boundedness of the

inhomogeneity we formally claim, based on the findings in Achleitner et al. (2011), the bound-

edness (in the L∞ norm) of the second term.
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We will now turn to the numerical solutions of the regularized problem. Since well-

posedness is sufficiently established, we can apply the explicit Euler scheme described in

(2.81). The term D−1K is replaced by the collocation approximation of A∗ from (2.85).

An advantage of the polynomial approach is having an exact description of the regularizing

operator (since derivatives of polynomials can be given in closed form, cf. Section 3.1, Remark

3.2), such that the regularization does not introduce additional discretization errors.

As described in the paragraph following (2.81), for stability certain restrictions on the

time step have to be satisfied. The parameters used to obtain Figures 10 and 11 are assumed

to meet these conditions and hence we use the same setting for numerically solving the

regularized equation.

As expected, the explicit Euler scheme is stable and yields some plausible time evolution

on, e.g. t ∈ [0, 1], which is shown in Figure 12 (left), starting again from A0(x) =
√

1 + x2.

Remark 2.47. As it is known from classical textbooks such as Forsythe & Wasow (1960),

if an initial value problem is well-posed, an implicit scheme (e.g. backwards Euler or Crank-

Nicholson) is unconditionally stable (under certain conditions) and therefore allows for larger

time steps. The discrete problem (2.81) thus reads

am+1 =
[
D − ∆tK + 2∆t C

]−1(
Dam + ∆t(f + g −

(
Cwam)2 − Γ − 1)

)
, (2.88)

which is still first order accurate in time, cf. (2.81). As usual we can reasonably expect the

matrix on the right hand side to be non-singular. Notice that this should rather be called a

semi-implicit scheme, since the quadratic term in a is evaluated in an explicit sense, i.e. at

the previous time step. As proposed in Scheichl et al. (2008), a linearization of the nonlinear

term at the respective time step m+ 1, with respect to previous ones m,m− 1, . . . , can yield

a higher accuracy for the right hand side evaluations at the respective time step.

In Figure 12 (right), we used the backward or implicit Euler scheme, aiming to depict some

long time dynamics of the problem. Since the results for t > 0 gained from the regularized,

explicit Euler approach can be regarded as sufficiently accurate, for the time step is very

small, we have to compare them with results from the implicit scheme using different ∆t.

Such comparisons can then be utilized to find an upper bound for the time step in the

implicit scheme, regarding the growth of discretization errors as ∆t ր. In the case studied

with approximately ∆t ≤ 1/100 the solutions from the explicit and implicit method are

virtually indistinguishable. Hence, results involving longer time intervals are best obtained

with the implicit method (allowing for faster, but equally accurate, computations).

Remark 2.48. The most striking observation, which can be made from Figure 12, is the

fact that at t = 20 the solution visually coincides with the steady state solution obtained

from (2.33) (in terms of B, as usual) with the additional term −α∂3
xB on the right hand side.

Although, the movement toward this steady state is considerably decelerating (cf. t = 10 in

Figure 12 (right)).
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Figure 12: Regularized solution of (2.49) using N = 50, Γ = 2, g ≡ 0, α = 1/100, A0 =
√

1 + x2.
Left: explicit Euler, ∆t = 10−8 at t = 0 (dashed), t ∈ {0.1, 0.5, 1}. Right: implicit Euler, ∆t = 10−2

at t ∈ {1, 5, 10}, Ast (dashed) is the steady state including the regularization.

One might thus be led to claim some sort of stability or attractiveness of such stationary

solutions in terms of dynamical systems. Heuristically, we state that if a solution is close to

the steady state it remains in a certain neighborhood of it and for t ≫ 1 it is identical to

the equilibrium (cf. the definitions of Lyapunov and asymptotic stability). In virtue of the

bifurcation diagram in Figure 4 we conclude further the upper branch to be stable and the

lower branch to be unstable. This is confirmed by some additional calculations performed

within this type of regularization by taking as an initial condition a slightly perturbed lower

branch solution (cf. graph (b) in Figure 3). It seems that the lower branch is repelling,

either toward the upper branch or to some unsteady behavior (e.g. continuous growth of the

absolute values).

Caveat: All these results and findings are only to be regarded in the sense of regularized

dynamics, otherwise the notion of a steady state itself has no meaning. Additionally, as shown

in Remark 2.44, certain parts of the spectrum of A∗ have positive real parts, such that, not

necessarily but likely, some destabilization occurs in long time asymptotics. As mentioned

in Ruban (1982), with the formal stability analysis performed therein, claims about stability

by ignoring the ill-posedness are only valid for very large negative values of the bifurcation

parameter Γ , where the flow is far from separation.

To still connect such conclusions to the actual Cauchy problem we compare the above

mentioned (regularized) steady state to stationary solutions calculated in Section 2.2, cf.

Figure 3 (upper branch). By comparing the leading order coefficients of the respective ex-

pansions, see Table 11, with the coefficients for the original solution taken from Table 3 and

plotting the according graphs shows that they are more or less identical.

Therefore, we formally assert that the regularized dynamics sufficiently describe, at least

qualitatively, the time evolution of solutions to the original Cauchy problem, as long as α is

small enough, such that regularized solutions remain close to the sought ones.
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ai original regularized

a0 −0.5894 −0.5904

a1 −0.1878 −0.1887

a2 0.2178 0.2190

a3 0.1095 0.1111

a4 0.1697 0.1699

a10 0.0133 0.0133

Table 11: Leading coefficients for the stationary solutions of the original and regularized steady
problem, α = 0.01.

Remark 2.49. Although from a theoretical viewpoint, the Cauchy problems remain well-

posed for all α > 0 (where maybe T changes), this does not hold for the actual computations.

In Figure 13 we depict the results for α = 10−3 at N = 50 and N = 100 (left) and α = 1

(right). The conclusion drawn from this is, on the one hand, that all parameters are connected

through some functional relation in order to act regularizing, and on the other hand, that

the parameter α reveals a very typical behavior of regularized problems - it has to be neither

too small nor too large. A neat example for this can be found in Louis (1989) for the case

of discrete differentiation. Simply put, if α gets smaller, it acts destabilizing (and we would

have to use more polynomials), and if it increases, the solution deviates more and more from

the sought result.

As for the overall, practical motivation of the present study, i.e. airfoil theory, the sub-

section on the streamline curvature, Section 2.3.2, will provide some physical meaning for α

by relating it to the Reynolds number via α = O(Re−6/20). In normal flight conditions the

Reynolds number is of the order of magnitude of 104, meaning α ≈ 1/100 (as chosen for most

of the present computations) is reasonable.
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Figure 13: Left: solution of (2.49) at t = 0.1 for α = 10−3 with N = 50 (dashed) and N = 100
(solid). Right: comparison of solutions at t = 0.1 and t = 5 for α = 0.01 (dashed) and α = 1 (solid).
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Not surprisingly, all the results and conclusions established above hold in the same way for

the three-dimensional problem. Setting here again α = 0.01, the explicit scheme, with suffi-

ciently small ∆t, yields the same solutions as the implicit scheme, which allows for larger time

steps to study long time behaviors with reasonable computing effort. While the functional

relation between ∆t, α and N contains the number of polynomials in z as well, their influence

on whether the regularization and/or stability holds is negligible. The maximum degree Nz

should therefore be chosen with respect to the shape of the function to be approximated (see

Example 2.1 and Figure 23 in Section 2.3.3).

Using now the same initial condition (Equation (2.82)) as for the calculations in Figure

11, solutions of the regularized Cauchy problem (2.50) in the discretized form of (2.88), with

K being the collocation matrix for A∗
3D in (2.85), are shown in Figure 14.
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Figure 14: Regularized solution of (2.47) at t1 = 0.2, t2 = 2.5 and as indicated at t = 7.5 to t = 30
with initial condition A0 from (2.82) (dashed) and the stationary solution Ast (dashed) from Figure
12, parameters α = 1/100, ∆t = 5 × 10−3, (Nx, Nz) = (50, 20). Left: A at z = 0. Right: A at x = 0.

Remark 2.50. The dynamics in Figure 14 show the indication of convergence of an initially

z dependent solution to an equilibrium similar to a steady solution of the two-dimensional

case (upper branch, Γ = 2, cf. Figure 4). This is reasonable, on the one hand, since the

local three-dimensionality stems from z dependent perturbations of a planar outer flow (see

Section 2.1) and on the other hand, as explained in Remarks 2.14 and 2.22, a solution of

(2.33) does satisfy (2.30) and hence the planar (upper branch) steady states can also be

attractive equilibria in the three-dimensional time evolution.

So far we have shown by regularizing the Cauchy problem by adding operators, the

problem itself was altered and consequently a different problem was solved. Theoretically, as

said in Remark 2.42, we would have to prove that solutions of the Cauchy problem containing

A∗ can be made arbitrarily close to solutions of the original problem as α → 0. The proof

presented in Lavrent’ev et al. (1986) for the homogeneous Cauchy problem, cf. (2.83), cannot

be applied here directly, due to the nonlinearity and inhomogeneity, i.e. the mild formulation

of the regularized solution (cf. (2.87)). Nevertheless, there are techniques to show the required
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convergence for such cases. Since our approach is primarily via approximated solutions and

numerical computations, we heuristically state the more polynomials used, the smaller α

can be chosen to act regularizing and thus, by the overall convergence of the scheme the

requirement is met empirically. Table 12 compares the leading coefficients of solutions gained

with N = 300, ∆t = 5×10−3 at t = 1 for different α, which shows the changes in the solution

to be negligible, even when decreasing α tenfold.

ai / α 1 × 10−3 5 × 10−4 1 × 10−4

a0 0.00577 0.00578 0.00578

a1 −0.31594 −0.31592 −0.31590

a2 −0.16895 −0.16895 −0.16895

a5 0.11644 0.11641 0.11636

a7 0.09029 0.09033 0.09043

Table 12: Leading coefficients for different α at t = 1 with initial condition ai ≡ 0.

Additionally, Table 12 implies that, as α → 0, for certain initial conditions the original

(upper branch) steady states, studied in Section 2.2, are approached by the time evolution.

And this is the only way how these equilibria should be understood - as stationary solutions

of regularized (well-posed) Cauchy problems in the limit of vanishing regularization.

Overall, when considering characteristics of the time evolution, one obviously would like

to have α as small as possible, to also be quantitatively close to actual solutions. The

unsatisfying fact thereby is that then overproportionally high numbers of polynomials have

to be used, i.e. while steady states can be calculated to sufficient accuracy with N = 50 (see

Table 3), the time evolution should be run with N ≥ 200 (even more in the three-dimensional

case).

To avoid adding additional terms to the equation or altering certain operators, we consider

again the possibility of filters, as mentioned in Remark 2.43. The parabolic shape of the real

parts of the symbols, as shown in (2.77) and (2.79), suggests to proportionally dampen the

fast growing parts of the spectrum. The following excursus shows how this can be achieved

in an easy, but carefully to use, manner.

Caveat: It is most important to state here that filtering certain parts of a Fourier or

singular value decomposition shall be done with care, in order not to cancel out important

information on the solution. This holds especially for the choice of how to connect the

regularization parameter to the filter and to the necessary convergence - hence, as a general

rule, one shall not use implicit schemes for ill-posed problems without having additional

information on the solutions.

On the other hand, such a strategy might be closer to what Lemma 2.3 proposes, in the

sense that the semigroup T (t) might be continuous on the set of solutions with mollified

Fourier decompositions.
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Excursus II: Explicit versus Implicit Time Integration

To study the difference between explicit and implicit (or forward and backward) schemes we

consider again the usual abstract homogeneous Cauchy problem on some Banach space

∂tu(t) = Au(t), u(0) = u0

and assume the solution can be expanded into a Fourier series, i.e.

u(x, t) =
∑

k∈Z

ûk(t)e
i〈k,x〉.

Let the operator A possess a symbol, then substitution of the ansatz yields, using Lemma

2.2 or equation (2.71),

∑

k∈Z

∂tûk(t)e
i〈k,x〉 =

∑

k∈Z

sb(A) ûk(t)e
i〈k,x〉.

In other words, the Fourier coefficients shall satisfy

∂tûk(t) = sb(A) ûk(t), ∀k ∈ Z.

Next we will do the exact opposite of what is often called method of lines and thus utilize

the advantage of Fourier multipliers, we only discretize in time. Applying forward differences

gives

∂tûk(tm) ≈ ûm+1
k − ûm

k

∆t
= sb(A)ûm

k ⇒ ûm+1
k =

(
1 + ∆t sb(A)

)
ûm

k ,

whereas the backward differences yield

∂tûk(tm) ≈ ûm+1
k − ûm

k

∆t
= sb(A)ûm+1

k ⇒ ûm+1
k =

(
1 − ∆t sb(A)

)−1
ûm

k .

Note that replacing 1 with the identity and the symbol with its according operator transfers

the above relations back to the same result as if applying finite differences in time directly

to the Cauchy problem.

As usual, we want to study the behavior of the absolute values of the Fourier coefficients

over time regarding their summability (cf. (2.53)). Thus, denoting the multipliers q̃e =

1 + ∆t sb(A) and q̃i = (1 − ∆t sb(A))−1 for the explicit and implicit scheme, respectively,

yields

|ûm+1
k | = ℜ q̃ |ûm

k | or |ûm+1
k | = qm |û0

k|, ℜ q̃ =: q, ∀k ∈ Z.
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Obviously, we are dealing with a geometrical sequence, where one has for

q = 1 |ûm
k | = |û0

k|, . . . constant

q = −1 |ûm
k | = (−1)m|û0

k|, . . . alternating

|q| < 1 |ûm+1
k | < |ûm

k | . . . decay

|q| > 1 |ûm+1
k | > |ûm

k | . . . growth





∀m. (2.89)

For the sake of presentability we only consider symbols in the form of ℜ sb(A) = c|k|a,
k ∈ R. As stated in Lemma 2.4 for well-posedness of the Cauchy problem it is necessary and

sufficient for the real part of the symbol to be bounded from above. In the example here this

reduces to the sign of c.

Without loss of generality say c = 1 and consider the operator ℜA2D ∝ |k|9/4 from (2.77),

hence

qe = 1 + ∆t |k|9/4, qi =
1

1 − ∆t |k|9/4
. (2.90)

By formally substituting c = −1 and thus obtaining a well-posed problem, we obtain accord-

ing multipliers, which shall be denoted by q∗e and q∗i . These multipliers are depicted in Figure

15.
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Figure 15: The multipliers from (2.90) as functions of k for various ∆t. Left: q∗e (solid) and qe
(dashed), right: q∗i (solid) and qi (dashed).

It becomes absolutely clear from Figure 15 (left) why the explicit scheme used in Figure

10 cannot work at all, independently of how small ∆t is chosen. Since every value of k defines

a Fourier coefficient û and a multiplier q(k) it is also easy to see that the more polynomials

are used for a truncated Fourier series (or in the case here, Chebyshev series), the faster the

absolute value of the unknown function u grows.

As for the well-posed situation, i.e. the solid lines in Figure 15 corresponding to q∗e =

1−∆t|k|9/4, the smaller the time step gets, the more coefficients lie within the strip ±1 and

thus their value decreases over time, cf. (2.89).
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The more important implications for the case studied can be drawn from the graphs on

the right of Figure 15, i.e. the implicit scheme. Here, the well-known unconditional stability

of implicit schemes for well-posed problems is depicted by q∗i (k) = (1 + ∆t|k|9/4)−1 (solid

lines), which remain, independently of ∆t, within the strip ±1 and thus the coefficients decay

for all times.

Also, we have thus proved as to why the implicit scheme can work regularizing for ill-posed

problems. Considering the dashed lines, it is obvious that the coefficients ûk, for k ≫ 1 decay

for all values of ∆t, but this does not imply unconditional stability, since the smaller ∆t,

the less multipliers qi have absolute value less than 1. On the other hand, for those k where

qi > 1, decreasing ∆t means slowing down the growth, by having more and more qi(k) just

slightly greater than 1 (for example say qi(k) = 1.001100 ≈ 1.105, such that the according ûk

has grown only 10% at m = 100). When choosing instead ∆t too large, although damping

more ûk, those with associated qi(k) > 1 are much more amplified. In general, we thus state

that

the implicit time integration filters the fast growing parts of a Fourier (or other types of

orthogonal) decomposition of the solution, provided the time step is neither too small nor too

large.

For the fully discretized system (2.88) the interval ∆t can be taken of, depends, of course,

on the number of polynomials appearing in the spatial expansion. As a rule (implying some

type of convergence), one can claim that the more polynomials used, the larger the allowed

interval for the time step gets. Ergo, implicit schemes for ill-posed problems are not uncon-

ditionally stable.

Remark 2.51. Needless to say, the above describes exactly the situation of the forward

and backward (one-dimensional) heat equation, where all coefficients ûk → 0, ∀k 6= 0 in the

well-posed case, for their multipliers lie all within the strip ±1 (with sufficiently small ∆t for

q∗e) and û0(t) = û0(0), i.e. indicating that with Dirichlet boundary conditions (equal on both

boundaries) the solution tends to the constant, namely û0.

Finally, the multipliers applied to the regularizing operators (2.85) are given as

qe = 1 + ∆t |k|9/4(1 − α|k|3/2), qi =
1

1 − ∆t |k|9/4(1 − α|k|3/2)
. (2.91)

Remark 2.52. As mentioned in Remark 2.44, in principle there are always regions of the

regularized spectra which have positive real parts. For the multipliers in discretized time

integration here this means that there are k, such that q(k) > 1, i.e. growing coefficients. As

indicated in Figure 16, this can be alleviated by decreasing the time step, although one shall

not be mislead by the graphs, since α = 1 and hence the denominator in qi has no real zeros.

Decreasing α in qe results in more k where qe(k) > 0 and in larger absolute values of these

qe(k), but a remedy again is lowering ∆t.
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Figure 16: The multipliers for the regularized operators as given in (2.91) with α = 1, left: qe, right:
qi.

As for the implicit case, the interplay between α and ∆t can lead to singularities in qi,

similar to the non-regularized situation (cf. Figure 15). In general, decreasing α needs a

decrease in ∆t as well, to have a non-negative qi, see Figure 17. All conclusions made above

also hold for problems in more than one dimension in the exact same way.

k

q

−1

1

0

(a)

(b)

(c)

Figure 17: The multiplier qi = qi(α,∆t) from (2.91). (a): α = 1

10
, ∆t = 1

2
, (b): α = 5

100
, ∆t = 1

2
,

(c): α = 5

100
, ∆t = 1

10

Caveat: Comparing the multipliers in Figures 16 (right) and 17 (right) shows the difference

in how Fourier coefficients are damped between directly solving an ill-posed problem with

an implicit method and the regularized approach. Thus, one needs additional information to

provide some meaning to solutions resulting from the direct scheme. To put this in another
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way, one can only be sure in the case of well-posedness to filter the right coefficients when

using an implicit method.

Since we have shown that solutions of the Cauchy problems (2.47) and (2.49) have to

be understood as limits of the according regularization, a comparison to the direct implicit

approach connects the regularizing operator to the filter technique. As done in several occa-

sions above we consider the leading coefficients of the Chebyshev expansion of the solution

at time t = 1 for both methods (for the two- and three-dimensional problem), see Table 13.

ai regularized direct

a0 0.00577 0.00578

a1 −0.31594 −0.31590

a2 −0.16895 −0.16896

a5 0.11644 0.11633

a7 0.09029 0.09045

aik regularized direct

a00 −0.05247 −0.05059

a02 0.93001 0.92473

a10 −0.32438 −0.30444

a12 0.28195 0.27024

a20 −0.16327 −0.16213

Table 13: Leading coefficients at t = 1. Left: initial condition ai ≡ 0, values for the regularized (from
Table 12, α = 10−3) and direct method using the same numerical parameters. Right: initial condition
aik = 0, a02 = 1, (Nx, Nz) = (50, 20), for the regularized (using ∆t = 5 × 10−3, α = 2/100) and the
direct method (with ∆t = 0.1).

As mentioned earlier for our general findings on the direct implicit method, the time

step has to be chosen out of a certain interval, which depends strongly on the number of

polynomials used. This becomes quite apparent in Table 13 (right), where ∆t = 0.1 was set

for the direct approach, which was more or less the lowest time step possible for (Nx, Nz) =

(50, 20). Taking into account that this is almost three orders of magnitude larger than the

time step in the regularized case clarifies, why the coefficients differ already in the third

significant digit. In other words, the difference in the time step contributes stronger to

different values of the coefficients than the methods applied.

For the sake of completeness, Figure 18 shows the time evolution of the two-dimensional

problem gained with the direct implicit scheme starting from A0(x) =
√

1 + x2 and approach-

ing the stationary solution as depicted in Figure 3(a). This behavior is qualitatively and even

quantitatively indistinguishable from the results obtained with the regularizing operator and

shown in Figure 12.

Concluding the excursus, by referring to Remark 2.42 (i.e. regularizing operators are not

unique), it is worth mentioning that we found two different methods for solving the ill-posed

Cauchy problems at hand, where the according limits of the schemes result in the same

solutions on bounded time internals. Hence we sufficiently established in which sense these

solutions are to be understood.

End of Excursus II

Considering the regularized time evolution, the steady states given by (2.33) and (2.30) admit

some kind of stability. In classical dynamical systems theory linearizing at some equilibrium
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Figure 18: The solution A(x, t) from the direct implicit method using ∆t = 1/100, N = 100,
A0(x) =

√
1 + x2 (dashed), at (t1, z2, t3, t4) = (0.5, 1, 5, 10) (solid lines) and the steady state Ast(x)

(dashed)

yields a Jacobian matrix, where it is well-known that if all real parts of its eigenvalues are

less or equal to zero the equilibrium is stable. Thus, Remark 2.44 would stand in contrast

to the numerical findings. This is due to neglecting the nonlinear term when calculating

the upper bounds of the symbols. In fact, considering the dispersion relation, including the

linearization, as done in Remark 2.37, and regularization one has

ω(k, α) = c1|k|9/4 − c2(α)|k|15/4 − c3Ast|k|3/4, (2.92)

where ω(k, 0) is not bounded from above (c2(0) = 0) but admits negative values for small |k|,
which strongly depend on Ast. On the other hand, one can find combinations of α and Ast,

such that ω(k, α) ≤ 0 for all k.

Now say
(
S(t)

)
t≥0

is the semigroup generated by the linearized operator, i.e. ω(k, α), and

u∗ is a steady state, i.e. S(t)u∗ = u∗, ∀t. Given some u close to u∗, such that u lies in the

domain of S(t), then

‖S(t)u − u∗‖ = ‖S(t)u− S(t)u∗ + S(t)u∗ − u∗‖ ≤
≤ ‖S(t)u− S(t)u∗‖ + ‖S(t)u∗ − u∗‖︸ ︷︷ ︸

=0

≤ ‖S(t)‖ ‖u − u∗‖.

Thus, ‖S(t)‖ → 0 as t → ∞ (i.e. exponentially and strongly stable semigroups, see Engel &

Nagel (2000)) is sufficient for u∗ to be asymptotically stable, whereas for Lyapunov stability

one only needs ‖S(t)‖ ≤ ∞ (i.e. continuity of S(t)). Both conditions are certainly satisfied if

the growth bound, cf. (2.64), is less than zero, which implies that the spectral bound (here

the upper bound of ω(k, α)) is also less than zero. For Lyapunov stability the growth bound
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can also be zero. But since the assumption of Ast = const. is highly artificial (except for some

limiting cases), one does not gain any substantial insight into the subject of stability from

such a relation. Still, the filter technique revealed the same type of stability as the regularized

operators, although (cf. Figure 15) some Fourier coefficients are amplified. Interestingly, with

appropriate numerical parameters (i.e. a stable scheme) we were not able to see any onset

of destabilization from the steady state as depicted in Figure 12 (even for, say t ≥ 10000).

Overall, for regularizations are normally viewed on finite time intervals, we will not go into

further details on the (long time) stability of the stationary solutions.

Remark 2.53. By reversing the time in the original Cauchy problems one can also obtain

an upper bound for the resulting real parts of the symbols. This is straight forwardly done by

just changing the sign in (2.77) and (2.79) and also holds for the full dispersion relation, cf.

−ω(k, 0) ≤ const., ∀k in (2.92). This is very well supported by using the numerical methods

described above, explicit as well as implicit, with negative time steps. Despite starting from

arbitrary initial conditions, such as A0(x) =
√

1 + x2, the according time evolution does not

show any significant dynamics, the solutions do not experience any oscillations. In virtue of

−ω(k, 0) the according multipliers qe and qi as defined in Excursus II might be greater than

one for some (small) k and hence we have to carefully choose the time step.

The most interesting consideration here is to go backward in time from some previously

computed regularized solution at some 0 < t < T . Take, for example, the solution A(x, 5)

depicted in Figure 18 at t = 5. By now running the explicit Euler scheme (with small

enough ∆t to be stable), backward in time without any regularization and using as an initial

condition the solution A0(x) = A(x, 5), one can observe that at all times 5 − t the solution

passes through every regularized solution at that time and eventually approaches the original

initial condition A0 =
√

1 + x2. Therefore we have found another way to provide some

meaning to the filter automatically applied by implicit schemes. That is, one can allow to

dampen decomposition values of solutions, if these solutions correspond to initial conditions

with certain regularities.

The so far presented time evolution results did not include the perturbation g. In Section

2.2 for certain three-dimensional steady states a hump, cf. (2.45), was taken into account.

The fundamental equation (2.28) also includes suction or blowing devices of the form

g(x, z, t) = −γJ 3/4
−∞vw(x, z, t),

where vw represents the suction or blowing velocity at the wall (and perpendicular to it), see

Section 2.1. Scheichl et al. (2008), for example, used vw(x, t) = V (x)G(t) with

V (x) = 1[xc−l/2,xc+l/2](x), G(t) = 1[0,T ∗](t),

xc representing the center of the blowing slot and l its length. The steps in the function

G were mollified to yield a continuous ”switch on – switch off” behavior. As for the three-

dimensional problem we multiply vw by p = a p(z), a ∈ R, which has to decay to zero, e.g.
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p(z) = (1 + z2)−1. Overall, this yields a perturbation of the form

g(x, z, t) = −γaG(t) p(z)J 3/4
−∞V (x), (2.93)

where the Abel operator applied to the characteristic function can be easily given by a closed

formula.

A physical (maybe even experimental) idea to study the time evolution is to create a lam-

inar, steady boundary layer flow and then impose certain disturbances. It is thus interesting

to also consider the case where the initial condition is set to be the steady state solution at the

upper branch, A0 = Ast, cf. Figure 3. From the evidence on stability mentioned on several

occasions above, one can claim, that A(x, t) = Ast(x), ∀t, with g ≡ 0 (and the numerical

findings confirm this). So by having a non-zero disturbance in the sense that

T ∗∫

0

‖g(t)‖L1dt = const. 6= 0, (2.94)

the solution moves away from the equilibrium. Taking T ∗ less than the overall time for which

the regularization holds, reveals additional insight into the dynamics of the system. First, if

the constant in (2.94) is too small this means A(·, T ∗) is still within the basin of attraction

of Ast and thus the solution has to reapproach its equilibrium. Again, this is sufficiently

confirmed by numerical computations, yielding additional evidence for the stability of the

upper branch steady states (take, for example, a = 1 in (2.93) and T ∗ = 2). Second, strong

enough perturbations pushing the solution outside the basin of attraction result in a finite

time blow-up scenario, which we will study in Section 2.3.3.

2.3.2 Regularization and Higher Order Asymptotic Expansions

We have demonstrated in the above the independence of regularized solutions regarding the

regularizing techniques, i.e. higher derivatives versus direct implicit time integration, and

thus the following shall provide some additional and, more importantly, physical meaning to

the ill-posedness and its regularization.

As pointed out by A. I. Ruban (private communications), when considering the regular-

izing operators (2.85), the third derivative term, with A being the displacement function as

before, relates to the streamline curvature in the main deck. Of course, within the interaction

region, due to the scalings of the variables and the considered order of approximation, the

streamline curvature is neglected, but since the arising instabilities have much shorter length

scales, curvature effects might not be negligible anymore, such that a y gradient of pressure

perturbations is induced.

We will investigate such contributions by presenting some heurisitcal aspects and argu-

ments to see how one can find the proposed pressure terms and in what way they relate to the

fundamental problem in terms of A, see Section 2.1. Then the method of matched asymptotic
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expansions is utilized to embed the heuristical findings into a more strict and substantiated

setting.

Let us, for the moment, consider the situation of planar flows along some surface, which

admits a non-zero curvature κ = κ(x), then it is common to write the Navier-Stokes equations

(2.2) in curvilinear coordinates (cf. the introduction in Section 2.1). By applying classical,

second order boundary layer theory, one obtains

∂yp ∝ ±κu2,

where the sign depends on the orientation of the surface. Since we still have no relevant

surface curvature within the interaction region (note that the hump, if included, has to be

chosen according to restrictions on its curvature), we shall expect such a κ to result from

strongly bent streamlines within the boundary layer.

Basically, from the definition of a streamline, its slope is proportional to v/u and conse-

quently κ ∝ |∂x(v/u)|. Assuming further u to be independent of x, which holds at leading

order for the main deck expansion (cf. u20 = U0(y2) in (2.10)), one obtains κ ∝ |1/u ∂xv|,
relating to the pressure via

∂yp ∝ |u∂xv|. (2.95)

From the expansions and the coordinate scalings for the main deck given in (2.10), we have

established that leading order terms represent a steady and planar flow. Hence, the arguments

above do apply here. Heuristically, one would now conclude, in virtue of (2.13), the pressure

perturbations are of equal order of magnitude as the (so far y2 independent) interaction

pressure, leading to

∂y2p ∝ |∂2
xA|.

Introducing this to the fundamental equation (2.28) would mean that we can include higher

derivatives of A in the problem, by taking the streamline curvature effects into account. Cer-

tain issues remain at this point, as to how the y gradient of some pressure perturbation can be

introduced in the procedure of deriving the solvability condition, at which order (with respect

to the Reynolds number) this occurs and, most importantly, which sign additional derivatives

of A finally have (compared to the time derivative term) to actually act regularizing.

As said above, incorporating the streamline curvature has to originate in the main deck,

hence we shall make a formal extension to the existing expansions (2.10). Say n1, . . . , n4 ∈ N

(and obviously n1 > 4, n2, n3, n4 > 10) we then expand the flow field as

u2 ∼ U0 + ǫ4u21 + · · · + ǫn1un

v2 ∼ ǫ10v21 + · · · + ǫn2vn

w2 ∼ ǫ10w21 + · · · + ǫn3wn

p2 ∼ 1−U2
00

2 + ǫ4p00x+ ǫ10pi + · · · + ǫn4pn

(2.96)

with pi denoting the interaction pressure as found in Section 2.1.
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Remark 2.54. The dots in the expansions (2.96) shall symbolize that, depending on the

values of n1, . . . , n4, one might still have non-zero expansion terms at certain orders lying

inbetween. Also, from the definition of ǫ = Re−1/20 it is reasonable to assume all orders,

i.e. exponents of ǫ, to be natural numbers. Of course, as it is always the case with such

formal asymptotic techniques, there is no guarantee that integer powers of the given ǫ are the

only possibilities to define expansion orders. Nevertheless, the plausibility of the resulting

equations and matching rules provides sufficient argumentation for such an assumption.

As usual, we substitute the expansions (2.96) into the Navier-Stokes equations (2.2).

Then, as has already been shown for the main deck in Section 2.1, one obtains from the

momentum and mass balance at order ǫ0

U0∂xu21 + v21U
′
0 = U ′′

0 − p00

∂y2pi = 0

div(u21, v21) = 0,

(2.97)

which can be integrated to obtain u21 and v21 in the form known from Section 2.1, Equation

(2.13), as

v21 = −U0


∂xA

p00
+

y2∫

0

U ′′
0 (s) − p00

U2
0 (s)

ds




u21 = U ′
0


 A

p00
+ x

y2∫

0

U ′′
0 (s) − p00

U2
0 (s)

ds


+ x

U ′′
0 − p00

U0
.

(2.98)

The next order of interest here is ǫ6, as it contains the term U0∂xv21 in the y momentum

equation on the left hand side. In virtue of (2.95) this shall be proportional to the y gradient

of the pressure. Since so far the ni are arbitrary, the momentum equations contain terms,

such as ǫn1−1∂tun or ǫn2vn∂y2v21 or −ǫn4−4∂xpn or ǫn3[(ǫ12∂2
x +∂2

y2
+ ǫ12∂2

z )w22], to name but

a few. The crucial term obviously appears in the y momentum balance in the form of

−ǫn4−10∂y2pn,

where we can now choose n4 = 16, such that at order ǫ6 we have

U0∂xv21 = −∂y2pn. (2.99)

Remark 2.55. Considering all possible combinations of n1, . . . , n4, together with their con-

straints n1 > 4 and n2, n3, n4 > 10, shows that only the y gradient of the pressure at order

n4 = 16 can enter the equation at order ǫ6. In other words, the y gradient of the pressure pn

is uniquely determined by (2.99), independently of the values of n1, . . . , n3, and n4 = 16 is

the only possibility to have such a gradient proportional to U0∂xv21. Additionally, as required

from the principles of matched asymptotic expansions, the lower order equations, e.g. (2.97),

determining all lower order terms, remain unchanged.
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Remark 2.56. Observe, that the equation yielding the new pressure term pn only involves

lower order terms, which are already known. With n4 = 16, the pressure expansion now

reads

p2 ∼ 1−U2
00

2 + ǫ4p00x+ ǫ10pi + · · · + ǫ16pn,

where we obviously have several (integer) orders between the interaction pressure and the

new term. It is yet to be determined whether there are (relevant) pressure contributions

between the expansion orders 10 and 16. Nevertheless, (2.99) can be viewed as an ordinary

differential equation with respect to y2 and hence substituting v21 from (2.98) and integration

yields

∂y2pn =
U2

0 (y2)

p00
∂2

xA ⇒ pn(x, y2, z, t) = pn(x, 0, z, t) +
1

p00
∂2

xA

y2∫

0

U2
0 (y)dy.

Thus we found a higher order pressure contribution containing higher derivatives of the

function A. The matching rule then demands in principle

p1 = p2 as y2 → ∞, y1 → 0,

which can be written as (we shall demonstrate this later in more detail)

pn(x, 0, z, t) − c

p00
∂2

xA = p1n(x, 0, z, t),

where p1n would be the according higher order term in the upper deck and c some positive

constant. Since here we do not consider or change the original upper deck expansions, p1n = 0.

Therefore, we get

pn(x, 0, z, t) =
c

p00
∂2

xA.

In Section 2.1 we defined the interaction pressure pi to be p32, which, for being independent

of y3, can also be defined to be p32 as y3 → ∞ (which matches with the main deck pressure

at y2 = 0). This then means, by writing the pressure expansion in the lower deck as

p3 ∼ 1−U2
00

2 + ǫ4p00x+ ǫ10(p32 + ǫ6p3n),

such that we can redefine pin := p32 + ǫ6p3n = p32 + ǫ6pn|y2=0 and view this as an asymptotic

expansion of the interaction pressure, we arrive at

pin(x, z, t) = pi(x, z, t) + α∂2
xA(x, z, t), α = Re−3/10 c

p00
→ 0.

By substituting pin, using (2.29) for pi, into (2.28) one can derive a new fundamental problem

for A, including an additional (regularizing) operator with some arbitrary but small and

positive parameter α.

77



Remark 2.57. As asymptotic expansions are not unique, one can not claim that there are

actual ”right” or ”wrong” expansions and since convergence in any sense is not an issue,

every ansatz is justified, as long as the principles are applied correctly. Hence, choosing an

expansion can rather be a matter of physical interpretation and relevance to the original

equations. Here, for example, pn has been shown to relate to the streamline curvature. Still,

ignoring the dots in (2.96) and the expansions in the other decks and assuming the next

relevant order (for the pressure) is 16 would be a very crude application of the principles of

asymptotic expansions, for which we neither have a mathematical nor physical argument.

With the above remark in mind, we shall now take into account all three decks and,

by being as thorough as possible, expand the flow fields in consecutive integer orders. To

make the analysis more accessible, the expansions, resulting equations and (partial) solutions

governing the higher order terms are presented first for all decks, such that a subsequent

application of the according matching rules finally leads to the sought results.

The upper deck. To abridge the calculations, in virtue of the lower deck expansions

as given in Braun et al. (2012) for the two dimensional flow case, we claim the next relevant

pressure term to be at order 13. Thus, we write the expansions for the upper deck as

u1 ∼ U00 − ǫ4U01x+ ǫ10u12 + ǫ11u13 + ǫ12u14 + ǫ13u15 + ǫ14u16 + ǫ15u17 + ǫ16u18

v1 ∼ ǫ4U01y1 + ǫ10v12 + ǫ11v13 + ǫ12v14 + ǫ13v15 + ǫ14v16 + ǫ15v17 + ǫ16v18

w1 ∼ ǫ10w12 + ǫ11w13 + ǫ12w14 + ǫ13w15 + ǫ14w16 + ǫ15w17 + ǫ16w18

p1 ∼ 1 − U2
00

2
+ ǫ4p00x+ ǫ10pi + ǫ13p13 + ǫ14p14 + ǫ15p15 + ǫ16p16.

Substitution into the conservation of mass shows

div(u1j , v1j , w1j) = 0, j ≥ 2, (2.100)

whereas the momentum equations reveal at orders ǫ7 and ǫ8

U00∂xu13 = 0

U00∂xv13 = 0

U00∂xw13 = 0

,

U00∂xu14 = 0

U00∂xv14 = 0

U00∂xw14 = 0.

Obviously, for both velocity terms, indexed 13 and 14, the trivial solution is possible, as we

do not know any matching condition at y1 = 0 (yet). Nevertheless, we will (for now) assume

them non-zero, just to demonstrate their possible contributions. For the orders ǫ9 through

ǫ12 the procedure of differentiating the three momentum equations with respect to x, y1 and

z, respectively, adding the resulting three equations and using (2.100), shall be applied. In

the following, if not stated otherwise, all equations are assumed to hold for all t ∈ [0, T ].
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Thus, we obtain at order ǫ9

U00∂xu15 = −∂xp13

U00∂xv15 = −∂y1p13

U00∂xw15 = −∂zp13

⇒
∆p13 = 0 on R × R

+× R

∂y1p13 = −U00∂xv15 at y1 = 0.
(2.101)

This Neumann problem posed for p13 is exactly the same as the one for the interaction

pressure pi, cf. (2.8), with the same general solution, v15 replacing v12.

The next higher order pressure term p14 has to satisfy a Neumann problem for the Poisson

equation, since at order ǫ10 we find

U01x ∂xu12 − U01y1 ∂y1u12 + U01u12+ U00∂xu16 = −∂xp14

U01x ∂xv12 − U01y1 ∂y1v12 − U01v12+ U00∂xv16 = −∂yp14

U01x ∂xw12 − U01y1 ∂y1w12+ U00∂xw16 = −∂zp14

⇒
∆p14 = 2U01(∂y1v12 − ∂xu12) =: F on R × R

+× R

∂y1p14 = −U01x ∂xv12 + U01v12 − U00∂xv16 =: f at y1 = 0.

(2.102)

Assuming the solvability condition for the Poisson problem (i.e. the integral over the inho-

mogeneity equals the integral over the boundary condition) to be satisfied (otherwise the

Neumann problem does not even have a solution), we can write the general solution formula

using the Neumann Green’s function from (2.8). We will not go into any further details of

this problem at the moment and proceed with the next order.

At order ǫ11 we have

∂tu12 + U01x ∂xu13 − U01y1 ∂y1u13 + U01u13+ U00∂xu17 = −∂xp15

∂tv12 + U01x ∂xv13 − U01y1 ∂y1v13 − U01v13+ U00∂xv17 = −∂y1p15

∂tw12 + U01x ∂xw13 − U01y1 ∂y1w13+ U00∂xw17 = −∂zp15

⇒
∆p15 = 2U01(∂y1v13 − ∂xu13) on R × R

+× R

∂y1p15 = −∂tv12 − U01x ∂xv13 + U01v13 − U00∂xv17 at y1 = 0.

(2.103)

Again, this represents the Neumann problem for the Poisson equation and the same arguments

made above hold. Similarly, the problem at order ǫ12 for p16 reads

∂tu13 + U01x ∂xu14 − U01y1 ∂y1u14 + U01u14+ U00∂xu18 = −∂xp16

∂tv13 + U01x ∂xv14 − U01y1 ∂y1v14 − U01v14+ U00∂xv18 = −∂y1p16

∂tw13 + U01x ∂xw14 − U01y1 ∂y1w14+ U00∂xw18 = −∂zp16

⇒
∆p16 = 2U01(∂y1v14 − ∂xu14) on R × R

+× R

∂y1p16 = −∂tv13 − U01x ∂xv14 + U01v14 − U00∂xv18 at y1 = 0.

(2.104)
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As we are rather interested here in determining whether pressure terms between the orders

10 and 16 contain derivatives of the displacement function A, we shall make the assumption

of (u13, v13, w13) and (u14, v14, w14) to be zero, since these are possible solutions satisfying

the necessary decay at infinity. Thus, problems (2.103) and (2.104) can be rewritten as

∆p15 = 0 on R × R
+× R

∂y1p15 = −∂tv12 − U00∂xv17 at y1 = 0.

and
∆p16 = 0 on R × R

+× R

∂y1p16 = −U00∂xv18 at y1 = 0.

The problem for p14, Equation (2.102), contains u12 and v12 on the right hand side F

and in the boundary condition f . Denoting the according Green function by G (cf. the

calculations following (2.8)) we formally write a solution as

p14 = −
∫

R×R+×R

GFdξ1dξ3dξ2 +

∫

R2

Gfdξ1dξ2,

where, in general, one also has an undetermined integration constant proportional to one

over the volume of the domain, which evaluates to zero in the present case.

We will return to the pressure terms above later (when deriving the matching rules) and

shall just make two more remarks. As it is commonly known, especially in the two dimensional

steady flow case, a general solution of Laplace’s equation with a zero far field condition (here

as y1 → ∞) has an exponential behavior, such that one may write the interaction pressure

and the vertical velocity component as

pi(x, y1) = pi(x, 0)e
−cy1 , v12(x, y1) = v12(x, 0)e

−cy1 , (2.105)

with c being some positive constant. The same can be easily shown to hold in the three

dimensional case by applying the method of separation of variables.

Finally, note that p16 is at the order of the heuristically derived pn above, which means, in

virtue of the presence of p13, p14 and p15, if we would have continued with the crude expansions

(2.96), where we also left the upper deck unchanged and pn followed pi as the next relevant

term, we would have obtained only a fraction of the actually contained information.

The main deck. We write the according expansions as

u2 ∼ U0(y2) + ǫ4u21 + ǫ5u22 + ǫ6u23 + ǫ7u24 + ǫ8u25 + ǫ9u26 + ǫ10u27

v2 ∼ ǫ10v21 + ǫ11v22 + ǫ12v23 + ǫ13v24 + ǫ14v25 + ǫ15v26 + ǫ16v27

w2 ∼ ǫ10w21 + ǫ11w22 + ǫ12w23 + ǫ13w24 + ǫ14w25 + ǫ15w26 + ǫ16w27

p2 ∼ 1 − U2
00

2
+ ǫ4p00x+ ǫ10pi + ǫ13p23 + ǫ14p24 + ǫ15p25 + ǫ16p26,
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with the conservation of mass now reading

div(u2j , v2j) = 0, j = 1, . . . , 6

div(u27, v27, w21) = 0,

∂zw2j = 0, j > 1.

(2.106)

The behavior of U0 is given in (2.11) and formulae for u21 and v21 are given in (2.98).

At orders ǫ1 through ǫ3 the momentum and mass balances combined yield simple differential

equations, which can be integrated in general to read

U ′
0v22 + U0∂xu22 = U ′

0v22 − U0∂y2v22 = 0 ⇒
{
v22 = −U0(y2)∂xB2(x, z, t)

u22 = U ′
0(y2)B2(x, z, t)

(2.107)

and

U ′
0v23 + U0∂xu23 = U ′

0v23 − U0∂y2v23 = 0 ⇒
{
v23 = −U0(y2)∂xB3(x, z, t)

u23 = U ′
0(y2)B3(x, z, t)

and

U ′
0v24 + U0∂xu24 = U ′

0v24 − U0∂y2v24 = 0 ⇒
{
v24 = −U0(y2)∂xB4(x, z, t)

u24 = U ′
0(y2)B4(x, z, t)

∂yp23 = 0,

(2.108)

where B2, B3 and B4 are so far undetermined functions representing displacement effects

similar to A.

At the order ǫ4 lower order terms enter as inhomogeneities to give

U ′
0v25 + v21∂y2u21 + u21∂xu21 + U0∂xu25 = ∂2

y2
u21

∂yp24 = 0,

with the general solution

v25 = −U0(y2)

(
∂xB5(x, z, t) +

y2∫

0

h(x, s, z, t)

U2
0 (s)

ds

)

h = ∂2
y2
u21 − v21∂y2u21 − u21∂xu21,

(2.109)

where B5 is in analogy to the other Bi’s.

At order ǫ5 we find

U ′
0v26 + v22∂y2u21 + v21∂y2u22 + ∂tu21 + u22∂xu21 + u21∂xu22 + U0∂xu26 = ∂2

y2
u22

∂y2p25 = 0,

81



with the general solution

v26 = −U0(y2)

(
∂xB6(x, z, t) +

y2∫

0

h(x, s, z, t)

U2
0 (s)

ds

)

h = ∂2
y2
u22 − (v22∂y2u21 + v21∂y2u22 + ∂tu21 + u22∂xu21 + u21∂xu22).

(2.110)

And finally at order ǫ6 we have

U ′
0v27 + v23∂y2u21 + v22∂y2u22 + v21∂y2u23 + ∂tu22 + u23∂xu21+

+ u22∂xu22 + u21∂xu23 + U0∂xu27 = ∂2
y2
u23 − ∂xpi

U0∂xv21 = −∂y2p26 ⇒ ∂y2p26 =
U2

0

p00
∂2

xA

U0∂xw21 = −∂zpi ⇒ w21 = − 1

U0

x∫

−∞

∂zpi(s, z, t)ds,

(2.111)

such that p26 is equal to pn in (2.96), with the general solution again reading

p26(x, y2, z, t) = p26(x, 0, z, t) +
1

p00
∂2

xA

y2∫

0

U2
0 (y)dy =

= p26(x, 0, z, t) +
U2

00

p00
y2∂

2
xA− U2

00

p00
∂2

xA

y2∫

0

(
1 − U2

0 (y)

U2
00

)
dy

︸ ︷︷ ︸
=:cp

,

(2.112)

where the integral in the second line exists as y2 → ∞ and cp > 0 in this limit.

We shall now reconsider the solution formulae for the expansion terms of v2, as we need

them for establishing a working matching rule. Note that v22, v23 and v24, Equations (2.107)

and (2.108) essentially have the same structure, only differing in the integration ”constants”

Bi. Since U0 → U00 for large y2, these velocity terms evaluate to a function independent of

y2 at the boundary to the upper deck. By the usual matching procedure they consequently

have to match with the upper deck expansion terms of v1 at the same order. But since orders

ǫ11 and ǫ12 are not present in the upper deck, we may also set B2 and B3 equal to zero.

The term v24 appears at order ǫ13 and by the same argument as before has to match with

the velocity contribution at the same order in the upper deck, cf. v15. Hence (2.108) remains,

and so does (2.109).
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Setting v22 = 0 in (2.110) leaves only ∂tu21 in the function h, such that by using (2.98)

we obtain

v26 = −U0(y2)

(
∂xB6(x, z, t) −

y2∫

0

∂tu21(x, s, z, t)

U2
0 (s)

ds

)
=

= −U0(y2)

(
∂xB6(x, z, t) −

∂tA

p00

y2∫

0

U ′
0(s)

U2
0 (s)

ds

)
.

(2.113)

Analogously, in (2.111) substituting v22 = v23 = 0, and combining the x and z momentum

equations using (2.106), we obtain

U ′
0v27 − U0∂yv27 = −∂xpi −

x∫

−∞

∂2
zpi(s, z, t)ds

⇒ v27 = −U0(y2)

(
∂xB7(x, z, t) −

(
∂xpi +

x∫

−∞

∂2
zpids

) y2∫

0

1

U2
0 (s)

ds

)
.

(2.114)

Matching procedures. We start by matching the upper and main deck pressure and

vertical velocity v in the general form of

!
=

{
ǫ10pi + ǫ13p13 + ǫ14p14 + ǫ15p15 + ǫ16p16

ǫ10pi + ǫ13p23 + ǫ14p24 + ǫ15p25 + ǫ16p26

!
=

{
ǫ4U01y1 + ǫ10v12 + ǫ13v15 + ǫ14v16 + ǫ15v17 + ǫ16v18

ǫ10v21 + ǫ13v24 + ǫ14v25 + ǫ15v26 + ǫ16v27





as
y1 → 0

y2 → ∞.
(2.115)

Since Equations (2.98), (2.108), (2.109), (2.113) and (2.114) contain solution formulae in

closed form for the individual expansion terms v2, we evaluate these with respect to large y2,

i.e.

ǫ10 : v21 ∼ −U00

(
∂xA

p00
+ c21

)

ǫ13 : v24 ∼ −U00∂xB4

ǫ14 : v25 ∼ −U00

(
∂xB5 + c25

)

ǫ15 : v26 ∼ −U00

(
∂xB6 −

∂tA

p00
c26

)

ǫ16 : v27 ∼ −U00

(
∂xB7 −

(
∂xpi +

x∫

−∞

∂2
zpids

)
c27

)
,

(2.116)
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where

c21 =

y2∫

0

U ′′
0 (s) − p00

U2
0 (s)

ds ∼
{
y2 y2 → ∞
const. y2 → 0

c25 =

y2∫

0

∂2
su21 − v21∂su21 − u21∂xu21

U2
0 (s)

ds ∼
{
y2 y2 → ∞
y−1
2 y2 → 0

c26 =

y2∫

0

U ′
0(s)

U2
0 (s)

ds ∼
{
const. y2 → ∞
y−2
2 y2 → 0

c27 =

y2∫

0

1

U2
0 (s)

ds ∼
{
y2 y2 → ∞
y−3
2 y2 → 0.

(2.117)

For the matching procedure to work one has to split the individual singularities in the

integrals in (2.117) to render them bounded, see Appendix A. These singularities must then

be matched to the according upper and lower deck expansion terms. We will not go into

any further details here, as it will be argued later that the contributions from the vertical

velocity v2 do not necessarily play an important role with respect to our main purpose of

regularization.

Next we write the individual solutions of the Laplace and Poisson problems, Equations

(2.101) through (2.104), of the upper deck pressure terms in their Green’s function formulae

and consider them for y1 → 0, i.e.

p13(x, 0, z, t) =
U00

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
∂ξ1v15(ξ1, 0, ξ2, t) dξ1dξ2

p14(x, 0, z, t) =

∫

R2

G[−U01ξ1 ∂ξ1v12 + U01v12 − U00∂ξ1v16](ξ1, 0, ξ2, t) dξ1dξ2−

−
∫

R×R+×R

G[∂ξ3v12 − ∂ξ1u12]dξ1dξ3dξ2

p15(x, 0, z, t) =
1

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
[∂tv12 + U00∂ξ1v17](ξ1, 0, ξ2, t) dξ1dξ2

p16(x, 0, z, t) =
U00

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
∂ξ1v18(ξ1, 0, ξ2, t) dξ1dξ2,

(2.118)

whereG denotes Green’s function, as mentioned earlier, and p14 is given modulo some positive

constants.

To apply the matching rule between the upper and main deck we observe that the main

deck velocity terms (2.116) either evaluate to a function independent of y2 or grow linearly

as y2 → ∞. According to the scaling of y1 and y2 given in (2.6) the growth in the main deck

has to match with terms in the upper deck (6 orders below). For example at order ǫ10 in the
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main deck we have

v21 ∼ −U00
∂xA

p00
− U00c21 as y2 → ∞,

where the first term is independent of y2 and hence matches to v12 and the second term,

which grows with y2, cf. Appendix A, matches to U01y1 (at order ǫ4), which decays linearly

as y1 → 0. Therefore this matching procedure is complete. In consequence the remaining

vertical velocities in the limit y2 → ∞ shall be given as

v24 ∼ −U00∂xB4(x, z, t)

v25 ∼ −U00

(
∂xB5(x, z, t) + c∗25 −

p2
00x

U4
00

y2

)

v26 ∼ −U00

(
∂xB6(x, z, t) +

∂tA

p00
c∗26

)

v27 ∼ −U00

(
∂xB7(x, z, t) −

(
∂xpi +

x∫

−∞

∂2
zpids

)
(c∗27 + y2/U

2
00)

)
,

with the modified integral terms c∗25, c
∗
26 and c∗27 as derived in Appendix A and where the

growth for y2 → ∞ matches to the according terms in the upper deck. Furthermore, we can

now match the derivatives with respect to x of the velocity terms in order to obtain a full

description of the pressure terms in (2.118). Therefore we have

v24 match to v15 ⇒ ∂xv15(x, 0, z, t) = −U00∂
2
xB4(x, z, t)

v25 match to v16 ⇒ ∂xv16(x, 0, z, t) = −U00

(
∂2

xB5(x, z, t) + ∂xc
∗
25

)

v26 match to v17 ⇒ ∂xv17(x, 0, z, t) = −U00

(
∂2

xB6(x, z, t) +
∂2

xtA

p00
c∗26

)

v27 match to v18 ⇒ ∂xv18(x, 0, z, t) = −U00

(
∂xB7(x, z, t) −

(
∂2

xpi + ∂2
zpi

)
c∗27

)
,

yielding

p13(x, 0, z, t) = −U
2
00

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
∂2

ξB4 dξ1dξ2

p14(x, 0, z, t) =

∫

R2

G
[
−U01ξ1 ∂ξ1v12 + U01v12 + U2

00

(
∂2

xB5 + ∂xc
∗
25

)]
(ξ1, 0, ξ2, t) dξ1dξ2−

−
∫

R×R+×R

G[∂ξ3v12 − ∂ξ1u12]dξ1dξ3dξ2

p15(x, 0, z, t) =
1

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
[
− U00

p00
∂2

xtA− U2
00

(
∂2

xB6 +
∂2

xtA

p00
c∗26
)]
dξ1dξ2
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p16(x, 0, z, t) = −U
2
00

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
[
∂2

xB7 − (∂2
xpi + ∂2

zpi)c
∗
27

]
dξ1dξ2.

Regarding the pressure p2 in (2.115) we have no formulae for the terms p23, p24 and p25

but know that they do not vary with y2. The linear growth of p26 (at order ǫ16), cf. (2.112),

matches to the linear decay of p12 (at order ǫ10), stemming from the exponential, see (2.105).

Therefore the matching rule yields

p26 match to p16 ⇒ p16(x, 0, z, t) = p26(x, 0, z, t) −
cp
p00

∂2
xA.

Eventually, we want the higher order pressure terms to relate to the original interaction

pressure pi in the form of representing an expansion of pi. Hence, we shall evaluate these

pressure terms in the lower deck, where pi was defined as p32, cf. Section 2.1, Equation (2.28).

Consequently, with p3 being independent of y3 and p2 having only p26 varying with y2, we

can define a new interaction pressure p∗i at y2 = 0 as

p∗i (x, z, t) = pi(x, z, t) + ǫ3p13(x, 0, z, t) + ǫ4p14(x, 0, z, t) + ǫ5p15(x, 0, z, t) + ǫ6p26(x, 0, z, t).

Remark 2.58. One can now argue, as all the new terms are asymptotically small against

the original pi, they shall not appear in the fundamental equation for A. Nevertheless, as the

length scale of a disturbance or as parts of the solution (in terms of its Fourier decomposition)

gets smaller, spatial derivatives of the unknown A do not remain (asymptotically) small and

hence are not negligible. Furthermore, all terms in p∗i , not containing A, can be viewed,

with respect to the fundamental problem (2.28), as asymptotically small inhomogeneities or

contributions, neither stabilizing or destabilizing the solution.

Thus, recalling the main goal of this section, i.e. finding regularizing operators in higher

order expansions, we will modify p∗i for the sake of numerical computations and comparison

with the regularization derived in the previous section.

Obviously, all Bi can be collected to form some inhomogeneity and are hence left out, e.g.

p13 on the whole. In virtue of the original pi, where R1∂2
xA represents a differential operator

acting on A, we will compare all other appearing types of derivatives of A to this term, to

decide whether we have to take them into account. Considering (2.98) it can be easily seen

that p14 will only comprise of the same order of differentiation of A as pi (at the maximum).

It additionally contains nonlinearities such as A∂xA, which also do not contribute to any

regularizing effects. Hence, p14 can be canceled from p∗i . The pressure term p15 contains the

time derivative of A and shall thus be taken into account, as this could change the structure

of the Cauchy problem per se. The most important term here, as we have demonstrated in

the heuristic motivation, is p26 at y2 = 0, as this term accounts for the streamline curvature.
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Hence, we eventually obtain the new interaction pressure to be

p∗i (x, z, t) = pi(x, z, t) + ǫ5
1

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
[
− U00

p00
∂2

xtA− U2
00

∂2
xtA

p00
c∗26
]
dξ1dξ2+

+ ǫ6(−U
2
00

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
[
− (∂2

xpi + ∂2
zpi)c

∗
27

]
dξ1dξ2 +

cp
p00

∂2
xA) =

= pi(x, z, t) − ǫ5c1

∫

R2

1

|(x, z) − (ξ1, ξ2)|
∂2

xtAdξ1dξ2+

+ ǫ6c2

∫

R2

1

|(x, z) − (ξ1, ξ2)|
(∂2

xpi + ∂2
zpi) dξ1dξ2 + ǫ6c3∂

2
xA,

where c1, c2, c3 are positive constants. This formula for the interaction pressure is quite in-

volved and becomes even more so when included in the fundamental problem for A. Therefore

we will further analyze the contributions of the new terms in virtue of the dispersion relation,

which we dealt with in the previous section.

First, consider the potential integral over the derivatives of pi. When substituting (2.29)

for pi and using the operator notation for the potential integral we obtain

∫

R2

1

|(x, z) − (ξ1, ξ2)|
(∂2

xpi + ∂2
zpi) dξ1dξ2 = −R1

(
R1([∂2

x + ∂2
z ]∂2

xA)
)
,

although in this version not much insight into the meaning of this term has been gained. But

by using the operator symbols and their characteristics, as derived in the previous section,

see e.g. (2.69) and (2.70), one can easily see

−F
(
R1
(
R1([∂2

x + ∂2
z ]∂2

xA)
))

= −(k2 + l2)−1((ik)2 + (il2))(ik)2FA = −k2FA,

which is exactly the same Fourier symbol as for ∂2
xA in p∗i . From a practical numerical

computation viewpoint, the potential integral is either not sufficiently resolved or yields too

big matrices when satisfying a certain accuracy requirement. Hence, by the equality to

the classical second derivative, with respect to the regularization, of course, we can safely

claim the information coming from the double application of the potential integral is already

contained in the derivative term.

Such an argumentation cannot be done in this straight forward manner for the mixed

(time and spatial) derivative and we will thus carry it along when substituting p∗i for p32 in

(2.28), where consequently two new terms appear on the right hand side, reading (modulo

some constants)

x∫

−∞

1

(x− s)1/2

∫

R2

∂2
ξ1

+ ∂2
ξ2

|(s, z) − (ξ1, ξ2)|
∂tAdξ1dξ2 ds−

x∫

−∞

1

(x− ξ)1/2
(∂3

ξA+ ∂ξ∂
2
zA)dξ,
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where the Fourier symbol notation yields

−(ik)−1/2(k2 + l2)1/2F∂tA− (ik)−1/2((ik)3 − (ik)l2)FA.

Note that we did not say anything about the existence of the Fourier transform of A and one

might therefore replace A with the ansatz eωtei(kx+lz), made for the dispersion relation in the

previous section. Linearizing then the fundamental problem around some constant steady

state (as mentioned in Remark 2.37) and only taking into account derivative terms yields

[
J 3/4
−∞ − J 1/2

−∞R1(∂2
x + ∂2

z )
]
∂te

ωtei(kx+lz) =

= J 1/2
−∞R1(∂3

x + ∂x∂
2
z ) eωtei(kx+lz) − J 1/2

−∞(∂3
x + ∂x∂

2
z )eωtei(kx+lz),

such that the simplified dispersion relation is given as

ω = [(ik)−3/4 + (ik)−1/2(k2 + l2)1/2]−1
(
(ik)1/2[−(k2 + l2)1/2 + (k2 + l2)]

)
=

= [1 + (ik)1/4(k2 + l2)1/2]−1
(
(ik)5/4[−(k2 + l2)1/2 + (k2 + l2)]

)
.

(2.119)

Comparing this to the original right hand side symbols (2.78) one can see the influence of the

mixed derivative (i.e. the inverse term in square brackets) and the second derivative, where

for the latter we have the physical connection to the streamline curvature. With respect to

a possible regularization, it can be easily seen, on the one hand, that the contribution from

the mixed derivative in its Fourier symbol representation remains bounded and even tends

to zero as |(k, l)| → ∞. On the other hand, the purely spatial derivatives are obviously of

higher order (in some sense) and thus, in virtue of adding a regularizing operator, we only

consider the streamline curvature term.

This finally results in the interaction pressure to be

p∗i (x, z, t) = − 1

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
∂2

ξ1Adξ1dξ2 + α∂2
xA(x, z, t),

with α = ǫ6cp > 0 (cf. (2.112)), where we also have applied the affine transform mentioned

in Section 2.1, and in the additional term on the right hand side in (2.28) of the form

−α
x∫

−∞

(x− ξ)−1/2(∂3
ξA+ ∂ξ∂

2
zA)dξ = −αJ 1/2

−∞(∂3
xA+ ∂x∂

2
zA)(x, z, t). (2.120)

Reconsidering the dispersion relation (2.119) without the mixed derivative term yields

ω = ei sgn(k)5π/8(−|k|5/4(k2 + l2)1/2 + |k|5/4(k2 + l2)),
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with the real part of the right hand side being (in polar coordinates (r, φ))

cos(5π/8)︸ ︷︷ ︸
<0

(−|k|5/4(k2 + l2)1/2 + |k|5/4(k2 + l2)) = | cos(φ)|5/4(r9/4 − r13/4),

where it is now easy to see that the right hand side is bounded from above for all r and φ.

Additionally, this shows that the regularizing derivatives proposed in (2.85) already represent

a good guess and numerical solutions gained with this term are almost indistinguishable from

solutions including (2.120). In virtue of such an observation, due to the rather involved

numerical treatment of (2.120), this term shall be seen as a physical justification of including

higher derivatives to regularize the Cauchy problem (2.47).

Remark 2.59. The planar equivalent of the regularization term (2.120) can also be found

performing the same steps as above, which results in the same term as if taking A independent

of z in (2.120).

For comparison reasons we computed a solution of the planar problem (2.49) including

(2.120) up to time t = 1 (with the usual initial conditions of a ≡ 0 and excluding any

perturbation). Table 14 shows the leading coefficients for different N in comparison to the

coefficients obtained from using the direct implicit time integration. One can clearly see the

need of overproportionally high polynomial degrees when using (2.120) to regularize the time

evolution. This, of course, also depends strongly on the parameter α.

ai direct N = 100 N = 300

a0 0.00578 −0.03601 0.00623

a1 −0.31590 −0.32431 −0.31609

a2 −0.16896 −0.18280 −0.17048

a5 0.11633 0.13254 0.11647

a7 0.09045 0.09506 0.09072

Table 14: Comparison of the leading coefficients for the solution at t = 1 between the direct implicit
method (cf. Table 13 (left)) and the regularization with curvature term at α = 1/100, ∆t = 1/100
and various N .

The influence of the value of the regularization parameter α can be further seen from the

steady state solutions including (2.120), see Figure 19. This again shows a typical characteris-

tic of regularizing operators, namely to find the balance between altering the problem (and its

solutions) and a good working regularization, when choosing the value of the regularization

parameter.

2.3.3 Self-Similar Finite Time Blow-up

In the following the Cauchy problems and the presented solutions are always to be understood

in the regularized sense established in the previous sections. Also, numerical results are

gained with highest resolution necessary to depict the sought characteristics, using the filter
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Figure 19: Steady states including curvature term. Left: at Γ = 2 for α = 0 (dashed) and α = 0.1
(solid). Right: change in fundamental curve, α = 0 (dashed).

(i.e. direct implicit) method. Hence, we will refrain from studying convergence properties

and accuracy as well as regularization issues, for which we refer to the previous sections.

The whole present section deals with one particular set-up, where for the sake of more

physical meaning we will not be as general as in Section 2.3.1. Consider the stationary two-

dimensional upper branch solution at a certain Γ , cf. Figure 3(a) as an initial condition. By

introducing a three-dimensional blowing slot, i.e. the forcing function given in (2.93), the

flow, so far independent of z, will experience disturbances in z direction and is thus governed

by the Cauchy problem (2.47).

As mentioned in Section 2.3.1, in the paragraph following (2.93), the intensity of the

perturbation, i.e. (2.94), has to exceed a certain threshold, to push the solution outside

the basin of attraction of the steady state. In such situations the occurrence of finite time

singularities are well established for the planar problem (2.49) (see Smith (1982) and for

more details Scheichl et al. (2008)), whereas for (2.47), to the authors knowledge, only the

study in Duck (1990) (for a globally three-dimensional setting) provides a first glance at the

finite time blow-up. Supporting its existence in principle can be done by viewing the Cauchy

problems as

∂tA(t) = A∗A(t) + F (A), F (A) =
[
J 3/4
−∞
]−1

(−A2 + x2 − Γ + g)

with A∗ as defined in (2.85) (maybe also for α = 0) and F (A) as a nonlocal nonlinearity.

Remark 2.60. Ball (1977) provides an existence and uniqueness theorem for (maximally

defined mild) solutions on [0, T ) of such problems, where A∗ has to be the generator of a

strongly continuous semigroup and F has to be locally Lipschitz. He shows further, that if

T < ∞ the solution becomes unbounded in the given norm. A textbook example for this

would be the heat equation with quadratic nonlinearity or more general reaction-diffusion

90



equations as mentioned in, e.g. Galaktionov & Vázquez (2002). For an operator theoretic

approach we refer to Payne (1975) and references therein.

One common result of these considerations is that blow-up has to be always connected

to some norm, i.e. while a classical solution (considered in the L∞ norm) can experience a

singularity, this might not be seen in a weaker norm (e.g. weak or mild solutions). Another

common aspect is the space of allowable initial conditions to contain a subset, on which the

evolution blows up in finite time.

In the problem here, parts of a subset of initial conditions leading to the singularity can

be found empirically by varying the integral criterion (2.94) for a given perturbation and thus

single out solutions at time T ∗, which when used as an initial condition admit the finite time

blow-up. For the case at hand, the blowing slot centered at xc = −2 with length l = 1 (cf.

Scheichl et al. (2008)), p(z) = 1
1+z2 and the choice of parameters a = 3 and T ∗ = 2 proved

to be sufficient.

Apart from the principle existence of the blow-up scenario, Galaktionov & Vázquez (2002)

studied various further aspects of occurring singularities by raising (and answering) some basic

questions concerning when, where and how does the singularity occur and can one compute

it approximately? We will tackle the latter of them in more detail and consequently answer

the others.

N.b.: Since this treatise deals with boundary layers (although in a special way) it is worth

mentioning that even the according Prandtl equations blow up under certain conditions, see

E & Engquist (1997).

Given the perturbation g as defined above and set A0(x, z) = Ast(x), Figure 20 shows

A(x, z, t) for 0 ≤ t ≤ T ∗ = 2, i.e. the evolution with the perturbation present. The resulting
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Figure 20: The solution A(x, z, t) at (t1, t2, t3) = (1, 1.5, 2), left: at z = 0, right: at x = 0.

solution A(x, z, T ∗), now taken as an initial condition for the unperturbed Cauchy problem,

has deviated sufficiently from the steady state as to not reapproach it for t > T ∗. Instead the

minimum formed in these first time steps will become more and more pronounced with larger
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negative values, where eventually the blow-up occurs in a single point (xs, zs) and from the

z-symmetry of the solution obviously zs = 0, see Figure 21.
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Figure 21: The solution A(x, z, t) of the unperturbed problem continuing Figure 20 at t ∈
{2.61, 2.67, 2.73, 2.76, 2.77}, left: at z = 0, right: at x = 0.

Remark 2.61. In approaching the singularity one cannot use a fixed time step in the nu-

merical computations (if it was not already chosen unreasonably small), since the blow-up

time ts is not known a priori. Scheichl et al. (2008) demonstrated that adapting ∆t with

respect to the relative change in the minimum of the solution is most appropriate to be able

to obtain A(·, t) as close as possible to ts. For the computation presented in Figure 21 we

used

mi =
∣∣min

x∈R

(
A(x, 0, ti)

)∣∣, such that ∆ti = ∆ti−1
mi−1

mi
if

mi

mi−1
> 1.05.

Plotting the minimum of A versus the time, the existence of the finite time singularity becomes

even more apparent, see Figure 22.
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Figure 22: The evolution of the minimum of A(x, z, t), with the results taken from Figures 20 and
21, revealing a blow-up time of ts ≈ 2.8.
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Also, what is often recognized in regularized problems, near the (stable) steady state

the dynamics are comparably slow, i.e. with a moderate amplitude of the perturbation the

activation time T ∗ is large in comparison to the difference to the blow-up time. This is in

complete accordance to what has been shown in Section 2.3.1 regarding the slow convergence

toward the equilibrium, cf. Figure 12.

With resolving the near-singular behavior or shapes of functions, meaning locally steep

gradients and strong curvatures, a disadvantage of the polynomial expansion in contrast to

finite differences can be observed. Functions (locally) violating a certain regularity regarding

their derivatives need overproportionally many polynomials in according orthogonal global

approximations to reach a certain accuracy. We shall illustrate this by a simple

Example 2.1. Consider the Chebyshev expansion of (see also Example 3.1 in Section 3.1)

f(x) =
1

1 + x2
=

1

2
R0(x) −

1

2
R2(x).

Taking f2 = 1/(1 + x2)2, which has a more pronounced maximum at x = 0, the according

exact expansion reads

f2(x) =

(
1

2
R0(x) −

1

2
R2(x)

)2

=
3

8
R0(x) −

1

2
R2(x) +

1

8
R4(x),

where we used Lemma 3.2(v) for the R2
2-term. Therefore, if one would have used N = 2 to

expand f and f2 the latter would be insufficiently ”approximated”.

Such facts have to be considered when finding the lowest number of polynomials necessary

to compute the time evolution near the blow-up. One has to take into account the ill-

posedness in form of fast growing oscillations when the time step is too small, as explained

in the paragraph following Figure 15 in Section 2.3.1. This then determines the number of

polynomials Nx due to the corresponding symbol (2.79). Thus, oscillations confined to the

z coordinate might not necessarily stem from growing instabilities, but are due to the lack

of local approximation qualities, i.e. larger pointwise errors. On the left of Figure 23 we

compared Chebyshev expansions using N = 20, to three different functions (dashed lines)

mimicking the time evolution with respect to z at x = 0 of the solution A as depicted in

Figure 21. One can readily observe that the approximation coincides virtually exactly for

functions with the minima at −20 and −40 (and are hence left out in the figure), whereas in

the third situation oscillations occur in the approximation, especially in the vicinity where

the curvature of the original function changes its sign. By using N = 40 polynomials these

imperfections vanish, with the expansion being indistinguishable from the given function. On

the right of Figure 23, to show the similarity, we plotted the solution gained from the time

evolution at t ≈ 2.77 using Nz = 20 (solid) and Nz = 40 (dashed) polynomials.

Eventually we claim that polynomial expansions lose their advantage against finite dif-

ferences when trying to resolve (finite time) singularities, independently of the quality of

the methods leading to the equation systems in spatial coordinates and the schemes for the
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Figure 23: Left: Approximation using N = 20 Chebyshev polynomials (solid) of the dashed graphs
(the first two are indistinguishable from their approximation). Right: Solution A(0, z, t) at t ≈ 2.77
with Nz = 20 (solid) and Nz = 40 (dashed, cf. Figure 21).

discrete time integration. This also holds for finding discontinuities and shocks in time evo-

lution problems, cf. the Gibbs phenomenon described in Section 3.2.2, Example 3.7 and what

follows.

Remark 2.62. It is worth noting the singularity to occur only in one singular point xs in

all two-dimensional cases studied. Such an observation can not only be found in the case of

unforced problems, where Γ was chosen to be at or above its critical value Γc, cf. Figure 4,

Smith (1982) and Scheichl et al. (2008), but also for various different perturbations applied

to the problems when starting at an upper branch stationary solution. For example, when

forcing the solution to form two local minima in x in the first time steps, eventually one of

them will dominate the behavior and result in the blow-up. We claim this to be due to the

non-symmetric properties of the Abel operators involved.

In the three-dimensional set-up, solutions of the unperturbed problem are always sym-

metric with respect to z and thus multiple, simultaneously occurring singularities in z (at

one common xs) are possible. We show this by using the previously applied blowing device

(2.93), where the function p = p(z) is now assumed to have two (symmetric) maxima, e.g.

p(z) =
1

1 + (z − 1)2
+

1

1 + (z + 1)2
.

As done for the perturbation with one maximum, Figure 24 now shows the solution for the

first time steps, when the new forcing is activated, i.e. t ≤ T ∗, using the same numerical

parameters as before.

As in the previous computation, a minimum appears in x at z = 0, but also with respect

to z at x = 0, where the latter is smaller, rendering the minimum at z = 0 to be only local.

Again, for the results at t > T ∗ the forcing is switched off and the unperturbed problem ends

with the finite time singularity, where zs 6= 0 and ts ≈ 2.45, see Figure 25.
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Figure 24: The solution A(x, z, t) at (t1, t2, t3) = (1, 1.5, 2), left: at z = 0, right: at x = 0.
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Figure 25: The solution A(x, z, t) of the unperturbed problem continuing Figure 24 at t ∈
{2.306, 2.363, 2.386, 2.4, 2.405}, left: at z = 0, right: at x = 0.

Remark 2.63. Forcing functions with multiple symmetric maxima do not necessarily yield

the same number of (symmetrically arranged) singularities in the solution. In the above, we

placed the maxima in p at zm = ±1, which was approximately the necessary distance to

obtain two blow-up points in z. Thus we state that maxima in the perturbation function

being too close yield only one common singularity. Without any forcing applied, but by

varying Γ , such that it exceeds its critical value Γc at some time step, finite time singularities

do occur as well. Here, one has to distinguish between Γ depending on z and t (as done

in Duck (1990)) and depending only on t, for Γ = Γ (z, t) can be seen as a type of forcing,

yielding similar results as presented in the above, and Γ = Γ (t) would just mean to start at a

steady state, but the significant time evolution is taken for a situation where no steady state

exists. Here, without having it studied in all details, we assert that zs 6= 0 appears naturally.

Having demonstrated that blow-up occurs at different points and different times, the usual

question is whether there is some generality behind the development of the singularity, i.e. a

structure, independent of (xs, zs, ts). As mentioned in the monograph by Barenblatt (1979),
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one shall investigate the problem and its solutions regarding the so-called self-similarity.

This became a prominent technique to gain further insight into blow-up phenomena of time

dependent problems, cf. the survey by Eggers & Fontelos (2009).

Following the definition in Barenblatt (1979), let u = u(x, t) be a solution to a given

problem. If there exist time dependent scales x̃(t) and ũ(t), and an unknown function Φ,

such that

u(x, t) = ũ(t)Φ(x/x̃(t)),

then Φ is a similarity solution in the similarity variable x/x̃. Note that these similarity

scaling renders Φ independent of t. Furthermore, if x̃ and ũ are unique in the sense that the

relation above is the only possible way to define Φ, such that u is a solution of the given

problem, then we call Φ and the scalings self-similar.

For the planar Cauchy problem (2.49), Smith (1982) argued that if t approaches ts then the

left hand side of (2.49) is dominated by A2, as long as |x−xs| is small, whereas the first term

on the right hand side is of order A |x−xs|−3/2 and the second term of A |x−xs|3/4(ts− t)−1.

To obtain the similarity variable x/x̃(t) as in the definition above, both terms on the right

hand side have to be of the same order. By then equating their (common) order with the

order of A2 yields the desired function ũ(t), rescaling the similarity solution. Transferring

this idea to the three-dimensional problem (2.47) gives the similarity coordinates and the

similarity solution as (cf. Duck (1990))

τ = ts − t, x− xs = τ4/9x̂, z − zs = τ4/9ẑ

A(x, z, t) = τ−2/3Â(x̂, ẑ) + o(τ−2/3)



 as τ → 0. (2.121)

One can now utilize these local coordinates further to obtain better estimates for the time ts

of the blow-up and its spatial location.

Define

min
(x,z)∈R2

(
A(x, z, ti)

)
=: mi,

it then follows from the second line in (2.121) that for any t1, t2 close to ts

m1

m2
=

(
ts − t1
ts − t2︸ ︷︷ ︸

=:c

)−2/3

⇒ c =

(
m1

m2

)−3/2

⇒ ts =
t1 − c t2
1 − c

and also, for (xi, zi) being the point where A(·, ti) attains its minimum mi, one has

x1 − xs

x2 − xs
= c4/9 ⇒ xs =

c4/9x2 − x1

c4/9 − 1

and analogously for zs. Applying the above formulae to the results shown in Figure 21 yields

xs ≈ 0.66, ts ≈ 2.775,
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and for the solutions in Figure 25, one obtains

xs ≈ −0.1, zs ≈ ±0.66, ts ≈ 2.418. (2.122)

With knowing the point (xs, zs, ts) one can also compute an estimate for the profile Â in

(2.121) via

Â(x̂, ẑ) ≈ A(x, z, t1) −A(x, z, t2)

(ts − t1)−2/3 − (ts − t2)−2/3
, (x̂, ẑ) ∈ R

2, (2.123)

with (x, z) replaced by (x̂τ4/9 + xs, ẑτ
4/9 + zs). As done in Scheichl et al. (2008) one can use

such estimates to graphically show the convergence of the solutions A = A(x̂, ẑ, t) (viewed in

the similarity variables) to the profile Â = Â(x̂, ẑ) as t→ ts, see Figure 26.
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Â(x̂, 0)

x̂

-3

-2

-1

 0

 0  2  4  6  8  10

t → ts
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Figure 26: The solution A = A(x, z, t) taken from Figure 21 plotted as τ2/3A(x, z, t) as a function
of (x̂, ẑ) with (x, z) replaced by x = x̂τ4/9 + xs, z = ẑτ4/9 + zs, with the estimated profile Â from
(2.123) (dashed lines). Left: at ẑ = 0, right: at x̂ = 0.

Remark 2.64. A similar convergence behavior as in Figure 26 can be seen when using the

solutions in Figure 25 with the according blow-up data (2.122). It is worth noting that the

estimated blow-up profiles coincide very well in both cases, suggesting this structure to be an

intrinsic property of the singularity in the Cauchy problem, independent of when and where

the blow-up occurs. This has been confirmed further by replacing p in the perturbation (2.93)

by some exponential function (or similar), always leading to the same limiting structure.

Remark 2.65. The passage of the non-similar behavior to the similarity structure is not

only necessary for the similarity transform to be valid, but can also be used in some occasion

to determine unknown parameters, as described in Barenblatt (1979). Here we could argue

to have used this to also confirm the blow-up data estimates above.

With the convergence of the rescaled solution to the similarity profile and its independence

of the initial condition and forcing imposed on the Cauchy problem we can claim, according

to the definition above, that the scalings (2.121) are in fact self-similar.
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The obvious next step, and it is quite usual to do so (cf. Eggers & Fontelos (2009) and

Galaktionov (2009)), is to substitute the similarity variables (2.121) into the Cauchy problem

to obtain an equation determining the blow-up profile Â. Additionally, information on the

far field behavior of Â can be obtained. Since the blow-up occurs in one singular point only,

one can expect the solution to remain bounded away from (xs, zs), that is

|A(x, z, ts)| <∞, ∀(x, z), such that |x− xs| = |z − zs| = O(1), as τ → 0.

Furthermore, from the scalings (2.121)

|x− xs| = |z − zs| = O(1) ⇔ |(x̂, ẑ)| → ∞.

Introducing the usual polar coordinates as (x, z) 7→ (r, φ) (centered at (xs, zs)) and (x̂, ẑ) 7→
(r̂, φ̂) yields

x− xs = r cos(φ),

z − zs = r sin(φ),

x̂ = r̂ cos(φ̂)

ẑ = r̂ sin(φ̂)

}
subst. (2.121)

=⇒ r cos(φ) = τ4/9r̂ cos(φ̂)

r sin(φ) = τ4/9r̂ sin(φ̂)
.

Taking the square and adding the equations on the right yields r2 = τ8/9r̂2, whereas division

gives tan(φ) = tan(φ̂), thus

r̂2

r2
= τ−8/9 ⇒

(
r̂2

r2

)3/4

= τ−2/3 ⇒ A =

(
r̂2

r2

)3/4

Â.

We mentioned earlier that for A = O(1) as r = O(1) one has r̂ → ∞, such that (in this limit)

(r̂2)3/4Â
!
= O(1) ⇒ Â = O

(
(r̂2)−3/4

)
or Â ∼ c(φ̂)(r̂2)−3/4, (2.124)

which reads in Cartesian coordinates (cf. Duck (1990))

Â ∼ c∗(ẑ/x̂)(x̂2 + ẑ2)−3/4 as x̂2 + ẑ2 → ∞.

Remark 2.66. The functions c and c∗, describing the far field decay of Â in more detail, can

be assumed to be bounded and continuous on [−π, π]. From the graphs in Figure 26 (dashed

lines) and the far field relation one readily obtains that Â is not in L1(R2) but in L2(R2) and

hence one has to carefully consider the existence of its Fourier transform, analytically (cf.

Duck (1990)) as well as in the discrete version, since the decay at infinity might be too weak

to yield plausible results.

To finally state the full problem governing the terminal structure we apply a linear coor-

dinate transform, such that xs = zs = ts = 0, and substitute the similarity coordinates into

(2.47), using

∂tA = 2
3(−t)−5/3

[
Â+ 2

3

(
x̂ ∂x̂ + ẑ ∂ẑ

)
Â
]

∂2
xA = (−t)−14/9∂2

x̂Â, ∂2
zA = (−t)−14/9∂2

ẑ Â
(2.125)
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and instead of the Riesz potential R1, the Riesz transform R1, i.e. shifting one ∂x onto the

kernel, cf. Remark 3.62, is used. By taking the limit (−t) → 0 this yields

Â2 = − λ
2π J 1/2

−∞R1∆Â− 2
3γ J

3/4
−∞
[
Â+ 2

3

(
x̂ ∂x̂ + ẑ ∂ẑ

)
Â
]
, (x̂, ẑ) ∈ R

2

Â(r̂, φ̂) ∼ c(φ̂) r̂−3/2 as r̂ → ∞,
(2.126)

where ∆ denotes the Laplacian with respect to x̂, ẑ.

Remark 2.67. It is fairly obvious that the first term on the right hand side in (2.126) is

equal to λ
2π J 1/2

−∞R1 [∂3
x̂ + ∂x̂∂

2
ẑ ]Â and thus one obtains the same operators as for the Cauchy

problem, with ∂t being replaced by I + 2
3

(
x̂ ∂x̂ + ẑ ∂ẑ

)
, where I denotes the identity. And,

in virtue of Remark 2.14, by assuming Â = Â(x̂) in (2.126) one obtains the according two-

dimensional equivalent of the similarity profile equation, cf. Smith (1982) and Scheichl et al.

(2008).

Remark 2.68. As mentioned in Remark 2.23, Duck (1990) considered a globally (z-

symmetric) three-dimensional Cauchy problem for A, where the exact same equation de-

termining Â was derived. Due to the approach used therein, the combination of the Riesz

transform and the Abel operator, as given in (2.126), is replaced by a type of potential integral

with an additional kernel involving a complete elliptic integral. The equivalence of these two

descriptions is shown in Section 3.3.2, Remark 3.66. Hence, we can assert the independence

of the blow-up profile of whether the z symmetric physical set-up was initially assumed to be

(globally) three-dimensional or the z dependence was introduced to the planar problem by

forcing functions. This may not apply to problems where no z symmetry was assumed.

Remark 2.69. One of the most important characteristics of (2.126) is that it is a nonlinear,

homogeneous equation and hence Â ≡ 0 is obviously a solution, which cannot be admissible

as a similarity profile in the vicinity of the blow-up. Hence, certain measures have to be taken

to find possible non-trivial solutions.

To study the full characteristics of the blow-up profile one has to solve (2.126), which is

essentially a numerical task. The main issue, as stated in Remark 2.69 and Scheichl et al.

(2008), is the nonlinearity and how to keep the thus needed iteration schemes from (mainly)

converging to the trivial solution, which appears to be ”highly attractive”. All other arising

difficulties are inherited from the Cauchy problem, since the operators involved are the same.

As has been said in Section 2.2 regarding numerically solving the steady problems, various

different approaches were used in the previous works to address the issues concerning the

properties of the singular operators, the unbounded domain and the nonlinearity. Inter-

estingly, for the profile equation (2.126) the finite difference method was found to be most

successful, especially compared to the polynomial expansions, which stands in contrast to

experiences made when solving the Cauchy problems. Hence, the following shall provide the

strategy (in principle) for setting up a finite difference scheme for equation (2.126). For the

details we refer to Section 3.4.
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First, an application of the mapping

τ : [−1, 1] → R, τ(u) = c
u

1 − u2
(2.127)

yields a compact computation domain [−1, 1]2, which is subsequently divided into evenly

distributed squares, cf. (3.127). Here the parameter c provides the possibility to adjust

the according distribution of the evaluation points on R
2 in order to capture certain local

characteristics of the operators or the solution. We then obtain the discrete unknowns

Ãij := Ã(ui, vj) = Â(τ(ui), τ(vj)), i = 0, . . . ,Mi, j = 0, . . . ,Mj .

As (2.126) admits only z symmetric solutions, v ∈ [0, 1], thus saving computational costs.

By abbreviating the discretized operators (following the analysis in Section 3.4) as

J 1/2
−∞R1∆  K, J 3/4

−∞
[
I + 2

3

(
x̂ ∂x̂ + ẑ ∂ẑ

)]
 J,

where, for simplification of the programming effort, one can split K and J into discretizations

of the individual integrals and derivatives (as described in Section 3.4), one obtains the

discrete composition by simple matrix multiplication.

Overall, this leads to the nonlinear system in
(
Ãij

)
i,j

=: Ã

Ã
2

= M Ã, M := −
[

λ
2π K + 2

3γ J
]
. (2.128)

To incorporate the boundary conditions we note that Ã(±1, v) = 0 and ∂uÃ(±1, v) =

∂vÃ(u, 0) = 0, due to the far field condition and the symmetry with respect to z.

Remark 2.70. Theorem 3.41 in Section 3.4 states the convergence of the approximation

of the matrix-vector (or tensor-matrix, to be precise) description on the right hand side of

(2.128) and also provides estimates for the order of the discretization. Some simple tests

show the invertibility of M in principle, such that we claim that a Newton method applied

to (2.128) can be expected to converge, see Section 2.2, Remarks 2.18 and 2.19.

Caveat: It is somehow (from numerical testing) neither necessary nor recommendable to

approximate the Abel operators appearing in (2.126) to higher orders (as has proved successful

for the two-dimensional problem, cf. Scheichl et al. (2008)) than the potential integral.

A direct application of the Newton-Powell iteration scheme to equation (2.126) does not

yield any other result than the trivial solution (see Remark 2.69), or in other words, it seems

almost impossible to choose appropriate starting vectors to obtain any other solution. Thus,

as proposed in Scheichl et al. (2008), one has to force the unknown vector not to be identical

to zero by keeping one entry fixed at a non-zero constant.

Assume Ã is a non-trivial solution of the mapped version of (2.126), then there exists

a constant a 6= 0, such that Ã(u, v) = aΦ(u, v). Say Ã(u∗, v∗) 6= 0, setting a := Ã(u∗, v∗)

consequently gives Φ(u∗, v∗) = 1. The substitution of Ãij = aΦij into (2.128) yields the
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equation system

aΦ2 = M Φ

Φi∗j∗ = 1,
(2.129)

where we have gained an additional unknown a and, as an additional equation, the fact that

there exists a pair of indices {i∗, j∗} at which Φ has to be 1.

Remark 2.71. It is fairly obvious that if an iteration scheme applied to (2.129) converges,

it can only yield a solution vector Φ not identical to zero. We do not have to be concerned

about the pathological case of obtaining Φij = 0, ∀i, j 6= i∗, j∗ as a possible solution, since Â,

as a solution of (2.126), is at least twice continuously differentiable with respect to x̂ and ẑ.

Hence, if Â is non-zero at some point, it has to be non-zero in a neighborhood with positive

measure around this point. Ergo, if the mesh is sufficiently dense, this pathology will not

occur. In other words, a convergent iteration algorithm for the system (2.129) provides strong

evidence for the existence of a non-trivial solution of (2.126).

For the final set-up of the numerical scheme a few comments are in order. The parameter

c in (2.127) shall be used separately in x and z and seems to have an optimal value at c ≈ 3,

meaning for the mesh in R
2 that the points are distributed away from zero. Apparently

this is needed in the finite difference scheme to depict the far field behavior more accurately,

resulting in a better convergence behavior of the iteration. A good choice for the initial guess

was found to be (1 + x̂2 + ẑ2)−3/4 and a = 1, where this function already satisfies (up to a

constant) the far field condition (2.124).

As pointed out in Scheichl et al. (2008), the blow-up profile for the two-dimensional case

is unique, in the sense that numerically one is not able to find another non-trivial solution.

Consequently, tests regarding possible uniqueness of the profile at hand have been performed

(by variation of the numerical parameters and the initial guesses), where, not surprisingly,

only one non-trivial solution could be found as well.

Also, the convergence of the iteration in principle is highly sensitive, especially with

respect to the mapping τ and the according distribution of the points. The reason for this

might lie in the additional equation in (2.129), which can be seen as a very strict constraint

for possible solutions found by the iteration procedure. Note that if the points are distributed

in a way, such that the function in the neighborhood of u∗, v∗, in virtue of the differentiability

requirement, cannot be resolved to some order of accuracy, the iteration might not converge.

Support for the claimed uniqueness is found in the estimated profiles from the time

evolution, where different initial conditions (i.e. forcing functions) result in different blow-up

times and points but yield the same intrinsic structure in the similarity variables.

Concluding, we assert the similarity profile Â given via (2.121), to be in fact self-similar,

since the numerical findings show that (2.121) represents the only possible way to introduce

similarity variables, such that A = A(x, z, t) seen as the rescaled solution in time from

Â = Â(x̂, ẑ) is the unique solution of the original Cauchy problem (2.47). Figure 27 finally

shows the good agreement between the estimated blow-up profile from the time evolution and

the non-trivial solution satisfying (2.126). Combining the (numerically found) uniqueness of
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the blow-up structure and the independence of the physical set-up, cf. Remark 2.68, we thus

found a generic intrinsic structure for the finite time singularity of the Cauchy problems

(2.49) and (2.47).
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Figure 27: The blow-up profile gained from the finite difference scheme (solid lines) with equidistant
grid (Mi,Mj) = (50, 30) on [−1, 1] × [0, 1] versus the estimated profile from the time evolution, cf.
Figure 26 (dashed lines).

Remark 2.72. The uniqueness regarding the two-dimensional version can be further sup-

ported by solutions found applying Chebyshev polynomial expansions. Without any con-

straints to avoid the trivial solutions we were able to obtain the exact same profile as pre-

sented in Scheichl et al. (2008) using between N = 30 and N = 80 polynomials. Interestingly

the numerical experiments performed showed that the non-trivial solution, although being

unique, is not attractive or stable in the sense that the Newton algorithm immediately con-

verges to the trivial solution, if the initial guess, or some intermediate iterated solution, is

not already close to the sought solution.

A homotopy approach, such as taking the steady state problem, where upper branch

solutions are easily found (see Section 2.2) can be written as

A2 + (1 − s)(2A
√

1 + x2 + Γ + 1 − f) = λJ 1/2
∞ ∂2

xA− s 2
3γ J

3/4
−∞[I + 2

3x∂x]A, s ∈ [0, 1],

where s = 0 represents the steady problem and s = 1 the blow-up profile equation. Although

no proof for this to obtain the non-trivial solution is available, with the consistency properties

of the operators, see Section 3.3.1, and the convergence of the iteration algorithm and the

orthogonal projection, enough evidence for the uniqueness of the blow-up profile for the

two-dimensional problem has been presented. As for the profile shown in Figure 27, the

polynomial approach did not yield satisfying results, which might be due to the difficulty

finding appropriate functions to start the iteration scheme.

Remark 2.73. The evidence that there might be one and only one non-trivial blow-up profile

seems sufficient, but this fact per se is highly non-trivial. Galaktionov (2009) investigated
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the blow-up and its structure for a fourth-order reaction diffusion type problem for different

values of the power of the nonlinearity. It was found therein that at least two non-trivial

solutions exist, even for less than quadratic nonlinearities. Surprisingly, some such solution

turned out to be strictly positive and hence sign changes and zeros of the similarity profiles

are important properties. The results obtained from the numerical experiments performed

with respect to various grids and initial guesses regarding equation (2.129) show no possibility

for non-trivial solutions of (2.126) to be non-positive or non-negative, which leads even more

to the conclusion of uniqueness of the blow-up profile depicted in Figure 27.

Remark 2.74. If one formally assumes the Cauchy problem and according solutions to have

some meaning for t > ts, then a reconsideration of the similarity variables (2.121) for τ < 0

would mean the blow-up is approached from the ”future” and the question thus raised is

whether the intrinsic structure is different. Say, for τ > 0

x− xs = (−τ)4/9x̂ = (−1)4/9τ4/9x̂,

where the value of (−1)4/9 shall be defined as δ4, where δ is chosen from all roots of δ9 = −1,

which has nine symmetric solutions on the unit circle, i.e. if δi is a solution, so is the complex

conjugate. Since nine is an odd number, one δi is always found to be on the real line, i.e.

±1. Thus, (−1)4/9 = 1, as well as (−1)−2/3 = 1 is always a possibility and we hence assert a

formal time symmetry for the blow-up structure, meaning that if a solution does exist in some

sense beyond the blow-up time, the structure of the singularity does not change if approached

backward in time.

In the above we established the existence and uniqueness of self-similar finite time blow-

up solutions of the Cauchy problem (2.47), regularized using the direct implicit numerical

technique, which corresponds to filtering or cutting off higher order Fourier coefficients of the

solution. But, as demonstrated in Section 2.3.1, this is not the only possibility to gain well-

posedness of the time evolution, adding higher derivative operators, as we have shown, works

equally well. Moreover, these do also have a physical correlation to streamline curvature

contributions (cf. the streamline curvature term (2.120)). Including such terms actually

alters the Cauchy problem and yields similar results to the filtering technique only if the

regularization parameter is small enough. Nevertheless, with respect to the problem posed

in this section, i.e. starting from the upper branch steady state and applying the blowing

device, we have to consider the time evolution with these regularizing operators present.

Recalculating the first time steps, cf. Figure 20, using the term from (2.85) with the parameter

α = 0.01, shows almost negligible differences in the structure of the solutions (as expected).

When computing further in time, the mollifying characteristics of the regularization become

more apparent in the sense that the minimum indicating the singularity is shifted and the

blow-up per se seems to be delayed. This, of course, raises the question whether the finite

time singularity, when including the higher derivatives, actually occurs. This is reasonable

to ask, since if the absolute value of the solution A becomes infinite at some point, all
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terms in the equation including A are equally relevant. From a more detailed numerical

investigation we still claim the existence of the finite time blow-up, even in the presence of

the regularizing operators, as long as the parameter α is sufficiently small. In fact, one might

claim the singularity to result from the presence of the interaction term (i.e. the potential

integral in Equation (2.48)), as this term, in principle, acts magnifying to the absolute value

of a solution over time. Only when starting near an upper branch steady state solutions

remain bounded for finite radii |(x, z)|. Interestingly, as shown in Smith & Elliott (1985),

when considering the non-interactive boundary layer equations and deriving the according

solvability condition, one also arrives at problem (2.47), but without the interaction term.

Then, as further demonstrated therein, the time evolution of A does not terminate in a

singularity, but develops a shock-like structure (locally in some bounded region away from

the far field). This we were able to confirm numerically with the methods described in the

previous sections. Such findings then support the assertion that the interaction term is mainly

responsible for the blow-up scenario (under the conditions established above). Although in

the non-interactive case no (classical) derivative of A is present in the equation, the issue

of ill-posedness, or instability of certain disturbances, still remains in some sense (cf. the

arguments made by Smith & Elliott (1985)). Nevertheless, including higher order derivatives

or using the implicit time integration does not show any fast growing oscillations in the time

evolution but a more or less mollified shock, depending on the regularizing parameter.

Remark 2.75. As said in the preceding paragraph the finite time blow-up still occurs with

the regularizing operators included. Applying then the arguments leading to the self-similar

coordinate scalings (2.121) one obtain the balances

A2 ∼ |x− xs|−3/2A ∼ |x− xs|3/4(ts − t)−1A ∼ |x− xs|−5/2A,

where it is obviously not possible to take into account all four terms for the similarity trans-

form. So the argumentation would now be that the square on the left hand side and the time

derivative term have to be included, but from the spatial derivative type operators only one

can be present to determine the blow-up profile. Since the Cauchy problem does not expe-

rience the singularity without the interaction term (but instead shows the above mentioned

shock), we assert that in the vicinity of the blow-up the regularization does not contribute to

the intrinsic structure. In other words, the blow-up scenario has to be seen as the regularized

solution of the Cauchy problem subject to certain initial conditions in the limit of vanishing

regularization.

2.4 Concluding Remarks

In the preceding sections, apart from providing accuracy and convergence aspects of the

numerical schemes used, we studied the two main characteristics of the present description

of marginally separated flows in a locally three-dimensional set-up. That is, the ill-posed

Cauchy problem and the finite time singularity. It is of high importance at this point to
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emphasize the difference between them, as one might associate both with the breakdown of

the asymptotic triple-deck structure. We shall therefore give some further explanations and

clarifications on these (general) subjects.

Let us first note that a finite time blow-up is not necessarily connected to the ill-posedness

per se. Consider, for example, the reaction-diffusion problem ∂tu = ∆u + F (u), which

is certainly well-posed on some Sobolev space W (assuming F to be (locally) Lipschitz).

Nonetheless, for some initial conditions one can show limt→T ‖u‖ → ∞, depending on F , of

course. In other words, in this case one has existence, uniqueness and continuous dependence

of solutions on the data on t ∈ [0, T ). Replacing ∆ with −∆ renders the problem ill-posed

on W (in general), such that one cannot even speak of solutions for any t > 0, and hence

certainly not of a finite time blow-up.

Additionally, as has been sufficiently demonstrated in Section 2.3.1, the ill-posedness is

an intrinsic property of the Cauchy problem itself and is not introduced by linearization or

discretization. In fact, in some situations (as it is the case here) discretization can be a type

of regularization, yielding a well-posed finite-dimensional approximation. Furthermore, ill-

posed problems shall always be considered in connection with the function spaces solutions

and initial conditions lie in. Thus, heuristically, we might just say that the problem is ill-posed

because of the lack of additional a priori information on the sought solutions. Eventually,

having found an appropriate regularization, one can focus on properties of the actual time

evolution.

We shall make another, more physical, remark on the ill-posedness here. As it is often

the case when applying asymptotic expansions, due to their non-uniqueness, choosing dif-

ferent coordinate scalings and different expansion orders might lead to completely different

problems. The slow time scale given in (2.6) is introduced in a way to enter the solvability

condition in the lower deck, cf. Equation (2.28). Note the fact that no time derivative ap-

pears even in the investigated equations for the higher order terms, just a variation in time of

the inhomogeneity (cf. Equation (2.20)). Hence, using a different time scale yields different

problems for the expansion terms in the three decks and might also give a well-posed Cauchy

problem for A.

Concluding further, one can assert that the ill-posedness is not necessarily ”un-physical”,

but might just lack the information to resolve appearing short-scaled parts of possible solu-

tions. We may thus justify the argumentation and numerical results given in Section 2.3.1

by not allowing functions containing higher order Fourier terms to be solutions of the posed

problem. The proposed regularizing operators in form of higher derivatives (stemming from

the streamline curvature) can be seen as the resulting mathematical formulation of such a

physical argument.

In doing so, we have given some meaning to the steady states computed in Section 2.2

by (numerically) investigating the long time behavior in the vicinity of these equilibria (cf.

Remark 2.48 and what follows) and by applying control (or forcing) functions (see the para-

graph after Remark 2.53). With the relation of the solution A to the wall shear stress τ (see
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Section 2.1), one can draw some physical conclusions regarding the separation of the bound-

ary layer. Take, for example, the upper branch solution in Figure 3, where A > 0, ∀x, i.e.

the flow is fully attached. Starting the time evolution with a small separation region already

present (e.g. by slightly altering the fully attached steady state accordingly), the numerical

results then show the attraction of the upper branch steady state. Thus, without any further

disturbances, the separation bubble disappears over time, neither destroying nor significantly

changing the main part of the boundary layer. One can hence claim the triple-deck structure

and its asymptotic expansions of the flow field to be uniformly valid in such situations.

The crucial situation (being the other main characteristic of the Cauchy problem) ap-

pears for a sufficiently strong perturbation or if the initial condition lies outside a certain

neighborhood of the upper branch steady state (at some Γ ) – that is the finite time blow-up

scenario. Note again that this singularity occurs despite the well-posedness of the regularized

problem. Nevertheless, solutions blow-up only for certain initial settings, whereas otherwise

long time existence and uniqueness have been (heuristically) established. Yet another way is

to say that within the subspace of admissible solutions and initial conditions regarding the

well-posedness of the original Cauchy problem, there exists a subspace of initial conditions,

for which finite time singularities can be found.

The blow-up has been argued to be connected to the emergence of vortices within transi-

tional separation bubbles. Since these bubbles are prone to burst (under the influence of small

disturbances), such vortical structures can be considered unstable in this sense. Considering

the velocity component v31 in the lower deck, as given in (2.15), shows its singular absolute

value at the blow-up point, meaning that the lower deck significantly changes the behavior

in the boundary layer and the outer flow region. Furthermore, it indicates the breakdown

of the triple-deck structure of marginal separation (due to the non-uniform validity of the

according asymptotic expansions for all times).

This raises the question of what happens at and beyond this singularity or whether the

singularity terminates the whole evolution problem. Here one has to take into account several

aspects.

(i) At the singularity, independently of whether the time evolution can be continued, we

have shown in Section 2.3.3 the existence of a self-similar structure as t → ts, containing a

generic and unique blow-up profile. Also, demonstrated by numerical results, there appear

to be only singular blow-up points, or say, blow-up regions with (Lebesgue) measure zero.

Nevertheless, the possibility of multiple blow-up points (cf. Figure 25 and Remark 2.63),

although z-symmetric, exists. The most important implication then is that independently

of when and where the singularity occurs, the time evolution always terminates in the same

manner, revealing the unique self-similar profile.

(ii) Galaktionov & Vázquez (2002) studied blow-up scenarios in virtue of the issues of

when, where and how it occurs and what happens beyond. The former have been answered

for the problem at hand in Section 2.3.3. From the explanations in the previous item we

infer that, regarding the possibility of continuation, none of the first questions has immediate
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influence. It is rather the spatial structure of the singularity which determines the behavior

beyond blow-up (and whether there is even one). Thus, Galaktionov & Vázquez (2002)

distinguish three cases. First, the complete blow-up, for which solutions cannot be continued,

since they then would have to be infinite everywhere. Second, the incomplete blow-up, where

the solutions remain bounded in some regions for t > ts (and infinite in the complement). And

at last, the transient blow-up, resulting in an everywhere bounded solution immediately after

the occurrence of the singularity. We may claim, in the case investigated here, an incomplete

scenario to be present, since the formal time symmetry argument (cf. Remark 2.74) suggests

the same self-similar structure to appear when formally approaching the blow-up time from

beyond. In fact, a condition for the existence of the self-similar variables is the boundedness

of the solution away from the (spatial) blow-up point.

So the question rather is whether the singularity is (spatially) integrable in some sense. In

other words, whether one can find an integral over the solution for which the time derivative

is zero for all times. This leads to the subject of finding weaker norms and according function

spaces for the solution to lie in, such that the problem does not experience a finite time blow-

up in this sense. Ergo, for weak and mild solutions a long time behavior might exist. If

this is the case, one can treat the solution as an almost everywhere bounded function with

(maybe moving) regions of unbounded absolute value. In Braun & Kluwick (2004) this has

been investigated with respect to the Fisher equation, where two moving singularities appear

beyond blow-up. Note that the conservation of some integral (norm) of the solution is still

an open issue in this case.

(iii) A completely different approach is the consideration of the fact that (in general) any

kind of singularity or unboundedness appearing at some point in space-time in some expansion

term at some order of an asymptotic series shows the breakdown of the proposed expansion

(cf. Goldstein’s singularity in classical steady boundary layers). As mentioned above, such an

expansion is then not uniformly valid on the defined domain. This is exactly what happens

at the blow-up time, i.e. the function A becomes singular and, for being included in the

expansion terms of the velocity field in every deck (see Section 2.1), we infer the uniform

validity of the triple-deck expansions to be violated. Already mentioned in Section 2.1 and

as shown in Stewartson (1970), the Goldstein singularity cannot be resolved using triple-

deck arguments. Interestingly in the present case we have two situations. On the one hand,

one can find settings (i.e. different initial conditions), for which the expansions in all decks

remain (heuristically) uniformly valid for all times. On the other hand (and in contrast to

the Goldstein singularity), the finite time blow-up and the form of the breakdown of the

expansions consistently define shorter spatio-temporal scales, which reveal a new triple-deck

type problem.

A formal connection between the Cauchy problem (2.47) in terms of A and a reaction-

diffusion type equation (here Fisher’s equation) has been shown in Braun & Kluwick (2002),

Braun & Kluwick (2003) and Braun & Kluwick (2004) to hold in the vicinity of the critical

value of the parameter Γ , cf. Figure 4. The idea, in principle, is to say Γc − Γ =: ǫ4 and
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A(x, z, t) = A2d(x) + ǫ2a1(x, ǫz, ǫ
2t) + . . . and to then determine a1, whereas A2d is the

solution of the two-dimensional stationary problem (2.33) at Γc. In Braun & Kluwick (2004)

further investigations then revealed that a1 = b(x)c(ǫz, ǫ2t) and (for the sake of readability

say ǫz → z, ǫ2t → t) the behavior of the function c to be governed by

∂tc = ∂2
zc+ c− c2.

If a1 in fact does approximate the dynamics of A near Γc, then, what is most striking here is

the fact that the Fisher equation is well-posed. One might be lead to infer the well-posedness

from the independence of c from x, cf. the Fourier symbol (2.78). Although, such an argument

can hold in some cases, here we rather claim the well-posedness to be related to the time

scaling t → ǫ2t, which results in different combinations of time and spatial derivatives (with

respect to z). Nevertheless, as remarked at the beginning of this section, finite time blow-up

can occur in such nonlinear well-posed evolution problems. Using classical PDE analysis, one

can show for locally Lipschitz continuous nonlinearities (as it is clearly the case here), in the

usual L2 set-up, that there exists a tmax, until which a unique weak solution exists and if

tmax < ∞, then the L2 norm of the solution becomes unbounded at tmax. Note that if one

would want to argue a possible continuation after blow-up, other Lp norms would have to

be used, which might not be found. In conclusion, even though the time scale of the Fisher

equation is slower than the one for A, near the bifurcation point Γc the upper and lower

branch steady states and the possible singularity found for A are mirrored here for c.

As argued at the end of the previous section, we can leave out any type of regularizing

operators near the blow-up point and hence continue with the original problem. Following the

ideas in Smith (1982) and Elliott & Smith (1987) (for the planar flow case) from the singularity

in A we can deduce, via the relationship (2.29), that the term containing the interaction

pressure, being initially asymptotically small compared to the imposed pressure gradient (cf.

the expansion for p3 in (2.14)), becomes comparable to the latter when approaching the

blow-up time. Consequently, one wants to find the time scale where both terms become of

the same order, i.e.

O
(
ǫ4p00

)
= O

(
ǫ10∂xpi

)
as t→ ts. (2.130)

From (2.121) we have that x = z = O(τ4/9) as τ → 0 and thus with

pi =

∫

R2

1

|(x, z) − (ξ1, ξ2)|︸ ︷︷ ︸
=O(τ−4/9)

∂2
ξ1A(ξ1, ξ2, t)︸ ︷︷ ︸
=O(τ−14/9)

dξ1dξ2︸ ︷︷ ︸
=O(τ8/9)

⇒ O(pi) = O(τ−10/9),

and consequently ∂xpi = O
(
τ−14/9

)
. The fact that p00 is an order one quantity in all limits,

(2.130) provides a connection to ǫ and hence to the Reynolds number, i.e. τ14/9 = ǫ−6 =

Re3/10 ⇒ τ = O
(
Re−27/140

)
. Since we want to utilize this relationship to obtain rescaled

spatio-temporal variables (x̃, ỹ, z̃, t̃), such that t̃ → −∞ correlates to ts, using (2.6) yields
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|ts − t| = ǫ|t∗s − t∗| = O
(
Re−27/140

)
and therefore

|t∗s − t∗| = O
(
Re−27/140+1/20

)
= Re−1/7t̃ ⇒ t∗ = Re1/20ts +Re−1/7t̃,

with t̃ = O(1) as Re → ∞ (cf. Smith (1982)). Redefining ǫ := Re−1/7 and assuming the

blow-up point shifted to the origin, we obtain further the rescaled spatial variables x∗ =

O(Re−1/5τ4/9) = Re−2/7, thus x∗ = ǫ2x̃ and analogously z∗ = ǫ2z̃. As we have defined

this new scalings with the individual pressure contributions being of the same order, we can

simply say p∗ = O(Re−1/5p00x) = O(Re−1/2pi) = O(Re−1/2τ−10/9) and therefore p∗ = ǫ2p̃.

Remark 2.76. Being a little more precise regarding the rescaled pressure p̃, or say its

gradient with respect to x̃, we shall consider (cf. Braun et al. (2012)) as τ = O(Re−27/140)

∂x∗p∗ = Re−1/5∂x∗p00x+Re−1/2∂x∗pi = O(1) ⇒ ∂x∗p∗ − p00 = ∂x̃p̃

and with ∂x̃p̃ = O(1) one also obtains p∗ = ǫ2p̃ (as found above).

From the fact that the appearance of the singularity is inherently a time-dependent pro-

cess related to fast growing pressure perturbations, it is clear that within the Navier-Stokes

equations, viewed in this new scales, the time derivative has to be of the same order as the

pressure gradient, leading to

∂∗t



u∗

v∗

w∗


 ∼ ∇p∗ ⇒ ∂∗t



u∗

v∗

w∗


 = ǫ−1∂t̃



u∗

v∗

w∗


 ∼



∂x∗

∂y∗

∂z∗


 p∗ =O(1)

⇒
{
u∗ = ǫũ

w∗ = ǫw̃,

since O(∂x∗p∗) = O(∂x̃p̃) and x∗ scales as z∗, whereas the scaling factor for y∗ is yet unknown.

Next, we observe that the blow-up essentially happens within the viscous sublayer (the lower

deck in Section 2.1) and consequently one has to balance the pressure gradient with the

viscous terms, yielding

∇p∗ ∼ ǫ7∆



u∗

v∗

w∗


 ⇒





∂x∗p∗ ∼ ǫ7∆u∗ = ǫ7ǫ−4ǫ(∂2
x̃ + ∂2

z̃ )ũ+ ǫ7ǫ−2aǫ∂2
ỹ ũ

∂y∗p∗ ∼ ǫ7∆v∗

∂z∗p
∗ ∼ ǫ7∆w∗ = ǫ7ǫ−4ǫ(∂2

x̃ + ∂2
z̃ )w̃ + ǫ7ǫ−2aǫ∂2

ỹ w̃

⇒ ǫ8ǫ−2a !
= 1 ⇒ y∗ = ǫ4ỹ,

since O(∂x∗p∗) = O(∂z∗p
∗) = O(1), where the y gradient of the pressure compared to the

viscous term in v remains undetermined at this point. Finally, we have to take into account

the conservation of mass. Without making any a priori assumptions or restrictions, we have
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in general

∂x∗u∗ ∼ ∂y∗v∗ ∼ ∂z∗w
∗ ⇒ ǫ−1∂x̃ũ ∼ ǫ−4ǫa∂ỹ ṽ ∼ ǫ−1∂z̃w̃ ⇒ v∗ = ǫ3ṽ.

Considering now the nonlinearity in the Navier-Stokes equations and comparing its order to,

say the pressure gradient, yields

∇p∗ ∼



u∗

v∗

w∗


 .∇



u∗

v∗

w∗


 ⇒ ǫ−1∂x̃p̃ ∼ ǫ−1ũ∂x̃ũ+ ǫ−1ṽ∂ỹũ+ ǫ−1w̃∂z̃ũ

and analogously for the y and z gradient, which means that we are dealing with a fully

nonlinear problem for the lower deck.

We shall thus summarize the above found scalings (for comparison review the original

scalings (2.6) and the according expansions for the three decks, (2.7), (2.10) and (2.14)) by

regarding the resulting triple-deck as the next stage within the marginal separation setting,

see Figure 28. As argued in Elliott & Smith (1987) this new structure comprises a potential

(i)

(ii)

(iii)

x̃,

ỹ

x

y

Figure 28: The next stage triple-deck structure, cf. Figure 2 and the dashed lines here, with the
rescaled spatial coordinates (x̃, ỹ, z̃) and the fast time scale t̃. Again the regions (i)–(iii) indicate the
potential flow, the main part of the boundary layer and the viscous sublayer, respectively.

flow region, transforming displacements into pressure perturbations, an inviscid, rotational

boundary layer and the viscous sublayer derived above. In virtue of the descriptions for the

three decks given in Section 2.1 we obtain the following scaled coordinates and expansions

for the next stage

t∗ = ǫ t̃, x∗ = ǫ2 x̃, z∗ = ǫ2 z̃, y∗ =





ǫ2 ỹ1

ǫ7/2 ỹ2

ǫ4 ỹ3

, ǫ = Re−1/7 (2.131)
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upper deck (i)

ũ1 ∼ U00 + ǫ2 ũ11

ṽ1 ∼ ǫ2 ṽ11

w̃1 ∼ ǫ2 w̃11

p̃ ∼ p0 + ǫ2 (p00x̃+ p̃i)

main deck (ii)

ũ2 ∼ U0(ỹ2) + ǫ1/2 ũ21

ṽ2 ∼ ǫ2 ṽ21

w̃2 ∼ ǫ2 w̃21

p̃ ∼ p0 + ǫ2 (p00x̃+ p̃i)

lower deck (iii)

ũ3 ∼ ǫ ũ31

ṽ3 ∼ ǫ3 ṽ31

w̃3 ∼ ǫ w̃31

p̃ ∼ p0 + ǫ2 (p00x̃+ p̃i).

(2.132)

Substituting these expansions into (2.2) yields (in the same way as in the upper deck in

Section 2.1, cf. problem (2.8)) p̃i to satisfy the Neumann problem of the Laplace equation in

the upper deck. In the main deck, for being a classical boundary layer, conservation of mass

and the momentum equations read

∂x̃ũ21 + ∂ỹ2 ṽ21 = 0

ṽ21U
′
0 + U0∂x̃ũ21 = 0

∂ỹ2 p̃i = 0

U0∂x̃w̃21 = −∂z̃p̃i





⇒

ũ21 = A1(x̃, z̃, t̃)U
′
0(ỹ2)

ṽ21 = −U0(ỹ2)∂x̃A1(x̃, z̃, t̃)

w̃21 = − 1

U0(ỹ2)

x̃∫

−∞

∂z̃ p̃i(ξ, z̃, t̃)dξ,

with an yet unknown function A1, similarly to A from the original marginal separation

expansions, representing a shift or correction of the displacement thickness in the lower deck.

The crucial problem for this triple-deck structure lies, as usual (cf. Section 2.1), in the

lower deck, which is obviously governed by (omitting the tilde and all indices)

∂tu+ (u, v,w)⊺ · ∇u = −(p00 + ∂xp) + ∂2
yu

∂yp = 0

∂tw + (u, v,w)⊺ · ∇w = −∂zp+ ∂2
yw

div(u, v,w) = 0





∀(x, y, z, t) ∈ R × R
+× R × [0, T ]. (2.133)

The according boundary and matching conditions are, of course, the no-slip condition at the

surface y = 0, a matching to the boundary layer as y → ∞ and as |(x, z)| → ∞, yielding

u = v = w = 0 at y = 0

u ∼ p00(y
2/2 + yA1), v ∼ −p00

y2

2
∂xA1, w ∼ 2c(x, z, t)

p00y2
as y → ∞

u ∼ p00y
2/2, p,A1 → 0 as |(x, z)| → ∞,

(2.134)

where the function c abbreviates the x integral of the z derivative of the interaction pressure

(which is independent of y) given in the solution of w̃21. Similar to the marginal separation

case, the interaction relation (2.29) from the potential flow region reads

p(x, z, t) = − 1

2π

∫

R2

1

|(x, z) − (ξ1, ξ2)|
∂2

ξ1A1 dξ1dξ2. (2.135)
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Remark 2.77. In contrast to the original marginal separation set-up, the triple-deck for

the next stage has a nonlinear and unsteady lower deck (cf. (2.20), which contains no time

derivative of the velocity field). Furthermore, the u and w component satisfy the same

momentum equation and (2.131) and (2.132) yield the y gradient of the pressure to be zero

and the Laplace term to be represented only by the y derivative, which indicates the problem

to be of boundary layer type.

The procedure used to obtain (2.134) represents the simplest form of a matching rule.

Going into more detail here, one can either solve (2.133) for large y (where the viscosity term

vanishes) applying the method of characteristics or use additional information, to obtain

higher order corrections to those given in (2.134). It can be argued, by viewing the functionA1

as the local displacement of the boundary layer (caused by the sublayer), that the streamlines

of the boundary layer are shifted by y2 + A1 at every z = const., i.e. the separation profile

reads U0 = U0(y2 + A) (see e.g. Ryzhov (1980)). Hence, with U0(y2) = p00y
2
2/2 (as y2 → 0),

one obtains

u ∼ p00(y +A1)
2

2
, v ∼ −p00(y +A1)

2

2
∂xA, w ∼ 2c

p00(y +A1)2
as y → ∞, (2.136)

which has been applied to the streamfunction in the planar case in Elliott & Smith (1987).

Modifying these far field conditions shows that they do contain (2.134).

In (2.133) the unknown functions are obviously time dependent, with an explicit time

derivative term. Therefore initial conditions have to be posed for the problem to be closed.

From the deduction above it is straight forward to see that for such a condition to be found

one has to consider the match with the previous stage for τ → 0, i.e. t → −∞. As done in

Elliott & Smith (1987) for the planar case substituting the scalings, cf. (2.121),

x = |t|4/9x̂, y = |t|1/9ŷ, z = |t|4/9ẑ, A1(x, z, t) = |t|−2/3Â1(x̂, ẑ)

into (2.134) or (2.136) yields the expansions

u(x, y, z, t) ∼ p00

2
|t|2/9ŷ2 + p00|t|−5/9Â1(x̂, ẑ)ŷ + |t|−12/9û(x̂, ŷ, ẑ)

v(x, y, z, t) ∼ −p00

2
|t|−8/9∂x̂Â1(x̂, ẑ)ŷ

2 + |t|−15/9v̂(x̂, ŷ, ẑ)

w(x, y, z, t) ∼ |t|−12/9ŵ(x̂, ŷ, ẑ)

p(x, z, t) ∼ p00|t|4/9x̂+ |t|−10/9p̂(x̂, ẑ)





as t→ −∞. (2.137)

By then substituting these expansions into the momentum equations (2.133) one obtains the

unknown higher order flow field (û, v̂, ŵ, p̂) to be governed by

p00

2
ŷ2∂x̂û+ p00ŷv̂ − ∂2

ŷ û = −∂x̂p̂−
ŷ2

2
Â1∂x̂Â1 − 2

3 ŷ
(
Â1 + 2

3(x̂∂x̂Â1 + ẑ∂ẑÂ1)
)

p00

2
ŷ2∂x̂ŵ − ∂2

ŷ ŵ = −∂ẑp̂,
(2.138)
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where the usual conditions of no-slip at the boundary, at most linear growth in the far field,

together with the relationship between p̂ and Â1 via (2.135), are imposed.

Most remarkable here is the similarity of (2.138) to (2.20) from Section 2.1. In fact, the

only difference is that y3∂tA in (2.20) is obviously replaced by the last term in the first line

on the right hand side in (2.138). Thus, by following the procedure described in Section

2.1 starting with (2.138) instead of (2.20) and using a shift of the unknowns of the form

û = Â2
1/(2p00) + ũ and v̂ = −ŷÂ1∂x̂Â1/p00 + ṽ we find a solvability condition for (2.138) in

terms of Â1 to be given by the equation for the similarity profile at the blow-up, Equation

(2.126) in Section 2.3.3. Considering, in addition, the formulae in (2.125) one can easily see

where the change of the original time derivative for A to the term in Â1 stems from.

As a conclusion from the matching as t→ −∞ we find Â1 in the initial condition (2.137)

to be identical to the blow-up profile given as Â in Section 2.3.3. This is in very well agreement

with the findings in Elliott & Smith (1987) for the planar flow case.

Let us recapitulate what has been derived at this point. In the event of the finite time

singularity shorter length and time scales (2.131) appear within the original marginal sepa-

ration set-up, yielding a new triple deck stage, where the lower deck is governed by the (now

nonlinear) momentum equations (2.133), subject to the boundary and matching conditions

(2.134), as well as the interaction relation (2.135). Since the flow field is unsteady, initial

(matching) conditions, i.e. where the new time variable t→ −∞, have to be imposed via the

expansions (2.137). The displacement function Â1 therein has been shown to be equal to the

self-similar blow-up profile Â in (2.126).

Elliott & Smith (1987) continued the investigation of the planar nonlinear triple-deck

problem by linearizing the momentum equation for the streamfunction around some steady

function comprising the far field behavior. As a consequence, an approximated dispersion

relation (cf. Remark 2.37) was then found, showing ω ∝ k5/3. Regarding the well-posedness

one can easily see the violation of the necessary condition derived in Section 2.3.1, such that

the arguments made further in Elliott & Smith (1987) with respect to a possible finite time

breakdown have to be seen in the context of ill-posedness. Even though the calculations made

contain some simplifications one cannot expect the full, nonlinear problem to be well-posed,

which is supported by the numerical findings in Elliott & Smith (1987).

In an analogous manner one can perform a similar analysis for the three dimensional equiv-

alent (2.133) presented above, which we claim to lead to the same conclusions. Remaining

an open question is whether and how additional terms such as the streamline curvature term

found in Section 2.3.2 can enter and possibly regularize this nonlinear triple-deck problem.

With the analysis and remarks above we have provided some possibilities as to how a

continuation of the time evolution after the blow-up can be understood. But, as argued,

e.g. in Barenblatt (1979), the self-similar structure and let alone scenarios beyond blow-up

are only worth considering, if the singularity is stable (in some sense). Otherwise even the

similarity coordinates (2.121) do not have any special meaning. A first, simple test for the
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stability would be to alter the data at some t < ts and compare the changes in the similarity

profile. If these are uncontrollable, the similarity structure has no meaning. One can easily

perform this for the Cauchy problems from Section 2.3 numerically by slightly changing the

values of the coefficients in the expansions (2.51) at some t and computing the blow-up point

(xs, zs, ts) and its profile. Here we found that small alterations in the data at any time t < ts

lead to reasonable changes in the blow-up characteristics.

Since this represents a rather heuristic approach, Barenblatt (1979) suggested the stability

to be studied by saying, if ζ is the self-similar variable connecting (x, t) and a solution

u(x, t) is hence represented by U(ζ), the latter is stable if for a perturbed solution u(x, t) =

U(ζ) + w(ζ, t), one has w(ζ, t) → 0 as t→ ∞.

Remark 2.78. Obviously, in the present case, Â = Â(x̂, ẑ) is invariant with respect to the

one-parameter group of translations, i.e. shifting the blow-up point and time (together with

the formal symmetry in (z, t), cf. Remark 2.74). Therefore, one might write in general for

the perturbed state above u(x, t) = U(ζ + a) + w(ζ, t).

In Eggers & Fontelos (2009) this definition was adopted in the following form. Given the

self-similar coordinates (2.121) and say ρ = − log(τ) and A(x, z, t) = τ−2/3Â∗(x̂, ẑ, ρ), then

substitution into the Cauchy problem (2.47) yields an initial value problem for Â∗, where

steady states correspond to the originally derived blow-up profile Â = Â(x̂, ẑ). Consequently

the time derivative term ∂tA reads in the new independent variables

∂tA = 2
3(−t)−5/3

[
Â∗ + 2

3

(
x̂ ∂x̂ + ẑ ∂ẑ

)
Â∗ + 3

2∂ρÂ
∗],

where comparison with (2.125) eventually confirms the blow-up profiles to be equilibria of

the initial value problem

γ J 3/4
−∞ ∂ρÂ

∗ = −(Â∗)2 − λ
2π J 1/2

−∞R1∆Â
∗ − 2

3γ J
3/4
−∞
[
Â∗ + 2

3

(
x̂ ∂x̂ + ẑ ∂ẑ

)
Â∗],

subject to the far field decay as in (2.126) and some initial condition. Here, one can continue

by applying the standard techniques of substituting Â∗(x̂, ẑ, ρ) = Â(x̂, ẑ)+Ã(x̂, ẑ, ρ), |Ã| ≪ 1,

and expanding Ã in eigenfunctions of the according linearized, right hand side operator. For

the present problem, as we have demonstrated on several occasions in the previous sections,

the stability might still be best tested using numerical experiments.

Remark 2.79. The Cauchy problem for Â∗ in the form above will most likely not yield

traveling wave solutions. To check whether these are still possible, one would have to use

the transform A(x, t) = τ−2/3ψ̂(x̂ + vρ) (see Eggers & Fontelos (2009) for some further and

general aspects of self-similar equilibria).

It has been suggested and shown in Weideman (2003) that the occurrence of a finite time

blow-up in real solutions of certain evolution equations can be interpreted as vanishing imag-

inary parts of (permanently) existing complex singularities. The reaction diffusion equation
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∂tu = ∂2
xu+ u2, for example, has the behavior u(x, t) ∼

(
ts − t+ 1

8x
2 log |ts − t|−1)

)−1
, such

that (asymptotically) if x = ±i
√

8(ts − t) log |ts − t|, u has a complex pole, approaching the

real axis as t→ ts.

The blow-up in the Cauchy problem (2.47) is asymptotically given by (2.121), i.e.

A(x, z, t) ∼ c(x, z, t)(ts − t)−2/3, which is nicely reflected by tracking the minimum of A

as t→ ts, see Figure 29. With c(x, z, t) converging to the blow-up profile Â and hence being

bounded, no complex singularities can be found in a similar way as in the example above for

t < ts.
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Figure 29: The evolution of the minimum of A(x, z, t) (dashed), cf. Figure 22, versus the algebraic
singularity in time suggested by (2.121), e.g. −3.3 (2.775− t)−2/3 (solid).

As for the Fisher equation, the existence of moving, complex singularities prior to blow-up

and moving, real singularities afterwards has been demonstrated in Braun & Kluwick (2004),

where this was also connected to a formal time symmetry combined with a change to complex

independent variables. When formally replacing t with −t in the Cauchy problem (2.47) it

is not straight forward to find according transforms for A and the spatial variables, such

that the equations remain invariant. This is due to the explicit appearance of x on the left

hand side and the combinations of integral operators on the right. In consequence, although

we have shown a formal time symmetry to hold for the blow-up profile, actual continuation

beyond blow-up here needs another approach.

We shall make two more remarks on the important issues regarding the uniqueness of the

blow-up profile and the continuation of the solution beyond blow-up. As mentioned in the

paragraph following Remark 2.72, homotopy analysis methods might be utilized to show the

existence and uniqueness of non-trivial blow-up profiles for the two and three dimensional

case. The approach used therein, of course, only represents one of many possibilities to

introduce the homotopy parameter and perform the numerical calculations. In the theory

of homotopy analysis this is known as the zeroth order deformation equation. The whole
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technique then is constructive in the sense that one can (numerically) compute solutions for

different values of the homotopy parameter and observe the change from the initial to the

sought solution. To obtain a classical existence and uniqueness result one might employ fixed

point theorems, such as Schauder or Banach. The difficulty in the present case certainly

lies in the contraction principle needed for using Banach’s argument. As for Schauder’s

theorem ”only” continuity (among other characteristics) has to be assumed, which then

yields existence but not necessarily uniqueness.

As for the continuation beyond blow-up we stated above that necessarily the conservation

of some integral norm has to hold for the function A. One possibility would be to take into

account the conservation of mass and momentum in their integral form. Assuming the flow

field considered in Section 2.1 satisfies the Navier-Stokes equations then the according integral

descriptions are satisfied as well. Substituting the lower deck expansions for the velocity field

into the equations yields integral relations for the function A. No actual conservation of A

could be found with this approach and hence the integrability and its conservation over time

remains an open question.

As an additional perspective for future considerations one might make the assumption (A.

I. Ruban, private communications) of a moving surface in or a moving singularity of a solution

for the original problem (2.47). First let the surface be moving with a (relative) velocity u∗w.

Given as an additional condition for the original Navier-Stokes equations (2.2), u∗w enters the

boundary conditions for the lower deck expansion term u32, see (2.14), if u∗w = Re−2/5uw,

such that u32 = uw at y3 = 0, cf. (2.21). Following then the analysis of deriving the solvability

condition, uw just changes the boundary conditions for ũ32 (assuming we have already applied

the affine transform) to be ũ32 = −A2 + x2 − Γ + uw, cf. (2.24). Eventually, for the steady

and unsteady problems (2.30) and (2.47) it is straight forward to deduce that the surface

velocity represents a shift in the bifurcation parameter Γ , with the obvious conclusions (for

example, it does not alter the self-similar structure).

Another approach would be to assume the spatial location of the singularity (xs, zs) to

depend on the time t > ts, such that xs → xs + vt and zs → zs + vt. Consequently, the

self-similar variables (2.121) then read

x− xs = (−τ)4/9x̂+ v(−τ)
z − zs = (−τ)4/9ẑ + v(−τ)

and A(x, z, t) = (−τ)−2/3Â(x̂, ẑ; v, τ), τ = ts − t.

It is yet to be established, if such a view has some meaning or yields meaningful solutions in

terms of, e.g. traveling waves (cf. Braun & Kluwick (2004) for the Fisher equation).
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3 Polynomial Approximation and Numerical Analysis

The subject of describing arbitrary functions (depending on one or more variables) using

finitely many simpler functions (of which the behavior is known and well-defined) is named

approximation theory. This idea is presented in a very general context, for example, in Collatz

& Krabs (1973) and goes back at least to Weierstraß’ theorem, saying that polynomials are

dense in the space of continuous functions.

Polynomial approximation can then be seen as a special case of linear approximation

problems (in contrast to nonlinear problems and/or exponential, trigonometric and ratio-

nal approximations). In numerical analysis the classical polynomials are almost never the

best choice and hence one always turns to orthogonal polynomials, such as the well-known

Chebyshev polynomials.

Since these were originally defined only on [−1, 1] this section deals with extensions to

unbounded multi-dimensional domains. First we define how such polynomials can be mapped

onto the real line, while remaining smooth and bounded, and prove certain characteristics of

these mapped analogues in the context of weighted Lebesgue spaces.

Well-known results in approximation theory applied to spectral methods, such as conver-

gence rates, interpolation properties and the aliasing phenomenon will then be formulated

and proved in spaces defined on R
n.

Due to the overall application to problems given in Section 2 we utilize the derived

properties of the mapped Chebyshev polynomials, now well-defined in certain function spaces,

to solve equations involving singular integral operators using spectral collocation methods.

This is done, as usual, in a functional analytic or operator theory setting, by treating the

approximations as projections onto finite-dimensional subspaces.

3.1 Rational Chebyshev Polynomials

For a basic and comprehensive introduction to orthogonal polynomials and approximation

theory the reader is referred to e.g. Szegö (1939), Timan (1963), Cheney (1966), Guo (1998),

Boyd (2001) and Mason & Handscomb (2003). In the following the notion rational Chebyshev

polynomials is used for classical Chebyshev polynomials Tn mapped onto the whole real axis,

i.e.

Rn(x) := Tn(ψ(x)) = cos(nφ(x)), ∀x ∈ R, (3.1)

where
ψ : R → [−1, 1], ψ(x) =

x√
1 + x2

,

φ : R → [−π, 0], φ(x) = arctan(x) − π/2,

(3.2)

both bijective and diffeomorphic on the according open intervals. Algebraic simplification

shows that every mapped polynomial can be written as Rn(x) = p(x)
q(x) , where q(x) 6= 0, ∀x ∈ R.

Hence, Boyd (1987) termed them rational Chebyshev polynomials, although in the odd case

q(x) is not an actual polynomial (due to the square root). Equation (3.3) and Figure 30
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depict a few examples.

R0(x) = 1, R1(x) =
x

(1 + x2)1/2
,

R2(x) =
x2 − 1

x2 + 1
, R3(x) =

x3 − 3x

(1 + x2)3/2
,

R4(x) =
x4 − 6x2 + 1

x4 + 2x2 + 1
, R5(x) =

x5 − 10x3 + 5x

(1 + x2)5/2
.

(3.3)
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Figure 30: Left: even polynomials R2 (solid), R4 (dashed), R6 (dotted). Right: odd polynomials R1

(solid), R3 (dashed), R5 (dotted).

The following results represent an extension of some aspects of classical Chebyshev poly-

nomials for the above mentioned global analogs (see e.g. Mason & Handscomb (2003) and

Guo (1998) for some general ideas and proofs).

Theorem 3.1. The set {Rn}, n ∈ N, forms a complete orthogonal set in the space L2
w(R)

with the weight function w(x) = 1
1+x2 .

Proof. To see this we utilize the fact that {Tn} is complete and orthogonal in L2
v([−1, 1]),

v(t) = 1√
1−t2

. By applying ψ from (3.2) to the definition of completeness (i.e. the span{Ti}
is dense in L2

v), one has for an arbitrary function f ∈ L2
v([−1, 1]) that

∃ai ∈ R : ‖f −
∞∑

i=0

aiTi‖2
v =

1∫

−1

|f(t) −
∞∑

i=0

aiTi(t)|2v(t)dt = 0. (3.4)

A straight forward variable transform t = ψ(x), with dt = (1 + x2)−3/2dx, shows that

{Rn} combined with the weight w(x) = 1
1+x2 satisfies (3.4) for (arbitrary) functions f(t) =

f(ψ(x)) =: g(x), x ∈ R, such that g ∈ L2
w(R).
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Performing the same steps for the orthogonality relation one obtains

〈Rn, Rm〉w :=

∫

R

Rn(x)Rm(x)w(x)dx =





0 if n 6= m

‖Rn‖2
w otherwise,

(3.5)

with ‖R0‖2
w = π and ‖Rn‖2

w = π/2, ∀n > 0.

Lemma 3.2. The following holds for all Rn defined by (3.1).

(i) Recurrence relation

Rn+1 = 2ψRn −Rn−1

(ii) Rn ∈ C∞(R), Rn(x) ∈ [−1, 1], ∀x ∈ R, n ∈ N

(iii) Asymptotic behavior

Rn(x) ∼ (±1)n
(
1 − n2

2x2

)
as x→ ±∞ (3.6)

(iv) Rn is an even or odd function if n is even or odd, respectively.

(v) Product of polynomials

RnRm = 1
2(Rm+n +R|m−n|)

(vi) Generating sum in powers of ψ

Rn =

⌊n/2⌋∑

k=0

ck,nψ
n−2k

where ck,n = (−1)k 2n−2k−1 n
n−k

(n−k
k

)
and ⌊·⌋ takes the integer part

(vii) Generating formula

Rn(x) = 1
2

[(
ψ(x) +

√
ψ(x)2 − 1

)n
+
(
ψ(x) −

√
ψ(x)2 − 1

)n]
=

=
n∑

k even

(
n

k

)
ψ(x)n−k(ψ(x)2 − 1)k/2

(3.7)

(viii) Derivatives of Rn

dRn

dx
= 2n

dψ

dx

n−1∑′

n−i odd

Ri,

where the dash denotes that the kth term is halved if k = n/2 and n is even

(ix) Zeros xi of Rn (n ≥ 1)

xi = ψ−1
(
cos

(
(2i − 1)π

2n

))
i = 1, . . . , n
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with (not sharp) bounds xi ∈ [− 2
πn,

2
πn] ⊂ [−2

3n,
2
3n].

Proof. Most assertions in this lemma can be seen by a straight forward substitution of the

mappings ψ and φ for the original variables in the proofs given in e.g. Mason & Handscomb

(2003). So in what follows only arguments for the non-trivial extensions will be presented.

In (ii) the smoothness and the bounds ±1 follow directly from the definition via the cosine

function in (3.1) as a combination of smooth functions (φ is smooth by induction).

(iii) can be shown by setting x = ±1/y in ψ (such that x → ±∞ as y → 0+) and

expanding

Rn(y) = cos
(
n arccos

(
± 1√

1 + y2

))

into a Taylor series around y = 0, i.e.

cos
(
n arccos

(
± 1√

1 + y2

))
= (±1)n − (±1)n

n2

2
y2 + O(y4) as y → 0+

(cf. Boyd (2001a), where (±1)n is missing in the second term).

The expression given in (vii) stems from considering the polynomials in the complex plane.

Hence it cannot be used in the current form to (numerically) evaluate real-valued polynomials

(
√
ψ(x)2 − 1 6∈ R). By saying a := ψ(x) and b :=

√
ψ(x)2 − 1 we obtain (from the binomial

formula)

Rn = 1
2 ((a+ b)n + (a− b)n) =

n∑

k even

(
n

k

)
ψ(x)n−k(ψ(x)2 − 1)k/2,

where the odd terms can be cancelled out, which leaves only real addends.

The zeros in (ix) are, of course, just the mapped zeros of Tn. To prove the estimate for

the bounds, it is sufficient to consider i = 1, since a simple evaluation shows xn < xn − 1 <

· · · < x1 and xn = −x1. With ψ−1(x) = x/
√

1 − x2 we have

x1(n) =
cos( π

2n)√
1 − cos( π

2n)2
=

cos( π
2n)

sin( π
2n)

=
1

tan( π
2n)

. (3.8)

For n = 1, 2, 3, . . . the argument of the tangent function decreases (to zero) and hence setting

y := π
2n , y ∈ [0, π/2], an expansion of the last term in (3.8) around y = 0 should yield

the desired estimate. However, a Taylor series of 1
tan(y) around 0 cannot be gained in the

usual way (due to the singularity). But one can easily obtain (using L’Hospital’s rule for the

coefficients) an expression for

1

tan(y)
− 1

y
=
y − tan(y)

y tan(y)
= −y

3
+ O(y3) as y → 0.

By adding 1/y to the right-hand side above and combining this with (3.8) we arrive at

x1(n) =
1

tan( π
2n)

=
2n

π
− π

6n
+ O(n−3) <

2n

π
<

2

3
n
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(if n > 1), where the bound becomes sharper as n increases.

Remark 3.1. One can infer from Lemma 3.2(iii) that the Rn are (in general) not integrable

over R. On the other hand, using integration by parts and the fact that all derivatives of all

Rn vanish at infinity, it can be easily seen that

∫

R

dm

dxmRn(x)dx =

{
2 m = 1 or n odd

0 otherwise.

Remark 3.2. There are several ways to express derivatives of Chebyshev polynomials. Con-

sidering the definition (3.1) it is obvious that all derivatives can be written in closed form by

just differentiating the cosine combined with the mapping ψ. Lemma 3.2(viii) shows that one

can reduce derivatives to sums of the original polynomials. Another way is to use Chebyshev

polynomials of the second kind, or more generally Gegenbauer polynomials (see e.g. Boyd

(2001) and Mason & Handscomb (2003)), to describe derivatives in a more or less compact

formula. For the sake of completeness it shall be noted that the generating function given in

(3.7) can also be differentiated to arbitrary order, which does not necessarily yield a practica-

ble description, especially for numerical usage. In view of such characteristics, the best form

to be used depends strongly on the problem to be solved. In case of mainly numerical evalua-

tions closed forms are to be preferred, due to possible (round-off) error accumulations in the

sums. Trefethen (2000) provides a mathematically thorough and applicable treatment of var-

ious aspects of evaluating derivatives of polynomials (making use of so called differentiation

matrices).

Remark 3.3. As mentioned in Boyd (2001a) indefinite or definite integrals (over a compact

interval, cf. Remark 3.1) of individual Rn’s can be calculated in a straight forward manner.

Therein a recurrence relation was also given to obtain integrals of Rn’s for arbitrary high

degrees. Interestingly, a general antiderivative in closed form for all degrees cannot be found

directly. This is in strong contrast to the classical polynomials where it is easy to see that

∫
Tn(x)dx =





T1(x) n = 0
1
4T2(x) n = 1
1
2

(
Tn+1(x)

n+1 − Tn−1(x)
n−1

)
n > 1,

(3.9)

which can be most easily shown via the cosine definition (see e.g. Mason & Handscomb

(2003)).

Remark 3.4. Obviously, by applying a coordinate transform, it is only possible to utilize

(3.9) to gain an equivalent general description for mapped polynomials, if the derivative of the

transform is independent of the integration variable. Thus, it cannot be done for the mapping

ψ in (3.2). Alternatively, integrals of Chebyshev polynomials can be given by considering the

generating sum or the generating function in Lemma 3.2(vi),(vii). In the classical case, both

can be easily integrated and algebraically modified to be equal to (3.9).
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Apart from the recurrence relation stated in Boyd (2001a), one can calculate indefinite

integrals of rational Chebyshev polynomials for arbitrary degrees (using a computer algebra

system such as Mathematica) to be

∫
Rn(x)dx =

⌊n/2⌋∑

k=0

ck,n
x1+n−2k

1 + n− 2k
2F1(

n
2 − k, n+1

2 − k, n+3
2 − k;−x2),

where the coefficients ck,n are the same as in Lemma 3.2(vi) and 2F1 is the Gauss hyper-

geometric function. This is a very general description, which might not be practicable for

numerical schemes.

When applying affine transforms of the form y = ax + b, x ∈ [−1, 1], such that y ∈
[b − a, b + a], the polynomials T ∗

n = T ∗
n(y) are then defined on [b − a, b + a]. As mentioned

in Mason & Handscomb (2003) such polynomials are not very useful in general, except when

one needs to approximate a function only locally around some special point where a Taylor

series representation is not the best choice.

Considering (3.9) and the fact that dy/dx = a one can easily show

Lemma 3.3. Given y ∈ [b − a, b + a] and y = ax + b with a, b ∈ R, such that T ∗
n(y) :=

Tn(y−b
a ) = Tn(x), then the following holds ∀n ∈ N

∫
T ∗

n(y)dy =





T ∗
1 (y) n = 0

a1
4T

∗
2 (y) n = 1

a1
2

(
T ∗

n+1(y)

n+1 − T ∗
n−1(y)

n−1

)
n > 1

and hence

b+a∫

b−a

T ∗
n(y)dy = a

1 + (−1)n

1 − n2
=

{
2a

1−n2 n even

0 n odd.

The second equation above follows directly from the first one, since the polynomials at the

integration bounds evaluate to ±1.

Remark 3.5. In addition to the non-integrability of all Rn over R, the fact that there is no

general rule for calculating closed form descriptions of indefinite integrals of Rn for arbitrary

degrees presents a non-negligible disadvantage when dealing with algorithms or numerical

schemes to approximate integrals of functions, solve differential equations with a Galerkin

method or solve integral equations (on unbounded domains).

The following simple example shall illustrate this problem.

Example 3.1. Consider the integral

∫

R

[
1
2R0(x) − 1

2R2(x)
]
dx = 1

2

[ ∫

R

R0dx−
∫

R

R2dx

]
,
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a situation possibly arising in the treatment of integral equations or Galerkin schemes (see

Section 3.3). As shown above both integrals on the right-hand side do not exist. Although,

by being more precise, calculating these integrals as a limit (by definition)

1
2

[ ∫

R

R0dx−
∫

R

R2dx

]
= lim

a→∞
1
2

[ a∫

−a

R0dx−
a∫

−a

R2dx

]
,

reveals that one first has to find the antiderivatives of R0 and R2, evaluate them at ±a and

then take the limit. Since

∫
R0dx = x and

∫
R2dx = x− 2 arctan(x)

one can immediately see, that the linear growth at infinity will eventually be canceled out by

the sum, rendering the limit to exist. In fact, what we have is

∫

R

[
1
2R0(x) − 1

2R2(x)
]

︸ ︷︷ ︸
1

1+x2

dx =

∫

R

1

1 + x2
dx = π.

All this is even more striking when products of polynomials occur (e.g. in Galerkin schemes),

for example

∫

R

[
1
2R0(x) − 1

2R2(x)
]
Rn(x)dx = 1

2

[ ∫

R

R0Rndx−
∫

R

R2Rndx

]
.

Again, a numerical algorithm would be terminated at this point and even analytically one

might not be able to find antiderivatives of such products in order to calculate the limits

(as done above). Lemma 3.2(v) provides at least the opportunity to return to integrals of

single polynomials, but most interestingly, applying trigonometric identities to the definition

of Rn via the cosine function and due to the fact that 1/(1 +x2) = d
dx arctan(x) it is straight

forward to show ∫

R

[
1
2R0(x) − 1

2R2(x)
]
Rn(x)dx = 0 ∀n > 0.

By evaluation of the term in square brackets this can also be viewed as 〈Rn, 1〉w, which has

to be zero by definition.

Remark 3.6. By substituting x → x/L in the mappings (3.2) (see Boyd (1982) and Boyd

(2001) and references therein) one can introduce a stretching parameter L to modify the

polynomials in order to better adapt them to certain problems or to reduce approximation

errors (see Section 3.2). With ψ(x) = x/
√
L2 + x2, the weight now reads w(x) = L/(L2 +x2)

and the zeros are shifted significantly, i.e. xi → Lxi and so is the asymptotic behavior, i.e.

Rn(x;L) ∼ (±1)n
(
1 − L2 n

2

2x2

)
as x→ ±∞
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(cf. (3.6) and Figure 31). Especially when using these zeros as points of evaluation (e.g.

collocation points, see Section 3.3) there is a non-negligible change in the approximation error

(see Example 3.6 in Section 3.2). Although L = 1 might not be the best choice for optimal

convergence (cf. (3.12)), it can provide possibilities to algebraically simplify certain integrals

(with special kernels) and derivatives of Rn. Additionally, most of the modifications in the

proofs given in Section 3.2 are algebraically easier to perform and furthermore, the conditions

for convergence per se given therein must not depend on the choice of L. In actual numerical

calculations, especially with the aim to minimize the number of polynomials, including L as

a variable can be of advantage, see Example 3.6.
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Figure 31: The polynomial R3 taking L = 1 (solid), L = 1/2 (dashed) and L = 2 (dotted).

Remark 3.7. An extension of classical univariate polynomials Ti, such that they are defined

on the hypercube [−1, 1]n, has been done successfully by using a tensor product description,

which is essentially just the pointwise product of such polynomials. This can be applied to

the rational case without any changes, e.g.

Rk(x1, x2) = Rij(x1, x2) := Ri(x1)Rj(x2), (x1, x2) ∈ R
2,

where k runs through the rows of the array built by the indices i, j (cf. Mason & Handscomb

(2003) and references therein). There is no unique way to obtain multivariate polynomials,

but from the point of approximation theory (see Section 3.2), the tensor product is the

most appropriate one, since it originally stems from formally expanding functions in several

variables into a polynomial series, i.e.

f(x1, x2) =
∑

i

ai(x2)pi(x1), with ai(x2) =
∑

j

bijpj(x2) ⇒

f(x1, x2) =
∑

i,j

bij pi(x1)pj(x2)︸ ︷︷ ︸
pij(x1,x2)

.
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Using the notion of multi-indices k = (k1, . . . , kn), with |k| = max
i

|ki| and x = (x1, . . . , xn) ∈
R

n, one possible definition (cf. Guo (1998)) then is

Rk(x) :=

n∏

i=1

Rki
(xi). (3.10)

Again, cf. (3.4) and (3.5), {Rk} forms a complete orthogonal set in L2
u(Rn), with the weight

u(x) =
∏

k w(xk) (w given as in Theorem 3.1), and the orthogonality relation

〈Rk, Rl〉u :=

∫

Rn

Rk(x)Rl(x)u(x)dx =

∫

Rn

n∏

i=1

Rki
(xi)

n∏

i=1

Rli(xi)
n∏

i=1

w(xi)dx =

=
n∏

i=1

∫

R

Rki
(xi)Rli(xi)w(xi)dxi =

n∏

i=1

〈Rki
, Rli〉w =





0 if k 6= l

‖Rk‖2
u otherwise

,

(3.11)

where k 6= l ⇔ ∃i : ki 6= li, i = 1, . . . , n and ‖Rk‖2
u :=

n∏
i=1

‖Rki
‖2

w, with the one-dimensional

inner product and norm given as in (3.5).

Caveat: In the case of multivariate polynomials defined in (3.10) it is possible to write

the inner product and hence the norm as the product of the one-dimensional equivalents. In

general, the fist equality in (3.11) remains as the definition of the inner product in the space

L2
u(Rn) with the naturally induced norm ‖ · ‖ =

√
〈·, ·〉. For an illustration in two dimensions

see Example 3.2.

We will not derive any other properties of multivariate rational Chebyshev polynomials

(cf. Lemma 3.2), as this is a purely algebraic exercise and will not shed any (more) light on

the structure of the set {Rk}.

Remark 3.8. For the sake of completeness it shall be mentioned that the Chebyshev poly-

nomials (among the Legendre and Gegenbauer polynomials) are special cases of the Jacobi

polynomials. It is hence obvious that these can also be mapped to provide basis functions on

the whole real axis. Recently, Narayan & Hesthaven (2011) generalized such considerations

including Wiener’s basis functions.

In the above only a few properties of orthogonal polynomials were treated regarding

their modification for problems on R. A more detailed and classical treatment of orthogonal

polynomials has been given by Szegö (1939) and many of the results presented therein can

be transformed to the real line in the same way as we have shown in this section.

3.2 Approximation Theory in Rn

This section provides a general treatment of approximating functions using orthogonal poly-

nomials in R
n. This forms the theoretical background for numerically solving differential and

integral equations using spectral methods on unbounded domains.
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As it has been done in Section 3.1, we use existing definitions and results for orthogonal

polynomials provided, for example, in Gottlieb & Orszag (1977), Guo (1998), Mason &

Handscomb (2003) and Hesthaven et al. (2007) and extend them to the rational, multivariate

case.

Three types of convergence shall be addressed in the following, namely

convergence in some function space

‖f − fN‖H → 0

pointwise convergence

|f(x) − fN (x)| → 0 ∀x
uniform convergence

sup
x

|f(x) − fN (x)| → 0





as N → ∞, (3.12)

where H denotes some Lebesgue or Sobolev space and the uniform convergence can also

be seen as convergence in the L∞ norm by taking the essential supremum. Under certain

conditions (cf. Lemma 3.14), but not in general, one can infer that

L∞ convergence ⇒ pointwise convergence ⇒ H convergence.

From the completeness of the set {Rn} in L2
w(R) (cf. Theorem 3.1) and the norm induced by

the inner product in (3.11) one can readily deduce the following convergence result.

Lemma 3.4. Given a function f ∈ L2
u(Rn), with x = (x1, . . . , xn) and u(x) =

n∏

i=1

1/(1+x2
i ),

there exist ak ∈ R and a polynomial pN (x) =
∑

|k|≤N

akRk(x), such that

‖f − pN‖u → 0 as N → ∞.

Remark 3.9. The lemma above represents the weakest form of convergence in the sense

that it does not say anything about the rate of convergence or how the coefficients ak can

be determined. Also, no additional assumptions on the function f have been made, such as

boundedness, differentiability etc.

To measure the quality of an approximation f∗ in some normed function space, a typical

requirement would be ‖f − f∗‖ ≤ ǫ (for a given ǫ) and consequently a best approximation f∗B
can be defined as ‖f − f∗B‖ ≤ ‖f − f∗‖ for all other approximations f∗, see e.g. Mason &

Handscomb (2003).

By using the fact that any weighted L2 space possesses an inner product we can paraphrase

a well known result in terms of multivariate polynomials.

Theorem 3.5. For any f ∈ L2
u(Rn) there exists a unique polynomial pB

N of maximal degree

N , such that pB
N is the L2

u best approximation and is given by the (necessary and sufficient)
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condition

〈f − pB
N , pN 〉u = 0, ∀ polynomials pN ∈ L2

u. (3.13)

Proof. see e.g. Mason & Handscomb (2003). Therein, apart from some general arguments,

only properties of inner products and their induced norms are used and hence the proof does

not need to be modified to hold for weighted Hilbert spaces in R
n.

From the existence of such a polynomial it can be concluded that there must also ex-

ist corresponding coefficients ak, as mentioned in Lemma 3.4. In fact, by exploiting the

orthogonality, we have the following

Theorem 3.6. Let {pk} be a set of orthogonal polynomials on R
n, f ∈ L2

u(Rn) and pB
N the

best approximation found in Theorem 3.5. Then pB
N can be written as

pB
N =

∑

|k|≤N

ak pk , with ak :=
〈f, pk〉u
‖pk‖2

u

. (3.14)

Proof. see e.g. Mason & Handscomb (2003) for the one-dimensional classical case, which can

be easily adapted to the multivariate result here.

Due to the uniqueness of the best approximation polynomial, the coefficients given in

(3.14) are thus uniquely defined and, more importantly, do not depend on N .

Obviously, the univariate as well as the multivariate rational Chebyshev polynomials defined

in (3.1) and (3.10) combined with the inner products (3.5) and (3.11) satisfy the requirements

in Theorems 3.5 and 3.6.

Remark 3.10. By formally expanding a function f into a Chebyshev series (in R
n) and

taking the (weighted) inner product with an arbitrary Chebyshev polynomial and exploiting

the orthogonality, i.e.

f =
∞∑

i=0

aiRi  〈f,Rj〉u =
∞∑

i=0

ai 〈Ri, Rj〉u︸ ︷︷ ︸
6=0⇔i=j

∀j,

it is straight forward to see that this yields the same formula for the coefficients as in (3.14).

To be more precise, such modifications should be considered in the limit N → ∞ for all

the sums over i = 1, . . . , N . Thus, suitable convergence has to be assumed to interchange

the limit (and the summation) with the integral from the inner product (cf. the dominated

convergence theorem and Lemma 3.12 and Theorem 3.13).

It is nevertheless possible to define an orthogonal Chebyshev expansion of a (suitably

chosen) function as an infinite series, where every partial sum is the L2 best approximation. It

additionally follows that for a finite (i.e. truncated) Chebyshev series pN (with the coefficients

given via (3.14)), the error eN := f − pN not only tends to zero in the L2 sense (trivial from

Lemma 3.4), but is also minimal for every N .
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3.2.1 Orthogonal Projections

Some types of finite-dimensional approximations can also be considered in terms of projection

methods, where it is often easier to prove certain consistency, stability and convergence results

as well as error estimates. In view of such methods a truncated Chebyshev series expansion

operator shall be generally defined as

PN : H → VN , PNf :=
∑

|i|≤N

aiRi, (3.15)

with H being some Banach space and VN the span of all polynomials Ri.

The next result shows under which assumptions such an operator can be seen as an orthogonal

projection

Lemma 3.7. The approximation operator PN : L2
u(Rn) → VN , given as

PNf =
∑

|k|≤N

ak Rk, (3.16)

with ak as in (3.14), defines a bounded orthogonal projection.

Proof. One needs to verify the projection properties. Using the definition of the coefficients

and the linearity of the inner product, i.e.

〈λf + γg,Ri〉u
‖Ri‖2

u

= λ
〈f,Ri〉u
‖Ri‖2

u

+ γ
〈g,Ri〉u
‖Ri‖2

u

one can deduce the linearity of PN .

As for the idempotence (P2 = P) say g := PNf with coefficients ai, then

PNg =
∑

i

biRi, bi =
〈g,Ri〉u
‖Ri‖2

u

=
〈∑j ajRj, Ri〉u

‖Ri‖2
u

=
∑

j

aj
〈Rj , Ri〉u
‖Ri‖2

u

= ai ⇒ PNg = g.

Finally, for the boundedness, we use the fact that PNf is the best approximation in L2
u (cf.

Theorem 3.5) and deduce ∀f ∈ L2
u

‖f‖2
u = ‖f − PNf + PNf‖2

u = ‖f − PNf‖2
u + 2Re〈f − PNf,PNf〉u︸ ︷︷ ︸

=0

+‖PNf‖2
u ≥ ‖PNf‖2

u

and thus ‖PN‖u ≤ 1. On the other hand, from P2
N = PN we have ‖PN‖u ≤ ‖PN‖2

u, where

‖PN‖u ≥ 1 and consequently ‖PN‖u = 1.

Remark 3.11. Guo (1998) defines an orthogonal projection via (3.13) and deduces Theorem

3.6 and Lemma 3.7 from that. Furthermore, extensions to general weighted Sobolev spaces

(containing an inner product) are shown therein as well. By reviewing the proof given above,

one can easily see that in fact every argument holds for all Hilbert spaces, concluding that

every H best approximation given via orthogonal polynomials is an orthogonal projection from

128



H into the span of the polynomials (see Mason & Handscomb (2003) and Hackbusch (1995)

for some further and general aspects of projection operators).

The next result, which is often utilized when proving convergence rates, shows that if the

projection converges in L2 the coefficients are square summable (also known as Parseval’s

identity, originally derived for Fourier series). Since this shall be done in the most general

sense, where a precise understanding of sums over multi-indices is crucial. The following

example will illustrate the two-dimensional case.

Example 3.2. (see definition in Remark 3.7)

Say n = 2, thus k = (k1, k2) and ak = a(k1,k2) =: ak1k2, which can be also seen as a matrix

of coefficients. Now the sum over |k| ≤ N or |k| = 0, 1, 2, . . . , N means summing up all the

terms for which
|k| = 0  k = (0, 0)

|k| = 1  k = (0, 1), (1, 0), (1, 1)

|k| = 2  k = (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)
...

Obviously, all the pairs can be rearranged to yield the matrix mentioned above, where sum-

mation runs through every line for every column or vice versa. Ergo,

∑

|k|≤N

pk =
N∑

k1=0

N∑

k2=0

pk1k2 .

Overall, the projection operator in R
2 reads

(PNf)(x1, x2) =

N∑

k1=0

N∑

k2=0

ak1k2Rk1(x1)Rk2(x2),

with the coefficients

ak1k2 =
〈f,Rk1Rk2〉u
‖Rk1‖2

w‖Rk2‖2
w

=
(π

2

)2
ck1ck2

∫

R2

f(x1, x2)Rk1(x1)Rk2(x2)w(x1)w(x2)dx1dx2,

where cki
= 2 if ki = 0 and cki

= 1 otherwise (taking into account ‖R0‖2
w = 2‖Rj‖2

w = π,

see (3.5), cf. definition in Guo (1998) for the coefficients in multi-dimensional Chebyshev

transformations). It is now straight forward to see that only in the case of separable functions

f the multi-dimensional inner product can be written as the product of its one-dimensional

equivalents. One possible way to express multi-dimensional inner products in one-dimensional

terms would be by successive application, i.e.

〈f,Rk〉u = 〈. . . 〈〈f,Rk1〉w, Rk2〉w . . . , Rkn〉w.
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The following result states the square summability of the coefficients given in the orthogonal

projection.

Theorem 3.8. Let f ∈ L2
u(Rn) and PN be the according orthogonal projection given by

(3.16). Then the coefficients satisfy the (modified) Parseval identity

∞∑

|k|=0

cka
2
k = (2/π)n‖f‖2

u, (3.17)

with ck =
n∏

i=1
cki

, where cki
= 2 for ki = 0 and cki

= 1 otherwise.

Proof. Measuring the difference of f and its projection in L2, we get

‖f − PNf‖2
u = 〈f − PNf, f − PNf〉u = 〈f, f〉u − 2〈f,PNf〉u + 〈PNf,PNf〉u =

= ‖f‖2
u − 2

∑

|k|≤N

ak〈f,Rk〉u +
∑

|l|,|k|≤N

alak 〈Rl, Rk〉u︸ ︷︷ ︸
=0, l 6=k

=

= ‖f‖2
u − 2

∑

|k|≤N

a2
k‖Rk‖2

u +
∑

|k|≤N

a2
k‖Rk‖2

u =

= ‖f‖2
u −

∑

|k|≤N

a2
k‖Rk‖2

u.

All equalities above are independent of the dimension n and also hold for the classical poly-

nomials (cf. Mason & Handscomb (2003)).

Lemma 3.4 shows that for N → ∞ the left-hand side of the equation above tends to zero,

hence ∞∑

|k|=0

a2
k‖Rk‖2

u = ‖f‖2
u

and from ‖Rk‖2
u =

n∏
i=1

‖Rki
‖2

w, where ‖Rki
‖2

w = cki
π
2 , with the cki

defined above we arrive at

the desired result.

Note that absolute summability cannot be inferred here. Therefore it is not possible to

make any assertion about pointwise or uniform convergence. The only obvious conclusion is

that the coefficients must form a null sequence, the necessary condition for convergence of

any series.

In two dimensions, for example, the square summability can also be written as

∞∑

k=0

∞∑

l=0

ckla
2
kl = a2

00 +

∞∑

l=0

a2
0l +

∞∑

k=0

a2
k0 +

∞∑

k=0

∞∑

l=0

a2
kl

⇒
∞∑

|k|=0

a2
k ≤ c‖f‖2

u.
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So far the L2 convergence for approximations (projections) in terms of (multivariate rational)

Chebyshev polynomials is very well established. If the given function is differentiable in some

sense, convergence rates can be proved to depend on the approximation parameter N and

the order of the derivatives.

Guo (1998), Wang & Guo (2002) and Hesthaven et al. (2007) provide results for the

classical types of orthogonal polynomial systems (Fourier, Legendre, Hermite, Chebyshev)

with some extensions to multidimensional and unbounded domains.

In the following we will show convergence rates for multivariate rational Chebyshev poly-

nomials in terms of Sobolev type spaces and smooth functions. As usual, for the multi-index

k and x ∈ R
n say ∂k

x := ∂k1
x1
∂k2

x2
. . . ∂kn

xn
, |k|s =

∑
ki and let the space Hr

u(Rn) be defined as

the set

Hr
u(Rn) =

{
f | ∂k

xf ∈ L2
u(Rn), |k|s ≤ r

}
, with ‖f‖2

r =
∑

|k|s≤r

‖∂k
xf‖2

u, (3.18)

whereas Hr
u,A shall be the set

Hr
u,A(Rn) =

{
f | ‖f‖A <∞

}
with ‖f‖2

A :=
∑

|k|s≤r

∥∥
n∏

j=1

(1 + x2
j)

r/n+kj
2 ∂

kj
xj f
∥∥2

u
. (3.19)

Remark 3.12. The different use of absolute values for multi-indices (cf. Remark 3.7) stems

from the agreement that mixed partial derivatives are usually regarded as derivatives of order

of the sum of its individual derivatives, e.g. the pair (2, 2) gives ∂2
x∂

2
y (|(2, 2)|s = 4), a fourth

order differential operator, whereas |(2, 2)| = 2.

The space Hr
u,A is chosen to work with the arguments in the proof for the convergence

rate of the projection operator (Wang & Guo (2002) show the general idea in one dimension),

cf. Theorem 3.11, where the subscript A will become clear. The following result adds some

meaning to this function space.

Lemma 3.9. The space Hr
u,A defined in (3.19) is a subspace of Hr

u.

Proof. One needs to show that for every f ∈ Hr
u,A(Rn), ‖f‖r ≤ c‖f‖A holds, which implies

that if ‖f‖A <∞ ⇒ ‖f‖r <∞.

By observing that every addend in both, (3.18) and (3.19) is positive and also the number of

terms in both sums is equal, it is sufficient to prove that

‖∂k
xf‖2

u ≤ c
∥∥

n∏

j=1

(1 + x2
j)

r/n+kj
2 ∂

kj
xj f
∥∥2

u
for fixed r, ∀k. (3.20)

Defining gr(x) :=
n∏

j=1
(1 + x2

j )
r/n+kj

2 it follows that gr(x) ≥ 1 and unbounded as |x| → ∞.

With f∗k (x) := ∂k
xf(x), (3.20) reads

‖f∗k‖2
u ≤ c‖grf

∗
k‖2

u ∀k. (3.21)
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The definition of the L2
u norm on the left-hand side in (3.21) yields

∫

Rn

|f∗k (x)|2u(x)dx =

∫

Rn\S

|f∗k (x)|2u(x)dx+

∫

S

|f∗k (x)|2u(x)dx, (3.22)

where S denotes a bounded n-sphere with radius R. Switching to hyperspherical coordinates

x→ (ρ, φ) with φ = (φ1, . . . , φn−1), i.e. say Pn : R
n → R

n, such that

P2(ρ, φ) :=

(
ρ cos(φ)

ρ sin(φ)

)
and Pn(ρ, φ1, . . . , φn−1) :=

(
Pn−1(ρ, φ1, . . . , φn−2) cos(φn−1)

ρ sin(φn−1)

)
,

with φ ∈ I := (−π, π) × (−π/2, π/2)n−2

and the functional determinant |J | = ρn−1
n−1∏

k=2

cosk−1(φk),

and by denoting the functions in these coordinates with an upper bar, (3.22) can be rewritten

to be

∫

Rn

|f∗k (x)|2u(x)dx =

∞∫

R

∫

I

|f̄∗k (ρ, φ)|2ū(ρ, φ)|J | dφ dρ +

R∫

0

∫

I

|f̄∗k (ρ, φ)|2ū(ρ, φ)|J | dφ dρ. (3.23)

In S, which represents the second term on the right-hand side in (3.23), ḡr = ḡr(ρ, φ) is a

uniformly bounded function with values between 1 ≤ ḡr ≤ const. Thus, one obtains

R∫

0

∫

I

|f̄∗k (ρ, φ)|2ū(ρ, φ)|J | dφ dρ ≤ c

R∫

0

∫

I

|ḡr|2|f̄∗k (ρ, φ)|2ū(ρ, φ)|J | dφ dρ. (3.24)

Considering the far field behavior of the functions

ḡ ∼ ρcg(φ), f̄∗k ∼ ρcf (φ), ū ∼ ρcu(φ) as ρ→ ∞

yields for the first integral on the right-hand side of (3.23) (additionally changing the order

of integration)

∫

I

∞∫

R

|f̄∗k (ρ, φ)|2ū(ρ, φ)|J | dρ dφ ∼
∫

I

∞∫

R

ρ2cf+cu |J | dρ dφ ≤ c

∫

I

∞∫

R

ρ2(cg+cf )+cu |J | dρ dφ, (3.25)

where the inequality holds due to ḡr being unbounded as ρ→ ∞, which means cg(φ) > 0, ∀φ
and consequently ρcg ≥ 1, for ρ ≥ R.

In view of (3.23), adding the right-hand sides of (3.24) and (3.25) gives the desired estimate

(3.20).

Remark 3.13. This proof shows that the space Hr
u,A collects those functions of Hr

u which

satisfy a certain restriction on the decay behavior. Obviously, considering a bounded integra-
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tion domain, e.g. the n-sphere in (3.22), if f is Hr
u(S)-integrable then f is Hr

u,A(S)-integrable

and vice versa (by a continuity argument there exists a constant c∗, such that the equality

in (3.24) holds). But when looking at the far field,

∫

I

∞∫

R

ρ2(cg+cf )+cu+n−1 dρ cosn−2(φn−1) cosn−3(φn−2) . . . cos(φ2) dφ,

the integral over ρ can only exist if 2(cg + cf )+ cu +n− 1 < −1 ∀φ, or cf < (−cu −n)/2− cg,
which is a stronger requirement than cf < (−cu − n)/2 (for f ∈ Hr

u), since cg > 0.

In one dimension, see Wang & Guo (2002), the difference in the necessary decay can be

given explicitly as f ∼ x(1−2r)/2 (to lie in Hr
u,A(R)) in contrast to f ∼ x1/2. Note that in the

case of Hr
u(R) the necessary far field condition is independent of r.

As mentioned in Gottlieb & Orszag (1977), the classical Chebyshev polynomial Tl is the

eigenfunction to the according Sturm-Liouville operator A := −
√

1 − x2
d

dx
[
√

1 − x2
d

dx
] with

eigenvalues l2 and x ∈ [−1, 1]. By applying the coordinate transform ψ defined in (3.2), one

can derive the analogous operator on R, such that the rational Chebyshev polynomial Rl

becomes the eigenfunction to the eigenvalues l2, i.e.

AxRl(x) := −(1 + x2)∂x[(1 + x2)∂x]Rl(x) = l2Rl(x). (3.26)

One can now apply this operator successively m times to a function f ∈ C2m(R) obtaining

Am
x f(x) =

2m∑

k=1

(1 + x2)m+ k
2 pk(x)∂

k
xf(x), (3.27)

where pk are uniformly bounded (rational) functions on R, which can be seen by induction,

as proposed in Wang & Guo (2002) (without showing details). In Appendix B the necessary

arguments to prove this assertion are provided.

Rewriting the Sturm-Liouville problem (3.26) as Rl = AxRl/l
2 and substituting this

into the definition of the multivariate rational Chebyshev polynomials (3.10) (now k =

(k1, . . . , kn)) then yields

n∏

i=1

k2
iRk =

n∏

i=1

AxiRki
(xi) =

( n∏

i=1

Axi

)
Rk(x) =: AxRk(x), (3.28)

which can be viewed as a definition for multi-dimensional eigenvalue problems for the Sturm-

Liouville operator Ax, x ∈ R
n.

Remark 3.14. By noting that every component Axi acts only with respect to xi one can

rearrange the terms in Ax = Ax1Ax2 . . . Axn , such that Ax = (−1)n
∏

(1+x2
i )∂x[

∏
(1+x2

i )∂x],

which is now of a similar type as the original definition in one dimension stated above.
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Caveat: In R, AxR0 ≡ 0 since R0 ≡ 1, which is the only eigenfunction to the eigenvalue 0.

In the multivariate case this means that every Rk where at least one ki = 0 is an eigenfunction

to the eigenvalue 0, hence one obtains 2n − 1 according polynomials. Additionally, if Ax is

applied to a function, independent of at least one of the xi, it follows that Axf ≡ 0.

With this remark and in view of (3.27) it is now straight forward to define the successive

application of the multi-dimensional Sturm-Liouville operator to a function f ∈ C2mn(Rn)

Am
x f(x) := Am

x1
. . . Am

xn
f(x) =

2m∑

k1=1

· · ·
2m∑

kn=1

n∏

i=1

(1 + x2
i )

m+
ki
2 pki

(xi)∂
ki
xi
f(x). (3.29)

Lemma 3.9 implies Hr
u,A to be a subspace of L2, thus proposing

Lemma 3.10. Say f ∈ Hr
u,A(Rn) and r = 2mn, then there exists a positive constant c, such

that

‖Am
x f‖u ≤ c‖f‖A

and hence Am
x continuously maps Hr

u,A to L2
u.

Proof. Again, this was mentioned in Wang & Guo (2002) for the one-dimensional case without

showing the details. Since the proof reveals why the space Hr
u,A is defined by (3.19), where

the subscript A refers to the Sturm-Liouville operator, it shall be given here in detail.

Recalling Cauchy’s inequality for real numbers, i.e. |
n∑

i=0
aibi|2 ≤

(
n∑

i=0
|ai|2

)(
n∑

i=0
|bi|2

)
, one

can write

|Am
x f(x)|2 =

∣∣
2m∑

k1=1

· · ·
2m∑

kn=1

n∏

i=1

(1 + x2
i )

m+
ki
2 pki

(xi)∂
ki
xi
f(x)

∣∣2 =

=
∣∣

2m∑

k1=1

pk1(x1)

2m∑

k2=1

pk2(x2) · · ·
2m∑

kn=1

pkn(xn)

n∏

i=1

(1 + x2
i )

m+
ki
2 ∂ki

xi
f(x)

︸ ︷︷ ︸
=:hk1

∣∣2 ≤

≤




2m∑

k1=1

|pk1 |2



2m∑

k1=1

|hk1 |2 plug in hk1
and apply the inequality again

≤




2m∑

k1=1

|pk1 |2





2m∑

k2=1

|pk2|2



2m∑

k1=1

2m∑

k2=0

|hk2 |2

... with hk2
embracing the sums over k3 to kn

... repeating this procedure finally yields

≤




2m∑

k1=1

|pk1 |2

 . . .




2m∑

kn=1

|pkn |2



︸ ︷︷ ︸
=:c

2m∑

k1=1

· · ·
2m∑

kn=1

∣∣
n∏

i=1

(1 + x2
i )

m+
ki
2 ∂ki

xi
f(x)

∣∣2,
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where the constant c exists due to the boundedness of every pki
, see Appendix B, and the

inequalities hold ∀x ∈ R
n. Additionally both sides are non-negative functions and hence

integration over R
n (including the positive weight u) will not change the inequality,

∫

Rn

|Am
x f(x)|2u(x)dx ≤ c

∫

Rn

2m∑

k1=1

· · ·
2m∑

kn=1

∣∣
n∏

i=1

(1 + x2
i )

m+
ki
2 ∂ki

xi
f(x)

∣∣2u(x)dx. (3.30)

Interchanging summation and integration on the right-hand side and starting the summation

from zero then gives

‖Am
x f‖2

u ≤ c

2m∑

k1=0

. . .

2m∑

kn=0

∫

Rn

∣∣
n∏

i=1

(1 + x2
i )

m+
ki
2 ∂ki

xi
f(x)

∣∣2u(x)dx ≤

≤ c
∑

|k|s≤r

∥∥
n∏

j=1

(1 + x2
j )

r/n+kj
2 ∂

kj
xj f
∥∥2

u
= c‖f‖2

A,

(3.31)

where the last inequality comes from setting r = 2mn = maxk |k|s (to include the highest

derivative), gaining additional terms (not appearing in the sums in (3.30)), which, for being

non-negative, do not change the inequality. Appendix B shows the above result for r =

(2m+ 1)n, such that it holds for arbitrary r ∈ N.

Next we show a convergence rate for multivariate orthogonal projections in Rn (in the

same way as Wang & Guo (2002) showed the one dimensional version).

Theorem 3.11. Let f ∈ Hr
u,A(Rn), then there exists a positive constant c, such that

‖f − PNf‖u ≤ cN−r/n‖f‖A. (3.32)

Proof. The strategy of this proof is in complete accordance to Wang & Guo (2002). In

general, the application of Sturm-Liouville type operators to show convergence rates for

projection operators is very common, see Hesthaven et al. (2007) for the case of ultraspherical

polynomials as well as Guo (1998) for other types of orthogonal polynomials.

First we show, how to modify the iteration process to include Am
x in the description of the

expansion coefficients. Let PNf =
∑
akRk as usual. Then,

‖Rk‖2
uak =

∫

Rn

f(x)

n∏

i=1

Rki
(xi)

1
1+x2

i
dx

(3.28)
=

=
∏

1
k2

i

∫

Rn

f(x)
∏

AxiRki
(xi)

1
1+x2

i
dx =

=
∏

1
k2

i

∫

R

AxnRkn(xn) 1
1+x2

n

∫

R

. . .

∫

R

f(x)Ax1Rk1(x1)
1

1+x2
1
dx =

. . . substitution of (3.26) cancels the weights

. . . consecutive integration by parts yields
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. . . (boundary terms vanish due to f ∈ Hr
u,A)

=
∏

1
k2

i

∫

R

∂xnRkn(xn)

∫

R

. . .

∫

R

∏
(1 + x2

i )∂xif(x)∂x1Rk1(x1) dx = (3.33)

. . . integration by parts and extension with
∏

1+x2
i

1+x2
i

gives

=
∏

1
k2

i

∫

Rn

(−1)n
∏

(1 + x2
i )∂xi [(1 + x2

i )∂xi ]f(x)Rki
(xi) dx =

=
∏

1
k2

i

∫

Rn

(
Axf(x)

)
Rk(x)u(x)dx.

By repeating this procedure m and m+ 1 times one obtains

‖Rk‖2
uak =

∏
1

k2m
i

∫

Rn

(
Am

x f(x)
)
Rk(x)u(x)dx (3.34)

and

‖Rk‖2
uak =

∏
1

k2m+2
i

∫

Rn

∂x

(
Am

x f(x)
)
∂xRk(x)u(x)

−1dx. (3.35)

As usual (most prominently in the Fourier case) one starts from Parseval’s identity (3.17) to

get

‖f − PNf‖2
u =

=

∞∑

|k|=N+1

a2
k‖Rk‖2

u =





∞∑

|k|=N+1

(∏ 1
k2m

i

∫

Rn

(
Am

x f(x)
)
Rk(x)u(x)dx

)2

‖Rk‖2
u

∞∑

|k|=N+1

(∏ 1
k2m+1

i

∫

Rn

∂x

(
Am

x f(x)
)
∂xRk(x)u(x)

−1dx

)2

‖∂xRk‖2
u−1

,

(3.36)

using (3.34) and (3.35), respectively. For the norm and orthogonality of ∂xRk, to obtain the

second equation, we refer to Wang & Guo (2002).

In Remark 3.14 it was mentioned that whenever ki = 0 the Sturm-Liouville operator cannot

be applied as in (3.33). In one dimension this will not occur, where the sum (as in (3.36))

starts at k = N + 1. In the multivariate case |k| = N + 1 only means that at least one

ki = N + 1, which does not exclude other ki being zero. But, with R0 ≡ 1, every Rki
, ki = 0,

can be ignored in the calculations above. Thus, by finding a lower bound for the products
∏

1/k2m
i and

∏
1/k2m+2

i for all |k| ≥ N + 1 and then starting the summation from zero one
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obtains from (3.36)

‖f − PNf‖2
u ≤

≤





c 1
N4m

∞∑

|k|=0

〈Am
x f,Rk〉2u
‖Rk‖2

u

≤ cN−4m‖Am
x f‖2

u ≤ cN−4m‖f‖2
A

c 1
N4m+2

∞∑

|k|=0

〈∂x(Am
x f), ∂xRk〉2u−1

‖∂xRk‖2
u−1

≤ c
1

N4m+2
‖∂x(Am

x f)‖2
u−1 ≤ cN−4m−2‖f‖2

A,

(3.37)

where Parseval’s identity was used for the sums and Lemma 3.10 yields the final inequality

(see Appendix B for the second line involving the partial derivative of Rk). Taking the square

root and replacing r = 2mn and r = (2m+ 1)n, respectively, finishes the proof.

Remark 3.15. The fact that the convergence rate depends on the dimension n is connected

to the definition of the Hr
u,A norm in (3.19). This definition comes naturally in the sense that

it represents just a restriction on the decay behavior of the functions compared to Hr
u (cf.

Lemma 3.9 and Remark 3.13). Considering the first inequality in (3.31), replacing r = 2m

on the right-hand side, and using this as the defined norm in Hr
u,A shows Lemma 3.10 to

remain valid, but since the summation over ki = 0, . . . , r for i = 1, . . . , n does not include

all k, such that |k|s ≤ r, Hr
u,A might in general not be a subspace of Hr

u, although (3.21)

still holds. By allowing the multi-dimensional Hr
u,A norm to sum only the necessary terms

to satisfy the inequality (3.31), replacing r = 2m in (3.37) yields the convergence rate to be

N−r. On the other hand, the rate N−r/n correlates to the findings in Theorems 3.16 and

3.17 in the sense that the differentiability requirement therein is also n times the convergence

rate. Although Shen & Wang (2009) did not consider rational Chebyshev polynomials per

se, it is worthwhile mentioning their findings on the slower convergence rate when using an

algebraic mapping (cf. (3.2)) for approximating functions with an oscillating decay behavior

at infinity.

Remark 3.16. As mentioned in Guo (1998) and in Wang & Guo (2002) results such as

Theorem 3.11 can be proved for all real r ≥ 0 by what is known as space interpolation. This

shall not be treated here. More interestingly, r = 0 in (3.32) shows the right-hand side to be

independent of N , thus one can assert, for a non-differentiable but L2
u integrable function, the

projection error does tend to zero (cf. Parseval’s identity), but the rate of convergence might

not be expressible in inverse powers of N . Conversely, if r grows arbitrarily, the definition

of Hr
u,A then requires more and more derivatives of the function to exist and be integrable

in the Hr
u,A sense, in addition to a decay, successively more rapid than any inverse power

of |x| (cf. Schwartz space). On the other hand, Theorem 3.11 reveals (in terms of Lebesgue

spaces) a convergence rate for smooth functions with rapid decay faster than any power of

N . Theorem 3.16 treats the classical differentiable version, where (sometimes called) spectral

convergence occurs again for smooth functions.
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The Sobolev type results stated above are of a theoretical nature showing convergence

and convergence rates in a weak sense, using the least possible requirements for functions (to

be approximated). In most applications a usual goal is to plot graphs of solutions to gain

insight into the qualitative and also quantitative behavior, cf. Section 2. In these situations a

small L2
w error does not necessarily mean a ”good” approximation - locally, the error can be

of the same order of magnitude as the function value, or even tend to infinity. The following

examples shall demonstrate such occurrences.

Example 3.3. Let f ∈ L2
w(R) be given as f(x) = (1 + x2)1/8, where f → ∞ as x→ ±∞.

For the orthogonal projection PNf =
N∑

k=0

akRk the coefficients are calculated via

ak =
〈f,Rk〉w
‖Rk‖2

w

=
1

‖Rk‖2
w

∫

R

Rk(x)(1 + x2)−7/8dx,

which possess an analytical expression for every k. Figure 32 depicts the graphs of PNf for

different N .
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Figure 32: PNf (solid), f (dashed). Left: N = 10, right: N = 200.

Convergence on the interval depicted in Figure 32 is somehow obvious, but very slow and

due to the heavy oscillations unsatisfactory from a qualitative point of view. Additionally, as

x → ±∞, PNf → const., i.e. PNf(±∞) =
N∑

k=0

ak (cf. asymptotic behavior of Rk in Lemma

3.2(iii)), which leads to an increasing difference between the function and its projection, for

all N , as |x| grows.

From Lemma 3.4 one has ‖f − PNf‖w → 0 as N → ∞ and with the far field of f ∼ x1/4

Theorem 3.11 means that the L2 error decreases with the rate 1/N r, whereas r < 1/4 (from

(3.19)), as shown in Figure 33.

The reason for the good agreement of the L2 error with the proved convergence rate lies in

the fact that f is actually smooth (where every derivative is again an L2
w function), but due
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Figure 33: ‖f − PNf‖2

w (solid) compared to c/N1/2 (dashed)

to the severe restrictions in the Hr
w,A norm on the decay behavior one cannot have a faster

rate than r < 1/4.

Example 3.4. Let f ∈ L2
w(R) be given as f(x) = 1/(x2)1/8, where f → ∞ as x → 0.

In contrast to the previous example, f now decays at infinity but has an L2 integrable

singularity at zero. Again, the integrals for the projection coefficients can be calculated in

an exact manner for every k. Figure 34 shows the projection for different N . Although
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Figure 34: PNf (solid), f (dashed). Left: N = 10, right: N = 200

the approximation appears to be ”good” for N = 200, again there exists a point, x = 0,

where the actual difference between the function and its approximation remains infinitely

large (independently of N).

From the decay of f at infinity one would calculate r < 3/4 as the convergence rate. This

cannot be satisfied (see Figure 35), since f has neither a classical nor a weak derivative (in

order to apply Theorem 3.11) due to its singularity at zero. By removing the singularity

”smoothly”, i.e. define g(x) = 1/(1+x2)1/8, where g and f coincide very well away from zero
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and thus decay in the same way at infinity, one can see (Figure 35) the predicted convergence

rate to be satisfied.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 50  100  150  200  250  300  350  400  450  500

N

Figure 35: ‖f − PNf‖2

w (solid), ‖g − PNg‖2

w (dashed) compared to c/N3/2 (dotted), where for
comparison reasons the absolute values of the dashed and dotted lines have been multiplied by 100.

N.b.: Since every polynomial is smooth in R
n (Lemma 3.2(ii)) so is the projection PNf for

every N , and with |∑N akRk| ≤
∑N |akRk| ≤

∑N |ak| = const. (i.e. bounded everywhere)

it is easy to see that demanding the approximation to be close (in the sense of its actual

shape) to the original function needs some additional assumptions.

With such examples in view, the meaning of the infinite sum, i.e. f(x) =
∑∞

k=0 akRk(x)

(cf. Remark 3.10), has to be dealt with. At the beginning of this section (3.12) shows the

other types of convergence used in approximation theory, which are more appropriate in those

cases, where the local structure of a function is of interest (and are hence often left out in

mainly theoretical works).

As for the following pointwise convergence shall be defined as

∀ǫ > 0 and ∀x ∈ R
n : ∃N, such that

∣∣f(x) −
∑

|k|≤N

akRk(x)
∣∣ ≤ ǫ, (where N = N(x)).

(3.38)

Especially with this definition another way of writing the multivariate projection operator

(3.15) might be useful. Given the multi-indices M = (M1, . . . ,Mn) and analogously k, then

the projection PM shall be

PMf :=

M1∑

k1=0

· · ·
Mn∑

kn=0

akRk (3.39)

and by saying N := |M | (which is the maximum value of all Mi) one arrives at the usual

form. It is straight forward to see that all results above still hold if PN is replaced by PM ,

whereas the convergence rate in Theorem 3.11 will then be given by the minimum of all Mi

(cf. (3.37)).
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Remark 3.17. In applications using PM is preferable, since it is likely to involve much less

terms in the summation and thus yields smaller equation systems to solve. Also, in virtue

of the pointwise error, the estimate (3.38) for given ǫ and x might be satisfied with some Mi

being less than |M |.
Analogous conclusions can be drawn for the uniform convergence, given as

∀ǫ > 0 : ∃N, independent of x, such that

∣∣f(x) −
∑

|k|≤N

akRk(x)
∣∣ ≤ ǫ, ∀x ∈ R

n (3.40)

and, as usual, taking the estimate modulo sets of measure zero yields the L∞ norm (cf.

(3.12)).

As a consequence of Examples 3.3 and 3.4 we prove the following

Lemma 3.12. Necessary and sufficient conditions for pointwise convergence of PNf to f

are continuity and boundedness of f in R
n.

Proof. It is well known (see e.g. Mason & Handscomb (2003)) that for a continuous function

on [−1, 1] the classical Chebyshev series converges pointwise. From assuming f is continuous

and bounded on R
n it follows that f is continuous and bounded on R in every component

xi. Thus

|f(x1, . . . , xi, . . . , xn) −
N∑

k1=0

· · ·
N∑

ki=0

· · ·
N∑

kn=0

akRk(x)| =

= |f(xi) −
N∑

ki=0

bki
Rki

(xi)|, with bki
:=

∑

kj , j 6=i

ak

∏

j 6=i

Rkj
(xj)

for every fixed xj, j 6= i. Applying the mapping yi = ψ(xi) from (3.2) renders f = f(yi)

continuous on the compact interval [−1, 1] and Rki
(xi) = Tki

(yi), and hence there exists Ni

for all xi from the classical pointwise convergence result. This can then be done ∀i = 1, . . . , n

(thus ∀x ∈ Rn) and taking the maximum of all Ni yields the desired result.

The necessary condition is best shown by negation. Assuming f is not continuous and

bounded means f is discontinuous or unbounded in R
n (in at least one point). In case

of a discontinuity it is well known from classical Fourier series approximation (and thus

also in the classical Chebyshev case), that the series converges to the average value of the

discontinuity step. If f has a singularity at some point or unbounded growth at infinity it

follows from the definition of pointwise convergence (3.38) that ∀ǫ no N can be found, such

that |∞ − PNf | ≤ ǫ.

Remark 3.18. For discontinuity and unboundedness on R
n it is sufficient to consider this

in at least one component (to utilize the classical results). Continuity in every component

xi, on the other hand, does not mean continuity on R
n, where only the inverse is true.

Formally speaking, given an orthogonal projection operator L2, convergence can be es-

tablished for functions having weak singularities and are weakly increasing in the far field.
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By then selecting those functions, which are at least bounded and continuous everywhere,

pointwise convergence can be achieved. As for the strongest convergence result in addition

to continuity, bounded total variation has to be required (see Mason & Handscomb (2003) for

the classical univariate case). Making use of the bijective mapping ψ (thus ensuring every

partition on a compact interval to be a partition on R) the concept of bounded variation can

be directly introduced for the whole real line. Hence, the one-dimensional result shown in

Mason & Handscomb (2003), i.e. if a function defined on [−1, 1] is continuous and of bounded

variation, then the Chebyshev series is uniformly convergent, holds in the exact same way for

the projection PNf defined on R.

In the situation of multivariate functions on hypercubes [−1, 1]n (and eventually R
n)

using total variation does not come straight forward from its one-dimensional equivalent and

for this reason Mason (1980) applied what is known as the Dini-Lipschitz condition to prove

uniform convergence.

To extend this result to functions on R
n one needs the notion of the modulus of continuity,

where a general definition can be found e.g. in Timan (1963). In the L∞ case this reads:

Let f = f(x1, . . . , xn) be a real function on the closed bounded domain G ⊂ R
n, then the

modulus of continuity is given as

ω(f ;u1, . . . , un) = sup
|xi−yi|≤ui,∀i

|f(x1, . . . , xn) − f(y1, . . . , yn)|, ∀xi, yi ∈ G.

From this Mason (1980) extracted the partial modulus for each component of f , i.e.

ωj(f ;uj) := ω(f ; 0, . . . , uj , . . . , 0) = sup
|xj−yj |≤uj

|f(x1, . . . , xj , . . . , xn) − f(x1, . . . , yj, . . . , xn)|.

Timan (1963) then proved for any bounded 2π-periodic function f defined on G, the L∞ best

approximation fB using trigonometric polynomials, with different degrees of approximation

Nj in each component, cf. (3.39), satisfies

‖f − fB‖∞ ≤ C

n∑

j=1

ωj

(
f ;

1

Nj + 1

)
, (3.41)

where C is a constant independent of f and Nj . As mentioned later in Handscomb (1966)

this holds for any continuous function on a bounded closed region.

Furthermore, as shown in Mason & Handscomb (2003), for every projection operator the

inequality

‖f − PNf‖∞ ≤ (1 + ‖PN‖∞)‖f − fB‖∞ (3.42)

holds, which was termed near-best approximation with a relative distance ‖PN‖∞ (and the

operator norm taken in the usual sense, cf. Notation Index).

Recalling that for continuous functions the modulus ω(f ; 0) = 0, uniform convergence

(as Nj → ∞, ∀j) of the best approximation fB is easily seen from (3.41). Although the
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projection can be shown (cf. Lemma 3.7) to have a finite L2 norm, this is not the case in

the L∞ norm with N → ∞ as proved in e.g. Mason & Handscomb (2003). They showed for

the classical Fourier and Chebyshev projection ‖PN‖∞ ≤ λN , with λN being the Lebesgue

constant and λN =O(logN) as N tends to infinity.

Remark 3.19. In the proof of Lemma 3.12 we used the mapping ψ to utilize what is known

for convergence on compact intervals. The only condition to add was the function defined on

R
n to be bounded. Or in more detail let f = f(x) be bounded and continuous on R

n and

(y1, . . . , yn) = (ψ(x1), . . . , ψ(xn)), such that Rk(x) = Tk(y), then the projection

PNf(x) =
∑

|k|≤N

akRk(x) =
∑

|k|≤N

akTk(y) =: GNf(y),

where f(y) := f(ψ−1(y1), . . . , ψ
−1(yn)), yields the exact same function values as the classical

projection GNf for every continuous function f on [−1, 1]n. Consequently, one obtains

sup
x∈Rn

|PNf(x)| = sup
y∈[−1,1]n

|GNf(y)| ⇒ ‖PN‖∞ =

n∏

j=1

λNj , (3.43)

as proved in Mason (1980), with the asymptotic behavior of the operator norm being

O(
∏

logNj). Substituting the order of magnitude estimate for the norm in (3.43) and the

estimate for the best approximation (3.41) (setting δj := 1/(Nj + 1)) into (3.42) proves the

following (cf. Mason (1980))

Theorem 3.13. If a bounded continuous function f defined on R
n satisfies the multi-dimen-

sional Dini-Lipschitz condition

n∑

j=1

ωj (f ; δj)

n∏

j=1

log δj → 0 as δj → 0, ∀j, (3.44)

where the modulus ω is understood as f being mapped onto [−1, 1]n, then the orthogonal

projection PNf converges uniformly to f .

Remark 3.20. As mentioned in Mason & Handscomb (2003), this Dini-Lipschitz condition

is just infinitesimally more than requiring continuity and still much less than differentiability,

where ω =O(δ). Also, it is now obvious why this assumption has to be preferred to the concept

of bounded variation in higher dimensions (in two dimensions, for example, an additional

partial derivative of f needs to be bounded, see e.g. Mason (1967)).

Remark 3.21. The Parseval identity given in Theorem 3.8, which states the square summa-

bility of the coefficients of the projection was then used to estimate the according L2 error,
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see (3.36). The same can be done for the L∞ norm, i.e.

sup
x∈Rn

|f(x) − PNf(x)| = sup
x∈Rn

|
∑

|k|≥N+1

akRk(x)| ≤

≤ sup
x∈Rn

∑

|k|≥N+1

|ak| |Rk(x)|︸ ︷︷ ︸
≤1

≤
∑

|k|≥N+1

|ak|,
(3.45)

such that one can assert that convergence in L2 or L∞ depends on how fast the coefficients

tend to zero.

The next result shows under which conditions the different types of convergence imply

each other.

Lemma 3.14. Given a function f and a non-negative smooth weight u = u(x), integrable

over R
n, then the following assertions for the projection PNf hold as N → ∞:

(i) ‖f − PNf‖∞ → 0 ⇒ |f(x) − PNf(x)| ptw.−−→ 0

(ii) ‖f − PNf‖∞ → 0 ⇒ ‖f − PNf‖u → 0

(iii) |f(x) − PNf(x)| ptw.−−→ 0 ⇒ ‖f − PNf‖u → 0

Proof. (i) follows directly from the definitions (3.38) and (3.40).

In (ii) say
∫

Rn u(x)dx =: c, then for N ≫ 1

∫

Rn

|f − PNf |2u dx ≤ sup
x∈Rn

|f(x) − PNf(x)|2
∫

Rn

u dx =

= c sup
x∈Rn

|f(x) − PNf(x)|2 ≤ c sup
x∈Rn

|f(x) − PNf(x)|.

Pointwise convergence implies continuity and boundedness of f (Lemma 3.12) and since the

product of an integrable function (here u) and a bounded (measurable) function (here |f |2)
is again integrable, implication (iii) holds.

Remark 3.22. In the proof of Lemma 3.12 it was mentioned that one cannot have pointwise

convergence if the function has a singularity or a point of discontinuity. Strictly speaking,

convergence cannot be expected at such points, but in every other point (or interval) where

the function is bounded and continuous. In other words, if a bounded continuous function

has only a finite number of discontinuities and singularities the orthogonal projection con-

verges pointwise on every interval excluding such points. In addition to the approximation

converging to the average value of the left- and right-hand side limit at a discontinuity, the

height of such a step seems to be increased due to what is known as the Gibbs phenomenon,

see Figure 41.

Equations (3.34) and (3.35) imply that if a given function f lies in Hr
u,A(Rn), the coef-

ficients of an orthogonal projection satisfy ak ∝ ∏ 1

k
r/n
i

. The following result shows how a
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similar relation can be established in the case of f ∈ Cm(Rn) with a certain requirement on

the decay behavior.

Theorem 3.15. Let f ∈ Cm(Rn), where m := sn, s ∈ N. If

(i) ∂m
x f ∈ L2

u(Rn) and

(ii) xs
1 . . . x

s
n∂

n
xf(x) → 0, as xi → ±∞, ∀i,

then for every coefficient given in (3.14), where all ki 6= 0,

|ak| ∝
n∏

i=1

1

ks
i

(3.46)

holds.

Proof. The following steps proving this result are of rather asymptotic kind, meaning that

asymptotic expansions of integrals are used, where a parameter (here |k|) is assumed to be

large enough.

By substitution of yi = φ(xi) and dyi/dxi = φ′(xi) = w(xi), where yi ∈ I := [−π, 0] and

using the cosine description from (3.1) for the polynomials, the coefficients read

‖Rk‖2ak =

∫

In

f(φ−1(y1), . . . , φ
−1(yn))︸ ︷︷ ︸

=:f(y1,...,yn)

n∏

i=1

cos(kiyi) dy. (3.47)

The strategy will be to use integration by parts consecutively for all components s times.

Since the existence of the above written integral is trivially given, the order of integration

must not play a role in the argumentation. Thus, by rearranging the integrand and starting

the procedure at yi one obtains

ak ∝
∫

In−1

∏

j 6=i

cos(kjyj)


f(y) sin(kiyi)

ki

∣∣∣∣
yi=0

yi=−π

− 1

ki

∫

I

∂yif(y) sin(kiyi) dyi


∏

j 6=i

dyj ,

where f is, such that the boundary term can be set to zero. Performing this for all the other

components one arrives at

ak ∝ (−1)n
n∏

i=1

1

ki

∫

In

∂n
y f(y)

n∏

i=1

sin(kiyi) dy,

with the condition f(y) sin(kiyi) = 0 at yi ∈ {−π, 0}, ∀i. Evaluating the boundary term to

zero at both boundaries is chosen, such that no symmetry has to be required of f at ±∞ in

every component. Obviously, the next step yields

ak ∝ (−1)2n
n∏

i=1

1

k2
i

∫

In

∂2n
y f(y)

n∏

i=1

cos(kiyi) dy,
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where ∂n
y f(y) cos(kiyi) = 0 at yi ∈ {−π, 0} ∀i, such that one can claim an odd number of steps

gives the cosine function in the boundary term and the sine function at the even numbers.

Clearly, s such modifications finally yield

|ak| ∝
n∏

i=1

1

ks
i

∣∣∣∣
∫

In

∂sn
y f(y)

n∏

i=1

(
cos(kiyi)

sin(kiyi)

)
dy

∣∣∣∣, (3.48)

where the stacked sine and cosine functions symbolize the dependence on whether s is even

or odd. Since no restriction shall be made on the parity of s the condition is given as

∂
(s−1)n
y f(y) = 0 in every component yi ∈ {−π, 0}. Appendix C concludes the proof by

showing how this condition is derived in detail yielding assumptions (i) and (ii).

Remark 3.23. If a coefficient ak contains at least one ki = 0, the cosine function is identical

to 1 (the zeroth order polynomial), which means the integration by parts procedure in the

proof is just not performed for this component. Eventually, the requirements (i) and (ii) in

the theorem above then read

(i)
∏
∂s

xi
f ∈ L2

u(Rn)

(ii)
∏
xs

i∂xif(x) → 0, as xi → ±∞



 ∀i, such that ki 6= 0.

The essential assertion (3.46) remains unchanged (provided all ki = 0 are not considered in

the product).

As a direct consequence of the asymptotic rate for the coefficients and (3.45) the next

result provides the convergence rate in the L∞ norm, similarly to Theorem 3.11.

Theorem 3.16. Given a function f satisfying the assumptions in Theorem 3.15 with s > 1/2,

there exists a constant c independent of N , such that

‖f − PNf‖∞ ≤ cN1/2−s. (3.49)

Proof. Combining (3.45) and (3.48) and applying Cauchy’s inequality yields

‖f − PNf‖∞ ≤

≤
∑

|k|≥N+1

|ak| =
∑

|k|≥N+1

n∏

i=1

1

ks
i

∣∣∣∣
∫

In

∂sn
y f(y)

n∏

i=1

(
cos(kiyi)

sin(kiyi)

)
dy

∣∣∣∣‖Rk‖−2
u ≤

≤


 ∑

|k|≥N+1

n∏

i=1

1

k2s
i




1/2



∑

|k|≥N+1

∣∣∣∣
∫

In

∂sn
y f(y)
︸ ︷︷ ︸

=:g(y)

n∏

i=1

(
cos(kiyi)

sin(kiyi)

)
dy

∣∣∣∣
2

‖Rk‖−4
u




1/2

.

(3.50)
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The coordinate transform yi = φ(xi) used in (3.47) changes the integral on the right-hand

side above, such that

∫

In

g(y)

n∏

i=1

(
cos(kiyi)

sin(kiyi)

)
dy =

∫

Rn

g(φ(x))

n∏

i=1

(
cos(kiφ(xi))

sin(kiφ(xi))

)

︸ ︷︷ ︸
=:(Rk(x)

Sk(x))

u(x) dx =

〈
g(φ(x)),

(
Rk

Sk

)〉

u

,

provided g ◦ φ ∈ L2(Rn) (which follows from the assumptions (i) and (ii)), where Appendix

D shows the polynomial system {Sk} (generated from the sine function) to be a complete

orthogonal set in L2
w(Rn). One can then define

rk :=
〈g(φ(x)), Rk〉u

‖Rk‖2
u

and sk :=
〈g(φ(x)), Sk〉u

‖Sk‖2
u

as the coefficients of an expansion of g ◦φ in the systems Rk and Sk and since ‖Rk‖u = ‖Sk‖u

the second sum on the right-hand side in (3.50) is part of the sum over squared coefficients

rk and sk, respectively. Hence, in virtue of Parseval’s identity this term is bounded by the

L2 norm of g ◦ φ.

As for the first sum in (3.50) it shall be noted that for every |k| = a ∈ N

n∏

i=1

1

k2s
i

≤ 1

a2s
,

since every ki ≥ 1 and thus the following estimate holds


 ∑

|k|≥N+1

n∏

i=1

1

k2s
i




1/2

≤


 ∑

k≥N+1

1

k2s




1/2

≤ cN1/2−s, (3.51)

as long as s > 1/2 to make sure the sum converges.

A similar result in terms of the one-dimensional Fourier sum is given in Hesthaven et al.

(2007). The Riemann-Lebesgue lemma can be applied to the integrals in (3.50), saying that

as |k| → ∞ the integrals tend to zero, concluding that there exists a maximum value c for

all k, such that the estimate becomes

‖f − PNf‖∞ ≤
∑

|k|≥N+1

|ak| ≤ c
∑

|k|≥N+1

n∏

i=1

1

ks
i

≤ cN1−s,

provided s > 1 for convergence of the sum. This shows that by assuming the convergence

of the sum over the absolute values of the coefficients is only due to the multi-index, one

loses 1/2 of the convergence rate. Additionally, comparing this with the L2 convergence rate

established in Theorem 3.11, one can claim that in principle more polynomials are needed to

obtain the L∞ error to be equal to the L2 error. And as mentioned in Remark 3.16 again
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one obtains a convergence rate faster than any negative powers of N for smooth functions,

which decay rapidly enough (cf. definition of the Schwartz space).

The uniform convergence rate can also be given in terms of the Sobolev type space Hr
u,A,

for applying (3.34) and (3.35) to (3.50) (and thus replacing the integrals therein) yields (in

the even case)

‖f − PNf‖∞ ≤
∑

|k|≥N+1

|ak| =
∑

|k|≥N+1

n∏

i=1

1

k
r
n
i

∣∣〈A
r
2n
x f,Rk〉u

∣∣‖Rk‖−2
u ≤

≤


 ∑

|k|≥N+1

n∏

i=1

1

k
2r
n

i




1/2
 ∑

|k|≥N+1

∣∣〈A
r
2n
x f,Rk〉u

∣∣2‖Rk‖−4
u




1/2

,

where the second sum in bounded by Parseval’s identity and subsequently by ‖f‖A (as shown

in Lemma 3.10) and with the bound for the first sum in (3.51) we have thus proved

Theorem 3.17. Given f ∈ Hr
u,A(Rn), r/n > 1/2 then there exists a constant c independent

of N , such that

‖f − PNf‖∞ ≤ cN1/2−r/n‖f‖A. (3.52)

Overall, in the above one has all the necessary arguments to why Boyd (2001) recommends

an approximation using rational Chebyshev polynomials (only) for differentiable functions,

decaying algebraically at infinity.

Example 3.5. Given the function

f(x) =
x

1 + x2
, where x2f ′(x) → const. and xf ′(x) → 0 as |x| → ∞,

such that one can estimate a convergence rate to be N−s, with 1
2 < s < 3

2 (or s ≤ 3
2 in

Hr
u,A), as claimed in Theorem 3.16 (i.e. (3.49) combined with assumption (ii) in Theorem

3.15). Figure 36 confirms s = 1 to be most appropriate, which clearly demonstrates that

spectral convergence highly depends on the decay rate at infinity, even for smooth functions.

Performing the same approximation for f(x) = exp(−x2) Table 15 shows the ”exponential”

dependence of the uniform error on N .

N error

10 8 × 10−3

50 1 × 10−8

100 5 × 10−10

150 6 × 10−13

200 1 × 10−15

Table 15: Uniform error approximating f(x) = exp(−x2)
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Figure 36: ‖PNf − f‖∞ vs. N (solid), c/N (dashed)

Remark 3.6 shows the change in the behavior of the rational Chebyshev polynomials

when introducing a stretching factor L in the maps ψ or φ. In all the results above L = 1

was chosen for the sake of simplicity (of some calculations) and readability, but the general

assertions are independent of L. In other words, the convergence per se (for all three types

mentioned) is obviously independent of the value of L, whereas for the convergence rate the

constants, especially when calculating the lowest one, might depend on L. This is due to the

fact that the norm of the error can differ in orders of magnitude at constant N for different

L, as the following example will demonstrate.

It shall be noted here, that it is straight forward to see, that the error depends continuously

on L and also the minimum of the error cannot be at L = 0 or L = ∞. So at some finite L

for every N there exists a minimum for the error in a given norm. Some aspects of finding

such an optimal value in some special cases can be found in Boyd (1982) and Boyd (1987), as

well as Boyd (2001a) where it was also mentioned that L = 1 is not always the best choice,

but still yields good approximations.

Example 3.6. Given f(x) = (1+x2)−1/2, which does not possess a finite Chebyshev expan-

sion for any value of L, Figure 37 depicts approximations calculated using N = 6 polynomials

for various L. This clearly shows that L < 1 might never be a good choice, but experiments

confirm L between 1 and approximately 4 to be most appropriate in almost all applications,

see Boyd (2001a) for the graph of the error as a function of L.

For the three cases in Figure 37 the error eN (L) in the L∞ norm evaluates to eN (1) ≈ 9
100 ,

eN (2) ≈ 4
100 and eN (1

2) ≈ 20
100 , whereas the pointwise error attains its maximum at infinity

(for all L).

3.2.2 Interpolation and the Aliasing Error

So far the results in this section require functions given in a closed form, in order to calculate

the integrals defining the expansion coefficients (cf. (3.14)). One can only expect to obtain
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Figure 37: f(x) = (1 + x2)−1/2 (solid), approximation with L = 1 (dashed), L = 2 (dash-dotted,
almost indistinguishable from f) and L = 1/2 (dotted).

analytic expressions of such integrals for some special or simple formulae describing these

functions, otherwise an approximate evaluation has to be performed. Also, if the function is

described only as a set of point values, another form of obtaining the coefficients has to be

found.

The most obvious way would be to apply a quadrature scheme as an approximation of the

integrals. The problem thereby is that the orthogonality can be restored only approximately.

Additionally, higher order integration schemes, especially in higher dimensions, are very

expensive in calculational costs.

The best way, as done in all standard textbooks, to circumvent such problems is to define

a discrete inner product which relates to quadrature schemes using a certain set of points

and special weights. This ensures the exact orthogonality and eventually results in unique

interpolation polynomials.

Given bounded functions f and g on R
n the discrete inner product shall be defined as

〈f, g〉N :=

N∑′′

jn=0

. . .

N∑′′

j1=0

f(x1j1
, . . . , xnjn

)g(x1j1
, . . . , xnjn

),

with xiji
:= ψ−1

(
cos

(
jiπ

N

))
, ji = 0, . . . , N and i = 1, . . . , n,

(3.53)

ψ taken from (3.2) and the double dash denotes the first and last term to be halved. Fur-

thermore, in the case of rational Chebyshev polynomials using definition (3.1) and the result

presented in Mason & Handscomb (2003) this yields

〈Rk, Rl〉N : =

N∑′′

|j|=0

Rk(xj)Rl(xj) =
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=

N∑′′

jn=0

. . .

N∑′′

j1=0

n∏

i=1

Rki
(xiji

)Rli(xiji
) =

=

N∑′′

jn=0

Rkn(xnjn
)Rln(xnjn

) . . .

N∑′′

j1=0

Rk1(x1j1
)Rl1(x1j1

) =

=

n∏

i=1

N∑′′

ji=0

Rki
(xiji

)Rli(xiji
) =

n∏

i=1

〈Rki
, Rli〉N =





0 k 6= l
n∏

i=1
‖Rki

‖2
N otherwise

,

with the points xiji
as in (3.53) and the discrete norm ‖ · ‖N defined via the square root of

the inner product, i.e.

‖Rki
‖2

N =

{
N ki = 0 or ki = N
N
2 otherwise

. (3.54)

Obviously, by using ψ−1 to gain the points of evaluation, one actually deals with the classical

polynomials Tk on [−1, 1]n, as seen from the definition Rk(x) = Tk(ψ(x)).

Remark 3.24. Mason & Handscomb (2003) argued that the discrete inner product is not

unique and depends on the points of evaluation (here, the extrema of TN ), which themselves

are related to the interpolation points of quadrature schemes.

The definition works in the same way when using the zeros of TN+1 (resulting in different

values for the norm), cf. Lemma 3.2(ix). Comparing the values given in (3.54) with their

continuous counterparts in (3.5) shows a difference (due to the dependency on N), although

the discrete formula should be exact in the case of polynomials. This is why other authors,

e.g. Guo (1998) or Hesthaven et al. (2007) introduce (quadrature-)weights in (3.53).

The following will show that when deriving discrete versions of expansion coefficients such

weights will cancel out and will also show how the discrete inner product relates to the fast

Fourier transform.

Let f be a bounded function on R
n and IN be given as

INf(x) :=

N∑

|k|=0

bkRk(x), with bk =
〈f,Rk〉N
n∏

i=1
‖Rki

‖2
N

. (3.55)

It is straight forward (cf. Lemma 3.7) to see that this operator is an orthogonal projection

with respect to the inner product 〈·, ·〉N . The next result shows how this projection relates

to the given function.

Lemma 3.18. Let f be bounded and defined on all points in R
n, then the projection IN

interpolates f at the points xiji
given in (3.53).

Proof. The classical one-dimensional result can be found in e.g. Mason & Handscomb (2003)

and Hesthaven et al. (2007) (also for the general Jacobi polynomials). To show this in R
n,
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evaluation of INf at the given points (with multi-indices l, j) yields

INf(x1l1
, . . . , xnln

) =

N∑

|k|=0

bkRk(x1l1
, . . . , xnln

) =

N∑

|k|=0

〈f,Rk〉N
n∏

i=1
‖Rki

‖2
N

Rk(x1l1
, . . . , xnln

) =

=

N∑

|k|=0

1
n∏

i=1
‖Rki

‖2
N

N∑′′

|j|=0

f(xj)Rk(xj)Rk(x1l1
, . . . , xnln

) =

=

N∑′′

|j|=0

f(xj)

N∑

|k|=0

Rk(xj)Rk(x1l1
, . . . , xnln

)
n∏

i=1
‖Rki

‖2
N

= (3.56)

=

N∑′′

|j|=0

f(xj)
N∑

kn=0

· · ·
N∑

k1=0

n∏

i=1

Rki
(xiji

)Rki
(xili

)

‖Rki
‖2

N
︸ ︷︷ ︸

(∗)

,

where it is now sufficient to show (in one dimension) that

1

N
+

2

N

N−1∑

k=1

Rk(xi)Rk(xj) + (−1)i+j 1

N
=

{
δij 1 ≤ i ≤ N − 1

2δij i = 0, N
, (3.57)

such that (∗) in (3.56) is equal to
∏

i δ
∗
ji li

where δ∗ shall abbreviate the right-hand side in

(3.57). The factor 2 cancels out with the halved terms in the sums in (3.56) regarding the

double dashes.

Considering the fact that Rk(xi) = Tk(cos(iπ/N)) = cos(kiπ/N), it is easy to see that (3.57)

is the same as the discrete inner product 〈Ri(xk), Rj(xk)〉N multiplied by 2/N (see Mason &

Handscomb (2003)), which concludes the proof.

Remark 3.25. Since the coefficients in (3.55) are uniquely defined one can assert the unique-

ness of the interpolation polynomial to a given function from Lemma 3.18. It is fairly obvious

that one can use more terms to evaluate bk in (3.56), whereas the interpolation points might

then be shifted, due to (3.57) being defined only for i, j ≤ N .

Intuitively, since the discrete inner product combined with certain weights is a quadrature

formula for the integrals of the continuous inner product, one (reasonably) expects the discrete

coefficients to converge to the continuous counterparts and consequently IN to tend to PN .

The difference between those two is known as the aliasing error, which shall be dealt with

later. From the argumentation for (3.57) the connection of the discrete inner product with

the FFT can be readily deduced as

Lemma 3.19. Given the discrete inner product and the points xj as in (3.53) the identity

(
2

N

)n/2 〈
f,Rk

〉
N

= multiDCT
(
f(xj)

)
(3.58)
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holds for all bounded functions defined on R
n.

Proof. By multiDCT we mean a successively applied classical DCT (the cosine part of the

FFT) in all independent variables. There are several definitions of DCTs in numerical libraries

and computer algebra systems. The normalization factor
√

2
N above indicates the use of the

version v = DCT (u), where v = (v1, . . . , vM ), u = (u1, . . . , uM ) and

vs =

√
2

M − 1

[
u1

2
+

M−1∑

r=2

ur cos

(
π

M − 1
(r − 1)(s − 1)

)
+ (−1)s−1uM

2

]
,

for a given vector u (see e.g. Mathematica documentations). Starting from the inner product

and substituting the evaluation points

〈f,Rk〉N =

N∑′′

jn=0

Rkn(xnjn
) . . .

N∑′′

j1=0

f(xj)Rk1(x1j1
),

it can be easily seen that showing the equivalence to the one dimensional DCT is sufficient,

i.e.
N∑′′

ji=0

f(xj)Rki
(xiji

) =

N∑′′

ji=0

f(x1j1
, . . . , xnjn

) cos

(
ki ji π

N

)
=

=
f(xi0)

2
+

N−1∑

ji=1

f(xiji
) cos

(
ki ji π

N

)
+ (−1)ki

f(xiN )

2

and by shifting the indices ji = r − 1, ki = s − 1, N = M − 1 we arrive at the definition

of the DCT modulo the normalization factor
√

2
N . Performing this transformation for every

independent variable it is straight forward to obtain (3.58).

Caveat: Considering the evaluation points xi0 and xiN one can immediately see that the

values of the function at infinity are needed. Hence it is of advantage in most numerical

schemes to set them a priori.

As mentioned in Remark 3.25, what is known as the aliasing error is in fact the difference

between the coefficients gained from the discrete and continuous inner products. Hesthaven

et al. (2007) and Guo (1998) derived a formula for this difference in the case of Jacobi-type

polynomials on a bounded interval. In the following bk shall always represent the discrete

and ak the continuous coefficients. For one-dimensional rational Chebyshev polynomials this

then reads

bk − ak =
1

‖Rk‖2
N

∞∑

l=N+1

al 〈Rl, Rk〉N , (3.59)

which is completely similar to the classical version, due to the choice of the interpolation

points defining the discrete inner product. Using this one can write the aliasing error as

ANf := (IN − PN )f =

∞∑

l=N+1

(INRl)al, (3.60)
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indicating that the error relates to the fact that higher order polynomials are not included

exactly, but as their interpolation polynomial (cf. Hesthaven et al. (2007)). In other words,

higher order terms are given via polynomials with degree less than or equal to N and can thus

not be distinguished from corresponding lower order terms (for some examples see Mason &

Handscomb (2003)). Equation (3.60) can be deduced via

ANf(x) =

N∑

k=0

(bk − ak)Rk(x) =

=
N∑

k=0

(
1

‖Rk‖2
N

∞∑

l=N+1

al 〈Rl, Rk〉N
)
Rk(x) =

=

∞∑

l=N+1

al

N∑

k=0

〈Rl, Rk〉N
‖Rk‖2

N︸ ︷︷ ︸
kth coefficient of interpol. of Rl

Rk(x).

︸ ︷︷ ︸
= INRl

For multivariate polynomials the extension is not straight forward. Considering the two-

dimensional case shall demonstrate the general strategy. From (3.55) we have that

bk1k2 =
1

‖Rk1‖2
N‖Rk2‖2

N

N∑′′

j1=0

N∑′′

j2=0

f(x1j1
, x2j2

)Rk1(x1j1
)Rk2(x2j2

) =

=
1

‖Rk1‖2
N‖Rk2‖2

N

N∑′′

j1=0

N∑′′

j2=0

∞∑

l2=0

∞∑

l1=0

al1l2Rl1(x1j1
)Rl2(x2j2

)Rk1(x1j1
)Rk2(x2j2

) =

=
1

‖Rk1‖2
N‖Rk2‖2

N

∞∑

l2=0

∞∑

l1=0

al1l2

N∑′′

j1=0

N∑′′

j2=0

Rl1(x1j1
)Rl2(x2j2

)Rk1(x1j1
)Rk2(x2j2

)

︸ ︷︷ ︸
〈Rl1

,Rk1
〉N 〈Rl2

,Rk2
〉N

,

then splitting the summation at N to apply the orthogonality gives

bk1k2 =
1

‖Rk1‖2
N‖Rk2‖2

N

[
N∑

l2=0

N∑

l1=0

al1l2〈Rl1 , Rk1〉N 〈Rl2 , Rk2〉N
︸ ︷︷ ︸

=ak1k2
‖Rk1

‖2
N‖Rk2

‖2
N

+

+

∞∑

l2=N+1

N∑

l1=0

al1l2〈Rl1 , Rk1〉N 〈Rl2 , Rk2〉N
︸ ︷︷ ︸

=
P

l2
ak1l2

‖Rk1
‖2

N 〈Rl2
,Rk2

〉N

+ (3.61)
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+

N∑

l2=0

∞∑

l1=N+1

al1l2〈Rl1 , Rk1〉N 〈Rl2 , Rk2〉N
︸ ︷︷ ︸

=
P

l1
al1k2

‖Rk2
‖2

N 〈Rl1
,Rk1

〉N

+

+
∞∑

l2=N+1

∞∑

l1=N+1

al1l2〈Rl1 , Rk1〉N 〈Rl2 , Rk2〉N
]

and finally

bk1k2 − ak1k2 =
1

‖Rk2‖2
N

∞∑

l2=N+1

ak1l2〈Rl2 , Rk2〉N+

+
1

‖Rk1‖2
N

∞∑

l1=N+1

al1k2〈Rl1 , Rk1〉N+

+
1

‖Rk1‖2
N‖Rk2‖2

N

∞∑

l2=N+1

∞∑

l1=N+1

al1l2〈Rl1 , Rk1〉N 〈Rl2 , Rk2〉N .

(3.62)

By comparison with (3.59) the above deduction reveals the obvious way to extensions in

higher dimensions, i.e. the right-hand side sums up all possible combinations of ki and li in

the multi-index of the coefficient a, such that for every li a sum runs from N + 1 to infinity

keeping the inner product, whereas for every ki a norm term can be canceled out in the

overall factor
∏

1/‖Rki
‖2

N .

To put this in a more compact form we state

Lemma 3.20. Say m := (m1, . . . ,mn) is a multi-index taking the values mi ∈ {li, ki}. Given

the coefficients al and bk (|k| ≤ N) from the projection operators defined in (3.14) and (3.55)

and a bounded and (piecewise) continuous function f on R
n, bk can be written as

bk =
∑

m

( n∏

i=1
mi 6=ki

1

‖Rmi=ki
‖2

N

∞∑
i

mi=N+1
mi=li

am

n∏

i=1
mi=li

〈Rmi=li , Rmi=ki
〉N
)
. (3.63)

Remark 3.26. The first sum in the result above is taken over all possiblem and the subscript

i in the second sum symbolizes multiple summations depending on how many entries mi equal

li. The requirement of (piecewise) continuity can be replaced by assuming smoothness in the

sense of H1
u,A (or similar, as mentioned in Hesthaven et al. (2007)) for the sums in (3.61) to

be sufficiently convergent.

For the sake of clarity and comparability the three-dimensional case shall be written down

in detail. Starting from the multi-index m = (m1,m2,m3) with m1 ∈ {k1, l1}, m2 ∈ {k2, l2}
and m3 ∈ {k3, l3}, such that all possible combinations are

m ∈
{

(k1, k2, k3), (l1, k2, k3), (k1, l2, k3), (k1, k2, l3),

(l1, l2, k3), (l1, k2, l3), (k1, l2, l3), (l1, l2, l3)

}
. (3.64)
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Obviously, for all multiple dimensions, there is always one combination, such that am = ak

and since in that particular case there is nomi = li no sum and no norm factor appears, which

means one can write bk − ak on the left-hand side (indicating that the resulting right-hand

side contains the coefficients of the aliasing error ANf given only in terms of al).

Overall, the three-dimensional version can be obtained to be

bk1k2k3 − ak1k2k3 =
1

‖Rk1‖2
N

∞∑

l1=N+1

al1k2k3〈Rl1 , Rk1〉N+

+
1

‖Rk2‖2
N

∞∑

l2=N+1

ak1l2k3〈Rl2 , Rk2〉N +
1

‖Rk3‖2
N

∞∑

l3=N+1

ak1k2l3〈Rl3 , Rk3〉N+

+
1

‖Rk1‖2
N‖Rk2‖2

N

∞∑

l2=N+1

∞∑

l1=N+1

al1l2k3〈Rl1 , Rk1〉N 〈Rl2 , Rk2〉N+

+
1

‖Rk1‖2
N‖Rk3‖2

N

∞∑

l3=N+1

∞∑

l1=N+1

al1k2l3〈Rl1 , Rk1〉N 〈Rl3 , Rk3〉N+

+
1

‖Rk2‖2
N‖Rk3‖2

N

∞∑

l3=N+1

∞∑

l2=N+1

ak1l2l3〈Rl2 , Rk2〉N 〈Rl3 , Rk3〉N+

+
1

‖Rk1‖2
N‖Rk2‖2

N‖Rk3‖2
N

∞∑

l3=N+1

∞∑

l2=N+1

∞∑

l1=N+1

al1l2l3〈Rl1 , Rk1〉N 〈Rl2 , Rk2〉N 〈Rl3 , Rk3〉N .

Note, most importantly, that for a fixed k the first three terms on the right-hand side above

are equal to the one-dimensional version (3.59).

Another possibility to describe bk −ak from (3.63) can be obtained combining two results

presented in Mason & Handscomb (2003), i.e.

N∑′′

j=0

cos(jθ) =
1

2

sin(Nθ)

tan(θ/2)
, cos(lθ) cos(kθ) =

1

2
[cos((l + k)θ) + cos((l − k)θ)],

such that

N∑′′

j=0

Rl(xj)Rk(xj) =

N∑′′

j=0

cos
(jlπ
N

)
cos
(jkπ
N

)
= 1

4

[
sin((l + k)π)

tan
( (l+k)π

2N

) +
sin((l − k)π)

tan
( (l−k)π

2N

)
]

and with l > N and k ≤ N (as given in (3.63)) one finds

〈Rl, Rk〉N =

N∑′′

j=0

Rl(xj)Rk(xj) =





N
2 l + k = 2Np
N
2 l − k = 2Np

0 otherwise

for p = 0, 1, 2, . . . (3.65)

156



resulting in the (one-dimensional) description

bk − ak =
N

2‖Rk‖2
N

∞∑

p=1

(a2Np−k + a2Np+k),

see also Hesthaven et al. (2007). Again, for the multivariate analogue, we first state the result

in two dimensions, cf. (3.62),

bk1k2 − ak1k2 =

+
N

2‖Rk2‖2
N

∞∑

p2=1

(ak1,2Np2−k2 + ak1,2Np2+k2)+

+
N

2‖Rk1‖2
N

∞∑

p1=1

(a2Np1−k1,k2 + a2Np1+k1,k2)+

+
N2

4‖Rk1‖2
N‖Rk2‖2

N

∞∑

p2=1

∞∑

p1=1

(a2Np1+k1,2Np2+k2 + a2Np1−k1,2Np2+k2+

+ a2Np1+k1,2Np2−k2 + a2Np1−k1,2Np2−k2),

where one can easily see that every li in (3.62) is switched with 2Npi ± ki and the sums

are taken over pi. From the ”quasi-orthogonality” in (3.65) every inner product is replaced

by the factor N/2 and combining that with the actual orthogonality (3.53) gives an overall

factor 1/
∏
ck with cki

= 2 if ki ∈ {0, N} and cki
= 1 otherwise, which eventually shows

Lemma 3.21. Given the same assumptions as in Lemma 3.20 the coefficients of the aliasing

error can be written as

bk − ak =
∑

m
m6=(k1,...,kn)

( n∏

i=1
mi 6=ki

1

cmi=ki

∞∑
i

pi=1
mi=li

∑

q∈M

aq

)
, (3.66)

where in the last sum the set M contains all possible combinations of li being replaced by

{2Npi − ki, 2Npi + ki} in m.

Using the L2 norm to measure the aliasing error the following result provides the convergence

rate in terms of N .

Theorem 3.22. Let f ∈ Hr
u,A(Rn) with r/n > 1/2, then there exists a constant c independent

of N , such that the aliasing error satisfies

‖ANf‖u ≤ cN−r/n‖f‖A.

Proof. Using Parseval’s identity with ANf =
∑N

k γkRk yields

‖ANf‖2
u =

N∑

|k|=0

|γk|2‖Rk‖2
u ≤ const.

N∑

|k|=0

|γk|2,
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where |γk|2 = |bk −ak|2. In virtue of (3.64) one can enumerate all possible multi-index values

of m by j, such that substituting (3.66) yields

|γk|2 =

∣∣∣∣
∑

m
m6=(k1,...,kn)

( n∏

i=1
mi 6=ki

1

cmi=ki

︸ ︷︷ ︸
=:cj

∞∑
i

pi=1
mi=li

∑

q∈M

aq

︸ ︷︷ ︸
=:dj

)∣∣∣∣
2

≤
( 2n−1∑

j=1

cj |dj |
)2

, (3.67)

where am are the coefficients of the expansion of f . Since f ∈ Hr
u,A equation (3.34) holds, by

which one can claim A
r/2n
x f to possess an expansion into Rl with the coefficients

gl :=
〈A

r
2n
x f,Rl〉u
‖Rl‖2

u

⇒ am =

n∏

i=1

1

m
r
n
i

gm. (3.68)

Starting from m = (k1, . . . , kn) (which is excluded in the sum) we can subdivide the dj into

groups depending on how many ki are replaced by li (cf. (3.64)) and hence how many sums

over pi are involved. For the sake of readability say αi := 2Npi − ki and βi := 2Npi + ki,

then all dj with one ki ↔ li (i = 1, . . . , n) read

|dj,1| =
∣∣

∞∑

pi=1

(a(k1,...,αi,...,kn) + a(k1,...,βi,...,kn))
∣∣ =

=
∣∣

∞∑

pi=1

(
(k1 · · ·αi · · · kn)−

r
n g(k1,...,αi,...,kn) + (k1 · · · βi · · · kn)−

r
n g(k1,...,βi,...,kn)

)∣∣ ≤

≤
∣∣

∞∑

pi=1

(k1 · · ·αi · · · kn)−
r
n g(k1,...,αi,...,kn)

∣∣+
∣∣

∞∑

pi=1

(k1 · · · βi · · · kn)−
r
n g(k1,...,βi,...,kn)

∣∣.

(3.69)

In the case of two exchanges ki ↔ li and kj ↔ lj (i, j = 1, . . . , n) one has

|dj,2| ≤
∣∣

∞∑

pi=1

∞∑

pj=1

(k1 · · ·αiαj · · · kn)−
r
n g(k1,...,αi,...,αj ,...,kn)

∣∣+

+
∣∣

∞∑

pi=1

∞∑

pj=1

(k1 · · ·αiβj · · · kn)−
r
n g(k1,...,αi,...,βj,...,kn)

∣∣+

+
∣∣

∞∑

pi=1

∞∑

pj=1

(k1 · · · βiαj · · · kn)−
r
n g(k1,...,βi,...,αj ,...,kn)

∣∣+

+
∣∣

∞∑

pi=1

∞∑

pj=1

(k1 · · · βiβj · · · kn)−
r
n g(k1,...,βi,...,βj ,...,kn)

∣∣.

(3.70)

Such formulae immediately become more complicated when replacing more than one ki and

since it is obvious how to proceed, the remaining dj shall not be written down explicitly.

Next Cauchy’s inequality can be applied to the right-hand side terms in (3.69) to modify the

158



estimate to

|dj,1| ≤
( ∞∑

pi=1

|k1 · · ·αi · · · kn|−
2r
n
) 1

2
( ∞∑

pi=1

|g(k1,...,αi,...,kn)|2
) 1

2 +

+
( ∞∑

pi=1

|k1 · · · βi · · · kn|−
2r
n

) 1
2
( ∞∑

pi=1

|g(k1,...,βi,...,kn)|2
) 1

2 ,

which can be performed in the same way for (3.70) and all other dj . Since ki ≤ N it follows

that αi, βi are non-negative and thus αi ≤ βi, such that

|dj,1| ≤
( ∞∑

pi=1

|k1 · · ·αi · · · kn|−
2r
n

) 1
2×

×
[( ∞∑

pi=1

|g(k1,...,αi,...,kn)|2
) 1

2 +
( ∞∑

pi=1

|g(k1,...,βi,...,kn)|2
) 1

2

]
.

(3.71)

Assuming one has applied Cauchy’s inequality to the four addends in (3.70) it is easy to see

that the factor containing αiαj is greater or equal to the other three, yielding

|dj,2| ≤
( ∞∑

pi=1

∞∑

pj=1

|k1 · · ·αiαj · · · kn|−
2r
n
) 1

2×

×
[( ∞∑

pi=1

∞∑

pj=1

|g(k1,...,αi,...,αj ,...,kn)|2
) 1

2 + · · · +
( ∞∑

pi=1

∞∑

pj=1

|g(k1,...,βi,...,βj ,...,kn)|2
) 1

2

] (3.72)

and, analogously, estimates for all other dj have a similar leading factor with all appearing li

replaced αi.

Such factors with ki ≤ N allow for a further modification, i.e.

( ∞∑

pi=1

|k1 · · ·αi · · · kn|−
2r
n

) 1
2 =

∏

j 6=i

1

k
r
n
j︸ ︷︷ ︸

≤1

( ∞∑

pi=1

|2Npi − ki|−
2r
n

) 1
2 ≤

≤ 1

N
r
n

( ∞∑

pi=1

|2pi − ki/N |− 2r
n

︸ ︷︷ ︸
≤|2pi−1|− 2r

n

) 1
2 ≤ 1

N
r
n

( ∞∑

pi=1

|2pi − 1|− 2r
n
) 1

2 = const.
1

N
r
n

,

(3.73)

where the constant in the last term stems from calculating the value of the infinite sum,

which converges provided r/n > 1/2 (as found in Hesthaven et al. (2007) in the case of

one-dimensional Fourier expansions). Considering the factor in (3.72) one can observe that

( ∞∑

pi=1

∞∑

pj=1

|k1 · · ·αiαj · · · kn|−
2r
n
) 1

2 =

=
∏

l 6=i,j

1

k
r
n
l

( ∞∑

pi=1

|αi|−
2r
n

∞∑

pj=1

|αj |−
2r
n
) 1

2 ≤ const.

(
1

N
r
n

)2

,

(3.74)
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by using (3.73) for the individual sums, which is then done for all other such factors in the

remaining dj .

Collecting now all results from (3.68) to (3.74) and substitute them into (3.67) one obtains

( 2n−1∑

j=1

cj |dj |
)2

≤ const.

[
1

N
r
n

∑

m
|{mi=li}|=1

∑

li∈M

( ∞∑
i

pi=1
mi=li

|gm|2
) 1

2

+

+
( 1

N
r
n

)2 ∑

m
|{mi=li}|=2

∑

li∈M

( ∞∑
i

pi=1
mi=li

|gm|2
) 1

2

+ (3.75)

...

+
1

N r

∑

li∈M

( ∞∑

pn=1

· · ·
∞∑

p1=1

|gl|2
) 1

2
]2

and with 1/N r/n being greater or equal to all other leading factors, the right-hand side can

be modified to yield

‖ANf‖2
u ≤ const.

N∑

|k|=0

|γk|2 ≤ const.

(
1

N
r
n

)2 N∑

|k|=0

[
. . .

]2

. (3.76)

The square brackets, which shall be estimated in the following, contain all the sums from

above but without their leading factors. By Parseval’s identity we have that

∞∑

|l|=0

|gl|2 ≤ const.‖Ar/(2n)
x f‖2

u, (3.77)

such that the sum converges and consequently so does every partial sum. Starting again with

the sums over pi given in (3.71) and renaming them to be

g
(1)
k :=

∞∑

pi=1

|g(k1,...,2Npi−ki,...,kn)|2, g
(2)
k :=

∞∑

pi=1

|g(k1,...,2Npi+ki,...,kn)|2

(where the superscripts just symbolize an (arbitrarily chosen) enumeration), which can be

viewed as partial sums of (3.77), which are therefore convergent. In a similar manner the

terms in (3.72) can also be renamed (and viewed again as partial sums). By enumerating all

these partial sums of (3.77) in all dj , estimate (3.76) reads

‖ANf‖2
u ≤ const.

(
1

N
r
n

)2 N∑

|k|=0

[ b∑

j=1

(
g
(j)
k

)1/2
]2

,
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with b = |{m : mi = ki or mi = 2Npi − ki or mi = 2Npi + ki, ∀i}|. Rewriting the sum on

the right-hand side as

N∑

|k|=0

[ b∑

j=1

(
g
(j)
k

)1/2
]2

=
N∑

|k|=0

b∑

j=1

b∑

i=1

(
g
(i)
k g

(j)
k

)1/2 ≤
N∑

|k|=0

b∑

j=1

b∑

i=1

(
g
(i)
k + g

(j)
k

)
=

= 2b
N∑

|k|=0

b∑

j=1

g
(j)
k = 2b

b∑

j=1

N∑

|k|=0

g
(j)
k ≤ const.

b∑

j=1

‖Ar/2n
x f‖2

u ≤ const.‖f‖2
A,

(3.78)

using Lemma 3.10 for the last inequality, substituting this into the estimate above and taking

the square root finishes the proof.

Remark 3.27. Comparing Theorems 3.11 and 3.22 it has been shown that the L2 error

made by truncating a rational Chebyshev series expansion using exact coefficients is of the

same order as the error made by approximating coefficients using interpolation. This proves

parts of the assumption made in Boyd (1987) and Boyd (2001) about the truncation error

being of the same order of magnitude as the ”discretization” error (the difference between the

exact and approximated coefficients obtained from solving differential or integral equations),

which is similar to the aliasing error.

The overall error made by the discrete projection is bounded in L2, which stands in

complete accordance to Theorem 3.11.

Theorem 3.23. Let f ∈ Hr
u,A(Rn), then there exists a positive constant c, such that

‖f − INf‖u ≤ cN−r/n‖f‖A.

Proof. Obviously, by adding and subtracting the continuous projection

‖f − INf‖u = ‖f − INf + PNf − PNf‖u ≤ ‖f − PNf‖u + ‖PNf − INf‖u, (3.79)

where Theorems 3.11 and 3.22 can be applied to arrive at the desired estimate.

Remark 3.28. Finally, the error made by approximately calculating coefficients of a trun-

cated series (the most common situation when solving operator equations with spectral meth-

ods) is at most twice the error made by the continuous projection. The one-dimensional case

has been proved in Wang & Guo (2002) using a different approach (i.e. not via the aliasing

error).

In Mason (1980) Theorem 3.13 was shown to hold in the same way for the multivariate

interpolation operator at (a tensor product of) Chebyshev zeros by making use of Lagrange

interpolation polynomials. Again, cf. Remark 3.19, the mapping ψ transforms the rational

case into the classical case on compact intervals and thus Theorem 3.13 can also be applied

to the discrete projection on R
n, i.e. uniform convergence of INf , provided f satisfies the

Dini-Lipschitz condition (3.44).
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Having a discrete inner product is not the only reason for choosing the interpolation points

as in (3.53). The well-known Runge phenomenon occurs when using equidistant points. In

other words, the problem of interpolating a given function using orthogonal polynomials at

equidistant points is ill-posed, as demonstrated e.g. in Hesthaven et al. (2007), meaning that

the more points are used, the larger the L∞ error gets.

This can be seen by calculating the Lebesgue constant in the case of equally distributed

interpolation points. Whereas in the continuous case and for an interpolation at Chebyshev

points this constant grows logarithmically and can hence be bounded by the modulus of

continuity (see Mason (1980)), in the case of equidistant interpolation the Lebesgue constant

grows exponentially.

In view of the Lebesgue constant and the Runge phenomenon it is worth considering the

uniform convergence rate for the interpolation operator. In Theorem 3.17 the convergence

rate was presented when using the continuous projection. The next result shows that the

same rate holds in the case of the discrete projection.

Theorem 3.24. Given f ∈ Hr
u,A(Rn), r/n > 1/2, then there exists a constant c independent

of N , such that

‖f − INf‖∞ ≤ cN1/2−r/n‖f‖A.

Proof. Since (3.79) holds in every norm, it is sufficient to prove that the aliasing error mea-

sured in the L∞ norm is of the same order as the truncation error in (3.52). Using the same

argument as in (3.45) leads to

‖ANf‖∞ ≤
N∑

|k|=0

|γk| ≤
N∑

|k|=0

2n−1∑

j=1

cj |dj |, (3.80)

cf. (3.67), whereas here the estimates from (3.69) and (3.70) shall be written as

|dj,1| ≤
∞∑

pi=1

∣∣a(k1,...,αi,...,kn)

∣∣+
∞∑

pi=1

∣∣a(k1,...,βi,...,kn)

∣∣

and analogously for all other dj .

Changing the order of the sums on the right-hand side in (3.80) yields

2n−1∑

j=1

N∑

|k|=0

cj |dj | ≤ const.

[ ∑

m
|{mi=li}|=1

( ∞∑

pi=1
li=αi

N∑

|k|=0

|am| +
∞∑

pi=1
li=βi

N∑

|k|=0

|am|
)

+

+
∑

m
|{mi=li}|=2

∑

li∈M

∞∑
i

pi=1
mi=li

N∑

|k|=0

|am|+ (3.81)

...
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+
∑

li∈M

∞∑

pn=1

· · ·
∞∑

p1=1

N∑

|k|=0

|al|
]
,

in contrast to (3.75), where, due to the overall square, the strategy had to be different (with

applying Cauchy’s inequality earlier) and it was hence not possible to move the sum over k

up to the coefficient am or gm. And here lies the main difference in the proof for the infinity

norm. By considering
∑
pi

∑
|k|

|am|, where we start by changing one mi to either αi or βi, then

substitute (3.68) and use Cauchy’s inequality we get

∞∑

pi=1

N∑

|k|=0

|am| =
∞∑

pi=1

N∑

|k|=0

∣∣(k1 · · ·αi · · · kn)−
r
n g(k1,...,αi,...,kn)

∣∣ ≤

≤
( ∞∑

pi=1

N∑

|k|=0

∣∣(k1 · · ·αi · · · kn)−
2r
n

∣∣
) 1

2
( ∞∑

pi=1

N∑

|k|=0

∣∣g(k1,...,αi,...,kn)

∣∣2
) 1

2

.

The second term is bounded by ‖f‖A, as seen from (3.78) by taking the square root, whereas

for the first term one can derive

∞∑

pi=1

N∑

|k|=0

∣∣(k1 · · ·αi · · · kn)−
2r
n

∣∣ = N− 2r
n

∞∑

pi=1

∏

j 6=i

N∑

kj=1

∣∣∣∣
1

kj

∣∣∣∣
2r
n

︸ ︷︷ ︸
≤const. ∀N

N∑

ki=0

∣∣2pi −
ki

N

∣∣− 2r
n

︸ ︷︷ ︸
≤N |2pi−1|− 2r

n

≤

≤ const.N− 2r
n

+1
∞∑

pi=1

∣∣2pi − 1
∣∣− 2r

n

︸ ︷︷ ︸
cf. (3.73)

≤ const.N− 2r
n

+1,

where the sums converge if r/n > 1/2. For the issue of ki = 0 we refer to the proof of

Theorem 3.11 above. Obviously, the same can be done for mi = βi, without any changes,

such that the first line in (3.81) is bounded by cN
1
2
− r

n ‖f‖A.

Writing in detail the case of two mi switched with αi or βi shows the second line (excluding

the sum over all possible exchanges) in (3.81) to be

∞∑

pi=1

∞∑

pj=1

N∑

|k|=0

∣∣a(k1,...,αi,...,αj ,...,kn)

∣∣+
∞∑

pi=1

∞∑

pj=1

N∑

|k|=0

∣∣a(k1,...,αi,...,βj,...,kn)

∣∣+

+

∞∑

pi=1

∞∑

pj=1

N∑

|k|=0

∣∣a(k1,...,βi,...,αj ,...,kn)

∣∣+
∞∑

pi=1

∞∑

pj=1

N∑

|k|=0

∣∣a(k1,...,βi,...,βj ,...,kn)

∣∣.
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Without loss of generality we take the first sum and substitute again (3.68) to get

∞∑

pi=1

∞∑

pj=1

N∑

|k|=0

∣∣(k1 · · ·αiαj · · · kn)−
r
n g(k1,...,αi,...,αj ,...,kn)

∣∣ ≤

≤
( ∞∑

pi=1

∞∑

pj=1

N∑

|k|=0

∣∣(k1 · · ·αiαj · · · kn)−
2r
n

∣∣
) 1

2
( ∞∑

pi=1

∞∑

pj=1

N∑

|k|=0

∣∣g(k1,...,αi,...,αj ,...,kn)

∣∣2
) 1

2

.

Again, the second term is bounded by the Hr
u,A norm of f and by splitting the first term one

obtains

∞∑

pi=1

∞∑

pj=1

N∑

|k|=0

∣∣(k1 · · ·αiαj · · · kn)−
2r
n

∣∣ =

=
(
N− 2r

n
)2 ∞∑

pi=1

∞∑

pj=1

∏

l 6=i,j

N∑

kl=1

∣∣∣∣
1

kl

∣∣∣∣
2r
n

︸ ︷︷ ︸
≤const. ∀N

N∑

ki=0

∣∣2pi −
ki

N

∣∣− 2r
n

︸ ︷︷ ︸
≤N |2pi−1|− 2r

n

N∑

kj=0

∣∣2pj −
kj

N

∣∣− 2r
n

︸ ︷︷ ︸
≤N |2pj−1|−2r

n

≤

≤ const.
(
N− 2r

n
+1
)2 ∞∑

pi=1

|2pi − 1|− 2r
n

∞∑

pj=1

|2pj − 1|− 2r
n ≤ const.

(
N− 2r

n
+1
)2
.

Consequently, by the same argument as before, the second line in (3.81) is bounded by

c
(
N

1
2
− r

n

)2‖f‖A, which has a leading factor smaller than or equal to the one in the first line.

It is now easy to see how to find bounds for every line with decreasing factors in terms of N .

Thus, one can finally conclude

‖ANf‖∞ ≤
2n−1∑

j=1

N∑

|k|=0

cj |dj | ≤ const.N
1
2
− r

n ‖f‖A.

As mentioned in Remark 3.24 there are other possibilities to define discrete inner products

(and according norms) by changing the set of interpolation points. In the above we used

the extrema of the last retained polynomial because of the connections to the fast Fourier

transform. It can be easily shown that the proved convergence results can be established for

other types of inner products as well, for example, when using the set of zeros of the next

higher order polynomial.

The Erdös-Turán theorem shows L2 convergence of the interpolation polynomial PN

formed by an arbitrary set of orthogonal polynomials {pn} interpolated at the zeros of pN+1

to a given continuous functions on a compact interval (see e.g. Cheney (1966) or Szegö (1939)

for a proof). In our treatise such interpolation points will be used as collocation points (see

Section 3.3).

Caveat: Lemma 3.2(ix) shows that the zeros of rational Chebyshev polynomials are by

far not distributed over the whole real axis (in contrast to the classical case on [−1, 1]). In
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consequence, this means that when interpolating (or evaluating) functions at such points

certain characteristics away from these points cannot be depicted or included, which might

result in a (from the view of pointwise convergence) very poor approximation.

To illustrate the goodness of gaining coefficients by discrete inner products and what hap-

pens when changing the function away from the evaluation points, we consider the following

Example 3.7. Given the function f(x) = (1 + x2)−1/2 (cf. Example 3.6) one can exactly

calculate the continuous inner product to be

‖Rk‖2
wak =

〈
(1 + x2)−

1
2 , Rk

〉
w

=
2

1 − k2
(k even), x2f ′(x) → ∓1 as x→ ±∞,

and hence |ak| ∝ 1/k2 (whereas according to Theorem 3.15 the power of k should be less than

2, but since f is even, the symmetry adds to a stronger decrease). Using the set of extrema

of the Nth polynomial, i.e.

xi =
cos( iπ

N )√
1 − cos2( iπ

N )
implies

(
Nb0,

N

2
b1, . . . ,

N

2
bN−1, NbN

)
=
√
N/2DCT (f(xi)),

cf. Lemma 3.19. In Table 16 the difference |ak − bk| is given for the first 5 even coefficients

for various N . Figure 38 depicts this result using N = 10, by showing the actual function

N |a0 − b0| |a2 − b2| |a4 − b4| |a6 − b6| |a8 − b8| |a10 − b10|

10 5 × 10−3 1 × 10−2 1.1 × 10−2 1.3 × 10−2 1.5 × 10−2 3 × 10−3

50 2 × 10−4 4.2 × 10−4 4.2 × 10−4 4.2 × 10−4 4.2 × 10−4 4.3 × 10−4

100 5 × 10−5 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1.1 × 10−4

200 1 × 10−5 2.6 × 10−5 2.6 × 10−5 2.6 × 10−5 2.6 × 10−5 2.6 × 10−5

Table 16: Aliasing error of f , |ak − bk| for various k and N

and the approximations on the left and the absolute value of the aliasing error as a function

of x on the right. There, one can see the supremum of ANf to be at infinity. This is due to

Lemma 3.18, from which it follows that INf(∞) = f(∞) = 0, whereas PNf(∞) =
∑Nak,

i.e. P10f(∞) = 2
11π ≈ 5.8 × 10−2. This is in very well accordance to Theorem 3.24, where it

was stated that ‖ANf‖∞ ≤∑N |ak − bk| ≤ cN1/2−s, reading in the case here as

sup |A10f(x)| = A10f(∞) =
10∑

k=0

= 6×10−2 ≤ const. 101/2−2 = const.

√
10

100
≈ const. 3×10−2.

Changing the given function to

f̃(x) =

{
(1 + x2)−1/2 x < 5

0 x ≥ 5
,
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Figure 38: Left: P10f (solid), I10f (dashed) vs. f (dotted). Right: aliasing error |A10f |.

which has a discontinuity at x = 5, but still decays to zero at infinity, yields the exact same

coefficients bk as for f if N ≤ 15, since f ≡ f̃ at the interpolation points xi (discarding the

points |x0| = |xN | = ∞ all other points lie in (−5, 5) for N ≤ 15).

The coefficients ak can again be derived analytically for all k, such that subsequently a

completely different aliasing error behavior occurs. (Observe, for example, that for N ≤ 15

INf is still an even function). Figure 39 shows the approximation and the aliasing error for

f̃ in the case of N = 10. From the aliasing error it is obvious that for x < 5 (away from the

discontinuity) the approximation behaves analogously to Figure 38. Increasing the number of
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Figure 39: Left: P10f (solid), I10f (dashed) vs. f̃ (dotted). Right: aliasing error |A10f̃ |.

polynomials the difference between f and f̃ becomes more apparent, resulting in a complete

change of the aliasing error, especially for the point of its supremum. Figure 40 shows the

details for N = 100, where one can see the aliasing to be maximal in the vicinity around

the discontinuity, whereas everywhere else the original function is indistinguishable from its

approximations. This gives rise to the treatment of a rather practical, but very important

topic of polynomial approximation, the Gibbs phenomenon.

If one would continue to approximate f̃ from the example above with an increase in the

number of polynomials used, the Gibbs oscillations become more and more visible around

166



 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5  0  5  10

x

 0

 0.01

 0.02

 0.03

 0.04

 0.05

-10 -5  0  5  10

x

Figure 40: Left: P100f (solid), I100f (dashed) vs. f̃ (dotted). Right: aliasing error |A100f̃ |.

the discontinuity step. Also, as mentioned in the proof of Lemma 3.12, the value of the

approximation at the discontinuity is equal to the average step height, whereas the oscillations

seem to increase the step. Thus, as mentioned in e.g. Mason & Handscomb (2003) the

pointwise error at the discontinuity remains an O(1)-quantity as N → ∞, cf. Figure 41. We

 0
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 0.3

 3  3.5  4  4.5  5  5.5  6  6.5  7

x

Figure 41: Figure 40 continued using N = 500: P500f (solid) vs. f̃ (dashed)

shall not go further into the details of the phenomenon per se, but consider the aspect of

approximating integrals of such discontinuous functions.

Performing numerical calculations, e.g. solving integral equations or applying Galerkin

methods, actual values of integrals of polynomials with some kernel functions can be of inter-

est, where the accuracy of the scheme could depend strongly on such values, and furthermore

in most cases analytical expressions cannot be obtained and hence approximation techniques

are needed. Here, some Sobolev-type convergence might not be sufficient and thus pointwise

convergence has to be demanded.

Depicted in Figure 41 and inferred from Lemma 3.12 the approximation in the vicinity

of a discontinuity differs strongly from its exact values, even for higher degree projections,

meaning that the Gibbs phenomenon not only prevents convergence at the discontinuity, but
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also slows down convergence near this point. Due to the fact that points of discontinuity

have measure zero they do not contribute to the value of integrals and so pointwise and even

uniform convergence can be shown to hold in such cases.

Proved in Hesthaven et al. (2007) and Guo (1998) for the case of classical Chebyshev

polynomials, ∂xPNf 6= PN∂xf (but converges in L2 as N → ∞), the same holds in the case

of integrals.

Lemma 3.25. Given the functions f and g, sufficiently smooth and defined on [−1, 1], such

that

f(x) =

∫
g(x) dx + c and fN (x) :=

N∑

k=0

bkTk(x), gN (x) :=

N∑

k=0

akTk(x)

as projections of f and g, respectively, with {Tk} being the set of classical Chebyshev polyno-

mials, then

bk =





a0 − 1
2a2 k = 1

ak−1 − ak+1

2k
1 < k ≤ N − 1

,

where b0 remains undetermined (thus being the integration constant).

Proof. The fact that one can only equate the coefficients of fN up to N − 1 shows that

fN 6=
∫
gN , where equality can only be attained if N → ∞. To see this we start by writing

∫
gN (x) dx =

N∑

k=0

ak

∫
Tk(x) dx = a0T1(x) + 1

4a1T2(x) +

N∑

k=2

ak
1
2

(
Tk+1(x)

k + 1
− Tk−1(x)

k − 1

)
,

where (3.9) is applied to yield the second equality. By splitting the sum and shifting the

indices, i.e.
N∑

k=2

ak
1
2

(
Tk+1

k + 1
− Tk−1

k − 1

)
=

N+1∑

k=3

ak−1
1
2kTk −

N−1∑

k=1

ak+1
1
2kTk,

one obtains

∫
gN (x) dx = (a0 − 1

2a2)T1(x) +

N−1∑

k=2

ak−1−ak+1

2k Tk(x) + 1
2N aN−1TN (x) + 1

2(N+1)aNTN+1(x).

Comparing coefficients with fN for every Tk proves the assertion and shows b0 to be the

integration constant if N → ∞ and bN
!
= 1

2N aN−1, which is highly inaccurate if N is small.

Additionally, a (rapidly oscillating) remainder function is given by the last term, since TN+1

does not appear in the expansion of fN .

The next result shows that for the integral of the simplest discontinuous function, i.e. the

characteristic or indicator function, uniform convergence holds.
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Theorem 3.26. Let 1[−1,c] be the characteristic function with −1 < c ≤ 1 and define

f(x) := x1[−1,c](x) + c1(c,1](x), x ∈ [−1, 1],

such that f is continuous. The definite integral over [−1, x] of the classical Chebyshev series

of 1[−1,c] converges uniformly to f + 1.

Proof. It is straight forward to see that

x∫

−1

1[−1,c](y) dy = f(x) + 1 (3.82)

and since f is continuous and of bounded variation there exists a uniformly convergent Cheby-

shev expansion with the coefficients given as

bk =
〈f, Tk〉v
‖Tk‖2

v

=
1

‖Tk‖2
v

1∫

−1

f(x)Tk(x)
1√

1−x2
dx.

By applying the usual transform x = cos(y) the integral above can be calculated in an exact

manner (abbreviating c∗ := arccos(c)), such that

bk =
1

‖Tk‖2
v

[ π∫

c∗

cos(y) cos(ky) dy + c

c∗∫

0

cos(ky)dy

]
=

=
1

π





cc∗ −
√

1 − c2 k = 0

π + c
√

1 − c2 − c∗ k = 1

2
k
√

1 − c2 cos(kc∗) − c sin(kc∗)
k3 − k

k > 1

.

In the same way, although not being pointwise convergent, one can calculate the coefficients

for the expansion of the characteristic function to be

ak =
1

‖Tk‖2
v

c∫

−1

Tk(x)
1√

1−x2
dx =

1

‖Tk‖2
v

π∫

c∗

cos(ky)dy =
1

π





π − c∗ k = 0

−2
sin(kc∗)

k
k > 0

. (3.83)

Paraphrasing (3.9) for definite integrals over [−1, x] yields

x∫

−1

Tk(y)dy =





T1(x) + 1 k = 0

1
4T2(x) − 1

4 k = 1

1
2

(
Tk+1(x)

k+1 − Tk−1(x)
k−1

)
− (−1)k

k2−1
k > 1

. (3.84)

169



By combining (3.83) and (3.84) one can write the approximate version of the integral in (3.82)

in the form

N∑

k=0

ak

x∫

−1

Tk(y) dy = a0(T1(x)+1)+a1(
1
4T2(x)− 1

4 )+

N∑

k=2

ak
1
2

(
Tk+1(x)

k+1 − Tk−1(x)
k−1

)
−

N∑

k=2

ak
(−1)k

k2−1

and by comparison with the expansion for f (using Lemma 3.25) it is left to show

a0 − 1
4a1 −

N∑

k=2

ak
(−1)k

k2−1
→ b0 + 1 as N → ∞

b1 = a0 − 1
2a2

bk = 1
2k (ak−1 − ak+1) ∀k > 1,

(3.85)

such that

x∫

−1

N∑

k=0

akTk(y) dy
unif.−−−→

N∑

k=0

bkTk(x) + 1
unif.−−−→ f(x) + 1 as N → ∞,

which concludes the proof.

To show (3.85) we start with b1 by modifying (modulo the factor 1
π for the norm)

a0 − 1
2a2 = π − c∗ +

sin(2c∗)
2

= π − c∗ + sin(c∗)c = π − c∗ + c
√

1 − c2 = b1,

using the fact that sin(arccos(x)) =
√

1 − x2, and analogously for the other bk

1
2k (ak−1 − ak+1) =

1

k

(
−sin((k − 1)c∗)

k − 1
+

sin((k + 1)c∗)
k + 1

)
=

=
−(k + 1) sin((k − 1)c∗) + (k − 1) sin((k + 1)c∗)

k3 − k
=

=
2k

√
1 − c2 cos(kc∗) − 2c sin(kc∗)

k3 − k
= bk,

applying trigonometric identities. As for the integration constant, the first equation in (3.85),

the convergence of the sum is obvious, since (ak) is a null sequence and with the use of some

(computer) algebra one then gets

∞∑

k=2

ak
(−1)k

k2−1
= 2

π

[
3
√

1−c2

4 + (1 + c) arctan
(

c−1√
1−c2

) ]
= 3

√
1−c2

2π −
2(1+c) arctan

„

1−c√
1−c2

«

π .

With the inverse trigonometric identity arccos(x) = 2 arctan(
√

1 − x2/(1 + x)), −1 < x ≤ 1

this simplifies to
∞∑

k=2

ak
(−1)k

k2 − 1
=

3
√

1 − c2

2π
− (1 + c) arccos(c)

π
,
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such that overall

a0 − 1
4a1 −

∞∑

k=2

ak
(−1)k

k2−1
= 1 − c∗

π
+

√
1 − c2

2π
− 3

√
1 − c2

2π
+

(1 + c) arccos(c)

π
=

= 1 − c∗

π
−

√
1 − c2

π
+

(1 + c)c∗

π
= 1 −

√
1 − c2

π
+
cc∗

π
= b0 + 1,

which is the desired equality.

Remark 3.29. In Theorem 3.26, for readability and simplicity of the proof, the characteristic

function was set to contain only one discontinuity step. The general case considering 1[d,c],

−1 < d < c ≤ 1 can be shown in the exact same way as above, with the only difference that

the first equation in (3.85) has only b0 on the right-hand side, since the integration evaluates

to zero at −1.

Observe that with this remark integrals of every combination of multiplications of charac-

teristic functions on [−1, 1] have been proved to converge uniformly, due to
∏

k 1Ak
= 1∩Ak

=

1[a,b]. To utilize this result for arbitrary piecewise continuous functions use can be made of

what is known as simple functions from measure theory.

A measurable function s : I → R is called simple, if it can be written as

s =

p∑

j=0

αj1Aj , where Aj = s−1(αj) ∈ σ–algebra. (3.86)

In the following the σ-algebra shall be the Borel σ-algebra, such that every continuous func-

tion is measurable and since we are dealing with functions defined on real intervals the Borel

measure coincides with the Lebesgue measure and consequently all Aj ∈ [−1, 1] are closed

(or open) intervals.

Furthermore, for every positive measurable bounded function f there exists a monotone

sequence sn of simple functions which converges uniformly to f .

Theorem 3.27. Let f be a piecewise continuous function of bounded variation with finitely

many discontinuities, then the integral of the Chebyshev expansion of f converges uniformly.

Proof. First observe that every piecewise continuous function f can be written as
∑
fi1Ai ,

where i counts the discontinuities and fi are continuous functions on Ai. Thus it is sufficient

to show the uniform convergence of the integral of g1A with g continuous and of bounded

variation and A ∈ [−1, 1].

Without loss of generality one can assume g to be positive (otherwise split g into its positive

and negative part, where the argument then holds for each part separately). Hence there

exists a monotone sequence of simple functions sn uniformly convergent to g.

Additionally one can find an integrable function h, such that |sn| ≤ h (to apply the dominated
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convergence theorem), which yields

x∫

−1

g(y)1A(y) dy = lim
n→∞

x∫

−1

sn(y)1A(y) dy = lim
n→∞

∑

j

αj,n

x∫

−1

1Aj(y)1A(y) dy,

by substituting sn(y) =
∑

j αj,n1Aj(y) as stated in (3.86). With 1Aj(y)1A(y) = 1Aj∩A =:

1[d,c], the approximation of the integral on the right-hand side above converges uniformly,

according to Theorem 3.26 and Remark 3.29. This holds for all j and n, which finishes the

proof.

Remark 3.30. The proof above is not constructive in the sense that in applications one would

not construct a sequence of simple functions but expand the fi or g in a Chebyshev series

as well, whereas for the uniform convergence the argument still holds for such expansions.

Moreover, calculating the product of two series expansions is too expensive and hence finding

the Chebyshev series for g1A as one function has to be preferred. Not only is producing the

product of two series very expensive, but also highly inaccurate compared to an expansion of

the product itself. Although one has that if fN → f and gN → g it follows that fNgN → fg

for all x, using Lemma 3.2(v) to rearrange the product of two series to compare coefficients

clearly depicts where the inaccuracy stems from and shows the slow rate of convergence.

In contrast to the general topic of this section we treated the Gibbs phenomenon in

integrals in the case of classical polynomials. This is due to the fact that, as mentioned in

Remark 3.1, integrals of rational Chebyshev polynomials over R do not exist. But applying

the usual mapping to the results stated above shows that the convergence of such integrals

holds for the case of mapped polynomials as well, provided one has some integral kernel

function, which does not take part in the approximation but takes care of the necessary

decay behavior for the individual integrals to exist. In particular Lemma 3.25 cannot be

transferred directly to the whole real axis and also needs some modification for arbitrary

integral kernels.

But, overall, the alleviation of the Gibbs phenomenon (as well as uniform convergence)

using integrals can also be observed in the rational case.

Remark 3.31. It is straight forward to see how Theorems 3.26 and 3.27 can be extended to

multivariate functions on [−1, 1]n, since 1[a,b]×[c,d](x, y) = 1[a,b](x)1[c,d](y) etc. which shows

how simple functions are defined in higher dimensions and that every case can be reduced to

one-dimensional integrals of characteristic functions.

3.3 Spectral Collocation Methods

This section contains a description of the necessary requirements and tasks for setting up (rea-

sonably fast working and converging) spectral schemes to solve operator equations. There

are in general two different approaches, distinguished by the method of minimizing the er-

ror made by approximating the exact solution using a finite polynomial expansion, namely
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Galerkin and collocation methods. The first requires the error to be orthogonal to the finite

dimensional subspace (the approximate solution lies in), which is realized using inner prod-

ucts and is hence set up in a Hilbert space. Collocation methods, on the other hand, set the

error to zero at a certain set of points.

It shall be noted here that both schemes treat the coefficients of the polynomial expansion

as the discrete unknowns and thus fall into the spectral category. This correlates with the

continuous projection operator from Section 3.2, whereas using interpolation leads to what

is called pseudospectral schemes. Most authors do not distinguish between the notions collo-

cation and pseudospectral. The analysis below shall clarify where the difference of those two

approaches stems from.

Hackbusch (1995) shows that all the above mentioned discretization methods are in fact

connected and it can be proved that under certain circumstances they all even lead to the

same equation system.

First, a precise meaning shall be given to how spectral methods are mathematically set

up in the usual operator description (see e.g. Hackbusch (1995), Golberg (1979) and Guo

(1998)).

Assume K is a linear operator and X(Ω), Y (Ω) are two Banach spaces on the domain

Ω, such that K : X → Y . If f ∈ X is unknown and g ∈ Y is given, the general operator

equation then reads

Kf = g. (3.87)

One way to find an approximate solution fN ∈ XN ⊂ X is by using a projection operator

PN : Y → YN , such that YN is a finite dimensional subspace of Y , uniquely defined by PN ,

with a basis {q1, . . . , qN}. Since one cannot expect fN to be a solution of (3.87), substituting

this function generates the error

eN := KfN − g, eN ∈ Y,

which in general does not vanish (everywhere) in Ω, so one requires its projection onto YN

to be zero, leading to a semi-discrete equation, i.e.

PNeN = 0 ⇒ PNKfN = PNg.

Remark 3.32. From the definition of the Galerkin method (Y being a Hilbert space, e.g.

L2(Ω) with the inner product 〈·, ·〉)

〈eN , qi〉 = 0 ⇔ 〈KfN , qi〉 = 〈g, qi〉, ∀i ≤ N, (3.88)

it is fairly obvious that this defines an orthogonal projection. As for the collocation method

the error is evaluated at the set of points {x1, . . . , xN} (commonly termed collocation points)

in Ω,

eN (xi) = 0 ⇔ KfN (xi) = g(xi), ∀i ≤ N, (3.89)
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where it is not as straight forward how an according (orthogonal) projection can be found.

In Section 3.2 Lemma 3.18 states that the therein defined operator IN interpolates a

function at a certain set of (interpolation) points. By setting the collocation points equal to

the interpolation points one finds that if

INKfN = INg ⇒ KfN (xi) = g(xi), ∀i ≤ N

and hence the collocation can also be treated as a projection method. In contrast to the

Galerkin method no inner product is needed for the projection, but due to the definition

of the interpolation operator one normally requires Y to contain at least bounded or even

continuous functions (e.g. C(Ω) equipped with ‖ · ‖∞). The equivalence stated in (3.88) is

non-trivial and a proof can be found in e.g. Hackbusch (1995).

Remark 3.33. For some problems one may further assume X = Y , such that K : X → X,

where then boundedness and compactness properties can be easily utilized, as often done when

dealing with integral equations of the second kind, cf. e.g. Golberg (1979), Golberg (1990),

Sloan (1990) and Hackbusch (1995), where the latter showed for Volterra and Fredholm

integral operators with certain types of kernels that Y is continuously (compactly) embedded

in X, thus gaining some regularity for the solution of the according equations.

A very general treatment of consistency, stability and convergence for projection methods,

without making any additional assumptions on the involved spaces and their finite dimen-

sional subspaces, can be found in Guo (1998).

To analyze such methods, Hackbusch (1995) defines (with X being a Banach space and

{PN} a set of bounded projections from X to XN ⊂ X)

(i) if PNx→ x, ∀x ∈ X, then the set is called convergent,

(ii) if PNx→ x, ∀x ∈M, M ⊂ X dense, then the set is called consistent,

(iii) if sup
N

{‖PN‖X} <∞, then the set is called stable.

(3.90)

One immediate consequence from this definition mentioned further in Hackbusch (1995) is

Lemma 3.28. A set of projections {PN} is convergent, if and only if it is consistent and

stable.

Proof. This follows directly from the theorem of Banach-Steinhaus, i.e. uniform boundedness

principle, which states that given a set F of linear operators, with T ∈ F : X → Y , if

sup
T∈F

‖Tx‖X <∞, ∀x ∈ X, it follows that sup
T∈F

‖T‖X→Y <∞.

Remark 3.34. From Lemma 3.28 and Theorems 3.23 and 3.24 given in Section 3.2 one

can infer that the interpolation operators defined in Section 3.2 are convergent and hence

stable and consistent in the according function spaces. But as mentioned in Remark 3.28

the stability strongly depends on the interpolation points, since the uniform boundedness

might be violated. For example in the case of equidistant points it has been shown (cf. e.g.
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Hesthaven et al. (2007)) that the Lebesgue constant, measuring the norm of the projection, is

asymptotically λN ∼ 2N+1/(N logN), whereas ‖IN‖∞ =O(logN) using Chebyshev points.

In the L2 case Golberg (1990a) mentioned, as a consequence of the Erdös-Turán theorem,

that IN : C([a, b]) → L2
w([a, b]) satisfies ‖IN‖2

C→L2
w

=
∫
[a,b]w(t)dt. Another result presented

in Golberg (1979) shows that the stability of collocation methods depends not only on the

choice of collocation points but also on the basis functions spanning the subspaces YN .

Remark 3.35. It shall be noted here that consistency relates purely to the involved operators

and hence can be treated independently of any equation. Stability and convergence, on the

other hand, are always connected to a given equation and this is why for example Guo (1998)

(proving general results for equations of the first kind) only needs the inverse of K to exists

to prove a convergence result, whereas Hackbusch (1995) and e.g Sloan (1990) require K to

be compact, since they emphasize on equations of the second kind, i.e. λf −Kf = g (λ being

a regular value of K). The reason for this lies in the fact that by saying KN := PNK the

condition

‖KN −K‖X → 0 as N → ∞ (3.91)

is always assumed to hold to establish convergence. Here, the pointwise convergence defined

in (3.90)(i) is sufficient for convergence in the operator norm (i.e. uniform convergence) if K
is compact, because compact operators map bounded sets onto precompact sets, for which

pointwise implies uniform convergence (cf. Hackbusch (1995)).

Interestingly, as mentioned in Sloan (1990), the pointwise convergence, although being

sufficient for compact K, is not necessary for (3.91) to hold. Paraphrasing this one might also

state

Lemma 3.29. Given a bounded operator K and the set of bounded operators {PN} then

‖PNK−K‖X → 0, if PN converges uniformly to the identity.

Proof. Obviously, one has ‖PNK −K‖ = ‖(PN − I)K‖ ≤ ‖PN − I‖ ‖K‖︸︷︷︸
<∞

.

This implies that compactness for K is not necessary for convergence, if one can find a

projection method which converges uniformly, but, for example, neither the Galerkin nor the

collocation approach satisfy this in general.

Stability for equations of the second kind is defined via the norm of the solution oper-

ator ‖(λI − KN )−1‖X ≤ const, ∀N ≥ N0, where (3.91) ensures the uniform boundedness.

Conversely, if one considers such operator equations of the first kind as (3.87) with K being

compact, its inverse is in general unbounded, which might lead to instability (cf. for example

the ill-posedness of Abel integral equations as treated in Gorenflo & Vessella (1991) and Kress

(1999), including regularization techniques).

From the definition of consistency given as

lim
N→∞

‖PNKv −Kv‖Y = 0, ∀v ∈ X, (3.92)
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where K : X → Y , it is sufficient that (3.90)(ii) holds in Y , without any additional re-

quirement on K. Furthermore, Golberg (1990) mentioned that if the projection onto YN is

uniformly bounded and
⋃
YN is dense in Y , then ‖PNh− h‖Y , h := Kv, tends to zero.

Remark 3.36. Summarizing the considerations above, compactness or boundedness of given

operators can be sufficient, but need not be necessary, for spectral methods to be consistent,

stable and convergent (although it definitely simplifies the analysis and proofs). Also, when

using collocation, which is essentially an interpolation, the right choice of collocation points

has to be made, otherwise it might not be possible to establish stability or even consistency

for certain types of operators.

So far we only dealt with the method of how to minimize the error (for example using

interpolation) and possible issues arising when approximating the solution f with fN ∈ XN .

This then leads to sometimes termed semi-discrete equations, since nothing has been said

about how to actually obtain fN from such a scheme. As has been done for YN , the subspace

XN shall again be defined by a projection QN : X → XN , such that fN = QNf .

Consequently, a discretization of (3.87) then reads

PNKQNf = PNg.

In most of the works mentioned above, the convergence analysis is done without this addi-

tional step of projecting f onto XN . Guo (1998), in contrast, derives consistency, stability and

convergence conditions exclusively for a ”discretized” (invertible) operator KN : XN → YN

(which is not equal to KN = PNK defined above) and an inverse mapping SN : YN → Y ,

such that the approximate equation is

KNfN = PNg,

where the approximation error can then be given as RN (v) = Kv − SNKNQNv, ∀v ∈ X.

Furthermore, the consistency condition is thus said to be

lim
N→∞

‖RN (v)‖Y = 0, ∀v ∈ D . . . subset of solutions f.

This is in complete accordance to (3.92), which in full discretization yields the requirement

lim
N→∞

‖PNKQNv −Kv‖Y = 0, ∀v ∈ X. (3.93)

The following results show under which assumptions this can be satisfied.

Lemma 3.30. If the two (bounded) projections PN and QN are (pointwise) convergent, K
being bounded is sufficient for (3.93) to hold.

Proof. Starting from the definition of consistency, some modification yields the inequality

‖PNKQNv −Kv‖Y = ‖PNKQNv −Kv + PNKv − PNKv‖Y ≤
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≤ ‖PNKv −Kv︸ ︷︷ ︸
set h:=Kv

‖Y + ‖PNKQNv −PNKv︸ ︷︷ ︸
=PNK(QN v−v)

‖Y ≤ (3.94)

≤ ‖PNh− h‖Y︸ ︷︷ ︸
→0

+ ‖PN‖Y ‖K‖X→Y︸ ︷︷ ︸
<∞

‖QNv − v‖X︸ ︷︷ ︸
→0

→ 0, ∀v ∈ X.

Remark 3.37. The boundedness of the projections in Lemma 3.30 is sufficient for the ar-

gument in the last line in (3.94). For collocation methods, where PN ≡ IN , ‖PN‖∞ → ∞ as

N → ∞ (see Remark 3.34), even when using appropriate collocations points. But since the

rate of divergence of ‖PN‖∞ is slow, Lemma 3.30 still holds, provided ‖QNv − v‖X tends to

zero fast enough (as it is usually the case).

Although being sufficient, the boundedness of K is not necessary. The next result shows

that for differential operators, which are unbounded in general, consistency can be established

in the appropriate Sobolev spaces.

Theorem 3.31. Let Dm :=
∑

|k|s≤m

ak∂
k
x, with ak ∈ R, be a classical derivative operator and

v ∈ Hr(Ω), then ∀r, q ∈ R, with m+ q < r, provided PN converges (pointwise) in Hm+q

lim
N→∞

‖Dmv −DmPNv‖Hq = 0

holds.

Proof. This is a generalization of a result presented in Hesthaven et al. (2007), where it

was proved for approximations via orthogonal polynomial expansions. The proof here is

essentially the same, with the main arguments being

‖Dmv −DmPNv‖Hq = ‖
∑

|k|s≤m

ak∂
k
x(v − PNv)‖Hq ≤

≤ max
k

ak

∑

|k|s≤m

‖∂k
x(v − PNv)‖Hq = max

k
ak

∑

|k|s≤m


∑

|j|s≤q

‖∂j
x [∂k

x(v − PNv)]‖2
w




1/2

︸ ︷︷ ︸
≤‖(v−PN v)‖

H|k|s+q

≤

≤ c ‖(v − PNv)‖Hm+q → 0.

Remark 3.38. The assumption of pointwise convergence of the projection PN in someHq has

been proved in Guo (1998) in form of v being in Hr and the error measured in Hq, ∀q ≤ r

(even including the convergence rate), which holds for a variety of orthogonal projections

involving trigonometric, Hermite, Laguerre and Chebyshev polynomials.

As an immediate consequence from Theorem 3.31 one can infer consistency of the colloca-

tion approach involving general differential operators, provided the function satisfies some dif-
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ferentiability requirements. Furthermore, consider a combination of bounded and unbounded

operators, i.e. K : Y → Y and D : X → Y , within a projection scheme, then

‖PNKDQNv −KDv‖Y

cf. (3.94)

≤ ‖PN‖Y ‖K‖Y︸ ︷︷ ︸
<∞

‖DQNv −Dv‖Y ,

which proves that if the approximation of D, using the projection QN , is pointwise convergent,

arbitrary combinations of bounded operators with those, where the application to projections

converges pointwise, lead to a consistent projection method. This result directly applies to

the integro-differential operators in Section 2, equations (2.34), (2.32), (2.49), (2.48) and

(2.126).

Remark 3.39. As shown in Sloan (1990) if K is compact, pointwise convergence of the

orthogonal projections in a Hilbert space is sufficient for consistency. The main arguments in

the proof given therein are that by using the fact that orthogonal projections are self-adjoint,

one has ‖KPN − K‖ = ‖PNK∗ − K∗‖, and since the adjoint K∗ is again compact, such that

uniform convergence holds (as mentioned in Remark 3.35). Interestingly, when considering

(3.94), one could alternatively say

‖PNKQNv −Kv‖Y = ‖PNKQNv −Kv + KQNv −KQNv‖Y ≤
≤ ‖K(QNv − v)‖Y + ‖(PNK −K)QNv‖Y ≤
≤ ‖K‖X→Y ‖QNv − v‖X + ‖K − PNK‖X→Y︸ ︷︷ ︸

K comp.−→ 0

‖QNv‖ ∀v ∈ X,

where it becomes obvious again that for compact operators, pointwise convergence of the

projections is sufficient for consistency. On the other hand, as argued in Sloan (1990), if

a compact operator is defined to act on C([0, 1]) with PN being an arbitrary interpolatory

projection (not necessarily orthogonal, where self-adjointness cannot be assumed), ‖KPN −
K‖ ≥ ‖K‖, which can be found by assuming the functions v satisfy ‖v‖ = 1 and v(ti) vanish

at the collocation points ti. Thus, ‖(KPN −K)v‖∞ = ‖Kv‖∞. This is in full agreement with

Remark 3.34.

There is still another way to look at consistency for compact operators. A classical

functional analysis result is

K compact ⇔ vN ⇀ v ⇒ KvN → Kv,

with vN and v being in the domain of K and the weak convergence of vN is defined via an

appropriate inner product in the according Hilbert space. Thus one can further infer that for

compact operators weak convergence of the projection is sufficient for consistency.

Remark 3.40. Since this section deals with collocation methods we shall not go further into

the details of the Galerkin approach. However, a few comments are in order. Hackbusch

(1995) and Fromme & Golberg (1979) showed that in the usual setting of (weighted) L2
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Hilbert spaces with the inner product given as an integral, the collocation scheme with the

collocation points being the zeros of the next higher order polynomial is equivalent to the

Galerkin scheme when approximating the inner product by some quadrature rule (i.e. Jacobi-

Gauss or trapezoidal). This becomes also obvious by taking into account that collocation at

the zeros of orthogonal polynomials is an interpolation projection, which then can be seen as

an approximation of a continuous projection using discrete inner products (cf. (3.53), (3.55)

and Lemma 3.18).

What follows here is that with such a connection some stability and convergence results

transfer directly from Galerkin to collocation (where the former is in general more stable),

especially when operators are involved which do not allow for an exact evaluation of the inner

product. The biggest advantage of collocation, most notably in the case of multi-dimensional

problems, is the straight forward set-up as a simple pointwise evaluation, while, as said above,

inner products become heavily involved in higher dimensions.

3.3.1 Properties of Abel Operators and Riesz Potentials

In virtue of the consistency and convergence results and in connection with the equations

given in Section 2 (e.g. (2.49), (2.48) or (2.126)) we state some theorems on boundedness and

compactness of certain integral operators.

In accordance to Gorenflo & Vessella (1991) an Abel integral operator shall be defined as

(in an appropriate function space over R)

J α
−∞(f)(x) :=

x∫

−∞

(x− ξ)α−1f(ξ) dξ and J α
∞(f)(x) :=

∞∫

x

(ξ − x)α−1f(ξ) dξ, (3.95)

with 0 < α < 1 and −∞ < x <∞ (where the factor 1/Γ(α) is omitted).

Gorenflo & Vessella (1991) proved boundedness and compactness results for Abel opera-

tors on bounded intervals. Since the extension to unbounded intervals is not straight forward,

we prove the boundedness of J α
±∞ between weighted L2 spaces and the space of continuous

functions (in virtue of the convergence results for the projection operators from Section 3.2).

The integrability of the weak singularity of the kernel in (3.95) requires a necessary decay

behavior of the argument function for the integral to exist, thus one has to work in weighted

spaces.

Defining the step function as

H(x) =

{
1 x ≥ 0

0 otherwise
⇒ J α

−∞(f)(x) =

∫

R

H(x− ξ)

(x− ξ)1−α
f(ξ) dξ (3.96)

and analogously for J α
∞.
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Theorem 3.32. Given the weight function w(x) = (1 + x2)−λ, λ > α/2, x ∈ R and f ∈
L2

1/w(R), there exists a positive constant c, such that

‖J α
−∞(f)‖w ≤ c‖f‖1/w

holds (and analogously for J α
∞) and hence J α

±∞ is bounded from L2
1/w → L2

w.

Proof. With (3.96) one has (using Hölder’s inequality)

g(x) := J α
−∞(f)(x) =

∫

R

H(x− ξ)

(x− ξ)1−α
f(ξ) dξ ≤

≤
∫

R

∣∣ H
1/2(x− ξ)

(x− ξ)(1−α)/2

H1/2(x− ξ)

(x− ξ)(1−α)/2
(1 + ξ2)λ/2(1 + ξ2)−λ/2f(ξ)

∣∣ dξ ≤

≤



∫

R

H(x− ξ)

(x− ξ)1−α
(1 + ξ2)−λdξ




1/2

︸ ︷︷ ︸
=:

√
k, as supx



∫

R

H(x− ξ)

(x− ξ)1−α
(1 + ξ2)λf2(ξ)dξ




1/2

,

where the first integral exists ∀x since the singularity is integrable and λ > α/2 provides the

necessary decay. Thus, we obtain further

‖g‖2
w =

∫

R

g2(x)w(x)dx ≤ k

∫

R

∫

R

H(x− ξ)

(x− ξ)1−α
(1 + ξ2)λw(x)f2(ξ)dξ dx =

= k

∫

R

f2(ξ)(1 + ξ2)λ
∫

R

H(x− ξ)

(x− ξ)1−α
w(x)dx

︸ ︷︷ ︸
<∞ ∀ξ, λ>α/2

dξ ≤ c‖f‖2
1/w.

Remark 3.41. The boundedness of the Abel operator between (weighted) spaces of contin-

uous functions on R is much more straight forward. Say f ∈ (C(R), ‖ · ‖∞)1/w, meaning that

‖f/w‖∞ is bounded, with the weight given as in Theorem 3.32, then

|g(x)| :=

∣∣∣∣
∫ x

−∞
(x− ξ)α−1f(ξ)dξ

∣∣∣∣ =
∣∣∣∣
∫ x

−∞
(x− ξ)α−1w(ξ)

f(ξ)

w(ξ)
dξ

∣∣∣∣ ≤

≤
∫ x

−∞
(x− ξ)α−1w(ξ)

∣∣ f(ξ)

w(ξ)

∣∣dξ ≤ sup
∣∣ f
w

∣∣
∫ x

−∞
(x− ξ)α−1w(ξ)dξ

︸ ︷︷ ︸
<∞, ∀x

≤ c
∥∥ f
w

∥∥
∞,

where g is obviously continuous, which proves the assertion.

Sloan (1981) proved that under certain conditions on the kernel, integral operators defined

on [0,∞) are compact from Cl([0,∞)) to itself, where the index l means that every function

has a limit at infinity. The conditions derived for the kernel k therein can be easily extended
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to the whole real line, reading as

(i)

∫

R

|k(x, s)|ds <∞

(ii) lim
y→x

∫

R

|k(y, s) − k(x, s)|ds = 0

(iii) lim
|x|→∞

sup
|y|≥|x|

∫

R

|k(y, s) − k(x, s)|ds = 0.

(3.97)

From Remark 3.41 it is obvious that the Abel operator on Cl(R) does not exist and hence for

the compactness result we again work on the subspace of functions with the necessary decay

at infinity.

Theorem 3.33. The Abel integral operator defined in (3.95) is compact from (C(R), ‖·‖∞)1/w

to Cl(R), with w(x) = (1 + x2)−λ, λ > α/2.

Proof. Without loss of generality we prove the assertion for J α
−∞. Sloan (1981) showed that

the conditions (3.97) are necessary and sufficient for an integral operator to be compact on

Cl. To utilize this, we use a weighted kernel to define Jw on Cl as

k(x, ξ) := H(x− ξ)(x− ξ)α−1w(ξ), Jw(f)(x) :=

∫

R

k(x, ξ)f(ξ)dξ.

It is now easily seen that

g(x) :=

∫

R

|k(x, ξ)|dξ

is continuous and bounded on R, with g(x) → 0 (strictly monotonically) as |x| → ∞. Thus

condition (i) is satisfied.

Since the kernel is non-negative we have for y ≤ x, k(x, ξ) ≤ k(y, ξ), ∀ξ ≤ y. Hence (without

loss of generality say y ≤ x), by using the fact that k(x, ξ) = k(y, ξ) = 0, ∀ξ > x,

lim
y→x

∫

R

|k(y, ξ) − k(x, ξ)|dξ = lim
y→x

[ y∫

−∞

|k(y, ξ) − k(x, ξ)|dξ +

x∫

y

|k(y, ξ) − k(x, ξ)|dξ
]

=

= lim
y→x

[ y∫

−∞

(k(y, ξ) − k(x, ξ))dξ +

x∫

y

k(x, ξ)dξ

]
=

= lim
y→x

[ y∫

−∞

k(y, ξ)dξ −
y∫

−∞

k(x, ξ))dξ +

x∫

y

k(x, ξ)dξ

]
,

and performing the limit one can easily see that the last term on the right-hand side is zero,

the first term yields lim
y→x

g(y) = g(x) (since g is continuous) and the second term is just the

definition of the improper integral for the weakly singular kernel, which again evaluates to
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g(x). As for (iii) we observe that g(y) ≤ g(x) if |y| ≥ |x| ≫ 1, such that

sup
|y|≥|x|

∫

R

|k(y, ξ) − k(x, ξ)|dξ ≤ sup
|y|≥|x|

∫

R

(k(y, ξ) + k(x, ξ))dξ ≤ 2

∫

R

k(x, ξ)dξ = 2g(x)

and taking the limit |x| → ∞ where then g(x) → 0 shows condition (iii) holds.

Thus, Jw is compact on Cl. This relates directly to the compactness of J α
−∞ by saying for

every f∗ ∈ Cl we find an f ∈ C(R), decaying to zero, such that f∗ = f/w and substitution

into Jw finishes the proof.

Remark 3.42. One should be aware that operators with convolution kernels, e.g. of Wiener-

Hopf type, cannot satisfy the third condition, as stated in Sloan (1981). Due to the (necessary)

weight function in the theorem above, the kernel here does not fall into this category.

Next we define the Riesz potentials (cf. e.g. Stein (1970) and Samko (1976)) for x =

(x1, . . . , xn) and ξ = (ξ1, . . . , ξn) as (in an appropriate function space over R
n)

Rα(f)(x) :=

∫

Rn

1

|x− ξ|n−α
f(ξ) dξ, 0 < α < n, (3.98)

omitting the usual constant 1/γ(α), γ(α) = πn/22αΓ(α/2)/Γ(n/2 − α/2).

The following theorem shows the existence and boundedness properties of such operators.

Theorem 3.34. Let 0 < α < n, 1 ≤ p < q <∞ and 1/q = 1/p − α/n.

(i) If f ∈ Lp(Rn), then the integral Rα(f) converges absolutely for almost every x ∈ R
n.

(ii) If, in addition, 1 < p, then

‖Rα(f)‖Lq ≤ c‖f‖Lp

holds (where the constant c might depend on p, q, n).

Proof. see Stein (1970).

Remark 3.43. The result above has also been proved by Sobolev (1938) using a different

approach. As an immediate consequence from (i) (since 0 < q < ∞) one obviously has

Rα(Lp(Rn)) is well defined, if 1 ≤ p < n/α. This has been extended in Samko (1999) to

Rα(Lp(Rn)) ⊂ Lp
loc(R

n) in a distributional sense.

Setting n = 2 and α = 1 in (3.98), one gains the operator appearing in (2.32) and (2.48),

R1(f)(x1, x2) =

∫

R2

1

|(x1, x2) − (ξ1, ξ2)|
f(ξ1, ξ2) dξ1dξ2, (3.99)

such that, from Theorem 3.34, boundedness from Lp into Lq, for 1/p − 1/q = 1/2, as well

as the existence (almost everywhere) for f ∈ Lp(R2), 1 ≤ p < 2, follows immediately and

hence, the most important function spaces when using spectral methods, L2 and (C, ‖ · ‖∞),

are excluded from the classical boundedness result above in the case of R1 on R
2. Thus, in

order to work in the desired setting, certain additional requirements have to be met.
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Remark 3.44. On bounded domains Ω ⊂ R
n, essential boundedness of the function, i.e.

f ∈ L∞(Ω) is sufficient for Lp integrability. By introducing (positive) weights in the form

w(x) = (1 + |x|)−a, x ∈ R
n and a > n, essential boundedness implies f ∈ Lp

w(Rn). On the

other hand, requiring f ∈ Lp
1/w(Rn) yields a decay behavior for f faster than |x|−(n+a)/p.

Thus, given a, one can impose a decay rate on f . If f is not essentially bounded, then

applying such weight functions will not change the demand on possible singularities to be

weaker than |x|−n/p (as |x| → 0) for f ∈ Lp
w(Rn).

With this remark we can formulate the following

Theorem 3.35. Let f ∈ L2(R2) and w(x) = (1 + |x|)−λ, λ > 2, x ∈ R
2, then there exists a

constant c, such that

‖R1(f)‖L2
w
≤ c‖f‖L2 ,

i.e. R1 : L2(R2) → L2
w(R2) is bounded.

Proof. Say r = |x− ξ| (cf. (3.99)), then with ǫ > 0 but small

g(x) := R1(f)(x) =

∫

R2

r−1f(ξ) dξ ≤

≤
∫

R2

∣∣r−1/2(1 + r)−(1+ǫ)/2 r−1/2(1 + r)(1+ǫ)/2f(ξ)
∣∣ dξ,

where one can apply Hölder’s inequality to obtain

g(x) ≤



∫

R2

r−1(1 + r)−1−ǫ dξ




1
2


∫

R2

r−1(1 + r)1+ǫf2(ξ) dξ




1
2

. (3.100)

By using polar coordinates (r, θ) centered around x, i.e.

x1 − ξ1 = r cos(θ)

x2 − ξ2 = r sin(θ)

}
⇒

∣∣∣∣∣
cos(θ) −r sin(θ)

sin(θ) r cos(θ)

∣∣∣∣∣ = r, (3.101)

the first integral on the right-hand side in (3.100) can be written as

π∫

−π

∞∫

0

r−1(1 + r)−1−ǫr drdθ = 2π

∞∫

0

(1 + r)−1−ǫdr =: k <∞,

and consequently

g2(x)w(x) ≤ k

∫

R2

r−1(1 + r)1+ǫw(x)f2(ξ) dξ.
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Furthermore, since both sides above are positive, the integral on the right hand side exists

(f decays faster than |ξ|−1) and w decays faster than |x|−2, such that

∫

R2

g2(x)w(x)dx ≤

≤ k

∞∫

|x|=0

∞∫

|x−ξ|=0

r−1(1 + r)1+ǫw(x)f2(ξ) dξ dx =

∞∫

|ξ|=0

f2(ξ)

∞∫

|x−ξ|=0

r−1(1 + r)1+ǫw(x) dx

︸ ︷︷ ︸
<∞, ∀ξ

dξ

⇒ ‖g‖2
L2

w
≤ c‖f‖2

L2 .

Remark 3.45. As mentioned in Remark 3.44 one has to take into account singularities

and the decay behavior of functions when dealing with Lp spaces on unbounded domains.

Boundedness of R1 in Theorem 3.35 can also be proved between L1(R2) and Lq
w(R2), where

1 ≤ q < 2 and the weight has to satisfy λ > 2−q (see Samko (1998)). Hence, it is obvious that

R1(Lp) exists (in the L1
w sense) for all Lp functions with compact support (or on bounded

domains) since Lp(Ω) ⊂ L1(Ω), ∀p ≥ 1. A formal consideration of functions f ∈ Lp, p > 2,

shows the decay to be too weak for R1(Lp) to exist on unbounded domains. Thus, weights of

the form 1/w have to be introduced in the pre-image space to impose the necessary decay, or

in other words, to have Lp
1/w(R2) ⊂ L1(R2). On the side of the image space this means that

the singularities become weaker and can thus be measured again in a (weighted) subspace

of L1
w. Finally, without proof, we formally claim that there exist weights w1, w2, such that

R1 : Lp
w1 → Lp

w2 is bounded for all 1 ≤ p ≤ ∞.

Remark 3.46. Consider the space (C(R2), ‖ · ‖∞)1/w as the pre-image space (with index

1/w denoting that f/w is bounded on R
2, cf. Remark 3.41) and say f̄(r, θ) := f(ξ1, ξ2) in

(3.99), such that f̄(0, θ) = f(x1, x2), then

g(x) := R1(f)(x) =

π∫

−π

∞∫

0

f̄(r, θ)drdθ,

which exists ∀x if the weight satisfies λ > 1 (i.e. f decays faster than r−1) and consequently

g is continuous and essentially bounded.

To obtain compactness for the Riesz potential on weighted spaces of continuous functions

we state the following

Theorem 3.36. Let X be a normed space and Y be a Banach space. Let the sequence

An : X → Y of compact linear operators be norm convergent to a linear operator A : X → Y ,

i.e., ‖An −A‖X→Y → 0, n→ ∞. Then A is compact.

Proof. see e.g. Kress (1999)
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By defining a weakly singular kernel as |k(x, y)| ≤ M |x − y|α−n, M > 0, 0 < α ≤ n,

x, y ∈ G ⊂ R
n bounded, x 6= y, Theorem 3.36 was subsequently used to proof

Theorem 3.37. The integral operator with weakly singular kernel k is compact from C(G)

to itself.

Proof. see e.g. Kress (1999).

As shown in Remark 3.46 one needs decaying continuous functions, i.e. ‖f/w‖∞ <∞ for

R1(f) to exist. For every continuous function f , f/w then lies in Cl(R
2), meaning that every

function has a limit as the radius tends to infinity (cf. Theorem 3.33 and Sloan (1981)). With

this prerequisites we are now able to prove

Theorem 3.38. The Riesz potential operator defined in (3.99) is compact from

(C(R2), ‖ · ‖∞)1/w to Cl(R
2), with w(x) = (1 + |x|)−λ, λ > 1.

Proof. For f ∈ (C(R2), ‖ · ‖∞)1/w we write f∗ = f/w ∈ Cl(R
2). Now the weighted potential

operator shall be

Rw(f∗)(x) :=

∫

R2

|x− ξ|−1w(ξ)f∗(ξ)dξ, k(x, ξ) := |x− ξ|−1w(ξ),

which is defined on Cl.

Further say kn(x, ξ) := k(x, ξ)1Bn(x)(ξ), such that (by applying polar coordinates), k(x, ξ) =
w(x;r,θ)

r and consequently kn(x, ξ) = w(x;r,θ)
r 1[0,n](r).

Denoting the Riesz potential with kernel kn as Rn we can use Theorem 3.37 to claim its

compactness from Cl(R
2) to itself (due to the compact support of kn).

Next, consider (for f ∈ Cl)

|Rw(f) −Rn(f)| ≤
∫

R2

|k(x, ξ) − kn(x, ξ)||f(ξ)|dξ ≤ ‖f‖∞
∫

R2

|k(x, ξ) − kn(x, ξ)|dξ,

and from estimating the last integral

∫

R2

|k(x, ξ) − kn(x, ξ)|dξ =

π∫

−π

∞∫

0

|1 − 1[0,n](r)|
w(x; r, θ)

r
rdrdθ =

=

π∫

−π

∞∫

n

w(x, r, θ)︸ ︷︷ ︸
∼r−λ, n≫1

drdθ ≤ cn−λ+1,

it follows that Rn(f) converges (uniformly) to Rw(f) in Cl(R
2). Furthermore ‖Rw−Rn‖∞ ≤

cn−λ+1 and by Theorem 3.36 this implies Rw is compact on Cl(R
2). Substituting f∗ = f/w

from the beginning finishes the proof.

Remark 3.47. With the above remarks and Theorems 3.35 and 3.38 we have shown, that

when dealing with Riesz potentials in integral equations, one can work in the usual L2 or con-
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tinuous functions setting (in Galerkin or collocation schemes) to obtain consistency (or even

convergence), as long as the functions decay properly at infinity. But since essential bound-

edness is a stronger demand than integrable singularities one cannot expect boundedness

between L2 and L∞ (as shown by a counter example in Stein (1970)).

3.3.2 Collocation Algorithms for Singular Integral Operators

All the results and comments presented in the previous sections show necessary and sufficient

conditions for consistency of semi and fully discretized operator equations, without describing

how to calculate the unknown approximate solution fN .

By going back to the collocation equation (3.89) one might further assume fN to lie in a

finite dimensional subspace XN of X. Such a subspace may then be said to be the span of

some basis {p1, . . . , pN}, such that every element in XN can be written as

fN =
N∑

j=1

ajpj, aj ∈ R, fN ∈ XN .

Being absolutely precise one has to add that the basis functions pi and the coefficients ai

might depend on the dimension N (cf. Hackbusch (1995)). Obviously, by plugging in the

sum for fN in the collocation equation one obtains

N∑

j=1

ajKpj(xi) = g(xi), ∀xi, (3.102)

where K was assumed to be linear, such that an equation system can be set up (cf. Hackbusch

(1995))

K a = g, K = (Kij) = Kpj(xi), (3.103)

with the unknowns aj , which has a solution if and only if K is non-singular.

Remark 3.48. Now one advantage of the collocation method compared to Galerkin becomes

more accessible, especially for higher dimensions. That is, setting up the matrix K, which

is done by applying the operator of the equation to the basis functions. Evaluating this at

certain points gives the collocation matrix, whereas for the Galerkin approach one has to

apply a second operator, namely the inner product with another basis function, which, in

general, is not a straight forward task.

Remark 3.49. Even in the case of collocation, calculating the matrix entries Kij can be

very expensive. Here the difference between integral and differential equations stands out the

most. If K is a combination of differential operators the only task is to differentiate the basis

functions, while in the case of integral or integro-differential equations applying the according

operators to the basis functions can be a knock out criterion for the whole scheme in terms

of calculational costs.
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This fact has been neglected in most of the works cited above and hence we shall show

some special techniques for the operators in Section 2, equations (2.49) and (2.48), regarding

these matrix entries.

The basis for XN , {p1, . . . , pN}, has to be chosen wisely in order to obtain a good working

numerical scheme. As it is well known, orthogonal basis functions have certain advantages.

Also, when finding a set, where its span is dense in X (i.e. a complete set), one can claim the

basis functions pi not to depend on N .

Eventually this might lead to the choice of a complete orthogonal set of polynomials, as

has been dealt with in detail in Section 3.2. Thus, if {pi} is a complete orthogonal set in X,

an approximate function fN ∈ XN shall be defined as

fN = QNf =
N∑

i=0

aipi,

which can be viewed as an orthogonal projection of f onto XN .

Note that the subspace XN is actually (N +1)-dimensional, since the sum starts at i = 0,

which is done to fully relate the practical numerical treatment and algorithm to the results

in Section 3.2.

In contrast to choosing an arbitrary basis, by using a set of complete orthogonal polyno-

mials neither all the basis sets {pi}N
i=0 nor the coefficients of the linear combination forming

fN depend on N (review Section 3.2 for all the necessary details).

Remark 3.50. With the fact that fN can be found as a projection of f onto fN we can now

provide a precise meaning to some notions appearing when dealing with spectral methods in

general.

As derived above what essentially is done when setting up a spectral scheme for a general

operator equation is applying projections onto finite dimensional subspaces to arrive at an

equation system given by the matrix defined in (3.103), i.e.

Kf  PNKQNf

Thus one can distinguish the following schemes (replacing PN , QN above with)

(i) Galerkin: PN ≡ 〈·, qi〉 , QN ≡ PN as in Lemma 3.7

(ii) Collocation: PN ≡ IN , QN ≡ PN as in Lemma 3.7

(iii) Pseudospectral: PN ≡ IN , QN ≡ IN

with IN as in Lemma 3.18.

From this the main difference between collocation and pseudospectral schemes becomes

more obvious. Since IN interpolates a function at certain (given) points, one can set up the

equation system (3.102) by writing the expansion using Lagrange interpolation polynomials,

such that the values of f at the interpolation points are the unknowns (which correlates to the
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definition of the discrete inner product). Once those values are found, expansion coefficients

can then directly be calculated using the discrete inner product derived in Section 3.2.

One can further claim the collocation to relate to pseudospectral methods via the aliasing

error, which is of the same order of magnitude as the approximation error made by truncating

the series expansion (see Remark 3.27).

An immediate disadvantage, if one may say so, of the pseudospectral approach is the

instability of differentiation, since it cannot be written in terms of derivatives of the basis

polynomials, so that one has to use so called differentiation matrices. For a theoretical and

practical treatment on that subject see Trefethen (2000).

In virtue of equations (2.49) and (2.48), this subsection shall provide a (reasonably)

fast working algorithm to obtain the essential system matrix entries, i.e. the combination

of operators applied to rational Chebyshev polynomials Rn (in R and R
2), cf. Section 3.1.

Furthermore, the collocation points are chosen to be the zeros of the polynomial RN+1 (for

an expansion up to RN , such that the system matrix is square), which are given by Lemma

3.2(ix).

Arguments for taking the zeros of the next higher order polynomial stem from the Erdös-

Turán theorem, the definition of a variant of the discrete inner product (see Mason & Hand-

scomb (2003) and (3.53)) and its implications (cf. e.g. Theorem 3.24 and Remark 3.34).

To remain as general as possible, we will not present the full scheme, which numerically

solves the above mentioned equations, but show how a matrix vector description can be

derived for the crucial parts.

The most appropriate function space for collocation methods is C(Rn) equipped with

the ‖ · ‖∞ norm. Hence, if not otherwise stated, the following calculations are done in

this framework (with the additional assumption of the Dini-Lipschitz condition to hold, see

Theorem 3.13).

(i) The case R

Let a function f decay fast enough at infinity, such that

f ≈ fN (x) =

N∑

i=0

aiRi(x) and J α
−∞f <∞, (3.104)

where J α
−∞ is the Abel integral operator as given in (3.95). From Theorems 3.32 and 3.33

and Remark 3.41 consistency of a collocation projection can be readily proved.

When plugging in fN , terms such as J α
−∞Ri appear in the sum, which do not exist ∀i

(see Remark 3.1). Thus, a weight wβ(x) := (1 + x2)−β has to be found, such that

J α
−∞(wβRi) <∞ and

∥∥∥∥
f

wβ
−QN

f

wβ

∥∥∥∥
∞

→ 0, (3.105)

essentially meaning that f/wβ remains at least bounded.
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Remark 3.51. Obviously, the requirements in (3.105) impose some constraints on the decay

of f , i.e. say f ∼ |x|a as |x| → ∞, then

a+ 2β ≤ 0 and 1 − α+ 2β > 1 ⇒ a < −α, β > α/2

and since 0 < α < 1 (by definition), an asymptotic behavior of f ∼ 1/x is sufficient (cf.

(2.35)). Restrictions on the decay of the given functions and the use of weights are due to

the unbounded domain (cf. main theorems in Section 3.2).

In concrete, evaluating the integral in (3.105) at the collocation points yields the matrix

entry Kij (as symbolized in (3.103))

Kij = J α
−∞(wβRi)(xj) =

xj∫

−∞

(xj − ξ)α−1 1

(1 + ξ2)β
Ri(ξ) dξ =

=

xj∫

−∞

(xj − ξ)α−1 1

(1 + ξ2)β
cos(iφ(ξ)) dξ, ∀ 0 ≤ i, j ≤ N

(3.106)

with φ taken from the definition in (3.2).

Remark 3.52. It is fairly straight forward to see that a closed formula for all Kij above

cannot be found in general and also that this matrix does not have any special properties,

such as sparseness, triangular shapes or symmetries. It is for these facts that analyzing the

equation systems for condition numbers and possible inversions for Abel integral operators (on

the real line) combined with spectral methods becomes heavily involved. Hence, a quadrature

scheme has to be applied to obtain the system matrix. Additionally, when considering the

integral boundaries, the kernel and the integrand, standard numerical integration might not

be practicable. This is in sharp contrast to integral operators with simple kernel functions

acting on a bounded interval and, of course, differential equations.

Categorizing the whole term in (3.106) one can find three characteristics, which need

special treatment

a) unbounded domain

b) (weakly) singular kernel

c) (high) oscillatory integrand,

and since (in general) one has to perform such an integration (N+1)2 times, a reasonably fast

and accurate scheme is crucial. There are existing routines, which employ e.g. QUADPACK

(see Piessens et al. (1983) and the implementations in the NAG packages), tackling the

characteristics a) and b). Since the algorithms taking care of the singularity can only be

applied to integrals over bounded intervals and the others mapping the infinite integration

limit only allow for at least bounded functions, the interval (−∞, xj ] in (3.106) has to be

split into (−∞, x0] × [x0, xj ].
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Remark 3.53. The routine for the infinite range uses algebraic mappings of (−∞, x0], [x0,∞)

or the whole line onto [0, 1], such that the integral can be approximated by a higher order

Gauss-Kronrod scheme. The necessary decay of the given integrand (for the original integral

to exist) then shall cancel out the singular Jacobi determinant of the coordinate transform.

Alternatively, for certain values of α, β and x0 one might be able to evaluate the integral

analytically when substituting the asymptotic behavior of the polynomials, derived in Lemma

3.2(iii). As for choosing x0, it is obvious that x0 < xj, ∀j. With Lemma 3.2(ix) the collocation

points can be confounded to a bounded interval for a given N , such that x0 just has to lie

outside this interval. Additionally, this means for all polynomial degrees, indicated by i in

the cosine function in (3.106), the integrand does not oscillate on (−∞, x0]. Hence, the

QUADPACK routine works fast and accurate in such cases.

Remark 3.54. Weak end-point singularities, such as the one in the general Abel integral

operator, are very common among integral kernels and hence, existing quadrature schemes

can be easily found in numerical packages. The algorithm used here starts by bisecting the

interval [x0, xj] and applies a modified Clenshaw-Curtis method to the sub-interval containing

the singularity and a Gauss-Kronrod integration to the remaining part. The singularities have

to be provided in the form (xj − ξ)α(ξ − x0)
β , with α, β > −1, which is essentially the same

as the Abel kernel in (3.106) (β = 0). Thus, one can expect a highly accurate result for these

types of operators.

Remark 3.55. Up to a polynomial degree of N ≈ 200 the above mentioned routines work

perfectly fast and accurate for all Kij needed. If one needs more polynomials the oscillations

of the integrand render the algorithm for the singularity unfeasible. Also, it is not suitable to

move x0 closer to xj, because the scheme dealing with the infinite interval yields unacceptable

results. There is a routine in QUADPACK taking care of such situations using Gauss 30-

points and Kronrod 61-points rules, but it slows down the calculations significantly and hence

is not recommendable for non-sparse system matrices.

Applying the coordinate transform y = φ(ξ) = arctan(ξ) − π/2, φ′(ξ) = (1 + ξ2)−1, to

(3.106) we obtain

Kij =

φ(xj)∫

−π

(xj − φ−1(y))α−1 1

(1 + (φ−1(y))2)β
cos(iy)

dy

φ′(φ−1(y))
=

=

φ(xj)∫

−π

(xj − φ−1(y))α−1(1 + (φ−1(y))2)1−β

︸ ︷︷ ︸
=:h(y)

cos(iy) dy =

=

φ(xj)∫

−π

h(y) cos(iy) dy → 0 as i→ ∞,

(3.107)
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which holds due to the Riemann-Lebesgue lemma, provided h ∈ L1([−π, φ(xj)]). To see this,

observe that φ(xj) < 0, ∀xj and hence h is positive on the considered interval, then

‖h‖L1 =

φ(xj)∫

−π

h(y)dy =

xj∫

−∞

h(φ(ξ))φ′(ξ) dξ =

xj∫

−∞

(xj − ξ)α−1 1

(1 + ξ2)β
dξ <∞,

obviously yielding the ”phase function”-version of the Riemann-Lebesgue lemma, where the

phase φ has to be differentiable and non-constant within the integration limits.

Mentioned in Remark 3.55, numerical techniques for high oscillatory functions might not

be fast and work only for bounded integrands. The result in (3.107) suggests an asymptotic

expansion of such integrals for high polynomial degrees. Erdélyi (1956) provides some for-

mulae regarding Fourier integrals and the method of the stationary phase. Although, strictly

speaking, the integral in (3.106), seen as the real part of a Fourier integral, does not have a

stationary phase, i.e. φ′(ξ) = 0 ⇔ |ξ| → ∞, the results are still applicable.

Defining a stationary point of order m to be a point x, for which a function φ satisfies

φ′(x) = · · · = φ(m)(x) = 0, φ(m+1)(x) 6= 0, one can state

Lemma 3.39. Given the interval [a, b] and a differentiable function φ, increasing on [a, b],

where a, b are either ordinary points or stationary points of some order, such that

φ′(ξ) = (ξ − a)ρ−1(b− ξ)σ−1φ1(ξ),

where ρ, σ ≥ 1 and φ1 ∈ Cn([a, b]) and positive. If λ > 0 and µ ≤ 1 and the function

h ∈ Cn([a, b]), then

b∫

a

h(ξ)(ξ − a)λ−1(b− ξ)µ−1eimφ(ξ)dξ = B(m) −A(m), (3.108)

where A(m) ∼ An(m) and B(m) ∼ Bn(m) to n terms as m→ ∞, with

An(m) = −
n−1∑

k=0

u(k)(0)

k!ρ
Γ

(
k + λ

ρ

)
exp

(
iπ(k + λ)

2ρ

)
m−(k+λ)/ρ eimφ(a)

Bn(m) = −
n−1∑

k=0

v(k)(0)

k!σ
Γ

(
k + µ

σ

)
exp

(−iπ(k + µ)

2σ

)
m−(k+µ)/σ eimφ(b),

(3.109)

defining the functions u and v via

ζρ := φ(ξ) − φ(a), u(ζ) = h(ξ)(ξ − a)λ−1(b− ξ)µ−1ζ1−λ dξ

dζ

ησ := φ(b) − φ(ξ), v(η) = h(ξ)(ξ − a)λ−1(b− ξ)µ−1η1−µ dξ

dη
.
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Proof. see Erdélyi (1956)

Comparing (3.106) with (3.108) one obtains λ = 1, b = xj , a = x0, µ = α, h(ξ) =

1/(1+ξ2)β , from φ′ it is obvious to get ρ = σ = 1 and by taking the real part in (3.108),(3.109)

the cosine integral remains (keeping m as the polynomial degree instead of i). Then,

ζ = φ(ξ) − φ(x0) = arctan(ξ) − arctan(x0), ξ(ζ) = tan(ζ + arctan(x0)) ⇒

u(ζ) =
1

(1 + ξ(ζ)2)β
(xj − ξ(ζ))α−1 1

cos2(ζ + arctan(x0))

η = φ(xj) − φ(ξ) = arctan(xj) − arctan(ξ), ξ(η) = tan(arctan(xj) − η) ⇒

v(η) = − 1

(1 + ξ(η)2)β
(xj − ξ(η))α−1η1−α 1

cos2(arctan(xj) − η)
,

(3.110)

such that

An(m) = −
n−1∑

k=0

u(k)(0)

k!
Γ(k + 1)m−(k+1) cos(mφ(x0) + π(k + 1)/2)

Bn(m) = −
n−1∑

k=0

v(k)(0)

k!
Γ(k + α)m−(k+α) cos(mφ(xj) − π(k + α)/2).

(3.111)

The following example shall provide some actual calculations using these formulae for the

Abel operator and the weight given in (2.51).

Example 3.8. Consider the Abel operator J α
−∞, cut off at some x0, for weighted rational

Chebyshev polynomials, with α = 3/4 and the weight 1/
√

1 + x2, i.e. the term

Kmj =

xj∫

x0

(xj − ξ)−1/4 1

(1 + ξ2)1/2
cos(mφ(ξ)) dξ, (3.112)

such that (3.110) reads

u(ζ) =
1

(1 + tan2(ζ + arctan(x0)))1/2
(xj − tan(ζ + arctan(x0)))

−1/4 1

cos2(ζ + arctan(x0))

v(η) = − 1

(1 + tan2(arctan(xj) − η))1/2
(xj − tan(arctan(xj) − η))−1/4 η1/4

cos2(arctan(xj) − η)
,

and with

u(0) =
1

(1 + x2
0)

1/2
(xj − x0)

−1/4 1

cos2(arctan(x0))
=

(1 + x2
0)

1/2

(xj − x0)1/4

v(0) = −(1 + x2
j)

1/2 lim
η→0

η1/4

(xj − tan(arctan(xj) − η))1/4
= −(1 + x2

j)
1/4,
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the first terms (k = 0) in the sums in (3.111) can be given as

A1(m) = − (1 + x2
0)

1/2

(xj − x0)1/4
m−1 cos(mφ(x0) + π/2)

B1(m) = (1 + x2
j)

1/4Γ(3/4)m−3/4 cos(mφ(xj) − 3π/8).

The data in Table 17 shall demonstrate how the accuracy of B1−A1 depends on x0 compared

to evaluating Kmj in (3.112) via a Gauss-Kronrod scheme.

Fix xj = 10, m = 200, then the differences e1 := |Kmj − (B1 − A1)| and e2 := |Kmj −
(B1 +B2 −A1 −A2)| are calculated. The irregular changes in the difference in Table 17 for

x0 e1 e2

0 1.7 × 10−3 8.4 × 10−5

−10 2.2 × 10−3 1.6 × 10−4

−50 1.2 × 10−2 2 × 10−3

−100 7 × 10−3 3 × 10−2

−200 1 × 10−1 2 × 10−4

Table 17: Difference approximating Kmj in (3.112) via Gauss-Kronrod and asymptotic expansions

x0 = −100 and x0 = −200 stem from the distribution of the zeros of the polynomial R200.

Due to Lemma 3.2(ix) the smallest zero lies near x ≈ 130, such that taking x0 close to or

lower than this value means that there is less direct cancellation in the integral from the

oscillations of the integrand. In other words, one is getting close to the stationary point (at

infinity), which, apart from the singularity, contributes most to the integral.

In Section 2 another operator term occurs in equations (2.34) and (2.49), given more

generally as

J α
∞∂

r
xf =

∞∫

x

(ξ − x)α−1 ∂r
ξf(ξ) dξ <∞ if f ∈ L2

w(R) ∩ Cr(R),

such that, in contrast to (3.104), one does not have to impose restrictions on the function’s

decay behavior (if r ≥ 2). Requiring f in L2
w(R)∩Cr(R) is sufficient for the existence of the

integral and since Hr
w,A(R) ⊂ L2

w(R) (cf. (3.19) and Lemma 3.9) this space would also take

care of the differentiability and integrability demands.

As has been done above, system matrix entries

Kij = J α
∞(R

(r)
i )(xj) =

∞∫

xj

(ξ − xj)
α−1R

(r)
i (ξ) dξ, (3.113)

have to be approximated with quadrature schemes.
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Caveat: Although weight functions need not necessarily be introduced in (3.113), since (cf.

Lemma 3.2(iii)) higher derivatives of rational Chebyshev polynomials have sufficient decay

at infinity. But, due to the combination of both Abel operators in (2.49), one actually has

Kij = J α
∞[(wβRi)

(r)](xj) (since the expansion of the unknown contains a weight function).

Remark 3.56. Obviously, the issues a) - c) arise again in (3.113), maybe even in a more

severe form, since the terms are (algebraically) more complicated. Also, derivatives of Ri are

not bounded by ±1 and hence steeper gradients, due to oscillations, appear in the integrand.

Asymptotic expansions might be applied again, whereas the whole calculation becomes much

more involved. With Lemma 3.2(viii) one can circumvent derivatives of the polynomials

by using sums over Ri, but as the degree grows, this is not recommendable, since error

accumulation might occur.

Overall, with derivatives of wβRi given as closed formulae, the above mentioned QUAD-

PACK routines work to satisfaction for (3.113) up to a degree of i = 200.

(ii) The case R
2

In sharp contrast to the one-dimensional case, routines (provided by numerical libraries) for

fast and accurate multi-dimensional quadrature are rare and the ones existing treat almost

exclusively bounded integrands over bounded regions. Hence, when using spectral methods

involving operators such as the potential integral defined in (3.98), alternatives have to be

found (especially for high oscillatory integrands).

We start by saying f ∈ C(R2), decaying fast enough, such that

f ≈ fN =

N∑

i=0

N∑

k=0

aikRiRk and R1f <∞,

with R1 being the operator defined in (3.99) and where Theorems 3.35 and 3.38 and Remark

3.46 provide the consistency of a collocation approach.

Similar to the Abel operator above, substituting the expansion for fN in R1f yields

integrals over RiRk, which do not exist in general (see e.g. Theorem 3.34). Again, weights have

to be found in a way analogously to (3.105) to obtain the system matrix entries (collocated

at the zeros (x1j , x2l
) of RN+1, hence x1j = x2l

if j = l)

Kijkl := R1(wβwγRiRk)(x1j , x2l
) =

∫

R2

wβ(ξ1)wγ(ξ2)

|(x1j , x2l
) − (ξ1, ξ2)|

Ri(ξ1)Rk(ξ2) dξ, (3.114)

with wβ given as in the one-dimensional case and analogously wγ(x2) = (1 + x2
2)

−γ .

Obviously, this is not the only choice to introduce a weight, w(x1, x2) = (1+ |(x1, x2)|)−λ

has been shown in Theorem 3.35 to be more appropriate. The reason to separate the weight

into individual independent variables is due to the connection to the orthogonality relation

(3.11). Remark 3.46 showed λ > 1 is necessary for existence of the integral and hence is

β + γ > 1/2.
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The following provides a description of a fast working, sufficiently accurate algorithm to

calculate the matrix entries, which by categorizing the terms in (3.114) are prone to the same

issues mentioned on page 189 for the one-dimensional case (with the additional severity of

evaluating the integrals (N + 1)4 times).

Defining Bǫ(x) := {ξ ∈ R
2 : |x − ξ| ≤ ǫ} and dividing the integration domain yields

(k(x, ξ) := |x− ξ|−1)

Kijkl =

[ ∫

R2\Bǫ(x)

+

∫

Bǫ(x)

]
k(x, ξ)wβ(ξ1)wγ(ξ2)Ri(ξ1)Rk(ξ2) dξ =

=

∫

R2

k(x, ξ)1R2\Bǫ(x)(ξ)︸ ︷︷ ︸
=:k∗(x,ξ)

[wβwγRiRk](ξ) dξ +

∫

Bǫ

k(x, ξ)[wβwγRiRk](ξ) dξ,

(3.115)

with k∗ ∈ L2
w(R2) as a new kernel, which is discontinuous but bounded. Hence, there exists an

L2 convergent expansion of k∗ into rational Chebyshev polynomials, but without pointwise

convergence due to the Gibbs phenomenon (as has been presented in Section 3.2). On the

other hand, those oscillations are damped based on the fact that we integrate this expansion

over the whole domain (cf. Theorem 3.27 and Remark 3.31). Thus, say

k∗(x, ξ) ≈ wµ(ξ1)wν(ξ2)

M∑

m=0

M∑

p=0

bmp(x)Rm(ξ1)Rp(ξ2), (3.116)

where the weights are chosen, such that k∗/(wµwν) is bounded.

Remark 3.57. It is possible, by finding a continuous extension of k∗ over the domain Bǫ,

to avoid Gibbs oscillations. But, in order to have an actual advantage, such an extension

would have to be simple enough, to evaluate its integral analytically (otherwise one would

artificially introduce another quadrature error). In one-dimension this is always possible by

just connecting the boundary points of Bǫ by a straight line. In the present case, one would

have to find a two-dimensional continuous surface, containing ∂Bǫ. As has been mentioned

above, the integral prevents the Gibbs phenomenon from destroying the pointwise convergence

of the overall approximation, but since the amplitude of the oscillations grows proportionally

to the step height of the discontinuity, the larger ǫ, the higher the accuracy for finite (small)

M .

By substituting (3.116) in (3.115), the first integral on the right hand side then reads

∫

R2

k∗(x, ξ)[wβwγRiRk](ξ) dξ ≈
M∑

m=0

M∑

p=0

bmp(x)

∫

R2

[wµwνRmRpwβwγRiRk](ξ) dξ.
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Setting µ + β = 1 and ν + γ = 1 yields the orthogonality weights (cf. Theorem 3.1 and

equation (3.11)) in both variables, such that the right hand side simplifies to

∫

R2

k∗(x, ξ)[wβwγRiRk](ξ1, ξ2) dξ ≈ bik(x)‖Ri‖2
w‖Rk‖2

w. (3.117)

The existence of such combinations of weights is straight forward, for example take β = γ =

3/4 and µ = ν = 1/4, such that β + γ > 1/2 and applying the usual polar coordinates shows

k∗ ∼ 1/r, whereas w1/4 ∼ 1/
√
r.

Remark 3.58. As established in Theorem 3.6 the coefficients in (3.117) above are given via

bik = ‖Ri‖−2
w ‖Rk‖−2

w 〈 k∗

wµwν
, RiRk〉u (3.118)

and by substituting this into (3.117), one can immediately see that we actually did not

apply any series expansion, but merely identified the integral in (3.115) as a coefficient of a

Chebyshev series. For the sake of convergence arguments it is easier to consider it in the way

presented above. Much more importantly, one can now apply Lemma 3.19 to (3.118) to see

that evaluating the first integral on the right hand side in (3.115) reduces to an application

of the FFT (or DCT) algorithm in ξ1 and ξ2 consecutively, i.e.

bik(x) ≈ N
2 DCT

2

(
k∗(x)
wµwν

(ξ1r , ξ2s)

)
, r, s = 0, . . . , N,

with (ξ1r , ξ2s) as in (3.53). Defining the matrix (krs)
N
r,s=0 := ( k∗(x)

wµwν
(ξ1r , ξ2s))r,s, the symbol

DCT 2 then means applying the transform two times (cf. proof of Lemma 3.19), i.e.

(lrs) := DCT
(
(krs)

)
=
(
DCT (kr0), . . . ,DCT (krN )

)
, DCT 2

(
krs

)
=
(
DCT

(
(lrs)

T
))T

,

where T stands for the transposed matrix (DCT shall always act on the either the columns

or the rows).

Remark 3.59. With using the FFT, a slight disadvantage occurs. As k∗ is a function of ξ

and x, the coefficients in (3.116) depend on the latter, which means that the discontinuity

moves in [−2
3(N+1), 2

3(N+1)], since the collocation points lie within this interval (cf. Lemma

3.2(ix)) and so do the points of evaluation in the FFT algorithm (according to Lemma 3.19).

Hence, the approximate coefficients become more inaccurate the farther x moves from (0, 0).

Taking M ≈ 10N (which is almost negligible in terms of calculational costs for the FFT) can

alleviate this fact.

To obtain a full discretization of the collocation matrix entries in (3.115), it is left to

evaluate the second integral on the right-hand side, containing the singularity. There are,

of course, several ways to calculate such integrals, since the kernel is integrable over any
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bounded domain. The most obvious one is to use polar coordinates (cf. (3.101)), yielding

∫

Bǫ

k(x, ξ)[wβwγRiRk](ξ1, ξ2) dξ =

ǫ∫

0

π∫

−π

[wβwγRiRk](r, θ;x)dθdr.

The whole integrand above is smooth and given by a closed formula, which can be easily used

for existing cubature packages. Although, one is advised to use adaptive points of evaluation

and cubature weights, due to the different behavior of the weighted polynomials in polar

coordinates with respect to x and the degrees i, k. Depending on the package, this can lead

to longer computation times.

Remaining in Cartesian coordinates, one can also apply a finite (equidistant) grid on

Bǫ(x) and approximate the weighted polynomials by locally constant functions on the grid

points (where the grid and the distances might be adapted with respect to x). Thus, one

obtains

∫

Bǫ

k(x, ξ)[wβwγRiRk](ξ1, ξ2) dξ ≈
L∑

r=0

L∑

s=0

[wβwγRiRk](ξr, ξs)

∫

Ωr

∫

Ωs

k(x, ξ)dξ,

Ωr, Ωs representing the according sections of the grid, see Section 3.4 for more details on

such methods. Here, again, one has to be careful with generating the grid, as the weighted

polynomials become high oscillatory and thus a piecewise constant approximation can become

highly inaccurate (depending on L). The advantage definitely is that all elements (as functions

of x) can be calculated using matrix vector multiplication, which is considerably fast (although

one generally has a non-sparse matrix of integration weights).

Remark 3.60. Since wγRk, wβRi ∈ C∞(R) one can find a convergent Taylor series expansion

around x1 and x2 of both functions, such that the Bǫ integral in (3.115) reduces to the problem

of calculating terms of the form

∫

Bǫ

k(x, ξ)(x1 − ξ1)
a(x2 − ξ2)

bdξ, a, b ∈ N,

and the according Taylor series coefficients, where it is easily seen that the integral terms are

zero if a is even or b is odd. The problem with this strategy is not only the high programming

effort (calculating all those terms and coefficients, as well as explicitly programming the

resulting Taylor sum), but also the accuracy, or better to say, the large number of expansion

terms needed to reach the necessary accuracy, even for small ǫ. Furthermore, this highly

depends on the degree of the polynomials and so, overall, a Taylor series approximation is

not recommendable.

At last, if we want to utilize the FFT again, we need the integrand to be bounded, such

that it can be expanded into a (suitably convergent) Chebyshev series. For this, what is

known as subtraction of the singularity (often used for Cauchy principal value integrals, cf.
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Diethelm (2000)), shall be applied, i.e.

∫

Bǫ

k(x, ξ)[wβwγRiRk](ξ1, ξ2) dξ =

= [wβwγRiRk](x)

∫

Bǫ

k(x, ξ)dξ

︸ ︷︷ ︸
<∞

+

∫

Bǫ

k(x, ξ)
(
[wβwγRiRk](ξ1, ξ2) − [wβwγRiRk](x1, x2)

)
︸ ︷︷ ︸

bounded on Bǫ(x)

dξ,

where it is straight forward to verify the boundedness of the integrand in the second integral,

since the difference of the weighted polynomials tends to zero faster than the kernel tends

to infinity as ξ approaches x. Now, the first term on the right-hand side can be given in

closed form, whereas the second term can be either calculated using a cubature scheme or by

expanding the bounded (but probably discontinuous) integrand into a (classical) Chebyshev

series. Thus, say

k(x, ξ)
(
[wβwγRiRk](ξ1, ξ2) − [wβwγRiRk](x1, x2)

)
≈

L∑

r=0

L∑

s=0

crs(x)Tr(ξ1)Ts(ξ2), (3.119)

and by plugging this into the second integral above, we get

L∑

r=0

L∑

s=0

crs(x)

∫

Bǫ

Tr(ξ1)Ts(ξ2)dξ =

L∑

r=0

L∑

s=0

crs(x)

x1+ǫ∫

x1−ǫ

Tr(ξ1)dξ1

x2+ǫ∫

x2−ǫ

Ts(ξ2)dξ2, (3.120)

where, for the sake of computability, the domain Bǫ(x) was taken as a square with center x

and side length 2ǫ (which is also advantageous when expanding k∗ in (3.115)). Again, as in

(3.116), the coefficients crs can be calculated using the FFT and the integrals are given via

the formula in Lemma 3.3.

Overall, we managed to approximate the matrix entries defined in (3.114) by closed for-

mulae and only using the FFT, such that the whole approximation can be easily programmed,

is fast working and sufficiently accurate.

Remark 3.61. It is also possible to subtract the singularity without splitting the integral.

Consider (3.114) in the following way

∫

R2

wβ(ξ1)wγ(ξ2)

|(x1j , x2l
) − (ξ1, ξ2)|

(Ri(ξ1)Rk(ξ2) −Ri(x1)Rk(x2) +Ri(x1)Rk(x2)) dξ1dξ2 =

= Ri(x1)Rk(x2)

∫

R2

wβ(ξ1)wγ(ξ2)

|(x1j , x2l
) − (ξ1, ξ2)|

dξ+

+

∫

R2

wβ(ξ1)wγ(ξ2)
Ri(ξ1)Rk(ξ2) −Ri(x1)Rk(x2)

|(x1j , x2l
) − (ξ1, ξ2)|

dξ,
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where the weights are chosen, such that the first integral on the right hand side exists, and

it is easy to verify the boundedness of the integrand in the second integral. Expanding

this integrand into a rational Chebyshev series and plugging in this expansion, as done in

(3.120), yields integrals over those polynomials, which do not exist (cf. Example 3.1). Thus,

a weighted expansion has to be sought, where the weights have to be integrable over R, e.g.

w(ξi) = 1/(1 + ξ2i )
1/2+ǫ, which would satisfy all conditions if e.g. β = γ = 3/4. In contrast

to the algorithm when splitting the integral, one cannot exploit the orthogonality here and

also, depending on the used weight functions, a closed formula (as Lemma 3.3 provides for the

terms in (3.120)) might not be obtainable for the integrals over weighted rational polynomials.

Next, we present how the above derived algorithm can be adapted when derivatives of

the argument function are involved, i.e. terms of the form R1(∂n
xf). This is, for example, in

accordance to equations (2.32) and (2.48), where we have R1([∂3
x1

+ ∂x1
∂2

x2
]f).

To again be able to exploit the orthogonality and utilize the FFT, we first (formally) shift

the derivatives onto the kernel using integration by parts, i.e.

R1(∂n
x1
∂m

x2
f) =

∫

R2

k(x, ξ)∂n
ξ1∂

m
ξ2f(ξ)dξ = (−1)m+n

∫

R2

∂n
ξ1∂

m
ξ2k(x, ξ)︸ ︷︷ ︸

=:k1(x,ξ)

f(ξ)dξ, (3.121)

where we then continue from (3.115). When considering the decay behavior of k1 (with

m,n ≥ 1) it becomes clear that in this case no weights in the expansion for f are needed,

because if one expands k1 similarly to (3.116), one can set µ = ν = 1 and thus obtains the

orthogonality weights.

The existence of the integral in (3.121) is not straight forward due to the stronger sin-

gularity in k1, say r−p, p > m on R
m when using the usual polar description. Considering

the assumptions in Theorem 3.40 below, condition (i) therein then has to be replaced by

a Hölder condition on f , where the Hölder exponent depends on p and m, which becomes

obvious from the proof given in Mikhlin & Prößdorf (1980) (see a similar result mentioned

in Diethelm (2000)).

In case of the equations (2.32) and (2.48) the new kernel reads k1 = [∂3
x1

+ ∂x1∂
2
x2

]k,

where the resulting characteristic defined in Theorem 3.40 does satisfy (3.125). So, trivially,

when splitting the integral and extracting the singularity, it is clear that the integral of

k11R2\Bǫ
RiRk exists.

Remark 3.62. If m = 1, n = 0 or vice versa, one obtains

R1(∂x1f) = −
∫

R2

x1 − ξ1
((x1 − ξ1)2 + (x2 − ξ2)2)3/2

f(ξ)dξ, (3.122)
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which is related to the definition of the n Riesz transforms for f ∈ Lp(Rn), 1 ≤ p < ∞ (see

e.g. Stein (1970))

Rj(f)(x) := lim
ǫ→0

∫

|y|≥ǫ

yj

|y|n+1
f(x− y)dy, j = 1, . . . , n, (3.123)

where yj is the jth component of y. Such integrals have already been dealt with in a seminal

paper by Calderon & Zygmund (1952) and also by Mikhlin & Prößdorf (1980), where the

following theorem was proved.

Theorem 3.40. Let r = |y − x|, θ = (y − x)/r. Then the singular integral

v(x) =

∫

Rn

r−nu(x, θ)f(y)dy (3.124)

together with the assumptions

(i) in every ball BR := {y : |y − x| ≤ R} the modulus of continuity of f satisfies the Dini

condition

t∫

0

τ−1ω(f, τ)dτ <∞, ω(f, t) = sup
|y−y0|≤t

|f(y) − f(y0)|, y, y0 ∈ BR

(ii) for large |x|, f(x) = O(|x|−k), k > 0, holds and

(iii) the characteristic u is bounded and, for fixed x, continuous with respect to θ,

exists, if and only if ∫

S

u(x, θ)dS = 0, (3.125)

where S denotes the unit sphere and θ varies in S.

Proof. see Mikhlin & Prößdorf (1980)

Remark 3.63. The singular integral (3.124) in the theorem above can be easily linked to the

Riesz transforms (3.123) and further, to (3.122). Therein, when changing to polar coordinates

one obtains the kernel

x1 − ξ1

((x1 − ξ1)2 + (x2 − ξ2)2)3/2
=

cos(θ)

r2
⇒ u(x, θ) = cos(θ) where

π∫

−π

cos(θ)dθ = 0.

Thus, if f in (3.122) decays to zero at infinity, Theorem 3.40 applies to the whole algorithm in

the case of the Riesz potential combined with derivatives (assuming f to be smooth enough,

such that every derivative satisfies the Dini condition).
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Remark 3.64. The theorem above can be generalized to the Calderon-Zygmund-inequality,

stating that the integral in (3.124) is bounded from Lp(Rn) to itself (provided condition

(3.125) is satisfied), see e.g. Alt (2002) for a proof.

After shifting the derivatives onto the kernel, splitting the integral, exploiting the orthog-

onality and using the FFT, one is again left to evaluate the Bǫ integral, containing now a

(possibly) non-integrable singularity. To be able to apply the subtraction of the singular-

ity technique, one has to shift the derivatives back onto the polynomials (gaining boundary

terms). For the sake of simplicity say Bǫ is a square and k1 = ∂ξ1k, then

∫

Bǫ

k1(x, ξ)Ri(ξ1)Rk(ξ2)dξ =

x2+ǫ∫

x2−ǫ

Rk(ξ2)

x1+ǫ∫

x1−ǫ

∂ξ1k Ri(ξ1)dξ1dξ2) =

=

x2+ǫ∫

x2−ǫ

Rk(ξ2)

[
k(x, ξ)Ri(ξ1)

∣∣∣∣
x1+ǫ

ξ1=x1−ǫ

−
x1+ǫ∫

x1−ǫ

k∂ξ1Ri(ξ1)dξ1

]
dξ2 =

= Ri(ξ1)

x2+ǫ∫

x2−ǫ

k(x, ξ)Rk(ξ2)dξ2

∣∣∣∣
x1+ǫ

ξ1=x1−ǫ

−
∫

Bǫ

k∂ξ1Ri(ξ1)Rk(ξ2)dξ1dξ2,

such that the singularity subtraction works for the second integral, whereas the first integral,

evaluated at ξ1 = x1± ǫ, can be approximately calculated using a classical Chebyshev expan-

sion of the integrand (cf. (3.120), with Lemma 3.3 providing exact formulae for the integral),

which is bounded and continuous along the line of integration. Similarly, all other boundary

terms are obtained when higher derivatives in both directions appear.

The derivatives of the polynomials occurring in the boundary terms and the resulting Bǫ

integral then should be calculated in closed form (by differentiating the definition (3.1)), for

programming reasons.

Remark 3.65. It is fairly straight forward to see that for symmetric functions only even

polynomials appear (or need to be considered) in a Chebyshev series expansion (and analo-

gously for odd functions). Furthermore, this means that it is sufficient for determining the

coefficients to evaluate the expansion only at the negative (or positive), including zero (if so),

collocation points. In (3.114) the matrix entries admit the following symmetry properties.

Assume Ri is an even polynomial, i.e. Ri(x) = Ri(−x) and say

g(x1) =

∫

R

wβ(ξ1)

|(x1, x2) − (ξ1, ξ2)|
Ri(ξ1) dξ1 =

∫

R

k((x1 − ξ1)
2)Ri(ξ1)wβ(ξ1) dξ1 =

=

∫

R+

k((x1 − ξ1)
2)Ri(ξ1)wβ(ξ1) dξ1 +

∫

R−

k((x1 − ξ1)
2)Ri(ξ1)wβ(ξ1) dξ1

Ri even
=

=

∫

R+

k((x1 − ξ1)
2)Ri(ξ1)wβ(ξ1) dξ1 +

∫

R+

k((x1 + ξ1)
2)Ri(ξ1)wβ(ξ1) dξ1,

201



whereas

g(−x1) =

∫

R+

k((−x1 − ξ1)
2)Ri(ξ1)wβ(ξ1) dξ1 +

∫

R−

k((−x1 − ξ1)
2)Ri(ξ1)wβ(ξ1) dξ1 =

=

∫

R+

k((x1 + ξ1)
2)Ri(ξ1)wβ(ξ1) dξ1 +

∫

R+

k((−x1 + ξ1)
2

︸ ︷︷ ︸
=(x1−ξ1)2

)Ri(ξ1)wβ(ξ1) dξ1,

thus, g is even if Ri is even and analogously for the odd case and the coordinate x2.

Remark 3.66. The equations (2.32), (2.48) and (2.126) in Section 2 involve a combination

of the operators J 1/2
−∞ and R1, where we have shown in the above how to gain the according

matrix entries individually, cf. equations (3.106) and (3.114). The consecutive application of

these operators to a function in an appropriate function space on R
2 reads

(J 1/2
−∞R1)f(x1, x2) =

x1∫

−∞

(x1 − s)−1/2

∫

R2

((s − ξ1)
2 + (x2 − ξ2)

2)−1/2f(ξ)dξ ds =

=

x1∫

−∞

∫

R2

[(x1 − s)((s− ξ1)
2 + (x2 − ξ2)

2)]−1/2f(ξ)dξ ds,

and with both singularities being integrable, a change of order of integration combined with

a coordinate transform v := x1 − s yields a new operator description for J 1/2
−∞R1 given as

Hf(x1, x2) :=

∫

R2

kell(x1 − ξ1, x2 − ξ2)f(ξ)dξ, kell(x, y) =

∞∫

0

[v((x− v)2 + y2)]−1/2dv,

where, using some algebra (or Mathematica), kell can be transformed into

kell(x, y) =
2

(x2 + y2)
1
4

K

[
1

2

(
1 +

x

(x2 + y2)
1
2

)]
, (3.126)

where K is the complete elliptic integral of the first kind. H also appears in the equations

derived in Duck (1990) and thus we have shown their equivalence to the equations in Section

2. Several problems arise with this description. It is straight forward to show that kell

becomes essentially unbounded on the line (x2 = ξ2, ξ1 ≤ x1), such that the advantages of

the algorithm derived above cannot be utilized, i.e. using the FFT, etc. Also, if one would

find some practicable cubature scheme, the argument of K in (3.126) lies in [0, 1], whereas, for

example Mathematica finds a complex infinity for K(1), and hence direct numerical evaluation

of the kernel kell has to be avoided in the actual scheme. Thus, in the numerical scheme used

to solve the equations in Section 2 the evaluation of the operator R1 acting on weighted

polynomials has been performed with the FFT algorithm above, where the collocation points

x1j (not necessarily zeros of polynomials) actually come from a Nyström approach for J 1/2
−∞,

see Section 3.4.
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Remark 3.67. As mentioned in Remark 3.40, a Galerkin method, where the inner product

integrals are approximated by quadrature techniques, is the same as a collocation approach

with special collocation points. Another way to view such schemes has been analyzed in

Golberg (1990) as perturbed projection methods. Given a sequence of linear operators BN :

XN → YN and bN ∈ YN , then if vN satisfies

PNKvN = PNg + BNvN + bN ,

the sequence {vN} defines a perturbed projection method for solving Kf = g. Golberg (1990)

then proved a theorem stating that BN and bN converging to zero (in a suitable norm) is

sufficient for vN to converge to f (also showing a convergence rate), provided the operators

and projections involved satisfy the usual boundedness (or compactness) conditions.

The algorithms derived in this section obtaining the matrix entries KRi(xj) in the one

and two dimensional case, cf. (3.106) and (3.114), can thus be seen as perturbed projection

methods. Say KMRi(xj) represents the matrix entry gained via the mentioned algorithms,

where M shall stand for the minimum of all approximation parameters (cf. e.g. (3.116) or

(3.119) or the number of quadrature points used in the QUADPACK routines referred to

in Remark 3.52), then setting BN = PNKM − PNK yields the perturbed equation. For

this Golberg (1990) deduces certain conditions for the perturbed scheme, such that BN does

converge to zero (e.g. M ≥ N , the convergence of the quadrature method for continuous

functions, etc.). With this we can formally claim the consistency of the presented algorithms

with the exact calculation of the collocation matrix.

By replacing inner products with quadrature formulae the Galerkin method is linked to

the collocation method and (as partially done in the algorithms above) by approximating all

appearing integrals with a (composite) trapezoidal rule, collocation can be seen as a Nyström

approach (see Hackbusch (1995)), where Section 3.4 shows how such a scheme can be set up

for (weakly) singular integrals.

Remark 3.68. Sloan (1990) proved that superconvergence can be observed under certain

conditions for the iterated Galerkin and collocation method, meaning that the iterated so-

lution converges faster to the exact solution than any (standard) Galerkin or collocation

solution. Therein it was concluded further, that if superconvergence occurs in the iterated

collocation approach, it so does in the collocation method itself – namely at the collocation

points. Similar results have also been shown in Hackbusch (1995).

3.4 Nyström Algorithms for Singular Integral Operators

Numerical quadrature or cubature can be regarded as the most direct method of approxi-

mately solving integral equations. The approach is to (locally) discretize the unknown func-

tion on some predetermined grid, where the integral operator is replaced by a weighted sum,

representing an according quadrature scheme.
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The analysis carried out, for example, in Hackbusch (1995) or Kress (1999) then requires

this quadrature scheme to be convergent (as a necessary condition, of course). Thus in what

follows, we shall present special numerical integration algorithms for the operators in equation

(2.126) given in Section 2, whereas for the overall analysis, we refer to the above mentioned

textbooks. Also, due to the connections of the Nyström method to the Galerkin or collocation

schemes, it is possible to apply certain techniques from the projection approach (e.g. using

(locally) piecewise constant basis functions).

The crucial operator to be discretized in equation (2.126) is the combination J 1/2
−∞R1(∂3

x1
+

∂x1∂
2
x2

), which shall be calculated in its finite dimensional version as a matrix product of the

Abel, the potential and the classical derivative operator.

Since quadrature and cubature methods work best on finite grids, we apply a mapping

τ : [−1, 1] → R (e.g. the tangent function or rational polynomials such as t
1−t2

), which has

to be a diffeomorphism on the open intervals. To work on the compact domain [−1, 1]2, we

generate a mesh and approximate the unknown function piecewise constant.

Hence, given the meshsizes hi = 2/Mi, i = 1, 2, say

x1 = τ(u),

x2 = τ(v),

ui = −1 + ih1

vj = −1 + jh2

}
fij = f(τ(ui), τ(vj)). (3.127)

For practical (or programming) reasons, one derivative with respect to x1 is shifted (via

integration by parts) onto the kernel of R1 (as done in Remark 3.62, cf. Equation (3.122)),

such that (with ∆x denoting the Laplace operator with respect to x)

J 1/2
−∞R1(∂3

x1
+ ∂x1

∂2
x2

)(f)(x) =

x1∫

−∞

1√
x1 − s

∫

R2

s− ξ1

((s− ξ1)2 + (x2 − ξ2)2)3/2
∆ξf(ξ)dξ ds =

=

u∫

−1

τ ′(ζ)√
τ(u) − τ(ζ)

∫

[−1,1]2

(τ(ζ) − τ(w))τ ′(w)τ ′(t)

((τ(ζ) − τ(w))2 + (τ(v) − τ(t))2)3/2
∆τ(w,t)f(w, t)dwdt dζ.

Now we write the first integral as

u∫

−1

τ ′(ζ)√
τ(u) − τ(ζ)

(
u− ζ

u− ζ

)1
2

[·]dζ =

u∫

−1

1√
u− ζ

(
u− ζ

τ(u) − τ(ζ)

)1
2
τ ′(ζ)[·]

︸ ︷︷ ︸
=:f∗(u,ζ)

dζ,

where f∗ can be expected to be differentiable (or at least continuous) on [−1, u], depending

on the argument (indicated as [·]). Special attention has to be paid to the behavior as

ζ → −1, since the derivative of the mapping τ becomes unbounded. In original coordinates

it is sufficient for the argument to decay faster than s−1/2, which might not guarantee a

decay to zero of f∗ as ζ → −1. On the other hand, if the original integral exists, so does

the transformed one, and hence, if f∗ has a singularity at ±1, it must be integrable. It

is nevertheless possible to just set f∗(u,−1) = 0 when approximating f∗ with piecewise
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constant functions (since the unknown function contained in f∗ tends to zero at ±∞) and

integrating the singular kernel analytically to obtain the quadrature weights. This has been

successfully applied in Scheichl et al. (2008) to the equations (2.34) and (2.49) in Section 2.

A convergence analysis of such an approach (or other weakly singular integrals) can be found

e.g. in Hackbusch (1995), Kress (1999) and Diogo et al. (2006).

Next, we modify the potential integral in a similar manner

∫

[−1,1]2

(τ(ζ) − τ(w))τ ′(w)τ ′(t)

((τ(ζ) − τ(w))2 + (τ(v) − τ(t))2)3/2

ζ − w

ζ − w

(
(ζ − w)2 + (v − t)2

(ζ − w)2 + (v − t)2

)3/2

[·]dwdt =

=

∫

[−1,1]2

ζ − w

((ζ − w)2 + (v − t)2)3/2
f∗(ζ, v, w, t)dwdt,

with f∗ now given as

f∗(ζ, v, w, t) =
(τ(ζ) − τ(w))

[
(ζ − w)2 + (v − t)2

]3/2

(ζ − w)
[
(τ(ζ) − τ(w))2 + (τ(v) − τ(t))2

]3/2
τ ′(w)τ ′(t)[·]. (3.128)

Using the usual polar coordinates (w, t) → (r, θ) centered around (ζ, v), one can easily see

that f∗ is bounded, decays to zero as r → ∞ and has a discontinuity at r = 0 (where we

expect the unknown argument [·] to be continuous and bounded).

Let w, t be discretized on the same grid as u, v (and consequently ζi = −1+ih1), i.e. wk =

−1+kh1 and tl = −1+lh2 and f∗ shall be constant on Ikl := [wk− h1
2 , wk+ h1

2 ]×[tl− h2
2 , tl+

h2
2 ],

thus f∗ijkl = f∗(ζi, vj , wk, tl), then

∫

[−1,1]2

ζ − w

((ζ − w)2 + (v − t)2)3/2
f∗(ζ, v, w, t)dwdt ≈

M1−1∑

k=1

M2−1∑

l=1

f∗ijkl

∫

Ikl

ζi − w

((ζi − w)2 + (vj − t)2)3/2
dwdt

︸ ︷︷ ︸
=:qijkl

,
(3.129)

such that the integral weights q can be calculated (as a Cauchy principal value integral) to

be

qijkl = log

((
v−l − vj + r−−)(v+

l − vj + r++
)

(
v−l − vj + r+−)(v+

l − vj + r−+
)
)
, (3.130)

where the superscripts +,− indicate addition or subtraction of the according h/2, similarly

r++ :=
√

(ζi − ζ+
l )2 + (vk − v+

l )2 and analogously for r+−, r−+, r−−.

Finally, for the sake of completeness, the Laplace operator in x can be transformed into

an operator in u, v using

∂2
x1

=

(
1

τ ′(u)

)2

∂2
u − τ ′′(u)

(
τ ′(u)

)3 ∂u,
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where the derivatives with respect to u, v are then approximated by centered finite differences.

For the convergence of the cubature scheme (3.129) we use the following

Theorem 3.41. Let f , defined on a bounded domain G ⊂ R
2, satisfy a Hölder condition

with exponent µ > 0 and f ≡ 0 on ∂G. Then, for (ui, vj) ∈ G, the following estimate holds

∣∣∣∣∣∣

∫

G

ui − w

((ui − w)2 + (vj − t)2)3/2
f(w, t)dwdt −

M1−1∑

k=1

M2−1∑

l=1

f(ul, vk)qijkl

∣∣∣∣∣∣
≤ O(hµ| log(h)|),

where h = max(h1, h2), q given in (3.130) and the grid is as defined above.

Proof. see Akimenko (1997)

Obviously, the integrand f∗ in (3.128) is Hölder continuous with exponent µ > 0, except

at r = 0 (there, µ = 0, i.e. bounded). The argumentation in the proof given in Akimenko

(1997) is first done for the domain G\Br(ui, vj), such that one can (continuously) replace f∗

on [0, r] by a function, which has a Hölder exponent µ > 0, without altering the value of the

discretized integral. Hence the estimate in Theorem 3.41 holds for this modification. Then,

in the limit r → 0, the original f∗ is recovered, with the replacement function reducing to a

point of measure zero, the discontinuity of f∗.

Remark 3.69. Golberg (1979) showed for integral equations of the second kind that (under

certain conditions on the inverse of discretized operator) the uniform approximation error

between the Nyström solution and the unknown function is dominated by the quadrature

error (in the infinity norm), which depends on the smoothness of the unknown function and

the kernel, cf. Theorem 3.41. In other words, the order of the quadrature scheme is ”a little

less” than µ.
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APPENDICES

A Higher Order Marginal Separation Expansions

As mentioned in Section 2.3.2 parts of the solution formulae for the main deck vertical

velocities contain certain (unbounded) integrals, which need to be examined further in order

for a matching rule to work. In doing so we first repeat their description from (2.117), i.e.

c21 =

y2∫

0

U ′′
0 (s) − p00

U2
0 (s)

ds, c25 =

y2∫

0

∂2
su21 − v21∂su21 − u21∂xu21

U2
0 (s)

ds

c26 =

y2∫

0

U ′
0(s)

U2
0 (s)

ds, c27 =

y2∫

0

1

U2
0 (s)

ds.





as y2 → ∞.

Obviously, an important function here is the separation profile U0 = U0(y2), where we recall

its asymptotic behavior (Equation (2.11), Section 2.1) to be

U0(y2) ∼
p00

2
y2
2 as y2 → 0

U0(y2) → U00 as y2 → ∞.

In general we will view the above integrals as improper integrals, i.e. in the limit η → 0,

with η being the lower bound. Let us start with c21. Here, with U ′′
0 = p00 as y2 → 0, the

integrand vanishes identically at the lower bound, whereas at the upper bound it tends to

the value −p00/U
2
00. Hence in the limit y2 → ∞ we write

c21 =

∞∫

0

(
U ′′

0 (s) − p00

U2
0 (s)

+
p00

U2
00

)
ds− p00

U2
00

y2,

where the absolute value of the integral is bounded. In the same manner one can analyze c25.

The substitution of (2.98) into c25 yields a closed description for the integrand, such that one

can evaluate its asymptotic behavior at the upper and lower bound. As this is quite involved

but essentially a technical task, we refrain from displaying all the calculations here and just

state the result as

∂2
y2
u21 − v21∂y2u21 − u21∂xu21

U2
0

∼





−p2
00x/U

4
00 y2 → ∞

−2A∂xA

p2
00y

2
2

y2 → 0.

Thus we shall write, by extracting the growth at the bounds from the integral

c25 = lim
y2→∞

[c∗25 −
p2
00x

U4
00

y2 + g(y2)] = lim
y2→∞

[c∗25 −
p2
00x

U4
00

y2],
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where c∗25 is bounded and g(y2) ∼ 1/y2 as y2 → 0, but g(y2) → 0 for large y2.

Next we consider the integrand in c26. In the limit y2 → ∞ it tends (algebraically) to

zero. As y2 → 0 we have
U ′

0(y2)

U2
0 (y2)

∼ p00y2

p2
00y

4
2/4

=
4

p00y3
2

.

Hence we shall write in general

c26 = lim
y2→∞

[ y2∫

0

(
U ′

0(s)

U2
0 (s)

− f(s)

p00s3

)
ds+ g(y2)

]
=: −c∗26,

where f = f(y2) is bounded and positive everywhere and tends (rapidly) to 4 as y2 → 0,

whereas g(y2) ∼ y−2
2 in this limit, but g → 0 as y2 → ∞. Therefore, by choosing f accordingly,

we obtain c∗26 > 0. Note that f ≡ 4 might very well be sufficient.

Analogously we approach c27, where

1

U2
0 (y2)

∼





U−2
00 y2 → ∞

4/(p2
00y

4
2) y2 → 0,

such that

c27 = lim
y2→∞

[ y2∫

0

(
1

U2
0 (s)

− 1

U2
00

− f(s)

s4

)
ds+

y2

U2
00

+ g(y2)

]
=: c∗27 +

y2

U2
00

as y2 → ∞,

with f, g being not the same as in c26, but satisfy similar requirements, such that c∗27 > 0.

Remark A.1. For all the constants ci above we used the method of subtracting the singu-

lar behavior of the integrand and hence gained bounded integrals plus terms reflecting the

unbounded growth of the original integral. By as general as necessary we symbolized the

singularity subtraction by the functions f and g. One shall keep in mind that the applied

matching procedure will impose some additional constraints on these functions. For our

purpose it is not necessary to go into these details. Nevertheless for the matching rules it

might be advantageous to write the singularity subtraction in terms of the already existing

functions, e.g. in c27 the term f(s)/s4 might be written similar to 1/[(U ′
0)

2s2].

B Multiple Sturm-Liouville Operators

Induction Argument for Am

Stated in (3.27), the successive application of the Sturm-Liouville operator can be written as

Am
x f(x) =

2m∑

k=1

(1 + x2)m+ k
2 pk(x)∂

k
xf(x), (B.1)
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where we will show the pk to be uniformly bounded (as mentioned in Wang & Guo (2002)).

Given a function f the Sturm-Liouville operator Ax applied to f reads

Axf(x) = −(x2 + 1)∂x

(
(x2 + 1)∂xf(x)

)
= −(x2 + 1)(2x∂xf(x) + (x2 + 1)∂2

xf(x)). (B.2)

By saying m = 1 in (B.1) one obtains

Axf(x) = (x2 + 1)3/2p1(x)∂xf(x) + (x2 + 1)2p2(x)∂
2
xf(x),

where comparison with the right-hand side in (B.2) yields

p1(x) = − 2x√
1 + x2

and p2(x) = −1,

which are uniformly bounded on R. Assuming the same has been shown for Am
x f the next

step Am+1
x f = Ax(Am

x f) is given by

Am+1
x f(x) = − (x2 + 1)2x∂xA

m
x f(x)︸ ︷︷ ︸

(∗)

− (x2 + 1)2∂2
xA

m
x f(x)︸ ︷︷ ︸

(∗∗)

.

Calculating the first and second derivatives of Am
x f the terms on the right-hand side above

are given as

(∗) =

2m∑

k=1

[
4
(

k
2 +m

)
(x2 + 1)

k
2
+mx2pk(x)∂

k
xf(x) + 2(x2 + 1)

k
2
+m+1xpk(x)∂

k+1
x f(x)+

+ 2(x2 + 1)
k
2
+m+1xp′k(x)∂

k
xf(x)

]

which, by rearranging terms and shifting indices, can be further modified to give

(∗) =
2m∑

k=1

(x2 + 1)
k
2
+m+1

[
4αk,m

x2pk(x)

1 + x2
+ 2xp′k(x)

]

︸ ︷︷ ︸
=:ak(x)

∂k
xf(x)+

+
2m+1∑

k=2

(x2 + 1)
k
2
+m+1 2xpk−1(x)√

x2 + 1︸ ︷︷ ︸
=:bk(x)

∂k
xf(x)

(B.3)

and analogously

(∗∗) =

2m+2∑

k=3

(x2 + 1)
k
2
+m+1pk−2(x)∂

k
xf(x)+

+ 2

2m+1∑

k=2

(x2 + 1)
k
2
+m+1

[
2αk−1,m

xpk−1(x)√
x2 + 1

+
√
x2 + 1p′k−1(x)

]

︸ ︷︷ ︸
=:ck(x)

∂k
xf(x)+ (B.4)
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+

2m∑

k=1

(x2 + 1)
k
2
+m+1

[
2αk,m

(2αk−1,mx2

x2+1
+ 1
)
pk(x) + 4αk,mxp

′
k(x) + (x2 + 1)p′′k(x)

]
︸ ︷︷ ︸

=:dk(x)

∂k
xf(x)

with αk,m = k
2 +m.

Finally, noting that every sum in (B.3) and (B.4) contains the terms (x2 + 1)
k
2
+m+1 and

∂k
xf(x), one can collect these sums to obtain

Am+1
x f(x) =

2(m+1)∑

k=1

(x2 + 1)
k
2
+m+1p∗k(x)∂

k
xf(x),

with

p∗k =





ak + dk k = 1

ak + dk + bk + 2ck k = 2

ak + dk + bk + 2ck + pk−2 3 ≤ k ≤ 2m

bk + 2ck + pk−2 k = 2m+ 1

pk−2 k = 2m+ 2

,

where it is straight forward to see that the p∗k are uniformly bounded (since the pk are bounded

by assumption).

With the details presented in the above it is worthwhile mentioning that the pk depend

additionally on m, meaning that, e.g. p1|m=1 6= p1|m=2 and so forth. In virtue of (3.29) the

multi-dimensional case is given by multiplication of the individual pki
, which are equal to the

above derived pk for all ki = k and hence are again uniformly bounded on R
n.

Partial Derivative of Am

As needed in (3.37), where r = (2m+ 1)n, we shall prove

‖∂xA
m
x f‖2

u−1 ≤ c‖f‖2
A.

It suffices to show ‖∂xA
m
x f‖2

u−1 = ‖Bm
x f‖2

u, where the operator B stems from replacing every

pki
in (3.29) by another bounded function qki

, such that the arguments in the proof of Lemma

3.10 still hold.

Let us start with the one-dimensional partial derivative of Am, which can be written as

∂xA
m
x f = ∂x

2m∑

k=1

(1 + x2)m+ k
2 pk(x)∂

k
xf(x) =

=

2m∑

k=1

[
(m+ k

2 )(1 + x2)m−1+k/22xpk + (1 + x2)m+k/2p′k
]
∂k

xf+

+

2m∑

k=1

(1 + x2)m+k/2pk∂
k+1
x v (k → k − 1, second sum) =
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=

2m+1∑

k=1

(1 + x2)m+k/2−1/2qk∂
k
xf

with

qk(x) = (m+ k
2 )

2x√
1 + x2

pk(x) +
√

1 + x2p′k(x) + pk−1(x), p0 := 0, q2m+1 := p2m+1.

As shown above the pk are rational bounded functions, evaluating to a constant at ±∞. It

is easy to see, that derivatives of such fractions have to decay to zero at infinity faster then

or equal to x−1. Consequently, the qk are of the same type as the pk, especially bounded.

By definition

‖∂xA
m
x f‖2

u−1 =

∫

Rn

∣∣
n∏

i=1

∂xiA
m
xi
f
∣∣2

n∏

i=1

(1 + x2
i )dx1 . . . dxn =

=

∫

Rn

∣∣
n∏

i=1

(1 + x2
i )∂xiA

m
xi
f︸ ︷︷ ︸

=:Bm
xi

f

∣∣2u(x)dx1 . . . dxn,

where

Bm
xi
f =

2m+1∑

ki=1

(1 + x2
i )

m+ki/2+1/2qk(xi)∂
k
xi
f(x)

thus yielding

‖∂xA
m
x f‖2

u−1 =

∫

Rn

∣∣
n∏

i=1

Bm
xi
f
∣∣2u(x)dx =

=

∫

Rn

∣∣
2m+1∑

kn=1

· · ·
2m+1∑

k1=1

n∏

i=1

(1 + x2
i )

2m+ki+1

2 qk(xi)∂
k
xi
f(x)

∣∣2u(x)dx = ‖Bm
x f‖2

u

with finally replacing r = (2m+ 1)n.

C Derivatives of f ◦ φ−1 and their Far Field Behavior

In the proof of Theorem 3.15 a description of the derivatives (with respect to y) of (f ◦φ−1)(y)

is needed in a way to establish the far field behavior in terms of y = φ(x), with φ(x) =

arctan(x) − π/2 being the mapping defined in (3.2).

For the sake of clarity and readability we shall first prove the one-dimensional result, i.e.

given a function f ∈ Cn(R) and φ as above, then for

xs∂xf(x) → 0 as x→ ±∞ ⇒ ∂s−1
y (f ◦ φ−1)(y) → 0 as y → {−π, 0}. (C.1)
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It shall be noted that φ−1(y) = tan(y + π/2) and (φ−1)′(y) =
1

sin2(y)
= 1 + x2, when

substituting y = φ(x). Consequently, the asymptotic behavior can the be written as

∣∣∣∣
d

dyn
φ−1(y)

∣∣∣∣ ∼
1

yn+1
as y → 0 and

∣∣∣∣
dn

dφn
φ−1(φ(x))

∣∣∣∣ ∼ xn+1 as x→ ±∞ (C.2)

and analogously if y → −π. The formulae above can be (easily) seen by a Taylor series

expansion. Note that the sign is not important here, for it does not matter whether the

assumption in (C.1) is satisfied when approaching 0±.

Starting with s = 1 one essentially has to show, if x∂xf(x) → 0 ⇒ f(x) → 0 as x→ ±∞.

Assuming a non-oscillatory asymptotic behavior of algebraic type (since for exponentially

decaying functions the assertion is trivially satisfied and if f evaluates to a constant or

tends to infinity in the far field it cannot be satisfied at all) gives ∂xf(x) ∼ xa, such that

x∂xf(x) ∼ xa+1 → 0 and from formally integrating the derivative it follows that f(x) ∼ xa+1

which tends to zero by assumption as x→ ±∞.

Let us perform the same argumentation for s = 2, which means ∂y(f ◦ φ−1)(y) → 0 as

(without loss of generality) y → 0 is needed. The chain rule yields

∂y(f ◦ φ−1)(y) = ∂φ−1f(φ−1(y)) (φ−1)′(y) = ∂xf(x) (φ−1)′(φ(x)) ∼ x2∂xf(x), (C.3)

as x → ±∞, using (C.2) for the far field. By assuming the right-hand side above (i.e.

the asymptotic behavior) to tend to zero as x → ∞ it follows that the very left-hand side,

∂y(f ◦ φ−1)(y), tends to zero as y tends to zero.

To find similar equalities as in (C.3) for arbitrary s a general description of the chain rule

for higher derivatives has to be applied. Such a formula was found by Faa di Bruno, cf. e.g.

Mishkov (2000).

Given f, g ∈ Cn(R) then

∂n
y (f ◦ g)(y) =

∑
cki

∂k
g f(g(y))

n∏

i=1

(∂i
yg(y))

ki , (C.4)

where the sum is taken over all non-negative integer solutions of k1 + 2k2 + · · · + nkn = n

with k = k1 + · · · + kn. The constants cki
(also termed structural coefficients) are given via

cki
=

n!

k1!k2! . . . kn!(1!)k1(2!)k2 . . . (n!)kn
.

A further investigation of the Diophantine equation for the ki shows that one can rewrite the

formula, such that

∂n
y (f ◦ g)(y) =

n∑

k=1

∂k
g f(g(y))Bk(g), (C.5)

where the terms Bk can be found in, e.g. Leipnik & Pearce (2007). With this version the

appearance of all orders of the derivatives of f becomes more obvious.
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Furthermore, the solution k1 = k2 = · · · = kn−1 = 0, kn = 1 is the only possibility to

obtain k = 1 (with the coefficient c = 1). Hence, for all n, one term in the sum in (C.4) will

always read

∂gf(g(y))∂n
y g(y)  ∂xf(x)∂n

y φ
−1(y) ∼ xn+1∂xf(x) as x→ ∞, (C.6)

which is exactly the term needed to prove the assertion in (C.1). Thus, it is left to show that

every other term in the sum in (C.4) has the exact same asymptotic behavior as the term

with kn = 1, i.e. if ∂gf(g(y))∂n
y g(y) → 0 it follows that the whole sum tends to zero as y → 0.

As an example we will demonstrate this for n = 3:

∂3
yf(g(y)) = ∂3

gf (∂yg)
3 + 3 ∂2

gf ∂yg ∂
2
yg + ∂gf ∂

3
yg,

where by the same substitution as in (C.6) the third term yields x4∂xf , the second x2x3∂2
xf

and the first (x2)3∂3
xf . With the assumption on the third term to tend to zero, it is obvious

that (assuming algebraic far field behavior) both the first and the second term will also vanish.

Taking this as the induction basis, the step from n→ n+ 1 is then given as

∂y(∂
n
y (f ◦ g)) = ∂y

∑
cki

∂k
g f

n∏

i=1

(∂i
yg(y))

ki =

=
∑

cki
∂k

g f k1(∂yg)
k1−1∂2

yg
n∏

i6=1

(∂i
yg(y))

ki+

+
∑

cki
∂k

g f k2(∂
2
yg)

k2−1∂3
yg

n∏

i6=2

(∂i
yg(y))

ki+

...

+
∑

cki
∂k

g f kn(∂n
y g)

kn−1∂n+1
y g

n−1∏

i=1

(∂i
yg(y))

ki+

+
∑

cki
∂k+1

g f ∂yg

n∏

i=1

(∂i
yg(y))

ki

and all the sums are still taken over all solutions k1, . . . , kn of the Diophantine equation.
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Evaluating the sum at y = 0 (or x→ ∞) we can (formally) rewrite the equation above

∂y(∂
n
y (f ◦ g)) =

∂2
yg

∂yg

∑
cki
k1 ∂

k
g f

n∏

i=1

(∂i
yg(y))

ki+

+
∂3

yg

∂2
yg

∑
cki
k2 ∂

k
g f

n∏

i=1

(∂i
yg(y))

ki+

...

+
∂n+1

y g

∂n
y g

∑
cki
kn ∂

k
g f

n∏

i=1

(∂i
yg(y))

ki+

+
∑

cki
∂k+1

g f ∂yg
n∏

i=1

(∂i
yg(y))

ki ,

(C.7)

such that the induction hypothesis can be applied to the first n sums, since in the far field

the fraction ∂m+1
y g/∂m

y g ∼ x ∀m. In the last line above an additional derivative appears

for f (together with the term ∂yg), whereas the combinations of k1, . . . , kn (from the induc-

tion hypothesis) still yield the same terms for the product of the derivatives of g. These

terms, derived using the solutions k1, . . . , kn, only evaluate to the same asymptotic behav-

ior if multiplied with the far field of ∂k
g f . But since ∂xf ∼ x−n−ǫ (by assumption) ⇒

∂k+1
g f ∼ x−n−(k+1)−ǫ times ∂yg ∼ x2 yields ∂k+1

g f ∂yg ∼ xx−n−k−ǫ, such that x can be taken

out of the summation and the remaining asymptotic behavior equals that of ∂k
g f , which

finishes the proof.

In Mishkov (2000) a version of Faa di Bruno’s formula for vector arguments is presented,

again using combinatorial aspects to treat summations and in Leipnik & Pearce (2007) the

most general case of multivariate higher derivatives of composite functions with multiple

arguments can be found. The case considered here, where a multivariate function is combined

with a univariate mapping can be viewed as a special case, where no additional formulae and

Diophantine equations are needed.

For the sake of readability in the following we will treat the two-dimensional case, where

the generalization to the multi-dimensional case then becomes obvious. Considering the first

derivative, meaning that the first derivative is taken in every component, i.e.

∂2
y1y2

f(g(y1), g(y2)) = ∂y1

(
∂y2f(g(y1), g(y2))

)
=

= ∂y1

(
∂g(y2)f(·, ·) g′(y2)

)
= ∂2

g(y1)g(y2)f(·, ·) g′(y1)g
′(y2),

where the prime indicates the derivative with respect to the according variable and henceforth

derivatives with respect to g(yi) shall be written as ∂xi (for xi = g(yi) when substituting g

with φ−1). Consequently the second derivatives (in every component) read

∂4
y1y2

f(x1, x2) = ∂2
x1
∂2

x2
f(·, ·) (g′(y1))

2(g′(y2))
2 + ∂x1∂

2
x2
f(·, ·) (g′(y2))

2g′′(y1)+

+ ∂2
x1
∂x2f(·, ·) (g′(y1))

2g′′(y2) + ∂x1∂x2f(·, ·) g′′(y1)g
′′(y2),

(C.8)
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where it is straight forward to see that this can also be written in the form

∂4
y1y2

f(x1, x2) =
[
(g′(y1))

2∂2
x1

+ g′′(y1)∂x1

][
(g′(y2))

2∂2
x2

+ g′′(y2)∂x2

]
f(x1, x2),

such that the expression in the square brackets is the formula for the second composite

derivative in one dimension and thus one can define

Dif(x1, . . . , xn) := ∂yi(f ◦ g)(y1, . . . , yn) = ∂yif(g(y1), . . . , g(yn)), (C.9)

such that, e.g. ∂4
y1y2

f(x1, x2) = [D2
1D2

2]f(x1, x2).

As mentioned in the proof of Theorem 3.15 the conditions dealt with in this appendix stem

from successive applications of integration by parts to the definition of expansion coefficients

in terms of inner products. In two dimensions such integrals read

∫

I2

f(y1, y2) cos(ky1) cos(ly2) dy1dy2, k, l ∈ N,

and integration by parts then yields

∫

I2

f(y1, y2) cos(ky1) cos(ly2) dy1dy2 =

=

∫
cos(ly2)

[
f(y1, y2) sin(ky1)

k

∣∣∣∣
y1=∂I︸ ︷︷ ︸

!
=0

− 1
k

∫
∂y1f sin(ky1) dy1

]
dy2 = (C.10)

= − 1
k

∫
sin(ky1)

[
∂y1f(y1, y2) sin(ly2)

l

∣∣∣∣
y2=∂I︸ ︷︷ ︸

!
=0

−1
l

∫
∂2

y1y2
f sin(ly2) dy2

]
dy1 =

=
1

kl

∫

I2

∂2
y1y2

f(y1, y2) sin(ky1) sin(ly2) dy1dy2

where the usual integrability condition ∂2
y1y2

f ∈ L2
w(I2) justifies the change of integration

order and the existence of the appearing integrals. The necessary condition for the above

equalities to hold are (ignoring the behavior of the sine function at ∂I, see the arguments in

(3.47) through (3.48))

(i) f(y1, y2) → 0, as y1 → ∂I and y2 → ∂I (separately)

(ii) ∂y1f(y1, y2) → 0, as y2 → ∂I

(iii) ∂y2f(y1, y2) → 0, as y1 → ∂I,

taking into account that integration by parts has to arrive at the same result when inter-

changing y1 and y2. To show that condition (i) implies (ii) and (iii) (as required) one can
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write (ii) as

∂y1f(y1, y2) = lim
h→0

1

h
[f(y1 + h, y2) − f(y1, y2)]︸ ︷︷ ︸

→ 0, by (i)

and vice versa for (iii).

In virtue of (C.10) it is obvious how this procedure and the according conditions read for

multivariate functions f .

Finally, we will prove the two-dimensional equivalent of (C.1), i.e. assuming f ∈ Cn(R2)

and φ as usual, then for

xs
1x

s
2∂

2
x1x2

→ 0 as xi → ±∞ ⇒ ∂(s−1)2
y1y2

(f ◦φ−1)(y1, y2) → 0 as yi → {−π, 0}. (C.11)

Using the definition of the composite derivative operator (C.9) the conclusion also reads

∂(s−1)2
y1y2

(f ◦ φ−1)(y1, y2) = [Ds−1
1 Ds−1

2 ]f(x1, x2) → 0 as xi → ±∞.

And from the fact that

[Ds−1
1 Ds−1

2 ]f(x1, x2) = Ds−1
1 [Ds−1

2 f(x1, x2)] = Ds−1
2 [Ds−1

1 f(x1, x2)]

one can readily deduce that for the individual asymptotic behavior, meaning x1 and x2 tend

to infinity separately, the one-dimensional argumentation, cf. (C.6) - (C.7), applies here. In

fact, this is equivalent to the assumption in (C.11) and consequently to condition (ii) given

in Theorem 3.15.

Using the standard transformation to polar coordinates, (C.11) can be shown to also hold

in the case of r := |(x1, x2)| → ∞, which we shall demonstrate in the following for the case

of s = 2, cf. (C.8).

Say r(x1, x2) =
√
x2

1 + x2
2 and α = arctan(x2/x1), then the far field of the fourth term in

(C.8) can be transformed to give, as (x1, x2) → ∞, i.e. r → ∞

∂x1∂x2f(x1, x2) g
′′(y1)g

′′(y2) ∼ x3
1x

3
2∂x1∂x2f(x1, x2) =

= r6 cos3(α) sin3(α)

[
−sin(2α)

2r
∂rf(r, α) − cos(2α)

r2
∂αf(r, α)+

+
cos(2α)

r
∂2

rαf(r, α) +
sin(2α)

2
∂2

rf(r, α) − sin(2α)

2r2
∂2

αf(r, α)

]
∼

(C.12)

∼ r5∂rf(r, α) + r4∂αf(r, α) + r5∂2
rαf(r, α) + r6∂2

rf(r, α) + r4∂2
αf(r, α)

requiring, as done above, the last line to tend to zero (taking the plus sign for all terms to

indicate that they all have to tend to zero individually), yielding the asymptotic behavior for

all the appearing derivatives of f with respect to r and α.

216



In the same way one can then calculate the asymptotic behavior of the other terms in

(C.8), e.g.

∂2
x1
∂x2f(x1, x2) (g′(y1))

2g′′(y2) ∼ (C.13)

∼ r5∂rf + r4∂αf + r5∂2
rαf + r6∂2

rf + r4∂2
αf + r6∂2

r∂αf + r5∂r∂
2
αf + r7∂3

rf + r4∂3
αf.

By now (formal-asymptotically) assuming if ∂n
r f ∼ ra ⇒ ∂n+1

r f ∼ ra−1 and if ∂n
αf ∼ rb

⇒ ∂n+1
α f ∼ rb one can immediately see, that if the far field in (C.12) tends to zero, so

does the far field in (C.13) (if the function f is (strongly) non-separable the derivative with

respect to α might also lead to a different asymptotic behavior, i.e. ∂n+1
α f ∼ rc, with c < b).

Performing this analogously for all other terms, with a similar induction argument for the

higher derivatives as in (C.7) proves the assertion in two-dimensions.

Due to the product character of the composite derivative operator Di the final generaliza-

tion to multi-dimensions is straight forward (as is the application of multivariate polar coor-

dinates). The integrability of ∂m
x f in R

n as a consequence of the integrability of ∂m
y (f ◦φ−1)

(provided the necessary decay derived above) follows from (C.5) and (C.8).

D The Sine ”Polynomial” Version on R

Given a square integrable function f : [−π, 0] → R, extended to be an odd function on

[−π, π], then (under the usual assumptions) the Fourier sine series

pN (y) =

N∑

k=0

ak sin(ky) (D.1)

converges to f in L2(−π, 0), i.e.

0∫

−π

|f(y) −
N∑

k=0

ak sin(ky)|2dy → 0, as N → 0.

Since the since functions are orthogonal under the inner product

〈sin(ky), sin(ly)〉 =

0∫

−π

sin(ky) sin(ly)dy =
π

2
δkl,

the coefficients ak can be written as (with a0 = 0)

ak =
2

π
〈f, sin(ky)〉, ∀k > 0.
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By applying the coordinate transform φ from (3.2), which maps R → [−π, 0], saying y = φ(x),

such that dy = 1
1+x2dx, (D.1) now reads

∫

R

∣∣f(φ(x)) −
N∑

k=0

ak sin(kφ(x))
∣∣2 1

1 + x2
dx→ 0, as N → 0.

Finally, defining Sk(x) := sin(kφ(x)) for x ∈ R, one can assert the set {Sk} to be complete

and orthogonal in L2
w(R) with the weight function w(x) = 1

1+x2 and equipped with the inner

product

〈Sk, Sl〉w :=

∫

R

Sk(x)Sl(x)w(x)dx =
π

2
δkl,

such that the projection onto an N -dimensional subspace can be obtained to be

PNf =

N∑

k=1

akSk, where ak =
2

π
〈f, Sk〉w

with S0 ≡ 0, which converges in the L2
w norm to f ∈ L2

w(R).

Obviously, since the weight function is the same as in the rational Chebyshev case, all

results hold in the same way for the mapped sine functions (as long as no use was made of

specific cosine properties).

Remark D.1. Deriving the first such sine function S1(x) = − 1√
1+x2

, shows that the function

f(x) = 1√
1+x2

, which has an infinite rational Chebyshev polynomial expansion, has a finite

(i.e. a1 = −1) mapped sine series. Thus, one can infer that the Chebyshev system is not

necessarily superior to the mapped sine functions. Nevertheless, as a further investigation

reveals two main differences lie in the fact that the mapped sine functions might not all

be expressible as polynomials in x, and that the far field behavior shows all Sk to tend to

zero. As a consequence, L2 convergence of the sine expansion is much slower for bounded

functions not decaying at infinity, whereas pointwise convergence can never be established in

such cases.

So, overall, there are some aspects of inferiority of mapped sine functions, where it might

be possible to alleviate them by applying different coordinate transforms. The use of the

mapping from (3.2) here shall be argued by the need of the specific weight in order for the

proof of Theorem 3.16 to hold.
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Notation Index

∝ proportional to

 leads to

!
= has to be equal to

ℜ, ℑ real and imaginary part of a complex number

a ∼ b asymptotic representation, i.e. a = b+ o(b)

∂n
x derivative operator, i.e. ∂n

∂xn

multi-dimensional partial derivative, if not otherwise indicated: ∂n
x =

m∏
i=1

∂
n/m
xi

F Fourier transform, see (2.54)

sb(K) Fourier symbol or multiplier of an operator K

f ∗ g convolution, i.e.
∫
f(x)g(y − x)dx

Ax (rational) Sturm-Liouville operator, see (3.26)

J α
±∞ Abel integral operator, see (3.95)

Rα Riesz potential operator, see (3.98)

Rj jth Riesz transform, see (3.123)

PN projection operator from some Banach space into some vector space of dimension N

1A(x) characteristic function with value 1 if x ∈ A and 0 otherwise

Ri(x) ith rational Chebyshev polynomial for x ∈ R, see (3.1)

Γ Gamma function

K complete elliptic integral defined as K(m) =
∫ π/2
0

(
1 −m sin2(θ)

)−1/2
dθ

Γ real valued control parameter

〈·, ·〉 general inner product

|x| absolute value for x ∈ R, Euclidean norm for x ∈ R
n

|k|s summed absolute value of a multi-index k, i.e. |k|s =
∑
ki

Cn(Ω) space of n-times continuously differentiable functions on (the open domain) Ω

C(Ω) space of continuous functions

C∞(Ω) space of smooth functions

Cl(R
n) space of continuous functions, assuming a limit at infinity
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Lp
w(Ω) space of weighted p-integrable functions on Ω (including w ≡ 1)

‖ · ‖w norm on L2
w defined as

(∫
Ω | · |2w(x)dx

)1/2

〈·, ·〉w weighted inner product on L2
w defined as 〈f, g〉w =

∫
Ω f(x)g(x)w(x)dx

‖ · ‖∞ norm on L∞ defined as supx∈Ω | · |, also used in Cn(Ω)

Lp
loc(Ω) space of p-integrable functions on any finite ball in Ω

Hr(Ω) Sobolev space, Hr(Ω) := {f | ‖f‖r <∞}

‖ · ‖r norm on Hr
u, see (3.18)

‖ · ‖A norm on Hr
u,A, see (3.19)

‖ · ‖X→Y operator norm defined as supf 6=0∈X
‖·f‖Y

‖f‖X
, denoted as ‖ · ‖X if X = Y

ℓp(N) space of p-summable sequences

‖ · ‖ℓp norm on ℓp, ‖a‖ℓp = (
∑ |ai|p)1/p
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