
Journal of Scheduling (2022) 25:339–370
https://doi.org/10.1007/s10951-022-00721-1

Exact andmeta-heuristic approaches for the production leveling
problem

Johannes Vass1 ·Marie-Louise Lackner1 · Christoph Mrkvicka2 · Nysret Musliu1 · Felix Winter1

Accepted: 22 December 2021 / Published online: 5 April 2022
© The Author(s) 2022

Abstract
In this paper, we introduce a new problem in the field of production planning, called the production leveling problem. The
task is to assign orders to production periods such that the load in each period and for each product type is balanced, capacity
limits are not exceeded, and the orders’ priorities are taken into account. Production leveling is an important intermediate step
between long-term planning and the final scheduling of orderswithin a production period, as it is responsible for selecting good
subsets of orders to be scheduled within each period. We provide a formal model of the problem and study its computational
complexity. As an exact method for solving moderately sized instances, we introduce a mixed integer programming (MIP)
formulation. For solving large problem instances, metaheuristic local search is investigated. A greedy heuristic and two
neighborhood structures for local search are proposed in order to apply them using simulated annealing. Furthermore, three
possible extensions that arise from the application in practice are described and implemented, both within the MIP model and
within simulated annealing. We make publicly available a set of realistic problem instances from the industry as well as from
random instance generators. The experimental evaluation on our test sets shows that the proposed MIP model is well suited
for solving instances with up to 250 orders. Simulated annealing produces solutions with less than 3% average optimality
gap on small instances, and scales well up to thousands of orders and dozens of periods and product types. The metaheuristic
method presented herein is already being successfully used in the industry.

Keywords Production leveling · Multi-objective optimization · Mixed integer programming · Metaheuristics · Simulated
annealing · Complexity analysis

1 Introduction

Production systems have been subject to continuous and radi-
cal change over the course of the past few decades. The need

B Marie-Louise Lackner
mlackne1@dbai.tuwien.ac.at

Johannes Vass
jvass@dbai.tuwien.ac.at

Christoph Mrkvicka
christoph.mrkvicka@mcp-alfa.com

Nysret Musliu
musliu@dbai.tuwien.ac.at

Felix Winter
winter@dbai.tuwien.ac.at

1 Christian Doppler Laboratory for Artificial Intelligence and
Optimization for Planning and Scheduling, DBAI , TU Wien,
Karlsplatz 13, 1040 Vienna, Austria

2 MCP GMBH, Vienna, Austria

for productivity improvements causes companies to invest
heavily in automation at all levels. Production planning plays
a major role in these developments, as the replacement of
manual planning with software-assisted or even autonomous
systems can lead to considerable efficiency increases.

In this paper, we introduce a real-life combinatorial opti-
mization problem which treats the leveling of production,
and we therefore call it the production leveling problem
(PLP). It belongs to medium-term planning, which means
it is intended to be embedded between long-term planning
and the scheduling of the concrete production sequence. The
problem is concernedwith assigningorders of certain product
types and demand sizes to production periods such that the
production volume of each product type is leveled across all
periods. Furthermore, the overall amount produced in each
period is subject to leveling as well. A solution is feasible
if the production volumes to be leveled do not exceed given
maximum values. The optimization part consists in minimiz-
ing the deviation of the production from the optimal balance,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-022-00721-1&domain=pdf
http://orcid.org/0000-0002-9916-9011
http://orcid.org/0000-0002-3992-8637
http://orcid.org/0000-0002-1012-1258

340 Journal of Scheduling (2022) 25:339–370

while at the same time taking into account the orders’ pri-
orities, which usually model order due dates or customer
priorities.

The idea behind this goal is that considering orders only in
the order of decreasing priority, as it is often done, frequently
leads to spikes and idle times for certain resources involved in
the production process. Leveling these highs and lows results
in a smoother production process because a similar product
mix is produced in every period. It is important to note that
the solution to the PLP is not a schedule since the orders are
only assigned to production periods; the concrete execution
sequence and assignment to machines and workers is not
part of this problem. The intention is rather so serve as a
step between long-term planning and short-term production
scheduling.

Applications for the PLP arise in different areas of the
industry. For example, a practical application of the PLP
has been deployed by our industry partners in electronic
component manufacturing, where it is desired to assign a
well-balanced product mix to each production period.

The PLP is related to a multitude of planning problems
that have been studied in the literature, such as the balanced
academic curriculum problem (Castro and Manzano 2001),
nurse scheduling problems (Mullinax and Lawley 2002), and
simple assembly line balancing (Boysen et al. 2007). How-
ever, to the best of our knowledge, the PLP as we define it in
this paper is a new combinatorial optimization problem that
has not been investigated so far.

The main goal of this work consists in modeling the PLP
formally anddeveloping solution strategies for it.Wepropose
a mixed integer programming (MIP) model in order to obtain
optimal solutions and lower bounds.Weare interested infind-
ing the border between instances which can be solved exactly
and those where the exponential nature of the problemmakes
the usage of MIP impractical. As a primary method to solve
larger instances, we propose simulated annealing. For this
purpose, twomove types for obtaining neighboring solutions
are developed. Using simulated annealing and lower bounds
obtained through MIP, we investigate the obtained optimal-
ity gap for realistically sized instances. Finally, we present
several possible extensions to the basic PLP that allow us
to address further requirements that arise in practical use.
These include allowing orders to be split over several pro-
duction periods, considering additional resource constraints,
and specifying due dates.

To sum up, the main contributions of this paper are as
follows:

– a mathematical model for the PLP,
– proofs of NP-hardness for several restricted variants of
the PLP,

– a polynomial-time algorithm for the PLP assuming
unique priorities that have to be respected,

– a MIP model,
– neighborhood structures for local search,
– three possible extensions to the basic PLP,
– realistic and randomly generated problem instances,
– an extensive evaluation of MIP and metaheuristic
methods.

The current paper is an extension of our PATAT 2021 con-
ference paper (Vass et al. 2020).

The rest of this paper is structured as follows: Section 2
first presents the problem informally, and then a precise
mathematical formulation is given. We describe the concrete
industry application for which our algorithms are currently
being used and discuss related problems in the literature. In
Sect. 3, the theoretical complexity of the PLP is analyzed:
NP-hardness results are provided for restricted variants of
the PLP, and a special case of the PLP is identified for which
we describe a dynamic programming algorithm that runs
in polynomial time. Section 4 introduces a MIP model. In
Sect. 5, we turn to local search methods and present the vari-
ant of simulated annealing that we apply. Section 6 presents
several extensions to the basic PLP. The experimental eval-
uation, for both the basic and the extended PLP, is described
in Sect. 7, providing answers to the research questions for-
mulated above. Finally, Sect. 8 summarizes the results and
presents ideas for future work.

2 Problem statement and related work

Wegive an informal description of thePLPandprovide a sim-
ple example which allows the reader to approach the problem
intuitively. Then we specify the parameters, constraints, and
objective functions formally. Next we give a description of
the concrete setting in the industry, where our algorithms are
currently being used. Finally, related problems presented in
the literature are discussed.

2.1 Problem description

The input to the PLP is a list of orders, each of them hav-
ing a demand value, priority, and product type. Furthermore,
we are given a set of periods and the maximum production
capacity per period, both for all product types together and
for each one separately. We search for solutions by finding
an assignment of orders to periods such that the production
volume is balanced between the periods while trying to stick
to the sequence implied by the order’s priorities as well as
possible. We can see the objective function of the PLP as the
task of finding a good trade-off between the following goals:

1. Minimize the sumof deviations of the plannedproduction
volume to the average demand (i.e., the target value) for

123

Journal of Scheduling (2022) 25:339–370 341

each period, ignoring the product types. This ensures that
the overall production per period is being leveled.

2. Minimize the sumof deviations of the production volume
of each product type to its respective mean (target) value,
making sure that the production of each product type is
being leveled.

3. Minimize the number of times a higher prioritized order
is planned for a later period than a lower prioritized order,
which we call a priority inversion. This objective ensures
that more urgent orders are scheduled in earlier periods.

Let us now explore the three optimization goals by means
of a small example:

1. On the left side of Fig. 1 (which is labeled asOrders), we
see a small example instancewith seven orders, which are
shown as boxes, where the box height corresponds to the
demand value. There are two different product types (red
and blue), and the priorities range from p = 1 to p = 3.
The orders should be assigned to the three periods such
that the distances between the stacks of orders and the
dashed target line are minimized and no stack crosses the
solid line which represents the capacity limit. It is easy
to see that this solution is optimal w.r.t. the first leveling
objective.

2. The solution presented in Fig. 1 is not optimal with
respect to the second leveling objective which aims to
level the production among the production periodswithin
each product type.An optimal solutionwith respect to the
second objective, thus minimizing the deviation from the
dashed target lines for each product type, is shown in
Fig. 2, in which the orders of the two product types are
spread out more evenly across the three periods. In this
example, however, it is not possible to reach the dashed
target lines due to the respective sizes of the orders.

3. In both solutions in Figs. 1 and 2, the priorities have been
ignored so far, and there are several priority inversions.
For instance, in the solution in Fig. 1, the order O7 is
scheduled to period 1 and has priority 1, whereas the
order O4 has priority 3 and is scheduled to period 2.
In Fig. 3, we see an example solution with no priority
inversions. This solution is thus optimal with respect to
the third objective.

We have seen in the examples that an optimal solution
w.r.t. one objective is not necessarily optimal w.r.t. another.
As we want to combine the three objectives into one by a
weighted sum, the location of the optima will clearly depend
on the weights. We developed a sensible default weighting
in cooperation with our industrial partner based on their real-
life data, and use these weights in all experiments throughout
the paper. How the objective functions can be stated formally

Fig. 1 Example of the leveling objective for the total production
amount. The dashed line represents the target value and the solid line
the capacity limit. This is an optimal solution w.r.t. the first leveling
objective (Color figure online)

Fig. 2 Example of the leveling objective for each product type (blue,
red) (Color figure online)

Fig. 3 A valid solution with no priority inversions (Color figure online)

123

342 Journal of Scheduling (2022) 25:339–370

and how the weighting is defined are described inmore detail
in the following section.

2.2 Mathematical formulation

Weprovide a formal description of the problem, consisting of
parameters, variables, constraints, and the objective function.

Input parameters

K = {1, . . . , k} Set of orders, where k is the number
of orders

M = {1, . . . ,m} Set of product types, wherem is the
number of product types

N = {1, . . . , n} Set of periods, where n is the num-
ber of periods

ai ∈ R
+ for each objective function compo-

nent i ∈ {1, 2, 3} the associated
weight

c ∈ R
+ the maximum overall production

volume per period
ct ∈ R

+ for each product type t ∈ M the
maximum production volume per
period

d j ∈ Z
+ for each order j ∈ K its associated

demand
p j ∈ Z

+ for each order j ∈ K its associated
priority

t j ∈ M for each order j ∈ K the product
type

d∗ ∈ Z
+ the target production volume per

period, i.e., 1
n

∑
j∈K d j

d∗
t ∈ Z

+ the target production volume per
period for each product type t ∈ M ,
i.e., 1

n

∑
j∈K |t j=t d j

Variables

– For each order the production period for which it is
planned:

y j ∈ N ∀ j ∈ K

– The production volume for each period (helper variable):

wi =
∑

j∈K :
y j=i

d j ∀i ∈ N

– The production volume for each product type and period
(helper variable):

wi,t =
∑

j∈K :
y j=i∧t j=t

d j ∀i ∈ N ,∀t ∈ M

Hard constraints

– The limit for the overall production volume is satisfied
for each period:

∀i ∈ N wi ≤ c

– The limit for the production volume of each product type
is satisfied for each period:

∀i ∈ N , t ∈ M wi,t ≤ ct

Objective function

The following three objective functions represent the three
targets to minimize:

f1 =
∑

i∈N
|d∗ − wi | (obj1)

f2 =
∑

t∈M

(
1

d∗
t

·
∑

i∈N
|d∗

t − wi,t |
)

(obj2)

f3 =
∣
∣
∣
{
(i, j) ∈ K 2 : yi > y j and pi > p j

}∣
∣
∣ (obj3)

Function f1 represents the sum over all periods of deviations
from the overall target production volume (i.e., all product
types at once). Function f2 states the sum over all product
types of sums over all periods of the deviations from the
target production volume for that product type, normalized
by the respective target value. The normalization is done so
that every product has the same influence onto the objective
function regardless of whether its average demand is high or
low. Function f3 counts the number of priority inversions in
the assignment, or in other words the number of order pairs
(i, j) for which i is planned after j even though i has a higher
priority than j .

Finding a trade-off among several objective functions is
the topic of multi-objective optimization (Deb 2014; Miet-
tinen 2012). Often, lexicographic optimization is chosen in
practice. However, we wanted an approach that allows high
flexibility and lets users decide on the importance of each
objective. Together with our industrial partner we there-
fore decided to combine the three objective functions into

123

Journal of Scheduling (2022) 25:339–370 343

Fig. 4 An optimal solution for the example instance with weights a1 =
1, a2 = 1, and a3 = 1/3 (Color figure online)

a weighted sum. To do so, the cost components need to be
normalized:

g1 = 1

n · d∗ · f1 (obj1′)

g2 = 1

n · m · f2 (obj2′)

g3 = 2

k · (k − 1)
· f3 (obj3′)

The normalization ensures that g1 and g2 stay between 0
and 1 with high probability. Higher values for g1 and g2 are
only possible for degenerated instances where, even in good
solutions, the target is exceeded by factors ≥ 2. The value of
g3 is guaranteed to be ≤ 1 because the maximum number of
inversions in a permutation of length k is k · (k − 1)/2.

The final objective function is then a weighted sum of
the three normalized objective functions, where the weight
ai of an objective can be seen as approximately its relative
importance.

minimize g = a1 · g1 + a2 · g2 + a3 · g3 (obj)

Let us return to the example instance presented in Fig. 1.
An optimal solution with respect to the combined objective
function with weights a1 = 1, a2 = 1, and a3 = 1/3 is shown
in Fig. 4.

For comparison, the (rounded) objective values are given
for the four different solutions shown in Figs. 1, 2, 3, and 4
in the following table.

Solution g1 g2 g3 g

Figure 1 0 0.98 0.38 1.1
Figure 2 0.27 0.62 0.19 0.95
Figure 3 0.27 0.74 0 1.0
Figure 4 0.13 0.74 0 0.87

2.3 Concrete industry application

The PLP can appear in many areas of industrial manufac-
turing, and its application is not restricted to any specific
industrial branch. However, to further motivate the investi-
gation of the problem, we want to briefly describe a concrete
application of the problem in the area of electronic compo-
nentmanufacturing,which has beendeployedbyour industry
partners.

The PLP is especially beneficial in this area because elec-
tronic components manufacturing deals with a large variety
of products which can be grouped into product families.
Additionally, setup costs are usually low whenever the pro-
duction process switches from one product family to another,
and it thus makes sense to produce small lot sizes for each
product family. In such a setting, themain aims of an efficient
production are to minimize storage costs, maximize capacity
utilization, and deal with fluctuating demands. Therefore, a
well-balanced product mix in each of the production periods
(which is established by optimized solutions to the PLP) is
beneficial, as it leads to increased capacity utilization as well
as decreased storage and transport costs.

A just-in-time production in the sense of Coleman and
Vaghefi (1994) is encouraged, and actually the optimal case
would be to balance all different electronic component fami-
lies perfectly over the planning periods. However, often there
are maximum machine capacities that have to be consid-
ered for each product type, which do not allow a perfect
distribution. The PLP allows the specification of such capac-
ity constraints and further supports prioritization of orders
which is used to model due date requirements and customer
priorities in this application. Note that besides the capacity
constraints, there are no further resource constraints that need
to be considered in the particular real-life application from
electronic component manufacturing on which the PLP is
based. Therefore, the methods we propose to solve the PLP
could be directly applied by our industry partner.

In this paper,weprovide and investigate practical instances
for this case study from the electronics industry, which are
available for download1.

1 https://www.dbai.tuwien.ac.at/staff/jvass/production-leveling/

123

https://www.dbai.tuwien.ac.at/staff/jvass/production-leveling/

344 Journal of Scheduling (2022) 25:339–370

2.4 Related work

The term production leveling is commonly associated with
the Toyota Production System (TPS), where it is also called
heijunka. It is a conceptwhich aims to increase efficiency and
flexibility of mass production by leveling the production to
keep the stock size low and reduce waste. Ideally, the result
of applying heijunka is zero fluctuation at the final assem-
bly line. Heijunka can mean both the leveling of volume at
the final assembly line and the leveling of the production of
intermediary materials (Ohno and Rosen 1998).

The PLP is clearly inspired by heijunka in the sense that
the usage of resources should be leveled to increase produc-
tion efficiency, but its concepts differ quite substantially from
the classical implementation of heijunka (in the TPS) in the
following points:

– The PLP does not operate on the level of schedules, but
disregards the order in which the items are produced
within a period. In other words, it is concerned with
planning and not scheduling, which is subsequently per-
formed for each production period.

– Intermediate materials are not part of the PLP. While
heijunka also aims to level their production to keep stock
sizes of intermediary products small, the PLP is currently
only concerned with one level.

The main differences and similarities between the PLP
and other related problems are summarized in Table 1. In this
table, the columns correspond to features of the PLP such as
the presence of an overall leveling objective and the presence
of a priority objective. The rows correspond to the related
problems treated in this section. A cell containing a + sign
indicates that the problem in this row has the feature in this
column, i.e., that this is a property in common with the PLP.
A− sign indicates that the feature is absent in the problem at
hand. The last column lists other differences between the PLP
and the problems studied in the literature. In the following,
we discuss the related literature in more detail.

There exists a whole research area concerning schedul-
ing problems inspired by ideas from the TPS, and especially
heijunka. Several problems exist under the umbrella term
level scheduling, including the output variation problem and
the product rate variation problem (Kubiak 1993; Boysen
et al. 2009). They have the common aim of finding the best
schedule for production at the final assembly line so that the
demand for intermediary materials and their production is
leveled, which keeps the necessary stock sizes low. How-
ever, these problems are quite different from the PLP for the
same reasons presented above with respect to heijunka.

In this context, let us also mention the work on the
production smoothing problem (PSP) as well as the batch
PSP (BPSP) for mixed-model just-in-time production (Mil-

tenburg 1989; Kubiak and Yavuz 2008; Yavuz and Tufekci
2006a, b). For the PSP, one unit of any product can be pro-
cessed at a time, and a schedule of different products needs
to be found to reach overall demands per product. For the
BPSP, several copies of productsmaybegrouped into batches
to be processed simultaneously; it is part of the problem to
find optimal batch sizes and numbers. Ideally, the production
of different products is distributed evenly over time so that
the amount of a certain product produced up to any time is
proportional to time elapsed. For the (B)PSP, the objective
is thus to minimize the total squared deviation between the
cumulative production volumes of the actual and the ideal
schedule, for every product and at every time in the produc-
tion sequence. Even though this objective is similar to the
leveling objectives of the PLP, it differs from those of the PLP
in the crucial aspect that cumulative production volumes up
to a given point in time are considered, and the PLP aims to
level production volumes within every time period. Another
difference is that for both the PSP and the BPSP, overall
demands per product are given, whereas the PLP consists of
a set of distinct orders with given demands and priorities for
every product (type).

Another real-life problem where leveling in the sense of
heijunka is desired is a variant of the aircraft landing problem
(ALP) studied by Boysen and Fliedner (2011). The aim is to
find a schedule of aircraft such that the workload of ground
staff, which essentially depends on the number of passengers
landing (per airline), is balanced over time. Similarly to the
(B)PSP, the objective considers cumulative passenger num-
bers over time, and the goal is to minimize the maximum
deviation from a target value. Another difference from the
PLP is that a single airplane may be scheduled for every time
slot, whereas the PLP allows us to assign an arbitrary number
of orders to a time period, as long as all capacity constraints
are fulfilled. Moreover, no constraints or preferences on the
order of the landed aircraft are considered.

Under the term balancing problems, several other prob-
lems are known in the literature, which are more closely
related to the PLP:

– The balanced academic curriculum problem (BACP):
This problem deals with assigning courses to terms such
that the students’ load per term is balanced and prerequi-
sites are fulfilled (Castro andManzano 2001; Chiarandini
et al. 2012). The balancing of the sum of course sizes
assigned to a term is similar to the balancing of the pro-
duction load per period which we are confronted with in
the PLP. However, there is no equivalent to the second
objective of the PLP, which aims to balance the produc-
tion within all product types. In a more general version
of the problem, called the generalized BACP, so-called
curricula are introduced (Di Gaspero and Schaerf 2008):
every course is part of one or possibly several curricula,

123

Journal of Scheduling (2022) 25:339–370 345

Ta
bl
e
1

Si
m
ila

ri
tie

s
an
d
di
ff
er
en
ce
s
be
tw

ee
n
PL

P
an
d
ot
he
r
re
la
te
d
pr
ob

le
m
s
st
ud

ie
d
in

th
e
lit
er
at
ur
e.
A

+
si
gn

in
di
ca
te
s
th
e
pr
es
en
ce

of
a
pr
ob

le
m

fe
at
ur
e,
an
d
a

−
si
gn

th
e
ab
se
nc
e
of

a
pr
ob
le
m

fe
at
ur
e

O
ve
ra
ll

le
ve
lin

g
ob

je
c-

tiv
e

L
ev
el
in
g

ea
ch

pr
od
uc
t

ty
pe

Pr
io
ri
ty

ob
je
ct
iv
e

A
ss
ig
nm

en
tt
o
pe
ri
od
s

O
th
er

di
ff
er
en
ce
s

fr
om

th
e
PL

P

L
ev
el
sc
he
du
lin

g
pr
ob
le
m
s
su
ch

as
ou
tp
ut

va
ri
at
io
n
an
d
pr
od
uc
tr
at
e
va
ri
at
io
n

(K
ub
ia
k
19
93
;B

oy
se
n
et
al
.2
00
9)

V
ar
io
us

fo
rm

s
of

le
ve
lin

g
ob

je
ct
iv
es

−
Sc
he
du
le
of

or
de
rs

C
on
si
de
ra
tio

n
of

in
te
rm

ed
ia
ry

m
at
er
ia
ls

(B
at
ch
)
pr
od
uc
ti
on

sm
oo
th
in
g

(M
ilt
en
bu
rg

19
89
;K

ub
ia
k
an
d
Y
av
uz

20
08
;Y

av
uz

an
d
T
uf
ek
ci
20
06
a,
b)

C
um

ul
at
iv
e
pr
od
uc
tio

n
vo
lu
m
es

in
st
ea
d
of

pr
od
uc
tio

n
vo
lu
m
es

w
ith

in
ev
er
y
tim

e
pe
ri
od

−
Sc
he
du
le
of

or
de
rs

O
ve
ra
ll
de
m
an
ds

pe
r

pr
od
uc
tt
yp
e
in
st
ea
d
of

di
st
in
ct
or
de
rs

A
ir
cr
af
tl
an

di
ng

pr
ob
le
m

(B
oy
se
n
an
d

Fl
ie
dn

er
20
11
)

C
um

ul
at
iv
e
pr
od
uc
tio

n
vo
lu
m
es

−
−

Sc
he
du
le
of

or
de
rs

B
al
an
ce
d
ac
ad
em

ic
cu
rr
ic
ul
um

pr
ob
le
m

(C
as
tr
o
an
d
M
an
za
no

20
01
;C

hi
ar
an
di
ni

et
al
.2
01
2;

D
iG

as
pe
ro

an
d
Sc
ha
er
f

20
08
)

+
−

Pr
ec
ed
en
ce

re
la
tio

ns
+

N
ur
se

sc
he
du
li
ng

(W
ar
ne
r
19
76
;M

ul
lin

ax
an
d
L
aw

le
y
20
02
;S

ch
au
s
et
al
.2
00
9;

Pu
nn

ak
iti
ka
sh
em

et
al
.2
01
3)

+
−

−
+

O
ft
en

so
lv
ed

in
tw
o

st
ep
s—

nu
rs
es

as
si
gn
ed

to
zo
ne
s
fir
st
;d

if
fe
re
nt

co
ns
tr
ai
nt
s

M
ul
ti
pr
oc
es
so
r
sc
he
du

li
ng

(S
ch
re
ib
er

20
14
;A

lo
n
et
al
.1
99
8;

Sc
hw

er
df
eg
er

an
d
W
al
te
r
20
16
)

Si
m
ila

r
fo
r

Sc
hw

er
df
eg
er

an
d

W
al
te
r
(2
01
6)

−
−

+
(m

ac
hi
ne
s
co
rr
es
po
nd

to
pe
ri
od

s)

Si
m
pl
e
as
se
m
bl
y
li
ne

ba
la
nc
in
g

(B
oy
se
n

et
al
.2
00
7)

+
−

Pr
ec
ed
en
ce

re
la
tio

ns
+

P
ro
du

ct
io
n
le
ve
li
ng

pr
ob

le
m
(V
as
s
et
al
.

20
20
;V

as
s
20
19
)

+
+

+
+

123

346 Journal of Scheduling (2022) 25:339–370

and every one of the curricula should be balanced. At a
first glance, it might seem that curricula can be translated
to product types, but this is not the case. For the gener-
alized BACP, there is no need to balance the total load
per term for all curricula which would correspond to the
total production volume per period.
Another difference from our problem is the additional
constraints of the BACP, which enforce prerequisites
between (some of the) courses—a concept appearing
frequently in balancing problems. They differ from the
PLP’s priorities in the following aspect: Prerequisites are
hard constraints, while priorities are part of the objective
function, which makes a difference especially for exact
solvers.

– Nurse scheduling problems are an active field of research
since their introduction by Warner (1976). While most
of the contributions do not consider workload balanc-
ing, a few of them, starting with Mullinax and Lawley
(2002), do consider also a fair distribution of the nurses’
workload. They propose an integer programming model
for the nurse-to-patient assignment problem in neonatal
intensive care, which is concerned with finding the opti-
mal assignment of patients to a set of working nurses, so
that the workload of the team is balanced and a number of
restrictions are fulfilled. The main difficulty is the vari-
ability in the infants’ conditions,which greatly influences
the amount of work needed. The problem is often solved
in two steps by first assigning nurses to zones of the nurs-
ery and then assigning infants to nurses. More recently,
Schaus et al. (2009) investigated a constraint program-
ming (CP) approach using the spread constraint for
balancing. Furthermore, stochastic programming-based
approaches with Bender’s decomposition have been pro-
posed (Punnakitikashem et al. 2013).
The balancing objective of the nurse-to-patient assign-
ment problem is again very similar to the objective
function which we introduced for the PLP. However, we
cannot compare the results directly because the priori-
ties of the PLP have no equivalent in this problem, and
vice versa, some side constraints and the zone assignment
cannot be expressed.

– Multiprocessor scheduling: This NP-hard scheduling
problem consists in assigning n jobs with integer pro-
cessing times p1, p2, . . . , pn to one of m < n identical
machines that run in parallel. The goal is to minimize the
overall maximum completion time of any machine. An
analogy to the PLPwith a single product type can be seen
by identifying jobswith orders, job processing timeswith
order demands, and machines with production periods.
The multiprocessor scheduling problem can equivalently
be formulated as an optimization variant of the multi-
way number partitioning problem. For several different
variants of this problem and algorithmic approaches, we

refer to the PhD thesis of Schreiber (2014). Polynomial-
time approximation schemes were proven to exist for a
large class of multiprocessor scheduling problems where
the objective depends on the completion times of the
machines (Alon et al. 1998). Recently, Schwerdfeger
and Walter (2016) studied a variant of multiprocessor
scheduling that accounts for balancing issues between
the machines and for which the objective incorporates
the completion times of all machines (by minimizing
the NSSWD [normalized sum of squares for workload
deviations] criterion). This objective resembles the level-
ing objectives of the PLP, with the only difference being
that we consider linear instead of quadratic deviations
from the target demand with respect to completion time.
However, one major difference from the PLP remains for
all these problem variants: for multiprocessor scheduling
problems, themachines are identical; for the PLP, periods
are sorted in time, and the choice of the production period
is crucial when aiming to respect the order’s priorities.

– Simple assembly line balancing (SALB): An assembly
line consists of identical work stations aligned along a
conveyor belt.Workpieces move along the conveyor belt,
and at each station a set of (assembly) tasks is carried
out, where each of them has a task time. The cycle time
denotes the time after which workpieces are moved on to
the next station. The goal is either to minimize the num-
ber of work stations needed given a fixed cycle time or
to minimize the cycle time given a fixed number of work
stations.
The SALB problem is the simplest and most intensively
studied variant of assembly line balancing. A compre-
hensive overview over the different variants is provided
by Boysen et al. (2007). When comparing the SALB
problem to the PLP, tasks map to orders, task times to
order sizes, and the fixed cycle time to the maximum
capacity per production period. Hence, minimizing the
cycle time is equivalent tominimizing themaximum load
of a production period of the PLP, which would also be
an admissible balancing objective.
However, the difference between precedence relations
on the one hand and priority inversion minimization on
the other hand once again precludes a direct comparison
between the problems.

For a more extensive list of balancing problems, please
refer to the dissertation of Pierre Schaus, which investigates
CP modeling approaches for a very diverse set of balancing
and bin-packing problems (Schaus 2009).

123

Journal of Scheduling (2022) 25:339–370 347

3 Complexity analysis

3.1 Hardness results

To demonstrate the computational hardness of the PLP opti-
mization problem, we provide two NP-hardness results,
both of which hold even for very restricted versions of the
PLP.2 First, we introduce the following feasibility variant of
the problem where the objective function is dropped com-
pletely. Hence, the task is solely to decide whether a feasible
assignment of orders to periods is possible:

Production leveling feasibility (decision problem)

Instance: A set of orders K , of product types M and of periods
N . For each order j ∈ K its demand d j with
d j > 0 and product type t j .

The maximum production capacity per period c and
for each product type t ∈ M its associated
maximum production capacity

per period ct .
Question: Does there exist an assignment y : K → N of orders

to periods such that the capacity limits c and
(ct)t∈M are not exceeded for

any period?

Note that this feasibility variant of the PLP neither contains
priorities p j nor target production capacities d∗ and d∗

t , since
these are only involved in the objectives but not in the hard
constraints of the PLP.

Theorem 1 The production leveling feasibility problem is
NP-complete even on instances with |M | = 1, i.e., with
a single product type.

Proof To prove NP-hardness, we give a polynomial-time
reduction from theNP-complete bin-packing decision prob-
lem (Vazirani 2003), which is defined as follows:

Bin packing (decision problem)

Instance: A list of k items of respective sizes a1, a2, . . . , ak , a
number of bins n, and a bin capacity b ∈ N.

Question: Can the items be packed into the bins; i.e., is there a
partition of the set {1, 2, . . . , k} into n disjoint
subsets S1, S2, . . . , Sn

such that
∑

i∈S j ai ≤ b for all j ∈ {1, . . . , n}?

Given a bin-packing instance, the construction of an
instance of the production leveling feasibility problem is
straightforward:

2 All NP-hardness proofs in this section are in the strong sense; i.e.,
we do not require assumptions on how the integers in a PLP instance
are encoded.

M = {1} d j = a j ∀ j ∈ K

N = {1, 2, . . . , n} t j = 1 ∀ j ∈ K

K = {1, 2, . . . , k} c = c1 = b

That is, bins are converted to periods, each item with
size ai to an order with demand di , and the bin capacity
V becomes the maximum capacity per period c. Since this
reduction can be done in linear time, we have proven that the
production leveling feasibility problem is NP-hard, even
when considering only a single product type (|M | = 1).

To verify whether an assignment y : K → N of orders to
periods is a valid solution, a total of |N |·(1+|M |) inequalities
need to be checked for the capacity constraints. This proves
NP-membership.
�

As an immediate consequence, we obtain that the deci-
sion variant of the production leveling optimization problem
which asks whether a feasible assignment with objective
value ≤ k ∈ N exists is NP-hard as well.

Our second hardness result shows that the hardness of the
PLP is not only caused by the capacity constraints but also
by the leveling objective itself:

Theorem 2 The production leveling optimization problem
minimizing the objective function f1 as defined in Eq. (obj1)
isNP-hard even in instanceswith unbounded capacities and
a single product type.

Proof To prove NP-hardness, we show that it is even NP-
hard to verify whether there exists a solution of the PLP with
f1 = 0. We give a polynomial-time reduction from theNP-
hard 3-partition problem (Garey and Johnson 1979):

3- Partition (decision problem)

Instance: A multiset of 3q positive integers a1, . . . , a3q and a

positive integer B such that
∑3q

p=1 ap = q · B and
B/4 < ap < B/2

holds for all 1 ≤ p ≤ 3q.
Question: Is there a partition of {1, . . . , 3q} into q subsets{

A1, . . . , Aq
}
such that

∑
p∈Ai

ap = B for all
1 ≤ i ≤ q ?

Note that the condition on the size of the integers ap for
1 ≤ p ≤ 3q guarantees that any such partition has exactly
three elements per subset Ai , 1 ≤ i ≤ q.

Given a 3-partition instance with a1, . . . , a3q and B, the
construction of an instance of the production leveling opti-
mization problem with q periods and a single product type
is again straightforward:

M = {1} (product types) d j = a j ∀ j ∈ K

N = {1, . . . , q} (periods) p j = t j = 1 ∀ j ∈ K

123

348 Journal of Scheduling (2022) 25:339–370

K = {1, 2, . . . , 3q} (orders) c = c1 = ∞

Now, note that a solution to the PLP is an assignment
y : K → N of orders to periods which corresponds to a
partition of {1, . . . , 3q} into q subsets {

A1, . . . , Aq
}
. It holds

that

f1 =
∑

i∈N
|d∗ − wi | =

q∑

i=1

∣
∣
∣
∣
∣

∑
j∈K d j

q
− wi

∣
∣
∣
∣
∣

=
q∑

i=1

∣
∣
∣
∣
∣
∣
B −

∑

j∈K :y j=i

d j

∣
∣
∣
∣
∣
∣
= 0

if and only if

∑

p∈Ai

ap = B for all 1 ≤ p ≤ q,

where Ai = {a j : y j = i} for i ∈ {1, . . . , q}. Thus, f1 = 0
if and only if the 3-partition instance is a yes-instance.
�

Note that Theorem 2 also holds for the objective function
f2 as defined in Eq. (obj2′), since f1 and f2 are identical on
instances with a single product type.

Moreover, the PLP admits a trivial solution if we assume
unbounded capacities and the sole objective is to minimize
f3 as defined in Eq. (obj3′), i.e., to minimize priority inver-
sions. Indeed, all orders can be assigned to the same period
in this case, and thus no priority inversions occur. If we how-
ever assume bounded capacities, hardness already follows
fromTheorem 1. Consequently, the hardness of the PLPwith
respect to objective f3 is already handled by Theorem 1.

3.2 A polynomial-time algorithm for the fixed-order
production leveling problem

Having established the computational hardness of restricted
cases of the PLP, we are now interested in identifying
tractable fragments of our problem. Such tractable fragments
complement our understanding of where the computational
difficulty of PLP originates. In this section, a tractable case of
the production leveling problem is analyzed, which we for-
malize as the fixed-order PLP. For this problem, we present
a dynamic programming algorithm running in polynomial
time.

The fixed-order PLP is a variant of the production leveling
optimization problem, where the priority values of all orders
are unique and the correct ordering with respect to the pri-
orities is enforced. We will show that these two restrictions
render the problem solvable in polynomial time.

This variant of the PLP is not only of theoretical inter-
est, but also reflects a plausible practical scenario. Indeed,
priority values can be used to reflect due dates of orders. In
the case of a high number of different customers that need

to be served, it is plausible that all due dates are different;
they can thus be encoded using distinct priorities. Moreover,
let us assume that it is crucial to keep stock sizes low (just-
in-time production). This means that orders should never be
completed before other orders with earlier due dates; in other
words, priority inversions are not permitted. In this scenario,
the PLP reduces to the fixed-order production leveling prob-
lem which we formally define as follows:

Fixed- order production leveling (optimization problem)

Instance: A set of orders K , of product types M and of periods
N . For each order j ∈ K its demand d j with
d j > 0, priority p j and product

type t j . The maximum production capacity per
period c and for each product type t ∈ M its
associated maximum production

capacity per period ct . The target production
capacity d∗ and the target production capacity d∗

t
for each product type t .

Priorities are unique: pi = p j for i = j ∈ K
Objective: Find an assignment y : K → N of orders to periods

that minimizes g = a1 · g1 + a2 · g2, with
objectives g1 and g2 as defined in

Eqs. (obj1′) and (obj2′).
Constraints: Respect the priorities: y(i) ≤ y(j) for orders

i, j ∈ K with pi > p j . Respect the capacity limits
c and (ct)t∈M for all periods.

The only difference from the original version of the PLP
is that the priorities are treated as hard constraints instead
of soft constraints. This new constraint, together with the
assumption of unique priority values, enables a drastic reduc-
tion of the search space: Given the sequence of orders sorted
by decreasing priority values, solving the fixed-order PLP is
equivalent to finding the best partitioning of this sequence
into periods. That is, instead of assigning arbitrary subsets of
orders to periods, the sorted sequence of orders needs to be
divided into contiguous subsequences which are assigned to
periods in the correct order.

Viewing the fixed-order PLP as a partition problem
reminds of the list partition problem, as described for
example by Skiena (1998). In this problem, a sequence of
non-negative numbers s1, s2, . . . , sk and an integer n is given
and a partition of the sequence into n ranges, i.e., consecutive
elements of the sequence, so as to minimize the maximum
sum over all the ranges is sought for. In the following, we
present an adaption of the dynamic programming approach
for the list partition problem to the fixed-order PLP; in par-
ticular, the objective to be minimized differs for the two
problems.

Theorem 3 The fixed-order production leveling problem can
be solved in polynomial time using a dynamic programming
approach: If n denotes the number of periods, k the number
of orders, andm the number of product types, it can be solved
in O((n + m) · k2) time.

123

Journal of Scheduling (2022) 25:339–370 349

A detailed example illustrating the fixed-order PLP can
be found in a technical report (Lackner et al. 2019). It can
be read alongside the following formal description of the
dynamic programming algorithm.

Proof Without loss of generality, let us assume that the
unique priority values p j for j ∈ K are elements of the set
{1, . . . , k}. In a preprocessing step, sort the orders in decreas-
ing order of their priorities. That is, after sorting, d1 denotes
the capacity demand of the orderwith priority k, d2 the capac-
ity demand of the order with priority k−1, and so on until dk
which denotes the capacity demand of the order with priority
1. This sorting requires O(k log k) time.

Furthermore, we assume that k ≥ n. This is sensible, as
for k < n some periods would have to remain empty, and we
could simply ignore (n−k) of these periodswithout changing
the outcome of the problem. With this assumption, we can in
general exclude all assignments y : K → N for which some
period remains empty: With respect to the objective function
g and the capacity constraints, it is never a disadvantage to
plan two orders in different periods compared to planning
two orders in one period and leaving one period empty.

Given these assumptions for the fixed-order PLP, an
assignment y : K → N of orders to periods can uniquely
be characterized by the choice of the first order f (l) ∈ K
assigned to period l ≤ n, where it has to hold that f (1) = 1
and f (l) < f (l + 1) for all l ≤ n − 1. Indeed, given
f (l) and f (l + 1), the set of orders assigned to period l is
{ f (l), . . . , f (l+1)−1}. This results in (k−1

n−1

) = (k−1)!
(n−1)!(k−n)!

possibilities for the function f among which an optimal
solution needs to be found. In the following, we will see
how a dynamic programming approach can be used to solve
the fixed-order production leveling optimization problem in
polynomial time and thus to escape the exponential growth
of the binomial coefficients.3

Let us denote by O(j, l) the optimal value of the objective
function under consideration, i.e., the minimum value of g,
when assigning the first j orders {1, . . . , j} to l ≤ n periods.
The optimal objective value of the given instance of the fixed-
order PLP is then given by O(k, n). The main idea of the
dynamic programming algorithm is that O(j, l) for l ≤ j ≤
k and 1 ≤ l ≤ n can be calculated recursively:

– First, pick f (l) = i , the first order to be assigned to
period l. Since no period can remain empty, l ≤ i ≤ j .

– Second, assign orders 1, . . . , i−1 to periods 1, . . . , l−1
in such a way that the optimal value O(i − 1, l − 1) is
reached for these periods.

– Third, compute the objective value of this combined solu-
tion for j orders and l periods. This can be done by adding

3 Recall that kn
nn ≤ (k

n

) ≤ (k·e)n
nn for all 1 ≤ n ≤ k. For more precise

asymptotics, we refer to Flajolet and Sedgewick (2009).

the objective value for the first (l−1) periods to the objec-
tive value for period l, because the assignments for each
period and for each product type within a period con-
tribute independently to the total cost of a solution.

– Repeat these steps for every possible choice of i and take
the overall minimum objective value.

Formally, the recursion for calculating the values O(j, l)
is given by

O(j, l) = min
l≤i≤ j

[
O(i − 1, l − 1)

+ h1(i, j) + h2(i, j)

+ constr(i, j)
] ∀l ≤ j ≤ k. (1)

Note that O(j, l) is not defined for j < l because we do
not consider solutions that involve empty periods. For all
1 ≤ i ≤ j +1, the functions h1(i, j) and h2(i, j) denote the
respective cost increase of g1 and g2 as defined in Eqs. (obj2′)
and (obj3′), if we assign the set of orders {i, . . . , j} to a new
period:

h1(i, j) =a1
n

·
∣
∣
∣
∣
d∗ − d(i, j)

d∗

∣
∣
∣
∣,

where d(i, j) =
j∑

s=i

ds (2)

h2(i, j) = a2
n · m ·

∑

t∈M

∣
∣
∣
∣
d∗
t − dt (i, j)

d∗
t

∣
∣
∣
∣,

where dt (i, j) =
∑

s∈{i,..., j}∧ts=t

ds . (3)

The functions d and dt denote the overall cumulative
demand for the new period and the cumulative demand for a
specific product type t .

Furthermore, the penalty function constr(i, j) used in
Eq. (1) checks whether the capacity constraints c and ct are
satisfied when assigning the set of orders {i, . . . , j} to the
same period and is defined as follows:

constr(i, j) =

⎧
⎪⎨

⎪⎩

0 if d(i, j) ≤ c

and dt (i, j) ≤ ct ∀t ∈ M

∞ otherwise,

using the cumulative demand functions as defined in Eqs. (2)
and (3). If the final value O(k, n) is equal to ∞, this imme-
diately indicates that the instance of the fixed-order PLP is
infeasible.

123

350 Journal of Scheduling (2022) 25:339–370

The base cases of the recursion consist in assigning j
orders to a single period:

O(j, 1) = h1(1, j) + h2(1, j) + constr(1, j) ∀1 ≤ j ≤ k.

To calculate O(k, n), we store the partial results O(j, l)
for 1 ≤ j ≤ k and 1 ≤ l ≤ n in a table of size (k, n). To
compute one of these entries O(j, l), we require the values
O(i − 1, l − 1) with 1 ≤ i ≤ j + 1, i.e., all elements in
the column to the left of and not below O(j, l). We thus fill
in the table column by column from left to right and top to
bottom within a column. Moreover, we require the values
h1(i, j), h2(i, j) and constr(i, j) for every 1 ≤ i ≤ j ≤ k.
Since these values are also required for further elements of
the table, they are computed in a preprocessing step. The
cumulative demands d(i, j) and dt (i, j) are calculated first
for all i, j with 1 ≤ i ≤ j ≤ k and all product types t ∈ M
and then used to calculate h1(i, j), h2(i, j) and constr(i, j).
These pre-computations requireO(m·k2) timewherem is the
number of product types, assuming that arithmetic operations
can be performed in constant time.

Given these pre-computations, the timeneeded to compute
each entry O(j, l) is in O(k) because the minimum of j −
l + 1 ≤ k values needs to be found, each of which requires
only access to three previously computed values. As the table
has the size k · n, computing all elements of the table can be
done in O(n · k2) time.

We are not merely interested in computing the value of g
for an optimal solution, but also in describing this optimal
solution. That is, we need to know which orders are assigned
to which period. While we compute the values O(j, l), we
thus also store the value of i for which the minimum was
achieved in Eq. (1); if this value of i is not unique, we pick
the smallest such i . We let M(j, l) denote the index of the
first order assigned to period l in a solution to the subproblem
finding an optimal assignment of j orders to l periods. More
formally:

M(j, l) = i �⇒ O(j, l) = O(i − 1, l − 1)

+ h1(i, j) + h2(i, j)

+ constr(i, j),

for all 1 ≤ l ≤ n and l ≤ j ≤ k. Computing M(j, l)
in addition to O(j, l) adds only a constant amount to the
computational complexity, so that the asymptotic behavior
does not change.

Once all values for O(j, l) and M(j, l) have been
computed, the assignment of orders to periods can be recon-
structed as follows, starting with the last period and ending
with the first one:

– The orders oM(k,n), . . . , ok are assigned to the last period.

– Given that the first order assigned to period l with l > 2
is oi = oM(j,l) for some j , the orders assigned to period
l − 1 are oi ′ , . . . , oi−1, with i ′ = M(i − 1, l − 1).

– The remaining orders are assigned to the first period.

Reconstructing the solution requires a linear amount of
time in the number of periods n and the number of orders
k. Therefore, the total asymptotic runtime of the dynamic
programming algorithm is O((n + m) · k2).
�

The dynamic programming algorithm that we developed
to solve the fixed-order PLP can also be used to construct a
solution for an instance of the more general PLP. Indeed, an
instance of the PLP can be converted to an instance of the
fixed-order PLP in the following way: If orders i and j with
i ≤ j ∈ K have the same priority p = pi = p j ∈ Z

+ and
if p∗ is the next largest priority value present in the instance,
set pi = (p + p∗)/2 and repeat this step until all orders
have distinct priority values. Replace the obtained priority
values by the set of integers {1, . . . , k} while preserving the
order of priorities. If the dynamic programming algorithm
described above finds a solution for the converted fixed-order
PLP instance, this is also a solution for the PLP instance.Note
however that it is possible that the fixed-order PLP instance
obtained is unsatisfiable even though the PLP instance is sat-
isfiable. This can be the case for the conversion described
here but also for any other conversion that conserves the pri-
ority order. Indeed, it might be necessary to introduce priority
inversions to satisfy the capacity constraints for certain PLP
instances.

4 Integer programmingmodel for the PLP

The PLP is a weakly constrained optimization problem as the
only existing constraints are upper bounds on the planned
production volume per period and product. There are no
constraints involved in the prioritization, and the objective
function is a trade-off, which means for example that prun-
ing solutions with a bad priority objective is not immediately
possible as long as there is enough room for improvement in
the balancing objectives. Hence, the feasible solution space
is very large. We propose an integer programming model for
the PLP which is capable of providing exact solutions to the
optimization problem for moderately sized instances.

The model is based on the mathematical formulation pre-
sented in Sect. 2.2. The problem’s input parameters are
exactly the same, which is why they are not repeated in this
section. However, the set of variables differs from the one in
the mathematical formulation: A binary view is introduced
on the order-period assignment through the set of variables
X and the replacement of the helper variables wi and wi,t

123

Journal of Scheduling (2022) 25:339–370 351

by two variables representing the deficiency and the surplus
demand.

Variables

xi j ∈ {0, 1} for each i ∈ N , j ∈ K stating if order j is
planned in period i

y j ∈ N for each j ∈ K , whose value is the
assigned period of order j

zi j ∈ {0, 1} for orders i, j ∈ K where
pi > p j , existence of a priority inversion between i

and j
s+
i ∈ R

+ for each i ∈ N the surplus production vol-
ume for period i

s−
i ∈ R

+ for each i ∈ N the deficiency production
volume for period i

s+
i t ∈ R

+ for each i ∈ N , t ∈ M the surplus produc-
tion volume for period i and product type
t

s−
i t ∈ R

+ for each i ∈ N , t ∈ M the deficiency pro-
duction volume for period i and product
type t

Formulation

Minimize a1g1 + a2g2 + a3g3

such that

∑

i∈N
xi j = 1 j ∈ K (4)

∑

i∈N
i · xi j = y j j ∈ K (5)

yi − y j ≤ (n − 1)zi j i, j ∈ K | pi > p j (6)
∑

j∈K
d j xi j + s+

i − s−
i = d∗i ∈ N (7)

∑

j∈K |t j=t

d j xi j + s+
i t − s−

i t = d∗
t i ∈ N , t ∈ M (8)

d∗ + s+
i ≤ ci ∈ N (9)

d∗
t + s+

i t ≤ ct i ∈ N , t ∈ M (10)

yi ≤ y j i, j ∈ K | pi ≥ p j , di = d j , ti = t j (11)
∑

t∈M
(s−
i t − s+

i t) = s−
i − s+

i i ∈ N (12)

Constraints (4) to (8) are the model’s required helper con-
straints. Constraints (4) ensure that there is exactly one period
to which an order is assigned. Constraints (5) link the xi j to
the yi variables. Constraints (6) link the yi to the zi, j vari-
ables. It ensures that for every pair of orders i, j where i
has a higher priority than j , zi j is 1 (representing an inver-
sion) if i is planned later than j . Constraints (7) state for

each period that the total demand planned plus the surplus
minus the deficiency equals d∗. As both variables have pos-
itive domains and they are subject to minimization, at most
one of them will be nonzero in any optimal solution. Con-
straints (8) repeat this relationship over the variables s+

i t and
s−
i t for each product type t .
Constraints (9) ensure that the capacity bound per period

is satisfied. This is elegantly achieved by stating that the sum
of target demand d∗ and the surplus variable s+ does not
exceed the threshold. Analogously, Constraints (10) enforce
the capacity limit per period and product type.

Finally, there are two redundant sets of constraints for
strengthening the formulation: Constraints (11) enforce a
dominance relation for all pairs of orderswhichhave the same
product type and demand value. The constraint requires that
the higher prioritized order occurs no later than the lower pri-
oritized one, which is sensible because we could otherwise
swap the two orders to obtain a better solution. This cuts off
parts of the search space where the optimal solution cannot
reside. Constraints (12) link the s{+,−}

i and s{+,−}
i t variables

together, which also leads to improvements in the average
runtime.

The following objective function is equivalent to the one
presented in Sect. 2.2, but here it is stated on the variable set
of the MIP formulation. It is not hard to see that in function
g1, the sum of the deficiency and surplus variable (s+

i +
s−
i) is equivalent to the absolute difference between planned
demand and target demand |d∗ − wi |, because at least one
of s+

i and s−
i will be 0 in any solution, and the other one

holds the absolute difference. The same holds true for the
analogous variables in g2.

g1 = 1

n · d∗ ·
∑

i∈N
(s+
i + s−

i) (obj1MIP)

g2 = 1

n · m ·
∑

t∈M

(
1

d∗
t

·
∑

i∈N
(s+
i t + s−

i t)

)

(obj2MIP)

g3 = 2

k · (k − 1)
·

∑

i, j∈K
zi, j (obj3MIP)

5 Local search for the PLP

As shown earlier, the PLP is an NP-hard optimization
problem; i.e., it belongs to a class of problems for which
polynomial-time algorithms do not exist unless P=NP .
Consequently, not all instances of the PLP can be solved
in a feasible amount of time with the currently known exact

123

352 Journal of Scheduling (2022) 25:339–370

methods. Therefore, we should also take heuristic solution
methods into account.

This section presents metaheuristic local search tech-
niques to solve the PLP. First, a greedy approach to obtain
initial solutions is presented. Afterwards, two neighborhood
structures for the PLP are described, and finally, we explain
the local search algorithm, namely simulated annealing.

5.1 Construction of initial solutions

We developed a greedy construction heuristic which is capa-
ble of constructing good initial solutions in O(n · k2) time.
The parameters of the algorithm are a list of k orders and
the number of periods n. The first step of the algorithm is
to sort the orders by decreasing priority which is already an
approximate handling of objective 3. Then we loop over all
periods i from 1 to n, performing the following steps:

1. Examine sequentially the orders from the head of the
sorted order list. Calculate for each order j that still fits
into period i (considering the capacity limits) the change
on the objective functions g1 (obj1′) and g2 (obj2′) which
the inclusion of this order into period i would cause. We
further call these changes in the objective functions the
delta cost δ. The delta cost δg1 of g1 of inserting order j in
period i can be calculated as |d∗−(wi +d j)|−|d∗−wi |.
The calculation of δg2 works analogously, taking the
product types into account, and the total delta cost δ is
δg1 + δg2 . If δ < 0 (i.e., including the order improves the
objectives), order j is added to a list of suitable orders.
The orders from the head of the sorted list are processed
in this way until the suitable order list has size k/n (i.e.,
the average number of orders for each period) or there
are no orders left.

2. Afterwards, if the list of suitable orders is not empty, pick
one of the orders having the smallest delta cost, plan it
for period i , remove it from the sorted order list, and go
back to step 1.

3. Otherwise (if there was no suitable order), repeat with
i :=i + 1.

Finally, we check whether there are any orders left which
could not be assigned due to the capacity limits. If that is
the case, they are assigned one by one to the period with
maximal remaining capacity. In this way, particularly those
periods which are not filled well are assigned the remaining
orders, and the probability of a hard constraint violation is
minimized. However, violating the maximum capacity con-
straint is allowed in this step because a complete assignment
is required for the subsequent local search.

Let us briefly turn to the runtime of this construction
heuristic: Sorting of the orders by priority can be done in
O(k ·log k) time. Then, for every period, to find the next order

to include, we might need to check the entire list of orders.
Calculating the delta costs for a given order can be done
in constant time, as introducing one new order only affects
one period and one product type. This process needs to be
repeated at most k times per period which results in a run-
time ofO(k2) per period orO(n ·k2) in total. The last step of
assigning remaining orders can be done inO(n·k) timewhich
leads to a total runtime ofO(n · k · (log k + k)) = O(n · k2).

5.2 Neighborhood structures

We devised two types of moves for generating different
neighborhoods of a solution which will be introduced in the
following subsections. Furthermore, we briefly describe our
delta evaluation approach that speeds up the calculations dra-
matically.

5.2.1 Move-order neighborhood

The move-order neighborhood (or simply move neighbor-
hood) of a solution s consists of all solutions whose only
difference from s is that one order has been moved to a dif-
ferent period. Figure 5 visualizes such a move. The figure on
the left shows the leveling objective per product type before
the move, and on the right side we can see the result of apply-
ing the move. Order 2 is moved from P2 to P3, which yields
in this case a better solution.

Enumerating the move neighborhood involves iterating
over k orders for each of n − 1 possible target periods; i.e.,
the neighborhood size is exactly k · (n − 1).

5.2.2 Swap-orders neighborhood

The swap-orders neighborhood (or simply swap neighbor-
hood) of a solution s consists of all solutions s′ whose only
difference from s is that two orders not assigned to the same
period in s appear with swapped period assignments in s′.
Figure 6 visualizes such a move. Order 1 is swapped with
order 2, which in this case again yields a better solution.

Enumerating the swap neighborhood involves iterating
over all pairs of orders not assigned to the same period.
Hence, the neighborhood size is in O(k2).

5.2.3 Move evaluation

If wewant to compare twomoves a and bwith respect to their
quality,wedefine that thefirst criterion to check is the number
of hard constraint violations which each of them introduces
or resolves. If a introduces fewer or resolves more of them,
we say that a is better than b. Otherwise—if the number of
hard constraint violations is equal—the comparison is done
by selecting the one which has the lower move cost, which

123

Journal of Scheduling (2022) 25:339–370 353

Fig. 5 Example of a move-order move: solutions before (left) and after (right) (Color figure online)

Fig. 6 Example of a swap-orders move: solutions before (left) and after (right) (Color figure online)

is defined as the change of the current solution’s objective
value in case the move is performed.

To avoid costly complete evaluations of whole solutions, a
delta evaluation procedure is proposed that efficiently evalu-
ates howmuch the objective value changes for a given move.
The delta cost of moving an order to a different period is
calculated for the three objective function components sep-
arately:

1. For the leveling objective, the planned total production
volume for each period needs to be cached. This makes it
possible to calculate the planned production volume after
the move efficiently.

2. The per-product leveling objective allows a similar
approach, given that we keep track of the planned pro-
duction volume for each period and product type.

3. The priority objective is the hardest and most time-
consuming part of delta evaluation because moving an
order from period i to j can introduce or resolve inver-
sions between the moved order and every order assigned
to a period between i and j .When the number of orders is
very large, it is inefficient to iterate over all such orders
and perform comparisons because the delta evaluation
needs to be repeated for every candidate move. Our idea
for optimizing this evaluation is based on the insight that
the only thing we care about when moving an order past

a period is the number of orders in that period which
have smaller and larger priorities, respectively, not the
actual priority values. Therefore, the priority values of
all orders assigned to a certain period can be maintained
in a sorted list (one for each period). This allows us to
efficiently retrieve via binary search how many orders
have smaller/larger priorities than the order which we
currently want to move.

This efficient delta evaluation function for moving an
order to a different period can be reused to create an efficient
implementation of delta evaluation for the swap neighbor-
hood as well. The cost of swapping two orders o1 and o2 is
equivalent to the cost of moving o1 to the period of o2 plus
the cost of moving o2 to the period of o1 plus a compensa-
tion term for priority inversions that have been potentially
introduced or resolved by the swap.

The delta cost of the three objective function components
is aggregated to a single value by the usual formula for the
objective value (obj).

5.3 Simulated annealing algorithm

This section presents details of the metaheuristic local search
method which we investigated for solving the PLP, namely
simulated annealing.

123

354 Journal of Scheduling (2022) 25:339–370

Simulated annealing is ametaheuristic optimizationmethod
introduced by Kirkpatrick et al. (1983). It resembles the
physical process of annealing in metallurgy insofar as both
methods use a cooling schedule to control the amount of
random movements in the process, which encourages con-
vergence to the optimal state. Even though convergence to
the optimal solution is usually not achieved in practical set-
tings, simulated annealing is still one of themost widely used
metaheuristic optimization methods.

Theversionof simulated annealingwepropose is described
in Algorithm 1. Given an initial solution, a set of neigh-
borhoods Ni with associated probabilities pi , the starting
temperature tmax, the minimum temperature tmin, and the
number w of iterations per temperature, a solution to the
PLP is returned once the given time limit or the given iter-
ation limit is reached. The objective value of the returned
solution is inferior to or equal to the objective value of the
initial solution.

Algorithm 1: Simulated Annealing
Data: ini tialSolution, neighborhoods Ni with probabilities pi ,

tmax , tmin , iterations per temperature w, timeLimit ,
i terationLimit

Result: a solution at least as good as ini tialSolution
1 current Solution ← ini tialSolution;
2 best Solution ← current Solution;
3 t ← tmax ;
4 while t ≥ tmin and ¬ time limit reached and ¬ iteration limit
reached do

5 foreach j ∈ {1..w} do
6 N ← choose one of the neighborhoods Ni according to

probabilities pi ;
7 m ← select a random move out of N (current Solution);
8 if Accept(m, t) then
9 current Solution ← Apply(m, current Solution);

10 if current Solution is better than best Solution then
11 best Solution ← current Solution;
12 t ← Cool-Down(t);
13 return best Solution;

At every iteration step for a given temperature t , a neigh-
borhoodN is chosen at randomaccording to the probabilities
pi , and a random move m from N is selected. The selected
move is accepted and applied on the current solution if the
acceptance criterion Accept(m, t) is met. Once the number
w of iterations per temperature is reached, the temperature
is reduced according to the cooling schedule Cool-Down(t).
These two functions are defined as follows:

– Acceptance criterion We use the metropolis criterion as
acceptance function, which was introduced in the origi-
nal paper by Kirkpatrick et al. (1983). The probability of
acceptance P(i ⇒ j) of a move from solution i to solu-
tion j (for the case of minimization), with f (x) standing

for the objective value of solution x , can be defined as
follows:

P(i ⇒ j) =
{
1, if f (j) ≤ f (i).

exp
(

f (i)− f (j)
t

)
, otherwise.

(13)

If the candidate solution j is at least as good as the current
solution i , it is accepted unconditionally. Otherwise, it is
acceptedwith a probability which is decreasing exponen-
tially as a function of the negative delta cost divided by
the current temperature. This means that if a candidate
solution is much worse than the current one, it will be
accepted with a lower probability than a solution which
is just slightly worse.

– Cooling schedule The temperature is decreased during
the search process bymeans of a cooling schedule, which
is usually a geometric row. In our case it depends on the
cooling rate α and the iterations per temperature level w.
The functionCool-Down() reduces the temperature after
every w iterations by the following formula:

ti = α · ti−1 (14)

Wenowwant to briefly stress howα andw interact.Given
an iteration limit l, the initial temperature tmax and the
final temperature tmin, there exist many different options
to reach tmin after l iterations, namely all combinations of
α and w such that tmin = αn · tmax, where the number of
temperature steps n = ⌊ l

w

⌋
. Two examples of schedules

following that formula with l = 30000, tmax = 1, and
tmin = 0.001 are depicted in Fig. 7. Please observe that
for both options depicted in the figure, the temperature at
each time is approximately the same, as the different step
sizes and widths compensate each other. Therefore, it is
sufficient to fix the cooling rate α when tuning the param-
eters of simulated annealing and let the cooling schedule
be determined only by the variation of w.
If the number l is unknown, we can also derive a for-
mula which relates two cooling schedules (α1, w1) and
(α2, w2) that have the same slope:

w1

w2
= logα1

logα2
(15)

Using this relationship, one can construct alternative
cooling schedules which decrease equally rapidly on
average.

123

Journal of Scheduling (2022) 25:339–370 355

Fig. 7 Two cooling schedules with different cooling rates and iterations
per temperature but identical start and end points (Color figure online)

6 Extensions to the basic production leveling
problem

Some real-life midterm planning scenarios cannot be tack-
led with the standard PLP problem formulation, as it does not
consider the availability of resources used during production.
This prevents us, for example, from taking discrete resources
such as staffing and the availability of machines or continu-
ous resources such as power consumption into account when
distributing orders over production periods.

Furthermore, the original specification of thePLPassumes
that each order is indivisible. This implies that it cannot be
used in any practical context where single customer orders
can actually be distributed over multiple periods in the plan-
ning horizon. Figure 8 shows with the help of an example
why splitting orders can be useful: The additional flexibility
that is obtained by allowing orders to be split can help to
create solutions that are good in terms of both leveling and
prioritization. For this specific example, splitting one order
into two parts allows us to achieve a substantially better solu-
tion: the objective value of the solution presented in Fig. 8 is
g = 0.67,whereas the optimal solutionwithout splits reaches
g = 0.87 (see Fig. 4).

Another aspect that is important in many practical appli-
cations of the PLP is the incorporation of due dates. Earlier
in the paper, we mentioned that our industrial partner has
deployed solutionmethods to thePLP in the area of electronic
component manufacturing, where due dates and customer
priorities are modeled in terms of order priorities. How-
ever, other industrial applications need explicit control of due
dates, where orders should be finished at latest by a certain
production period. Furthermore, it can be useful to combine
such a due date objective with the consideration of order pri-
orities, as for example customer priorities could hardly be
modeled in form of due date constraints.

Fig. 8 Example solution, where order O1 (with priority 2) is split
between periods 1 and 2. This allows for an even better leveling with
respect to the first two objectiveswithout introducing newpriority inver-
sions (Color figure online)

In this section, we introduce an extended problem formu-
lation of the PLP that supports order splitting, the considera-
tion of resource constraints and due dates. First, the extended
production leveling problem PLP+is formally defined. Then
we provide an extension to the MIP model introduced in
Sect. 6.2 as well as four neighborhood relations that allow
us to use the simulated annealing algorithm presented in
Sect. 5.3 for PLP+.

6.1 The extended production leveling problem

Instances to the PLP+are defined by the same parameters as
specified for the PLP in Sect. 2, but include additional param-
eters that determine how many splits per order are feasible
and provide the parameters for the additional constraints. The
following lists the additional input parameters for the PLP+:

Input parameters

R = {1..o} Set of resources where o is the number of
resources

pdmin
j ∈ N the earliest period towhich an order j ∈ K

can be assigned without a penalty
pdmax

j ∈ N the latest period to which an order j ∈ K
can be assigned without a penalty

psmin
j ∈ {1..d j } the minimum size of any part of order j ∈

K
pcmax

j ∈ Z
+ themaximum number of parts of order j ∈

K
ru j,r ∈ R

+
0 the amount of usage of resource r ∈ R by

order j ∈ K
rumin

r ∈ R
+ theminimumpenalty-free usageof resource

r ∈ R in each period

123

356 Journal of Scheduling (2022) 25:339–370

rumax
r ∈ R

+ themaximumpenalty-free usageof resource
r ∈ R in each period

Since a single order can be split and planned into multiple
periods, the decision variables of the PLP+have to capture
additional information to the PLP. The following list contains
the variables for the PLP+:

Variables

– Variables xi, j determine the amount of order j which is
planned to be produced in period i . If a variable xi, j > 0,
we say that a part of order j is planned in period i .

xi, j ∈ Z
+
0 ∀i ∈ N , j ∈ K

– Auxiliary variables ystartj and yendj determine the periods
where the first and last part of an order j are planned:

ystartj = min({i ∈ N | xi, j > 0}) ∀ j ∈ K

yendj = max({i ∈ N | xi, j > 0}) ∀ j ∈ K

– The production volume for each period is stored in aux-
iliary variables wi :

wi =
∑

j∈K
xi, j ∀i ∈ N

– The production volume for each product type and period
is stored in auxiliary variables wi,t :

wi,t =
∑

j∈K :
t j=t

xi, j ∀i ∈ N ,∀t ∈ M

– Auxiliary variables ui,r ∈ R
+
0 capture the total usage

of resources in each of the planning periods, where the
resource usageof a single order part is determined relative
to the total order usage.

ui,r =
∑

j∈K
ru j,r · xi, j

d j
∀i ∈ N , r ∈ R

Hard constraints

In addition to the two production volume hard constraints
from the PLP, the PLP+defines another two hard constraints
that restrict the minimum size of a part and the maximum
number of parts an order can be split into:

– H3: The minimum part size is satisfied for every part of
every order:

∀i ∈ N , j ∈ K xi, j = 0 ∨ xi, j ≥ psmin
j

– H4: The maximum number of parts is not exceeded for
any order:

j ∈ K |{i ∈ N | xi, j > 0}| ≤ pcmax
j

Objective function

The three objectives f1, f2, f3 defined in Sect. 2 are also used
in the multi-objective function of the PLP+. However, f3 has
to be slightly reformulated to be compatible with the novel
variable definitions. Furthermore, two new objectives f4 and
f5 influence the quality of solutions to the PLP+depending
on the earliness/lateness of orders and the over- and under-
utilization of resources.

The following defines objectives f3, f4, f5 for the PLP+:

– Function f3 counts the number of priority inversions in
the assignment where they are redefined to handle order
splits. That is, f3 counts the number of order pairs (i, j)
for which i has a higher priority than j but in which i
finishes only after j starts.

f3 =|
{
(i, j) ∈ K 2 : pi > p j and yendi > ystartj

}
|
(obj3)

– The objective function f4 calculates a penalty for every
order whose first part is planned before the order’s mini-
mum period or whose last part is planned after the order’s
maximum period.

f4 =
∑

j∈K

(
max(pdmin

j − ystartj , 0) (obj4)

+ max(yendj − pdmax
j , 0)

)

– Objective f5 calculates a penalty for over-usage and
under-usage of resources.

f5 =
∑

r∈R

∑

i∈N

⎧
⎪⎪⎨

⎪⎪⎩

1 − ui,r
rumin

r
if ui,r < rumin

r
ui,r
rumax

r
− 1 if ui,r > rumax

r

0 otherwise.

(obj5)

Whereas objectives f1, f2, f3 can be normalized as speci-
fied in Sect. 2, objectives f4 and f5 are normalized as follows:

g4 = 1

n · k · f4 (obj4′)

123

Journal of Scheduling (2022) 25:339–370 357

g5 = 1

n · o · f5 (obj5′)

Objective g4 applies normalization through a division by the
number of orders times the number of periods. As the penalty
for each order is at most k, the normalized objective is also
guaranteed to be≤ 1.The resource objective g5 is normalized
by the number of periods and resources which normally also
leads to values between 0 and 1; however, the upper bound
is not strict. When looking at instances without resources, g5
must not be considered in the objective function because it
would yield a division by zero.

The final objective function for the PLP+is the following
weighted sum (with user-defined weights a1 − a5).

minimize g =a1 · g1 + a2 · g2 + a3 · g3 (obj+)

+ a4 · g4 + a5 · g5

6.2 Integer programmingmodel

In Sect. 4, an integer programming model for the PLP was
proposed. This model is now extended to the PLP+based
on the formal problem description specified in the previous
section.

In contrast to the integer programming model for the PLP,
the former binary decision variables xi j are converted to an
integer domain to model the planned production amount for
order j in period i and thus account for order splits.

The additional variables are defined as follows:

xi j ∈ Z
+ for each i ∈ N , j ∈ K stating how much

demand of order j is planned in period i
x̂i j ∈ {0, 1} for each i ∈ N , j ∈ K stating whether

a part exists in period i . A part exists for
order j in period i iff xi j > 0.

ystartj ∈ N for each order j ∈ K the period assign-
ment of its first part

yendj ∈ N for each order j ∈ K the period assign-
ment of its last part

u+
ir ∈ R

+ for each i ∈ N , r ∈ R the amount of over-
usage of resource r in period i

u−
ir ∈ R

+ for each i ∈ N , r ∈ R the amount of under-
usage of resource r in period i

vstartj ∈ Z
+ for each j ∈ K the amount of violation of

the earliest period soft constraint
vendj ∈ Z

+ for each j ∈ K the amount of violation
of the latest period (=̂ due date) soft con-
straint

This allowsus to express the twoadditional objective func-
tions as follows:

g4 = 1

2k
·
∑

j∈K

(
vstartj + vendj

)
(obj4MIP)

g5 = 1

n · o ·
∑

r∈R

∑

i∈N

(
u−
ir

rumin
r

+ u+
ir

rumax
r

)

(obj5MIP)

Together with the definition of g1 and g2 given in Sect. 4,
we have the following formulation of the PLP+:

minimize a1g1 + a2g2 + a3g3 + a4g4 + a5g5

such that

∑

i∈N
xi j = d j j ∈ K (16)

xi j ≤ d j · x̂i j j ∈ K (17)

ystartj ≤ i + (n − 1) · (1 − x̂i j) j ∈ K , i ∈ N (18)

yendj ≥ i · x̂i j j ∈ K , i ∈ N (19)

xi j ≥ psmin
j · x̂i j j ∈ K (20)

∑

i∈N
x̂i j ≤ pcmax

j j ∈ K (21)

yendi − ystartj ≤ (n − 1)zi j i, j ∈ K | pi > p j (22)

vstartj ≥ pdmin
j − ystartj j ∈ K (23)

vendj ≥ yendj − pdmax
j j ∈ K (24)

∑

j∈K
ru j,r · xi j

d j
− u+

ir ≤ rumax
r i ∈ N , r ∈ R (25)

∑

j∈K
ru j,r · xi j

d j
+ u−

ir ≥ rumin
r i ∈ N , r ∈ R (26)

yendi ≤ ystartj i, j ∈ K | pi ≥ p j , di = d j , ti = t j (27)

and that Eqs. (7)–(10) aswell as (12) fromSect. 4 are fulfilled.
Constraints (16)– (19) link auxiliary variables to the deci-

sion variables. Constraints (16) ensure that the total demand
of all parts of j equals the order’s demandd j . Constraints (17)
link the binary variables x̂i j to the decision variables xi j such
that xi j > 0 → x̂i j = 1. Constraints (18) and (19) link the
xi j to the ystarti and yendi variables so that they always hold
the period assignment of the first and last period of any part
of an order, respectively.

The sets of constraints (20)– (21) model the problem’s
hard constraints. Constraints (20) enforce the minimum part
size and (21) enforce the maximum number of parts into
which an order may be split.

Constraints (22)– (26) populate penalty variables for the
objective function. Constraints (22) link the ystarti and yendi to

123

358 Journal of Scheduling (2022) 25:339–370

the zi, j variables which track the number of priority inver-
sions. This ensures that for every pair of orders i, j where
i has a higher priority than j , zi j is 1 (representing a pri-
ority inversion) if order i finishes after order j starts. The
set of constraints (23) and (24) force the variables vstartj and

vendj to keep track of the violations of the allowed assignment

range. Constraints (25) and (26) force u+
ir and u

−
ir to contain

the amount of over-usage and under-usage of resource r in
period i . This is achieved by comparing with the amount of
planned resource usage which is given by the first summand.

Finally, there is one additional set of redundant constraints
for strengthening the formulation: Constraints (27) enforce
a dominance relation for all pairs of orders which have the
same product type and demand value, in a similar fashion as
in Eq. (11).

6.3 Neighborhood relations for simulated annealing

Tobe able to use our simulated annealing algorithmdescribed
in Sect. 5.3 for the PLP+as well, we propose four neighbor-
hood relations when approaching the PLP+with local search:
The first two are extensions of the search neighborhoods to
the PLP that we defined in Sect. 5. Instead of moving and
swapping complete orders, the new versions move and swap
single order parts. The third neighborhood splits and merges
order parts and is able to exchange demands between parts
of an order. Finally, the fourth neighborhood shifts all parts
of a single order at once.

In the following, we describe the neighborhood operators
in detail:

Move-part neighborhood Themove-part neighborhood of
a solution s consists of all solutions s′ whose only difference
from s is that one part of some order has been moved to a
different period. When splits are disallowed and thus every
order has exactly one part, this is equivalent to themove-order
neighborhood of the basic PLP version. When generating
random moves for this neighborhood, we uniformly sample
the order and the part as well as the target period.

Swap-parts neighborhood The swap-parts neighborhood
of a solution s consists of all solutions s′ whose only differ-
ence from s is that two parts of different orders, which are not
assigned to the same period in s, appear with swapped period
assignments in s′. In random neighborhood generation, the
parts to be swapped are chosen uniformly at random among
all pairs of parts of different orders, which are not already
assigned to the same period.

Split neighborhood The split neighborhood of a solution
s consists of all solutions s′ which differ from s only with
respect to one order, where the possible changes are:

– One part of that order is split into two parts, and the new
part is moved to some other period.

– Two parts of that order are merged.
– The sizes of two parts of that order are changed such that
the total size of the two parts together stays the same, and
both parts remain non-empty. In other words, demands
are moved from one part to another.

When the sampling split moves randomly, first, any single
order is chosen randomly. Then, the move is generated such
that the three options described above are equally likely.

Shift-order neighborhood The shift-order neighborhood
of a solution s consists of all solutions s′ which differ from s
only with respect to a single order, and whose parts all have
been shifted one period to the left or to the right. If a part
cannot be shifted any more because it is already in the first
or last period, it remains in that period. When the sampling
random shift order moves, orders are shifted to right or left
with equal probability.

7 Experimental evaluation

In this section, we evaluate the practical contributions of our
work. As the PLP is a new problem, we initially elaborate
on the problem instances and propose two instance genera-
tion procedures. The next subsection describes properties of
the test set, defines parameters, and describes the processing
environment.After that,we turn towards the actual evaluation
and look at the MIP model in detail. Then the metaheuristic
approach is extensively evaluated. Finally, we evaluate the
exact and metaheuristic approach for the PLP+.

7.1 Problem instances

In this paper, we have used real-life instances and randomly
generated instances, both of which will be described below.
The set of test instances is publicly available on the following
web page: https://dbai.tuwien.ac.at/staff/jvass/production
-leveling.

7.1.1 Real-life instances

The PLP emerges from a real-life use case of our industrial
partnerwhich also providedus somedata from the production
system. In total, we received 27 real-life PLP instanceswhich
all have 20 periods, four to eight product types, and 79 to
1585 orders. This set of instances is referred to as R1. As the
small number of instances in this instance set does not suffice
for a thorough evaluation, and because we also want to test
the scalability of our methods on even larger instances, we
designed two random instance generation procedures which
are described in the following.

123

https://dbai.tuwien.ac.at/staff/jvass/production-leveling
https://dbai.tuwien.ac.at/staff/jvass/production-leveling

Journal of Scheduling (2022) 25:339–370 359

7.1.2 Randomly generated instances

We devised two random instance generators, one which
produces instances whose optimal solution is known by
design and another one producing random instances with-
out any known solution. Both random generation algorithms
as well as their parameters have been developed and selected
togetherwith expert practitioners to achieve instances that are
similar to real-life instances from the electronics industry.

Perfectly solvable instances We devised a construction
method for generating instances which allow for a perfectly
balanced solution with zero cost. That is, of course, a restric-
tion of generality, but it is useful as a means of evaluating the
solution quality for large instances forwhich no solutions can
be found using exact methods and reasonable computational
resources. Despite the existence of a perfectly balanced solu-
tionwith no priority inversions, the instances are still not easy
to solve to optimality, at least not as long as the information
of perfect realizability to the solvers is not provided.

The instance generation process relies on the subroutine
for random integer partitioning shown inAlgorithm2. It takes
as arguments the integer to partition, the number of parts in
the partition, and a minimum value minV for each partition.
The main idea is to represent the number n as an array of
n − k ·minV zeros and then inserting k − 1 ones at random
positions. In the resulting array, an integer partition of the
number n − k · minV into k parts can be found by looking
at the number of zeros between every two neighboring ones.
Finally, we addminV to every element of the resulting array
to obtain the requested partition with minimum value minV.

Algorithm 2: Integer partitioning algorithm
Data: n, k, minV
Result: An array with k integers whose sum equals n, each of

which being ≥ minV
1 let array ← an array consisting of n − (k · minV) zeros;
2 Insert k − 1 ones into array at random positions;
3 let spaces ← number of zeros between the ones in array;
4 add minV to every element of spaces;
5 return spaces;

Using this partitioning algorithm, Algorithm 3 defines the
procedure for generating random instances with a fixed num-
ber of orders, periods, and product types, as well as a given
average demand per order. First, the total number of orders
is partitioned into one part for each period, where each part
has to have at least as many orders as we have product types.
This is important because the target for every product type
needs to be met in every period to achieve an objective value
of 0. The same thing is done for each period to decide upon
the number of orders for each product type.

Next, we draw the overall target value for the production
volume (which is the same for each period) by taking the
desired avgDemandPerOrder and multiplying with the aver-
age number of orders per period plus a random deviation of
at most 10%. This value is partitioned into one part for each
product, which is the demand for each product per period.

Finally, we need to partition the demand for each product,
whichhas beendetermined in line 4, into thenumber of orders
for each period and product that has been calculated in line
2. The priorities must be chosen such that no inversion can
exist, which is achieved by assigning each period a range
of priority values decreasingly such that the ranges do not
overlap, and randomly choosing for each order one of the
allowed values. From these data, the list of orders can be
built. Finally, the capacity limits are set to be 10% above the
planned demands per period and product type. The optimal
solution is also known from the construction process.

Algorithm 3: Procedure for the creation of a perfectly
solvable instance
Data: m, n, k, avgDemandPerOrder
Result: A realizable instance with m product types, n periods, k

orders, and the optimal solution
1 let ordersPerPeriod ← partition(k, n,m);
2 let ordersPerPeriodAndProduct ← partition(ordersPerPeriod[o],
m, 1) for every order o;

3 let plannedDemand ← k·avgDemandPerOrder
n ± 10%;

4 let plannedDemandPerProduct ← partition(plannedDemand, m,
max(ordersPerPeriodAndProduct));

5 let orderDemands ← partition(plannedDemandPerProduct[p],
ordersPerPeriodAndProduct[t, p], 1) for every period t and
product p;

6 let allowedPriorities ← for each period n a distinct set of
priorities s.t. they decrease with increasing n;

7 let orderPriorities ← choose for each order one of the priorities
which are allowed according to the period of the order;

8 build the list of orders and product types and shuffle them;
9 assign random product names;

10 let maxCapacity ← plannedDemand + 10 %;
11 let maxCapacityPerProduct[p] ←

plannedDemandPerProduct[p] + 10 % for every product type p;
12 return a new instance and an optimal solution;

Using Algorithm 3, we generated 1000 instances, sam-
pling the parameters for each one independently as follows:
The number of orders k is chosen from {100..4000}, the num-
ber of periods n from {2..80}, the number of product typesm
from {1..20}, and avgDemandPerOrder from {5..500}. The
resulting set of instances is subsequently called R2.

Random instances without a known solution We also
devised a second instance generation procedure where the
optimal solutions are not known by design, and it is not
guaranteed that there exists a feasible one. The instances
are designed to share some properties of the 27 realistic
instances:

123

360 Journal of Scheduling (2022) 25:339–370

– There exist only a limited number l � k of different
order demand values. This means orders are frequently
repeated (with varying priorities though).

– Orders of different product types draw their demand data
fromdifferent distributions.Whereas product amay have
demand values between 0 and 1000, product b may have
it between 0 and 5000.

– Sometimes there exist product types where fewer orders
than periods exist. This circumstance implies that in any
solution, the planned demand in some of the periods will
exceed the target, while for others it must be zero because
orders can only be assigned to periods as a whole.

The actual generation process is very simple.Given anum-
ber of orders k, periods n, and product typesm, the algorithm
works as follows:

1. Partition the number of orders k into m parts c1 . . . cm .
2. Choose the maximum priority of all orders pmax ∈

[1; 3n]
3. Choose between 1 and 50 allowed demand values

d ∈ [1; random(1000 − 5000)] for each product p,
named Dp.

4. For each product p ∈ [1;m], generate cp orders, choos-
ing the demand from the set Dp and the priority from
[0; pmax [.

5. To set the capacity limit c, we first calculate the target
demand d∗ as

∑
j∈K d j/n. The capacity limit c is then

derived from the d∗ by multiplying with a random value
from the normal distribution σ(1.1, 0.02).
Hence, c is in the expected case 10% larger than d∗. The
capacity limits ct for t ∈ M are chosen analogously.

Using this procedure, we generated the instance set R3

consisting of 1000 instances by sampling the parameters ran-
domly. The number of orders k is chosen from {100..4000},
the number of periods n from {2..80} and the number of prod-
uct typesm from {1..20}. Furthermore, we generated a set of
10 small instances, named R4, where the number of orders
k is chosen from {30..100}, the number of periods n from
{5..20} and the number of product types m from {1..5}.

7.2 Experimental setting

The instances which are described above are split into a train-
ing and a test set, so that the parameter tuning runs on the
training set and the evaluations are performed on the test set.
The test set consists of the whole set of realistic instances R1,
50 instances of R2, 50 instances of R3, and all 10 instances
in R4. Table 2 provides an overview of the instance sets and
the way they were split.

We chose to build the test set out of four different instance
types to ensure that our algorithms can cope with different

characteristics and sizes. The size distribution is shown by
Table 3,which states for each instanceparameter—k (number
of orders), m (number of product types), and n (number of
periods)—the minimum, maximum, and mean value on each
part of the test set. The smallest instances are R4, followed by
the realistic instances R1. The instances coming from R2 and
R3 are much larger on average, as we also want to evaluate
the scalability of our algorithms.

Hard constraint violations are not part of the objective
function but undergo a special treatment by reporting the
number of violated constraints as a separate number or sepa-
rate plot. In some cases, e.g., statistical significance tests, we
handle objective and constraint violations at once by adding
themup.Due to the smallmagnitude of the objective, a penal-
ization factor for hard constraint violations is not necessary.

In cooperation with our industrial partner, we decided to
set the default values for the weights of the objective function
components as follows: a1 = 1, a2 = 1, a3 = 1/3, a4 =
1, and a5 = 1. All experiments of the evaluation use this
weighting.

Wherever nothing different is stated, the algorithm param-
eters are defined as follows:

– The parameters of simulated annealing are tuned auto-
matically. The concrete process and the results are
described later on.

– The MIP model is executed using Gurobi Optimizer
8.1.1 (Gurobi Optimization 2019) on a single thread, a
time limit of 1 h, and otherwise the default settings.

All experiments were conducted on a computing cluster
with 10 identical nodes, each having 24 cores, an Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz and 252 GB of
memory, running Ubuntu 16.04.1 LTS. The metaheuristic
algorithms are implemented in C# and executed using Mono
4.2.1.

7.3 Evaluation of theMIPmodel

In this subsection, the MIP model presented in Sect. 4 is
investigated with respect to its empirical performance. We
first break down the results by the different instance sets of
which the test set is composed. Afterwards, we will investi-
gate how the instance size affects the solution quality.

The first experiment explores how well each part of the
test set can be solved using MIP. For a description of the
different parts, please refer to Table 3. Figure 9 visualizes
the shares of optimally solved, feasible but not optimally
solved, infeasible, and unsolved instances per group R1–R4.

The most noticeable difference between the sets is that in
R2 and R3, the vast majority of the instances are unsolved,
while for the other two, most of the instances are solved (but
still not proven optimal). Presumably, this is because most

123

Journal of Scheduling (2022) 25:339–370 361

Table 2 Overview of the different instance sets and the split into training and test sets

Name Count Description Training set selection Test set selection

R1 realistic_instance 27 Realistic instances – 01–27

R2 randomly_perfect 1000 Randomly generated perfectly solvable 0001–0950 0951–1000

R3 randomly_generated 1000 Randomly generated 0001–0950 0951–1000

R4 randomly_generated_small 10 Randomly generated, small – 1–10

Table 3 Minimum,maximum,mean, and standard deviation of number
of orders k, number of product types m, and number of periods n for
every part of the test set

Parameter Test set min max mean std

k R1 79 1585 307.19 412.56

R2 105 3896 1595.86 954.09

R3 112 3991 2076.76 1207.02

R4 34 98 61.20 19.70

m R1 4 8 6.93 1.24

R2 1 19 8.82 5.50

R3 1 19 9.04 5.48

R4 1 4 2.80 1.03

n R1 20 20 20.00 0.00

R2 4 78 39.50 22.48

R3 4 77 39.26 22.04

R4 7 18 10.90 4.04

of the instances in these sets are very large. Interestingly,
however, about 10% of the instances in R2 could be solved
to proven optimality, but not a single one in R3, even though
the instance sizes of the two sets were sampled from the same
distribution. One potential reason is that the instances in R2

are designed to have optimal solutions with objective value
0. This should make optimality proofs easy for the solver
once the optimal solution has been found, because no part of
the objective function can be negative.

For over 70% of the instances in the sets R1 and R4, the
MIPmodel was able to find a solution which, however, could
not be proven to be optimal. We want to investigate the qual-
ity of these solutions and use for that purpose the relative
optimality gap with respect to the best lower bound. It is
defined as the following percentage:

gap = 1 − b

s
= s − b

s
∈ [0, 1], (28)

where s is the incumbent cost, i.e., the best upper bound, and
b is the best lower bound on the solution cost provided by
the MIP solver. Clearly, if the solution found is optimal, the
gap is equal to zero; the larger the deviation between upper
and lower bounds, the closer the gap is to a value of 1.

Fig. 9 Share of solution statuses of MIP for each subset of the test
set. Optimal means proven optimal. Suboptimal implies that a solution
has been found but it has not been proven that it is optimal. Unsolved
means that within the time limit, no solution has been found, and it is
thus unclear whether there exists a feasible solution at all. Infeasible
means that the solver proved that no feasible solution exists (Color
figure online)

Table 4 Optimality gap of MIP for suboptimal instances in R1 and R4

Min (%) Max (%) Mean (%) Std dev (%)

R1 0.99 11.65 3.96 2.55

R4 0.63 98.85 31.14 41.52

Table 4 shows the minimum, maximum, and mean opti-
mality gap aswell as the standard deviation for all suboptimal
solutions in R1 and R4. With an average gap of only 3.96%,
the realistic instance set R1 is solved very well, so that the
MIP model might be usable in practice when the instances
are not too large and a runtime of 1 h is not an issue. On
the other hand, R4 has a low minimum and a high maximum
gap, as well as a large standard deviation. This means that
the randomly generated instances are quite difficult to solve
using MIP, even though those in R4 are generally smaller
than the realistic ones.

Finally, we investigate in greater detail how the instance
size correlates with the results of the MIP model. Figure 10
visualizes the solution statuses of all instances in the test set,
grouped by the number of orders k, the number of product
types m, and the number of periods n, from left to right. The
most apparent relationship is a correlation between the num-

123

362 Journal of Scheduling (2022) 25:339–370

Fig. 10 Solution statuses of MIP on the test set, grouped by value
ranges of instance features. Optimal means proven optimal. Subopti-
mal implies that an integer solution has been found, but it has not been
proven that it is optimal. Unsolved means that within the time limit,

no integer solution has been found, and it is thus unclear whether there
exists a feasible solution at all. Infeasible means that the solver proved
that no feasible solution exists (Color figure online)

ber of orders k and the percentage of unsolved instances.
While below 250 orders almost every instance has been
proven either feasible or infeasible, the share of unsolved
solutions increases drastically when increasing k. The status
by # product types and status by # periods plots show that the
share of unsolved instances also increases with an increas-
ing number of periods and product types, but it starts already
quite high in the smallest bin.We can conclude that instances
with 250 or fewer orders can be solved with high probabil-
ity by the MIP model, but there is no such bound which we
can state on the number of periods or product types. While
increasing n andm clearly complicates the problem, making
them small does not automatically make the problem easy to
solve.

7.4 Evaluation of metaheuristics

As we have seen, the MIP formulation is not suitable for
solving large instances, which is why local search methods
for the PLP have been investigated as well. In this subsec-
tion, we will first deal with the automatic parameter tuning
for simulated annealing and validate the claim that it is sound
to fix the cooling rate. Thereafter, another experiment inves-
tigates the sensitivity of simulated annealing to variations in
theweighting of the neighborhoods. Finally,we examine how
close the metaheuristic solutions get to the global optima by
using dual bounds obtained through MIP and the perfectly
solvable instance set R2.

7.4.1 Algorithm configuration

As described in Sect. 5.3, simulated annealing depends
on parameters whose setting has a huge influence on the
algorithm’s efficiency and effectiveness. We deal with their
configuration bymeans of sequential model-based algorithm
configuration (SMAC), an automatic algorithmconfiguration
tool written in python. It relies on Bayesian optimization in

combination with an aggressive racing mechanism to effi-
ciently search through huge configuration spaces (Lindauer
et al. 2019).

We applied SMAC to tune the parameters of simulated
annealing as it was presented above. The set of instances
which was used for the tuning can be found in the column
Training set selection of Table 2. The parameter optimization
was executed for 24 h on 24 cores in parallel with a time
limit of 5 min per run and no iteration limit. The cooling rate
was not tuned but was set to a value of 0.95, which is not a
restriction of generality as long as the number of iterations
per temperature can still be adjusted (see Fig. 7). This claim
will be verified in a separate experiment later on.

We tuned the initial temperature tmax, the number of
iterations per temperature w, and the probability p that
the move neighborhood is used to generate the next ran-
dom move (hence, 1 − p is the probability of the swap
neighborhood). Tuning the minimum temperature tmin is not
necessary, because the results cannot get worse when simu-
lated annealing is run until the time limit instead of aborting
when the minimal temperature is reached. Indeed, prelimi-
nary results showed that setting the minimum temperature to
zero instead of using the tuning results of SMAC improves
results to a small but significant extent. The configuration
space with minimum and maximum values as well as the
defaults and the tuning result is shown in Table 5.

7.4.2 Experiments about fixing the cooling rate

Weclaimed inSect. 5.3 that the cooling rateα could be set to a
constant value because itwas redundant as long as the number
of iterations per temperature w is free. During the algorithm
configuration, this had already been taken into account by
setting α ← 0.95. Now we want to verify this claim by
means of an experiment. Four more cooling schedules are
derived from the one defined by the result of parameter tuning
whose temperature profile follows the same slope. Then each

123

Journal of Scheduling (2022) 25:339–370 363

Table 5 Configuration space of simulated annealing

Parameter Type Minimum Maximum Default Tuned

Iterations per temperature Integer 103 106 103 2.52 × 105

Move neighborhood probability (%) Integer 0 100 50 40

Initial temperature Real 0.1 10.0 5.0 0.22

Minimum temperature Real (fixed) 0 0 0 0

Cooling rate Real (fixed) 0.95 0.95 0.95 0.95

configuration is benchmarked on the whole test set ten times
with different random seeds and taking the median of the
objective values and number of constraint violations for each
instance.

Section 5.3 already introduced Eq. (15), which allows us
to derive cooling schedules with equal average slopes. We
selected the alternative cooling rates of 0.5, 0.75, 0.9, and
0.99 and computed the associated values of w. A summary
of the resulting cooling schedules is shown in Table 6.

Figure 11a shows a box plot for each of the schedules,
each of them plotting the median objective value resulting
from the derived schedule divided by the median objective
value resulting from the original schedule, per instance. The
original schedule does, of course, not differ from itself, while
the other schedules bring an improvement for some instances
and worse results for others. For the three higher values of
α, more than 50% of the data are in the range ±1%, as are
nearly all the rest in ±2% (except for a couple of outliers
outside the plotting range). The median shown by the box
plots of the schedules α = 0.9 and α = 0.99 is almost
exactly at 1, whereas the other two variants have median dif-
ferences slightly higher than1, and thewhiskers reach farther,
although the differences are still very small. Figure 11b visu-
alizes the same for the number of hard constraint violations,
except that we do not divide but take the difference between
the alternative schedules and the original one because the
interpretation is more intuitive in this case. The whole box
plot except for some outliers is zero, which means that for
most of the instances there is no change in the number of hard
constraint violations. However, there are a few outliers going

Table 6 Five equivalent cooling schedules which have the same slope
on average. The value for w in the line with α = 0.95 comes from
parameter tuning, and the rest have been derived so that the slope does
not change

Cooling rate α Iterations per temperature w

0.50 3,412,581

0.75 1,416,349

0.90 518,723

0.95 252,533

0.99 49,481

down to −1, which means that for these instances, the alter-
native schedules have one fewer violation. Compared to the
137 instances of the test set, however, the number of outliers
is very small.

To clarify whether the differences in the median of α =
0.5 and α = 0.75 are statistically significant, we conducted a
Wilcoxon signed-rank test between the original schedule and
each of the derived ones. To also take into account the hard
constraint violations, their numberwas added to the objective
value as a penalty. The null hypothesis was that themedian of
the differenceswould be zero, and the alternative that itwould
be different from zero. We want to reject the null hypothesis
in the case of a p-value smaller than 0.05. The result of the
tests yielded a p-value of 2.6 · 10−8 for α = 0.5, 0.041
for α = 0.75, 0.966 for α = 0.9, and 0.26 for α = 0.99.
This implies that we must reject the null hypothesis for the
schedules with α ≤ 0.75. For the other two schedules, the
statistical test does not let us reject the null hypothesis that
the differences which we see are the result of chance.

To sumup, the claim thatα can be changedwithout chang-
ing the result is valid in our setting as long as α is set high
enough (i.e., in our experiment at least 0.9). This implies that
we were on the safe side when fixing it to 0.95 during param-
eter tuning. For values α ≤ 0.75, the experiment showed a
statistically significant 0.1% increase of themedian objective
value compared to the default configuration.

7.4.3 Sensitivity to neighborhood weightings in simulated
annealing

Before selecting the next random move in the simulated
annealing algorithm, the neighborhood is chosen randomly
according to some weighting. This weighting has been tuned
by SMAC, resulting in a probability of 0.4 for the move
neighborhood and 0.6 for the swap neighborhood. The tun-
ing progress of SMAC revealed quite large fluctuations in
this weighting. Therefore, we conduct a sensitivity analy-
sis to find out what impact different weightings have on the
results.

We evaluate six different weightings, one of which is the
result of SMAC. The probability p for the move neighbor-
hood in the six scenarios ranges from 0 to 1 in steps of 0.2,

123

364 Journal of Scheduling (2022) 25:339–370

(a) (b)

Fig. 11 Results of the experiment regarding different cooling schedules. All the results are comparisons per instance against the schedule with
α = 0.95

and the probability of the swap neighborhood is the comple-
mentary probability 1 − p. Each configuration is executed
on the test set 10 times with the usual time limit of 5 min.
The runs are again aggregated using the median.

Figure 12 shows on the top a box plot for each of the
alternative weightings, each of them plotting the associated
objective value divided by the objective value of the original
weighting. The labels “x - y” mean that the move neighbor-
hoodhasweight x and that the swapneighborhoodhasweight
y. The objective value becomes worse in the extreme cases,
which can be seen because the leftmost and the two rightmost
boxes lie completely above the dashed line. The other cases
are practically equal, which means that the objective value
does not change compared to the reference weighting.

In the plot shown at the bottom of Fig. 12, the difference
of the number of hard constraint violations to the respective
number of the reference weighting “40–60” is shown. All
boxes contained in {0} are completely flat, which means that
the interquartile range is equal for allweightings. The outliers
show that a few instances of the extreme configurations have
one or two more hard constraint violations than the reference
configuration, while the weightings “20–80” and “60–40”
have tendentially fewer.However, compared to the number of
137 instances contained in the test set, the number of outliers
is very small, so that the significance of this difference must
be doubted.

To sum up, the tested neighborhood weightings between
“20–80” and “60–40” are equally good; therefore, it can be
expected that the untested weightings in between are good as
well. Using one of the otherweightings leads toworse results,
especially in the case where only the move neighborhood is
used.

Fig. 12 Results of the experiment regarding neighborhood weight-
ings. All the results are comparisons per instance against the schedule
“40–60.” The first number of each label is the weight of themove neigh-
borhood and the second the weight of the swap neighborhood

7.4.4 Optimality gap of metaheuristic solutions

Experiments with our test data set showed that simulated
annealing (with 5-min timeout) manages to solve 115 out of

123

Journal of Scheduling (2022) 25:339–370 365

Fig. 13 Comparison of the optimality gap of valid solutions obtained
through greedy, simulated annealing, and MIP. Marks are missing for
solutions that violate constraints. The gap is computed using the dual

bounds of MIP. The evaluation contains all instances of R1 and R4
which could be solved with an optimality gap of 10% or lower using
MIP

137 instances without violations of hard constraints. This is
in contrast to only 74 for the greedy approach. To be able
to judge the quality of simulated annealing in a more sys-
tematic fashion, we consider the deviation from the optimal
solution. As stated previously, this deviation is expressed in
terms of the relative optimality gap as defined in Eq. (28) and
is calculated by taking 1 minus a lower bound divided by the
objective value. The rest of this section presents an evalua-
tion of the size of the optimality gap of solutions obtained
with simulated annealing. The optimality gap is calculated
by using the lower bounds obtained through MIP. However,
as MIP only solved a small fraction of large instances well
enough to obtain good lower bounds, we needed to restrict
this analysis to the instance sets R1 and R4.

Optimality gap for small instances: We want to analyze
the optimality gap of the solutions produced by our meta-
heuristic approaches. Therefore, the best dual bound found
by the MIP solver can be used. To obtain even better bounds,
we executed the solver again with a time limit of 10 h and
used for each instance the best available bound. The opti-
mality gap evaluation is restricted to the instances in R1 and
R4 because these are the only sets where sufficiently good
bounds could be obtained within the time limit. Furthermore,
we select the subset of instances whose optimality gap of the

best MIP solution is below 10% because it can only be safely
assumed that the dual bound is good if MIP’s optimality gap
is small. This step eliminates eight instances of R1 (30%) and
four of R4 (40%), which means that 25 instances remain in
the evaluation. By using the best bound, the optimality gap
for each of the metaheuristic approaches is calculated on the
selected instances.

Figure 13 shows the optimality gap for each instance in
the reduced set for the greedy heuristic, simulated anneal-
ing, and MIP. For solutions which are not valid because of
constraint violations, no mark is shown. The figure conveys
that the solutions found by the greedy construction heuristic
have gaps between 10% and 25%, and a considerable num-
ber of instances are not solved to feasibility at all. Simulated
annealing always produced valid solutions which have a sim-
ilar optimality gap as the MIP solutions, and in several cases
even better. The gap is almost always below 5% and with an
average of about 3%.

The resulting numbers state how large the relative differ-
ence between metaheuristic and optimal solutions is at most
4. This result is interesting because it proves that our simu-
lated annealing approach solves the majority of the small

4 The gap is calculated using the best lower bound which was proven
by the MIP solver. As most of the solutions were not proven optimal,

123

366 Journal of Scheduling (2022) 25:339–370

instances (which includes most of the realistic instances)
extremely well. On average, the solutions are at most 3%
above the optimal one.

Comparison on large randomly perfect instancesR2: The
instances in R2 have been constructed in a way that the opti-
mal solutions are known and have the objective value 0. This
enables us to also draw some conclusions about the solution
quality for larger instances than those forwhichwe can obtain
bounds using MIP. However, the optimality gap as defined
in Eq. (28) does not shed light on the solution quality for
instances in R2. Indeed, since the best known lower bound is
zero for all instances in R2, the gap of non-optimal solutions
(i.e., for solutions with objective value greater than zero)
is equal to 1, irrespective of the actual value of the objec-
tive. Instead, we can assess the solution quality by taking a
closer look at the components of the objective function. The
first objective function component g1, defined in Eq. (obj1′),
states, informally speaking, the gap to a hypothetical per-
fectly leveled solution averaged over all periods. In case of
the instances R2, this hypothetical solution actually exists,
and the value g1 can be interpreted as the average percentage
by which planned demand for each period exceeds or falls
short of the target. The same argument holds for g2, defined
in Eq. (obj2′), which states the average percentage by which
planned demand for each period exceeds or falls short of the
target, averaged over the different product types and peri-
ods. The objective component g3, defined in Eq. (obj3′), can
be interpreted as the percentage of actual priority inversions
measured against the theoretical maximum number of inver-
sions (k − 1) · k/2.

Table 7 shows the values of g1, g2, and g3 averaged over
all instances in R2 where a valid solution has been reached.
The fourth column reports the percentage of valid solutions.
We can see that simulated annealing reaches negligible mean
deviations for the first two objectives. However, the greedy
heuristic also produces leveling which deviates from the tar-
get by only 2% on average, so it can be assumed that this
part of the task is not very hard for this instance set. With
respect to the priority objective, the results leave more room
for improvement. The greedy heuristic reaches a better value
here than simulated annealing, but at the cost of fewer valid
solutions. It is not entirely clear why the results on R2 differ
so much from the results which are obtained on the other
parts of the test set. We suspect that it can be understood
as follows: the greedy heuristic can find very good initial
solutions on this instance set; however, some of this good
structure is lost again by simulated annealing when it starts
with a random search.

For the instance set R3, simulated annealing finds feasible
solutions for more than 65% of instances. Detailed results

the bounds are most probably smaller than the optimal objective value
and thus the calculated gap an upper bound of the actual gap.

Table 7 Results of metaheuristic methods on R2. The values of the
objective function components g1, g2, and g3 multiplied by 100 so
that they can be interpreted as percentages for each algorithm for each
instance of R2 where a valid solution has been reached. The rightmost
column states the percentage of the solutions for which each algorithm
reached a valid solution

g1(%) g2(%) g3(%) valid (%)

Greedy 1.78 2.25 1.78 78.00

Sim. Ann. (median) 0.32 0.47 7.95 92.00

Optimum 0.00 0.00 0.00 100.00

of simulated annealing on this instance set are given in Vass
(2019).

To sum up, the above analysis of the optimality gap on
small and realistic instances as well as the analysis of the
solution cost for larger perfectly solvable instances revealed
that our metaheuristic methods produce solutions which are
only a few percentage points from the optimum.We can con-
clude that simulated annealing is well suited for solving the
PLP in practice, because it both solves small instances almost
perfectly and is able to handle large real-world instances.

7.5 Experimental evaluation of the PLP+

In this section, we give an overview of our experiments con-
ducted for the extended production leveling problem (PLP+).
The goal of these experiments is to verify whether our cho-
sen approach for solving the PLP, i.e., MIP for small and
simulated annealing for larger instances, is also suitable for
solving the PLP+.

Instance generation
To generate instances for the PLP+, we extend the random

instance generator proposed in 12 for the PLP with addi-
tional input parameters regarding splitting, resources, and
due dates. First, an instance is created with a given a number
of orders k, periods n, and product types m according to the
process described in 12. This instance is extended using the
following process:

1. Resource usage:

(a) We randomly select a usage value between 0.0 and
1.0 for each product type. This usage value deter-
mines the resource usage per unit of demand for the
particular product type.

(b) For each resource r , the average usage per period
ūr is calculated. Then, the maximum deviation per-
centage dmax is drawn from the normal distribution
σ(0.1, 0.02), i.e., 10% on average. Finally, the min-
imum resource usage rumin

r is set to (1 − dmax) · ūr ,
and the maximum resource usage rumax

r is set to
(1 + dmax) · ūr .

123

Journal of Scheduling (2022) 25:339–370 367

(c) For every order, the usage of each resource is calcu-
lated by multiplying the order demand d j with the
previously chosen usage factor. The resulting value
is rounded up.

2. Due dates:

(a) Randomly choose the earliest start pdmin
j from

{1..�3/4 · n�} and
(b) the latest end pdmax

j from {pdmin
j +1, . . . , n} for each

order.

3. Splitting of orders:

(a) For each order j , randomly choose the maximum
number of parts per order pcmax

j from {1..10}.
(b) For each order j , randomly choose the minimum part

size psmin
j from {1..�1/2 · d j�}5

Using the instance generation procedure, we generated a
total of 986 realistically sized large instances for our experi-
ments. The following parameters were sampled uniformly at
random: The number of orders k is chosen from {100..4000},
the number of periods n from {2..80}, the number of product
types m from {1..20} and the number of resources o from
{1..5}. These instances form the set R5.

Additionally, we generated another set denoted as R6 of
20 smaller instances, using the following randomparameters:
The number of orders k is chosen from {10..100}, the number
of periodsn from {5..10}, the number of product typesm from
{1..3} and the number of resources o from {0..3}.

Parameter TuningAs for the basic PLP, we used SMAC to
tune the initial temperature tmax, the minimum temperature
tmin, the number of iterations per temperaturew, and aweight
for each of the four neighborhood relations (p1−4), which
determines how often it is selected for the next move. The
automatically tuned parameters set the weights for the move
part and shift order neighborhoods to zero, which disables
these two neighborhood operators. We therefore evaluated,
in addition to the automatically tuned algorithm parame-
ters (C1), two manually selected parameter configurations
that include all neighborhood operators: one that we selected
based on manual tuning with a number of conducted bench-
marks (C2), and another one that uses an equal weight for all
four neighborhood operators (C3). Table 8 shows the details
for the three parameter configurations evaluated in our exper-
iments.

Computational results In a first series of experiments, we
evaluated the performance of our methods on the instance
set R6 containing 20 small instances. In order to give the
MIP approach sufficient time to prove optimal solutions, the

5 Note that an order can only be split into two parts if the demand is
at least twice as large as the minimum part size. Therefore, psmin

j is
chosen so that splitting is possible.

Table 8 Overview of the algorithm parameter configurations used for
experimental evaluation

Parameter C1 C2 C3

Initial temperature 6.2 0.01 0.1

Minimum temperature 0.00076 10−9 10−9

Iterations per temperature 154,788 300, 000 300, 000

Move part weight 0 4 2.5

Swap parts weight 7 2 2.5

Split order weight 3 3 2.5

Shift order weight 0 1 2.5

Cooling rate 0.95 0.95 0.95

Table 9 Summarized results of the experiments on the test set R6. The
rows of the table display, from top to bottom, the number of feasible
solutions found, the number of best upper bounds produced, and the
number of optimal solutions achieved by each method

Gurobi SA C1 SA C2 SA C3

Solved 20 20 20 20

Best 13 3 4 0

Optimal 4 0 1 1

time limit for all experiments was set to 1 h. The simulated
annealing algorithm was run under the same time limit with
each of the three parameter configurations (C1,C2,C3) on
the instances. We performed 10 repeated runs with every
configurationon each instance, andused themedianobjective
value from the 10 runs to compare the final results between
the different methods.

Table 9 gives an overview of the experimental results for
the set R6. The first row of the table shows the number of
instances where the evaluated methods could produce feasi-
ble solutions within the time limit, whereas the second row
counts the number of overall best upper bounds achieved by
each method. Finally, the third row displays the number of
optimal solutions found. We can see that all methods were
able to produce feasible solutions for every instance. The
exact approach using the Gurobi solver produced the best
results for the majority of the instances, followed by simu-
lated annealing with the manually tuned and automatically
tuned parameter configurations. Gurobi was able to prove
optimal solutions for four of the instances, while simulated
annealing was able to reach one optimal solution.

Detailed results of experiments with the small instances
are visualized in Fig. 14. In addition to the achieved results
by Gurobi and the simulated annealing approach, the figure
also displays the best lower bounds found by the mixed inte-
ger programming approach. All objective values are shown
relative to the overall best found objective value, and there-
fore costs of 1 denote the overall best found solution costs

123

368 Journal of Scheduling (2022) 25:339–370

Fig. 14 A visualization of the experimental results for the 20 small
instances in the set R6. The horizontal axis represents the 20 evalu-
ated instances, whereas the vertical axis measures the achieved relative
objective values (solution cost produced by each method divided by the
overall best found solution cost) (Color figure online)

Fig. 15 Box plots comparing the overall results achieved on the set
R6. The vertical axis measures the achieved relative objective values
(solution cost produced by each method divided by the overall best
found solution cost) (Color figure online)

(results with a lower bound value of 1 denote proven optimal
solutions).

We can see that for the majority of the instances, the exact
approach produces the best results. The simulated annealing
approach produces similar outcomes with all three evaluated
parameter configurations; however, the best results are pro-
duced with the manually tuned parameter configuration for
the set of smaller instances in a few cases. Compared to the
exact method, the simulated annealing algorithm can provide
a similar solution quality on the majority of the instances,
except for instances 5, 7, 8, 13, and 15, where Gurobi is able
to produce the best results.

Figure 15 further visualizes the summarized results as box
plots.We can see thatGurobi produces the overall best results
for the set of small instances. All three parameter config-
urations for simulated annealing give similar results, with
configurations C2 and C3 producing slightly better results
than configuration C1.

In a second series of experiments, we evaluated the per-
formance of the proposed methods on the instance set R5

which contains 986 large randomly generated instances. Sim-
ilarly as with the first series of experiments, we conducted 10
repeated runs for each simulated annealing parameter con-

Table 10 Summarized results of the experiments on the set R5. The
rows of the table display, from top to bottom, the number of feasible
solutions found, the number of best upper bounds produced, and the
number of optimal solutions achieved by each method

Gurobi SA C1 SA C2 SA C3

Solved 30 927 936 939

Best 3 758 95 95

Optimal 0 0 0 0

Fig. 16 Box plots comparing the overall results achieved with the sim-
ulated annealing approach on the set R5. The vertical axis measures
the achieved relative objective values (solution cost produced by each
method divided by the overall best found solution cost). Note that some
outliers have been excluded for an improved visual comparison (Color
figure online)

figuration per instance and used the median objective value
to compare the results between the evaluated methods. We
used a 5-min time limit for the set of larger instances.

The results of the experiments on the set R5 are summa-
rized in Table 10. Similarly as in Table 9, the first row of the
table shows the number of instances where a feasible solu-
tion could be found, the second row counts the number of
best upper bounds found by each method, and the third row
displays the number of proven optimal solutions.

The results show that no approach is able to produce feasi-
ble solutions for all 986 instances within the time limit6. The
exact method using Gurobi could only obtain 30 feasible
solutions and three best upper bounds, whereas the simu-
lated annealing approach is able to solve the large majority
of instances in our experiments. We can see that simulated
annealing with parameter configurations C2 and C3 was
able to obtain a slightly larger number of feasible solutions
than C1. However, most best solutions were produced using
parameter configuration C1. No optimality proofs could be
achieved within the given time limits.

Figure 16 visually compares the produced solution qual-
ities achieved by simulated annealing with parameter con-
figurations C1,C2 and C3 for the instances that could be
solved by all three configurations. One can see that, overall,

6 There is no guarantee, though, that every instance actually has a fea-
sible solution.

123

Journal of Scheduling (2022) 25:339–370 369

the automatically tuned algorithm configurationC1 produces
the best results in our experiments, whereas configurations
C2 and C3 both produce solutions of slightly lower quality.

In summary, our experiments show that the exact approach
obtains the best results for most of the small instances (set
R6). However, in experiments with the larger instances (set
R5), the integer programming solver turned out not to be
competitive compared to the simulated annealing approach.
Overall, the three evaluatedparameter configurations for sim-
ulated annealing produced a very similar number of feasible
solutions, but the automatically tuned configuration that only
uses the swap and split neighborhood operators produced the
best results for themajority of the larger instances,which also
explains why this configuration was selected by automated
parameter tuning as it produces the overall best configura-
tion for all benchmark instances. However, we observe that
configurations whichmake use of all four investigated neigh-
borhood operators produced slightly better results on the set
of smaller instances R6 in our experiments.

8 Conclusion

We introduced a new real-life combinatorial optimization
problem in the area of production planning, which concerns
the assignment of orders to production periods. It involves
several production capacity constraints, a work balancing
objective, and an order prioritization objective that must be
optimized.

The main findings of this work are:

– The PLP is NP-hard. A tractable case, the fixed-order
PLP, is identified, and a polynomial-time algorithm pre-
sented.

– The proposed MIP model solves instances up to medium
size. The complexity of solving grows with every dimen-
sion of the problem, but most notably with the number
of orders k. For instances with fewer than 250 orders,
either a feasible solution or the proof of infeasibility can
be expected within 1 h of time, while we cannot count on
finding any solution for instances with k ≥ 300.

– With simulated annealing, very good solutions can be
obtained within 5 min. The real-life instances can all be
solved well, and for most of them we can show through
the use of dual bounds that the solutions are within 3%
of optimality on average. Experiments based on the set
of instances with perfectly leveled solutions indicate that
simulated annealing is also capable of providing very
good solutions for much larger instances.

– An experiment regarding the weighting of the two neigh-
borhoods in simulated annealing showed that it is clearly
advantageous to use both neighborhoods instead of either
of them alone.

– We introduced the PLP+, an extension of the PLP
which allows us to tackle order splitting, due dates, and
resources.Via a series of experiments on randomly gener-
ated instances, similar results as for the PLPwere shown:
our MIP formulation allows us to find optimal solutions
for small instances with up to 100 orders. For larger
instances of a realistic size, an extension of our simu-
lated annealing algorithm with four new neighborhoods
finds feasible solutions for most of the instances within
a reasonable time limit. Based on the configuration pro-
vided by the automated parameter tuner SMAC, we can
conclude that the most important neighborhoods are the
swap parts and split moves.

To sum up, this paper introduces a new planning problem
that arises in the field of industrial production and presents
methods that enable very good solutions to be found for real-
life instances. Building upon these results, several directions
for future work present themselves: First, it would be inter-
esting to investigate other metaheuristic approaches such
as tabu search to escape local optima. Second, one could
investigate an approach that hybridizes the proposed exact
and metaheuristic techniques within the framework of large
neighborhood search. Moreover, it would be interesting to
investigate how the dynamic programming algorithm pre-
sented for the fixed-order PLP can be exploited to improve
solution methods for the PLP. For instance, it could be used
to produce initial solutions for the PLP.

Acknowledgements The financial support by the Austrian Federal
Ministry for Digital and Economic Affairs, the National Foundation
for Research, Technology and Development and the Christian Doppler
Research Association is gratefully acknowledged.

Funding Open access funding provided by TU Wien (TUW).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Alon, N., Azar, Y., Woeginger, G. J., & Yadid, T. (1998). Approxi-
mation schemes for scheduling on parallel machines. Journal of
Scheduling, 1(1), 55–66.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

370 Journal of Scheduling (2022) 25:339–370

Boysen, N., & Fliedner, M. (2011). Scheduling aircraft landings to
balance workload of ground staff. Computers & Industrial Engi-
neering, 60(2), 206–217.

Boysen,N., Fliedner,M.,&Scholl, A. (2007).A classification of assem-
bly line balancing problems. European Journal of Operational
Research, 183(2), 674–693.

Boysen,N., Fliedner,M.,&Scholl,A. (2009). The product rate variation
problem and its relevance in real world mixed-model assembly
lines. European Journal of Operational Research, 197(2), 818–
824.

Castro, C., & Manzano, S. (2001). Variable and value ordering when
solving balanced academic curriculum problems. In Proceedings
of 6th Workshop of the ERCIM WG on Constraints..

Chiarandini, M., Di Gaspero, L., Gualandi, S., & Schaerf, A. (2012).
The balanced academic curriculum problem revisited. Journal of
Heuristics, 18(1), 119–148.

Coleman, B. J., & Vaghefi, M. R. (1994). Heijunka (?): A key to the
toyota production system. Production and Inventory Management
Journal, 35(4), 31.

Deb, K. (2014).Multi-objective optimization. In Searchmethodologies,
(pp. 403–449), Springer .

DiGaspero, L.,&Schaerf,A. (2008).Hybrid local search techniques for
the generalized balanced academic curriculum problem. In M. J.
Blesa, C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo, A. Roli,
and M. Sampels, (Eds.), Hybrid Metaheuristics, 5th International
Workshop, HM 2008, Málaga, Spain, October 8-9, 2008. Pro-
ceedings, volume 5296 of Lecture Notes in Computer Science,
pp. 146–157. Springer .

Flajolet, P., & Sedgewick, R. (2009). Analytic combinatorics. Cam-
bridge University Press.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability
(Vol. 174). W. H.

Gurobi Optimization, L. (2019). Gurobi optimizer reference manual .
URL http://www.gurobi.com.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598), 671–680.

Kubiak, W. (1993). Minimizing variation of production rates in just-
in-time systems: A survey. European Journal of Operational
Research, 66(3), 259–271.

Kubiak,W.,&Yavuz,M. (2008). Just-in-time smoothing through batch-
ing. Manufacturing & Service Operations Management, 10(3),
506–518.

Lackner, M.-L., Vass, J., & Musliu, N. (2019). Extended Complexity
Results for the Production Leveling Problem. Technical Report
CD-TR 2019/2.

Lindauer, M., Eggensperger, K., Feurer, M., Falkner, S., Biedenkapp,
A., & Hutter, F. (2019) SMAC v3: Algorithm configuration in
python. URL https://github.com/automl/SMAC3.

Miettinen, K. (2012). Nonlinear multiobjective optimization (Vol. 12).
Springer Science & Business Media.

Miltenburg, J. (1989). Level schedules for mixed-model assembly lines
in just-in-time production systems. Management Science, 35(2),
192–207.

Mullinax, C., & Lawley, M. (2002). Assigning patients to nurses in
neonatal intensive care. Journal of the Operational Research Soci-
ety, 53(1), 25–35.

Ohno, T., & Rosen, C. B. (1998). Toyota production system: Beyond
large-scale production. Productivity Press.

Punnakitikashem, P., Rosenberber, J. M., & Buckley-Behan, D. F.
(2013). A stochastic programming approach for integrated nurse
staffing and assignment. IIE Transactions, 45(10), 1059–1076.

Schaus, P. (2009). Solving balancing and bin-packing problems with
constraint programming. PhD thesis, UCL -Université Catholique
de Louvain. URL https://dial.uclouvain.be/pr/boreal/en/object/
boreal%3A23871.

Schaus, P., Hentenryck, P. V., & Régin, J.-C. (May 2009). Scalable
load balancing in nurse to patient assignment problems. In W. J. v.
Hoeve and J.N.Hooker (Eds.) Integration ofAI andORTechniques
in Constraint rogramming for Combinatorial Optimization Prob-
lems, 6th International Conference, CPAIOR 2009, Pittsburgh,
PA, USA, May 27-31, 2009, Proceedings, volume 5547 of Lec-
ture Notes in Computer Science, pp. 248–262. Springer .

Schreiber, E. L. (2014). Optimal multi-way number partitioning. PhD
thesis, University of California.

Schwerdfeger, S., & Walter, R. (2016). A fast and effective subset sum
based improvement procedure for workload balancing on identical
parallel machines. Computers & Operations Research, 73, 84–91.

Skiena, S. . S. (1998). The algorithm design manual. Springer Science
& Business Media.

Vass, J. (2019). Exact and metaheuristic approaches for the produc-
tion leveling problem.Master’s thesis, TUWien, https://repositum.
tuwien.at/handle/20.500.12708/6542.

Vass, J.,Musliu,N.,&Winter, F. (2020). Solving the production leveling
problem with order-splitting and resource constraints. In Proceed-
ings of the 13th International Conference on the Practice and
Theory of Automated Timetabling - PATAT 2021: Volume I, pp.
261–284. PATAT .

Vazirani, V. V. (2003). Approximation algorithms. Springer-Verlag.
Warner, D. M. (1976). Scheduling nursing personnel according to nurs-

ing preference: A mathematical programming approach. Opera-
tions Research, 24(5), 842–856.

Yavuz, M., & Tufekci, S. (2006). A bounded dynamic programming
solution to the batching problem in mixed-model just-in-time
manufacturing systems. International Journal of Production Eco-
nomics, 103(2), 841–862.

Yavuz,M., & Tufekci, S. (2006). Dynamic programming solution to the
batching problem in just-in-time flow-shops. Computers & Indus-
trial Engineering, 51(3), 416–432.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://www.gurobi.com
https://github.com/automl/SMAC3
https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A23871
https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A23871
https://repositum.tuwien.at/handle/20.500.12708/6542
https://repositum.tuwien.at/handle/20.500.12708/6542

	Exact and meta-heuristic approaches for the production leveling problem
	Abstract
	1 Introduction
	2 Problem statement and related work
	2.1 Problem description
	2.2 Mathematical formulation
	Input parameters
	Variables
	Hard constraints
	Objective function
	2.3 Concrete industry application
	2.4 Related work

	3 Complexity analysis
	3.1 Hardness results
	3.2 A polynomial-time algorithm for the fixed-order production leveling problem

	4 Integer programming model for the PLP
	Variables
	Formulation

	5 Local search for the PLP
	5.1 Construction of initial solutions
	5.2 Neighborhood structures
	5.2.1 Move-order neighborhood
	5.2.2 Swap-orders neighborhood
	5.2.3 Move evaluation

	5.3 Simulated annealing algorithm

	6 Extensions to the basic production leveling problem
	6.1 The extended production leveling problem
	Input parameters
	Variables
	Hard constraints
	Objective function

	6.2 Integer programming model
	6.3 Neighborhood relations for simulated annealing

	7 Experimental evaluation
	7.1 Problem instances
	7.1.1 Real-life instances
	7.1.2 Randomly generated instances

	7.2 Experimental setting
	7.3 Evaluation of the MIP model
	7.4 Evaluation of metaheuristics
	7.4.1 Algorithm configuration
	7.4.2 Experiments about fixing the cooling rate
	7.4.3 Sensitivity to neighborhood weightings in simulated annealing
	7.4.4 Optimality gap of metaheuristic solutions

	7.5 Experimental evaluation of the PLP+

	8 Conclusion
	Acknowledgements
	References

