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Abstract

The field of proteomics is concerned with the study of structure and function of proteins. The
most commonly used approach for the analysis of proteins is the bottom-up analysis where a
protein is first digested into smaller peptides which are then analyzed by LC-MS/MS in order
to confirm the identity of the original protein. To analyze these peptides they are first separated
via liquid chromatography (LC) before their mass-over-charge ratios are recorded in the mass
spectrometer as MS1-spectra. Selected peptides (precursors) are fragmented yielding MS2-
spectra of their respective fragment ions (MS/MS). These high-throughput experiments generate
vast amounts of data and are referred to as shotgun proteomics experiments.

For the large amount of raw data an appropriate data analysis is required in order to extract
as much useful information as possible and filter out superfluous and redundant parts. How-
ever, common database search engines, which are used for identification of the peptides using
their masses and the associated MS2-spectra, currently throw away most of the information con-
tained in MS2-spectra. Moreover, the benefit of the high mass-accuracy provided by state of
the art mass spectrometers is forfeited by the instruments themselves, as the MS2-spectra of the
peptides are usually not recorded at the optimal time point where the intensity of the specific
peptide is highest. To compensate for these drawbacks sophisticated methods are necessary that
can preprocess the spectra accordingly.

In this thesis we studied the application of two ways of MS2-spectrum preprocessing to
increase the number of spectra that can be identified by facilitating the identification step of the
database search engine.
First, different MS2-deisotoping and -deconvolution methods were analyzed which aim for the
removal of isotope peaks and peaks of multiply-charged variants of the analyte peptides. These
peaks unnecessarily impair the search engine’s performance by increasing the search space. We
demonstrate that the algorithms raise the confidence in correct identifications by eliminating
obstructing peaks, especially from the areas around correct fragment peaks. Furthermore, we
show that these methods are nonetheless limited due to the design of the scoring algorithms of
common search engines.
Secondly, to fully exploit the information that is made available through high mass-accuracy,
we developed a 3d-peak picking algorithm that does not rely on the peptide mass information
of the single MS1-spectrum it was selected from for fragmentation but additionally reconstructs
the peptide’s elution profile gathering many data points to obtain a statistically confident value
for the mass. Experiments demonstrated that peptide masses calculated from reconstructed 3d-
peaks have a significantly higher precision than using the conventional precursor mass values
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provided by the instrument. We show that the high precision also increases the identification
performance, especially for strict search tolerances.

The designed algorithms were implemented in a plugin for a commercially available soft-
ware package (Proteome Discoverer by Thermo Fisher Scientific) which is now used in the
proteomics group of Karl Mechtler. Moreover, the plugin is available for download, free of
charge.



Kurzfassung

Die Proteomik befasst sich mit der Struktur und Funktion von Proteinen. Der am weitesten
verbreitete Ansatz zur Analyse von Proteinen ist die “bottom-up”-Analyse, bei der ein Protein
zuerst in kleinere Peptide verdaut wird, welche dann mittels LC-MS/MS analysiert werden, um
die Identität des ursprünglichen Proteins zu bestätigen. Um diese Peptide analysieren zu können,
werden sie zunächst mittels Flüssigchromatographie (LC) aufgetrennt. Anschließend wird deren
Masse-zu-Ladung-Verhältnis im Massenspektrometer gemessen und in Form von MS1-Spektren
aufgezeichnet. Ausgewählte Peptide (Precursor) werden fragmentiert, was zu MS2-Spektren der
jeweiligen Fragmentionen führt (MS/MS). Diese Hochdurchsatzexperimente erzeugen immense
Datenmengen und werden als Shotgun Protemoics-Experimente bezeichnet.

Diese große Menge an Rohdaten muss durch adäquate Methoden analysiert werden, um so
viele nützliche Informationen, wie möglich zu extrahieren und überflüssige, redundante Teile
herauszufiltern. Die verbreiteten Datenbank-Suchmaschinen, die zur Identifikation der Peptide
mittels ihrer Masse und der zugehörigen MS2-Spektren herangezogen werden, verwerfen zur
Zeit einen Großteil der Informationen im MS2-Spektrum. Zudem wird der Vorteil der hohen
Massengenauigkeit, welche mit den modernsten Massenspektrometern erreichbar ist, durch die
Geräte selbst wieder eingebüßt. Dies hat den Grund, dass die MS2-Spektren der Peptide in
der Regel nicht zum optimalen Zeitpunkt, zu dem die Intensität des Peptids am größten ist,
aufgenommen werden. Um diesen Nachteilen entgegenzuwirken, sind ausgefeilte Methoden für
entsprechendes Preprocessing der Spektren nötig.

In dieser Diplomarbeit untersuchen wird zwei Arten von Preprocessing-Methoden für MS2-
Spektren, mit dem Ziel die Anzahl der Spektren, die identifiziert werden können zu erhöhen,
indem der Identifizierungsprozess, der von der Datenbanksuchmaschine durchgeführt wird, ver-
einfacht wird.
Erstens werden verschiedene MS2-Deisotoping und -Deconvolution Methoden untersucht, wel-
che das Ziel haben, Isotopen-Peaks und Peaks mehrfach geladener Varianten der Analytpeptide
zu entfernen. Durch die Vergrößerung des Suchraums beeinträchtigen diese Peaks unnötigerwei-
se die Leistung der Suchmaschine. Wir führen aus, dass die Algorithmen das Vertrauen in die
korrekte Identifikation von Peptiden durch das Entfernen von Peaks, vor allem aus den Berei-
chen um die korrekten Fragment-Peaks, welche andernfalls das Finden dieser korrekten Peaks
erschweren würden, erhöht. Außerdem zeigen wir, dass diese Methoden nichtsdestotrotz durch
das Design der Scoring-Algorithmen verbreiteter Suchmaschinen eingeschränkt sind.
Zweitens entwickeln wir einen 3d-Peak-Picking Algorithmus, der sich im Bezug auf die Masse
der Peptide nicht allein auf die Infomation des einzelnen MS1-Spektrums verlässt, aus welchem
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das Peptid zur Fragmentierung ausgewählt wurde. Es wird statt dessen zusätzlich das Elutions-
profil des Peptids rekonstruiert, wobei viele Datenpaunkte erfasst werden, um einen statistisch
zuverlässigen Wert für die Masse zu erhalten. Somit ist es möglich die Information, die durch
die hohe Massengenauigkeit erreichbar ist voll und ganz zu nutzen. Unsere Experimente zeigen,
dass die Peptidmassen, welche aus den rekonstruierten 3d-Peaks berechnet wurden, im Vergleich
zu den vom Gerät zur Verfügung gestellten Massen, eine wesentlich höhere Präzision besitzen.
Darauf aufbauend zeigen wir zudem, dass diese hohe Präzision die Anzahl der identifizierten
Peptide, vor allem für strenge Suchtoleranzen, steigert.

Aus den entwickelten Algorithmen ist ein Plugin für ein kommerziell verfügbares Softwa-
repaket (Proteome Discoverer von Thermo Fisher Scientific) entstanden, welches nun in der
Proteomikgruppe von Karl Mechtler eingesetzt wird. Zudem ist dieses Plugin kostenlos zum
Download verfügbar.
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CHAPTER 1
Introduction

1.1 Motivation

Mass spectrometry, in particular tandem mass spectrometry, has become one of the standard ap-
proaches for analyzing proteins and peptides. The common approach is the so-called bottom-up
proteomics which is executed by employing a high-throughput liquid chromatography coupled
to tandem mass spectrometry setup (LC-MS/MS). Because of the immense number of proteins,
both in the biologic samples, as well as in the databases that are used for identification, efficient
algorithms are necessary to cope with the amount of data.
Another aspect making the process more difficult is the fact that only a subset of the peaks in
the spectra produced by the mass spectrometer contains relevant information which can be used
for searching in a protein database. This is the case because a part of each spectrum is simply
noise caused by the inaccuracy of the instruments (electronic noise). On the other hand, there is
always chemical contamination (chemical noise) caused, for example, by polymers or charged
ions occurring in the air. From the viewpoint of a protein search engine, the resulting peaks
cannot be used for identifying a peptide ion and are therefore also to be seen as a kind of noise.
Furthermore, considering the MS2-spectra, ions with a similar m/z-value in the isolation win-
dow, which consequently will be fragmented at the same time, can lead to so called chimera
spectra. Because of this a spectrum can thus also contain even more peaks which are, regarding
the identification of the actual precursor, to be considered as noise.
Also the part of a spectrum, in which distinct peaks stemming from the correct fragments indi-
cate the precursor ion which is to be identified, is not completely evaluated by the algorithms
that have been developed, so far: Peaks of 13C-isotopes, as well as multiply-charged occurrences
of one and the same fragment ions leading to predictable additional peaks in the spectrum are
not sufficiently recognized or filtered by many programs. The additional confirmation that rec-
ognizing these situations would contribute to the identification of a peptide is therefore forfeited,
as well.

Furthermore, most of the algorithms developed for noise reduction that are currently being
used have been developed especially for older instruments which are, regarding the resolution
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and the accuracy of the measurements, by far inferior to the instruments that exist nowadays.
Therefore, these algorithms are, of course, not optimized with respect to the current state of the
art mass spectrometers.
One crucial advantage of most recent instrument generation is thus that the MS2-spectra output
by them suffer far less from electronic noise compared to older instruments. Noise reduction in
the classical sense, i.e. the very general removal of noise via filtering algorithms, is therefore
less useful. Moreover, as most of the peaks in an MS2-spectrum are correct (non-noise) peaks
such a procedure would rather be counter-productive as it would remove mostly these correct
peaks.

Therefore, the opportunity for developing better algorithms for high-resolution spectra should
rather be sought in the well-directed removal of the above-mentioned isotope peaks and the
recognition of ions that occur in multiple charge states, as well as in the proper usage of this
additional information.
In addition to that, high-resolution instruments offer many more possibilities for improvement
due to the accurate determination of ion masses. One of these is, for example, the recompu-
tation of the precursor mass from one or more adjacent MS1-spectra. By taking not only the
monoisotopic precursor peak from the respective MS1-spectrum but also possible isotope peaks
of the precursor ion into account, one could obtain a more precise value for its mass. This
idea is applicable even better, if peaks indicating the same precursor are gathered from different
MS1-spectra, as well, increasing the number of data points that can be used. Moreover, fur-
ther processing methods can be applied that aim for the detection of certain instrument-specific
shifts within the measured data. Such an existing instrument bias can be removed by performing
a recalibration of the data using further processing algorithms.

1.2 Problem definition and aim of the work

Protein database search engines employ scoring schemes in order to express the confidence in
the explanation of a certain spectrum by the existence of a certain ion peptide in the sample. For
example, the search engine Mascot [35] bases its scoring upon the probability that the found
explanation for the fragment ions in the MS2-spectrum is just mere coincidence. The smaller
this probability, the higher the score Mascot assigns to the matched peptide.

The problem that we want to address in this thesis can now be stated quite succinctly. Due
to the several above-mentioned factors, such as electronic and chemical noise, the measurement
error of the instrument, miscalibration, etc., protein identification is far from being perfect, i.e.
there is still a considerable amount of spectra which remains unexplained. The reason is that the
search engine cannot assign a matching peptide to the spectrum with a probability that is high
enough to accept it as a confident identification.

The aim of this thesis is therefore to develop and test new algorithms that are designed
for the application on high-accuracy, high-resolution spectra, as are generated by modern mass
spectrometers. By processing the MS1- and MS2-spectra in an intelligent way, we want to
achieve an improvement of the identification rate by eliminating or at least reducing the influence
of some of these perturbing factors. More precisely, this means an increase of scores for correct
identifications and a decrease of the scores assigned to wrong explanations. As pointed out
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above, different methods than the currently established ones are necessary to achieve this goal,
but on the other hand the higher accuracy also opens up new possibilities of gathering more
useful information from these spectra than from the ones generated by older instruments having
lower resolutions.
In general, the algorithms we want to develop are based on the following three concepts:

• Gain information from the spectra which can be used for further pre- (or post-) processing
steps.
This aspect focuses on finding certain properties of the fragment ions and the precursor
which can then be applied in an additional step to modify the spectra accordingly.

• Gain information from the spectra that helps setting specific search parameters for the
search engine.
Here the relevant data extracted from the spectra directly influences the search, e.g setting
the mass tolerance or the search interval, etc.

• Alter MS2-spectra and the associated metadata directly in order to influence the identifi-
cation process. This includes method that change the m/z-values or the intensities of the
peaks stored in the spectra. Furthermore, data attached to the spectrum, such as parts of
the precursor information can be modified.

In the end, the new algorithms should then be integrated into the Proteome Discoverer Software
(Thermo Fisher Scientific, version 1.3.0.339) where users can choose to integrate them into their
workflows in order to apply them as additional preprocessing steps.

1.3 Related Work

After the development of modern mass spectrometry which allowed for large-scale analysis of
the proteome [1] tandem mass spectrometry coupled to liquid chromatography (LC-MS/MS) is
nowadays the method of choice for analyzing the proteins contained in complex samples [33,47].
For this reason, of course, various spectrum preprocessing approaches (for MS1-, as well as
MS2-spectra) have been developed with the aim of improving the results achieved with the
LC-MS/MS method. However, many of these are based upon older instruments and employ,
for instance, Fourier transform which is suited to clean spectra containing less sharply-defined
peaks [26,27]. Other authors follow statistical approaches trying to compare the spectrum to the
theoretical model spectra of known peptides in order to determine the one that provides the best
match [11, 24, 40].
There are also approaches which could make use of the higher mass accuracy of modern in-
struments. There, the centroid peaks, i.e. peaks being determined by the centroid of the ion’s
measured distribution, are directly used, since they are distinct enough for allowing comparisons
between measured distances between these peaks and the theoretically expected distances [38].
Finally, there are also methods where the information gained from recognizing correlations in
the spectra is indeed used. This is done by applying an own scoring scheme [38] or even com-
bining several different scoring schemes [28] for the evaluation of the possible candidates for
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identification. The problem, however, is that the scoring can only be applied as a postprocessing
filter as the protein database search engines use their own scoring system, which can hardly be
influenced by external settings.

Of course, there is also a number of approaches that do not modify the spectra per se, but
try to improve the measuring method following the goal of increasing the mass precision of the
measured precursor ions. Recently, Zhang et al. described a way of dynamically choosing one
or more lock masses for recalibration of MS1 spectra instead of using a fixed lock mass [51].

Regarding the acquisition of additional information about the precursor ion, especially the
determination of the elution profile of the respective ion is an established method. The search
engine MaxQuant [7] relies heavily on this principle, which allows for highly accurate precursor
masses leading to high peptide identification rates. This software suite has also been equipped
with an algorithm to perform a recalibration of the precursor masses according to the results
obtained from a first search. The new masses are than used for the second, actual search [8].

1.4 Outline of the Thesis

The first chapter of this thesis has provided an introduction and a short overview of the topic.
Moreover the problem the thesis is concerned with has been defined and the aims have been
lined out.
In the following chapter a more thorough introduction to the field of proteomics and to mass
spectrometry in particular will be given, providing the relevant background information. Fur-
thermore, technical terms, which are used in the following chapters of the thesis are explained
and put into context.
The third chapter deals with MS2-spectrum manipulation and explains the need for a deisotoping
and a charge-deconvolution procedure for MS2-spectra. In both cases the context is explained
and the necessary theoretical background knowledge is provided before the existing algorithm
which was used as a basis is explained. Afterwards the algorithm is assessed and remedies for
possible weaknesses are developed. Subsequently, additional ideas on MS2-spectrum manipu-
lation are sketched. They were, however, not implemented as this would have gone beyond the
scope of the thesis. The chapter concludes with a short description of the resulting final software
product.
Chapter 4 provides a detailed step-by-step explanation of the work on the precursor mass-
precision improvement. For each part of the algorithm, the underlying idea is described and ac-
counted for with an example. It also introduces a concept for recalibration of precursor masses
according to high-confident search results of a preliminary search. Finally, as in the previous
chapter, a summary of the resulting software products is given.
In chapter 5 a description of the instances with which the algorithms were tested, i.e. the rele-
vant sample properties and instrument settings. The experimental results of the algorithms are
then listed along with the corresponding figures. Finally, chapter 6 summarizes the results and
discusses possible future work.
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CHAPTER 2
Proteomics and Mass Spectrometry

2.1 Proteomics

The field of proteomics deals with the study of structure and function of proteins, i.e the study
of the proteome, which can be seen as the functional representation of the genome [5]. The
term proteome was coined by Mark Wilkins [48] and is derived from proteins. It defines the
entirety of proteins expressed by the genome. While the genes in a genome remain static the
gene products, i.e. the proteins that are actually present in a cell are, in general, different given
different biological contexts. An example showing the difference between genome and proteome
and illustrating how strong the effect of changes in the proteome can be is the metamorphosis
of a caterpillar into a butterfly. The caterpillar and the butterfly have the very same genome.
However, through the expression of different genes and the resulting difference in the proteome,
the organism changes completely, which we can see best in its appearance.
Another contribution to the high dynamics of the proteome is that most of the proteins are subject
to chemical modification, also called post-translational modifications or PTMs.

2.1.1 Amino Acids, Peptides and Proteins

A protein is a linear polymer (“a sequence”) of monomer building blocks called amino acids.
These are molecules consisting of a central carbon atom, linked to an amino group (NH2), an
acidic carboxylic group (COOH), a hydrogen atom (H) and a side chain (or simply R group).
This side-chain is what defines an amino acid, as it is composed of a different group of atoms
for each amino acid being the only difference among them. It is also called the functional
group of the amino acid. Figure 2.1 depicts this generic structure of an amino acid. An amino
acid usually occur ionized depending on their environment, i.e. the pH and other molecules it
might be linked to. This means that the amino group can be protonated, which leads to a one-
fold positively charged NH+

3 and the carboxyl group can be deprotonated leading to a one-fold
negatively charged COO−. There are 20 amino acids, the so-called proteinogenic amino acids,
that can be naturally incorporated into proteins.
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Figure 2.1: The generic structure of an amino acid in its unionized form. It consists of the central
C-atom which is linked to the amine group (NH2), the carboxyl group (COOH) a Hydrogen and
its functional group (R) via covalent chemical bonds [45].

One amino acid having a protonated amino group and another one with a deprotonated carboxyl
group can now be linked together to a dipeptide1 via a so-called peptide bonds. These are
covalent chemical bonds whose formation is accompanied by the loss of a water molecule, as
can be seen in the illustration of a peptide bond link in Figure 2.2. This reaction is also called
condensation. A series of amino acids linked by a peptide bond is called a polypeptide. Proteins
have unique amino acid sequences, which are referred to as the primary structure of a protein.
The two ends of such a sequence are terminated by a free carboxyl group (COOH) and a free
amine group (NH2) and are referred to as C-terminus and N-terminus, respectively. Figure 2.3
shows a peptide consisting of four amino acids with highlighted C- and N-terminal ends.
Based upon this primary structure which is illustrated in Figure 2.4, one can study the secondary,

tertiary and quaternary structure of proteins, which emerge as the molecules strive to achieve the
energetically most convenient arrangement in space and therefore fold itself in determined ways.
An overview on these different structure levels can be seen in Figure 2.5.

2.2 Mass Spectrometry

As proteins play a crucial role in nearly all biological processes, the understanding of their func-
tions, structure and dynamics is of major interest in biochemistry. However, when analyzing
biological samples one has to cope with the vast number of different proteins expressed in a cell.
In this field mass spectrometry has become a widely used method for the large-scale analysis of
complex protein samples. It replaced the Edman degradation [12], which has previously been
considered the method of choice in protein identification. Nowadays, however, the Edman degra-
dation is considered too slow and inaccurate for large-scale protein identification. [34]. Another

1Chemically speaking there is no difference between a peptide and a protein. It is a common convention to refer
to proteins having less than 50 amino acids as peptides.
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Figure 2.2: Two amino acids forming a dipeptide via a peptide bond. A condensation reaction
takes place during which a water molecule is split off and the remaining CO+- and NH−-groups
are linked together [45].

Figure 2.3: A peptide (example: Val-Gly-Ser-Ala) with green highlighted N-terminal amino
acid and blue highlighted C-terminal amino acid [45].

technique commonly used in protein identification is the so-called Western Blot [46]. However,
this approach only detects the presence of proteins that are targeted by specific antibodies. Mass
spectrometry on the other hand, provides the opportunity to obtain a more general picture as it
operates unspecifically and can in theory detect every protein that is abundant enough in the cell.
It therefore fills the gap left by the Edman degradation overcoming the challenges of complex
samples.
The basic idea behind mass spectrometry is the determination of the mass-to-charge ratio (m/z)
of ionized peptides and proteins in the gas phase, which is measured in Thompson. With Dalton
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Figure 2.4: The primary structure of a protein, a sequence of amino acids linked by peptide
bonds [45].

(abbreviated by Da) being the unit in which the atomic masses are measured and the number of
charges z, which is dimensionless, it is a generally accepted convention that the m/z-value is,
simply, also given in Dalton. For convenience one also talks about mass-units (mu) and milli-
mass-units (mmu), where 1 mu is simply the same as 1 Da and consequently 1 mmu is equal to
0.001 Da.
Another common unit, especially used when talking about the mass deviation (or the deviation
in m/z) between two ions, is parts-per-million (abbreviated with ppm). Moreover, it is a com-
mon means of defining the accuracy of measurements. When an ion is measured, the error in
ppm between the observed m/z-value mO and the theoretical value mT is given by

mO −mT

mT
· 106 (2.1)

2.2.1 Composition of a mass spectrometer

Mass spectrometers generally consist of three major components, an ion source, a mass analyzer
and a detector. Figures 2.6 and 2.7 show a simplified scheme of a mass spectrometer and an
overview of an actual instrument, the Thermo Fisher Scientific Q-Exactive mass spectrometer,
respectively.
Ion source:
The analysis of a sample starts with the introduction of the sample into the ion source, where the
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Figure 2.5: The relationship between the different structure levels of a protein [30].

analyte molecules are ionized. Most commonly, this is done by Electrospray ionization (ESI)
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Figure 2.6: A mass spectrometer is generally composed of three parts: First the analyte
molecules are ionized in the ion source. The mass analyzer then determines the m/z-ratios
of their relative abundance is measured in the ion detector. Subsequently the generated data is
processed and analyzed [26].

or matrix-assisted laser desorption/ionization (MALDI), which are the two major techniques for
the ionization of proteins and peptides.
Mass analyzer:

Then, the mass analyzer separates the incoming ions according to theirm/z-ratio. Four different
kinds of mass analyzers currently used in proteomics can be distinguished [1]

1. Ion trap:
Ions of a specific mass range are collected (trapped) for a certain time by the use of a
quadrupolar radio-frequency electric field. Ions of a wide m/z-range are confined within
the trap and according to the applied field only ions with a certain m/z-ratio are expelled
[10]. When the trap is full or a certain target threshold is reached the ions can be released
by gradually changing the frequency in order to undergo the further MS1 or MS2 analysis.
The ion trap’s strengths are robustness and sensitivity, however it only provides a relatively
low mass accuracy.

2. Time-of-flight (TOF):
This instrument determines the m/z-ratio of ions by measuring their time of flight. The
essential idea is that the ions, which are - driven by an electric field - moving in the same
direction through a tube, have a (more or less) constant kinetic energy. As the velocity of
an ion is inversely proportional to the square root of its m/z-ratio, ions having different
m/z-ratios will arrive at the target plane at different times [17].
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Figure 2.7: Scheme of a QExactive Orbitrap instrument [Thermo Fisher Scientific]

3. Quadrupole:
A quadrupole consists of 4 circular - ideally, hyperbolic - metal rods which are aligned
in parallel to each other. Between these rods a quadrupolar alternative electric field is
superposed on a constant field. The key idea is that according to the applied voltage only
ions with a certain m/z-ratio will pass through the quadrupole and reach the detector.
Ions having a different ratio have unstable trajectories and will eventually hit one of the
rods [10].

4. Fourier transform ion cyclotron (FT-MS):
This type of mass analyzer basically also traps desired ions. However, it does so by ap-
plying strong magnetic fields. It provides a high sensitivity, mass accuracy, resolution and
dynamic range. Despite these many advantages it is not widely used in proteomics re-
search because of its high expense, operational complexity and especially its low peptide-
fragmentation efficiency.

The mass analyzer can be seen as the key element of the mass spectrometer, since its task is the
actual selection and filtering of ions, which is necessary to dsicrimante between them.
Ion detector:
Finally, the separated ions arrive in the ion detector where the relative abundance of ions for
each m/z-value (within the bounds of the resolution) is registered.
As for the mass analyzer, there are several different ion detectors that are commonly used:
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1. Faraday Cup:
The Faraday Cup employs a very simple principle. The incoming ions hit its metal surface
which leads to the emission of electrons (so-called secondary emission) that induce a
current. This current is then amplified and recorded.

2. Electron Multiplier:
The electron multiplier extends the principle of a Faraday Cup. It consists of a vacuum
tube containing a series of metal plates which are maintained at increasing electrical po-
tentials. Incoming ions hit the first plate leading to the emission of electrons. These are
attracted by the second plate which in turn emits electrons upon being hit. This way, a
cascade of secondary emissions is triggered at whose end typical amplification rates in the
order of 1:16 are achieved.

3. Orbitrap:
The orbitrap consists of two electrodes, an inner spindle-like one and an outer electrode
which envelops the inner one. Ions are injected tangentially into the orbitrap and trapped
inside by the balance between the electrostatic attraction to the inner electrode and the
centrifugal force. The ions therefore cycle around the inner electrode forming rings which
oscilate along the electrode. This oscilation process is inversely proportional to the square
root of the mass-to-charge ratio and can therefore be used to detect abundant ions.

2.2.2 The Shotgun-Proteomics approach

The term Shotgun Proteomics refers to a common form of non-targeted bottom-up proteomics
to analyze complex protein mixtures [42]. It is non-targeted because it does not aim to detect a
specific protein but rather tries to identify as many proteins as possible by comparison against
possible theoretical matches in a database. The term bottom-up accounts for the prior digestion
of the proteins into smaller peptides before running the MS/MS analysis.
A shotgun proteomics workflow (see Figure 2.8) consists of the following steps:

• Digestion (Cleaving) of the proteins into smaller peptides by an enzyme (e.g trypsin).

• Separation of the peptides by liquid chromatography or high-performance liquid chro-
matography (HPLC).

• Ionization of the peptides by electrospray ionization (ESI) or matrix-assisted laser des-
orption/ionization (MALDI).

• Analysis of the peptide ions by tandem mass-spectrometry (MS/MS).

• Comparison of the generated data against databases in order to identify the proteins present
in the sample.

In the following these steps are described in detail.
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Figure 2.8: Typical workflow of a shotgun proteomics experiment: First, the proteins are ex-
tracted from the biological sample. Depending on the sample the resulting protein mixture can
become very compley in terms of different proteins which are abundant in the mixture. The pro-
teins are then cleaved into smaller peptides by proteolytic digestion leading to a more complex
peptide mixture. To reduce the complexity the peptides are seaparated by (multi-dimensional)
LC and ionized using ionization techniques such as ESI or MALDI. These ions are then sub-
jected to an MS/MS analysis. Finally, the analysis results are processed in order to determine
the abundant proteins [42].

2.2.2.1 Proteolytic digestion of large proteins into peptides

Proteolytic digestion is an important step to facilitate the analysis of the proteins cleaving them
into smaller peptides. This approach has several advantages: On the one hand, the ionization
of whole proteins leads to a great variety of charge states, whereas peptides are mostly two-
fold or three-fold charged. Additionally, whole protein ions lead to huge isotope clusters in the
resulting spectra, which further complicates their analysis, whereas peptides are usually small
enough, such that they usually only yield clusters containing around one to four isotopes. The
reason is simply that the smaller a molecule is, the less atoms exist in it that could possibly
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be occurring not as the usual, most likely isotope variant but as a heavier one. Finally, the
identification of several peptides that can originate from the cleaving of a specific protein is a
much stronger proof for the correctness of the protein-identification than simply finding a match
for the whole protein.

Thus, the initial step of the workflow is the proteolytic digestion, i.e. the cleaving of a
protein into smaller peptides by using a suitable endoproteolytic enzyme. These enzymes break
peptide bonds at specific positions in the peptide, i.e. before or after certain nonterminal amino
acids. Unfortunately, this proteolytic digest is not always complete and it is possible that some
of the specific cleavage sites are missed (so-called missed cleavages). Trypsin has proved to
be a suitable choice for this purpose, as it has been showed that Trypsin cleaves exclusively
C-terminal to Arginine and Lysine residues. [32]. Having the highly basic amino acids Lysin
and Arginine at the C-termini of the peptides also facilitates the ionization of these peptides,
since they have a high affinity to protons. Another advantage is that a tryptic digest leads to
peptides whose masses are in the preferred range for effective fragmentation by a subsequent
MS/MS analysis, which is due to the fact that Arginine and Lysine each account for around 5%
of the amino acids in a protein. Since there are 20 proteinogenic amino acids the protein is in
theory cleaved after every 10-th amino acid, i.e. the average length of the resulting peptide is ca.
10 amino acids. These factors have made Trypsin the most common choice when conducting a
shotgun proteomics experiment.

2.2.2.2 Peptide separation by High-Performance Liquid Chromatography

The number of distinct proteins in a complex sample is too high to allow for identification using
only a handful of scans. Moreover, the complexity of the sample is further increased by the
digestion of the protein mixture. Therefore, the peptides obtained after the digestion step must
be separated, such that ideally only one peptide at a time is analyzed by the mass spectrometer.
In general, there are several key characteristics according to which the peptides in the mixture
can be separated: solubility, size, charge and hydrophobicity. The technique of choice generally
used in shotgun proteomics is the reversed-phase high-performance liquid chromatography [1],
which makes use of the hydrophobicity. In general, liquid chromatography employs two phases,
a solid stationary one (also called the column) and a liquid one. The column contains certain
chemical groups to which the peptides have a greater or lesser affinity, which causes them to
pass the column more or less quickly. In reverse-phase liquid-chromatography the solid phase
contains hydrophobic molecules whereas the liquid phase is highly hydrophilic. Consequently,
the more hydrophilic a peptide is, the quicker it will pass through the column. In contrast,
hydrophobic peptides will get caught more often on their way by intermolecular interactions
with the stationary phase, slowing down their progress. In order to accelerate the elution of
highly hydrophobic peptides, which would bind to the column for far too long, concentration
gradients of organic compounds are used, i.e. the hydrophobicity of the liquid phase is gradually
increased. The use of a gradient is opposed to the so-called isocratic elution methods, where
the concentration of organic compounds remains constant through the whole elution process.
Typically, the liquid phase contains 0.1 % formic acid and a gradient of 5 to 75 % acetonitrile is
used. The time a peptide takes through the column from the moment it enters to the moment it
elutes is referred to as its retention time.

14



The high-performance component of the name originates from the much higher pressures that
needs to be applied to the column in order to maintain a constant flow-rate. This is necessary as
the column is made of much finer material than normal chromatography columns. This results
in higher resolutions through better separation.

To further enhance the separation of peptides one can also employ two-dimensional or even
three-dimensional liquid chromatography, where the separation is based on two or three criteria,
respectively.

2.2.3 Peptide ionization in the ion source

Figure 2.9: Electrospray Ionization Process: The droplets eluating from the needle tip are sub-
jected to an electrostatic field of around 2 kV. This causes the droplets to continuously explode
into smaller droplets until they only consist anymore of the separate ions that were resolved in
them [29].

The two most commonly used techniques used for the ionization of peptides are ESI [16]
and MALDI [20]. While MALDI can only be operated offline and is therefore usually used to
analyze simple peptide mixtures, ESI is more suited for a shotgun proteomics setup. The reason
is that ESI can couple liquid chromatography to mass spectrometry allowing an automated high-
throughput analysis.
In ESI a metal needle tip is added at the end of the LC-column, such that the eluate exiting
the column passes through it. A voltage of typically 2 kV is applied between the needle and
the opposing entrance of the mass spectrometer. The resulting electric field causes the eluate to
disperse into a fine spray of charged droplets. With reducing droplet size a point is eventually
reached at which the cohesive forces of surface tension are smaller than the repulsive forces
between the charges: A so-called Coulombic explosion occurs leading to a high number of
even smaller droplets [2]. Finally, after repeated iterations of this process, ions of the analytes
dissolved in these droplets are produced. The process is illustrated in Figure 2.9.
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2.2.4 Tandem Mass Spectrometry

Even after undergoing proteolytic digestion and passing the liquid chromatography column the
complexity of most peptide mixtures is still too high to already be sufficiently separated. For this
reason an effect called coelution occurs, where different peptides elute at the same retention time,
which thus enter the mass spectrometer simultaneously. These peptides need to be separated in
order to be identified.
To overcome these difficulties tandem mass spectrometry is used, which employs the workflow
shown in Figure 2.10. This workflow consists of repeating cycles which in turn consist of the

Figure 2.10: The MS/MS-scan cycle: At the beginning of each cycle the most intense precursor
ions of a preceding MS1-scan are selected and subsequently isolated one after another for frag-
mentation (Loop). This gives rise to the MS2-scans of the respective precursor ions showing the
resulting fragment ions [44].

following steps:

1. MS1-scan:
The instrument records an MS1-spectrum, i.e. for a defined m/z-range all currently elut-
ing ions (also referred to as the Total Ion Current or simply TIC) are collected and an-
alyzed. This spectrum shows the measured m/z-values together with the corresponding
intensities. The intensity indicates the abundance of ions having the corresponding m/z-
value. The higher the resolution chosen in the instrument settings the more well-defined
are the resulting peaks (i.e. the smaller their width).

2. MS2-scan loop - fragmentation of selected precursors:
This spectrum is then analyzed and the n most abundant peptides are selected for a subse-
quent fragmentation analysis. This is also referred to as a Top-n method. In order to do so,
one by one each of the selected peptides, which are also referred to as precursors, is now
isolated from the bulk of ions. I.e. a narrow m/z-window of usually 1 to 3 Da with the
precursor’s m/z-value at its center is applied to the TIC, isolating only ions whose m/z-
value lies within this window. After collecting these specific ions for a preset amount
of time or until a predefined ion threshold is reached they are sent into the collision cell
where they are fragmented. For fragmentation to take place the ions are first activated in
the collision cell by elevating their energy levels to an excited state. The natural reduc-
tion of the raised energy levels promotes fragmentation of the ions into certain fragment
ions (this is explained more detailed later in this section). Finally, the m/z-ratios of these
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resulting fragment ions are measured yielding an MS2-scan which shows the abundances
for these fragments.

After all n precursor ions have been fragmented and analyzed the cycle repeats with the record-
ing of a new MS1-scan.

Note that the mass analyzer usually also determines the charge state of the precursor ions.
This can be done by quickly analyzing isotope patterns found in the spectra. When the charge
state z and the m/z-ratio of the ion are known, its molecular mass M can easily be calculated
by the following formula:

M = (m/z −H+) · z (2.2)

where z its charge state and H+ the mass of a proton, which is ca. 1.007276 Da.
There are many settings that can be applied to control this general scheme. Besides the above-
mentioned possibility of choosing the size of the isolation window, other important parameters
include the dynamic exclusion list settings. Whenever an ion is chosen for fragmentation its
m/z-value is stored on the list for a certain amount of time. None of the m/z-values that are
currently listed may be chosen for fragmentation. This way the multiple fragmentation and
analysis of peptides that dominate the TIC is avoided, such that there is more time to isolate
other less intense peptides. Similarly, one can optionally define an inclusion list on which the
m/z-ranges are listed that contain peptides of special interest. Only ions whose m/z-value falls
into the defined ranges are chosen for fragmentation. This is a useful setting when looking for
specific peptides that are part of a complex sample where it is likely that they might be too little
intense in comparison to the other ones.

2.2.4.1 Fragmentation of peptide ions by activation leading to MS/MS-spectra

An important step necessary to make tandem mass spectrometry possible is the fragmentation
of the peptide ions. Modern mass spectrometers offer different activation types that can be
applied to achieve this fragmentation. The different activation types give rise to different kinds
of fragment ions, since there are different possibilities to cleave peptides. Depending on the
exact cleavage site the following pairs of fragment ions are distinguished:

• a- and x-ions.

• b- and y-ions.

• c- and z-ions.

The a-, b- and c-ions contain the N-terminus, and the x-, y- and z-ions the C-terminus. The
fragments are numbered according to the number of amino acids they contain additionally to the
N- or C-terminus.
Figure 2.11 shows the possible cleavage sites and gives an illustration of the established nomen-
clature of the resulting fragment ions [37]. In the following the three most commonly-used
activation types are introduced.

17



Figure 2.11: Possible Cleavage sites in a peptide and names of the respective fragments [45].

Collision-induced dissociation (CID) CID, sometimes also referred to as collision-activated
dissociation (CAD), is the first technique used for the fragmentation of peptides. The precursor
ion is kinetically excited which is achieved through collisions with non-reactive gas molecules,
such as argon or helium [43]. During each collision the imparted translational energy is con-
verted to vibrational energy that spreads quickly within the molecule via all covalent bonds. As
soon as the activation energy required for a certain bond to be cleaved is reached the respective
fragment ions are formed. The amide bond chaining the amino acids together is the bond that
will most likely break in a peptide ion [50], leading to the above-mentioned b- and y-fragments.
Although this technique is very efficient, there are some major drawbacks to be considered:
Fragment ions having an m/z-ratio of less than around one third of the precursor ion m/z are
not trapped properly due to physical limitations. This effect is commonly referred to as the low-
mass cut off. Furthermore, the recorded MS2-spectra suffer from relatively low mass accuracy
and resolution [31]. The former issue is particularly problematic when applying quantitative
proteomics, since the crucial information about the ratios between reporter ions, which have
masses lower than 132 Da, is lost.
To overcome the low-mass cut off problem Thermo Fisher Scientific has developed the Pulsed Q
Collision Induced Dissociation technique (PQD), which is exclusively available in their instru-
ments. This approach promises to yield mass spectra qualitatively comparable to CID spectra
without losing the information in the lower m/z regions and thus making them usable for quan-
titative proteomics.

Higher-energy collisional dissociation (HCD) A more substantial improvement has been
achieved with the development of HCD. While on the one hand making the full mass-range
of the MS2-spectrum available, this technique additionally provides high mass accuracy and
resolution [31]. In principal, it is a higher-energy variant of CID. Precursor ions are also ki-
netically excited by collision with gas molecules (typically N2) in order to break up into the
characteristic fragment ions.
The resulting spectra have a similar pattern as the ones obtained by CID, i.e. the fragmentation

18



products that can be measured are the b- and y-fragments. Additionally, however, the fragments
from the low mass region, such as the y1-, y2-, b1- and b2-fragments are also detected and appear
in the spectra.

Electron transfer dissociation (ETD) This method is based on the previously developed
method of Electron capture dissociation (ECD) [52]. Like its predecessor ETD has been devel-
oped for the use with ion traps, where multiply protonated peptides are confined and subjected
to low-energy electrons. The uptake of the electrons is an exothermic reaction and leads to a
specific cleavage of the peptides into c- and z-type fragment ions in contrast to the two above-
mentioned activation types. However, maintaining the dense accumulation of electrons around
the precursor peptide necessary to induce the electron uptake remains technically challenging
for some instruments. Therefore, in ETD, contrary to ECD, negative ions (e.g. anthracene) are
used in order to achieve the electron uptake of the peptide. Instead of simply capturing a free
electron a transfer of an electron from the anion to the peptide takes place, promoted by the fact
that anions with very low electron affinities are used [43].
A big advantage of this method over CID or HCD is that the precursor retains labile PTMs as
the fragmentation is not achieved by an increase of the internal energy. The downside is the
limited applicability to doubly charged precursor ions, which can, however, be overcome by the
application of a supplemental activation method to those precursors that are still intact after ETD
fragmentation [41].

2.2.5 Analysis of generated mass spectrometry data

2.2.5.1 Spectrum Preprocessing

A typical shotgun-proteomics experiment can generate between 40000 and 50000 MS2-spectra
in an average 3h run. This amounts to roughly 3 GB of data. To cope with the vast amounts
of data being produced preprocessing steps, such as spectrum-filtering and -manipulation are
necessary. All the more since on average only around 50% of the MS2-spectra can be confidently
identified.
At this point of the workflow the methods studied and developed in this thesis are settled. They
will be explained in chapters 3 and 4.

2.2.5.2 Database Search

In order to automatically identify peptides and proteins, many different database search engines
have been developed [7,9,15,35]. The general principle of the search is common to all of them:
The protein database is digested in silico, i.e. the smaller peptides into which the protein can
theoretically be cleaved by a complete cleavage are generated. The experimental MS2-spectra
obtained from the mass spectrometer are now compared against the fragment spectra of these
theoretical peptides. Depending on the search settings a certain number of possible theoretical
peptides are to be considered for the explanation of a given MS2-spectrum. All possible matches
are then evaluated using statistical approaches yielding a scoring depending on how probable the
matches are. The matching peptides are then ranked according to the score they obtained. This
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process is illustrated in Figure 2.12. Notably, this final step of the proteomics workflow is most

Figure 2.12: Basic workflow of database search engines: The proteins from a selected database
are digested in silico into smaller peptides. This yields a list of these peptides and their corre-
sponding molecular masses. For an MS2-spectrum there are a number of candidates whose mass
is close enough to the precursor mass, s.t. they are considered as an explanation of the MS2-
spectrum. The MS2-spectrum in question is now matched against the theoretical MS2-spectra
of the candidate peptides and each match is scored according to how good it is [44].

likely the most versatile one. As it is the crucial step towards making sense of the measured
data it is also highly customizable. The first and most important settings are the choice of
the database that should be used (human, yeast, etc.), the enzyme that has been used for the
proteolytic digestion, the fragment ion types to match and the choice of possible dynamic and
static amino acid modifications. These modifications can either be due to chemical derivatisation
during sample preparation or post-translational modifications, both leading to a shift in peptide
mass. Therefore, they additionally need to be taken into consideration when searching for a
matching peptide. Clearly, adding modifications exponentially increases the search space.
Following these basic settings there are - depending on the specific search algorithm - several
further parameters that have to be specified. As there are so many different settings and moreover
many different settings for different search engines, we only briefly mention the most general
ones that are common to most search engines. Most importantly tolerance windows for peptide
masses and fragment ion masses can be set. The former narrows the possible candidate peptides
to be considered when looking for a match to a certain given mass while the latter narrows the
tolerance within which the fragment ions may deviate from the theoretical fragments of a peptide
being matched. The tolerance of the search algorithm is usually even further adaptable by setting
the maximum amount of missed cleavage sites accommodating for the fact that the proteolytic
digestion does not work perfectly.
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2.2.5.3 Evaluation of search results

The output of a database search is a list of so-called peptide spectrum matches (PSMs) mapping
the submitted spectra to peptides. In general, however, we do not have any information about
the quality of these results. Elias and Gygy pointed out three reasons why it is necessary to have
a means for describing the quality of the search result [14]:

1. The database used for the search may be incomplete i.e. some of the target peptides may
not be part of the search space and can never be found.

2. Some spectra may be recorded because of chemical background noise and will therefore
lead to false interpretations as random entries in the database might match well enough.

3. In some cases an incorrect peptide matching to a spectrum may be assigned a higher score
than the correct interpretation.

It is therefore necessary to establish criteria determining the level of confidence with which
the results can be trusted. Moreover, it must be possible to automatically filter search results
according to these criteria, such that PSMs that are most probably incorrect can be filtered out.
An automatic validation is especially crucial in shotgun proteomics experiments where a vast
amount of data is generated and the search results can no longer be validated manually.
A natural quality criterion of database search results is the false discovery rate (FDR). In general,
the FDR is given by

FDR =
FD

FD + TD
(2.3)

where in FD is the number of false discoveries and TD is the number of true discoveries.
In our case the former corresponds to the spectra that have been assigned an incorrect peptide,
the latter to the spectra that have been identified correctly. Clearly, FD + TD is equal to the
total number of PSMs. However, under normal circumstances it is impossible to determine the
FDR of a search result as it is - of course - unknown which of the PSMs are the true and which
the false positives, respectively.

To overcome this problem a method of estimating the number of false discoveries in a result
list has been proposed: The target-decoy search strategy [13, 25]. In this approach two different
databases are used for the search. On the one hand there is the original database against which
the search is conducted as usual (the target database). On the other hand an additional database
containing only non-existing peptides is employed (the decoy database). Consequently, every
PSM mapping a spectrum to a peptide defined in the decoy database is a false positive by defi-
nition.
For the estimation of the number decoy hits it is necessary to determine the ratio of decoy to tar-
get hits (rd/rt) in the search space. This ratio leads to the multiplicative factor f that reflects the
decoy bias of the chosen approach, such that, after observing a certain amount of decoy hits (d)
and knowing the frequency ratio between target and decoy hits in the database one can calculate
the number of false positives [14].

f =
1

rd
(2.4)

FP = d · f (2.5)
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Ideally, the ratio of decoy to target hits is 1:1, such that a random hit may just as likely be a
decoy hit as a target hit. I.e. rd = rt = 0.5 and thus f = 2.

In order to achieve this ideal ratio the following criteria must be met by the decoy database
with respect to the target database:

1. The amino acid distributions among the peptides should be similar.

2. The protein length distribution should be similar.

3. The total number of proteins should be similar.

4. The number of the theoretical peptides predicted for the digest of the proteins should be
similar.

5. The databases may have no predicted peptide in common.

Several approaches to generate the decoy database have been proposed. One possibility is to
shuffle the proteins from the target database by randomly rearranging the amino acids they are
composed of [19]. Another way would be to create random proteins according to an underlying
statistical model to obtain a natural amino acid distribution in the created proteins. However, the
most simple approach, reverting the amino acid sequence of the target proteins, proves to yield
the best results and is also the most commonly used one in the proteomics community [14].
Using this approach the resulting decoy database clearly fulfills the first four criteria as the
respective numbers are exactly the same. Regarding the fifth criterion it cannot be guaranteed
that there is absolutely no overlap between the databases. However, the overlap is considerably
small. In Figure 2.13 the results of the reversion of the minimally redundant International Protein
Index sequence database [21] are illustrated. One can see that almost all of the smaller peptides
are found in both databases, but starting from peptides having a length of more than eight amino
acids, the overlap is smaller than 0.1 % and thus negligible.

Even when using reversed proteins to generate an almost ideal decoy database, there is still
a problem with the target-decoy approach described so far. Performing separate searches in
target and decoy databases is more stringent and will, in general, lead to a too high false-positive
rate. As in the separate database setting the target and decoy sequences are not competing with
each other for the highest-scoring hits, decoy peptides achieve higher scores than they would,
if the correct target sequences were part of the search space, as well. This is problematic since
these high-scoring decoy hits outscore low-scoring target hits increasing the false-positive rate,
although in direct competition the low-scoring target hits might be favored.
The simple solution is to use a concatenated database were both target and decoy sequences are
part of the same search space and a sinlge search is run against this database. This dramatically
reduces the probability of a decoy hit receiving an increased score while simultaneously reducing
the total search time in comparison to the two separate searches.

After analysis of the data via target-decoy search, the decoy hits are removed from the result
and the remaining amount of false positives in the target data is then given by:

FPfinal = d(f − 1) (2.6)
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Figure 2.13: Peptide overlap between the human protein sequences within the minimally redun-
dant International Protein Index sequence database (target) and the reversed sequences created
out of them (decoy) [13].

Figure 2.14 shows an overview on the target-decoy search workflow (a) and illustrates the dis-
tribution of target and decoy hits among all peptide hits for the different ranks assigned by
SEQUEST (b-d). The analysis shows that within the first-rank hits the number of reported target
sequences is much higher than the number of decoy sequences. In the lower ranks neither se-
quence set is favored. This confirms the correctness of the approach as the first rank is the most
probable hit (the one that is most likely to be correct) while the lower ranks are assigned to less
probable sequences and are thus more likely random hits. As intended for random hits, the ratio
of target to decoy sequences is 1:1. The aforementioned considerations suggest a fairly simple
procedure to obtain a result list filtered to abide a desired FDR. Algorithm 2.1 describes a naive
and rough method to set a certain FDR for the results list. The first line is a direct consequence
of the fact that for peptides containing less than 8 amino acids there is a considerable overlap in
target and decoy sequences. Hence, they violate the precondition that the two databases must
have no predicted peptides in common and must therefore be filtered out from the PSM list be-
fore setting the FDR. Another problem are hits the search engine has ranked lower than 1. As
showed above, for the lower ranks the ratio of target to decoy hits is 1:1 and thus the results are
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Figure 2.14: a) The target-decoy search workflow. b) Example of PSMs returned by a SEQUEST
search. The percentages of matching spectra from both target and decoy database are shown for
the top-10 ranking peptide hits. c) The same search but with previously falsified MS/MS spectra.
d) The same search but with previously altered precursor masses [4].

mere random hits. Therefore, in order to correctly set the FDR, the lower-ranking results have
to be filtered out, as well, which is done in line 2 of the procedure. Afterwards, a score threshold
is continuously adapted, until the ratio of target to decoy hits corresponds to the desired FDR.
After removal of the decoy hits, the percentage of incorrect hits in the resulting PSM list abides
to the set FDR.

Note that it is of course also possible to set other confidence criteria than the search engine
score to define the FDR. The following list provides examples of further quality criteria that can
be used for defining the confidence of PSMs:

• The ∆Score, i.e. the score difference between the rank 1 and the rank 2 peptides.

• The accuracy of the precursor mass.

• Number of missed cleavage sites.

• How often does the matched peptide match other MS2 spectra.

Moreover, combinations of several criteria are possible. This concept is, for instance, used in the
Percolator algorithm [18], which applies a machine learning algorithm to determine the relevant
features of the spectra in order to come up with a suitable set of criteria and corresponding
weighting factors.
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Algorithm 2.1: Set False Discovery Rate
Input : PSMs (list of search results),

FDR (desired false discovery rate)
Output: PSMs, filtered to FDR

1 Remove all hits for peptides smaller than length 8 from PSMs;
2 Remove all hits for peptides with search engine rank smaller than 1 from PSMs;

3 FDRcur ← 1 ;
4 Score← 0 ;
5 while FDRcur >FDR do
6 Score← Score + Increment ;
7 Remove all hits for peptides with a score smaller than Score from PSMs;
8 t← number of target hits ;
9 d← number of decoy hits ;

10 FDRcur = d
t ;

11 end
12 Remove all decoy hits from PSMs;
13 return PSMs

Note that regarding identified peptides the FDR is in general larger than the threshold set at
the PSM level. This is due to the fact that several correctly identified spectra may be explained
by the same peptide. On the other hand, incorrect PSMs distribute randomly over the peptides
in the database, as they represent hits by mere coincidence.

2.3 Definition of relevant data structures

In the following a short overview on the data that is output by a mass spectrometer is provided.
We list the information that is stored in an output file, and which can generally be seen as
given from the viewpoint of the designed algorithms. Unless stated otherwise, the preprocessing
algorithms are applied to one MS2-spectrum at a time and thus their input usually consists only
of one such spectrum. However, should it be necessary, the rest of the data may be accessed,
too, by reading directly from the raw data file.

2.3.1 The .RAW file format

The standard file format of the output files produced by Thermo Fisher Scientific mass spectrom-
eter instruments is the Thermo Xcalibur file format (.RAW). Since this is a proprietary binary
format it can only be read by either the Thermo Scientific Xcalibur software or via Thermo’s
MSFileReader libraries. Parts of the developed programs therefore use the functionality pro-
vided by the XRawfile2.dll, version 2.1.1.0.

Most importantly a .RAW file contains all spectra (MS1 and MS2) recorded by the mass
spectrometer which can be accessed by their unique running number. The spectra are enu-
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merated in the order in which they have been recorded, i.e the first spectrum is the first MS1-
spectrum, followed by the associated MS2-spectra, if there are any. Then, the next MS1-
spectrum follows, and so on.

Additionally, for each spectrum a collection of additional information, such as retention
time, total ion current etc. and certain instrument specific control data and correction factors
are stored. Although this information is per se not necessary for the follow-up identification or
quantification of peptides, it is still valuable for further analysis to detect flaws in the workflow
and devise ways of improving it.

Finally, reports about the defined methods and settings are available for each spectrum.
Note that the crucial information, i.e. the spectrum data itself, is of course also stored in other

file formats. The algorithms that are described in this thesis can therefore also be implemented
to be operated with these other file formats.
The most popular open data format that should be mentioned is mzML.

2.3.2 Formal definition of mass spectra

For computational means, a spectrum can formally be defined as a list of peaks, where a peak
(and the ion indicated by it) is defined by a structure consisting of the following attributes:

Mass Peak data
Name Data Type Abbreviation Description
Position double m/z The mass per charge ratio m/z of the ion, in a mass

spectrum this is where the centroid of the corre-
sponding peak is.

Intensity double I The intensity of the ion current measured in ions/s
Charge State int z The charge state of the ion. Note that this informa-

tion is not necessarily required and the mass spec-
trometer is not able to determine the charge state for
every peak that is recorded!

The column Abbreviation denotes the name of the attribute as it will be used in algorithm de-
scriptions within this thesis. E.g. the intensity of a peak p will be referred to as p.I .

Instead of having a list of peaks centroids, an alternative, and more precise representation
of a mass spectrum can be given by listing not the peak centroid data but the profile points each
peak consists of. The profile representation requires roughly ten-fold as much memory.

In both cases the peaks (or the profile points) in the list are sorted ascendingly by their m/z
values. The following figure shows an excerpt of an actual MS1-spectrum recorded with an
LTQ Orbitrap XL instrument. It lists the position and the intensity of one specific peak’s profile
points.

For MS2-spectra additional information is stored, since an ion from the MS1-spectrum has
to be selected to give rise to an MS2-spectrum illustrating the fragments of the respective ion,
commonly referred to as the precursor. The following attributes constitute the most commonly
used precursor data associated with an MS2-spectrum:
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. . .
436.79187 391178.8
436.79360 4404735.0
436.79532 11392973.0
436.79704 17311702.0
436.79877 17713638.0
436.80049 12358349.0
436.80222 5574961.0
436.80394 2130796.0
436.80567 1400039.8
. . .

Figure 2.15: Excerpt of an MS1-spectrum schowing the m/z-values and intensities of some
profile points.

MS2 Precursor data
Name Data Type Abbreviation Description
Precursor Position double prec.m/z The mass per charge ratio m/z of the

precursor ion.
Precursor Intensity double prec.I The intensity of the precursor ion.
Precursor Charge State int prec.z The charge state of the precursor ion.
Precursor Scan Number int prec.scan The number of the spectrum the precur-

sor was selected from.
Precursor Isolation Width double prec.isolation The width of the window applied

around the precursor m/z determining
which m/z-range has been collected
for fragmentation.

Activation Type string prec.activation Which activation type was used for pre-
cursor fragmentation.
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Last but not least, there is a collection of header data attached to each spectrum containing
further valuable information. The following table provides an overview on the most important
parameters that are available in the header.

Spectrum header data
Name Data Type Abbreviation Description
Scan Number int header.scan The running number used to identify

the spectrum.
Retention time double header.rt The point in time at which the spectrum

was recorded
Ion Injection Time double header.ionInject The amount of time (usually in ms) the

ions have been collected before they
were measured.

Low Mass double header.lowMass The lower end of the mass range that
was considered for the scan.

High Mass double header.highMass The upper end of the mass range that
was considered for the scan.
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CHAPTER 3
MS2 - Spectrum Manipulation

3.1 Motivation

One way to deal with the vast amount of data generated by a shotgun proteomics experiment
is the manipulation of MS2-spectra in a preprocessing step preceding the database search. The
algorithms described in this section directly target the peak list in a spectrum with the goal of re-
moving unnecessary peaks to facilitate the follow-up analysis done by the search engine. Since
the number of possibilities that have to be considered as possible fragment ions is reduced the
score of correct identifications is increased. Furthermore, the probability of incorrect identifica-
tions is reduced as there are less possibilities for random hits. Of course, these two arguments
only hold true, given the assumption that the algorithm works correctly and removes the super-
fluous peaks it is actually targeting. An additional advantageous side-effect by the reduction of
possibilities is the reduction in runtime of the search.

In the following the developed methods for deisotoping and charge-deconvolution of spectra,
as well as the ideas they are based on are described. Furthermore, ideas on further possibilities
to improve spectrum quality are outlined.

3.2 Deisotoping

As described in section 1.1, a peak in a spectrum (MS1, as well as MS2) indicating the abun-
dance of an ion is usually accompanied by a certain number of shifted peaks. The reason for this
effect is the fact that for many chemical elements there are isotope variants that occur naturally.
Isotopes are atoms whose atomic nuclei contain the same number of protons but a different num-
ber of neutrons, therefore having a different atomic mass.
Table 3.1 lists the naturally occurring isotopes for the elements occurring in the proteinogenic1

amino acids, the first variant of each element is the most abundant (and lightest) one. Note that
the mass difference between e.g. a 1 13C and a 2 13C isotope is not exactly the mass of the

1Proteinogenic amino acids are those amino acids occurring in proteins
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Element Atomic mass (Da) Natural abundance (%)
Carbon
12C 12.0000000 98.90
13C 13.003354838 1.10
Hydrogen
1H 1.007825032 99.985
2H 2.014101778 0.015
Nitrogen
14N 14.003074005 99.634
15N 15.000108898 0.366
Oxygen
16O 15.994914622 99.762
17O 16.999131501 0.038
18O 17.999160419 0.200
Sulfur
32S 31.972070690 95.02
33S 32.971458497 0.75
34S 33.967866831 4.21
36S 35.967080880 0.02

Table 3.1: Naturally occurring isotopes of the elements in proteogenic amino acids. The atomic
masses are according to [3], the isotopic abundances are taken from [6]

additional neutron2 the 2 13C has in comparison to the 1 13C, but somewhat less. This is due to
a phenomenon called mass defect, which - simply put - states that the mass of the bound system,
i.e. the whole nucleus, is less than the sum of the masses of the unbound system, i.e. the separate
protons and neutrons.

Consecutively, two molecules of one and the same compound may have a different total
mass as they could contain different isotopes.
We call the variant consisting of the most abundant isotope variatns, i.e containing only light
atoms, the monoisotopic variant and thus the corresponding peak in the spectra is referred to as
the monoisotopic peak. As it is the lightest variant of the compound this peak appears the farthest
left on the m/z-axis. If the same compound also occurred having one or more of these isotopes
exchanged with their heavier variants, this would lead to additional peaks in the spectrum further
to the right on the m/z-axis.
Hydrogen and carbon are the most abundant atoms in an amino acid. But as the probability
for the occurrence of an 2H atom is only 0.015%, compounds containing them are so rare that
they usually do not yield peaks that are intense enough to be distinguished from random noise.
On the other hand, with 1.10%, the probability for carbon to occur as the heavier variant (13C
instead of 12C) is high enough, s.t. it is likely that among all the C atoms of a certain molecule,
there will be one 13C isotope. Likewise, for bigger compounds (containing more C atoms) there

2The mass of a neuron is ∼ 1.00866 Da
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is also a considerable amount of molecules containing two, three or even more 13C isotopes.
These heavier molecules also lead to well-visible peaks in the spectrum indicating them.
Note that although for sulfur atoms the probability for a 34S isotope is comparably high, the
effect is barely visible in lower m/z-ranges. The reason is that there are only two amino acids
containing sulfur, namely cysteine and methionine, which have a natural abundance of 1.9% and
2.3%, respectively [39].

Therefore, as an indication for a certain ion we can usually observe a so called isotope
pattern in the spectrum, which is composed of peaks indicating variants of the ion containing a
different number of 13C isotopes. Since replacing a 12C by a 13C isotope will increase the total
mass of the ion by roughly 1 Da, we observe for a monoisotopic peak with an m/z value of v
and the charge state c a shifted peak at v + n

c for the ions containing 1 13C isotopes, a peak at
v + 2n

c for the ions containing 2 13C isotopes, etc. Here, the n stands for the mass difference
between 12C and 13C which is ca. 1.003354838. Figure 3.1a shows an isolated example of a
typical isotope pattern, consisting of the monoisotopic, as well as the 1 13C and the 2 13C peaks,
as it could occur in a spectrum.

As common search engines do not take additional isotope peaks into account but only rely
on the monoisotopic peak to identify fragment ions, it is a reasonable approach to see these
superfluous peaks as noise and remove them from the spectrum.

We therefore experimented with several ideas, starting from the approach by Savitski et
al. [38], in order to develop a reliable way of determining isotope patterns in MS2-spectra and
cleaning them thereof, s.t. only the monoisotopic peaks remain. Every peak, that is not accom-
panied by an isotope pattern, should remain untouched. This general procedure is referred to as
Deisotoping. Figures 3.1a and 3.1b show an isotope pattern before and after deisotoping.
The following sections give a detailed description of the ideas that we experimented with along
with a short summary of the results achieved with the respective method.

3.2.1 A simple Deisotoping algorithm

The deisotoping approach we started with has originally been implemented by its authors as part
of their H-Score approach [38], which we do not further explain here, as it is out of the scope
of this thesis. As the aim of H-Score was the introduction of a new scoring scheme for high
mass accuracy data, the deisotoping method incorporated in it is a suitable starting point for the
development of new sophisticated deisotoping algorithms for the high mass accuracy spectra we
want to optimize.

The algorithm makes use of the above-mentioned distance of n
c between consecutive iso-

topes for a c-fold charged analyte ion. It traverses the peak list backwards, i.e. starting from
the peak with the highest m/z-value towards the peak with the lowest one. For each peak pi
it inspects, if there is a previous peak pj having the distance n

c for c ∈ [1..p] (with p being the
precursor charge). Of course, inaccuracies in the data have to be accounted for, which is why
a certain tolerance value has to be applied, the authors used ±0.025 Da, here. Additionally, a
simple plausibility criterion is checked: From the two peaks in question, the intensity of the first
peak, i.e. the one with the greater m/z-value, may be at most twice as high as the intensity of
the second one. If these two criteria are fulfilled, the second peak is marked for removal, which
is done by simply setting its intensity to 0. In the end, every peak with intensity 0 is removed
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(a) Example of a typical isotope pattern. The monoisotopic peak of an ion at 239.01254Da (also referred to as
the 12C or the 0 13C peak) is followed by the 1 13C peak at 240.0159Da and the 2 13C peak at 241.01678Da

(b) The same situation after deisotoping. Only the monoisotopic peak remains in the spectrum.

Figure 3.1: Simple isotope pattern, before (a) and after (b) deisotoping

from the peak list.
Algorithm 3.1 gives a pseudo-code of the described procedure.

This algorithm is simple and straightforward. Indeed, a preprocessing of the MS2-spectra
using this method improves the identification rate compared to the search of unprocessed spectra
(for a detailed comparison see section 5.2). We could even see an improvement for CID spectra
which have lower mass accuracy. Obviously, the algorithm leaves room for several improve-
ments having some considerable drawbacks:

1. The tolerance window of ±0.025 Da is too generous considering the high resolution of
HCD spectra.

2. The algorithm marks detected peaks too quickly, i.e. whenever two peaks fit the criteria,
the second peak is marked. This procedure can be problematic when overlapping patterns
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Algorithm 3.1: Deisotoping as implemented by Savitski et al. [38]
Input : A list of (m/z, I)-pairs, peaks, of length N ascendingly ordered by m/z

Structure containing precursor ion information, prec
A value defining the accuracy tolerance of the isotope search, tolerance

Output: Deisotoped peaks list

1 n← 1.0033548; // mass difference between 12C and 13C
2 for i← N to 1 do
3 for j ← i− 1 to 1 do
4 for c← prec.z to 1 do
5 if Abs(peaks[i].m/z − peaks[j].m/z - n) ≤ tolerance and

peaks[i].I > peaks[j].I/2 then
6 peaks[j].I← 0 ; // mark this peak for removal
7 end
8 end
9 end

10 end

11 foreach peak p in peaks do
12 if p.I = 0 then
13 Remove p from peaks
14 end
15 end

occur. A simple example is depicted in Figure 3.2.

Figure 3.2: Overlapping isotope patterns: Here, the three annotated peaks form an isotope pat-
tern for charge state z = 1. The algorithm, however would also remove the two additional peaks,
since they would fit in an isotope pattern with charge state z = 2.
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3. The first peak falling in the tolerance window is marked as an isotope peak. However,
there may be another peak having a distance closer to the expected one. Of course, this
peak would then be a better match and should be the only one that is marked. Instead,
every peak that could be a possible isotope is marked.

4. Two consecutive peaks having the correct distance are, in general, seen as isotopes. The
chosen plausibility criterion, only rejecting such two peaks, if the second peak is at least
twice as high as the first one, is a too simple way of modeling natural isotope abundances.
Thus, almost every time when two peaks have the correct distance, they are recognized as
indicating isotopes and consequently, the second peak is removed.

Generally spoken, these issues can be summarized by the observation that the algorithm is some-
what inaccurate and too little restrictive. It simply removes too many peaks from a spectrum.

We therefore try to overcome these issues by modifying the original algorithm accordingly.

3.2.2 Improving the original algorithm

The first issue can be solved rather easily by simply reducing the size of the tolerance window.
To this end we implemented a variable user-definable tolerance window allowing for more re-
strictive tolerances. However, test runs with a tolerance of ±0.02 Da, ±0.015 Da, ±0.01 Da,
±0.005 Da and ±0.001 Da did only show a slight but not significant improvement in the num-
ber of PSMs. As can be seen in the experimental results in section 5.2, the optimal deisotoping
tolerance seems to be around 0.015 Da, or 15 mmu, for HCD spectra.

In order to cope with the second problem, we slightly modify the existing algorithm. Instead
of marking peaks for removal, as soon as they are found, the possible isotope patterns for the
current peak under consideration of every charge state are stored in a list. Additionally, each
pattern is evaluated by a simple scheme, resulting in a score for this pattern. After performing
the search for all possible charge states, the pattern with the best score is then chosen and its
peaks (except for the monoisotopic peak, of course) are marked for removal.
The score of a possible isotope pattern P consisting of n isotope peaks beside the monoisotopic
one is given by the sum of the distance of each peak pi’s observed position pi.poso from its
expected theoretical position pi.post.

score(P ) =
n∑

i=1

|pi.poso − pi.post| (3.1)

This method assumes the best-scoring possible isotope pattern to be the actual one. It is therefore
more cautious than the original approach as it keeps peaks in the spectrum that are less likely
part of the sought isotope pattern.

In a similar way the third issue of the original algorithm could be handled. When looking
for possible isotope peaks within the tolerance window, we do not accept the first match but
rather look further for any other possible matches. Again, all possible peaks that would match
this specific isotope peak are stored in a list. Finally, the best-fitting peak is chosen, i.e. the peak
whose deviation from the expected distance to the previous isotope peak is smallest.

However, this approach only reduced the number of PSMs and was therefore discarded.
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3.2.2.1 Expected isotope-ratio determination by averagine modeling

The last issue is the most difficult one to deal with, since modeling the isotope abundance ratios
requires an adaptive approach that is strongly dependent on the number of C-atoms contained
in the respective molecule. Naturally, we do not have any information about the composition of
the molecule prior to the search. However, its mass is known, which allows an estimation of the
ratios.
In order to have an admissible estimation of the isotope ratios of a given molecule, the the-
oretical isotope intensity ratios of a poly-averagine [39] (i.e. a peptide consisting of multi-
ple averagines) of the same mass are used. Averagine is the average amino acid, a theoret-
ical construction that has been developed based on the statistical occurrences of the amino
acids from the PIR protein database [49]. This model amino acid has the molecular formula
C4.9384H7.7583N1.3577O1.4773S0.0417 and an average mass of 111.1254 Da. As described above,
the more C atoms there are in a peptide, the higher the probability that one, two, three or more
of these C atoms are actually 13C and not 12C isotopes.
This is easy to see. We can formulate the question for the number of 13C isotopes in a molecule
as a serial experiment in which the C-atoms are independently examined one by one yielding
either 13C or 12C as result. This is exactly what is modeled by the Binomial distribution. Thus,
the probability for having k 13C-isotopes in a molecule containing n C-atoms in total is given
by

Pr(X = k) =

(
n

k

)
pk(1− p)n−k , where p = 0.011 (3.2)

Statistics suggests that these are also the average intensity ratios we can see when studying the
respective isotope peaks. Figure 3.3 illustrates the probabilities for peptides consisting of an
increasing number of averagines to contain 0, 1, 2, or 3 13C isotopes. The Figure suggests
that a more fine-grained acceptance criterion is needed. Certainly, the criterion chosen in the
original algorithm is fulfilled by any two isotopes of molecules up to 3333,762 Da (the mass of
a molecule consisting of 30 averagines). However, the problem lies in the opposite cases, when
this criterion seems far too relaxed. Consider for example the 12C and the 1 13C isotopes of a
peptide consisting of two averagines. The ratio between the intensities of the two peaks should
be around 1 to 10. Now, if we have a spectrum in which there are two peaks at roughly 220 Da
having the distance expected from two isotope peaks but a ratio of 1 to 1, which considerably
differs from the expected one, the original algorithm would still consider these peaks isotopes
and delete the second of those from the spectrum.

These considerations suggest that an algorithm that uses a more sophisticated acceptance
criterion taking the actually expected ratios into account should be more accurate and thus yield
better results.
We therefore analyzed 103431 MS2-spectra recorded by a Thermo QExactive instrument mea-
suring a 1 µg HeLa sample to find out how well this theoretical model fits to actual data. The
analysis was done in the following way:

1. For every isotope pattern found in the spectra select the monoisotope peak and calculate
its uncharged mass m.

2. Calculate how many C-atoms there are in a poly-averagine of the same mass.
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Figure 3.3: Probability distribution for the number of 13C-isotopes in a poly-averagine molecule
depending on the number of averagines in the molecule.

3. Calculate the theoretical intensities p0theo, p1theo, p2theo and p3theo for the 0 13C, 1 13C, 2 13C
and 3 13C isotopes, respectively using formula 3.2. Note that the calculated number n of
C-atoms is usually not an integer. Therefore we perform a linear interpolation between
the rounded down and rounded up values, i.e.:

P (X = n) = P (X = bnc)) · (n− bnc)) + P (X = dne)) · (1− (n− bnc))), (3.3)

where bnc and dne denote the applications of the floor and the ceiling functions to n,
respectively.

4. Calculate the sum of the first 4 peaks in the pattern in order to determine their percentages
of this total intensity: p0obs, p1obs, p2obs and p3obs.

5. Compute the ratio ri =
pitheo
piobs

for 0 ≤ i ≤ 3.

Clearly, in an optimal fit every such calculated ratio is exactly 1. To obtain an extensive overview
the data was plotted in the three dimensions, m/z and intensity (both taken from the monoiso-
tope peak), as well as the ratio. Note that the ratio has been log2 - transformed for the plots,
s.t. the range is compressed and optimally-fitting data points lie on the plane ratio = 0. The
following plots show the data collected for each of the four isotopes separately, focusing on the
intensity-ratio plane (left) and the m/z-ratio plane (right). The study of these plots leads to two
conclusions:
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1. The ratio is clearly correlated to the intensity and is better, the higher the intensity is.

2. The ratio is not directly correlated to them/z-value of the peaks. Although the plots might
suggest some kind of correlation, the different trends for the certain isotope peaks show
that this is indeed just a reflection of the correlation with the intensity. The explanation is
simple. As Figure 3.3 also shows, for ions with lower masses, the intensity of the 1 13C
peak - and moreover the 2 13C and 3 13C peaks - is relatively small in comparison to
the 12C. Especially if the isotope peaks are so small, that they are close or beneath the
noise level, it is therefore very likely that the percentage of the total intensity is heavily
distorted.
Thus, a decent fit can only be seen for the 12C and the 1 13C isotopes. Regarding the other
two, a general tendency can be seen but the variance is too high.

(a) (b)

Figure 3.4: 3d-plot showing the ratios of the measured against the theoretical intensities for the
12C isotopes.

Consequently, we developed an algorithm that makes use of this correlation with the aim of
rejecting patterns for which the isotope ratios are not good enough. The principle is the same as
for the conducted spectra analysis. Additionally, after step 5 as described above, the computed
ratios ri are used for evaluation. However, as a conclusion of the analysis, we only consider
ratios r0 an r1, as only for those the correlation is good enough to be used as a quality criterion:
We demand of both ratios to be greater than a given threshold value. If this is the case, the
isotope pattern is accepted, and all but the monoisotope are removed.

Unfortunately, testing several ratio thresholds, as well as intensity thresholds did not signif-
icantly improve the performance in comparison to the original approach. Moreover, it seems
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(a) (b)

Figure 3.5: 3d-plot showing the ratios of the measured against the theoretical intensities for the
1 13C isotopes.

(a) (b)

Figure 3.6: 3d-plot showing the ratios of the measured against the theoretical intensities for the
2 13C isotopes.

sample-dependent, if the method yields any benefit at all or if it even reduces the number of
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(a) (b)

Figure 3.7: 3d-plot showing the ratios of the measured against the theoretical intensities for the
3 13C isotopes.

PSMs (see section 5.2). For CID-spectra the application of the averagine approach visibly re-
duces the results.

3.2.2.2 Reasons for the superiority of the simple approach

Unfortunately, none of the attempts to improve the original deisotoping algorithm was really
successful. Despite the fact that the number of peaks incorrectly classified as isotopes was
decreased the overall result did not improve significantly. Even worse, as shown in section 5.2,
the number of PSMs has even decreased in some cases compared to the simpler algorithm.
Naturally, the question arises why this is the case.

The most thorough way to answer this question is the comparison of the same spectrum both
after applying the original approach and a modified one. Moreover, this needs to be done for
spectra for which the search results differ. This way, significant differences can be determined.
An examination of Mascot search results quickly led to the conclusion that the original algorithm
works better towards the way the search engine evaluates the PSMs. In principle, if a peak is
matched, the removal of any peaks in its vicinity will increase the score. As the score is based
on probabilities, the removal of competing peaks decreases the probability of the matching peak
being a random match. Since usually only a small part of the peaks are matched, it is much
less likely to accidentally remove a peak that will be matched than a random non-important one.
Therefore, on average, the achieved scores are better with the original algorithm than with a more
restrictive one. Figures 3.8, 3.9 and 3.10 illustrate three examples of a comparison between the
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original algorithm run at 25 mmu and 15 mmu isotope deviation tolerance. Figure 3.8 shows a
spectrum where the sole fact that more peaks have been removed improved the score. Figures
3.9 and 3.10 show excerpts of spectra where additionally the higher tolerance led to the matching
of another fragment ion, which is not found in the more restrictively processed spectra.

To prove the principle that the general removal of peaks can have a higher benefit than

(a) 15 mmu (b) 25 mmu

Figure 3.8: Comparison of Mascot search results: The 25 mmu variant of algorithm leaves
the spectrum much less dense than the 15 mmu one. Especially the lower m/z-range is much
sparser.

(a) 15 mmu (b) 25 mmu

Figure 3.9: Comparison of Mascot search results (zoomed in to mass range 200 to 300 Da):
With 25 mmu Mascot was able to match the b2 ion due to the removal of the slightly higher peak
at around 259 Da. In the 15 mmu variant the peak is not removed and obstructs the matching of
the b2 ion.

being more careful with which peaks to remove we experimented with even greater tolerance
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(a) 15 mmu (b) 25 mmu

Figure 3.10: Comparison of Mascot search results (zoomed in to mass range 1100 to 1150 Da):
With 25 mmu Mascot was able to match the b12 ion due to the removal of the slightly higher
peak at around 1122.5 Da. In the 15 mmu variant the peak is not removed and obstructs the
matching of the b12 ion.

windows up to 100 mmu. Interestingly we do not observe a considerable performance drop,
which confirms the stated assumption.
The evidence is even clearer in the case of lower resolution CID spectra. Although the studied
methods are targeting HCD (high-resolution, high accuracy) data and we did not expect the
more accurate deisotoping approaches to perform very well on CID spectra, it is nevertheless
remarkable that here, the results are exactly the other way around: The sloppier the method the
better it performed. Moreover, the sophisticated averagine approach failed completely and was
in one case outperformed even by the unprocessed spectra.

We therefore conclude that there is not too much gain in peptide identification performance
to be obtained from MS2-deisotoping procedures. Moreover, as the more sophisticated approach
does not always yield better results, we recommend to employ the original algorithm as this one
does not increase the runtime unnecessarily.

3.3 Charge-Deconvolution of spectra

Another typical phenomenon that can be observed is the occurrence of peaks in different m/z-
ranges indicating the same fragment ion. This is due to the different charge states that an ion can
have after fragmentation, depending on where on the original peptide the protonations have taken
place [23]. As the m/z-scale shows higher-charged ions in the lower ranges and lower-charged
ions in the upper ranges this leads to overcrowded spectra containing much more information
than necessary. The m/z-value of an ion is computed the following way:

m/z =
M + zH+

z
(3.4)
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Algorithm 3.2: Charge-Deconvolution as implemented by Savitski et al. [38]
Input : A list of (pos, I)-pairs, peaks, of length N ascendingly ordered by pos

Structure containing precursor ion information, precursor
Output: Charge-deconvolved peaks list

1 p← 1.007276; // molecular mass of a proton
2 for i← 1 to N do
3 if peaks[i].z > 1 then
4 peaks [i].pos← peaks [i].pos ·(peaks[i].z− 1)H+ ;
5 peaks [i].z = 1 ;
6 end
7 end

whereM is the molecular mass of the ion, z its charge state andH+ the mass of a proton, which
is ca. 1.007276 Da.
E.g., if a fragment having the molecular mass of 1500 Da would occur singly-, doubly- and
triply-charged, the respective spectra would contain peaks at 1500 Da, 751 Da and 501 Da,
respectively.

Most search engines do not consider higher charged ions (Mascot, for example, only consid-
ers singly- and doubly-charged fragment ions) as this would exponentially increase the search
space. Therefore it seems a promising approach to remove multiply-charged replicas of the same
fragment ion from the spectra and only keep the singly-charged ones.

Clearly, for charge-deconvolution to be possible, the charge states of the peaks have to be
known. It is therefore recommended to perform the Deisotoping procedure beforehand, if the
peaks in the spectra are not annotated with charge states or it is unclear if they are.

3.3.1 A simple Charge-Deconvolution algorithm

For the charge-deconvolution we followed the same approach as for the deisotoping. We started
from the existing algorithm developed for H-Score [38].
The principle of the algorithm is quite simple. For the charge-deconvolution only one simple
iteration through the peak-list is necessary. For each peak with a charge state greater than 1 the
singly-charged m/z-value is then calculated according to eq. 3.4:

msc = m/z · (z − 1)H+ (3.5)

The peak is then simply replaced by a new peak at positionmsc having the same intensity but the
charge state z = 1. Algorithm 3.2 illustrates this procedure. Unfortunately, the preprocessing
with this method only yields a negligible improvement in the identification performance (see
section 5.2). Here, two possible problems play a role:

1. The “conversion” of a peak indicating a multiply-charged ion into a peak indicating a
singly-charged peak does not take into consideration, if there already is a peak for the
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singly-charged ion. As a possibly already existing peak will in general not have exactly
the same m/z-value as the shifted one, this will lead to peaks referring to the same ion
which are, from the search engine’s point of view, competing with each other. This will
however, lower the resulting score for matched peaks in the same m/z-range.

2. Even though the charge-deconvolution thins out the lower m/z-regions where the peaks
of the multiply-charged ions can be found the higher regions are populated with additional
peaks, which leads to new competing peaks there. The obtained benefits from the thin-
ning might therefore just be canceled out by the suffered score decrease through the new
competing peaks.

Although the second problem clearly cannot be eliminated we experimented how the algorithm
performs, if the search engine only considers singly-charged ions.
Here, we do observe a greater increase in PSMs, however the improvement can still not be
considered significant and, in particular, it is lower than having the search engine make use of
the doubly-charged ions.

Furthermore, we tried to reduce the negative effect of newly introduced peaks by consolidat-
ing an already existing peak with the shifted one, i.e. by solving the first problem. To achieve
this we changed the algorithm to look for an already existing peak at the position (± 0.01 Da)
the converted peak would be shifted to. If such a peak exists the two peaks’ intensities are com-
pared. Whichever has the higher intensity remains in the spectrum, the other one is removed.
Additionally, the remaining peak’s intensity is increased by the intensity of the removed peak.
This revised method is given in algorithm 3.3. In fact, this change had no effect whatsoever on
the resulting PSMs. The only measurable change was very small and only occurred for one of
our three test instances (see 5.2) that it can be considered negligible.

3.4 Results and Future Work

As a result of the analyses described in this section we decided to implement the simple existing
deisotoping and charge-deconvolution procedures in a plugin for the Proteome Discoverer soft-
ware, version 1.3.0.339, by Thermo Fisher Scientific: The MS2-Spectrum Processor node, that
can be integrated in the workflow. As there was no significant performance increase by the more
sophisticated methods, we chose the simple approaches to not necessarily waste computation
time. The software allows the setting of a desired tolerance value for the deisotoping method, as
well as the general choice, if deisotoping and/or charge-deconvolution should be applied to the
MS2-spectra.
For testing purposes and possible analyses of spectra it is also possible to switch to the averagine
modeling approach. However, as we have showed in this section, this will not necessarily yield
a higher PSM count and is therefore not recommended as a standard procedure in the process-
ing workflow. Similarly, we implemented the modified charge-deconvolution method for testing
purposes, as we believe it is more exact than the original one.

As the more sophisticated algorithms did not yield significant improvements in comparison
to the simple algorithm we assume that the design of even more complex methods would prob-
ably also not be very promising. The final algorithms implemented in the plugin are therefore
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Algorithm 3.3: Modified Charge-Deconvolution algorithm
Input : A list of (pos, I)-pairs, peaks, of length N ascendingly ordered by pos

Structure containing precursor ion information, precursor
Output: Charge-deconvolved peaks list

1 p← 1.007276; // molecular mass of a proton
2 for i← 1 to N do
3 if peaks[i].z > 1 then
4 Msingly ← peaks [i].pos ·(peaks[i].z− 1)H+ ;
5 singlyChargedPeakcur ← FindClosestPeak (Msingly) ;
6 if Abs (singlyChargedPeakcur- Msingly) ≤ 0.01 then
7 if peaks[i].I > singlyChargedPeakcur .I then
8 peaks[i].pos = Msingly ;
9 peaks[i].I = peaks[i].I + singlyChargedPeakcur .I ;

10 peaks[i].z = 1 ;
11 singlyChargedPeakcur .I = 0 ;
12 end
13 else
14 singlyChargedPeakcur .I = peaks[i].I + singlyChargedPeakcur .I ;
15 peaks[i].I = 0 ;
16 end
17 end
18 end
19 else
20 peaks[i].pos← peaks[i].pos · (peaks[i].z− 1)H+ ;
21 peaks[i].z = 1 ;
22 end
23 end

24 foreach peak p in peaks do
25 if p.I = 0 then
26 Remove p from peaks
27 end
28 end

simple and not very time consuming, such that they can be generally applied in the workflow
without having to consider excess runtime or memory limitations.

Naturally, there are many more spectrum-manipulation approaches one could apply, yet,
as we demonstrated in this section, the main benefit with current search engines lies in the
removal of peaks. To this end, another possibility would be the removal of neutral loss3 peaks

3The term neutral loss describes the loss of an uncharged compound like water or ammonia, which is reflected
in the spectrum by another peak of specific m/z-offset from the original fragment ion.
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of “confirmed” ions, i.e. ions for which an isotope pattern has been found. Furthermore, we
believe that a noise filtering method that clears the low-intensity areas of the spectrum would
also increase the number of PSMs.
Probably another promising approach is the recalibration of MS2-spectra. For this approach a
two-searches strategy would have to be implemented where the first search generates a result
list that serves as an input to recalibrate MS2-spectra using high-confidence identifications. The
recalibrated spectra can then be submitted to the second, actual, search. Section 4.4 describes
this idea with respect to precursor recalibration. However, for this approach to work a search
engine would be needed that rewards accurate fragment ions.
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CHAPTER 4
Precursor Precision Improvement

4.1 Motivation

In general, mass spectrometers have to take decisions on which precursor to pick for fragmenta-
tion analysis within a few milliseconds. Moreover there is no spare computation time left to look
back at the chosen precursors and try to get some additional information about them. Therefore,
the typical approach is to take the data that is available at the moment of the precursor-picking.
However, using not only the information from the MS1-spectrum the precursor originated from
but also from other spectra in which the precursor can be found should allow for a more exact
calculation of the precursor mass.
The reason is simple. As we are dealing with measured values which are subject to errors we
can model the set of all measurements of a single precursor mass by a normal distribution whose
mean is the correct value of the mass. And clearly, the obtained result of averaging multiple
measurements will, in general, be closer to the correct value than simply considering just one
single measurement. This is even more true for spectra obtained by HCD. As described in sec-
tion 2.2.4.1 these spectra feature high mass accuracy and resolution.

We thus have developed a method that can be applied as an intermediate processing step after
the acquisition of the spectra and before the spectra are submitted to the database search engine.
This way, the necessary data can be gathered from the complete raw file, i.e. all (MS1-) spectra
that have been recorded can be incorporated in the analysis, without being subject to real-time
constraints the instrument software has to deal with when choosing precursor ions for fragmen-
tation. The algorithm processes one MS2-spectrum after another with the basic input being -
besides the possibility to access all raw data generated from the respective sample - the m/z-
value of the precursor ion associated with the spectrum. After running the algorithm a new, more
reliable m/z-value is the expected output and replaces the value originally associated with the
MS2-spectrum.
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4.2 Method

4.2.1 Basic Principle: 3d-Peaks

The key idea behind the developed approach is the 3d-peak. This concept has already been
successfully applied in the MaxQuant software and it has been shown that the number of pep-
tide identifications could be increased dramatically [7]. However, the proposed algorithm does
not always extract 3d-peaks correctly and tends to be too restrictive. Furthermore, we employ
different methods of improving the precision of the resulting m/z-value, as a part of the mass
improvement employed in MaxQuant is based on the detection of SILAC pairs or triplets 1,
which cannot be applied in general, i.e. for non-labeled samples. Last but not least, the algo-
rithm in MaxQuant has been developed and tested for CID spectra, for HCD spectra different
approaches might be necessary.
Nonetheless, the general concept of 3d-peaks promised to serve as a solid basis for the develop-
ment of our algorithm.

As described above the aim is to collect further precursor data from different MS1-spectra
than the one the precursor ion was selected from. The logical step to take is therefore to study
precursor peaks not only in the m/z-intensity plane but to include the retention time as the third
dimension and consider three-dimensional peaks.
The basic method for 3-dimensional peak-picking is simple:

1. Search the precursor in the original MS1-spectrum and gather its profile points.

2. Starting from this spectrum, traverse backwards through the MS1-spectra and search for
the current precursor in each of them, until the precursor cannot be found anymore.

3. Starting from this spectrum, traverse forwards through the MS1-spectra and search for the
current precursor in each of them, until the precursor cannot be found anymore.

⇒ The 3d-peak is constructed from the separate 2d-peaks formed by the profile points that were
obtained from the respective MS1-spectra.
In the following, we will refer to the peak formed by the profile points as a 2d-peak, while the
“peak” obtained by regarding the sequence of the 2d-peaks is referred to as the 3d-peak. Figure
4.1 illustrates the connection between 2d- and 3d-peaks.

Although the basic idea behind the algorithm sounds simple, especially the construction of
the 3d-peak and the decision where the peak ends is a complex problem, which will become
clear in sections of this chapter.
The details of the algorithm are described in the following.

4.2.1.1 2d-Peak Detection

The first basic element of the algorithm is the detection of a 2d-peak in a single MS1-spectrum.
Recall that a 2d-peak is defined by the profile points of which there are around 10,000 to 20,000

1SILAC is a method of quantitative proteomics, in which peptides are labeled with light and heavy forms of a
certain amino acid. Based on this labeling the measured peptides can then be quantified.
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Figure 4.1: a) A 2d-peak formed by the profile points in a specific MS1-spectrum. The green
line depicts the centroid of the peak, the two red lines define its ends. b) A 3d-peak composed
of five 2d-peaks that were found in different MS1-scans adjacent to each other [7].

in an average MS1-spectrum, depending on the resolution. The challenge is therefore to collect
only the profile points that are in fact part of the same peak. As the peak shapes are usually
Gaussian, the peaks can be separated very confidently from each other leading to a very simple
method to collect exactly the profile points that form one peak. Starting from the profile point
closest to the expected centroid value, the list of profile points is traversed both towards lower
and higher m/z regions until a point is reached whose intensity value is 0 or a local intensity
minimum was detected, indicating a so-called split peak. Note that the former criterion can be
applied since on the edges of the peaks there are usually several profile points with intensity 0
included in the list. This is due to the baseline- and noise-filtering applied by the instrument
software while writing the data to the raw file. If this were not the case, and only peak data were
stored in the list, the two neighboring peaks could still be separated via the second criterion. An
example of where a split peak would be detected can be seen in Figure 4.2. Naturally, when
searching for the point closest to the given centroid, a tolerance window around this centroid has
to be applied, s.t. cases where there is no point inside the window result in no matching peak. A
good choice is a window width of 5 to 10 ppm.
It was proposed that this simple approach of detecting the 2d-peak is sufficient for spectra
recorded by high precision instruments [7].

After the profile points of a peak have been collected, its centroid is calculated. As the peak
shape is Gaussian it is an accurate approach to fit a Gaussian function to the collected profile
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Figure 4.2: Example of a 2d-split peak: Note that the margin between the two bordering peaks
can easily be found by searching for the local minimum [7].

points and to determine the centroid of this function. In their supplemental material Cox et
al. [7] suggest the following formula to calculate an approximation of the centroidm a Gaussian
function fitted to the profile points would have

m =
1

2

(L0 − L1)m
2
−1 + (L1 − L−1)m

2
0 + (L−1 − L0)m

2
1

(L0 − L1)m−1 + (L1 − L−1)m0 + (L−1 − L0)m1
(4.1)

where m−1,m0, m1 are the m/z-values (i.e. the positions) of the three central profile points,
and L−1, L0, L1 are the natural logarithms of the corresponding intensities. For the rare cases
that a peak is defined by less than two profile points the centroid is given by the average of their
m/z-values weighted by their intensities.

A closer analysis of this formula confirms that it can indeed be used to determine the centroid
of a Gaussian. The general Gaussian function is defined by

f(x) = ae−
(x−b)2

2c2 (4.2)

where a, b, c > 0.
Applying the natural logarithm to this function yields a quadratic function

lnf(x) = ln a− 1

2c2
x2 +

b

c2
x− b2

2c2
(4.3)

which in its general form is given by

lnf(x) = ax2 + bx+ c (4.4)

Now, in our case the domain of this parabola ism/z and the function range are the logarithmized
intensities. We can determine the three unknown coefficients, a, b and c of the function by
solving a system of three linear equations using the given three m/z-values m−1,m0,m1, and
the corresponding logarithmized intensities L−1, L0, L1.

L−1 = a m2
−1 + b m−1 + c (4.5)

L0 = a m2
0 + b m0 + c (4.6)

L1 = a m2
1 + b m1 + c (4.7)
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Note that the centroid of a parabola is equal to its maximum, which can easily be obtained by
differentiation, i.e. m can be found by solving

m = − b

2a
(4.8)

The constant part of the function c, is therefore irrelevant and we can proceed in the following
way:
By subtracting 4.7 from 4.6, 4.5 from 4.7 and 4.6 from 4.5 we obtain

L0 − L1 = a(m2
0 −m2

1) + b(m0 −m1) (4.9)

L1 − L−1 = a(m2
1 −m2

−1) + b(m1 −m−1) (4.10)

L−1 − L0 = a(m2
−1 −m2

0) + b(m−1 −m0) (4.11)

Now, we divide 4.9 by (m0−m1), 4.10 by (m1−m−1) and 4.10 by (m−1−m0) which yields

L0 − L1

(m0 −m1)
= a(m0 +m1) + b (4.12)

L1 − L−1

(m1 −m−1)
= a(m1 +m−1) + b (4.13)

L−1 − L0

(m−1 −m0)
= a(m−1 +m0) + b (4.14)

In order to isolate a, we subtract 4.13 from 4.12:

L0 − L1

(m0 −m1)
− L1 − L−1

(m1 −m−1)
= a(m0 −m−1)

a =
L0 − L1

(m0 −m1) · (m0 −m−1)
− L1 − L−1

(m1 −m−1) · (m0 −m−1)

=
(L0 − L1) · (m1 −m−1)− (L1 − L−1) · (m0 −m1)

(m0 −m1) · (m1 −m−1) · (m0 −m−1)

=
(L1 − L0)m−1 + (L−1 − L1)m0 + (L0 − L−1)m1

(m0 −m1) · (m1 −m−1) · (m0 −m−1)
(4.15)

Now, we use equation 4.14 in order to isolate b

b =
L−1 − L0

(m−1 −m0)
− a(m−1 +m0) (4.16)

and insert a as calculated above:

b =
L−1 − L0

(m−1 −m0)
− (m−1 +m0) · ((L1 − L0)m−1 + (L−1 − L1)m0 + (L0 − L−1)m1)

(m0 −m1) · (m1 −m−1) · (m0 −m−1)

=
(L−1 − L0) · (m0 −m1) · (m1 −m−1) · (m0 −m−1)

(m−1 −m0) · (m0 −m1) · (m1 −m−1) · (m0 −m−1)

−
(m2

−1 −m2
0) · ((L1 − L0)m−1 + (L−1 − L1)m0 + (L0 − L−1)m1)

(m−1 −m0) · (m0 −m1) · (m1 −m−1) · (m0 −m−1)

51



=
(L−1 − L0) · (m−1 −m1) · (m0 −m1)

(m0 −m1) · (m1 −m−1) · (m0 −m−1)

−(m−1 +m0) · ((L1 − L0)m−1 + (L−1 − L1)m0 + (L0 − L−1)m1)

(m0 −m1) · (m1 −m−1) · (m0 −m−1)

=
(L0 − L1)m

2
−1 + (L1 − L−1)m

2
0 + (L−1 − L0)m

2
1

(m0 −m1) · (m1 −m−1) · (m0 −m−1)
(4.17)

Finally, a and b can be inserted into the derivative, 4.8:

1

2

(L0 − L1)m
2
−1 + (L1 − L−1)m

2
0 + (L−1 − L0)m

2
1

(L0 − L1)m−1 + (L1 − L−1)m0 + (L−1 − L0)m1
(4.18)

which is exactly the proposed formula.
We conclude that the proposed formula indeed yields the centroid of a fitted Gaussian to the

three profile points.
The intensity of a 2d-peak is given by the area under the Gaussian curve. However, be-

cause the intervals between the separate profile points are nearly constant, the total intensity, i.e.
sum of the separate intensities is proportional to the area under the Gaussian [7]. For further
computations the centroid-m/z and the total intensity are stored for the each 2d-peak.

It is therefore possible to obtain reasonably good approximations of the centroid and the
intensity of a Gaussian peak without actually performing a runtime-expensive linear regression
of a Gaussian function to the profile points.

Note that this is also done for the original precursor m/z received as input, as we want to
make sure that the centroid, that is being used further on by the algorithm is from that 2d-peak
only. As the instruments apply a proprietary peak-picking algorithm it is not clear how the
original centroid value has been calculated.

4.2.1.2 3d-Peak Centroid

After calculating the centroid for each 2d-peak the actually sought 3d-peak centroid is calcu-
lated. This is done by simply computing the average of the n 2d-peak centroids (mi, 1 ≤ i ≤ n)
weighted by the corresponding total intensities (Ii, 1 ≤ i ≤ n):

m/z3d =

∑n
i=1miIi∑n
i=1 Ii

(4.19)

This is the value that is output by the algorithm replacing the original precursor m/z-value.
The idea behind this calculation is the fact that the measured values become less accurate

the closer the intensity is to the (technical) noise level. Therefore, the higher confidence in
m/z-values stemming from highly intense peaks is expressed by the greater weight.

4.3 3d-Peak Reconstruction

A crucial aspect of the algorithm has not been discussed yet: How is a 3d-peak constructed?
Since the retention time dimension of the 3d-peak should reflect the elution behavior of the
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corresponding peptide, it is necessary to reconstruct the elution profile in order to obtain a proper
3d-peak. The 3d-peak’s profile in the retention time-intensity plane has an almost Gaussian
shape, as well. However, the rising edge of the curve is slightly steeper, whereas the falling
edge is much flatter compared to a regular Gaussian curve. Additionally, the falling edge of the
quasi-Gaussian part of the peak usually passes over to a more or less distinctive tailing which -
in extreme cases - can be several times as long as the main part of the peak. The reason for this
phenomenon lies in the gradient used in the HPLC (see section 2.2). When the point is reached
where the concentration of the organic compound is high enough to loosen the ions of a specific
peptides from the solid phase they begin moving towards the end of the column where they will
elute. If at this point the concentration were kept at a constant level, the eluting ions would
result in a Gaussian-shaped elution profile. However, as the concentration keeps rising the rising
hydrophobicity forces the ions even faster towards the end of the column. Furthermore, with
a continuously lowering probability to remain bound to the stationary phase the elution time
becomes prolonged. This results in the described deviations from a Gaussian profile.
Regarding the retention time-m/z plane, a 3d-peak is ideally Gaussian-shaped, which is obvious
as all the 2d-peaks of which it consists are Gaussian-shaped. Figure 4.3 shows an example
of an extracted peak featuring a typical elution profile as described above, as well as almost
no deviations along the m/z-axis. In this and the further example plots the following data is
visualized:
For each example a 3-dimensional plot in the dimensions Retention Time (RT) in min, Intensity
and m/z was made of the respective extracted 3d-peak. The figures consist of two parts, one
showing the RT-Intensity plane, the other one the RT-m/z plane. Each series of black lines
symbolizes the profile points of the 2d-peak that was extracted from the spectrum recorded at
the respective retention time. The green dots on top of the 2d-peaks mark the centroid m/z-
value calculated for the peak. Finally, the red lines indicate the profile points taken from the
original precursor spectrum. Note that in general the shape of a 3d-peak is by far not that
perfect as theory expects it to be, as the measured intensities and m/z-values are subject to
distortion. As described above, the m/z-values become more noisy the closer to the noise
level they are. Unfortunately, the intensity values themselves are also subject to distortion that
increases with decreasing intensity. At a closer look one can also see these deviations in the RT-
Intensity plot in Figure 4.3, where even peaks in the apex area of the elution profile are deviating
visibly from the expected ideal shape. Especially low-abundant peptides leading to low-intensity
peaks are therefore subject to heavy distortion, i.e. inaccuracy in both measured dimensions,
which complicates an effective peak-reconstruction. This demands for an algorithm capable of
detecting split peaks without being to restrictive as smaller deviations are usually within the
normal range.

Reconsider the above-mentioned procedure. The starting point is the spectrum in which the
precursor has been found. Now, in the spectra recorded previously and later we continue the
search for the precursor and add the extracted 2d-peaks, until the precursor cannot be found
anymore. However, it still needs to be clarified what it means that a precursor is found or not
found in a certain spectrum. There is indeed no easy answer to this question as in complex
samples a myriad of peptides elute simultaneously and the phenomenon of overlapping peaks is
not rare. In order to enable the algorithm to take well-founded decisions the information about
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(a) RT-Intensity plane (b) RT-m/z plane

Figure 4.3: Example of an ideal 3d-peak, having an approximately Gaussian-shaped elution
profile. In the end of the peptide’s elution time, the peak has a distinctive tailing. Regarding the
RT-m/z plane the observed values follow a straight line.

the 3d-peak shape that has been reconstructed so far, needs to be available. For this reason the
centroid and intensity values of each 2d-peak are calculated right after it has been extracted
from a spectrum. Based on these values and the values of the previously added 2d-peaks, the
algorithm can now decide if this new 2d-peak is most probably part of the 3d-peak and should
thus be added or if it should be rejected.

The relevant parameters that need to be set for the peak detection are listed and briefly
explained in table 4.1. How exactly each of these parameters is applied in the algorithm is
explained subsequently in this section and the following subsections. Initially, it needs to be
determined, if the spectrum currently searched contains a suitable candidate peak, i.e. a 2d-peak
which is close enough to apply the further plausibility checks.
The spectrum is searched by applying the detection algorithm described above using as m/z-
value around which the search is performed the centroid of the peak found in the previous spec-
trum (or the original precursor value, for the first scan). If a profile point is found within the
tolerance window the resulting 2d-peak is the candidate peak to be attached to the sequence of
2d-peaks forming the current 3d-peak the detection. Otherwise, no candidate peak is considered
for this spectrum.

If a candidate peak has been extracted, the following criteria are checked to determine, if it
was given rise by the same peptide and should thus be attached to the current 3d-peak:
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Name Data Type Abbreviation Description
Tolerance double tol Defines the maximal deviation from the

original centroid. I.e. a tolerance win-
dow of±tol is applied around the orig-
inal centroid.

Minimum Profile
Points

int nmin A candidate peak needs at least nmin

profile points in order to be considered.
Skip Scans int skip The amount of spectra that can be

skipped in case the candidate peak does
not match the criteria.

Points for Regres-
sion

int nreg The amount of 2d-peaks that are taken
into account for the linear regression
used in peak-profile tracking.

Points for Mass
Drift Detection

int ndrift The amount of 2d-peaks that are taken
into account for the detection of slow
mass drifts.

Table 4.1: 3d-peak reconstruction: Relevant settings

4.3.1 Minimum Profile Points in 2d-Peak

If the extracted candidate peak does not consist of more than the set minimum amount of profile
points it is rejected. The reason is that due to noise- and baseline-correction performed by the
mass spectrometer the extracted peak represents only the apex region of the actual peak. Con-
sequently, the m/z-values of the remaining profile points, and moreover the centroid, will most
probably not be very accurate.
One might argue that the part such a very low intense peak will contribute to the weighted-
average centroid of the 3d-peak is insignificant, which is certainly true. This check is never-
theless valuable as every increase in precision - no matter how small - can be an advantage.
Additionally, this check rather reduces than increases the runtime of the algorithm. When the
peak reconstruction reaches the margins of the 3d-peak, the 2d-peaks clearly become less in-
tense. This means that as soon as a 2d-peak is encountered, that is so small that it no longer
consists of a high enough amount of profile points, the 3d-peak is already ending. It is therefore
reasonable to stop the search and not to continue until no 2d-peak at all can be found anymore.
This is especially true in the tailing area of the 3d-peak, where there can still be plenty of spectra
containing a low intense 2d-peak that is, strictly seen, part of the same 3d-peak. Added up these
peaks’ intensities could have a considerable amount of weight to observably alter the overall
centroid.
In the light of these considerations this criterion becomes much more valuable as it appears at a
first glance.
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4.3.2 Peak to Peak m/z-Deviation

Another simple criterion that is checked is the deviation in the m/z-dimension. If the candidate
peak’s centroid deviates from the one of the previous peak by more than the set tolerance, the
peak is rejected.
The aim behind this check is to detect sudden shifts in them/z-dimension of greater magnitude.
As for modern instruments the measured m/z-value of peptides remains relatively stable, such
a deviation clearly indicates that the candidate peak does not indicate the same peptide as the
ones collected so far in the 3d-peak. It is therefore safe to assume that the current 3d-peak
has ended and a different one is just beginning. Figure 4.4 shows an example of an extracted
peak containing such a sudden m/z-shift. In this case a closer look at the elution profile also
indicates that at around 165.65 min on the RT axis actually another 3d-peak starts while the
original 3d-peak is already ending.

(a) RT-Intensity plane (b) RT-m/z plane

Figure 4.4: Example of a 3d-peak, in which a sudden m/z-shift occurs around 165.65 min on
the RT-axis

4.3.3 Continuous m/z-Deviation

Unfortunately, it is not always that easy to detect overlapping peaks. In many situations there
is indeed a true co-elution of peptides meaning that the resulting 3d-peaks will overlap heavily.
The generation of one single 3d-peak from two co-eluting peptides would lead to a deformed
peak shape in the m/z-axis, whereas the elution profile of the peak does not necessarily reflect
the overlap. The reason is that the respective intensities for the two peptides add up leading to a
elution profile that represents, in fact, the sum of the eluting ions of both peptides. In situations
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where the overlap is big, one does not even observe abrupt mass shifts, as a big overlap means
that the profile points of both peptides overlap in many spectra leading to many joint 2d-peaks.
Therefore the respective centroids of these peaks only gradually drift from them/z-range of one
peptide, to the other one. Figure 4.5 shows an example of a 3d-peak whose m/z axis contains a
continuous drift upwards. One could assume by inspecting the elution profile that there are two
peaks, the first one ending at around 116.9 min, the second one starting at around 116.75 min.
Thus, 5 to 6 2d-peaks are overlapping, which is reflected in the m/z-drift, which ranges over
the said 5 to 6 2d-peaks.

For the sake of detecting such drifts the algorithm analyzes a number of previous 2d-peaks

(a) RT-Intensity plane (b) RT-m/z plane

Figure 4.5: Example of 3d-peak, in which a continuous m/z-drift occurs. Note that by inspect-
ing solely the elution profile one can only assume but not with certainty conclude that the peak
in fact indicates the presence of two peptides.

(according to the set points to use for the mass drift detection) plus the candidate peak. If in
total the m/z-deviation between the consecutive peaks is greater than the tolerance threshold
the candidate peak is rejected.

4.3.4 Elution Profile Tracking

There are also situations in which the shape of the elution profile can give a hint where a 3d-peak
should end, while the inspection of the RT-m/z plane might not allow this conclusion. Figure
4.6 shows an example of such a peak. Whereas in the elution profile the incision between the
two peaks is clearly visible, the m/z-value only deviates slightly between consecutive peaks.
The masses of the peptides are too close to each other, s.t. these deviations are well within the
expected inaccuracy due to technical noise.
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Because of the normal deviations in the elution profile it is not possible to apply a method as

(a) RT-Intensity plane (b) RT-m/z plane

Figure 4.6: Example of 3d-peak split peak. Note that although the incision is obvious in the RT-
Intensity plane, the deviations visible in the RT-m/z plane are not conclusive enough to detect
it.

simple as in the 2d-peak extraction scenario. The general idea of tracking the slope of the profile
is nevertheless a suitable way of detecting the margins of a peak. As an approach capable of
compensating these fluctuations we choose to take the intensities of a defined number nreg − 1
of previous 2d-peaks, plus the intensity of the candidate peak, into account. Given the retention
times RTi of the 2d-peaks and the and the corresponding intensities Ii, for 1 ≤ i ≤ nreg, we
perform a linear regression in order to fit a straight line through the data. The slope from the
obtained line can then be used as an indicator in the same way as in the 2d-peak setting. I.e. the
slope is traced to detect local minima, which most probably indicate the end of the peak.

Finally, to further compensate for possible inaccuracies in the measurements which can lead
to unpredictable deviations in the data the algorithm may always skip one spectrum, in which no
suitable candidate peak was found or for which the extracted candidate peak did not pass all of
the mentioned quality criteria. In this case, the algorithm continues with the next spectrum, as if
the skipped one did not exist.
Note that although it is possible to change this setting to allow even more spectra to be skipped,
it is not recommended to do so.
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4.3.5 Evaluation of the extracted peak

The described quality criteria for the 3d-peak reconstruction are chosen to detect the margins
of the peak but not to be too restrictive. However, experiments have shown, that some of the
extracted peaks are still obviously incorrect. The algorithm still fails to detect split peaks when
the overlap between the two respective peaks is too high. Figure 4.7 shows an example of an
obvious split peak which has not been separated by the algorithm. Inspection of the RT-Intensity
plane by eye would suggest the conclusion that these are actually two peaks. In the RT-m/z
plane the situation is even more obvious. Here the drawback of the decision to design the
algorithm in a not too restrictive way becomes apparent.

(a) RT-Intensity plane (b) RT-m/z plane

Figure 4.7: Example of 3d-peak split peak that could not be detected by the algorithm. Note that
although the deviations in both measured dimensions strongly indicate a split peak, the algorithm
is too less restrictive to detect it.

Therefore, a final evaluation is done after the peak has been reconstructed. For detecting
such split peak the following steps are performed:

• Smooth the n centroid values of the 2d-peaks by applying a 5-point average filter, resulting
in n− 4 smoothed centroids: cs0, . . . c

s
n−4.

• Excluding cs0 and csn−4: Determine the range within each 5 consecutive points, i.e. the
minimal and maximal m/z value: csmin and csmax

• If csmax − csmin ≥ 4 ppm: Reject the 3d-peak altogether.

The idea behind this check is to detect unusual mass shifts in a central area of the peak. In
principal, the same concept is followed as for the constant checking of them/z-deviations during
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peak-reconstruction. However, since this check tries to target the central area of the peak, where
the m/z-deviations between 2d-peaks should be smallest, it specifically detects the described
situation of a split peak occurring right in the middle of the whole reconstructed peak. Moreover,
we do not want to target the beginning and the end of the peak, as there the intensities and thus the
accuracy of the measured values is lowest and least dependable. The 5-point average filtering,
as well as omitting the first and the last of the smoothed m/z-values when performing the check
truncate and smooth the data accordingly.

Note further that if this final evaluation of the 3d-peak fails it is rejected completely. In
this case, the precursor’s original m/z-value which has been provided as input is returned. The
same holds for the rare cases where no 2d-peak at all can be found, not even in the original
MS1-spectrum. This also simply results in the input value to be returned.

4.4 Further ways of improving the mass precision

Calculating the centroid of a 3d-peak already improves the precision of the precursor-m/z sig-
nificantly (see section 5.3). But there are of course more possibilities for improvements that can
be applied. In this section two further methods, the integration of isotope patterns and linear
mass-recalibration, are described.

4.4.1 Usage of Isotope Patterns

As already discussed in section 3.2, we know that each true peak, i.e. each peak stemming from
an actual ionized peptide is usually accompanied by several isotope peaks forming an isotope
cluster and naturally, such clusters can also be found in MS1-spectra. The information about
the other isotopes, besides the original precursor, can and should also be used when determining
the precursor m/z-value. Therefore, the 3d-peak reconstruction algorithm is augmented with a
per-spectrum isotope detection. I.e. in each spectrum in which a suitable 2d-peak was found
and added to the 3d-peak, the algorithm will also search for the isotopes of the 2d-peak found
therein. Figure 4.8 illustrates the concept of extracting not one but several peaks from each
spectrum.

Figure 4.8: Extraction of several peaks per spectrum instead of one. Figure based on the work
by Cox et al [7].
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Detection of isotopes is done by searching for 2d-peak patterns following the precursor (i.e.
the monoisotopic) 2d-peak where the distance between each centroid is ca. 1/z and fitting an
averagine pattern to evaluate, if the detected pattern is indeed an isotope pattern. The same
algorithm that has been developed for the MS2-spectrum manipulation based on the ratios be-
tween observed and measured isotope intensities (see section 3.2) can be applied. Note that
the charge state of the precursor is known, therefore there is only one possible isotope pattern.
The averagine-test is therefore rather a check for unperturbed data than if the detected pattern
is indeed an isotope pattern. Should the pattern fit well enough, we additionally consider the
1 13C, 2 13C and 3 13C. Further isotope peaks are not considered as they are, if visible at all, too
less intense to provide exact uperturbed data. This is due to the usual mass range for peptides in
shotgun proteomics experiments, which is between 300 and 3000 Da. See Figure 3.3 in section
3.2, which illustrates these circumstances.

Of course, the obtained centroid values need to be calculated back to the monoisotopic 2d-
peak, which is done by simply subtracting a neutron for the 1 13C isotope, two for the 2 13C
isotope, etc. The centroid values of the additionally acquired 2d-peaks are then also added in the
final calculation (eq. 4.19) which computes the centroid by weighted averaging of the 2d-peaks’
intensities.
From a statistical point of view the integration of even more 2d-peaks in this equation should
further increase the precision of the precursor mass.

4.4.2 Linear Mass Recalibration

The algorithm described so far improves the MS1 precursor precision by extracting and evalu-
ating data from the respective .raw-file and can thus in principle be applied offline and separate
from any workflow. The method described in the following needs to be integrated in a workflow.
The basic idea to this approach has already been proposed by Cox et al. [7] who perform a re-
calibration of the precursor masses obtained in the search results. Using high-scoring peptides,
an average of their deviations in ppm from the theoretical masses is calculated. Subsequently,
this value is subtracted from all the precursor masses.
Cox et al., in fact, also published a much more complex method for recalibration [8]. However,
their intention was mainly to replace the lock mass, a hardware mechanism used by the instru-
ment to internally correct mass shifts over time. This method basically performs a recalibration
of the m/z-values in two dimensions, retention time and m/z.

Since we rely on a working lock mass calibration, which performs the correction of the
mass shift over the retention time dimension, we only use one dimension: m/z. Moreover, the
manual analysis of several datasets suggested a polynomial of degree 3 as the most suitable fit
still avoiding overfitting of the data.
The procedure therefore looks as follows:

1. Perform a search with relaxed search parameters in order to quickly obtain a rough search
result.

2. Filter the result list for peptides that have a search engine rank of 1, minimum length of 8
and a score that is among the top 5% scores of these peptides.
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3. Determine the (m/z, ppm deviation)-pairs for the filtered peptides.

4. Fit a polynomial of degree 3 to this data by applying Linear-Least-Squares minimization.

5. Recalibrate all precursor m/z-values of the search input by subtracting the function value
of the polynomial at position m/z from it. This results in a ppm-value distribution around
the x-axis, i.e. a normalization of the ppm-errors by setting the average to 0.

Note that the first search has to be done against a normal target database that does not contain
any decoy sequences as the recalibration should, of course, be in favor of the target peptides.
Otherwise we would introduce a bias towards the decoy peptides.
Figure 4.9 shows the ppm-errors plotted against the m/z-values of high-confident peptides of
a sample dataset before and after the recalibration. The benefit of this method is to obtain an
average ppm-error of (ideally) 0 in every m/z-range, which in turn also reduces the overall
standard deviation. It is therefore, besides the obvious benefit of drawing the average ppm-
distribution around 0 and therefore increasing the precision, also necessary to make the results
comparable by having an, in a sense, “unbiassed” standard deviation.

(a) ppm-error distribution before recalibration (b) ppm-error distribution after recalibration

Figure 4.9: Recalibration of precursor m/z-values of a sample dataset to achieve normalization
of the ppm-errors around the zero line.

4.5 Resulting Software

The proposed peak-reconstruction algorithm works with very low memory requirements as the
MS1-spectra are analyzed one by one. Since the complete algorithm is always run for one spe-
cific precursor mass, we can even fairly restrict the range of the MS1-spectra that is loaded
into memory to a few Daltons. Furthermore, the applied methods do not require complex cal-
culations, such as the fitting of bivariate Gaussians or similar approaches. We are aware that
the runtime could still be improved by an intelligent “alignment” of certain precursors for a
simultaneous reconstruction of their elution profiles or even the principal parallelization of the
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algorithm. However the implementation of these further features is beyond the scope of this
thesis.

The methods described in this section regarding peak-picking were integrated in the MS2-
Spectrum Processor plugin for the Proteome Discoverer software by Thermo Fisher Scientific.
Note, however, that the peak reconstruction can only work, if the full .raw file is provided as an
input to the workflow. Without access to the MS1-spectra the method cannot be executed.
Furthermore, the mass recalibration has been incorporated in a second, separate plugin for the
Proteome Discoverer, the Post-Search Mass Recalibrator node. The recalibration can thus also
be applied separately, without precedent peak-reconstruction. Figure 4.10 shows a Proteome
Discoverer template, where both nodes are used. First the spectra are selected from the input
files, before the peak-reconstruction and/or spectrum cleaning algorithms are applied to them.
Afterwards, a search with the Mascot search engine is started. The results are used for the recal-
ibration in the Post Search Mass Recalibrator node, before the spectra with modified precursor
masses are submitted to a second search. Afterwards, the results are validated and prepared for
visualization.

Since the peak-reconstruction has also been used in other projects, a separate .dll file, PeakRe-
construct.dll, containing the relevant algorithms has been developed. This library provides func-
tionality for the following additional software products that have been created during the work
on this thesis:

1. Spectrum Analyzer: A stand-alone tool developed for the in-house analysis of .raw files.
The goal of this software is to collect thorough information about the recorded spectra, as
well as the important instrument settings. The output provides helpful hints for tuning and
optimization of instrument settings for further experiments.
Moreover, the output is user-definable which helps creating self-tailored analyses of the
data to obtain only the relevant information. Here, the library is used to obtain quality
criteria of the chromatography, i.e. certain properties of the elution profile of the peptides.
These are area, apex retention time, apex intensity and full width at half maximum of the
3d-peaks reconstructed from the provided precursor masses.

2. PeakAnalyzer: This program is an internal module of the SimpatiQCo software suite
developed for the quality control of Thermo mass spectrometers and chromatography
columns [36].
PeakAnalyzer uses the library to obtain the area, apex retention time, apex intensity and
full width at half maximum of 3d-peaks reconstructed from the identified peptides that are
used for the quality control analysis.

Furthermore, inspired by the work with the .raw files the SpectrumMerger has been developed.
This software is a stand-alone tool used for consolidating quantification and identification spec-
tra of the same precursor. The idea behind the tool is based on an approach by Köcher et al.
who showed that taking two separate spectra for each precursor, one having CID, the other one
HCD as activation type, and consecutively merging the reporter ion area of the CID spectrum
into the HCD spectrum generates a hybrid spectra combining the benefits of both methods. The
generally better quantification achieved by CID is added to the better identification of HCD [22].
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Figure 4.10: A typical Proteome Discoverer (version 1.3.0.339) workflow using both devel-
oped nodes: First the input files are defined and the MS2 spectra that should be used from the
input are selected. Then, the MS2 - Spectrum Processor performs - if desired - deisotoping,
charge-deconvolution and precursor mass recalculation. The modified spectra are submitted to
a Mascot search whose results are used for recalibration of the spectra by the Post Search Mass
Recalibrator. The recalibrated spectra are finally submitted to another Mascot search.

This tool was now designed for experimenting with further settings, by allowing automatic merg-
ing of two spectra stemming from the same precursor regardless of the specific settings that have
been used.
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We have showed that the use of not only one but several features from the same and other
spectra can drastically improve the precision of precursor masses. Even more precision can be
obtained by intelligent recalibration of the precursor masses based on confident identifications
of a first search.

Finally, the peak-reconstruction algorithm by itself has proved to be a valuable method for
being integrated into instrument-analysis software.
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CHAPTER 5
Experimental Results

To test the implemented algorithms we used three different instances for the developed algo-
rithms. Since the main focus of this thesis lies on the algorithms developed for improving the
precursor m/z-precision, the third instance is a set of three .raw files randomly picked from the
72 files that were used to document the results of the MaxQuant software suite developed by
Cox et al [7], on whose idea the algorithm is based.
The instances were chosen to have a certain variety in the samples in order to test the algorithms
under different conditions.

Thorough separate analyses of the data were done for both the MS2-Spectrum Manipulation
and the Precursor Precision Improvement methods. Finally, an analysis using the complete set
of algorithms was conducted.

5.1 Experimental Setup

The following three instances were used for the evaluation of the developed methods:

1. 100ng HeLa, 3h gradient, HCD at NCE 30, isolation width 3 Da, MS1-res. 70000, MS2-
res. 17500, recorded by a QExactive Orbitrap instrument.

2. 1µg HeLa, 3h gradient, HCD at NCE 35, isolation width 2 Da, MS1-res. 60000, MS2-res.
7500, recorded by an LTQ Orbitrap Velos instrument.

3. 2µg HeLa, 2h gradient, CID at NCE 35, isolation width 2 Da, MS1-res. 60000, MS2-res.
unknown, recorded by an LTQ Orbitrap instrument (3 .raw files).

The samples in all three instances have undergone a tryptic digest before being loaded on the
HPLC column. The general setup of search parameters was the following:
All searches were done using the Mascot search engine. It was searched against the human_swissprot
database, allowing 2 missed cleavage sites. The database was concatenated with a reverse
database to allow for a posteriori determination of the FDR.
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Unless stated otherwise we used a precursor mass tolerance of 10 ppm and a fragment mass
tolerance of 15 mmu (instance 1 and 2) or 0.5 Da (instance 3), respectively.
Possible dynamic modifications were Phospho (ST), Phospho (Y) and Oxidation (M) in the
case of instances 1 and 2, and Acetyl (N-term), Oxidation (M), Label:13C(6)15N(2) (K) and
Label:13C(6)15N(4) (R) for instance 3. In all cases we added the static modification Car-
bamidomethyl (C).

All search results were filtered to obtain an FDR of 1% at the PSM level according to the
approach described in section 2.2. I.e. the minimum peptide length was set to 8, only results
with search engine rank 1 were accepted and the Mascot Ion Score was adapted until the FDR
of 1% was reached.

5.2 MS2 - Spectrum Manipulation Results

This section summarizes the observations regarding the MS2 - spectrum manipulation methods
that are described in chapter 3 of this thesis. Figures 5.1, 5.2 and 5.3 give a comparison of the
PSMs obtained after using the different kinds of deisotoping and deconvolution methods. One
can see that the maximum regarding the deisotoping tolerance lies at 15 mmu (for instances 1
and 2, HCD data) and at 80 mmu (for instance 3, CID data). The averagine modeling approach
yielded three different results for the three instances: In instance 1 the amount PSMs remained
almost the same, in instance 2 we can observe an increase, and for instance 3 the results worsen.

The charge-deconvolution should only be applied if the further processing steps demand
it, e.g. if the search engine can only handle singly-charged ions, in this setting its use yields
an improvement. If doubly-charged ions are considered as well, the gain by applying charge-
deconvolution is almost non-existent.
For the improved charge-deconvolution method we observe that the effect is virtually non-
existent. The only difference can be found in instance 1 when comparing both deconvolution
approaches after applying deisotoping at 25 mmu tolerance. Only there we see a minimal in-
crease in PSMs.

5.3 Precursor Precision Improvement Results

In this section we present the results of the application of the precursor m/z-recalculation al-
gorithm. The first three figures, 5.4, 5.5 and 5.6, show the different ppm-error distributions of
the identified peptides for the following three preprocessing methods filtered at 1% FDR and for
10 ppm precursor tolerance:

• without any preprocessing

• with recalculation by peak-reconstruction and using of isotope patterns

• with additionally applying a recalibration of the precursor masses

We observe a significant reduction in the ppm-errors by applying the Precursor Recalculation
method, which is expressed by a much narrower and sharper distribution of the ppm-error com-
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(a) Deisotoping method comparison: Although one can observe a maximum at 15 mmu tolerance used for the deiso-
toping, using various tolerances up to 100 mmu yields virtually the same reults. Only below 10 mmu does the perfor-
mance significantly drop. Using the more sophisticated averagine modeling does not yield a significant improvement.

(b) Charge-Deconvolution method comparison: Charge-deconvolution does yield almost no improvement in PSMs.
Also when previoiusly applying deisotoping there is no improvement by charge-deconvolution compared to omitting
it. The improvement when searching only for singly-charged fragment ions is more significant but in total still worse
than including the doubly-charged ions in the search.

Figure 5.1: MS2-spectrum Manipulation method comparison for instance 1. 69



(a) Deisotoping method comparison: Again we see a maximum at 15 mmu deisotoping tolerance. The performance
gradually decreases for higher tolerances. For lower tolerances the performance drops much faster. The more sophis-
ticated averagine modeling performed slightly better than the unmodified mehod.

(b) Charge-Deconvolution method comparison: Charge-deconvolution does yield almost no improvement in PSMs.
Also when previoiusly applying deisotoping there is no improvement by charge-deconvolution compared to omitting
it. The improvement when searching only for singly-charged fragment ions is more significant but in total still worse
than including the doubly-charged ions in the search.

Figure 5.2: MS2-spectrum Manipulation method comparison for instance 270



(a) Deisotoping method comparison: In this case the deisotoping method performed better with increasing tolerance,
with a maximum at 90 mmu. In accordance with this trend the more sophisticated averagine modeling performed
much worse than the unmodified method.

(b) Charge-Deconvolution method comparison: For this instance charge-deconvolution has no effect regarding PSMs.

Figure 5.3: MS2-spectrum Manipulation method comparison for instance 3
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No Preprocessing Precursor Precision
Improvement

Precursor Precision
Improvement &
Recalibration

Average −0.109 −0.276 −0.002

Median −0.11 −0.27 −0.02

Std. Dev. 1.633 1.106 1.1

Abs. Average 1.109 0.703 0.63

Abs. Median 0.72 0.46 0.37

Abs. Std. Dev. 1.204 0.897 0.9

Table 5.1: Comparison of the ppm error-distribution for search instance 1: This table shows the
average, median and standard deviation, as well as the absolute average, median and standard
deviation for the ppm-error distribution within the identified peptides of instance 1.

No Preprocessing Precursor Precision
Improvement

Precursor Precision
Improvement &
Recalibration

Average 0.042 0.038 −0.01

Median 0.21 0.24 −0.05

Std. Dev. 2.231 1.674 1.448

Abs. Average 1.601 1.059 0.860

Abs. Median 1.12 0.66 0.52

Abs. Std. Dev. 1.554 1.298 1.165

Table 5.2: Comparison of the ppm error-distribution for search instance 1: This table shows the
average, median and standard deviation, as well as the absolute average, median and standard
deviation for the ppm-error distribution within the identified peptides of instance 2.

pared to the non-preprocessed data. This effect becomes even more pronounced when the pre-
cursor m/z-values are additionally recalibrated. Furthermore, Figure 5.5c shows that the bias
towards negative ppm values that was present in the data for instance 2 could be removed by the
recalibration step.
Another interesting observation is illustrated in Figures 5.4d, 5.5d and 5.6d. Regarding the ab-
solute ppm-errors of the precursor masses after recalculation and recalibration, the figures show
that a substantial part of them is below 0.5 ppm. In the case of instance 3, even 84% of the errors
were smaller than 0.5 ppm. Tables 5.1, 5.2 and 5.3 list the average, median and standard devi-
ation, as well as the absolute average, absolute median and absolute standard deviation for the
three respective instances to clarify the effects the methods have on the ppm-error distribution.

After verifying that there is indeed a benefit in the applied precursor recalculation method,
we assessed the search results that can be achieved by using the modified masses. To account
for the high precision achieved by this method the search results were additionally filtered for
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(a) ppm distribution without preprocessing:
average: −0.109, median: −0.11,
standard deviation: 1.633
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(b) ppm distribution after precursor recalculation:
average: −0.276, median: −0.27,
standard deviation: 1.106
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(c) ppm distribution after precursor recalculation
and recalibration:
average: −0.002, median: −0.02,
standard deviation: 1.1
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(d) absolute ppm distribution after precursor recalculation
and recalibration:
average: 0.630, median: 0.37,
standard deviation: 0.9

Figure 5.4: ppm-error distribution comparison for search instance 1: The distribution becomes
much narrower with a higher peak in the center after recalculation of the precursor masses. This
effect is intensified after additional recalibration. After application of both methods 62% of the
identified precursors have an absolute mass deviation of less or equal to 0.25 ppm.
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(a) ppm distribution without preprocessing:
average: 0.0418, median: 0.21,
standard deviation: 2.231

ppm
F

re
qu

en
cy

−10 −5 0 5 10

0
20

0
40

0
60

0
80

0
(b) ppm distribution after precursor recalculation:
average: 0.038, median: 0.24,
standard deviation: 1.674
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(c) ppm distribution after precursor recalculation
and recalibration:
average: −0.01, median: −0.05,
standard deviation: 1.448
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(d) absolute ppm distribution after precursor recalculation
and recalibration:
average: 0.86, median: 0.52,
standard deviation: 1.165

Figure 5.5: ppm-error distribution comparison for search instance 2: The distribution becomes
narrower with a higher peak in the center after recalculation of the precursor masses. This effect
is intensified after additional recalibration. Moreover, the bias towards negative mass deviations
could be corrected by recalibration. After application of both methods 74% of the identified
precursors have an absolute mass deviation of less or equal to 0.5 ppm.
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(a) ppm distribution without preprocessing:
average: −0.571, median: −0.55,
standard deviation: 0.996
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(b) ppm distribution after precursor recalculation:
average: −0.668, median: −0.6,
standard deviation: 0.7613
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(c) ppm distribution after precursor recalculation
and recalibration:
average: −0.059, median: −0.08,
standard deviation: 0.703
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(d) absolute ppm distribution after precursor recalculation
and recalibration:
average: 0.346, median: 0.23,
standard deviation: 0.615

Figure 5.6: ppm-error distribution comparison for search instance 3: The distribution becomes
much narrower with a higher peak in the center after recalculation of the precursor masses. After
additional recalibration the effect increases dramatically. After application of both methods 84%
of the identified precursors have an absolute mass deviation of less or equal to 0.25 ppm.
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No Preprocessing Precursor Precision
Improvement

Precursor Precision
Improvement &
Recalibration

Average −0.571 −0.668 −0.059

Median −0.55 −0.6 −0.08

Std. Dev. 0.996 0.761 0.703

Abs. Average 0.823 0.75 0.346

Abs. Median 0.65 0.61 0.23

Abs. Std. Dev. 0.8 0.681 0.615

Table 5.3: Comparison of the ppm error-distribution for search instance 1: This table shows the
average, median and standard deviation, as well as the absolute average, median and standard
deviation for the ppm-error distribution within the identified peptides of instance 3.

different precursor mass deviations, namely 10, 8, 5, 3, 2 and 1 ppm. We compared the re-
sulting PSMs and identified peptides for the different ppm-filter settings, resulting in the curves
illustrated in Figures 5.7, 5.8 and 5.9.

The figures show that the method yields significant improvements for searches with lower
ppm tolerances. Moreover, the maxima of both the Recalculation + Recalibration approach
(green curve), as well as just applying Recalculation (red curve) are higher than the maximum
of the curve for searches conducted without any preprocessing. I.e. in general one can achieve
a moderate increase in identified peptides by applying the method and reducing the precursor
tolerance for the search.
However, the increase is not as high as one could have expected by the dramatic increase in pre-
cision. This is due to the fact the the Mascot ion score does not punish the distance of precursor
masses to the matched peptide. Therefore the benefit of the increased precision only comes into
play for small precursor mass tolerances. Tables 5.4, 5.5 and 5.6 show these results in numbers
and list for each precursor tolerance the improvement rate the Recalculation + Recalibration
approach achieved in comparison to the unprocessed spectra.

Finally, we did a comparison between the unprocessed data and the data processed with
recalculation & recalibration using the respective ppm tolerance filter settings that yielded the
most PSMs. This way, we could compare the best results from both methods in terms of PSMs
and identified peptides to assess the actual distance between the most favorable precursor mass
filter criteria of both methods. The ppm tolerance filters to select for the three different instances
can be read from the mentioned tables, where the best setting in each case is highlighted. Thus,
we compared:

• Instance 1: No preprocessing at 5 ppm vs. Recalculation & Recalibration at 3 ppm

• Instance 2: No preprocessing at 8 ppm vs. Recalculation & Recalibration at 3 ppm.

• Instance 3: No preprocessing at 3 ppm vs. Recalculation & Recalibration at 2 ppm.
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(a) PSMs

(b) Peptides

Figure 5.7: Search results comparison for search instance 1: For lower precursor-mass deviation
filters we observe a dramatic increase in PSMs and indentified peptides when applying the pre-
cursor mass recalculation method. Additional recalibration increases this effect. Regarding the
maxima of the respectives curves the distance is only moderate.
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(a) PSMs

(b) Peptides

Figure 5.8: Search results comparison for search instance 2: For lower precursor-mass deviation
filters we observe an increase in PSMs and indentified peptides when applying the precursor
mass recalculation method. Additional recalibration further increases this effect significantly.
Regarding the maxima of the respectives curves the distance is again only moderate.
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(a) PSMs

(b) Peptides

Figure 5.9: Search results comparison for search instance 3: Only for very low precursor-mass
deviation filters we observe a significant increase in PSMs and indentified peptides when ap-
plying the precursor mass recalculation method. With additional recalibration we observe a
dramatic increase for 1 ppm mass deviation. For the other mass deviation settings the perfor-
mance remains almost the same. Regarding the maxima of the respectives curves the distance is
only moderate.
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Method No Prep. Precursor
Prec. Imp.

Precursor
Prec. Imp. &
Recalibration

Improvement

10 ppm Maximum Precursor Mass Deviation
PSMs 16458 16425 16436 -0.13%
Peptides 14933 14892 14900 -0.22%
8 ppm Maximum Precursor Mass Deviation
PSMs 16794 16758 16792 -0.01%
Peptides 15133 15078 15109 -0.16%
5 ppm Maximum Precursor Mass Deviation
PSMs 17351 17521 17483 0.76%
Peptides 15578 15697 15695 0.75%
3 ppm Maximum Precursor Mass Deviation
PSMs 16822 17717 17756 5.55%
Peptides 15083 15851 15882 5.30%
2 ppm Maximum Precursor Mass Deviation
PSMs 15372 17460 17518 13.96%
Peptides 13839 15675 15717 13.57%
1 ppm Maximum Precursor Mass Deviation
PSMs 11567 15142 15845 36.98%
Peptides 10383 13579 14178 36.55%

Table 5.4: Results comparison for search instance 1: For each method, the highest PSMs- and
identified peptides values are written in bold. The last column gives the relative improvement of
the precursor precision improvement & recalibration method in comparison to the unprocessed
spectra.

The corresponding numbers are listed in table 5.7.
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Method No Prep. Precursor
Prec. Imp.

Precursor
Prec. Imp. &
Recalibration

Improvement

10 ppm Maximum Precursor Mass Deviation
PSMs 7443 7497 7467 0.32%
Peptides 4682 4738 4711 0.62%
8 ppm Maximum Precursor Mass Deviation
PSMs 7502 7528 7581 1.05%
Peptides 4709 4730 4732 0.49%
5 ppm Maximum Precursor Mass Deviation
PSMs 7402 7580 7592 2.57%
Peptides 4625 4733 4742 2.53%
3 ppm Maximum Precursor Mass Deviation
PSMs 6650 7300 7612 14.47%
Peptides 4124 4510 4726 14.60%
2 ppm Maximum Precursor Mass Deviation
PSMs 5660 6845 7315 29.24%
Peptides 3473 4179 4502 29.63%
1 ppm Maximum Precursor Mass Deviation
PSMs 3571 5336 5876 64.55%
Peptides 2246 3239 3590 59.84%

Table 5.5: Results comparison for search instance 2: For each method, the highest PSMs- and
identified peptides values are written in bold. The last column gives the relative improvement of
the precursor precision improvement & recalibration method in comparison to the unprocessed
spectra.
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Method No Prep. Precursor
Prec. Imp.

Precursor
Prec. Imp. &
Recalibration

Improvement

10 ppm Maximum Precursor Mass Deviation
PSMs 16924 16932 16996 0.43%
Peptides 7953 7978 7980 0.34%
8 ppm Maximum Precursor Mass Deviation
PSMs 17302 17322 17294 -0.05%
Peptides 8069 8045 8047 -0.27%
5 ppm Maximum Precursor Mass Deviation
PSMs 17770 17784 17797 0.15%
Peptides 8302 8287 8335 0.40%
3 ppm Maximum Precursor Mass Deviation
PSMs 17953 18031 18102 0.83%
Peptides 8424 8389 8480 0.66%
2 ppm Maximum Precursor Mass Deviation
PSMs 17551 18354 18477 5.28%
Peptides 8228 8547 8603 4.56%
1 ppm Maximum Precursor Mass Deviation
PSMs 13331 14086 18333 37.52%
Peptides 6170 6488 8440 36.79%

Table 5.6: Results comparison for search instance 3: For each method, the highest PSMs- and
identified peptides values are written in bold. The last column gives the relative improvement of
the precursor precision improvement & recalibration method in comparison to the unprocessed
spectra.
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Instance 1
no Preprocessing Full method Improvement

PSMs 17351 18061 4.09%
Peptides 15578 16269 4.44%

Instance 2
no Preprocessing Full method Improvement

PSMs 7502 7676 2.32%
Peptides 4709 4764 1.17%

Instance 3
no Preprocessing Full method Improvement

PSMs 17953 18585 3.52%
Peptides 8424 8691 3.17%

Table 5.7: Comparison of the results of the full method to the unprocessed spectra for the three
instances.
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CHAPTER 6
Conclusion and Future Work

In order to cope with the ever-increasing amount of data generated by high-throughput shotgun-
proteomics experiments, methods that can order and divide the data have to be developed. One
promising approach is the manipulation of recorded MS2-spectra as they contain the relevant
data that is sent to the database search engine and are the determining factor of the results of
a proteomics experiment. Moreover, the advances in accuracy and resolution of recent instru-
ments allow the use of newer more accurate methods for spectrum manipulation which do apply
complex and less accurate techniques that were needed for spectra with lower resolutions.
Therefore, in this thesis preprocessing methods for high resolution, high accuracy proteomics
data with the aim of increasing the peptide identification performance of database search engines
have been discussed.

We analyzed existing deisotoping and deconvolution approaches for MS2-spectrum manip-
ulation and experimented with possible improvements of the methods. The experiments were
conducted using three input instances consisting of a single .raw file and a set of three .raw files,
respectively. In summary our experiments showed that only a moderate increase in PSMs can be
achieved by these preprocessing steps. Furthermore, we made the interesting observation that
neither a refinement nor a degradation of the methods significantly changes this performance in-
crease. This means that there is a balance in the scoring between the removal of as many peaks
as possible and the selective removal of a few peaks. The conclusion that can be drawn from
this first part of our work is therefore that spectrum cleaning can be useful to gain a few percent
more identified peptides. There is, however, not much more benefit to gain when using com-
mon search engines such as Mascot, which do not take the mass precision of fragment ions into
account, that would justify the implementation of more sophisticated methods than the simple
already existing ones.

The second part of the work dealt with the development of an algorithm to improve the pre-
cision of the precursor masses associated with the MS2-spectra that are sent to a search engine.
We furthermore showed that the recalculation and recalibration methods significantly reduce
the average, as well as the variance of ppm-errors in the identified peptides. This highly in-
creases the results for searches with low precursor tolerance. However, the distance between
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the best-performing tolerance using these methods and the best-performing tolerance without
preprocessing is not as significant. The reason is that common search engines, such as Mascot
and SEQUEST, do not consider the distance of precursor ions to the matched peptide when the
score for the respective match is calculated.
A new search engine that does take these distances into consideration is currently being devel-
oped at the IMP Vienna in cooperation with the University of Applied Sciences Upper Austria
and is a starting-point for further experiments and developments of the proposed algorithm. Al-
ternatively, a high-tolerance search followed by a rescoring and reranking of the obtained search
results based on the mass tolerance is possible. In any case, it is necessary to account for the
precursor precision, since in our opinion it provides additional confidence in the matched pep-
tide, even more, if the mass value is obtained as an average from several spectra following the
elution profile of the respective peptide.

Besides the analysis of deisotoping and deconvolution and the development of a reliable
method for the increase of precursor mass precision, several software products have resulted
from this work. Most importantly, the algorithms were included in a plugin written in C# for the
Proteome Discoverer software, version 1.3.0.339, by Thermo Fisher Scientific, that can easily
be integrated into existing workflows.
Additionally, the peak-reconstruction algorithm was implemented into two further software
products:

• PeakAnalyzer: A module for SimpatiQCo, a quality control software for LC-MS/MS-
systems.

• Spectrum Analyzer: A stand-alone tool for the analysis of .raw files.

Of course, in both cases, the MS2-spectrum manipulation, as well as the precursor mass preci-
sion improvement, there is still room for further developments. Especially the peak-reconstruction,
as well as the recalibration approach still offer room for improvement. E.g. the final evaluation
of a reconstructred peak is lacking some kind of repair algorithm, in case a peak is probably
not originating from a single peptide. Here statistical approaches, such as the fitting of a bi-
variate Gaussian could help in determining the part of the peak that should be kept. However,
the integration of further enhancements would have gone beyond the scope of this thesis. It is
nonetheless our ambition regarding future work to further improve and maintain the developed
algorithms.

86



List of Figures

2.1 Generic structure of an amino acid . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Peptide bond formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 N- and C-termine of a peptide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Primary protein structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Structure levels of a protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 General composition of a mass spectrometer . . . . . . . . . . . . . . . . . . . . . 10
2.7 Scheme of a QExactive Orbitrap instrument . . . . . . . . . . . . . . . . . . . . . 11
2.8 Shotgun-proteomics workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Electrospray ionization process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 The MS/MS-scan cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.11 Possible Cleavage sites in a peptide . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.12 Basic workflow of database search engines . . . . . . . . . . . . . . . . . . . . . . 20
2.13 Peptide sequence overlap between forward and reverse databases . . . . . . . . . . 23
2.14 The target-decoy search workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.15 Excerpt of an MS1-spectrum schowing the m/z-values and intensities of some pro-

file points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Deisotoping of a simple isotope pattern . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Overlapping isotope patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Probability distribution for the number of 13C-isotopes . . . . . . . . . . . . . . . 36
3.4 12C isotope ratio comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 1 13C isotope ratio comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 2 13C isotope ratio comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 3 13C isotope ratio comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Comparison of Mascot search results, example 1 . . . . . . . . . . . . . . . . . . 40
3.9 Comparison of Mascot search results, example 2 . . . . . . . . . . . . . . . . . . 40
3.10 Comparison of Mascot search results, example 3 . . . . . . . . . . . . . . . . . . 41

4.1 Constructing a 3d-peak from several 2d-peaks . . . . . . . . . . . . . . . . . . . . 49
4.2 Example of a 2d-split peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Example of an ideal 3d-peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Example of a 3d-peak, in which a sudden m/z-shift occurs . . . . . . . . . . . . . 56
4.5 Example of 3d-peak, in which a continuous m/z-drift occurs . . . . . . . . . . . . 57

87



4.6 Example of 3d-peak split peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Example of 3d-peak split peak that could not be detected . . . . . . . . . . . . . . 59
4.8 Extraction of several peaks per spectrum instead of one . . . . . . . . . . . . . . . 60
4.9 Recalibration of precursor m/z-values . . . . . . . . . . . . . . . . . . . . . . . . 62
4.10 A typical Proteome Discoverer workflow using both developed nodes . . . . . . . 64

5.1 MS2-spectrum Manipulation method comparison for instance 1. . . . . . . . . . . 69
5.2 MS2-spectrum Manipulation method comparison for instance 2 . . . . . . . . . . . 70
5.3 MS2-spectrum Manipulation method comparison for instance 3 . . . . . . . . . . . 71
5.4 ppm-error distribution comparison for search instance 1 . . . . . . . . . . . . . . . 73
5.5 ppm-error distribution comparison for search instance 2 . . . . . . . . . . . . . . . 74
5.6 ppm-error distribution comparison for search instance 3 . . . . . . . . . . . . . . . 75
5.7 Search results comparison for search instance 1 . . . . . . . . . . . . . . . . . . . 77
5.8 Search results comparison for search instance 2 . . . . . . . . . . . . . . . . . . . 78
5.9 Search results comparison for search instance 3 . . . . . . . . . . . . . . . . . . . 79

88



Bibliography

[1] Ruedi Aebersold and Matthias Mann. Mass spectrometry-based proteomics. Nature,
422:198–207, 2003.

[2] Robert E. Ardrey. Liquid Chromatography - Mass Spectrometry: An Introduction. John
Wiley & Sons, Ltd, 2003.

[3] G. Audi and A.H. Wapstra. The 1995 update to the atomic mass evaluation. Nuclear
Physics, A 595:409–480, 1995.

[4] Sean A Beausoleil, Judit Villén, Scott A Gerber, John Rush, and Steven P Gygi. A
probability-based approach for high-throughput protein phosphorylation analysis and site
localization. Nature Biotechnology, 24:1285–1292, 2006.

[5] Jeremy M. Berg, John L. Tymoczko, and Lubert Stryer. Biochemistry, Sixth Edition. W.H.
Freeman Company, New York, 2006.

[6] P. De Bievre and P.D.P. Taylor. IUPAC Recommended Isotopic Abundances. Int. J. Mass
Spectrom. Ion Phys., 123:149, 1993.

[7] Jürgen Cox and Matthias Mann. MaxQuant enables high peptide identification rates, indi-
vidualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature
Biotechnology, 26:1367–1372, 2008.

[8] Jürgen Cox, Annette Michalski, and Matthias Mann. Software Lock Mass by Two-
Dimensional Minimization of Peptide Mass Errors. J. Am. Soc. Mass Spectrom, 22:1373–
1380, 2011.

[9] Robertson Craig and Ronald C. Beavis. A method for reducing the time required to match
protein sequences with tandem mass spectra. Rapid Communications in Mass Spectrome-
try, 17:2310–2316, 2003.

[10] Edmond de Hoffmann and Vincent Stroobant. Mass Spectrometry: Priciples and Applica-
tions, Third Edition. John Wiley & Sons, Ltd, 2007.

[11] Peicheng Du and Ruth Hogue Angeletti. Automatic Deconvolution of Isotope-Resolved
Mass Spectra Using Variable Selection and Quantized Peptide Mass Distribution. Analyti-
cal Chemistry, 78, No. 10:3385–3392, 2006.

89



[12] Pehr Edman. Method for Determination of the Amino Acid Sequence in Peptides. Acta
Chemica Scandinavica, pages 283–293, 1950.

[13] Joshua E. Elias and Steven P. Gygi. Target-decoy search strategy for increased confidence
in large-scale protein identifications by mass spectrometry. Nature Methods, 4, 3:207–214,
2007.

[14] Joshua E. Elias and Steven P. Gygi. Target-Decoy Search Strategy for Mass Spectrometry-
Based Proteomics. Methods Mol Biol., 604:55–71, 2010.

[15] Jimmy K. Eng, Ashley L. McCormack, and John R. Yates III. An Approach to Correlate
Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database.
American Society for Mass Spectrometry, 5:976–989, 1994.

[16] John B. Fenn, Matthias Mann, Chin Kai Meng, Shek Fu Wong, and Craig M. Whitehouse.
Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science, 246:64–
71, 1988.

[17] Michael Guilhaus. Principles and Instrumentation in Time-of-flight Mass Spectrometry. J.
Mass Spectrom., 30:1519–1532, 1995.

[18] Lukas Käll, Jesse D Canterbury, Jason Weston, William Stafford Noble, and Michael J
MacCoss. Semi-supervised learning for peptide identification from shotgun proteomics
datasets. Nature Methods, 4:923–925, 2007.

[19] Lukas Käll, John D. Storey, Michael J. MacCoss, and William Stafford Noble. Assigning
Significance to Peptides Identified by Tandem Mass Spectrometry Using Decoy Databases.
Journal of Proteome Research, 7:29–34, 2008.

[20] Michael Karas and Franz Hillenkamp. Laser Desorption Ionization of Proteins with Molec-
ular Masses Exceeding 10 000 Daltons. Analytical Chemistry, 60 (20):2299–2301, 1988.

[21] Paul J. Kersey, Jorge Duarte, Allyson Williams, Youla Karavidopoulou, Ewan Birney, and
Rolf Apweiler. The International Protein Index: An integrated database for proteomics
experiments. Proteomics, 4:1985–1988, 2004.

[22] Thomas Köcher, Peter Pichler, Michael Schutzbier, Christoph Stingl, Axel Kaul, Nils
Teucher, Gerd Hasenfuss, Josef M. Penninger, and Karl Mechtler. High precision quan-
titative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method
combining the benefits of all. Journal of Proteome Research, 8:4743–4752, 2009.

[23] Matthias Mann, Chin Kai Meng, and John B. Fenn. Interpreting Mass Spectra of Multiply
Charged Ions. Analytical Chemistry, 61:1702–1708, 1989.

[24] Melissa M. Matzke, Katrina M. Waters, Thomas O. Metz, Jon M. Jacobs, Amy C. Sims,
Ralph S. Baric, Joel G. Pounds, and Bobbie-Jo M. Webb-Robertson. Improved quality
control processing of peptide-centric LC-MS proteomics data. Bioinformatics, 27 no.
20:2866–2872, 2011.

90



[25] Roger E. Moore, Mary K. Young, and Terry D. Lee. Qscore: An Algorithm for Evaluating
SEQUEST Database Search Results. J. Am. Soc. Mass Spectrom, 13:378–386, 2002.

[26] Nedim Mujezinovic. Improved Protein Identification after Fast Elimination of Non-
Interpretable Peptide MS/MS Spectra and Noise Reduction. PhD thesis, Vienna University
of Technology, 2007.

[27] Nedim Mujezinovic, Georg Schneider, Michael Wildpaner, Karl Mechtler, and Frank
Eisenhaber. Reducing the haystack to find the needle: improved protein identification after
fast elimination of non-interpretable peptide MS/MS spectra and noise reduction. BMC
Genomics, I I, Supplement 1, 2010.

[28] Sven Nahnsen, Andreas Bertsch, Jörg Rahnenführer, Alfred Nordheim, and Oliver
Kohlbacher. Probabilistic Consensus Scoring Improves Tandem Mass Spectrometry Pep-
tide Identification. Journal of Proteome Research, 10:3332–3343, 2011.

[29] National High Magnetic Field Laboratory. http://www.magnet.fsu.edu/. Accessed: 2012-
31-08.

[30] National Human Genome Research Institute. http://www.genome.gov. Accessed: 2012-
06-20.

[31] Jesper V Olsen, Boris Macek, Oliver Lange, Alexander Makarov, Stevan Horning, and
Matthias Mann. Higher-energy C-trap dissociation for peptide modification analysis. Na-
ture Methods, 4, 9:709–712, 2007.

[32] Jesper V. Olsen, Shao-En Ong, and Matthias Mann. Trypsin cleaves exclusively C-terminal
to Arginine and Lysine Residues. Molecular & Cellular Proteomics, 3.6:608–614, 2004.

[33] Akhilesh Pandey and Matthias Mann. Proteomics to study genes and genomes. Nature,
405:837–846, 2000.

[34] DJC Pappin, D Rahman, HF Hansen, M Bartlet-Jones, W Jeffery, and AJ Bleasby. Chem-
istry, mass spectrometry and peptide-mass databases: Evolution of methods for the rapid
identification and mapping of cellular proteins. Mass Spectrometry in the Biological Sci-
ences, pages 135–150, 1996.

[35] David N. Perkins, Darryl J. C. Pappin, David M. Creasy, and John S. Cottrell. Probability-
based protein identification by searching sequence databases using mass spectrometry data.
Electrophoresis, 20:3551–3567, 1999.

[36] Peter Pichler, Michael Mazanek, Frederico Dusberger, Lisa Weilnböck, Christian Huber,
Christoph Stingl, Theo Luider, Werner L Straube, Thomas Köcher, and Karl Mechtler.
SIMPATIQCO (SIMPle AuTomatIc Quality COntrol): A Server-Based Software Suite
which Facilitates Monitoring the Time Course of LC-MS Performance Metrics on Orbi-
trap Instruments. accepted: 17-09-2012.

91



[37] P. Roepstorff and J. Fohlman. Proposal for a Common Nomenclature for Sequence Ions in
Mass Spectra of Peptides. Biomedical Mass Spectrometry, 11, 11:601, 1984.

[38] Mikhail M Savitski, Toby Mathieson, Isabelle Becher, and Marcus Bantscheff. H-Score, a
Mass Accuracy Driven Rescoring Approach for Improved Peptide Identification in Modi-
fication Rich Samples. Journal of Proteome Research, 9 (11):5511–5516, 2010.

[39] Michael W. Senko, Steven C. Beu, and Fred W. McLafferty. Determination of Monoiso-
topic Masses and Ion Populations for Large Biomolecules from Resolved Isotopic Distri-
butions. American Society for Mass Spectrometry, 6:229–233, 1995.

[40] Youting Sun, Jianqiu Zhang, Ulisses Braga-Neto, and Edward R Dougherty. BPDA - A
Bayesian peptide detection algorithm for mass spectrometry. BMC Bioinformatics, 11:490,
2010.

[41] Danielle L. Swaney, Graeme C. McAlister, Matthew Wirtala, Jae C. Schwartz, John E.P.
Syka, and Joshua J. Coon. A supplemental activation method for high efficiency elec-
tron transfer dissociation of doubly protonated peptide precursors. Analytical Chemistry,
79:477–485, 2007.

[42] Selene K. Swanson and Michael P. Washburn. The continuing evolution of Shotgun Pro-
teomics. Drug Discovery Today: Targets, 10:719–725, 2005.

[43] John E. P. Syka, Joshua J. Coon, Melanie J. Schroeder, Jeffrey Shabanowitz, and Don-
ald F. Hunt. Peptide and protein sequence analysis by electron transfer dissociation mass
spectrometry. Proc. Natl. Acad. Sci. U. S. A., 101, 26:9528–9533, 2004.

[44] Thomas Taus. phosphoRS: A novel probability-based algorithm for sensitive protein
phosphorylation-site localization from high-throughput LC-MS/MS data, Vienna Univer-
sity of Technology, 2010.

[45] The Wikimedia Foundation. http://en.wikipedia.org. Accessed: 2012-31-08.

[46] Harry Towbin, Theophil Staehelin, and Julian Gordon. Electrophoretic transfer of proteins
from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc
Natl Acad Sci USA, 76, No.9:4350–4354, 1979.

[47] Michael P. Washburn, Dirk Wolters, and John R. Yates III. Large-scale analysis of the yeast
proteome by multidimensional protein identification technology. Nature Biotechnology,
19:242–247, 2001.

[48] Valerie C. Wasinger, Stuart J. Cordwell, Anne Cerpa-Poljak, Jun X. Yan, Andrew A.
Gooley, Marc R. Wilkins, Mark W. Duncan, Ray Harris, Keith L. Williams, and Dr. Ian
Humphery-Smith. Progress with gene-product mapping of the Mollicutes: Mycoplasma
genitalium. ELECTROPHORESIS, 16:1090–1094, 1995.

92



[49] Cathy H. Wu, Lai-Su L. Yeh, Hongzhan Huang, Leslie Arminski, Jorge Castro-Alvear,
Yongxing Chen, Zhangzhi Hu, Panagiotis Kourtesis, Robert S. Ledley, Baris E. Suzek,
C.R. Vinayaka, Jian Zhang, and Winona C. Barker. The Protein Information Resource.
Nucleic Acids Research, 31, 1:345–347, 2003.

[50] Vicki H. Wysocki, George Tsaprailis, Lori L. Smith, and Linda A. Breci. Mobile and
localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom.,
35:1399–1406, 2000.

[51] Ying Zhang, Zhihui Wen, Michael P. Washburn, and Laurence Florens. Improving
Proteomics Mass Accuracy by Dynamic Offline Lock Mass. Analytical Chemistry, 83
(24):9344–9351, 2011.

[52] Roman A. Zubarev, Neil L. Kelleher, and Fred W. McLafferty. Electron Capture Disso-
ciation of Multiply Charged Protein Cations. A Nonergodic Process. J. Am. Chem. Soc.,
120:3265–3266, 1998.

93


	Introduction
	Motivation
	Problem definition and aim of the work
	Related Work
	Outline of the Thesis
	Proteomics and Mass Spectrometry
	Proteomics
	Amino Acids, Peptides and Proteins
	Mass Spectrometry
	Composition of a mass spectrometer
	The Shotgun-Proteomics approach
	Proteolytic digestion of large proteins into peptides
	Peptide separation by High-Performance Liquid Chromatography

	Peptide ionization in the ion source
	Tandem Mass Spectrometry
	Fragmentation of peptide ions by activation leading to MS/MS-spectra

	Analysis of generated mass spectrometry data
	Spectrum Preprocessing
	Database Search
	Evaluation of search results


	Definition of relevant data structures
	The .RAW file format
	Formal definition of mass spectra


	MS2 - Spectrum Manipulation
	Motivation
	Deisotoping
	A simple Deisotoping algorithm
	Improving the original algorithm
	Expected isotope-ratio determination by averagine modeling
	Reasons for the superiority of the simple approach


	Charge-Deconvolution of spectra
	A simple Charge-Deconvolution algorithm


	Results and Future Work
	Precursor Precision Improvement
	Motivation
	Method
	Basic Principle: 3d-Peaks
	2d-Peak Detection
	3d-Peak Centroid

	3d-Peak Reconstruction
	Minimum Profile Points in 2d-Peak
	Peak to Peak m/z-Deviation
	Continuous m/z-Deviation
	Elution Profile Tracking
	Evaluation of the extracted peak

	Further ways of improving the mass precision
	Usage of Isotope Patterns
	Linear Mass Recalibration


	Resulting Software
	Experimental Results
	Experimental Setup
	MS2 - Spectrum Manipulation Results
	Precursor Precision Improvement Results

	Conclusion and Future Work
	List of Figures

	Bibliography








