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Abstract
GNSS tropospheric tomography is one of the applications of the Global Navigation Satellite Systems (GNSS) signals which
attracts more and more interest in the field of meteorology. This method can reconstruct the water vapour of the atmosphere,
which has a considerable effect on weather forecasting and early warning systems of severe weather. In GNSS tomography,
traditionally, a regular spaced 3D grid stretches from the GNSS network to the effective height of the troposphere in the area
of interest. Therefore, this method can offer a permanent monitoring service for water vapour and wet refractivity fields at
a low cost and a reasonable spatial resolution compared to conventional observations, like radiosonde and radio occultation
profiles. Nevertheless, the quality of the reconstructed field is still one of the challenges in the GNSS tomography. In this
research, we propose the concept of spread as a mathematical tool to provide a quality measure without using the reference
field and calculating statistical measures like RMSE and Bias. Thereby, two synthetic and one real datasets (part of Germany
and Czechia) covering overlapping periods between 29 May and 14 Jun of the year 2013 (DoY 149–165; DoY 160–165;
DoY 160–165, 2013) have been tested to investigate the proposed method. According to the obtained results, the proposed
tool shows a strong correlation (up to 0.81 for synthetic and 0.72 for real observations) with the standard deviation of the
reconstructed wet refractivity with respect to the radiosonde profile reference. The correlation between spread and the Bias
of the retrieved wet refractivity field is also significant. However, there is no clear picture depending on the applied spread
computation models. Therefore, the spread of the resolution matrix can be used as a proxy for the accuracy of the tomography
reconstruction field based on the quality of the observations, the initial field, and the design matrix.
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1 Introduction

When GNSS signals pass through the atmosphere, they
undergo many effects due to different characteristics of the
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atmospheric layers. One of the most effective layers during
the transmission of GNSS signals to a ground receiver is the
troposphere, which causes a bending impact on the satellite’s
path because of the propagation properties of electromag-
netic waves. Moreover, due to the physical characteristics
of the troposphere, the refraction index in this layer highly
depends on temperature, pressure, and water vapour content.
Therefore, modelling the refraction index is complicated,
especially concerning the wet component of the troposphere,
because of dynamic changes of tropospheric conditions (See-
ber 1993). Consequently, the tropospheric error in the GNSS
signals can be considered as a valuable data source for mete-
orological studies by an estimation of parameters such as
integrated water vapour (IWV) or precipitable water vapour
(PWV) (Bevis et al. 1992; Boccolari et al. 2002; Chiarabba
and Amato 1997; Emardson et al. 1998; Heublein 2019;
Paziak 2012; Rocken et al. 1997; Toomey and Foulger 1989).
Nowadays, GNSS tomography is one of the most promising
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methods to reconstruct the spatio-temporal structure of the
troposphere. In this method, a three-dimensional (3D) grid in
horizontal and vertical directions stretches from the ground
based GNSS network of interest to an effective tropospheric
height. However, as the amount of GNSS rays is insuffi-
cient at a single epoch, a tomography time window should
be determined to accumulate observations within a specific
period. Then, using the inversion techniques, an average of
the refractivity field caused by the water vapour structure is
reconstructed according to the 3D voxel-based method over
the defined tomography window. In recent years, numerous
studies have proved the potential of GNSS tomography to
reconstruct the tropospheric structure (Bender et al. 2011;
Benevides et al. 2018; Flores et al. 2000a, b; Guo et al. 2016;
Heublein et al. 2019; Nilsson et al. 2007b; Rohm and Bosy
2009; Trzcina and Rohm 2019). Besides, some tomography
models have been set up in different countries to estimate
the 3D wet refractivity or water vapour fields based on partly
dense GNSS networks (Adavi and Mashhadi 2014; Brenot
et al. 2018; Champollion et al. 2005; Möller 2017; Rohm
et al. 2014; Sá 2018). To evaluate the reliability of tomog-
raphy solutions, independent sources like radiosonde, water
vapour radiometer (WVR), and numerical weather models
have been applied (Adavi et al. 2020; Bastin et al. 2007;
Brenot et al. 2018; Elgered et al. 1991; Gradinarsky and
Jarlemark 2004; Hanna et al. 2019; Nilsson et al. 2007a;
Notarpietro et al. 2011; Troller 2004; VanBaelen et al. 2011).
Nevertheless, the quality of the reconstructed wet part of the
troposphere suffers from hurdles such as the unbalanced and
insufficient distribution of observations deeply linked to the
geometrical distribution of GNSS satellites and receivers,
the applied regularisation method as well as the choice of
the a priori field. Up to now, ground-based GNSS obser-
vations (e.g. Möller 2017), radiosonde profiles (e.g. Hanna
et al. 2019), and numerical weather models (e.g. Brenot et al.
2020) have been used for assessing the accuracy of the recon-
structed field.

One of the well-known tools to deal with inversion prob-
lems, e.g. in seismology, is the spread of themodel resolution
matrix to evaluate the quality of the estimated solution. This
quantity measures the quality of the model parameters by
considering the goodness of data, model resolution matrix,
and covariance matrix. The main concept behind this value
is the model space resolution matrix, which contains valu-
able information about the design matrix and observation
quality. To the authors’ best knowledge, this research is the
first published study to analyse the quality of GNSS tomog-
raphy model parameters using the spread of the resolution
matrix. It should be highlighted that the covariance matrix
of the model parameters also contains valuable information
about the quality of the retrieved solution and dependency
between differentmodel parameters. Thismatrix is one effec-
tive parameter in the spread calculation, but there are also

other effective parameters like the initial field and observa-
tion covariance matrix. Furthermore, the cofactor matrix is
another important matrix that can be used for a prior anal-
ysis of the model parameters. However, both matrices are
not unique indicators in predicting the overall model quality.
In consequence, we hypothesise that a careful validation of
the spread could provide enough information on the GNSS
tomography model quality before the computation of the wet
refractivity field in the inversion process.

The paper is structured as follows. Section 2 describes
the theoretical basis for the GNSS tomography and then the
spread of the resolution matrix in Sect. 2.1 and Sect. 2.2,
respectively. Moreover, the general formula for computing
the quality of the reconstructed wet refractivity is presented
in Sect. 2.3. In Sect. 3, the test case, which is located in west-
ern parts of the Czech Republic and South Germany with
72 GNSS stations, is described. The numerical results of the
study are presented in Sect. 4. Section 4.1 analyses the accu-
racy analysis of the reconstructedwet refractivity profile over
all experimental periods. An assessment of spread of reso-
lution matrix as a prior quality indicator for the tomography
solution is discussed in Sect. 4.2. Finally, Sect. 5 summarizes
the obtained results and associated conclusions are illus-
trated.

2 Methodology

This section first introduces the concept of GNSS tropo-
spheric tomography of the wet refractivity. Then, the concept
of the spread using the model space resolution matrix is
detailed. Finally, statistical measures like RMSE and Bias,
which are commonly applied to evaluate the accuracy of the
tomography model, are presented.

2.1 GNSS tropospheric tomography

GPS tomography applies slant wet delays (SWDs [unit: mm])
inside a defined 3Dmodel to retrieve the spatio-temporalNw
field [unit: ppm] for eachmodel element (voxel) using the fol-
lowing functional relation (Flores, et al. 2000a, b; Heublein
2019):

SWDi �
∑L

j�1
Nw j di j , (1)

where di j is the length of the ith ray inside the jth voxel [unit:
km] in the east (1 : L1), north (1 : L2) and height (1 : L3)
directions. We can reformulate Eq. 1 in matrix notation as
follows (Flores, et al. 2000a, b):

SW D � ANw. (2)
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Here, SW D is the observation vector of length m, where
m is calculated from the number of GNSS stations and visi-
ble satellites in the defined time window of the tomography
model. Nw represents the refractivity field vector of size n
where n (L1 × L2 × L3) is the number of voxels in the
tomography model. Consequently, A is a m × n matrix with
the responsibility of mapping the unknown space onto the
measurement space. A is called a design matrix with the fol-
lowing definition (Heublein 2019; Rohm and Bosy 2009):

Ai j � { di j if ray i cross voxel j
0 otherwise

. (3)

According to the geometry between ground stations and
satellite constellation within the investigated time span, the
design matrix A contains many zero elements. Moreover, as
some voxels are not passed by any rays and some others
passed by just only a few rays or a vast number of rays, Eq. 2
is mixed-determined within the defined temporal resolution
(Menke 2012). Therefore, the exact solution of the tomog-
raphy problem cannot be estimated directly through Eq. 2
since the inversion of the design matrix is incalculable. In
other words, the null space of the design matrix is non-trivial
N (A) �� {0} as the singular values of the designmatrix decay
gradually towards zero without any noticeable gap between
non-zero and zero singular values (Aster et al. 2013; Hansen
1998; Menke 2012). In order to find a unique reconstructed
field of wet refractivity using Eq. 2, different constraints and
also regularisation techniques should be applied.Oneof these
methods is to consider the measurement covariance matrix
(Cobs) and also the a priori covariancematrix of the unknown
parameters (Cm) to reconstruct thewet refractivityfield using
damped least-squares inversion methods (Brenot et al. 2018;
Tarantola 2005) as detailed below:

Nwrec � Nw0 + CmATG−1[SW D − ANw0] (4)

with

G � ACmAT + Cobs, (5)

whereby Nw0 is an a priori wet refractivity field and could be
extracted from the numerical weather model and G−1 is the
inverse of G. In this research, Cm is a n × n diagonal matrix
and can be expressed as (Brenot et al. 2018; Champollion
et al. 2005):

Cm � diag(δmNw0), (6)

where δm is a damping coefficient and defined within the
range of (0 1).

In order to estimate the SWD,we used the Bernese GNSS
software to estimate zenith total delay (ZTD), north gradient

delay (GN ) and east gradient delay (GE ) (Dach et al. 2015).
Then, the zenith wet delay (ZWD) is derived by subtracting
the hydrostatic part of the delay (ZHD) using the hydrostatic
formulation (Saastamoinen 1973):

ZWD � ZT D − ZHD (7)

Now, SWD can be obtained from Eq. 5 (Kačmařík et al.
2017; Möller 2017):

SWD (ε, α) � ZWD.Mw (ε) +MG . (GN .cosα +GE .sinα) .

(8)

Here, ε and α are the elevation and azimuth angles of
the visible satellite, and Mw is the non-hydrostatic mapping
functionwhich is computed bymeans of theViennaMapping
Function (VMF) (Böhm et al. 2006; Landskron and Böhm
2018). Moreover, a gradient mapping function MG is calcu-
lated as follows (Chen and Herring 1997):

MG(ε) � 1

(sinε.tanε + 0.0032)
(9)

2.2 The concept of spread of resolutionmatrix

One of the fundamental challenges in the tomography tech-
nique is to appraise the quality of the reconstructed model
parameters. According to the solution quality, we can iden-
tify the regions, which are fairly-well resolved or unresolved.
One of themost commonmethods in this regard is the assess-
ment of the model resolution matrix Rm. Using this valuable
mathematical tool, the quality of a generalised inverse solu-
tion is characterised (Aster et al. 2013; Menke 2012). To
identify the model resolution matrix, we imagine the true
model solution, here N true

w , and the estimated solution, here
Nest

w . The true model parameters are determined by Eq. 2
(SW Dobs � AN true

w ). In practice, the data sources contain
some error sources, and therefore, the solution of Eq. 2 can
be calculated using Eq. 4 as below:

Nest
w − Nw0 � CmATG−1[AN true

w − ANw0
]
, (10)

where Nest
w �� N true

w . By simplifying Eq. 10, we obtain
(Brenot et al. 2018; Menke, 2012; Tarantola, 2005):

Nest
w − Nw0 �

[
CmATG−1A

](
N true

w − Nw0
)
. (11)

Equation 11 defines how closely the estimated model
parameters fit a true model. Therefore, according to Eq. 11,
the model resolution matrix Rm is given by Eq. 12 as follows
(Aster et al. 2013; Menke 2012):

Rm � CmATG−1A. (12)
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According to Eq. 12, if the null space of the design matrix
is trivial N (A) � {0} and, in other words, if the resolution
matrix is identity (Rm � I), then, all voxelswill be recovered
exactly with high accuracy. Rm can capture the experiment
physics and geometry of the inversion problem because the
resolution matrix is gained from the design matrix (Aster
et al. 2013). Moreover, it reflects valuable information on the
reconstruction quality of each inversion parameter (Menke
2012). Based on that, large diagonal elements with small
off-diagonal elements indicate the desired parameter could
be adequately resolved by the current geometry and quality
of observation data. Large off-diagonal elements lead to low
quality of the determined parameters.

Therefore, Menke (2012) applied the spread of the diag-
onal and off-diagonal elements of the resolution matrix to
measure the goodness of the resolution in inverse problems
using Frobenius norm as follows:

Spread(Rm) �
∑M

i�1

∑M

j�1

[
Rmi j − δi j

]2, (13)

where δi j are the elements of the identity matrix I . Equa-
tion 13 is sometimes called the Dirichlet spread function.
However, the Dirichlet spread function is not a proper mea-
sure of the goodness of resolution because the off-diagonal
elements of this matrix are all weighted equally, despite
whether they are close or far from the main diagonal (Menke
2012). Therefore, a weighting factor Wi j can be added to
solve this issue. Consequently, Eq. 13 is rewritten as follows
(Menke 2012; Miller and Routh 2007; Toomey and Foulger
1989):

Spread(Rmi ) �
∑M

j�1
Wi j

[
Rmi j − δi j

]2
. (14)

Here, Wi j is the physical distance between elements in
[km]. The new spread function is frequently called the
Backus-Gilbert spread (BG) function (Kaltenbacher et al.
2008; Piretzidis and Sideris 2016). In this research, Wi j is
calculated based on the Gaussian inverse distance (GID)
between voxels in the same layer, namely horizontally, and
therefore Wi j is zero for voxels in different layers. From
now on, we use the BGH abbreviation for the BG spread due
to considering GID for every horizontal layer. According to
Eq. 14, a well-resolved parameter corresponds to a smaller
spread of the corresponding row of the model resolution
matrix, whereas a poorly resolved parameter corresponds to
a larger one.

Another way to define the spread is as follow (Maercklin
2004; Michelini and McEvilly 1991):

pread(Rmi ) � log

[
‖Rmi‖−1

∑M

j�1

(
Rmi j

‖Rmi‖
)2

D
ji

]
.

(15)

where ‖Rmi‖ is the L2 norm for the ith row of the reso-
lution matrix Rm .This definition for the spread is known as
Michelini spread function (Mich). In Eq. 15, Dji is the spatial
distance between the ith and jth model parameters. Here, in
contrast to BGH, the spread is negative, and a larger negative
value corresponds to a well-resolved parameter.

2.3 Quality of tomographymodel

The accuracy of the reconstructed tomography model is
typically evaluated using RMSE, Mean Bias, and standard
deviation (Std) (Rohm and Bosy 2009; Shangguan et al.
2013; Xiaoying et al. 2014; Zhang et al. 2017). These
statistics tools can be calculated by the following equations
(Guerova 2003; Xiaoying et al. 2014):

Bias � 1

n

∑n

i�1

(
Nw tomoi − Nwre f i

)
, (16)

RMSE �
√
1

n

∑n

i�1

(
Nw tomoi − Nwre f i

)2, (17)

Std �
√
RMSE2 − Bias2, (18)

Here, n is the number of height levels and Nw tomo and
Nwre f are the computed wet refractivity field from the
tomography model and from the reference observation data
like radiosonde profiles. In this study, we consider only
voxels intersected by radiosonde profiles in different height
levels as reference.

3 Case study

We performed a two steps validation approach to our spread
framework: (1) firstly, we used a so-called ‘synthetic dataset’
[part of the collected dataset by COST Action ES1206
(https://www.cost.eu/actions/ES1206/)] composed of ray-
traced slant delays passing through the reference NWP fields
(please refer to Sect. 3 of (Kačmařík et al. 2017) for more
details), (2) and secondly real GNSS observations for the
exact same area and a slightly different time span. The use
of synthetic data could provide a reasonable judgment com-
pared to the real dataset due to eliminating the main GNSS
error sources in that. Thereby, two different datasets have
been considered here to assess the values of spread with and
without data noises in the COST benchmark dataset. The
COST GNSS network is mostly placed in western parts of
the Czech Republic and South Germany with 72 GNSS sta-
tions (see Fig. 1). Moreover, the tomography model ranges
from 10.15° to 13.30° in longitude, 49°–51.70° in latitude
and 0–15 km in WGS84 ellipsoidal height. More informa-
tion about this dataset is detailed in (Douša et al. 2016).

123

https://www.cost.eu/actions/ES1206/


Pre-analysis of GNSS tomography solution using the concept of spread... Page 5 of 12 27

Fig. 1 The spatial distribution of GNSS stations in central Europe,
GNSS tomography model grid as well as radiosonde locations

The full-time period of the synthetic dataset was cho-
sen to cover European floods between 29 May and 14 Jun
(DoYs 149–165) in the year 2013. Especially the period
DoYs 150–155 was characterised by heavy rainfalls. More-
over, a subperiod between DoYs 160–165 was analysed both
with real and synthetic data. Therefore, three case studies
are presented in the remaining part of this manuscript: (1)
synthetic DoY 149–165, (2) synthetic DoY 160–165, and (3)
real DoY160–165. Furthermore, the tomographicmodelwas
designedwith 50kmhorizontal resolution and extendedby5°
in all directions to guarantee all rays pass completely through
the model. According to previous researches, an exponen-
tial model was applied in the vertical direction (Manning
2013; Möller 2017; Perler 2011). Furthermore, the ALADIN
numerical weather model with 1 h time resolution was used
as the initial field in this case study (Douša et al. 2016; Farda
et al. 2010).

4 Numerical results

To investigate the efficiency of the spread as an indicator for
the model accuracy, the correlation between Std, Bias, and

Fig. 2 The flow diagram of the correlation computation

the spread has been calculated. For this purpose, two different
schemes have been defined as follows:

• Loose constraints (LC): damping coefficient 0.1 (δm �
0.1) refer to Eqs. 6 and 12

• Tight constraints (TC): DAMPING coefficient 0.9 (δm �
0.9) refer to Eqs. 6 and 12

Therefore, the correlation between the values of spread
and statistical parameters could be calculated according to
the following diagram (see Fig. 2).

In the following, first, the accuracy of the reconstructed
tomography profiles is investigated in both synthetic and
GNSS datasets over the experimental periods. Next, the cor-
relation between spreads (Mich and BGH) and statistical
parameters (Std and Bias) are obtained to assess the spread
as a quality indicator for GNSS tropospheric tomography.

4.1 Validation of tomography solution using NWM
and RS data

The reference wet refractivity field for the GNSS dataset was
calculated from the Kummersbruk (RS10771), and Meinin-
gen (RS10548) radiosonde station gathered at hours 00:00
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Fig. 3 Comparison of the
retrieved wet refractivity profiles
from the synthetic and GNSS
dataset to the reference profiles
derived from NWM and
radiosonde data on DoYs a 161,
b 165 at midnight for RS10771

Table 1 AverageRMSE, Std, andBiaswith respect to theRSwet refrac-
tivity profiles for the GNSS dataset and NWM wet refractivity profiles
for the synthetic dataset over the experimental period at RS10771 loca-
tion

RMSE
[ppm]

Std [ppm] Bias
[ppm]

Synthetic_149_165
[Ref:NWM]

1.52 0.82 − 1.15

Synthetic_160_165
[Ref:NWM]

1.75 1.07 − 1.18

GNSS_160_165
[Ref:RS]

3.87 3.51 0.34

UTC and 12:00 UTC each day. For the synthetic dataset,
the reference wet refractivity profiles were computed from
the NWM model at the radiosonde locations over the exper-
imental periods. Figure 3 shows the agreement between the
reconstructed wet refractivity profile, the RS10771 profile,
and the NWM profile for two random days at midnight.
According to this figure, the discrepancy between the syn-
thetic tomography solution and the NWM profile is quite
small. For the GNSS dataset, the inconsistency between the
recovered tomography wet refractivity field and RS profile
is visible, but the behaviour of both wet refractivity profiles
is similar.

In Table 1, we give the average values of RMSE, Std, and
Bias over all experimental periods. According to the obtained
results, the retrieved tomography profiles using the synthetic

dataset are generally underestimating the wet refractivity
derived by the NWM model (ALADIN). In contrast, the
reconstructedwet refractivity using theGNSSdataset is over-
estimated with respect to the wet refractivity obtained by the
RS measurements. Moreover, due to the absence of observa-
tion errors, the quality of the reconstructed wet refractivity
solution using the synthetic observations is better than for
the GNSS observations.

The same procedure has been done for the location of the
tomography model, intersected by RS10548. Figure 4 shows
the retrieved wet refractivity profile performance compared
to the reference profiles in two selected days on DoYs 162
and 164 at midnight. According to this figure, the agreement
between the tomography solution using synthetic data and
NWMdata onDoY 162 is better than for DoY 164. However,
in general, the estimated wet refractivity field using the syn-
thetic dataset behaves like the NWM profile. For the GNSS
dataset, the discrepancy between the tomography solution
and the RS profile is smaller in the upper layers compared to
the lower layers.

In addition, Table 2 gives the statistical results of com-
paring the tomography solutions and the reference profiles
over the experimental period for both synthetic and GNSS
datasets. According to the obtained results, the reconstructed
wet refractivity profiles in all datasets and periods are
underestimated with respect to the corresponding reference
profiles. Moreover, similar to RS10771, the performance of
the estimated tomography profiles in the synthetic dataset is
better than for the GNSS dataset.
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Fig. 4 Comparison of the
retrieved wet refractivity profiles
from the synthetic and GNSS
dataset to the reference profiles
derived from NWM and
radiosonde data on DoYs (a) 162,
(b) 164 at midnight for RS10548

Table 2 AverageRMSE, Std, andBiaswith respect to theRSwet refrac-
tivity profiles for the GNSS dataset and NWM wet refractivity profiles
for the synthetic dataset over the experimental period at RS10548 loca-
tion

RMSE
[ppm]

Std [ppm] Bias
[ppm]

Synthetic_149_165
[Ref:NWM]

1.84 0.87 - 1.19

Synthetic_160_165
[Ref:NWM]

1.89 1.17 - 0.77

GNSS_160_165
[Ref:RS]

3.62 3.46 - 0.27

4.2 Correlation analysis of spread of resolution
matrix

In order to analyse the correlation between spread and two
statistical parameters, namely Std and Bias, first, the summa-
tion of the spread of voxels crossed by the radiosonde profiles
was computed. Then, to gain a better interpretation of the
dependency between statistical parameters and the spread,
all values were normalised by the following formula, and
then the differences between those values were considered.

Xn � (X − Xmin)/(Xmax − Xmin), (19)

whereby X and Xn are the original value and the normalised
value, respectively. Finally, Pearson correlation has been
utilised to compute the similarity coefficient between sta-
tistical parameters (Std and Bias) and spread.

Figure 5 shows the difference between spreads (BGH and
Mich) and Std for three different time spans of the synthetic

and GNSS dataset at RS10771. It can be seen from Fig. 5,
that the difference between BGH spread and Std is smaller
than for the Mich spread. Therefore, the time series of BGH
spread follows more closely the Std variations compared to
theMich spread.

To better interpret Fig. 5, Table 3 gives the correlation
between spread and Std time series for the different schemes
and datasets. We must consider that small BGH spread and
large Mich spread point to a well-resolved wet refractivity
field due to their specification. Therefore, the computed cor-
relation for BGH andMich spreads are positive and negative,
respectively. For the synthetic dataset, the negative correla-
tion of the Mich spread in the long period is higher than
for the short period. However, inspecting the results gained
with the GNSS dataset, the correlation of the Mich spread
is almost comparable to the synthetic dataset. According to
the obtained results, the BGH spread shows the considerable
positive correlation in all datasets. Altogether, both spread
types show a considerable and promising correlationwith the
Std of the recovered wet refractivity for almost all investi-
gated periods.However, applyingLC results in a bettermatch
between spread and Std in comparison to TC. Consequently,
the selection of Cm significantly affects the obtained results.

In Table 4, the correlation between the Bias of the recov-
ered refractivity field and the spread is given. According
to these results, the correlation of BGH spread with Bias
(Eq. 16) is highest in all datasets. However, as the Bias can
be positive or negative, the correlation just reflects the ten-
dency for a considerable absolute spread to a large bias.
Moreover, the correlation of Mich spread shows reasonable
large numbers between − 0.6 to − 0.4 for the GNSS dataset
and synthetic dataset (149–165). In addition, compared to
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Fig. 5 Differences between spread and Std for RS10771. The left column shows the solution by applying tight constraints on the a priori field,
whereas the right column shows loose constraints

Table 3 Correlation of spread
and Std with respect to the
radiosonde for the GNSS dataset
and NWM wet refractivity
profiles for the synthetic dataset
over the experimental period at
RS10771 location

BGH_LC BGH_ TC Mich_ LC Mich_ TC

Synthetic_149_165 0.69 0.54 - 0.62 - 0.41

Synthetic_160_165 0.67 0.51 - 0.44 - 0.14

GNSS_160_165 0.55 0.47 - 0.63 - 0.49

TC, LC provides higher coherency with the spread based on
the obtained correlation.

The same analysis has been performed for radiosonde
location RS10548. Figure 6 shows the differences between
spread and the corresponding Std. According to that, the
overall match between BGH spread and Std in the synthetic
schemes is slightly better in comparison to Mich spread,
which is consistent with the results obtained for radiosonde
location RS10771 results.

Table 5 presents the correlation between Std and the
spread. Based on the obtained correlations, the general per-
formance of theBGH spread is almost similar toMich spread.
Both spreads have a correlation of up to 0.8 with respect

to Std for the GNSS dataset (Ref: RS wet refractivity) and
synthetic dataset (Ref: NMW wet refractivity). TC schemes
show similar performance in comparison to LC schemes.
Unfortunately, the smallest correlation is obtained with the
real GNSS observation dataset. The improved coherence of
Mich spread with Std at this RS location is caused by the
fact that the investigated model column pertains to boundary
voxels of the model area.

As shown in Table 6, the correlation between refrac-
tivity biases and BGH spread is not considerable for the
RS10548 location. Nevertheless, Mich spread shows a rea-
sonable correlation with the Bias. Besides, the LC solution
again performs better in comparison to TC.
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Table 4 Correlation of spread
and Bias with respect to the
radiosonde for the GNSS dataset
and NWM wet refractivity
profiles for the synthetic dataset
over the experimental period at
RS10771 location

BGH_LC BGH_TC Mich_LC Mich_TC

Synthetic_149_165 0.71 0.57 − 0.61 − 0.63

Synthetic_160_165 0.73 0.44 − 0.41 − 0.37

GNSS _160_165 − 0.53 − 0.50 0.49 0.26

Fig. 6 Differences between spread and Std for RS10548. The left shows the solution by applying tight constraints on the a priori field, whereas the
right column shows loose constraints

Table 5 Correlation of spread
and Std with respect to the
radiosonde for the GNSS dataset
and NWM for the synthetic
dataset over the experimental
period at RS10548 location

BGH_LC BGH_ TC Mich_ LC Mich_ TC

Synthetic_149_165 0.49 0.54 − 0.56 − 0.51

Synthetic_160_165 0.81 0.79 − 0.68 − 0.77

GNSS _160_165 − 0.28 − 0.17 − 0.43 − 0.70

Table 6 Correlation of spread
and Bias with respect to the
radiosonde for the GNSS dataset
and NWM for the synthetic
dataset over the experimental
period at RS10548 location

BGH_LC BGH_ TC Mich_ LC Mich_ TC

Synthetic_149_165 0.07 0.15 − 0.57 − 0.45

Synthetic_160_165 0.27 0.26 − 0.28 − 0.37

GNSS _160_165 − 0.15 − 0.16 0.72 0.73
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Fig. 7 The accumulated absolute difference between spread and Std
for RS10771 (hatched bars) and RS 10,548 (non-hatched bars), for
Mich and BGH spreads for GNSS (GNSS) and synthetic datasets for
all experimental periods from DoYs 149 to DoY 165 (syn) and DoYs
160–165 (syn, GNSS)

In order to achieve a better interpretation of the obtained
results, the absolute differences between Spread and Std of
the studied time series could be compared. The smaller dif-
ference shows high similarity, whereas the larger difference
indicates low similarity between time series. Therefore, the
average of accumulated differences between spread and Std
were computed. Figure 7 presents the comparison of the aver-
age accumulated differences during the periods of interest
for the locations of RS10771 (hatched bars) and RS10548
(non-hatched bars). According to this figure, by applying
loose constraints, spread provides a better characterisation
of the accuracy of the tomography model in most cases. In
addition, BGH spread has a higher consistency with the vari-
ations of Std in comparison to Mich spread. Consequently,
BGH spread calculated with loose constraints on the a priori
refractivity field are the recommended quantities to predict
the accuracy of the retrieved tomography field.

5 Conclusions

Assessing the quality of the model reconstruction is one of
the most important challenges in the GNSS tomography due
to its application in storm now-casting, severe weather, and
forecasting research. Previous tomography studies used sta-
tistical measures like RMSE and Std to assess the quality of
the tomography profile in comparison to the external datasets
like radiosondeorNWM.As aprerequisite, thewhole tomog-
raphy model has to be processed even though this procedure
is considerably time-consuming. Consequently, defining a
new approach to validate the tomography solution as well
as predict a model accuracy would be essential, especially

for increasing the applicability of GNSS tomography in
meteorological studies. As a result, we investigated the per-
formance of the spread of the resolution matrix to access if
this parameter can be an indicator to predict the accuracy of
the tomography model in this study. For this purpose, two
different datasets, synthetic and GNSS, were considered to
provide a reasonable judgment in the presence of various
error sources in the measurements and without that. The case
study was located in western parts of the Czech Republic and
East Germany with 72 GNSS stations. Moreover, the simu-
lation dataset covered the European floods between DoYs
149–165 (between 29 May and 14 Jun) in the year 2013 and
DoYs 160–165 in the same year for the GNSS dataset.

In this study, two spread definitions, denoted Michelini
(Mich) and Backus-Gilbert (BGH), were used in order to
analyse the correlation of the model accuracy. Due to the
impact of the observation covariance matrix as well as the
quality of the initial field, the damped least-squares method
was applied to calculate a reasonable resolution matrix. This
is due to the key responsibility of the resolution matrix in
spread computations. For the first implementation, we have
only considered Cobs as a diagonal matrix because calcu-
lating the full-populated measurements covariance matrix
is quite challenging. However, this could be improved in
the future by applying the turbulence theory to estimate
off-diagonal elements of the covariance observation matrix.
Besides, the a priori covariance matrix of the unknown
parameterswas definedby considering lowandhighdamping
coefficients, called LC and TC, respectively. Nevertheless,
introducing the ‘GNSS accuracy’ of the wet refractivity
model extracted from the NWM would lead to more real-
istic results. This can be achieved if the standard deviation
of temperature, pressure, and water vapour pressure fields of
the NWM is accessible.

To investigate the success percentage of spread as a
proxy for the GNSS tomography, the correlation coefficient
between these values and statistical measures, Std and Bias,
were calculated over the experimental period for the synthetic
and GNSS datasets. According to the obtained results, the
correlation between spread and Std is considerable.However,
theBias shows different behaviour with respect to spread due
to the unpredictable nature of this parameter. In addition, LC
has a higher correlation in comparison to the TC solutions
with respect to Std. Moreover, the absolute differences of
BGH spread with respect to Std are generally smaller than
Mich spread. Hence, we could conclude that applying BGH
spread with LC weighting is the promising method to inves-
tigate the accuracy of a tomography model. Nevertheless,
it should be noted that calculating a realistic prior covari-
ance matrix of unknowns is necessary to achieve acceptable
results.

In consequence, this work confirms the high correlation
of the spread (up to 0.81 for synthetic and 0.72 for GNSS)
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with the Std of the retrieved refractivity field. Therefore, this
parameter could be used in future as an a priori quality index
for the tomography solution to analyse the performance of
the tomography model before the reconstruction process,
especially for the Near Real-Time (NRT) applications. In
addition, this factor can be employed to recheck the recon-
structed tomography solution to assure the quality of all parts
of the model, which is essential for now-casting and fore-
casting applications.Nevertheless, further studies in different
case studies and time periods are encouraged to assess the
performance of spread.
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