
Uniform Approximation-Theoretic
Semantics for Logic Programs

with External Atoms
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Christian Antić, B.Sc.
Matrikelnummer 0525482

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuer: O.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Eiter
Mitwirkung: Dipl.-Ing. Dr.techn. Michael Fink

Wien, 17. Oktober 2012
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 





Erklärung zur Verfassung der Arbeit

Christian Antić, B.Sc.
Werndlgasse 8/5
1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Wien, 17. Oktober 2012) (Unterschrift Verfasser)

i





Abstract

HEX programs are disjunctive logic programs under so called FLP-answer-set semantics en-
hanced with higher-order and external atoms. Since external atoms are generic in the sense that
they can represent arbitrary computable Boolean functions, many formalisms (e.g., dl-programs,
logic programs with aggregates, etc.) can be simulated by HEX programs.

For the class of classical logic programs, major semantics can be characterized in terms of
fixpoints of lattice operators defining one step of logical derivation. However, for logic pro-
grams with negation, these operators may be nonmonotone, and in this case the fixpoint theory
of Tarksi and Knaster is not applicable. Approximation Theory, on the other hand, is an alge-
braic framework for studying fixpoints of monotone and nonmonotone lattice operators, and thus
extends the theory of Tarski and Knaster to the more general class of arbitrary lattice operators.

In the first part of the thesis we extend the classical van Emden-Kowalski operator, and
the classical Fitting operator to the class of normal (i.e., disjunction-free) HEX programs, and
uniformly define (i) (ultimate) Kripke-Kleene-, (ii) (ultimate) well-founded-, and (iii) (3-valued
ultimate) answer-set semantics by applying Approximation Theory. As a result, we obtain well-
supported 2-valued (ultimate) answer-set semantics, and well-founded semantics compatible
with the standard FLP-answer-set semantics. For monotone normal HEX programs, 2-valued
answer-set semantics coincide with the standard FLP-answer-set semantics.

In the case of disjunctive HEX programs, Approximation Theory is not directly applicable.
However, by combining ideas from Approximation Theory, logic programs with aggregates,
and disjunctive logic programming, we define 2-valued (ultimate) answer-set semantics of dis-
junctive HEX programs based on non-deterministic operators. We show that these semantics
satisfy some desirable properties. Particularly, we show that (ultimate) answer sets are minimal,
supported, and derivable in terms of bottom-up computations.

As HEX programs are generic formalisms, the obtained semantics can be applied for a range
of formalisms.

iii





Kurzfassung

HEX Programme sind klassische disjunktive Logikprogramme, erweitert um externe Atome und
Atome höherer Stufe. Externe Atome erlauben es, beliebige Boolesche Funktionen darzustellen
und ermöglichen so den Zugang zu externen Ressourcen (zB prozeduralen Programmen und
Datenbanken) und die Repräsentierung unterschiedlicher Formalismen (zB DL Programme, Lo-
gikprogramme mit Aggregaten, etc.), ohne dabei die deklarative Natur der Semantik einzubüßen.
Dies wurde erreicht, indem Gebrauch von der FLP-Antwortmengensemantik gemacht wurde.

Die wohl-fundierte- und die Antwortmengensemantik, obwohl, wie später gezeigt wurde,
eng zusammenhängend, sind von Grund auf unterschiedlicher Natur. Wird eine neue Klasse von
Logikprogrammen definiert, so werden, in der Regel, die entsprechenden Definitionen dieser
klassischen Semantiken “zu Fuß” adaptiert. Die Approximationstheorie (engl.: approximation
theory) schlägt stattdessen einen uniformen, algebraischen Weg vor: basierend auf der Tatsache,
dass alle klassichen Semantiken (zB auch die Kripke-Kleene- und Supported Semantik) durch
Fixpunkte entsprechender Ein-Schritt-Ableitungsoperatoren charakterisiert werden, können, wie
in der Theorie gezeigt, wohl-fundierte- und Antwortmengensemantik als Fixpunkte eines ein-
zigen Operators charakterisiert werden. Da sich dieser Operator in der Regel leicht auf neue
Programmklassen erweitern lässt, bietet die Approximationstheorie ein praktikables Werkzeug
zur Adaptierung klassischer Semantiken.

Im ersten Teil dieser Arbeit erweitern wir den klassischen van Emden-Kowalski Operator
und den klassischen Fitting Operator auf die Klasse normaler (d.h. nicht-disjunktiver) HEX
Programme, und definieren (i) eine (ultimative) Kripke-Kleene-, (ii) eine (ultimative) wohl-
fundierte-, und (iii) eine (ultimate 3-wertige) Antwortmengensemantik mit Hilfe der Appro-
ximationstheorie. Dadurch erhalten wir eine (ulitmative) 2-wertige Antwortmengensemantik
die keine selbstbegründeten Atome enthält und eine wohl-fundierte Semantik die mit der FLP-
Antwortmengensemantik kompatibel sind. Für monotone, normale HEX Programme fällt die
2-wertige Antwortmengensemantik mit der FLP-Antwortmengensemantik zusammen.

Für die Klasse der disjunktiven HEX Programme ist die Approximationstheorie zwar nicht
direkt anwendbar, doch durch die Kombination von Ideen aus der Approximationstheorie, der
Logikprogrammierung mit Aggregaten, und der disjunktiven Logikprogrammierung, definieren
wir eine 2-wertige (ultimative) Antwortmengensemantik für disjunktive HEX Programme basie-
rend auf nicht-deterministischen Operatoren. Weiters zeigen wir, dass diese Semantik folgende
wünschneswerte Eigenschaften besitzt: (ultimative) Antwortmengen sind minimal, supported,
und ableitbar in Form von kunstruktiven Berechnungen.

Die in dieser Arbeit erhaltenen Semantiken lassen sich, da HEX Programme sehr allgemein
sind, auf verschiedenste, durch HEX Programme repräsentierbare, Formalismen anwenden.

v





Danksagungen

Ich danke Professor Thomas Eiter für den Raum zur Selbstständigkeit, der kompetenten Betreu-
ung und für die interessanten Lehrveranstaltungen, die mich zur Wahl dieses Diplomarbeitsthe-
mas bewogen haben.

Ich danke Michael Fink für die vielen inspirierenden und intensiven Gespräche in angeneh-
mer Atmosphäre.

Ich danke meiner Mutter und meinen Großeltern für Ihre finanzielle Unterstützung, ohne die
mir ein Studium nicht möglich gewesen wäre.

Ich danke meiner Freundin Katja Maria Grafl für die vielen ermutigenden Worte, für Ihr un-
erschöpfliches Verständnis, und für ihre liebevolle Art, mit der sie die alltägliche Arbeit versüßt
hat.

vii





Contents

Contents ix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement and Method . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 HEX programs 7
2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 FLP-Answer-Set Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Approximation Theory and Classical Logic Programming 13
3.1 Bilattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Approximations, Operators, Kripke-Kleene Fixpoints . . . . . . . . . . . . . . 16
3.3 Stable revision operator and stable fixpoints . . . . . . . . . . . . . . . . . . . 19
3.4 Ultimate approximations and ultimate fixpoints . . . . . . . . . . . . . . . . . 23

4 Fixpoint Semantics of Normal HEX Programs 27
4.1 Kripke-Kleene semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Three-Valued Answer-Set Semantics . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Well-Founded Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Ultimate Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Semantic Properties of Normal HEX Programs 43
5.1 Monotone Normal HEX Programs Have Nice Properties . . . . . . . . . . . . 43
5.2 Two-Valued Answer Sets are FLP-Answer Sets . . . . . . . . . . . . . . . . . 46
5.3 Well-Founded Semantics Approximate FLP-Answer-Set Semantics . . . . . . . 48
5.4 Two-Valued Answer-Sets are Well-Supported . . . . . . . . . . . . . . . . . . 50

6 Fixpoint Semantics of Disjunctive HEX programs 53
6.1 Non-Deterministic Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Iterating the Non-Deterministic Operator by Computations . . . . . . . . . . . 58
6.3 Non-Deterministic Approximations and Computations . . . . . . . . . . . . . 61

ix



6.4 Answer-Set Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5 Ultimate Answer-Set Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Semantic Properties of Disjunctive HEX Programs 67
7.1 Disjunctive Answer-Set Semantics extend Normal Answer-Set Semantics . . . 67
7.2 Answer Sets are Derivable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 Answer Sets are Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4 Answer Sets are FLP-Answer Sets . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Related Work 75
8.1 Comparison to Pelov and Truszczyński (2004) . . . . . . . . . . . . . . . . . . 75
8.2 Disjunctive Fitting Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3 Strong and Weak Answer-Set Semantics . . . . . . . . . . . . . . . . . . . . . 78
8.4 Well-Supported Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Conclusions 83

Bibliography 85



CHAPTER 1
Introduction

This chapter is introductory. First, in Section 1.1 we give a very brief and informal overview of
the field of logic programming. Second, in Section 1.2 we motivate our approach of using Ap-
proximation Theory for defining semantics of HEX programs. Third, in Section 1.3 we outline
the main contributions of this thesis. Finally, in Section 1.4 we give an overview of the structure
of the rest of the thesis.

1.1 Background

Classical first-order logic1 was initially introduced as a mathematical tool for precisely formal-
izing and analyzing mathematical theories. These theories are monotone in their nature. That
is, given a set of assumptions (i.e., axioms), the set of derivable conclusions monotonically in-
creases when adding new assumptions.

In contrast, commonsense reasoning (McCarthy, 1959) is an inherently nonmonotone form
of (logical) reasoning for which classical first-order logic, in its original form, is not an ade-
quate formalism. In the last three decades much effort has been investigated to capture essential
parts of commonsense reasoning, with default logic (Reiter, 1980), autoepistemic logic (Moore,
1985), and logic programs with negation (Clark, 1978; Lloyd, 1987) being the most prominent
formalisms today, the latter arguably being the most successful nonmonotonic reasoning and
knowledge representation formalism with many practical applications.

Logic programs are rule-based systems with the rules and facts being written in a sublan-
guage of the language of classical first-order logic extended by a unary operator “∼” (or “not”)
denoting negation-as-failure (or default negation) (Clark, 1978). While each monotone (i.e.,
negation-free) logic program has a unique least Herbrand model (with the least model semantics
(Van Emden and Kowalski, 1976) being the accepted semantics for this class of programs), for
general logic programs a large number of different purely declarative semantics exist. Many of
it have been introduced some 20 years ago, among them the Kripke-Kleene semantics (Fitting,

1We assume the reader to be familiar with the basics of mathematical logic (see, e.g., Hinman (2005)).

1



1985), the answer-set semantics (Gelfond and Lifschitz, 1991), and the well-founded semantics
(Van Gelder et al., 1991) (for a survey on negation in logic programming see, e.g., ?).

The well-founded semantics, because of its nice computational properties,2 plays an impor-
tant role in Database Theory. However, with the emergence of efficient solvers such as, e.g.,
DLV (Leone et al., 2006), Smodels (Simons et al., 2002), Cmodels (Giunchiglia et al., 2006),
and Clasp (Gebser et al., 2012), programming under answer-set semantics led to a predomi-
nant declarative problem solving paradigm, called answer-set programming (or ASP) (Marek
and Truszczyński, 1999; Lifschitz, 2002). Answer-set programming has a wide range of appli-
cations (Brewka et al., 2011), and has been successfully applied to various AI-related subfields
such as, e.g., planning, and diagnosis (for a survey see, e.g., (Eiter et al., 2009b)). Driven by
this practical needs, a large number of extensions of classical answer-set programs have been
proposed, e.g., aggregates (see, e.g., (Faber et al., 2004, 2011; Pelov and Truszczyński, 2004;
Pelov, 2004)), choice rules (Niemelä et al., 1999), dl-atoms (Eiter et al., 2004a, 2008), and
general external atoms (Eiter et al., 2005).

Description logic programs (Eiter et al., 2004a, 2008), designed as a tool for reasoning in
the Semantic Web, extend classical normal programs by so called dl-atoms, i.e., atoms which
build a bidirectional link between the program and a description logic knowledge base.

By allowing arbitrary external sources, Eiter et al. (2005) define so called HEX programs,
extending classical normal programs under answer-set semantics (Gelfond and Lifschitz, 1991)
by (i) disjunctive rules (Gelfond and Lifschitz, 1991; Lobo et al., 1992; Eiter et al., 1997), (ii)
higher-order atoms, and (iii) external atoms for software interoperability (Eiter et al., 2009a).
Disjunctions in the head of rules introduce non-determinism into the semantics of logic pro-
grams, and lead to the “guess & check” programming paradigm (Eiter et al., 2000; Lifschitz,
2002). Since external atoms can represent arbitrary computable Boolean functions, HEX pro-
grams constitute a powerful extension of classical disjunctive programs with many applications3

(see, e.g., Hoehndorf et al. (2007), Heymans and Toma (2008), and Basol et al. (2010)). How-
ever, since external atoms may be nonmonotone, Eiter et al. (2005) define answer-set semantics
of HEX programs in terms of the FLP-reduct (Faber et al., 2004, 2011) (called FLP-answer-set
semantics henceforth) instead of the traditional Gelfond-Lifschitz reduct (Gelfond and Lifschitz,
1988) used for classical disjunctive programs (Gelfond and Lifschitz, 1991).

For excellent introductions to the field of answer-set programming we refer the reader to
(Eiter et al., 2009b; Brewka et al., 2011; Baral, 2003).

1.2 Problem Statement and Method

Lifting the semantics of classical normal or disjunctive programs to an extended class of pro-
grams (e.g., HEX programs) means in general: decide which semantics are relevant, and then
try to reasonably adapt the original definitions to the new setting. Beside the fact that adapting
each semantics separately can be cumbersome, this strategy may lead, for each intended seman-

2Computing the unique 3-valued well-founded model is tractable, i.e., polynomial.
3http://www.kr.tuwien.ac.at/research/systems/dlvhex/applications.html.

2

http://www.kr.tuwien.ac.at/research/systems/dlvhex/applications.html


tics, to many possible extensions, and in general it is not clear which extension to accept as the
“canonical” one.

Approximation Theory is an abstract algebraic framework for studying fixpoints of (mono-
tone or nonmonotone) lattice operators in terms of (monotone) approximations. In this sense,
Approximation Theory extends the well-known fixpoint theory of Tarski and Knaster (Tarski,
1955) to the more general class of arbitrary lattice operators. Based on results in (Fitting, 1985,
1991, 2002), Denecker et al. (2000a) show that, given a classical normal (i.e., disjunction-free)
program Π, the following semantics can be characterized in terms of the monotone Fitting ap-
proximation ΦΠ (Fitting, 1985) of the van Emden-Kowalski lattice operator TΠ: (i) Kripke-
Kleene semanitcs (Fitting, 1985), (ii) well-founded semantics (Van Gelder et al., 1991), and (iii)
(3-valued) answer-set semantics (Gelfond and Lifschitz, 1991; Przymusinski, 1990). However,
Fitting’s operator ΦΠ is not the most precise4 approximation of TΠ. Denecker et al. (2004) show
that TΠ has a most precise approximation TΠ, called the ultimate approximation of TΠ. This
ultimate approximation yields the most precise Kripke-Kleene and well-founded semantics, and
the largest number of answer sets. Generally, for each lattice operator O defined on a complete
lattice L, there exists an ultimate (i.e., most precise) approximation O of O. Denecker et al.
(2004) show that O can be algebraically characterized in terms of O. However, Denecker et al.
(2004) also show that computing ultimate semantics is more complex from a computational
point of view.

Motivated by this elegant algebraic characterization of the major semantics of classical nor-
mal programs (Denecker et al., 2000a) and of default and autoepistemic logic (Denecker et al.,
2000b, 2003) within the framework of Approximation Theory, in the first part of this thesis we
uniformly define (ultimate) Kripke-Kleene, 2-, and 3-valued (ultimate) answer-set semantics,
and (ultimate) well-founded semantics of normal (i.e., disjunction-free) HEX programs by ex-
ploiting the machinery of Approximation Theory. More precisely, given a normal HEX program
Π, we define the extended van Emden-Kowalski operator T hexΠ , and the extended Fitting oper-
ator Φhex

Π , and show that Φhex
Π is an approximation of T hexΠ . Thus, by applying Approximation

Theory, we obtain Φhex
Π -Kripke-Kleene semantics, 2-, and 3-valued Φhex

Π -answer-set semantics,
and Φhex

Π -well-founded semantics. Moreover, by substituting the ultimate approximation T hexΠ

for Φhex
Π , we obtain ultimate (i.e., more precise) versions of the listed semantics. Furthermore,

we compare our fixpoint semantics with the “standard” FLP-answer-set semantics; particularly,
we show that every 2-valued Φhex

Π -answer set is also an FLP-answer set, whereas the contrary
does, in general, not hold. We argue that this divergence is due to the well-supportedness (Shen,
2011) (i.e., constructiveness) of our answer-set semantics.

Unfortunately, for disjunctive HEX programs, the extended van Emden-Kowalski operator
is not a lattice operator and, hence, Approximation Theory is not directly applicable. However,
by combining ideas from Approximation Theory, logic programs with aggregates (Pelov and
Truszczyński, 2004; Pelov, 2004), and disjunctive logic programming (Minker and Rajasekar,
1990; Lobo et al., 1992; Fernández and Minker, 1995; Seipel et al., 1997), in the second part
of this thesis we define 2-valued (ultimate) answer-set semantics of disjunctive HEX programs.
In detail, given a disjunctive HEX program Π, we define (i) the non-deterministic van Emden-
Kowalski operator Nhex

Π , (ii) the non-deterministic Fitting operator FhexΠ , and the more precise

4With respect to Approximation Theory

3



(iii) non-deterministic ultimate operator N hex
Π , and show that FhexΠ and N hex

Π are approxima-
tions of Nhex

Π . Then, specific minimal fixpoints of FhexΠ and N hex
Π define answer sets and ulti-

mate answer sets of Π, respectively. However, this definition is non-constructive. Therefore, as
proposed by (Pelov and Truszczyński, 2004), we define the notion of computation (Marek et al.,
2004) as an adequate notion of iterating non-deterministic operators in a bottom-up manner;
moreover, we show that every (ultimate) answer set is derivable by some computation. Further-
more, we show that (ultimate) answer sets are supported (Brass and Dix, 1997) and, as in the
case of normal HEX programs, every 2-valued answer set is also an FLP-answer set, whereas
the converse does, in general, not hold.

1.3 Summary of Contributions

The main contributions of this thesis can be summarized as follows:

1. We define the full class of 3-valued semantics (Gelfond and Lifschitz, 1991; Przymusin-
ski, 1990; Van Gelder et al., 1991; Fitting, 1985) of normal (i.e., disjunction-free) HEX
programs (Eiter et al., 2005) in a uniform and principled way by applying the algebraic
framework of Approximation Theory (Denecker et al., 2000a, 2002, 2004). In particular,
this class contains Kripke-Kleene semantics (Fitting, 1985), 2-, and 3-valued answer-set
semantics (Gelfond and Lifschitz, 1991; Przymusinski, 1990), and well-founded seman-
tics (Van Gelder et al., 1991) which all play an important role in classical logic program-
ming. Moreover, we define ultimate versions of this semantics which are the most precise
semantics with respect to Approximation Theory (Denecker et al., 2004).

2. We show that 2-valued answer sets of normal HEX programs are free of circular justifi-
cations. That is, we show that every 2-valued answer set is well-supported (Shen, 2011;
Fages, 1994) (i.e., constructive), which is a key requirement for characterizing relevant
models. Moreover we exhaustively compare our semantics with the standard one as de-
fined in (Eiter et al., 2005), and conclude that although the semantics are equivalent for
monotone normal HEX programs, they diverge for the class of general normal HEX pro-
grams. More precisely, we show that each 2-valued Φhex

Π -answer set is an FLP-answer
set, whereas the converse does, in general, not hold. Moreover, we show that our 2-valued
Φhex

Π -answer-set semantics coincides with Shen’s strongly well-supported answer-set se-
mantics (Shen, 2011). However, since we use Approximation Theory, our approach is
more general and more elegant from a mathematical point of view.

3. We define 2-valued (ultimate) answer-set semantics (Gelfond and Lifschitz, 1991) of dis-
junctive HEX programs (Eiter et al., 2005) by translating some of the concepts of Ap-
proximation Theory to the class of non-deterministic operators (Pelov, 2004; Pelov and
Truszczyński, 2004), and by combining them with ideas from classical disjunctive logic
programming (Minker and Rajasekar, 1990; Lobo et al., 1992; Fernández and Minker,
1995; Seipel et al., 1997). Crucial is here the definition of the non-deterministic van
Emden-Kowalski operator Nhex

Π . We define Nhex
Π in such a way that Nhex

Π and its ap-
proximations are “iterable” in terms of computations (Marek et al., 2004). This yields a
bottom-up approach for constructively deriving (ultimate) answer sets.

4



For HEX programs, to the best of our knowledge, there exists no well-founded semantics
up so far. Hence, at least for disjunction-free programs, we lift one of the key classical logic
programming semantics to a very general class of programs with a large number of applications.

Finally, in contrast to (Pelov and Truszczyński, 2004), our approach is constructive, i.e., the
defined non-deterministic operators can be incrementally applied in a bottom-up manner, thus
generalizing the fixpoint characterizations of (ultimate) 2-valued answer-set semantics of normal
HEX programs to the class of disjunctive HEX programs.

1.4 Structure of the Thesis

The rest of the thesis essentially consists of the following three main parts: (i) The next two
chapters are introductory. In Chapter 2 we define syntax (Section 2.1) and FLP-answer-set se-
mantics (Section 2.2) of HEX programs (Eiter et al., 2005). In Chapter 3 we present essential
parts of Approximation Theory (Denecker et al., 2000a, 2002, 2004) by mainly following the
lines of (Denecker et al., 2004). In particular, in Section 3.1 we introduce basic notions from
Lattice Theory and define the notion of a (product) bilattice (Ginsberg, 1988). In Section 3.2 we
define approximations of lattice operators defined on a complete lattice. Every approximation
has a least fixpoint, called the Kripke-Kleene fixpoint. In Section 3.3 we define stable-revision
operators and call their fixpoints stable fixpoints. The set of stable fixpoints has a least fix-
point, called the well-founded fixpoint which can be computed by transfinite induction. Finally,
in Section 3.4 we define ultimate approximations which have the most precise Kripke-Kleene-,
and well-founded fixpoints, and the most stable fixpoints. The combination of (classical) logic
programming and Approximation Theory is illustrated throughout the whole chapter with ex-
amples.

(ii) In Chapter 4 we define fixpoint semantics of normal (i.e., disjunction-free) HEX pro-
grams by exploiting the machinery of Approximation Theory presented in Chapter 3. In partic-
ular, we define Kripke-Kleene semantics (Section 4.1), 3-valued answer-set semantics (Section
4.2), well-founded semantics (Section 4.3), and ultimate semantics (Section 4.4).

In Chapter 5 we show the following semantic properties: 2-valued answer-set semantics and
FLP-answer-set semantics coincide in the case of monotone normal HEX programs (Section
5.1); every 2-valued answer set is an FLP-answer set, whereas the converse does, in general, not
hold (Section 5.2); (ultimate) well-founded semantics approximate FLP-answer set semantics
(Section 5.3); and 2-valued (ultimate) answer sets are well-supported (Shen, 2011; Fages, 1994)
(Section 5.4).

(iii) In Chapter 6 we define 2-valued answer-set semantics of disjunctive HEX programs
(Eiter et al., 2005). Particularly, in Section 6.1 we define the non-deterministic van Emden-
Kowalski operator. In Section 6.2 we define bottom-up computations (Marek et al., 2004) of the
non-deterministic van Emden-Kowalski operator. In Section 6.3 we translate the concept of an
approximation (see Section 3.2) to the class of non-deterministic van Emden-Kowalski operators
(Pelov, 2004; Pelov and Truszczyński, 2004), and define non-deterministic Fitting and ultimate
approximations. In Section 6.4 we define 2-valued answer-set semantics, and in Section 6.5 we
define ultimate answer-set semantics.

5



In Chapter 7 we show the following semantic properties: (ultimate) answer-set semantics
of disjunctive HEX programs extend 2-valued (ultimate) answer-set semantics of normal HEX
programs Section 7.1; (ultimate) answer sets are (algorithmically) derivable by computations
(Marek et al., 2004) (Section 7.2); (ultimate) answer sets are supported (Brass and Dix, 1997)
(Section 7.3); and every answer set is an FLP-answer set, whereas the converse does, in general,
not hold (Section 7.4).

Finally, in Chapter 8 we list and discuss related work, and we finish with conclusions and a
general discussion given in Chapter 9.

6



CHAPTER 2
HEX programs

HEX programs1 (Eiter et al., 2005) extend classical disjunctive programs (Lobo et al., 1992;
Minker and Rajasekar, 1990; Eiter et al., 1997) under answer-set semantics (Gelfond and Lif-
schitz, 1991) by (i) higher-order atoms for higher-order reasoning, and (ii) external atoms for
software interoperability (Eiter et al., 2009a). Higher-order reasoning is an important require-
ment, e.g., for programming languages in the Semantic Web. Roughly, a higher-order atom can
be an expression of form p(q), where p and q are both predicates, i.e., Π states a second-order
property of q. For instance, the rule2

q(a)← p ⊆ q, p(a)

intuitively states that whenever a belongs to p and p is a subset of q, then a belongs to q. Since
p and q are “properties”, p ⊆ q is a second-order relation of p and q.

External atoms permit the use of external sources (e.g., databases, procedural or object-
oriented software programs, etc.) while preserving the declarative nature of logic programs.
Eiter et al. (2005) achieves this loose coupling by defining answer-set semantics based on the
FLP-reduct (Faber et al., 2004, 2011) instead of the traditional Gelfond-Lifschitz reduct (Gel-
fond and Lifschitz, 1988) which is extensively used in classical logic programming. Since ex-
ternal atoms can represent arbitrary computable Boolean functions, they constitute a powerful
extension of classical disjunctive programs.

In this chapter we briefly summarize the notions and results given in (Eiter et al., 2005).
In particular, in Section 2.1 we define the syntax of HEX programs. In Section 2.2 we define
answer-set semantics (Gelfond and Lifschitz, 1991) based on the FLP-reduct (Faber et al., 2004,
2011). As for classical disjunctive programs (Gelfond and Lifschitz, 1991), every FLP-answer
set is minimal and 2-valued, that is, every HEX-atom (i.e., atom or external atom) is either true
or false with respect to some interpretation.

1http://www.kr.tuwien.ac.at/research/systems/dlvhex/
2Notice that unary predicates can be interpreted as sets.

7

http://www.kr.tuwien.ac.at/research/systems/dlvhex/


2.1 Syntax

A language Lhex = (Σ,Σ#) of (ground3 function-free) HEX programs (Eiter et al., 2005) is
specified by denumerable sets

Σ =
⋃
n≥0

Σ(n) and Σ# =
⋃

m,k≥0

Σ#,(m,k)

of symbols and external (predicate) symbols, respectively. Every symbol a ∈ Σ(n) (resp., exter-
nal symbol f# ∈ Σ#,(m,n)) has arity n (resp., (m,n)) and the sets Σ and Σ# are disjoint, that
is, Σ ∩ Σ# = ∅. Elements from Σ# are superscripted with # (e.g., f#, g#, h# etc.).

In contrast to classical logic programs (Lloyd, 1987), HEX programs may contain so called
higher-order and external atoms. Formally, a (n-ary) higher-order atom (or atom) is a word
a0 . . . an ∈ Σn+1, n ≥ 0, where a0 ∈ Σ(n) and a1, . . . , an ∈ Σ are symbols. We often write
atoms in the more familiar form

a0(a1, . . . , an).

By a constant we mean a 0-ary symbol a0 ∈ Σ(0).
An ((m,n)-ary) external atom has the form4

f# [ i ] (o) , (2.1)

where f# ∈ Σ#,(m,n), i = i1 . . . im ∈ Σm (=input), m ≥ 0, and o = o1 . . . on ∈ Σn (=output),
n ≥ 0. For convenience, we assume that for every constant a ∈ Σ(0) there exists an (1, 0)-ary
external symbol a# ∈ Σ#,(1,0) representing a (see Example 2.2.1).

A HEX-atom is an atom or an external atom, and a HEX-literal is a HEX-atom ` = a or
negated HEX-atom ` =∼ a, where ∼ denotes negation as failure (or default negation) (Clark,
1978).

A rule has the form

a1 ∨ . . . ∨ ak ← b1, . . . , b`,∼ b`+1, . . . ,∼ bm, k ≥ 1,m ≥ ` ≥ 0, (2.2)

where a1, . . . , ak are atoms and b1, . . . , bm are HEX-atoms. It will be convenient to define,
for a rule r, H(r) = a1 ∨ . . . ∨ ak (head), B+(r) = {b1, . . . , b`} (positive body), B−(r) =
{b`+1, . . . , bm} (negative body), B∼(r) = {∼ b`+1, . . . ,∼ bm} (NAF-body), and B(r) =
B+(r)∪B∼(r) (body). To ease notations, we often treat H(r) as a set and write, for a rule r of
form (2.2), e.g., |H(r) | = k, a ∈ H(r) if a occurs in H(r), H(r) − {ak} for a1 ∨ . . . ∨ ak−1

and so on. Moreover, we say that r is (i) positive if B∼(r) = ∅, (ii) normal (or disjunction-free)
if |H(r) | = 1, (iii) disjunctive if |H(r) | ≥ 1, (iv) propositional if every atom a in r has arity
0, and (v) a fact if B(r) = ∅.

Example 2.1.1. Consider, for p, q ∈ Σ(n), n ≥ 1, the external atom ⊆#[ ](p, q) ∈ Σ#,(0,2),
intuitively stating that the extension of p is a subset of the extension of q (see Example 2.2.2).
We will write atoms of this form in the more familiar infix notation as p⊆#q, and will generally
omit parentheses in such cases where no parameters are given.

3In the literature, logic programs normally may contain variables; however, since HEX programs do not contain
function symbols, each HEX program can be represented by its finite (propositional) grounded version.

4Notice that we use here a slightly different syntax than originally used in (Eiter et al., 2005).

8



A HEX program Π is a finite set of rules of form (2.2), and we say that Π is (i) positive
if every rule is positive, (ii) normal if every rule is normal, (iii) disjunctive if there exists a
disjunctive rule in Π, (iv) propositional if every rule is propositional, and (v) classical if Π
contains neither external atoms nor atoms of order ≥ 1, that is, every symbol p ∈ Σ is either a
predicate- or constant symbol in the usual sense.

In the rest of the thesis we assume that each HEX program Π implicitly determines its
languageLΠ = (ΣΠ,ΣΠ

#) given by the (finitely many) symbols and external predicate symbols
occurring in Π, respectively. Furthermore, we denote the set of all atoms (resp., external atoms)
occurring in Π by ΛΠ (resp., Λ#

Π ).
Notice that Eiter et al. (2005) additionally permit constraints (i.e., rules with empty head)

to occur in Π. However, it is well-known that constraints can be represented by normal rules
(Gelfond and Lifschitz, 1991), as the next example shows.

Example 2.1.2 (Constraint). A constraint is a normal rule r of form

⊥ ← b1, . . . , b`,∼ b`+1, . . . ,∼ bm,∼ ⊥, m ≥ 1, (2.3)

where ⊥ ∈ Σ is a special symbol interpreted as “contradiction”. Intuitively, the rule states that
B(r) is contradictory, that is, whenever b1, . . . , b`,∼ b`+1, . . . ,∼ bm all hold in some interpre-
tation I , then a contradiction ⊥ is derivable. Under FLP-answer-set semantics (see Section 2.2),
a constraint of form (2.3) eliminates each model I with I |= B(r) from the answer sets.

Moreover, Gelfond and Lifschitz (1991) introduced extended logic programs by syntacti-
cally allowing the occurrence of strong negation (or classical negation). However, strong nega-
tion does not add an additional expressive power, i.e., logic programs containing strong negation
can always be translated into equivalent programs without strong negation (Gelfond and Lifs-
chitz, 1991), as the following example demonstrates.5

Example 2.1.3 (Strong negation). Let Π be a HEX program and a be an atom occurring in Π.
Adding a fresh symbol a′ to ΣΠ and a constraint of form

⊥ ← a, a′,∼ ⊥

yields a HEX program Π′ in which, intuitively, a′ behaves like ¬a (the strong negation of a).
Consequently, given a HEX program Π over LhexΠ = (ΣΠ,ΣΠ

#), the program

Π′ = Π ∪
{
⊥ ← a, a′,∼ ⊥ : a ∈ ΛΠ, a

′ ∈ Σ′
}

with language LhexΠ′ = (Σ ∪ Σ′,Σ#), Σ′ = {a′ : a ∈ ΛΠ}, essentially contains two forms
of negation, namely: (i) negation as failure “∼” (Clark, 1978), and (ii) strong (or classical)
negation “¬” (Gelfond and Lifschitz, 1991).

5Readers not familiar with answer-set semantics should consult this example after reading the next section on
FLP-answer-set semantics.

9



2.2 FLP-Answer-Set Semantics

In this section we define answer-set semantics (Gelfond and Lifschitz, 1991) of HEX programs
(Eiter et al., 2005) based on the FLP-reduct (Faber et al., 2004, 2011), called FLP-answer-set
semantics henceforth.

Let Π be a HEX program and LhexP = (ΣΠ,ΣΠ
#) be the language of Π. The Herbrand base

HBΠ of Π is the set of all HEX-atoms occurring in Π, that is, HBΠ = ΛΠ ∪ Λ#
Π . A (2-valued)

interpretation I of Π is any subset of ΛΠ. Notice that we do not allow external atoms to occur
in I . Define the set IΠ of interpretations of Π by IΠ = P(ΛΠ). The greatest element in IΠ with
respect to ⊆ is ΛΠ.

Intuitively, every I ∈ IΠ corresponds to a 2-valued evaluation function 〈 . 〉I which assigns
to every a ∈ I (resp., a 6∈ I) the truth-value true (resp., false). More precisely, given an
interpretation I ∈ IΠ, define, for every atom a ∈ ΛΠ, the (2-valued) evaluation function (with
respect to I) 〈 . 〉I by

〈 a 〉I =

{
t if a ∈ I,
f if a 6∈ I,

where t (resp., f ) denotes the truth-value true (resp., false). Conversely, given a 2-valued evalu-
ation function 〈 . 〉, define

I = {a ∈ ΛΠ : 〈 a 〉 = t}.

Clearly, this correspondence is one-one; since IΠ is partially ordered by ⊆, we define the order-
ing ≤ on 2 = {f , t} by f ≤ t, and extend it to evaluation functions pointwise, that is,

〈 . 〉1 ≤ 〈 . 〉2 ⇔ 〈 a 〉1 ≤ 〈 a 〉2 for each atom a.

Moreover, we denote the set of all evaluation functions of a given HEX program Π by 2ΛΠ .
Then, (2ΛΠ ,≤) is isomorphic to (IΠ,⊆) and they are both complete lattices.

Notice that we have not assigned a truth-value to external atoms so far. Therefore, we now
extend 〈 . 〉I to external atoms as follows. We associate with every m + n-ary external symbol
f# ∈ ΣΠ

# a computable (2-valued) interpretation function f : IΠ × Σm+n
Π −→ 2, and define,

for every i ∈ Σm
Π , o ∈ Σn

Π, 〈
f# [ i ] (o)

〉
I

= f (I, i,o) .

Moreover, define, for every symbol a0 ∈ Σ
(n)
Π of arity n, the extension of a0 with respect to

I by
aI0 = {(a1, . . . , an) ∈ Σn

Π : a0(a1, . . . , an) ∈ I} .

Example 2.2.1. Let Π be a HEX program. In Section 2.1 we mentioned that for each constant
a ∈ Σ

(0)
Π there exists an external atom a# ∈ Σ

#,(1,0)
Π representing a. We make this representa-

tion more precise: we define the external atom a# by a : IΠ × ΣΠ −→ 2, 6

a(I, i) =

{
t if i = a and a ∈ I,
f otherwise,

6Notice that the constant a ∈ Σ
(0)
Π is different from the interpretation function a of a#.

10



and write a# instead of a#[a]. For instance, the rule b ← a can be translated into b ← a#

while preserving the original meaning. However, since external atoms cannot occur in the head
of rules, the correspondence is not one-one.

Example 2.2.2. Let Π be a HEX program and consider the external atom p⊆#q of Example
2.1.1. We interpret ⊆# as set inclusion and define

⊆ (I, p, q) =
〈
p⊆#q

〉
I

=

{
t if pI ⊆ qI ,
f otherwise.

Notice that the extension of 〈 . 〉I to external atoms given above is a total function with
domain HBΠ. On the other hand, every interpretation I ∈ IΠ only determines the truth-value
of atoms in ΛΠ. Therefore, the correspondence between 2HBΠ (i.e., the set of all total evaluation
functions) and IΠ is no longer one-one.

We now define models of Π, that is, interpretations which are compatible with Π. To this
end, we define the logical entailment relation, for each HEX-atom a ∈ HBΠ and each rule
r ∈ Π, by

1. I |= a⇔ 〈 a 〉I = t,

2. I |= B(r)⇔ I |= b for every b ∈ B+(r) and I 6|= b′ for every b′ ∈ B−(r),

3. I |= r ⇔ whenever I |= B(r) then I |= a for some a ∈ H(r),

4. I |= Π⇔ I |= r for each r ∈ Π.

If I |= Π then we say that I is a model of Π, and we say that Π is satisfiable (resp., unsatisfiable)
if Π has some (resp., no) model.

We now define FLP-answer-set semantics (Eiter et al., 2005) as follows. Let I ∈ IΠ. Define
the FLP-reduct of Π relative to I (Faber et al., 2004, 2011) by

fΠI = {r ∈ Π : I |= B(r)} .

We say that I is a FLP-answer set of Π if I is a minimal model of fΠI (with respect to set
inclusion).

Example 2.2.3. Consider the disjunctive HEX program Π consisting of the following rules:

p(a) ∨ q(a)←
⊥←∼ p⊆#q,∼ ⊥

where I |= p⊆#q iff pI ⊆ qI (see Example 2.2.2). Intuitively, the first rule states that a ∈ pI or
a ∈ qI , whereas the second rule states that pI necessarily is a subset of qI (see Example 2.1.2).
We show that I = {q(a)} is the only FLP-answer set of Π. Let r1 and r2 denote the first and
second rule, respectively. Since I |= p⊆#q, we have I 6|= B(r2) which implies fΠI = {r1};
moreover, since I |= q(a), I is a model of fΠI . Hence, since ∅ is not a model of fΠI , and ∅ is
the only proper subset of I , I is a minimal model of fΠI and, thus, an FLP-answer set of Π.

In contrast, if I = {p(a)}, then I |= B(r2) but I 6|= ⊥ which shows that I is not a model
of Π. Finally, for I ′ = {p(a),⊥} it is easy to see that I ′ is a model but not a minimal model of
fΠI′ = Π, since I = {p(a)} is a smaller one. That is, I ′ is also not an FLP-answer set.

11



The next proposition states an elementary property of FLP-answer sets, which we will ex-
tensively use in the rest of the thesis.

Proposition 2.2.4 (Eiter et al. (2005), Theorem 2). Let Π be a HEX program, and let I ∈ IΠ. If
I is an FLP-answer set of Π, then I is a minimal model of Π.

12



CHAPTER 3
Approximation Theory and Classical

Logic Programming

The well-known fixpoint theory (Tarski, 1955) of monotone operators on complete lattices plays
a fundamental role in classical logic programming (Lloyd, 1987). More precisely, given a
positive (i.e., negation-free) classical normal program Π, the van Emden-Kowalski operator
(Van Emden and Kowalski, 1976) TΠ is monotone on the complete lattice of all interpretations
of Π ordered by set inclusion. Then, the theorem of Tarski and Knaster (Tarski, 1955) implies
that TΠ has a least fixpoint, called the least model of Π (Van Emden and Kowalski, 1976) (see
Example 3.2.3).

Approximation Theory (Denecker et al., 2000a, 2002, 2004) is an algebraic framework for
studying fixpoints of monotone and nonmonotone lattice operators in terms of monotone approx-
imations. In this sense, it can be considered as an extension of the fixpoint theory of Tarski and
Knaster (Tarski, 1955) to the more general class of arbitrary lattice operators. The underlying
algebraic structure is that of a bilattice (Ginsberg, 1988), which has been extensively studied,
e.g., in (Fitting, 1991, 2002).

This chapter briefly summarizes essential notions and results given in (Denecker et al.,
2004). The rest of this chapter is organized as follows. In Section 3.1 we recall basic definitions
from Lattice Theory and introduce the fundamental notion of a (product) bilattice (Ginsberg,
1988).

In Section 3.2 we define, for a given lattice operatorO defined on a complete latticeL, mono-
tone approximations ofO. The results of Tarski and Knaster imply that each such approximation
A of O has a least fixpoint k(A), called the A-Kripke-Kleene fixpoint. The A-Kripke-Kleene
fixpoint approximates every fixpoint x of O, i.e., if O(x) = x then k(A)1 ≤ x ≤ k(A)2, where
k(A)j , 1 ≤ j ≤ 2, is the projection of k(A) to the j-th component. For instance, given a
classical normal program Π, the Fitting operator ΦΠ (Fitting, 1985) is an approximation of TΠ

(Denecker et al., 2000a). Since fixpoints of TΠ are supported models (Apt et al., 1988) of Π,
the ΦΠ-Kripke-Kleene fixpoint k(ΦΠ) approximates every supported model of Π (see Example
3.2.5 and Example 3.2.8).

13



In Section 3.3 we define, for a given approximationA ofO, the stable-revision operatorA↓↑
of A. This operator is monotone and gives rise to A-stable fixpoints. Again, by the results of
Tarski and Knaster, the set of allA-stable fixpoints has a least element w(A), called theA-well-
founded fixpoint. By definition,w(A) approximates everyA-stable fixpoint. An important result
(Denecker et al., 2000a; Fitting, 2002) in classical logic programming is that (i) the ΦΠ-stable
fixpoints characterize the 3-valued answer sets (Przymusinski, 1990) of Π, (ii) the exact ΦΠ-
stable fixpoints characterize the answer sets (Gelfond and Lifschitz, 1991) of Π (see Example
3.3.7), and (iii) w(ΦΠ) characterizes the well-founded model (Van Gelder et al., 1991) of Π (see
Example 3.3.10).

Finally, in Section 3.4 we define the ultimate approximation of O, which is the most precise
approximation of O with respect to Approximation Theory. Denecker et al. (2004) showed that
the ultimate approximation of O can be algebraically characterized in terms of O (see Theorem
3.4.1) and that it has the most precise Kripke-Kleene fixpoint, the most precise well-founded
fixpoint, and the most stable fixpoints.

3.1 Bilattices

In this section we first recall basic notions from Lattice Theory (see, e.g., Davey and Priestley
(2002)) and then define bilattices (Ginsberg, 1988) which play a fundamental role in Approxi-
mation Theory and logic programming (Denecker et al., 2000a, 2002, 2004; Fitting, 1991, 1994,
2002).

By a partially ordered set (or poset) we mean a set L together with a binary relation ≤ such
that

1. x ≤ x for every x (reflexivity),

2. if x ≤ y and y ≤ x then x = y for every x, y (asymmetry),

3. if x ≤ y and y ≤ z then x ≤ z for every x, y, z (transitivity).

We call a poset a chain if x ≤ y or y ≤ x for every x and y; moreover, if x 6≤ x for every x
(irreflexivity), then L is a strict partial order.

For Y ⊆ L, we say that x ∈ L is an upper bound (resp., lower bound) of Y if y ≤ x (resp.,
y ≥ x) for every y ∈ Y . The least upper bound (resp., least lower bound) of Y is denoted by
inf Y (resp., supY ) if it exists. Moreover, we call a poset L chain-complete if supC exists for
every chain C ⊆ L.

A lattice is a poset (L,≤) such that inf{x, y} and sup{x, y} exist for every x, y. We say
that L is complete if supX and inf X exist for every X ⊆ L. Complete lattices have a greatest
element > and a least element ⊥.

Define, for a, b ∈ L,

a ∧ b = inf{a, b} and a ∨ b = sup{a, b}.

Then, the following equations hold:

1. x ∧ y = y ∧ x, x ∨ y = y ∨ x for every x, y (commutativity),

14



≤

≤p f t

≤

≤p f t

u

≤

≤p f t

u

(t, f)

Figure 3.1: (Pelov, 2004, Figure 2.1) From left to right: (i) the complete lattice of Boolean
truth-values 2, (ii) Kleene’s 3-valued logic 3 (= 2c), and (iii) the smallest non-trivial bilattice of
Belnap’s 4-valued logic 4 (= 22).

2. x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z for every x, y, z (associativity),

3. x∧(y∨z) = (x∧y)∨(x∧z), x∨(y∧z) = (x∨y)∧(x∨z) for every x, y, z (absorption),

4. x ∧ x = x, x ∨ x = x for every x (idempotence).

With the definition of ∧ and ∨ given above, one can dually consider every lattice L either as
a partially ordered set (L,≤) or as an algebraic structure (L,∧,∨). Furthermore, every lattice
(L,≤) (resp., (L,∧,∨)) induces the dual lattice of L given by (L,≥) (resp., (L,∨,∧)). Notice
that every lattice is inherently equal to its dual lattice, that is, they are isomorphic.

Example 3.1.1. A trivial complete lattice is the singleton 1 = {a} together with a ≤ a. More
interestingly is the complete lattice 2 = {f , t} of Boolean truth-values, where f ≤ t (see Section
2.2). Taking the product of 2 yields 22 = 4 = {(t, t), (t, f), (f , t), (f , f)}, where (t, t) (resp.,
(f , f)) is identified with t (resp., f ). The set 4 is equipped with two natural orderings, both
yielding the structure of a complete lattice (see Figure 3.1): (i) f ≤ (f , t), (t, f) ≤ t (i.e., (f , t)
and (t, f) are incomparable), and (ii) (f , t) ≤p f , t ≤p (t, f) (i.e., the truth-values f and t are
incomparable).

Example 3.1.2. Let Π be a HEX program. The set of all interpretations IΠ ordered by ⊆ is a
complete lattice with least element ∅ and greatest element ΛΠ. We have seen in Section 2.2 that
(IΠ,⊆) is isomorphic to the set of all evaluation functions 2ΛΠ ordered by ≤. Hence, (2ΛΠ ,≤)
is a complete lattice with least element 〈 . 〉I ≡ f and greatest element 〈 . 〉I ≡ t.

We noted above that every lattice induces its dual lattice by “inverting” the ordering. More-
over, Example 3.1.1 shows that a complete lattice (L,≤) may additionally induce the product
L2 of L with two orderings ≤ and ≤p both naturally yielding the structure of a complete lattice.
This motivates the following definition.

15



L

L(⊥,⊥)

(⊥,>) (>,>)

(x1, x1)

(z, z)

(x2, x2)
(x1, x2)

Lc

(⊥,>)

⊥ >x1 z x2

(x1, x2)

L

≤p

Figure 3.2: The chain-complete poset Lc ⊆ L2 of a complete lattice L ordered by ≤p, where
(x1, x2) is an approximation of z, i.e., (x1, x2) ≤p z. The right figure is obtained from the left
by identifying the diagonal set of L2 with L, and omitting the irrelevant part of L2.

In the sequel L will denote a complete lattice together with a binary relation ≤. By the
product bilattice (Ginsberg, 1988) of L we mean the set L2 together with ≤p and ≤ defined, for
each (x1, x2), (y1, y2) ∈ L2, by1

1. (x1, x2) ≤p (y1, y2)⇔ x1 ≤ y1 and y2 ≤ x2 (precision ordering),

2. (x1, x2) ≤ (y1, y2)⇔ x1 ≤ y1 and x2 ≤ y2.

Example 3.1.3. The bilattice (4,≤,≤p), 4 = 22, of Example 3.1.1 (see Figure 3.1) is the
smallest non-trivial bilattice (Ginsberg, 1988).

3.2 Approximations, Operators, Kripke-Kleene Fixpoints

Let L be a complete lattice ordered by ≤. We call elements (x1, x2) ∈ L2 fulfilling x1 ≤ x2

consistent and denote the set of all consistent elements of L2 by Lc. Since the diagonal set of
Lc, that is, the set {(x, x) ∈ Lc : x ∈ L}, is isomorphic to L (given the ordering (x, x) ≤ (y, y)
if x ≤ y), we identify every x ∈ L with (x, x) ∈ Lc and call such elements exact. Notice that
exact elements are exactly the maximal elements with respect to ≤p.

For z ∈ L and (x1, x2) ∈ Lc, we have

(x1, x2) ≤p z ⇔ x1 ≤ z ≤ x2,

and therefore imagine z to lie “between” x1 and x2, and say that (x1, x2) is an approximation
of z (see Figure 3.2). Since two different maximal elements have no upper bound, the structure
(Lc,≤p) is not a lattice; however, it forms a chain-complete poset.

1In the literature, the orderings are usually denoted ≤t (“truth-ordering”) and ≤k (“knowledge-ordering”), re-
spectively (Ginsberg, 1988; Fitting, 1991, 2002).

16



Example 3.2.1. Consider the bilattice 4 = 22 of Example 3.1.1 (see Figure 3.1). The pair (f , t)
is consistent (i.e., f ≤ t) and therefore approximates t and f , whereas (t, f) is not consistent.
The set of consistent pairs of 4 is given by 3 = 2c = {t, f ,u}, where u = (f , t) corresponds to
the truth-value undefined. The restriction of≤ and≤p of 4 to 3 yields the substructure (3,≤,≤p)
of 4, where (3,≤) is a complete lattice (Kleene’s strong 3-valued logic (Kleene, 1952)) and
(3,≤p) is a chain-complete poset.

Example 3.2.2. Let Π be a HEX program and let IΠ be the set of all interpretations of Π. In
Example 3.1.2 we have seen that IΠ is a complete lattice. Hence, the construction of the product
bilattice given above yields the bilattice I2

Π ordered by

1. (J1, J2) ⊆p (I1, I2)⇔ J1 ⊆ I1 and I2 ⊆ J2,

2. (J1, J2) ⊆ (I1, I2)⇔ J1 ⊆ I1 and J2 ⊆ I2.

By restricting to consistent pairs of interpretations, that is, pairs of form (I1, I2) such that I1 ⊆
I2, we obtain the set IcΠ of 3-valued interpretations. In (I1, I2) we consider every a ∈ I1 (resp.,
a 6∈ I2) to be true (resp., false), and every a ∈ I2 − I1 to be undefined (see Section 4.1).

Furthermore, we define, for each x, y, the interval [x, y] by

[x, y] = {z ∈ L : x ≤ z ≤ y}.

Clearly, [x, y] 6= ∅ iff x ≤ y. Moreover, if (L,≤) is a complete lattice, then
(
[x, y],≤[x,y]

)
is a

complete lattice, where ≤[x,y] is the restriction of ≤ to [x, y]2 and x ≤ y.
An operator on L is any function O : L −→ L. We say that O is monotone if for every

x1, x2 ∈ L such that x ≤ y, O(x) ≤ O(y). Furthermore, an element x ∈ L is a pre-fixpoint of
O if O(x) ≤ x, and a fixpoint of O if O(x) = x. If existent, we denote the least fixpoint of O by
lfp(O).

Example 3.2.3 (van Emden-Kowalski operator). Let Π be a classical normal program, and let
LΠ = ΣΠ be the language of Π. The complete lattice of all interpretations of Π is IΠ = P(ΛΠ)
ordered by set inclusion. Define the van Emden-Kowalski operator (Van Emden and Kowalski,
1976) of Π, for each I ∈ IΠ, by

TΠ(I) = {H(r) : r ∈ Π : I |= B(r)}.

Then, since Π contains no disjunctive rules, TΠ is a lattice operator defined on IΠ. If Π is
positive (i.e., Π contains no negation as failure (Clark, 1978)), TΠ is monotone, and, by the
theorem of Tarski and Knaster (Tarski, 1955), has a least fixpoint lfp(TΠ) which defines the
least model semantics of Π (Van Emden and Kowalski, 1976).

If Π contains negation as failure, TΠ may be nonmonotone. Consider, e.g., the classical
program Π = {p ←∼ q}. Then TΠ(∅) = {p}, but TΠ({q}) = ∅. However, pre-fixpoints of TΠ

characterize models of Π, that is, every interpretation I ∈ IΠ is a model of Π iff TΠ(I) ⊆ I
(Apt et al., 1988). Moreover, we say that I is a supported model of Π (Apt et al., 1988) if I is
a model of Π and every a ∈ I has a justification in Π with respect to I , i.e., there exists a rule
r ∈ Π such that H(r) = a and I |= B(r). A well-known result in classical logic programming
is that fixpoints of TΠ characterize supported models of Π, that is, I is supported iff TΠ(I) = I
(Apt et al., 1988).

17



Example 3.2.4. Let Π be the classical normal program consisting of the following propositional
rules:

a←∼ b,
b← c,

c← b.

The set of all interpretations of Π is given by [∅,ΛΠ] = IΠ. An easy computation shows that
TΠ({a}) = {a} and TΠ({b, c}) = {b, c} are the only fixpoints of TΠ. Hence, {a} and {b, c} are
the supported models of Π.

We now define approximations of O. Given an element (x1, x2) ∈ Lc, we define the pro-
jection of (x1, x2) to the i-th coordinate, 1 ≤ i ≤ 2, by (x1, x2)i = xi. We say that an operator
A : Lc −→ Lc is an approximation of O if

1. A maps exact elements to exact elements,

2. A(x) = O(x) for each exact element x,2 and

3. A is monotone with respect to ≤p.

Intuitively, A is a monotone extension of O to Lc. Clearly, A and O have the same fixpoints in
L.

Example 3.2.5 (Fitting operator). Let Π be a classical normal program. Fitting (1985) defines
the Fitting operator ΦΠ of Π on the chain-complete poset (IcΠ,⊆p) (see Example 3.2.2) by
ΦΠ(I1, I2) = (I ′1, I

′
2) such that

I ′1 =
{
H(r) : r ∈ Π : B+(r) ⊆ I1 and B−(r) ∩ I2 = ∅

}
,

I ′2 =
{
H(r) : r ∈ Π : B+(r) ⊆ I2 and B−(r) ∩ I1 = ∅

}
.

It is easy to verify that ΦΠ is an approximation of TΠ (Denecker et al., 2000a).

Example 3.2.6. For the classical program Π of Example 3.2.4, we obtain ΦΠ({a}, {a})1 =
{a} = ΦΠ({a}, {a})2, and ΦΠ({b, c}, {b, c})1 = {b, c} = ΦΠ({b, c}, {b, c})2.

We now define the Kripke-Kleene fixpoint of an approximation A. Since (Lc,≤p) is a
chain-complete poset, and A is monotone on Lc, A has a least fixpoint k(A),

k(A) = lfp(A),

which we call the A-Kripke-Kleene fixpoint.
We say that (a1, a2) ∈ Lc is A-reliable if (a1, a2) ≤p A(a1, a2), that is, if A(a1, a2) is

“more precise” than (a1, a2). In this case we can imagine A to be a revision operator. Since
(⊥,>) is A-reliable and A is monotone, we can iterate A over (⊥,>) and obtain a transfinite
sequence (⊥,>) ≤p A(⊥,>) ≤p . . . ≤p Aα(⊥,>) ≤p . . ., where α is an ordinal. The limit of
this sequence coincides with the A-Kripke-Kleene fixpoint k(A).

Since k(A) is the least fixpoint of A (with respect to ≤p) and every fixpoint of O is a
maximal fixpoint of A with respect to ≤p, we have the following result.

2More precisely, A(x, x)1 = O(x) = A(x, x)2.

18



Proposition 3.2.7. Let O be an operator on L, and let A be an approximation of O. Then, for
every fixpoint x of O, k(A) ≤p x.

Example 3.2.8 (Fitting semantics). The Fitting operator ΦΠ (see Example 3.2.5) is an approx-
imation of TΠ and has therefore a least fixpoint with respect to ⊆p, denoted k(ΦΠ), which we
call the ΦΠ-Kripke-Kleene model (or Fitting model) of Π (Fitting, 1985). By Proposition 3.2.7,
k(ΦΠ) approximates every fixpoint of TΠ, i.e., every supported model of Π (see Example 3.2.3).

Example 3.2.9. Let Π be given as in Example 3.2.4. Since the supported models {a} and {b, c}
of Π are disjoint, we have k(ΦΠ) = (∅, {a, b, c}). Hence,

k(ΦΠ)1 = ∅ ⊆ {a}, {b, c} ⊆ {a, b, c} = k(ΦΠ)2,

which shows that k(ΦΠ) indeed approximates every fixpoint of TΠ.

3.3 Stable revision operator and stable fixpoints

Let (a1, a2) be A-reliable. The restriction of A( . , a2)1 (resp., A(a1, . )2) to [⊥, a2] (resp.,
[a1,>]) is a monotone operator on the complete lattice ([⊥, a2],≤) (resp., ([a1,>],≤)). There-
fore, A( . , a2)1 (resp., A(a1, . )2) has a least fixpoint in ([⊥, a2],≤) (resp., ([a1,>],≤)).

Define the A-stable revision operator by

A↓↑(a1, a2) =
(
A↓(a2),A↑(a1)

)
,

where
A↓(a2) = lfp (A( . , a2)1) and A↑(a1) = lfp (A(a1, . )2) .

Roughly, A↓(a2) underestimates every (minimal) fixpoint of O, whereas A↑(a1) is an upper
bound as tight as possible to the minimal fixpoints of O.

Proposition 3.3.1. Let O be an operator on L, let A an approximation of O, and let (a1, a2) be
A-reliable. Then, for every (pre-)fixpoint x of O, if x ≤ a2 then A↓(a2) ≤ x.

In general, A↓↑(a1, a2) has not to be a refinement of (a1, a2). We say that an A-reliable
pair (a1, a2) is A-prudent if a1 ≤ A↓(a2). The next proposition states that A↓↑(a1, a2) is a
refinement of A-prudent pairs (a1, a2).

Proposition 3.3.2. Let L be a complete lattice, let A be an approximating operator, and let
(a1, a2) ∈ Lc be A-prudent. Then, A↓↑(a1, a2) is A-prudent and (a1, a2) ≤p A↓↑(a1, a2).

Furthermore, for each A-prudent pair (a1, a2), A↓↑ is more precise than A.

Proposition 3.3.3. Let L be a complete lattice, let A be an approximating operator, and let
(a1, a2) ∈ Lc. If (a1, a2) is A-prudent then A(a1, a2) ≤p A↓↑(a1, a2).

19



A( . , x)1

(⊥, x)

⊥ >xx1

A(⊥, x)

x2

A2(⊥, x)

. . .

Figure 3.3: Computation of A↓(x) = lfp(A( . , x)1).

Example 3.3.4. Let Π be the classical normal program of Example 3.2.4. Since ΦΠ({c}, {c, b}) =
({c, b}, {c, b}) and ({c}, {c, b}) ⊆p ({c, b}, {c, b}), we conclude that ({c}, {c, b}) is ΦΠ-reliable.
However, since Φ↓Π({c, b}) = ∅, {c, b} is not ΦΠ-prudent. In contrast, ΦΠ(∅, {a}) = ({a}, {a})
and Φ↓Π({a}) = {a} shows that (∅, {a}) is ΦΠ-prudent.

The stable revision operator A↓↑ has fixpoints and a least fixpoint on the chain-complete
poset of A-prudent pairs ordered by ≤p. We say that an A-reliable approximation (a1, a2) is an
A-stable fixpoint if (a1, a2) is a fixpoint of A↓↑. Furthermore, if A is an approximation of O,
we call every exact A-stable fixpoint (x, x) (notice that x is then a fixpoint of O) an A-stable
fixpoint of O.

Proposition 3.3.5. Let L be a complete lattice, let A be an approximating operator, and let
(x1, x2) ∈ Lc. If (x1, x2) is an A-stable fixpoint, then (x1, x2) is a fixpoint of A.

The next proposition states that exact A-stable fixpoints of O can be characterized by fix-
points of A↓.

Proposition 3.3.6. LetA be an approximating operator ofO, and let x ∈ L. Then the following
conditions are equivalent:

1. x is an A-stable fixpoint of O,

2. x is a fixpoint of O and A↓(x) = x.

Example 3.3.7 (Answer-set semantics). Let Π be a classical normal program, let LΠ = ΣΠ

be the language of Π, and let I ∈ IΠ be an interpretation. Define the Gelfond-Lifschitz reduct
(Gelfond and Lifschitz, 1988) of Π with respect to I by

ΠI = {H(r)← B+(r) : r ∈ Π : I ∩B−(r) = ∅}.

20



Intuitively, we compute the reduct ΠI of Π by (i) deleting every rule in Π where the negative
body is not compatible with I , and (ii) deleting the negative body of the remaining rules. This
transformation yields a definite program ΠI which has a least model, given by lfp(TΠI ).

Furthermore, define the Gelfond-Lifschitz operator (Gelfond and Lifschitz, 1988) of Π, for
each I ∈ IΠ, by

ΓΠ(I) = lfp(TΠI ).

We say that I is an answer set3 (Gelfond and Lifschitz, 1988) of Π if ΓΠ(I) = I . Notice that
every classical normal program Π may have no answer sets, exactly one answer set, or more
than one answer set. However, every answer set is a minimal model of Π and a fixpoint of TΠ.

The restriction ΦΠ( . , I)1 with respect to I “simulates” the operator TΠI , i.e., ΦΠ( . , I)1 =
TΠI . Hence, we can reformulate the definition of ΓΠ in terms of ΦΠ by

ΓΠ(I) = lfp (ΦΠ( . , I)1) = Φ↓Π(I).

That is, I is an answer set of Π iff I is an exact ΦΠ-stable fixpoint of TΠ (Denecker et al.,
2000a). It is worth mentioning that for classical normal programs, FLP-answer-set semantics
(Faber et al., 2004, 2011), and traditional answer-set semantics (Gelfond and Lifschitz, 1991)
coincide.4

Example 3.3.8. Reconsider the classical normal program Π of Example 3.2.4 consisting of the
following rules:

a←∼ b
b← c

c← b

Recall that {a} and {b, c} are (minimal) fixpoints of TΠ. For I = {a} we have ΠI = {a ←,
b ← c, c ← b}. We compute the least fixpoint of TΠI by TΠI (∅) = {a}, and TΠI ({a}) = {a}.
That is, ΓΠ({a}) = {a} which shows that {a} is an answer set of Π. In Example 3.3.7 we have
seen that ΓΠ coincides with Φ↓Π. Indeed, since ΦΠ(∅, {a})1 = {a}, and ΦΠ({a}, {a})1 = {a},
we have Φ↓Π({a}) = {a} which shows that {a} is a ΦΠ-stable fixpoint.

In contrast, for I ′ = {b, c}, and ΠI′ = {b ← c, c ← b}, we have TΠI′ (∅) = ∅ and, hence,
ΓΠ({b, c}) = ∅ which shows that {b, c} is not an answer set of Π. Likewise, ΦΠ(∅, {b, c})1 = ∅
yields Φ↓Π({b, c}) = ∅ which shows that {b, c} is not a ΦΠ-stable fixpoint.

SinceA↓↑ has a least fixpoint (with respect to≤p), we can define theA-well-founded fixpoint
by

w(A) = lfp(A↓↑).
We can compute theA-well-founded fixpoint by iteratingA↓↑, starting at (⊥,>), until a fixpoint
is reached. More precisely, w(A) is the limit of the sequence ((aα, bα))α≥0 of elements of Lc,
where

3In the literature the term “answer set” (Gelfond and Lifschitz, 1991) is reserved for semantics of extended
logic programs (i.e., programs with strong negation, see Example 2.1.3). However, to be consistent with following
terminology, we use the term “answer set” instead of “stable model” here.

4In fact, there exist at least thirteen characterizations of answer-set semantics Lifschitz (2010).

21



1.
(
a0, b0

)
= (⊥,>)

2. aα+1 = A↓ (bα) and bα+1 = A↑ (aα)

3. (aα, bα) =
∨{(

aβ, bβ
)

: β < α
}

for every limit ordinal α.

Clearly, w(A) ≤p (a1, a2) for every A-stable fixpoint (a1, a2). Moreover, the well-founded
fixpoint is more precise than the Kripke-Kleene fixpoint. Indeed, we have the following result.

Proposition 3.3.9. Let O be an operator. Then, for every approximation A of O, k(A) ≤p
w(A).

Example 3.3.10 (Well-founded semantics). Let Π be a classical normal program, and let LΠ =
ΣΠ be the language of Π. Let (I1, I2) ∈ IcΠ. We say that U ⊆ ΣΠ is an unfounded set
(Van Gelder et al., 1991) of Π (relative to (I1, I2)), if for every a ∈ U , and every r ∈ Π such
that H(r) = a,

1. b 6∈ I2 or b ∈ U for some b ∈ B+(r), or

2. b ∈ I1 for some b ∈ B−(r).

The union of unfounded sets is again an unfounded set. Hence, for every (I1, I2) ∈ IcΠ there
exists a greatest unfounded set relative to (I1, I2), denoted GUSΠ(I1, I2). Intuitively, if (I1, I2)
is compatible with Π, then GUSΠ(I1, I2) contains all atoms which can be safely switched to
false such that the resulting 3-valued interpretation is still compatible with Π (Eiter et al., 2009b).

Moreover, define for every (I1, I2) the partial van Emden-Kowalski operator of Π by

QΠ(I1, I2) =
{
H(r) : r ∈ Π : B+(r) ⊆ I1 and B−(r) ∩ I2 = ∅

}
. (3.1)

Similar to TΠ, QΠ derives all immediate consequences of (I1, I2), assuming that every a ∈
I1 (resp., a 6∈ I2) is true (resp., false). Then, define the (classical) well-founded operator
(Van Gelder et al., 1991) of Π, for each (I1, I2) ∈ IcΠ, byWΠ(I1, I2) = (I ′1, I

′
2), where

I ′1 = QΠ(I1, I2),

I ′2 = HBΠ − GUSΠ(I1, I2).

The operatorWΠ is monotone with respect to ⊆p. Hence, by the theorem of Tarski and Knaster
(Tarski, 1955), WΠ has a least fixpoint given by lfp(WΠ). Define the (3-valued) well-founded
model of Π (Van Gelder et al., 1991) by

w(Π) = lfp (WΠ) .

We say that a ∈ HBΠ is well-founded (resp., unfounded) if a ∈ w(Π)1 (resp., a 6∈ w(Π)2),
and we say that a is undefined if a ∈ w(Π)2 − w(Π)1. Every classical normal program Π has
exactly one (3-valued) well-founded model w(Π), and if w(Π) is exact, then w(Π) coincides
with the single answer set of Π (Van Gelder et al., 1991). Moreover, w(Φhex

Π ) characterizes the
well-founded model of Π, i.e., w(Φhex

Π ) = w(Π) (Denecker et al., 2000a).

22



Example 3.3.11. We compute the well-founded model of the classical normal program Π de-
fined in Example 3.2.4. In Example 3.3.7 we have seen that I = {a} is the only answer set,
and the only ΦΠ-stable fixpoint of TΠ. Hence, we expect the well-founded model w(Π) (resp.,
w(ΦΠ)) to coincide with I (see Example 3.3.10).

Clearly,QΠ(∅, {a}) = ∅ and it is easy to verify that {b, c} is the greatest unfounded set with
respect to (∅, {a}), that is, GUSΠ(∅) = {b, c}. Hence, the first iteration yieldsWΠ(∅, {a}) =
(∅, {a}). In the second iteration we have QΠ(∅, {a}) = {a} and GUSΠ(∅, {a}) = {b, c}
which is equivalent toWΠ(∅, {a}) = ({a}, {a}). Finally, the third iteration yields the fixpoint
WΠ({a}, {a}) = ({a}, {a}). Hence, w(Π) = ({a}, {a}) is the (2-valued) well-founded model
of Π.

Likewise, the following computation, iterating the stable revision operator Φ↓↑Π by

Φ↓↑Π (∅, {a}) =
(

Φ↓Π({a, b, c}),Φ↑Π(∅)
)

= (∅, {a})

Φ↓↑Π (∅, {a}) =
(

Φ↓Π({a}),Φ↑Π(∅)
)

= ({a}, {a})

Φ↓↑Π ({a}, {a}) =
(

Φ↓Π({a}),Φ↑Π({a})
)

= ({a}, {a})

shows w(ΦΠ) = ({a}, {a}) = w(Π). Since ({a}, {a}) is exact (i.e., 2-valued), we identify it
with the answer set and ΦΠ-stable fixpoint {a} (see Example 3.3.7).

3.4 Ultimate approximations and ultimate fixpoints

In this section we define, for a given operatorO, the most precise approximation ofO (Denecker
et al., 2004, Chapter 5).

Let L be a complete lattice and let O be an operator on L. Furthermore, let A and B be
approximations ofO. We say thatA is less precise thanB, in symbolsA ≤p B, ifA(x1, x2) ≤p
B(x1, x2) for each consistent pair (x1, x2). The set of all approximations ordered by ≤p is a
complete lattice with least element

(x1, x2) 7→

{
(O(x), O(x)) if x = x1 = x2,

(⊥,>) otherwise,

and greatest element O, the ultimate approximation of O. The next theorem gives an algebraic
characterization of O.

Theorem 3.4.1. Let L be a complete lattice, and let O be an operator on L. The ultimate
approximation O of O is given, for every (x1, x2) ∈ Lc, by

O(x1, x2) =

 ∧
x1≤z≤x2

O(z),
∨

x1≤z≤x2

O(z)

 . (3.2)

Since O is an approximation of O, we can define (i) the ultimate Kripke-Kleene fixpoint of
O by k(O) (see Section 3.2), (ii) the ultimate well-founded fixpoint of O by w(O), and (iii) the
ultimate stable fixpoints of O by the O-stable fixpoints (see Section 3.3).

23



Example 3.4.2. Let Π be a classical normal program. The Fitting operator ΦΠ (see Example
3.2.5) is not the most precise approximation of TΠ. Following the definition given in Theorem
3.4.1, we obtain the ultimate approximation TΠ of TΠ, defined on IcΠ by

TΠ(I1, I2) =

 ⋂
I1⊆J⊆I2

TΠ(J),
⋃

I1⊆J⊆I2

TΠ(J)

 .

This gives rise to the (i) ultimate Kripke-Kleene semantics, (ii) ultimate 3-valued answer-set
semantics, and (iii) ultimate well-founded semantics of Π.

Example 3.4.3. Reconsider the classical normal program Π of Example 3.2.4 consisting of the
following rules:

a←∼ c
b← c

c← b.

We have seen in Example 3.2.4 that I = {a} is the only answer set of Π. We now show that I is
an ultimate answer set of TΠ by computing T ↓Π(I) as follows:

TΠ(∅, I)1 = TΠ(∅) ∩ TΠ(I) = {a}
TΠ(I, I)1 = TΠ(I) = {a}.

That is, we have T ↓Π(I) = I which shows that I is indeed an ultimate answer set of Π.

The following proposition summarizes some fundamental relations concerning the ultimate
approximation of O.

Proposition 3.4.4. Let L be a complete lattice, and let O be an operator on L. For every
approximation A of O:

1. k(A) ≤p k(O).

2. w(A) ≤p w(O).

3. Every A-stable fixpoint of O is an ultimate stable fixpoint of O and for every ultimate
fixpoint x of O, w(O) ≤p x.

4. If k(A) is exact, then k(A) = k(O) = w(O) and it is the unique ultimate stable fixpoint
of O.

5. If w(A) is exact, then w(A) = w(O) and it is the unique ultimate stable fixpoint of O.

Example 3.4.5 (Denecker et al. (2004)). Let Π be the classical normal program consisting of
the following rules:

a← a

a←∼ a.

24



Then, Φ↓Π({a}) = ∅ and {a} is therefore not a ΦΠ-stable fixpoint. In contrast, we have

TΠ(∅, {a})1 = TΠ(∅) ∩ TΠ({a}) = {a}
TΠ({a}, {a})1 = TΠ({a}) = {a}.

That is, T ↓Π({a}) = {a} which shows that {a} is an ultimate answer set of Π.

The next result states that if O is monotone, then for computing O(x1, x2), we have to
compute O only on the boundaries of [x1, x2].

Proposition 3.4.6. Let O be a monotone operator on the complete lattice L. Then, for every
(x1, x2) ∈ Lc, O(x1, x2) = (O(x1), O(x2)).

Example 3.4.7. Let Π be the negation-free classical normal program consisting of the following
propositional rules:

a←
b← a.

Since Π contains no negation as failure, TΠ is monotone (see Example 3.2.3). Hence, by Propo-
sition 3.4.6, the following computation shows that I = {a, b} is an ultimate stable fixpoint of
TΠ:

TΠ(∅, I)1 = TΠ(∅) = {a}
TΠ({a}, I)1 = TΠ({a}) = I

TΠ(I, I)1 = TΠ(I) = I.

That is, T ↓Π(I) = I which shows that {a, b} is an ultimate answer set Π.

25





CHAPTER 4
Fixpoint Semantics of Normal HEX

Programs

In this chapter we uniformly extend major semantics of classical normal programs (see Example
3.2.8, Example 3.3.7, and Example 3.3.10) to the class of normal (i.e., disjunction-free) HEX
programs.

In particular, in Section 4.1 we define, for every given normal HEX program Π, the extended
van Emden-Kowalski operator T hexΠ of Π and show (i) that pre-fixpoints of T hexΠ characterize
models of Π, and (ii) that every FLP-answer set is a (minimal) fixpoint of T hexΠ . Then, we
define 3-valued interpretations of Π and extend evaluation functions to the 3-valued case. This
construction directly yields the extended Fitting operator Φhex

Π as an extension of ΦΠ. We show
that Φhex

Π is an approximation of T hexΠ , and therefore conclude that Approximation Theory is
applicable. This gives rise to the (i) Kripke-Kleene or Fitting semantics (Fitting, 1985) defined
in Section 4.1, (ii) 3-valued answer-set semantics (Przymusinski, 1990) defined in Section 4.2,
and (iii) well-founded semantics (Van Gelder et al., 1991) defined in Section 4.3 of Π (Figure
4.4 illustrates the relationships between these different semantics).

Moreover, by instantiating Theorem 3.4.1, we define in Section 4.4 the ultimate approxima-
tion T hexΠ of T hexΠ and obtain ultimate Kripke-Kleene semantics, ultimate 3-valued answer-set
semantics, and ultimate well-founded semantics. These ultimate semantics are the most precise
one with respect to Approximation Theory.

4.1 Kripke-Kleene semantics

In this section we define Kripke-Kleene semantics of normal (i.e., disjunction-free) HEX pro-
grams by applying the part of Approximation Theory prestend in Section 3.2.

Definition 4.1.1 (Extended van Emden-Kowalski operator). Let Π be a normal HEX program.
We define the extended van Emden-Kowalski operator of Π, for every interpretation I ∈ IΠ, by

T hexΠ (I) = {H(r) : r ∈ Π : I |= B(r)}.

27



As in the classical case, the result of applying TΠ to an interpretation I is an interpretation
J ∈ IΠ consisting of each atom a ∈ ΛΠ for which there exists a rule r ∈ Π with H(r) = a
and I |= B(r). Notice that since Π contains no disjunctive rules, TΠ is in fact a lattice operator
defined on the complete lattice IΠ ordered by set inclusion.

The next result states that if Π is a classical normal program, then T hexΠ and TΠ (Van Emden
and Kowalski, 1976) (see Example 3.2.3) coincide.

Proposition 4.1.2. Let Π be a classical normal program. Then, T hexΠ = TΠ.

As for classical normal programs (Apt et al., 1988) (see Example 3.2.3), the following propo-
sition states that we can characterize the models of Π by the pre-fixpoints of T hexΠ .

Proposition 4.1.3. Let Π be a normal HEX program, and let I ∈ IΠ. Then, I is a model of Π
iff T hexΠ (I) ⊆ I .

The next result shows that we can relate minimal fixpoints of T hexΠ and FLP-answer sets.

Corollary 4.1.4. Let Π be a normal HEX program, and let I ∈ IΠ. If I is an FLP-answer set
of Π, then I is a minimal fixpoint of T hexΠ .

Proof. Follows directly from Proposition 2.2.4 and Proposition 4.1.3.

Example 4.1.5. Let Π be the normal HEX program consisting of the following rules:

a← b#

b← a#

where a# and b# are defined as in Example 2.2.1. Then, T hexΠ ({a, b}) = {a, b} shows that
{a, b} is a fixpoint of T hexΠ and, therefore, a model of Π. However, since T hexΠ (∅) = ∅, it is not
a minimal fixpoint of Π.

We now define 3-valued interpretations and 3-valued evaluation functions (Denecker et al.,
2004). Let I ∈ IΠ. Recall from Section 2.2 that for each atom a ∈ ΛΠ, the 2-valued evaluation
function 〈 . 〉I with respect to I is defined by

〈 a 〉I =

{
t if a ∈ I,
f if a 6∈ I,

(4.1)

where 2 = {f , t} and f ≤ t. A (consistent) 3-valued interpretation of Π is a pair (I1, I2) ∈ I2
Π

of interpretations such that I1 ⊆ I2. We denote the set of all such elements by IcΠ (see Figure
3.2) and define the following two orderings (see Example 3.2.2):

1. (J1, J2) ⊆p (I1, I2)⇔ J1 ⊆ I1 and I2 ⊆ J2,

2. (J1, J2) ⊆ (I1, I2)⇔ J1 ⊆ I1 and J2 ⊆ I2.

28



Since we identify each exact element (I, I) with the 2-valued interpretation I (see Section 3.2),
we have

(I1, I2) ⊆p I ⇔ I1 ⊆ I ⊆ I2,

and in this case imagine (I1, I2) to be an approximation of I in the following sense: I1 contains
every atom a ∈ I which is definitely true with respect to Π, and ΛΠ − I2 contains every atom
a 6∈ I which is definitely false, whereas one remains agnostic for every a ∈ I2 − I1 (i.e., a has
the truth-value undefined). Hence, every 3-valued interpretation (I1, I2) ∈ IcΠ corresponds to a
3-valued evaluation function (with respect to (I1, I2)) 〈 . 〉(I1,I2) defined, for each atom a ∈ ΛΠ,
by

〈 a 〉(I1,I2) =


t if a ∈ I1,

f if a 6∈ I2,

u otherwise,

(4.2)

where u denotes the truth-value undefined. Notice that for every exact interpretation (I, I),

〈 a 〉(I,I) = 〈 a 〉I . (4.3)

Let 3 = 2 ∪ {u} and extend ≤ to 3 by f ≤ u ≤ t. Conversely to the construction above,
given a 3-valued evaluation function 〈 . 〉, define

I1 = {a ∈ ΛΠ : 〈 a 〉 = t} and I2 = {a ∈ ΛΠ : 〈 a 〉 ≥ u}.

Then, I1 ⊆ I2 and (I1, I2) is a 3-valued interpretation. As in the 2-valued case (see Section
2.2), the correspondence is one-one, that is, each consistent pair (I1, I2) can be identified with
the 3-valued evaluation function 〈 . 〉(I1,I2) and vice versa. We denote the set of all 3-valued
evaluation functions by 3ΛΠ , and order 3ΛΠ by ≤ pointwise. Then, (3ΛΠ ,≤) is isomorphic to
(IcΠ,⊆).

Notice that on IcΠ we additionally have the precision ordering⊆p. Therefore, define≤p on 3
by u ≤p f , u ≤p t (see Example 3.1.1 and Figure 3.1) and extend the ordering to 3ΛΠ pointwise,
that is,

〈 . 〉1 ≤p 〈 . 〉2 ⇔ 〈 a 〉1 ≤p 〈 a 〉2 for each atom a.

Then, (3ΛΠ ,≤,≤p) is isomorphic to (IcΠ,⊆,⊆p).
Let (I1, I2) ∈ IcΠ. We now extend 〈 . 〉(I1,I2) to external atoms, i.e., we extend 3-valued

evaluation functions from ΛΠ to HBΠ.

Definition 4.1.6. Let Π be a (normal or disjunctive) HEX program. Define, for each external
atom f# [ i ] (o) ∈ Λ#

Π ,

〈
f# [ i ] (o)

〉
(I1,I2)

=


t if f (J, i,o) = t for each J ∈ [I1, I2],

f if f (J, i,o) = f for each J ∈ [I1, I2],

u otherwise.

(4.4)

29



Since [I1, I2] is not empty, (4.4) is well-defined. Roughly, for f# [ i ] (o) to be true (resp.,
false) with respect to (I1, I2), it has to be true (resp., false) for each interpretation J approxi-
mated by (I1, I2). Since an external atom represents an arbitrary Boolean function (see Section
2.2), external atoms cannot be treated in the same way as ordinary atoms. More precisely, every
atom a ∈ ΛΠ obviously fulfills the following monotonicity property: if a ∈ I for some interpre-
tation I ∈ IΠ, then a ∈ I ′ for every I ⊆ I ′. In contrast, external atoms may be nonmonotone
and therefore it is not sufficient to evaluate

〈
f# [ i ] (o)

〉
(I1,I2)

only on the boundaries I1 and
I2. However, for each exact interpretation (I, I) ∈ IcΠ, we have (see (4.3))〈

f# [ i ] (o)
〉

(I,I)
=
〈
f# [ i ] (o)

〉
I

= f (I, i,o) . (4.5)

Example 4.1.7. Consider the external atom a# of Example 2.2.1. Since a# is monotone (see
Section 5.1), we have 〈

a#
〉

(I1,I2)
=


t if a ∈ I1,

f if a 6∈ I2,

u otherwise.

For instance, we have
〈
a#
〉

({a},{a,b}) = t,
〈
a#
〉

(∅,{a}) = u, and
〈
a#
〉

(∅,{b}) = f .

Notice that, as in the 2-valued case (see Section 2.2), the correspondence between 3HBΠ

(i.e., the set of all total 3-valued evaluation functions) and IcΠ is no longer one-one.
In Corollary 4.1.4 we have seen that FLP-answer sets of Π are minimal fixpoints of T hexΠ .

However, since T hexΠ is, in general, nonmonotone, we cannot derive FLP-answer sets by a
bottom-up iteration of T hexΠ . We now define an operator which is monotone with respect to
⊆p and coincides with T hexΠ on IΠ (i.e., is an approximation of T hexΠ , see Section 3.2). Approx-
imation Theory then gives us Φhex

Π -Kripke-Kleene semantics.

Definition 4.1.8 (Extended Fitting operator). Let Π be a normal HEX program. Define the
extended Fitting operator of Π, for each (I1, I2) ∈ IcΠ, by

Φhex
Π (I1, I2) =

(
I ′1, I

′
2

)
,

such that

I ′1 =
{
H(r) : r ∈ Π : 〈B(r) 〉(I1,I2) = t

}
,

I ′2 =
{
H(r) : r ∈ Π : 〈B(r) 〉(I1,I2) ≥ u

}
.

We now discuss some intuitions of the definition of Φhex
Π . Given a 3-valued interpretation

(I1, I2) ∈ IcΠ, Φhex
Π (I1, I2)1 contains every atom a ∈ ΛΠ which is derivable from Π under the

assumption that every atom in I1 is true and every atom not in I2 is false. That is, given a rule
r ∈ Π with H(r) = a, we have a ∈ Φhex

Π (I1, I2)1 if (i) every atom b ∈ B+(r) is contained
in I1 (i.e., b is assumed to be true), (ii) for every external atom f# [ i ] (o) ∈ B+(r) and every
J ∈ [I1, I2], f (J, i,o) = t (i.e., f# [ i ] (o) evaluates to true in every possible interpretation

30



greater than I1 consisting only of atoms which are not assumed to be false), (iii) every atom
b ∈ B−(r) is not contained in I2 (i.e., b is assumed to be false), and (iv) for every external atom
g# [ i ] (o) ∈ B−(r) and every J ∈ [I1, I2], g (J, i,o) = f (i.e., g# [ i ] (o) evaluates to false in
every possible interpretation greater than I1 consisting only of atoms which are not assumed to
be false).

On the other hand, Φhex
Π (I1, I2)2 contains every atom a ∈ ΛΠ such that there exists a rule

r ∈ Π with H(r) = a such that (i) every atom b ∈ B+(r) is contained in I2 (i.e., b is either true
or undefined), (ii) for every external atom f# [ i ] (o) ∈ B+(r) there exists some J ∈ [I1, I2]
such that f (J, i,o) = t, (iii) every atom b ∈ B−(r) is not contained in I1 (i.e., b is either false or
undefined), and (iv) for every external atom g# [ i ] (o) ∈ B−(r) there exists some J ∈ [I1, I2]
such that f (J, i,o) = f .

The next result states that Φhex
Π is an extension of the traditional Fitting operator ΦΠ as

defined in (Fitting, 1985) (see Example 3.2.5).

Proposition 4.1.9. Let Π be a classical normal program. Then, Φhex
Π = ΦΠ.

Recall from Section 3.2 that Φhex
Π is an approximation of T hexΠ if

1. Φhex
Π (I, I)1 = T hexΠ (I) = Φhex

Π (I, I)2 for each I ∈ IΠ, and

2. Φhex
Π is monotone with respect to ⊆p.

In Example 3.2.5 we mentioned that for every classical normal program Π, ΦΠ is an approxi-
mation of TΠ (Denecker et al., 2000a). The next result shows that this also holds in the case of
normal HEX programs. Before proving this assertion, we show the following lemma.

Lemma 4.1.10. Let Π be a HEX program, and let (J1, J2), (I1, I2) ∈ IcΠ. For every set of
HEX-literals L, if (J1, J2) ⊆p (I1, I2), then

1. if 〈L 〉(J1,J2) = t, then 〈L 〉(I1,I2) = t,

2. if 〈L 〉(I1,I2) ≥ u, then 〈L 〉(J1,J2) ≥ u.

Proof. The first implication is straightforward. For the second implication notice that for an
external atom f# [ i ] (o) ∈ Λ#

Π we have
〈
f# [ i ] (o)

〉
(I1,I2)

= u if there exists some I ′, I ′′ ∈
[I1, I2] such that f(I ′, i,o) = t and f(I ′′, i,o) = f . Then, since J1 ⊆ I1 and I2 ⊆ J2, we have〈
f# [ i ] (o)

〉
(J1,J2)

= u. Moreover, if we have
〈
f# [ i ] (o)

〉
(I1,I2)

= t, then there exists at
least one interpretation I ′ ∈ [I1, I2] such that f(I ′, i,o) = t. Since I ′ ∈ [J1, J2], we thus have〈
f# [ i ] (o)

〉
(J1,J2)

≥ u. The rest of the proof is straightforward.

Proposition 4.1.11. Let Π be a normal HEX program. Then, Φhex
Π is an approximation of T hexΠ .

Proof. (1) Follows directly from (4.3), and (4.5). (2) Is an immediate consequence of Lemma
4.1.10.

Proposition 4.1.11 shows that we can apply the Approximation Theory (Denecker et al.,
2000a, 2002, 2004) presented in Chapter 3 to T hexΠ and its approximation Φhex

Π (see Section
3.2). Since Φhex

Π is monotone (with respect to ⊆p), it has a least fixpoint on the chain-complete
poset (IcΠ,⊆p). This leads to the following definition.

31



Definition 4.1.12 (Kripke-Kleene semantics). Let Π be a normal HEX program. Define the
Φhex

Π -Kripke-Kleene model of Π by

k(Φhex
Π ) = lfp(Φhex

Π ).

The fixpoint k
(
Φhex

Π

)
is the limit of the transfinite sequence

(∅,ΛΠ) ⊆p Φhex
Π (∅,ΛΠ) ⊆p . . . ⊆p Φhex,α

Π (∅,ΛΠ) ⊆p . . . .

For a classical normal program Π, the ΦΠ-Kripke-Kleene model k(ΦΠ) approximates every
supported model of Π (see Example 3.2.8). We have not explicitly defined supported model
semantics for normal HEX programs. However, Proposition 4.1.3 shows that fixpoints of T hexΠ

are in fact models of Π and it is easy to see that these models are “supported” (in the classical
sense). The following result is an immediate consequence of Proposition 3.2.7 and shows that
the Φhex

Π -Kripke-Kleene model k
(
Φhex

Π

)
approximates each fixpoint of T hexΠ .

Proposition 4.1.13. Let Π be a normal HEX program, and let I ∈ IΠ. If I is a fixpoint of T hexΠ ,
then k(Φhex

Π ) ⊆p I .

Corollary 4.1.14. Let Π be a HEX program, and let I ∈ IΠ. If I is an FLP-answer set of Π,
then k

(
Φhex

Π

)
⊆p I .

Proof. From Proposition 2.2.4 and Proposition 4.1.3 it follows that every FLP-answer set I of
Π is a fixpoint of T hexΠ . Hence, by Proposition 4.1.13, k

(
Φhex

Π

)
⊆p I .

We now illustrate the Φhex
Π -Kripke-Kleene semantics by giving some examples.

Example 4.1.15. Let Π be the normal HEX program consisting of the following rules:

q(a)←
p(a)← p⊆#q, q(a)

where I |= p⊆#q iff pI ⊆ qI (see Example 2.2.2), and ΛΠ = {p(a), q(a)}. We compute the
Φhex

Π -Kripke-Kleene model of Π as follows. In the first iteration, we have q(a) ∈ Φhex
Π (∅,ΛΠ)1,

and
p(a) 6∈ Φhex

Π (∅,ΛΠ)1 and p(a) ∈ Φhex
Π (∅,ΛΠ)2 .

That is, the first iteration yields Φhex
Π (∅,ΛΠ) = ({q(a)},ΛΠ). For the second iteration, observe〈

p⊆#q
〉

({q(a)},ΛΠ)
= t which entails p(a) ∈ Φhex

Π ({q(a)},ΛΠ)1. Consequently, we have

Φhex
Π ({q(a)},ΛΠ) = (ΛΠ,ΛΠ) and, hence, k

(
Φhex

Π

)
= (ΛΠ,ΛΠ). This result coincides with

the intended meaning of Π.

Example 4.1.16. We modify the program of Example 4.1.15 to the program Π′ consisting of
the following rules:

q(a)←
p(b)← p⊆#q, q(a).

32



The second rule intuitively states that whenever pI is a subset of qI , pI contains an element
(namely b) not contained in qI . Hence, Π′ is inconsistent, i.e., it has no FLP-answer set. How-
ever, under Φhex

Π -Kripke-Kleene semantics we can still entail that q(a) is true. That is, in the
first iteration we again obtain Φhex

Π′ (∅,ΛΠ) = ({q(a)}, {p(b), q(a)}). However, in the second
iteration we now have

〈
p⊆#q

〉
({q(a)},{p(b),q(a)}) = u and, thus, we cannot entail p(b). Conse-

quently, k(Φhex
Π′ ) = ({q(a)}, {p(b), q(a)}) which means that q(a) is true and p(b) is undefined

in k(Φhex
Π′ ).

Example 4.1.17. Reconsider the normal HEX program Π of Example 4.1.5 consisting of the
following rules:

a← b#

b← a#.

Intuitively, a and b are indirectly self-supported, i.e., a is supported by b and vice versa. Since
I1 = ∅ and I2 = {a, b} are the fixpoints of T hexΠ , and since k

(
Φhex

Π

)
approximates every fixpoint

of T hexΠ , we expect k
(
Φhex

Π

)
= (∅, {a, b}). Indeed, since

〈
a#
〉

(∅,{a,b}) =
〈
b#
〉
∅,({a,b}) = u,

we have Φhex
Π (∅, {a, b}) = (∅, {a, b}) and, hence, k

(
Φhex

Π

)
= (∅, {a, b}). That is, in the 3-

valued Φhex
Π -Kripke-Kleene model of Π both atoms are undefined.

4.2 Three-Valued Answer-Set Semantics

Let us briefly recall the combination of Approximation Theory and classical logic programming
for characterizing 3-valued answer-set semantics of classical normal programs (see Section 3.3).
Given a classical normal program Π, the 3-valued answer sets of Π are characterized by the
fixpoints of the stable revision operator Φ↓↑Π of the Fitting approximation ΦΠ. Moreover, 2-
valued answer sets of Π are fixpoints of Φ↓Π, i.e., I ∈ IΠ is an answer set of Π iff I is a fixpoint
of TΠ and Φ↓Π(I) = I (see Example 3.3.7).

Likewise, in this section we extend these definitions to the class of normal HEX programs.
More precisely, we define, for a given normal HEX program Π, the stable revision operator
Φhex,↓↑

Π of Φhex
Π in a straightforward way (see Section 3.3), and obtain 3-, and 2-valued Φhex

Π -
answer-set semantics.

In the sequel let Π be a normal HEX program. We say that (I1, I2) ∈ IcΠ is Φhex
Π -reliable

if (I1, I2) ⊆p Φhex
Π (I1, I2). That is, (I1, I2) is Φhex

Π -reliable if Φhex
Π (I1, I2) is a refinement

of (I1, I2), i.e., Φhex
Π (I1, I2) contains more true and less undefined atoms than (I1, I2). Given

a Φhex
Π -reliable 3-valued interpretation (I1, I2) ∈ IcΠ, the restriction of Φhex

Π ( . , I2)1 (resp.,
Φhex

Π (I1, . )2) to [∅, I2] (resp., [I1,ΛΠ]) is a monotone operator on the complete lattice ([∅, I2],⊆)
(resp., ([I1,ΛΠ],⊆)). Hence, by the Tarski and Knaster Theorem, Φhex

Π ( . , I2)1 (resp., Φhex
Π (I1, . )2)

has a least fixpoint in ([∅, I2],⊆) (resp., ([I1,ΛΠ],⊆)) (see Section 3.3).

Definition 4.2.1 (Stable revision operator). Let Π be a normal HEX program. Define the stable
revision operator of Φhex

Π , for each (I1, I2) ∈ IcΠ, by

Φhex,↓↑
Π (I1, I2) =

(
Φhex,↓

Π (I2),Φhex,↑
Π (I1)

)
,

33



where

Φhex,↓
Π (I2) = lfp

(
Φhex

Π ( . , I2)1

)
and Φhex,↑

Π (I1) = lfp
(

Φhex
Π (I1, . )2

)
.

We now discuss the intuitions behind these definitions (see Denecker et al. (2004)). The
operator Φhex,↓

Π is designed in such a way that Φhex,↓
Π (I2) underestimates every fixpoint I ⊆ I2 of

T hexΠ as tight as possible. This lower bound is the limit of the sequence (notice that Φhex
Π ( . , I2)1

is monotone, see Figure 3.3)

∅ ⊆p Φhex
Π (∅, I2)1 ⊆ . . . ⊆ Φhex,α

Π (∅, I2)1 ⊆ . . .

where α is an ordinal. This is summarized in the following proposition (see Proposition 3.3.1).

Proposition 4.2.2. Let Π be a normal HEX program, and let (I1, I2) ∈ IcΠ be Φhex
Π -reliable.

Then, for every (pre-)fixpoint I ∈ IΠ of T hexΠ , if I ⊆ I2 then Φhex,↓
Π (I2) ⊆ I .

Since we are interested in minimal fixpoints of T hexΠ , the new upper bound Φhex,↑
Π (I1) is

an interpretation I ′2 ⊆ I2 that is closer to the minimal fixpoints of T hexΠ than I2. However,
recall from Section 3.3 that Φhex,↓↑

Π (I1, I2) has not to be a refinement of (I1, I2). We say that
(I1, I2) is Φhex

Π -prudent if I1 ⊆ Φhex,↓
Π (I2). Intuitively, a 3-valued interpretation (I1, I2) ∈ IcΠ

is Φhex
Π -prudent, if all atoms in I1 are logical consequences of Π if all atoms not in I2 are false.

Example 4.2.3. Reconsider the normal HEX program Π of Example 4.1.17 consisting of the
following rules:

a←∼ b#

b←∼ a#.

Since Φhex
Π (∅, {a, b})1 = ∅, we have Φhex,↓

Π ({a, b}) = ∅. Hence, e.g., ({a}, {a, b}) and
({b}, {a, b}) are not Φhex

Π -prudent, whereas (∅, {a, b}) is (trivially) Φhex
Π -prudent.

By translating Proposition 3.3.2 and Proposition 3.3.3 we immediately conclude the follow-
ing two results.

Proposition 4.2.4. Let Π be a normal HEX program, and let (I1, I2) ∈ IcΠ be Φhex
Π -prudent.

Then, Φhex,↓↑
Π (I1, I2) is Φhex

Π -prudent and (I1, I2) ⊆p Φhex,↓↑
Π (I1, I2).

Proposition 4.2.5. Let Π be a normal HEX program, and let (I1, I2) ∈ IcΠ. If (I1, I2) is Φhex
Π -

prudent, then Φhex
Π (I1, I2) ⊆p Φhex,↓↑

Π (I1, I2).

The stable revision operator Φhex,↓↑
Π has fixpoints and a least fixpoint on the chain-complete

poset (IcΠ,⊆p). This leads to the following definition.

Definition 4.2.6 (Answer-set semantics). Let Π be a normal HEX program, and let (I1, I2) ∈
IcΠ. We say that (I1, I2) ∈ IcΠ is a (3-valued) Φhex

Π -answer set of Π if (I1, I2) is a fixpoint of
Φhex,↓↑

Π , i.e., Φhex,↓↑
Π (I1, I2) = (I1, I2).

34



As a consequence of Proposition 3.3.6, the next result states that we can characterize 2-
valued (or, equivalently, exact) Φhex

Π -answer sets by fixpoints of Φhex,↓
Π (see Figure 3.3).

Proposition 4.2.7. Let Π be a normal HEX program, and let I ∈ IΠ. Then, I is a 2-valued
Φhex

Π -answer set iff I is a fixpoint of T hexΠ and Φhex,↓
Π (I) = I .

Example 4.2.8. Reconsider the normal HEX program Π of Example 4.2.3 consisting of the
following rules:

a←∼ b#

b←∼ a#.

It is easy to verify that k
(
Φhex

Π

)
= (∅, {a, b}). Hence, since Φhex

Π (∅, {a, b})1 = ∅, we have
Φhex,↓

Π ({a, b}) = ∅. Moreover, we have Φhex
Π (∅, ∅)2 = {a, b} and, consequently, Φhex,↓↑

Π (∅, {a, b}) =
(∅, {a, b}). That is, (∅, {a, b}) is a 3-valued Φhex

Π -answer set.
We now compute Φhex,↓

Π ({a}). In (∅, {a}) ∈ IcΠ the atom b is known to be false, whereas a is
undefined. Under the assumption that b is false, we can conclude with the first rule that a is true.
That is, we have Φhex

Π (∅, {a})1 = {a}. For the second iteration, we compute Φhex
Π ({a}, {a})1 =

{a} and conclude Φhex,↓
Π ({a}) = {a}. That is, {a} is a 2-valued Φhex

Π -answer set. Also, an
analogous computation shows that {b} is also a 2-valued Φhex

Π -answer set.

Example 4.2.9. Let Π be the normal HEX program consisting of the following rules:

p(a)←∼ ∃#[ q ]

q(b)← ∃#[ q ]

where Σ#
Π = {∃#} consists of an (1, 0)-ary external symbol ∃#, Σ

(0)
Π = {a, b} are the constants,

Σ
(1)
Π = {p, q} are the 1-ary (predicate) symbols, and ΛΠ = {p(a), q(b)} are the atoms occurring

in Π, respectively. The intended meaning of ∃#[ q ] is that it evaluates to true in an interpretation
I iff there exists an atom q(a) or q(b) in I . More formally, we define the interpretation function
∃ : IΠ × ΣΠ −→ 2 by

∃(I, q′) =

{
t if there exists some constant c ∈ Σ

(0)
Π such that q′(c) ∈ I,

f otherwise.

For convenience, in the sequel we write (∃x q(x))# instaed of ∃#[ q ] and thus rewrite Π as
follows:

p(a)←∼ (∃x q(x))#

q(b)← (∃x q(x))#.

First, since {p(a)} 6|= (∃x q(x))#, we have T hexΠ ({p(a)}) = {p(a)}. Second, since {q(b)} |=
(∃x q(x))#, we have T hexΠ ({q(b)}) = {q(b)}. That is, {p(a)} and {q(b)} are both fixpoints
of T hexΠ . Consequently, since k

(
Φhex

Π

)
approximates every fixpoint of T hexΠ (see Proposition

35



4.1.13), we have k
(
Φhex

Π

)
= (∅, {p(a), q(b)}). Hence, p(a) and q(b) are both undefined under

Φhex
Π -Kripke-Kleene semantics.

We show that under Φhex
Π -answer-set semantics we obtain more precise results. In particu-

lar, we show that k
(
Φhex

Π

)
= (∅, {p(a), q(b)}) is not a fixpoint of the stable revision operator

Φhex,↓↑
Π . We compute Φhex,↑

Π (∅) as follows:

Φhex
Π (∅, ∅)2 = {p(a)}

Φhex
Π (∅, {p(a)})2 = {p(a)}.

That is, we have Φhex,↑
Π (∅) = {p(a)} 6= {p(a), q(b)} which proves Φhex,↓↑

Π (∅, {p(a), q(b)}) 6=
(∅, {p(a), q(b)}). Moreover, since ∅ 6|= (∃x q(x))#, and {p(a)} 6|= (∃x q(x))#, we have

Φhex
Π (∅, {p(a)})1 = Φhex

Π ({p(a)}, {p(a)})1 = {p(a)},

which proves that {p(a)} is an Φhex
Π -answer set. Clearly, {p(a)} is a more precise than the

Φhex
Π -Kripke-Kleene model (∅, {p(a), q(b)}).

Notice that q(b) is self-supported in Π and therefore {q(b)} is not an Φhex
Π -answer set. In-

deed, we have Φhex,↓
Π ({q(b)}) = ∅.

4.3 Well-Founded Semantics

In Example 3.3.10 we briefly presented well-founded semantics of classical normal programs in
a traditional fashion using unfounded sets. We noticed that, given a classical normal program
Π, we can characterize the well-founded model w(Π) by the ΦΠ-well-founded fixpoint w(ΦΠ),
i.e., w(Π) = w(ΦΠ).

Well-founded semantics play an important role in classical logic programming and database
theory. However, for (normal) HEX programs, to the best of our knowledge, there exist no
well-founded semantics up so far. In this section we define well-founded semantics of normal
HEX programs as a special case of 3-valued Φhex

Π -answer-set semantics by instantiating the
constructions of Approximation Theory given in Section 3.3.

Let Π be a normal HEX program. Recall from Section 4.2 that the stable revision oper-
ator Φhex,↓↑

Π of Φhex
Π has fixpoints and a least fixpoint in the chain-complete poset (IcΠ,⊆p)

(Denecker et al., 2004). This leads to the following definition.

Definition 4.3.1 (Well-founded semantics). Let Π be a normal HEX program. Define the Φhex
Π -

well-founded model by
w
(

Φhex
Π

)
= lfp

(
Φhex,↓↑

Π

)
.

Since Φhex
Π is an extension of ΦΠ (see Proposition 4.1.9), we immediately conclude the

following result.

Proposition 4.3.2. Let Π be a classical normal program. Then, w(Π) = w(ΦΠ) = w(Φhex
Π ).

We can computew
(
Φhex

Π

)
by iterating Φhex,↓↑

Π , starting at (∅,ΛΠ), until a fixpoint is reached.
More precisely, w

(
Φhex

Π

)
is the limit of the sequence ((Iα1 , I

α
2 ))α≥0 of elements of IcΠ, where1

1Notice that ∨ denotes the supremum in the chain-complete poset (IcΠ,⊆p).

36



1.
(
I0

1 , I
0
2

)
= (∅,ΛΠ)

2. Iα+1
1 = Φhex,↓

Π (Iα2 ) and Iα+1
2 = Φhex,↑

Π (Iα1 )

3. (Iα1 , I
α
2 ) =

∨{(
Iβ1 , I

β
2

)
: β < α

}
for every limit ordinal α.

That is, the Φhex
Π -well-founded model is the least 3-valued Φhex

Π -answer set and approximates
every 3-valued Φhex

Π -answer set, i.e., w
(
Φhex

Π

)
⊆p (I1, I2) for every Φhex

Π -answer set (I1, I2) ∈
IcΠ. In particular, w

(
Φhex

Π

)
approximates every 2-valued Φhex

Π -answer set.
As a consequence of Proposition 3.3.9, the next result states that the Φhex

Π -well founded
model is, in general, more precise than the Φhex

Π -Kripke-Kleene model.

Proposition 4.3.3. Let Π be a normal HEX program. Then, k
(
Φhex

Π

)
⊆p w

(
Φhex

Π

)
.

Example 4.3.4. Reconsider the inconsistent normal HEX program Π′ of Example 4.1.16 con-
sisting of the following rules:

q(a)←
p(b)← p⊆#q, q(a).

We have seen in Example 4.1.16 that under Φhex
Π′ -Kripke-Kleene semantics, q(a) is true and

p(b) is undefined, i.e., k(Φhex
Π′ ) = ({q(a)}, {p(b), q(a)}). We show that the Φhex

Π′ -well-founded
model w(Φhex

Π′ ) coincides with the Φhex
Π′ -Kripke-Kleene model.

First, we compute Φhex,↓
Π′ ({p(b), q(a)}). Since

Φhex
Π′ (∅, {p(b), q(a)})1 = Φhex

Π′ ({q(a)}, {p(b), q(a)})1 = {q(a)},

we have
Φhex,↓

Π′ ({p(b), q(a)}) = {q(a)}.

Second, the computation

Φhex
Π′ (∅, ∅)2 = {q(a)}

Φhex
Π′ (∅, {q(a)})2 = {p(b), q(a)}

Φhex
Π′ (∅, {p(b), q(a)})2 = {p(b), q(a)}

shows Φhex,↑
Π′ (∅) = {p(b), q(a)}. Moreover,

Φhex
Π′ ({q(a)}, {q(a)})2 = Φhex

Π′ ({q(a)}, {p(b), q(a)})2 = {p(b), q(a)}

shows Φhex,↑
Π′ ({q(a)}) = {p(b), q(a)}. Hence, we have

w(Φhex
Π′ ) = ({q(a)}, {p(b), q(a)}) = k(Φhex

Π′ ).

37



Example 4.3.5. Reconsider the normal HEX program Π of Example 4.1.17 consisting of the
following rules:

a← b#

b← a#.

We noticed in Example 4.1.17 that a and b are both self-supported. However, under Φhex
Π -

Kripke-Kleene semantics both atoms are undefined and not false. We show that Φhex
Π -well-

founded semantics yields a stronger result and correctly detects the self-supportedness. We
compute w

(
Φhex

Π

)
by iterating Φhex,↓↑

Π over (∅, {a, b}) as follows:

Φhex,↓↑
Π (∅, {a, b}) =

(
Φhex,↓

Π ({a, b}),Φhex,↑
Π (∅)

)
= (∅, ∅)

Φhex,↓↑
Π (∅, ∅) =

(
Φhex,↓

Π (∅),Φhex,↑
Π (∅)

)
= (∅, ∅).

That is, w
(
Φhex

Π

)
= (∅, ∅) and, consequently, a and b are both false in w

(
Φhex

Π

)
.

Example 4.3.6. Reconsider the normal HEX program Π of Example 4.2.9 consisting of the
following rules:

p(a)←∼ (∃x q(x))#

q(b)← (∃x q(x))#.

In Example 4.2.9 we have seen that under Φhex
Π -Kripke-Kleene semantics both atoms (i.e., p(a)

and q(b)) are undefined, i.e., k
(
Φhex

Π

)
= (∅, {p(a), q(b)}). We show that w

(
Φhex

Π

)
is more pre-

cise than k
(
Φhex

Π

)
, that is, under Φhex

Π -well-founded semantics we can extract more information
from Π. We compute w

(
Φhex

Π

)
by iterating Φhex,↓↑

Π over (∅, {p(a), q(b)}) as follows:

Φhex,↓↑
Π (∅, {p(a), q(b)}) =

(
Φhex,↓

Π ({p(a), q(b)}),Φhex,↑
Π (∅)

)
= (∅, {p(a)})

Φhex,↓↑
Π (∅, {p(a)}) =

(
Φhex,↓

Π ({p(a)}),Φhex,↑
Π (∅)

)
= ({p(a)}, {p(a)}) .

That is, w
(
Φhex

Π

)
= ({p(a)}, {p(a)}) and, consequently, k

(
Φhex

Π

)
(p w

(
Φhex

Π

)
.

4.4 Ultimate Semantics

Let Π be a normal HEX program. In Section 4.1 we have seen that the extended van Emden-
Kowalski operator T hexΠ shares some basic properties with the traditional van Emden-Kowalski
operator TΠ defined for classical normal programs. That is, (i) T hexΠ is a lattice operator, (ii) pre-
fixpoints of T hexΠ characterize models of Π (see Proposition 4.1.3), and (iii) FLP-answer sets
of Π are minimal fixpoints of T hexΠ (see Corollary 4.1.4).2 Arguably, these results indicate that
T hexΠ is an appropriate operator for applying Approximation Theory. Hence, in what follows we

2Recall that FLP-answer sets are minimal models (see Proposition 2.2.4).

38



translate the definitions and results of Section 3.4 and define ultimate semantics of normal HEX
programs.

Given two approximations A and B of T hexΠ , we say that A is more precise than B if
A(I1, I2) ⊆p B(I1, I2) for each (I1, I2) ∈ IcΠ. The set of all approximations of T hexΠ ordered
by ⊆p forms a complete lattice. We denote the most precise (i.e., the greatest element with
respect to ⊆p) approximation of T hexΠ by T hexΠ . Second, by instantiating Theorem 3.4.1, we
immediately conclude the following algebraic characterization of T hexΠ (Denecker et al., 2004).

Definition 4.4.1 (Ultimate approximation). Let Π be a normal HEX program. Define the ulti-
mate approximation of T hexΠ , for each (I1, I2) ∈ IcΠ, by

T hexΠ (I1, I2) =

 ⋂
I1⊆J⊆I2

T hexΠ (J),
⋃

I1⊆J⊆I2

T hexΠ (J)

 .

Then, according to the theory presented in Chapter 3, we obtain the following definitions.

Definition 4.4.2 (Ultimate semantics). Let Π be a normal HEX program. Define (i) the ultimate
Kripke-Kleene model of Π by k(T hexΠ ) (see Section 4.1), (ii) the ultimate 3-valued answer sets of
Π by the fixpoints of the stable revision operator T hex,↓↑Π (see Section 4.2), and (iii) the ultimate
well-founded model of Π by w(T hexΠ ) (see Section 4.3).

From Proposition 3.3.6 it follows that we can characterize 2-valued ultimate answer sets by
fixpoints of T hex,↓Π . That is, I is a 2-valued ultimate answer set of Π iff I is a fixpoint of T hexΠ

and T hex,↓Π (I) = I .

Example 4.4.3. Let Π be the normal HEX program consisting of the following rules (see Ex-
ample 3.4.5):

a← a#

a←∼ a#.

When applying Φhex
Π to (∅, {a}), we consider both rules at the same time and evaluate them in

the 3-valued interpretation (∅, {a}). Since in (∅, {a}) the external atom a# is neither definitely
true nor false, we obtain Φhex

Π (∅, {a})1 = ∅ and Φhex
Π (∅, {a})2 = {a}. Hence, we cannot extract

any information with Φhex
Π from (∅, {a}). In contrast, if we apply T hexΠ to (∅, {a}) we consider

each interpretation I ∈ [∅, {a}] and, consequently, each rule separately: for I = ∅ we have
I 6|= a# which means that the second rule fires, i.e., T hexΠ (I) = {a}; and for I = {a} we have
I |= a# which means that the first rule fires, i.e., again T hexΠ (I) = {a}. Hence, T hexΠ (∅, {a})1 =
T hexΠ (∅) ∩ T hexΠ ({a}) = {a} and T hexΠ (∅, {a})2 = T hexΠ (∅) ∪ T hexΠ ({a}) = {a}, that is,
T hexΠ (∅, {a}) = ({a}, {a}). Since T hexΠ ({a}) = {a}, we have k

(
T hexΠ

)
= ({a}, {a}) and,

hence, k
(
Φhex

Π

)
(p k

(
T hexΠ

)
.

The following relations are instantiations of Proposition 3.4.4, and precisely state the rela-
tionship between ultimate and Φhex

Π -semantics.

39



Proposition 4.4.4. Let Π be a normal HEX program. Then, for every approximationA of T hexΠ :

1. k(A) ⊆p k(T hexΠ ).

2. w(A) ⊆p w(T hexΠ ).

3. Every A-answer set is an ultimate answer set of Π.

4. If k(A) is 2-valued, then k(A) = k(T hexΠ ) = w(T hexΠ ) and it is the unique ultimate
answer set of Π.

5. If w(A) is 2-valued, then w(A) = w(T hexΠ ) and it is the unique ultimate answer set of Π.

Example 4.4.5. Reconsider the normal HEX program Π of Example 4.2.9 consisting of the
following rules:

p(a)←∼ (∃x q(x))#

q(b)← (∃x q(x))#.

In Example 4.3.6 we have seen that w
(
Φhex

Π

)
= ({p(a)}, {p(a)}), i.e., the Φhex

Π -well-founded
model is 2-valued. Hence, by Proposition 4.4.4, w

(
Φhex

Π

)
= w

(
T hexΠ

)
and {p(a)} is the unique

ultimate answer set of Π.

As a direct consequence of Proposition 3.4.6, the next result states that if T hexΠ is monotone,
then computing T hexΠ (I1, I2) reduces to computing T hexΠ on the boundaries of [I1, I2].

Proposition 4.4.6. Let Π be a normal HEX program such that T hexΠ is monotone. Then, for each
(I1, I2) ∈ IcΠ, T hexΠ (I1, I2) =

(
T hexΠ (I1), T hexΠ (I2)

)
.

Example 4.4.7. Consider the external atom (∃x q(x))# of Example 4.2.9 (see Example 4.4.5).
Recall from Example 4.2.9 that I |= (∃x q(x))# iff there exists some constant c ∈ Σ

(0)
Π such

that q(c) ∈ I . Clearly, if q(c) ∈ I then q(c) ∈ I ′ for every I ⊆ I ′, i.e., I |= (∃x q(x))# implies
I ′ |= (∃x q(x))#. Let Π be the normal HEX program consisting of the following rules:

q(a)←
p(a)← (∃x q(x))#.

Notice that T hexΠ is monotone and k
(
Φhex

Π

)
= (ΛΠ,ΛΠ) where ΛΠ = {p(a), q(a)}. By Propo-

sition 4.4.4, we thus have k
(
T hexΠ

)
= (ΛΠ,ΛΠ) which is verified by the following computation

(see Proposition 4.4.6):

T hexΠ (∅,ΛΠ) =
(
T hexΠ (∅), T hexΠ (ΛΠ)

)
= ({q(a)},ΛΠ)

T hexΠ ({q(a)},ΛΠ) =
(
T hexΠ ({q(a)}, T hexΠ (ΛΠ))

)
= (ΛΠ,ΛΠ)

T hexΠ (ΛΠ,ΛΠ) =
(
T hexΠ (ΛΠ), T hexΠ (ΛΠ)

)
= (ΛΠ,ΛΠ).

Also, by Proposition 4.4.4, w
(
T hexΠ

)
= (ΛΠ,ΛΠ) and ΛΠ is the unique ultimate answer set of

Π.

In Figure 4.4 we illustrate the relationships between the different semantics defined in this
chapter.

40



∅

I = T hexΠ (I)

HBΠ

Φhex
Π ( . , I)1

I1

I2

I3

Ij

(∅, HBΠ) k
(
Φhex

Π

)
w
(
Φhex

Π

)

...

Figure 4.1: Illustration of the relations between the Φhex
Π -Kripke-Kleene-, the Φhex

Π -well-
founded, and the 2-valued Φhex

Π -answer-set semantics. On the left side: (i) the Kripe-Kleene
fixpoint k

(
Φhex

Π

)
is the least fixpoint of Φhex

Π ; (ii) the well-founded fixpoint (least 3-valued sta-
ble fixpoint) w

(
Φhex

Π

)
is the least fixpoint of Φhex,↓↑

Π . On the right side: monotone iteration
of the 2-valued Φhex

Π -stable model I . If we replace Φhex
Π by T hexΠ , we obtain the more precise

ultimate semantics.

41





CHAPTER 5
Semantic Properties of Normal HEX

Programs

Given a classical normal program Π, we noticed in Example 3.3.7 that I is an answer set of Π iff
I is a fixpoint of TΠ and Φ↓Π(I) = I (Denecker et al., 2000b). Likewise, in Section 5.1 we show
that for each positive (i.e., negation-free) normal HEX program Π containing only monotone
external atoms, the same characterization, in terms of Φhex

Π , holds.
However, in Section 5.2 we show that if Π contains nonmonotone external atoms, 2-valued

Φhex
Π -answer-set semantics and FLP-answer-set semantics do, in general, not coincide. More

precisely, each Φhex
Π -answer set is also an FLP-answer set (see Theorem 5.2.5), whereas the

converse may not hold (see Example 5.2.6). We argue in Section 5.4 that this divergence is due
to the well-supportedness (Shen, 2011) of 2-valued Φhex

Π -answer sets.
Finally, in Section 5.3 we show that for every normal HEX program Π, the (ultimate) well-

founded model of Π approximates each FLP-answer set of Π in the sense that each atom true
(resp., false) in w

(
Φhex

Π

)
(resp., w

(
Φhex

Π

)
), is true (resp., false) in each FLP-answer set of Π.

5.1 Monotone Normal HEX Programs Have Nice Properties

In this section we show that standard the FLP-answer-set semantics of normal HEX programs
containing only monotone external atoms coincides with the 2-valued Φhex

Π -answer-set seman-
tics.

Let Π be a normal HEX program with language LhexΠ = (ΣΠ,Σ
#
Π). Let i ∈ Σm

Π , and
o ∈ Σn

Π. We say that an external atom f# ∈ Σ#,(m,n) is monotone if for every J, I ∈ IΠ such
that J ⊆ I ,

f (J, i,o) ≤ f (I, i,o) .

Furthermore, we say that Π is monotone if every external atom a ∈ Λ#
Π is monotone.

In the sequel let Π be a monotone normal HEX program. By definition of 〈 . 〉(I1,I2) (see
Section 4.1), for every monotone external atom f# [ i ] (o) and 3-valued interpretation (I1, I2),

43



we have 〈
f# [ i ] (o)

〉
(I1,I2)

=


t if f (I1, i,o) = t,

f if f (I2, i,o) = f ,

u otherwise.

(5.1)

Roughly, in the case of a monotone external atom a, it suffices to evaluate a on the boundaries of
the interval [I1, I2]. This property indicates that every monotone external atom behaves similar
to an ordinary atom.

Example 5.1.1. In Example 4.1.7 we observed that given an atom a ∈ ΛΠ, the corresponding
external atom a# (see Example 2.2.1) is monotone.

We now extend the Gelfond-Lifschitz reduct and Gelfond-Lifschitz operator (see Example
3.3.7) to the class of normal HEX programs.

Definition 5.1.2 (Gelfond-Lifschitz reduct). Let Π be a normal HEX program. Define the
Gelfond-Lifschitz reduct (Gelfond and Lifschitz, 1988) of Π with respect to I by

ΠI =
{
H(r)← B+(r) : r ∈ Π : I |= B∼(r)

}
.

Intuitively, we compute the reduct ΠI by (i) deleting every rule r ∈ Π, where I |= b
for some negated atom ∼ b ∈ B∼(r), and (ii) deleting the negative body of the remaining
rules. This transformation yields a positive (i.e., negation-free) HEX program ΠI with only
monotone external atoms. Consequently, the extended van Emden-Kowalski operator T hex

ΠI
of

ΠI is monotone. Hence, by the theorem of Tarski and Knaster (Tarski, 1955), T hex
ΠI

has a least
fixpoint, given by lfp(T hex

ΠI
). Therefore, we can extend the classical Gelfond-Lifschitz operator

(Gelfond and Lifschitz, 1988) as follows.

Definition 5.1.3 (Extended Gelfond-Lifschitz operator). Let Π be a normal HEX program. De-
fine the extended Gelfond-Lifschitz operator of Π, for each I ∈ IΠ, by

ΓhexΠ (I) = lfp(T hexΠI ).

The next result states that ΓhexΠ is an extension of the traditional Gelfond-Lifschitz operator
(Gelfond and Lifschitz, 1988) ΓΠ.

Proposition 5.1.4. Let Π be a classical normal program. Then, ΓhexΠ = ΓΠ.

Given a monotone normal HEX program Π and an interpretation I ∈ IΠ, we say that I is an
ΓhexΠ -answer set of Π if ΓhexΠ (I) = I .

As an immediate consequence of Proposition 5.1.4 we obtain the following result.

Proposition 5.1.5. Let Π be a classical normal program, and let I ∈ IΠ. Then, I is an ΓhexΠ -
answer set iff I is an ΓΠ-answer set.

44



Example 5.1.6. Consider the monotone normal HEX program Π consisting of the single rule

a← >#,∼ ⊥#,

where > ≡ t, and ⊥ ≡ f (i.e., >(I) = t and ⊥(I) = f for each I ∈ IΠ). Let I = {a}. We
have ΠI =

{
a← >#

}
. Since T hex

ΠI
(∅) = I and T hex

ΠI
(I) = I , we have ΓhexΠ (I) = I and I is

thus an ΓhexΠ -answer set of Π.

Example 5.1.7. Let Π be the monotone normal HEX program consisting of the following single
rule:

a← a#,∼ ⊥#.

Let I = {a}. Since ΠI =
{
a← a#

}
, T hexΠ (∅) = ∅ yields ΓhexΠ (I) = ∅, i.e., I is not an

ΓhexΠ -answer set of Π.

Given a classical normal program Π, the operator Φ↓Π coincides with the Gelfond-Lifschitz
operator ΓΠ (see Example 3.3.7). That is, the Fitting approximation (Fitting, 1985) ΦΠ is de-
signed to simulate TΠI , i.e., for each I ∈ IΠ, ΦΠ( . , I)1 = TΠI . The next result states that for
monotone normal HEX programs, this correspondence remains valid.

Proposition 5.1.8. Let Π be a monotone normal HEX program. Then, ΓhexΠ = Φhex,↓
Π .

Proof (Sketch). Given an interpretation I ∈ IΠ, it is straightforward to prove

Φhex
Π ( . , I)1 = T hexΠI . (5.2)

The rest follows directly from definitions.

The next result shows that ΓhexΠ -answer-set semantics characterize FLP-answer-set seman-
tics.

Theorem 5.1.9. Let Π be a monotone normal HEX program, and let I ∈ IΠ. Then, I is an
ΓhexΠ -answer set iff I is an FLP-answer set of Π.

Proof. (⇒) First, we show that I is a model of fΠI . By assumption, we have T hex
ΠI

(I) = I .
Hence, by Proposition 4.1.3, I is a model of ΠI . That is, whenever I |= B+(r) for some r ∈ ΠI ,
we have H(r) ∈ I . Clearly, this implies that I is also a model of fΠI .

Second, we show that I is a minimal such model. Suppose, towards a contradiction, there
exists some I ′ ( I such that I ′ is a model of fΠI . We claim T hex

ΠI
(I ′) ⊆ I ′. Let a ∈ T hex

ΠI
(I ′).

Then there exists a rule r ∈ Π such that H(r) = a, I ′ |= B+(r), and I |= B∼(r) = ∅. Hence,
I |= B(r) (i.e., r ∈ fΠI ) and, since I ′ is a model of fΠI , a ∈ I ′. This proves the claim and, by
Proposition 4.1.3, it follows that I ′ is a model of ΠI , contradicting the minimality of I .

(⇐) Suppose ΓhexΠ (I) = I ′ 6= I . Since I is a fixpoint of T hex
ΠI

, and I ′ is the least fixpoint of
T hex

ΠI
, I ′ ⊆ I . Suppose I ′ ( I . Since T hex

ΠI
(I ′) = I ′, I ′ is a model of ΠI . Let r ∈ fΠI . Notice

that H(r) ← B+(r) ∈ ΠI . Since I ′ is a model of ΠI , I |= B+(r), and I |= H(r); moreover,
since I ′ ⊆ I and I ∩ B−(r) = ∅, I ′ ∩ B−(r) = ∅. Hence, since r ∈ fΠI was arbitrary, I ′ is a
model of fΠI , a contradiction to the minimality of I .

45



We are now ready to prove that for monotone normal HEX programs Π, the FLP-answer
sets and the 2-valued Φhex

Π -answer sets coincide.

Theorem 5.1.10. Let Π be a monotone normal HEX program, and let I ∈ IΠ. Then, I is an
Φhex

Π -answer set iff I is an FLP-answer set of Π.

Proof. Is an immediate consequence of Proposition 5.1.8 and Theorem 5.1.9.

5.2 Two-Valued Answer Sets are FLP-Answer Sets

For every classical normal program Π, the answer sets of Π are characterized by the 2-valued
ΦΠ-answer sets (see Example 3.3.7). Moreover, since the answer sets of Π coincide with the
FLP-answer sets of Π, the 2-valued ΦΠ-answer sets also characterize the FLP-answer sets of Π.

In this section we show that in the case of normal HEX programs, this correspondence does,
in general, not hold. Let Π be a (normal or disjunctive) HEX program. Recall from Section 2.2
that the FLP-reduct (Faber et al., 2004, 2011) of Π relative to an interpretation I ∈ IΠ is the set
of all rules in Π such that I satisfies the body of r, i.e., I |= B(r). We now extend this definition
to 3-valued interpretations.

Definition 5.2.1 (Three-valued FLP-reduct). Let Π be a normal HEX program, and let (I1, I2) ∈
IcΠ. Define the 3-valued FLP-reduct of Π relative to (I1, I2) by

fΠ(I1,I2) =
{
r ∈ Π : 〈B(r) 〉(I1,I2) = t

}
.

The following proposition summarizes some basic properties of the 3-valued FLP-reduct.

Proposition 5.2.2. Let Π be a normal or disjunctive HEX program.

1. For every I ∈ IΠ, fΠ(I,I) = fΠI .

2. For every (I1, I2) ∈ IcΠ, and let I ∈ IΠ such that (I1, I2) ⊆p I , fΠ(I1,I2) ⊆ fΠI .

Proof. The first assertion is an immediate consequence of (4.3) and (4.5). For the second inclu-
sion, since (I1, I2) ⊆p I , we have by Lemma 4.1.10 that if 〈B(r) 〉(I1,I2) = t then 〈B(r) 〉I = t
which proves the assertion.

The next result shows the correspondence between the 3-valued FLP-reduct and the extended
Fitting operator.

Lemma 5.2.3. Let Π be a normal or disjunctive HEX program, and let (I1, I2) ∈ IcΠ. Then,

Φhex
Π (I1, I2)1 = Φhex

fΠ(I1,I2)(I1, I2)1.

Proof. Follows directly from definitions.

The next lemma relates fΠI and Π in terms of the extended Fitting operator.

46



Lemma 5.2.4. Let Π be a normal or disjunctive HEX program. For every (I1, I2) ∈ IcΠ, and let
I ∈ IΠ such that (I1, I2) ⊆p I , we have

Φhex
Π (I1, I2)1 = Φhex

fΠI (I1, I2)1.

Proof. It is clear that more rules entail more facts, i.e., if Π′ ⊆ Π, then Φhex
Π′ (I1, I2)1 ⊆

Φhex
Π (I1, I2)1. Moreover, by Proposition 5.2.2, we have the following inclusions

fΠ(I1,I2) ⊆ fΠI ⊆ Π.

Consequently, we have

Φhex
fΠ(I1,I2)(I1, I2)1 ⊆ Φhex

fΠI (I1, I2)1 ⊆ Φhex
Π (I1, I2)1, (5.3)

and, by Lemma 5.2.3, Φhex
fΠ(I1,I2)(I1, I2)1 = Φhex

Π (I1, I2)1 which together with (5.3) entails

Φhex
fΠI (I1, I2)1 = Φhex

Π (I1, I2)1.

We are now ready to prove that, given a normal HEX program Π, every 2-valued Φhex
Π -

answer set I ∈ IΠ is also an FLP-answer set of Π.

Theorem 5.2.5. Let Π be a normal HEX program and I ∈ IΠ. If I is a 2-valued Φhex
Π -answer

set, then I is an FLP-answer set of Π.

Proof. By assumption, we have Φhex,↓
Π (I) = I , i.e., I is the least fixpoint of Φhex

Π ( . , I)1. By
Lemma 5.2.4, we have Φhex

Π ( . , I)1 = Φhex
fΠI

( . , I)1 and, hence, Φhex,↓
fΠI

(I) = I .

Since every 2-valued Φhex
Π -answer set is a model of Π, I is a model of fΠI . It remains

to show that I is a minimal model of fΠI . Suppose there exists some I ′ ( I such that I ′

is a model of fΠI . Then, by Proposition 4.1.3, T hex
fΠI

(I ′) ⊆ I ′. Hence, by Proposition 4.2.2,

Φhex,↓
fΠI

(I) ⊆ I ′ ( I , a contradiction. Consequently, I is a minimal model of fΠI and, thus, an
FLP-answer set of Π.

Recall from Section 3.4 that even in the classical case, not every ultimate answer set is also
an ΦΠ-answer set (see Example 3.4.5); hence, in Theorem 5.2.5 we cannot replace Φhex

Π by
T hexΠ .

In the next example we show that the converse of Theorem 5.2.5 does, in general, not hold.

Example 5.2.6. Let Π be the normal HEX program consisting of the following rules:

a← f#[a, b]

b← g#[a, b]

47



where f and g are defined as in Table 5.1. Let I = {a, b}. It is easy to verify that I is a minimal
model of fΠI = Π and, hence, an FLP-answer set of Π. In contrast, we have

T hexΠ (∅, I)1 = T hexΠ (∅) ∩ T hexΠ ({a}) ∩ T hexΠ ({b}) ∩ T hexΠ (I)

= I ∩ {b} ∩ {a} ∩ I
= ∅.

That is, T hex,↓Π (I) = ∅. Consequently, by Proposition 3.3.6, I is not an ultimate answer set of Π
and, hence, by Proposition 4.4.4, not an Φhex

Π -answer set.

J f(J, a, b) g(J, a, b)

∅ t t
{a} f t
{b} t f
{a, b} t t

Table 5.1: Definition of the interpretation functions f and g of Example 5.2.6.

Intuitively, the divergence of 2-valued answer-set semantics based on Approximation The-
ory, and FLP-answer-set semantics, is due to the “non-constructiveness” of FLP-semantics.
More precisely, given an FLP-answer set I of a normal HEX program Π, in general we can-
not define a level mapping (Hitzler and Wendt, 2005) on I such that every atom a ∈ I is justified
only by atoms of a lower level. The intuition behind “constructiveness” is formalized by the
concept of well-supportedness (Shen, 2011; Fages, 1994) given in Section 5.4. Indeed, the
FLP-answer set I of Example 5.2.6 is not well-supported (see Example 5.4.4), whereas every
2-valued Φhex

Π -, and ultimate answer set is well-supported (see Theorem 5.4.7).

5.3 Well-Founded Semantics Approximate FLP-Answer-Set
Semantics

In classical logic programming, the well-founded model w(Π), of a given classical normal pro-
gram Π, approximates1 every answer set of Π in the following sense (Van Gelder et al., 1991):
an atom a ∈ ΛΠ is well-founded (resp., unfounded) only if a ∈ I for every (resp., no) an-
swer set I of Π. Moreover, since in the classical case, FLP-answer-set semantics coincide with
traditional answer set semantics (Faber et al., 2004, 2011), the well-founded model w(Π) also
approximates every FLP-answer set of Π.

The results in Approximation Theory guarantee that these relations between well-founded
and answer-set semantics (based on approximations of T hexΠ ) also hold for normal HEX pro-
grams. However, in the previous section we have seen that for this class of programs, (ultimate)
answer-set semantics and FLP-answer-set semantics do not coincide. Therefore, the question

1Here we use the term “approximates” in the intuitive sense.

48



naturally arises, whether (ultimate) well-founded semantics of normal HEX programs approxi-
mate FLP-answer-set semantics in the sense described above.

The following theorem shows that every atom true (resp., false) in the (ultimate) well-
founded model is also true (resp., false) in each FLP-answer set. However, as a direct con-
sequence of Theorem 5.2.5, Example 5.3.3 shows that not every atom true (resp., false) in each
FLP-answer is also true (resp., false) in the (ultimate) well-founded model. Arguably, this indi-
cates that (ultimate) well-founded semantics based on Approximation Theory are only partially
compatible with FLP-answer-set semantics.

Theorem 5.3.1. Let Π be a normal HEX program. For each FLP-answer set I of Π,w
(
T hexΠ

)
⊆p

I .

Proof. Let ((Iα1 , I
α
2 ))α≥0 be the sequence used to define w

(
T hexΠ

)
. Then it suffices to prove

that for each ordinal α, (Iα1 , I
α
2 ) ⊆p I .

We proceed by (transfinite) induction as follows. Clearly, (I0
1 , I

0
2 ) = (∅,ΛΠ) ⊆p I , which

proves the induction base. For the induction step, assume α = β+ 1 and Iβ1 ⊆ I ⊆ I
β
2 . We have

to show
T hex,↓Π (Iβ2 ) ⊆ I ⊆ T hex,↑Π (Iβ1 ). (5.4)

Since I is a fixpoint of T hexΠ and a subset of Iβ2 , the first inclusion is an immediate conse-
quence of Proposition 3.3.1.

For the second inclusion, notice that by definition we have Iα2 = T hex,↑Π (Iβ1 ). In particular,
we have

Iα2 =
⋃

Iβ1⊆J⊆Iα2

T hexΠ (J). (5.5)

Let I ′ = Iα2 ∩ I . We claim that I ′ = I . By assumption, we have Iβ1 ⊆ I , and since (Iβ1 , I
β
2 ) is

T hexΠ -prudent, we have Iβ1 ⊆ Iα2 . Consequently, we have Iβ1 ⊆ I ′. Moreover, by definition of
I ′, we have I ′ ⊆ Iα2 . Hence, Iβ1 ⊆ I ′ ⊆ Iα2 which together with (5.5) entails T hexΠ (I ′) ⊆ Iα2 .
That is, for every rule r ∈ Π, whenever I ′ |= B(r), H(r) ∈ Iα2 . Since I is, by assumption, an
FLP-answer set of Π, for every rule r ∈ fΠI , H(r) ∈ I . Hence, for every rule r ∈ fΠI ⊆ Π
such that I ′ |= B(r), H(r) ∈ Iα2 and H(r) ∈ I which is equivalent to H(r) ∈ I ′. Thus, I ′

is a model of fΠI . Since I is a minimal model of fΠI and I ′ ⊆ I , we conclude I ′ = I; by
definition of I ′, this implies I = Iα2 ∩ I which is equivalent to I ⊆ Iα2 = T hex,↑Π (Iβ1 ).

The case where α is a limit ordinal is straightforward.

Corollary 5.3.2. Let Π be a normal HEX program. For each FLP-answer set I of Π,w
(
Φhex

Π

)
⊆p

I .

Proof. Is a direct consequence of in Theorem 5.3.1 and (2) in Proposition 4.4.4.

Example 5.3.3. Reconsider the normal HEX program Π of Example 5.2.6 consisting of the
following rules:

a← f#[a, b]

b← g#[a, b]

49



where f# and g# are defined as in Table 5.1. In Example 5.2.6 we have seen that I = {a, b} is
an FLP-answer set of Π. However, since T hex,↓↑Π (∅, {a, b}) = (∅, {a, b}),

w
(
T hexΠ

)
= (∅, {a, b}) = w

(
Φhex

Π

)
,

i.e., a and b are both undefined in the (ultimate) well-founded model.

5.4 Two-Valued Answer-Sets are Well-Supported

It is well-known that answer sets (and, consequently, FLP-answer sets) of classical normal pro-
grams are characterized by well-supported (Fages, 1994) models. Intuitively, a supported model
I is well-supported, if I is free of circular justifications. Therefore, no atom contained in any
answer set is self-justified.

However, in the case of normal HEX programs, Shen (2011) shows that FLP-answer-set
semantics is not free of circular justifications (see Example 5.4.1). In this section, we extend the
notion of well-supportedness for classical normal programs (Fages, 1994) to the class of normal
HEX programs (Shen, 2011), and show that 2-valued (ultimate) answer sets are well-supported.

The next example shows that standard FLP-answer sets may contain self-supported atoms
(Shen, 2011). Following the notation in (Shen, 2011), we use the symbol⇐ to express the meta-
property “truth is supported by” and we use standard classical connectives (i.e., ∧, ∨, ¬) to form
“meta-formulas”.

Example 5.4.1. Reconsider the normal HEX program Π of Example 5.2.6 consisting of the
following rules:

a← f#[a, b]

b← g#[a, b]

where f# and g# are defined as in Table 5.1. We have seen in Example 5.2.6 that I = {a, b},
is an FLP-answer set of Π. We argue that a and b are both circular justified in I . Since the first
rule is the only rule with a in its head, a ⇐ f#. By definition of f (see Table 5.1), we have
f# ⇐ b ∨ (¬a ∧ ¬b). Since ¬a cannot be a justification for a in I , we conclude f# ⇐ b and,
hence, a⇐ f# ⇐ b. Analogously, we have b⇐ g# ⇐ a. Consequently, we have the following
self-supported loops: a⇐ f# ⇐ b⇐ g# ⇐ a, and b⇐ g# ⇐ a⇐ f# ⇐ b. That is, a and b
are both self-supported. In Example 5.4.4 we will see that I is indeed not well-supported.

We now extend Fages’ definition of well-supportedness (Fages, 1994) to the case of normal
HEX programs (Shen, 2011). We say that a binary relation ≺ is a well-founded partial order on
a set X , if there exists no infinite decreasing chain x1 � x2 � x3... in X .

Definition 5.4.2 (Well-supportedness). Let Π be a normal HEX program and let I ∈ IΠ. We
say that I is well-supported (Shen, 2011), if there exists a strict well-founded partial order ≺ on
I such that for every atom a ∈ I , there exists a rule r ∈ Π with H(r) = a and a proper subset
J ( I such that

50



1. 〈B(r) 〉(J,I) = t, and

2. J ≺ H(r),

where J ≺ H(r) if j ≺ H(r) for every j ∈ J .

The next proposition states that this definition of well-supportedness is an extension of
Fages’ original definition.

Proposition 5.4.3 (Shen (2011)). Let Π be a classical normal program, and let I ∈ IΠ. Then,
I is well-supported iff I is well-supported under the definition given in (Fages, 1994).

Example 5.4.4. We show that the FLP-answer set I of Example 5.4.1 (see also Example 5.2.6) is
not well-supported. Let b ≺ a. Since the rule b← g#[a, b] is the only rule in Π with H(r) = b,
for I to be well-supported we have to find a proper subset J ( I such that conditions (1)-(2) are
satisfied. Since 〈B(r) 〉(∅,I) 6= t, {a} 6≺ b, and {b} 6≺ b, we conclude that there exists no such
J . The case a ≺ b is analogous. If a and b are incomparable, J has to be the empty set, but
〈B(r) 〉(∅,I) 6= t for both rules. Hence, I is not well-supported.

We now define level mappings (Hitzler and Wendt, 2005) which are closely related to the
notion of well-supportedness (see Remark 5.4.6).

Definition 5.4.5 (Level-mapping). Let Π be a HEX program. We call every function ` : ΛΠ −→
α, for a (countable) ordinal α, a level mapping (Hitzler and Wendt, 2005) for Π.

Remark 5.4.6. We can reformulate the definition of well-supportedness in terms of level map-
pings as follows: given a normal HEX program Π, an interpretation I ∈ IΠ is well-supported
iff there exists a level mapping ` for Π such that for each a ∈ I there exists a rule r ∈ Π with
H(r) = a and `(a) > `(b) for each b ∈ B+(r).

We have seen that FLP-answer sets may contain circular justified atoms. Now the question
arises, whether 2-valued Φhex

Π -answer sets are well-supported. The next theorem answers these
questions positively.

Theorem 5.4.7. Let Π be a normal HEX program, and let I ∈ IΠ. If I is a 2-valued Φhex
Π -

answer set, then I is well-supported.

Proof. By Remark 5.4.6, we have to find an appropriate level mapping ` for I . By assumption,
we have Φhex,↓

Π (I) = I , and recall that Φhex,↓
Π (I) is the least fixpoint of Φhex

Π ( . , I)1 which the
limit of the transfinite sequence2 (see Definition 4.2.1)

J0 ( J1 ( . . . ( Jα ( . . . ( I

where J0 = ∅, Jα = Φhex
Π (Jα−1, I)1 for every α ≥ 1, and I =

⋃
α≥0 Jα. For each a ∈ I there

exists a successor ordinal α(a) such that a ∈ Jα(a) but a 6∈ Jβ for each β < α(a). Define, for
each a ∈ I , `(a) = α(a) (and extend ` to ΛΠ arbitrary). Then, by construction of I and by
definition of Φhex

Π ( . , I)1, we have that ` is a level mapping fulfilling the conditions of Remark
5.4.6.

2In fact, we prove the more general case where I can be infinite (recall that in this thesis we consider only finite
programs and, hence, only finite interpretations).

51



Intuitively, the well-supportedness of 2-valued answer sets is due to the constructive condi-
tion of stability (Proposition 3.3.6) which induces a level mapping on answer sets.

Example 5.4.8. Reconsider the normal HEX program of Example 4.1.15 consisting of the fol-
lowing rules:

a←∼ ⊥#

b← a#.

In Example 4.1.15 we have seen that T hexΠ ({a, b}) = {a, b}. First, we show that I = ΛΠ is a
2-valued Φhex

Π -answer set by computing Φhex,↓
Π as follows:

Φhex
Π (∅, I)1 = {a} = J1

Φhex
Π ({a}, I)1 = I

Φhex
Π (I, I)1 = I.

That is, Φhex,↓
Π (I) = I . Second, we define the strict well-founded partial order ≺ on I by a ≺ b

and, finally, show that I is indeed well-supported: (i) for a ∈ I , let r be the first rule, and
observe 〈B(r) 〉(∅,I) = t and ∅ ≺ H(r); (ii) for b ∈ I let r be the second rule, and observe
〈B(r) 〉({a},I) = t and {a} ≺ H(r). Consequently, I is well-supported.

52



CHAPTER 6
Fixpoint Semantics of Disjunctive HEX

programs

In Chapter 4 we defined fixpoint semantics for normal (i.e., disjunction-free) HEX programs by
exploiting the machinery of Approximation Theory. For that we extended the well-known van
Emden-Kowalski operator of classical normal programs to the class of HEX programs, while
preserving the applicability of Approximation Theory.1

However, for HEX programs containing disjunctive rules, the extended van Emden-Kowalski
operator is no longer a lattice operator. More precisely, if a HEX program Π contains disjunc-
tions (i.e., rules with disjunctive heads), then the result of applying T hexΠ to some interpretation
I may contain disjunctive facts which are not part of the Herbrand base of Π. In that case, since
Approximation Theory studies fixpoints of lattice operators, the theory is not applicable. Hence,
we cannot straightforwardly define fixpoint semantics of disjunctive HEX programs in terms of
approximations of T hexΠ .

In the literature, there exist two well-known extensions of the classical van Emden-Kowalski
operator TΠ to the class of classical disjunctive programs:

1. Minker and Rajasekar (1990) (see also (Lobo et al., 1992)) introduced, for a positive
classical disjunctive program Π, the operator T sΠ based on hyperresolution and defined on
the complete lattice P(DHBΠ) ordered by set inclusion, where DHBΠ is the extended
or disjunctive Herbrand base of Π consisting of all disjunctions that can be formed with
atoms from HBΠ. Finite subsets of P(DHBΠ) are called model states, so T sΠ is an
operator mapping model states to model states.

2. Fernández and Minker (1995) defined a model theoretic operator TMΠ on the complete par-
tially ordered set (Pmin(IΠ),v) where Pmin(IΠ) contains the minimal elements from

1For every normal HEX program Π, the operator ThexΠ is a lattice operator defined on the complete lattice of all
Herbrand interpretations of Π (see Section 4.1).

53



P(IΠ) and v denotes the subsumption relation (Fernández and Minker, 1995) (see Sec-
tion 6.1). The operator TMΠ can be considered as a non-deterministic extension of TΠ

which maps a set of possible interpretations J to a set of possible outcomes TMΠ (J ).

Although T sΠ and TMΠ both extend TΠ and have similar “nice” properties as TΠ (Minker and
Rajasekar, 1990; Lobo et al., 1992; Fernández and Minker, 1995; Seipel et al., 1997), we cannot
directly apply Approximation Theory to either of T sΠ or TMΠ for the following reasons: T sΠ is
defined only for positive disjunctive programs (i.e., programs without negation as failure (Clark,
1978)) and TMΠ is not a lattice operator.

However, by combining ideas from classical disjunctive logic programming and Approxi-
mation Theory, Pelov (2004); Pelov and Truszczyński (2004) extended parts of the Approxima-
tion Theory to the case of non-deterministic operators. In detail, Pelov (2004) and Pelov and
Truszczyński (2004) defined a non-deterministic operator2 NSel

Π : IΠ −→ P(IΠ) by

NSel
Π (I) = Sel (TΠ(I)) , (6.1)

where Sel is a selection function selecting a subset from the models of TΠ(I).
We define in this chapter an operator Nhex

Π , which is similar though not identical to NSel
Π , as

follows:

1. In contrast to (Pelov, 2004; Pelov and Truszczyński, 2004), we restrict the definition of
Nhex

Π to the selection function MM selecting, for a given set D of disjunctive facts (or
clauses), the minimal models of D.

2. In (Pelov and Truszczyński, 2004) the authors argue that the notion of computation (Marek
et al., 2004) is an adequate formalization of the process of iterating a non-deterministic
operator in a bottom-up manner.3 However, Pelov and Truszczyński showed that if NΠ

is defined as in (6.1), then computations4 of NSel
Π generally do not yield the expected

results. In contrast, we define Nhex
Π in such a way that it has similar properties as NSel

Π ,
and additionally can be iterated in terms of computations (see Section 7.2).

The rest of this chapter is organized as follows. In Section 6.1 we define, for a disjunctive
HEX program Π, the non-deterministic van Emden-Kowalski operator Nhex

Π representing one
step of logical derivation. To this end, we define the Smyth ordering (Smyth, 1978)v on P(IΠ)
as in (Fernández and Minker, 1995), and show that Nhex

Π has similar properties as its normal
counterpart T hexΠ . In particular, (minimal) pre-fixpoints of Nhex

Π characterize (minimal) models
of Π.

In Section 6.2 we define the notion of computation (Marek et al., 2004) for Nhex
Π and show

that for every monotone and positive HEX program Π, Nhex
Π is monotone and thus every mini-

mal model of Π is derivable.

2To be more precise, Pelov (2004); Pelov and Truszczyński (2004) defined an operator Naggr
Π for logic programs

with aggregates.
3Notice that Nhex

Π (Nhex
Π (I)) is not well-defined, i.e., we cannot iterate Nhex

Π . The notion of computation
(Marek et al., 2004) is one possible way of defining iterations of Nhex

Π .
4in the sense of (Marek et al., 2004)

54



In Section 6.3 we define approximations (Pelov, 2004; Pelov and Truszczyński, 2004) of
Nhex

Π . Particularly, we define the (i) non-deterministic Fitting approximation FhexΠ based on
the extended Fitting operator Φhex

Π , and the (ii) non-deterministic ultimate approximation N hex
Π

based on the ultimate approximation T hexΠ . We then show that FhexΠ and N hex
Π similarly relate

to Nhex
Π as Φhex

Π and T hexΠ relate to T hexΠ according to Approximation Theory; moreover, as in
the non-disjunctive case, the ultimate approximation N hex

Π yields, in general, more answer sets
than FhexΠ .

In Section 6.4 we define 2-valued answer-set semantics in terms of minimal fixpoints of the
non-deterministic Fitting approximationFhexΠ and show that these semantics extend the classical
answer-set semantics of disjunctive logic programs (Gelfond and Lifschitz, 1991). Moreover, we
show that each answer set is derivable by a bottom-up computation of FhexΠ . However, since we
approximate only the domain of Nhex

Π , we do not obtain 3-valued answer-set semantics and,
consequently, do not obtain well-founded semantics.5

Finally, in Section 6.5 we define 2-valued ultimate answer-set semantics similar in terms
of minimal fixpoints of N hex

Π , and show that ultimate answer-set semantics are, in general,
“weaker” thanFhexΠ -answer-set semantics (i.e., everyFhexΠ -answer set is also an ultimate answer
set).

6.1 Non-Deterministic Operator

In Section 4.1 we extended the well-known van Emden-Kowalski operator (Van Emden and
Kowalski, 1976) of classical logic programs to the class of (disjunctive) HEX programs by (see
Definition 4.1.1)

T hexΠ (I) = {H(r) : r ∈ Π : I |= B(r)}.

For every normal HEX program Π, T hexΠ is a lattice operator mapping each interpretation I ∈ IΠ

to some interpretation T hexΠ (I) ∈ IΠ, where IΠ is the complete lattice of all interpretations of
Π ordered by set inclusion.

However, if Π is disjunctive, T hexΠ (I) may contain disjunctions. For instance, consider the
program P = {a ∨ b ←} and observe T hexΠ (∅) = {a ∨ b} 6∈ IΠ. Hence, for a disjunctive HEX
programs Π, T hexΠ is, in general, no longer a lattice operator. Consequently, we cannot apply the
machinery of Approximation Theory (Denecker et al., 2000a, 2004) to T hexΠ .

In this section we define an immediate consequence operator Nhex
Π which handles disjunc-

tions as follows: Nhex
Π maps each interpretation I ∈ IΠ to a collection of interpretations (called

coin (Seipel et al., 1997) henceforth) J ∈ P(IΠ) such that every J ∈ J represents a possible
outcome of applying one step of logical derivation to Π with respect to I .

To this end, we first define the Smyth ordering v (Smyth, 1978), for every coin J ,K ∈
P(IΠ), by

J v K ⇔ for every K ∈ K there exists some J ∈ J such that J ⊆ K.

5Disjunctive well-founded semantics is controversial and various proposals exist with some late on (Wang and
Zhou, 2003) being considered best so far.

55



Intuitively, if we interpretJ andK as possible outcomes of Π (i.e.,Nhex
Π (J) = J andNhex

Π (K) =
K for some J,K ∈ IΠ) and J v K, then every K ′ ∈ K is a refinement of some J ′ ∈ J , that is,
J ′ ⊆ K ′.

The ordering v is reflexive and transitive, but not anti-symmetric. Thus, P(IΠ) endowed
with v is not a poset. However, if we consider only the minimal sets in P(IΠ), denoted
Pmin(IΠ), then (Pmin(IΠ),v) is a complete poset (Fernández and Minker, 1995) with least
element {∅}.

Example 6.1.1. Given the following two sets of minimal interpretations we have

{{a}, {b}} v {{a}} and {{a}} 6v {{a}, {b}}.

However, if we consider coins with nonminimal interpretations

{{a}, {a, b}} v {{a}} and {{a}} v {{a, b}, {a}},

but {{a}} 6= {{a}, {a, b}} shows that v may be not anti-symmetric.

In the sequel let Π be a disjunctive HEX program. Let DHBΠ be the disjunctive Herbrand
base (Minker and Rajasekar, 1990; Lobo et al., 1992) of Π consisting of all disjunctions of form

a1 ∨ . . . ∨ ak, k ≥ 1, (6.2)

which can be formed with atoms from ΛΠ. Given a disjunction d of form (6.2), we interpret d
as the fact d′ defined by

a1 ∨ . . . ∨ ak ←

and say that an interpretation I is a model of d if I |= d′.
The next result follows directly from definitions.

Proposition 6.1.2. Let Π be a HEX program, and let I ∈ IΠ. Then, I is a model of Π iff I is a
model of T hexΠ (I).

We now define the non-deterministic (or disjunctive) pendant to the van Emden-Kowalski
operator T hexΠ .

Definition 6.1.3 (Non-deterministic van Emden-Kowalski operator). Let Π be a disjunctive
HEX program, and let D ∈ P(DHBΠ). By the non-deterministic van Emden-Kowalski op-
erator of Π we mean the operator Nhex

Π : IΠ −→ Pmin(IΠ) defined by

Nhex
Π (I) = MM

(
I ∪ T hexΠ (I)

)
, (6.3)

where MM(D) is the set of all minimal models of D, and P(IΠ) is ordered by v.

Intuitively, Nhex
Π (I) = J consists of all interpretations J ∈ J representing minimal pos-

sible outcomes (i.e., models) of Π after one step of logical derivation. Notice that for every
J ∈ Nhex

Π (I) we have I ⊆ J , that is, when applying Nhex
Π to I we assume each a ∈ I to be

true.

56



Example 6.1.4. Consider the classical disjunctive program Π consisting of the following single
fact:

a ∨ b← .

Then,Nhex
Π ({∅}) = MM({a∨b}) = {{a}, {b}} (i.e., either a is true and b is false or vice versa)

represents the possible outcomes of Π with respect to ∅ (i.e., a and b are false). Furthermore, we
have

Nhex
Π ({a}) = {{a}} and Nhex

Π ({b}) = {{b}},

that is, if we consider a (resp., b) as true and b (resp., a) as false, then applying Nhex
Π to {a}

(resp., {b}) and a ∨ b ← correctly entails that {a} (resp., {b}) is the only outcome compatible
with the assumption.

Let I ∈ IΠ. We say that I is a fixpoint of Nhex
Π if I ∈ Nhex

Π (I). We denote the set of
all minimal fixpoints of Nhex

Π by mfp(Nhex
Π ). Since every J ∈ Nhex

Π (I) has to contain I as a
subset, we immediately conclude the following characterization of fixpoints of Nhex

Π .

Proposition 6.1.5. Let Π be a HEX program, and let I ∈ IΠ. Then, I is a fixpoint of Nhex
Π iff

Nhex
Π (I) = {I}.

Moreover, Proposition 6.1.5 implies the following weaker characterization of fixpoints of
Nhex

Π . We say that I is a pre-fixpoint of Nhex
Π if Nhex

Π (I) v {I}. Then we can show the
following result.

Proposition 6.1.6. Let Π be a HEX program, and let I ∈ IΠ. Then, I is a fixpoint of Nhex
Π iff I

is a pre-fixpoint of Nhex
Π .

Proof. We only have to show that every pre-fixpoint is indeed a fixpoint of Nhex
Π . Let I ∈ IΠ

and assume Nhex
Π (I) v {I}, that is, there exists some J ∈ Nhex

Π (I) such that J ⊆ I . Since
I ⊆ J by definition of Nhex

Π , we have J = I . Consequently, I ∈ Nhex
Π (I).

In Proposition 4.1.3 we have seen that if Π is disjunction-free, then the pre-fixpoints of
T hexΠ characterize models of Π. The next result shows a similar characterization of models of
disjunctive HEX programs.

Proposition 6.1.7. Let Π be a HEX program, and let I ∈ IΠ. Then, I is a model of Π iff I is a
pre-fixpoint of Nhex

Π .

Proof. (⇒) By Proposition 6.1.2, I is a model of Π iff I is a model of T hexΠ (I). Consequently,
if I is a model of Π, I is also a model of I∪T hexΠ (I) and, clearly, a minimal such model. Hence,
I ∈MM(I ∪ T hexΠ (I)) = Nhex

Π (I).
(⇐) Assume I ∈ Nhex

Π (I) and I is not a model of Π. Then, there exists a rule r ∈ Π such
that I |= B(r), but I ∩H(r) = ∅. Since I |= B(r), we have H(r) ∈ T hexΠ (I). Hence, for every
J ∈MM(I ∪ T hexΠ (I)) = Nhex

Π (I) we have I ( J , a contradiction.

As an immediate consequence of Propositions 6.1.6 and 6.1.7 we obtain the following char-
acterization of minimal models of Π.

57



Corollary 6.1.8. Let Π be a HEX program, and let I ∈ IΠ. Then, I is a minimal model of Π iff
I ∈ mfp(Nhex

Π ).

Example 6.1.9. Consider the classical disjunctive program Π consisting of the following propo-
sitional rules:

a ∨ b←
b ∨ c←
a ∨ c← .

Then, {a, b}, {a, c} and {b, c} are the FLP-answer sets (and therefore minimal models) of Π.
Since the FLP-answer sets are not mutually disjoint, this example shows that disjunctions under
FLP-answer set semantics are, in general, not interpreted mutually exclusive.

Likewise, applying Nhex
Π to the empty set yields

Nhex
Π (∅) = {{a, b}, {a, c}, {b, c}},

and it is easy to verify that each J ∈ Nhex
Π (∅) is a (pre-)fixpoint of Nhex

Π . For instance, we have

Nhex
Π ({a, b}) = MM

(
{a, b} ∪ T hexΠ ({a, b})

)
= MM ({a, b, a ∨ b, b ∨ c, a ∨ c}) = {{a, b}}.

6.2 Iterating the Non-Deterministic Operator by Computations

The results of Section 6.1 show the similarities between the non-deterministic van Emden-
Kowalski operator Nhex

Π and its deterministic counterpart T hexΠ . Therefore, we can consider
Nhex

Π as an “extension” of T hexΠ to the class of disjunctive HEX programs. However, an impor-
tant property of T hexΠ which Nhex

Π does not satisfy is that T hexΠ is iterable in the sense that, for
each interpretation I , T hexΠ (T hexΠ (I)) is well-defined. In contrast, since the domain and range of
Nhex

Π do not coincide, it is not obvious how to “iterate” Nhex
Π .

Pelov and Truszczyński (2004) proposed the following notion of computation (Marek et al.,
2004) as an appropriate formalization of this process.

Definition 6.2.1 (Computation). Let Π be a disjunctive HEX program. By a computation (Marek
et al., 2004) (with respect to Nhex

Π ) we mean a sequence I↑ = (Ii)i≥0 ∈ INΠ where I0 = ∅ and,
for every n ≥ 0,

1. In ⊆ In+1, and

2. In+1 ∈ Nhex
Π (In).

We define the result of I↑ by I∞ =
⋃
i≥0 Ii and say that an interpretation I ∈ IΠ is derivable if

there exists a computation I↑ with result I∞ = I .

Remark 6.2.2. In this thesis we consider only finite (i.e., terminating) computations.

58



Intuitively, every computation I↑ defines a non-deterministic bottom-up construction of its
result I∞. The next result shows that each derivable interpretation I is a fixpoint and, hence, a
model of Π.

Proposition 6.2.3. Let Π be a HEX program and I∞ be the result of some computation I↑.
Then, I∞ is a fixpoint of Nhex

Π .

Proof. Since Π is finite, by definition of I∞, I∞ = Ik for some k ≥ 0 and Ik+1 = Ik ∈
Nhex

Π (Ik) (see Remark 6.2.2).

Corollary 6.2.4. Let Π be a HEX program, and let I∞ be the result of some computation I↑.
Then, I∞ is a model of Π.

Proof. Is an immediate consequence of Proposition 6.2.3, Proposition 6.1.7 and Proposition
6.1.6.

Example 6.2.5. Let Π be the classical program of Example 6.1.9. Then, I↑ = (Ii)i≥0 with
I0 = ∅ and Ik = {a, b}, k ≥ 1, is a computation with result I∞ = {a, b}. Moreover, it is easy
to verify that each FLP-answer set of Π is derivable.

The next example shows that a derivable model I may have more than one computation and
that, in general, there exists no canonical computation for I .

Example 6.2.6. Let Π be the classical disjunctive program consisting of the following proposi-
tional rules:

a ∨ b←
a← b

b← a.

Then we can define the following two distinct computations (Ii)i≥0 and (Ji)i≥0 with results
I∞ = J∞ = {a, b}. Let I0 = J0 = ∅. First, define I1 = {a}, J1 = {b} and notice
I1, J1 ∈ Nhex

Π (∅) = {{a}, {b}}. Second, define I2 = J2 = {a, b} and observe Nhex
Π (I1) =

Nhex
Π (J1) = {{a, b}}. Finally, define Ik = Jk = {a, b} for every k ≥ 3. It follows that

I↑ = (Ii)i≥0 and J↑ = (Ji)i≥0 are computations and I∞ = J∞ = {a, b} as desired.

Let us analyze Example 6.2.6 in more detail. The first rule is a fact stating that a or b is true.
To conclude from this fact and the two other rules that a and b both have to be true, informally,
one has to make the following case distinction: (i) if a is true, then b is true (last rule), and
(ii) if b is true, then a is true (second rule). That is, intuitively, Nhex

Π (∅) = {{a}, {b}} is a
coin consisting of sets of assumptions (not of true atoms). Hence, when we apply in the second
iteration Nhex

Π , e.g., to I1 = {a}, we intuitively assume that a is true and derive the outcome
{a, b} containing a. That is, we have to “remember” the chosen assumptions by adding the
assumed atoms to every outcome obtained after applying Nhex

Π . This intuition is the motivation
of the definition of Nhex

Π given in (6.3).
We say that Nhex

Π is monotone if for every J, I ∈ IΠ such that J ⊆ I , Nhex
Π (J) v Nhex

Π (I).
The following example shows that if Π contains negation as failure or nonmonotone external
atoms, Nhex

Π may be nonmonotone.

59



Example 6.2.7. Let Π be the classical normal program consisting of the following single rule:

a←∼ b.

Then, Nhex
Π (∅) = {{a}} and Nhex

Π ({b}) = {{b}}, but {{a}} 6v {{b}}. Furthermore, notice

that for the positive HEX program Π# =
{
a← (not b)#

}
, where I |= (not b)# iff b 6∈ I , we

have Nhex
Π = Nhex

P# .

However, the next result shows that if Π is positive and monotone (i.e., does not contain
negation as failure and each external atom is monotone, see Section 5.1), Nhex

Π is monotone.
Before we prove the proposition we state the following lemma.

Lemma 6.2.8. Let Π be a HEX program. For every D,E ∈ DHBΠ such that D ⊆ E,
MM(D) vMM(E).

Proposition 6.2.9. Let Π be a positive monotone HEX program. Then, Nhex
Π is monotone.

Proof. Since Π is positive, T hexΠ is monotone. Hence, for each J, I ∈ IΠ such that J ⊆ I ,
J ∪ T hexΠ (J) ⊆ I ∪ T hexΠ (I) and therefore, by Lemma 6.2.8,

MM
(
J ∪ T hexΠ (J)

)
vMM

(
I ∪ T hexΠ (I)

)
which directly entails Nhex

Π (J) v Nhex
Π (I).

The following theorem shows that there exists for every minimal model I of Π a computation
I↑ with result I∞ = I .

Theorem 6.2.10. Let Π be a positive monotone HEX program. Then, every minimal model I of
Π is derivable.

Proof. By Corollary 6.1.8, I is a minimal model of Π iff I ∈ mfp(Nhex
Π ). We define a compu-

tation I↑ with result I∞ ⊆ I and show I∞ = I . Let I0 = ∅. Since I is a fixpoint of Nhex
Π , we

have Nhex
Π (I) = {I} by Proposition 6.1.5. Furthermore, since Nhex

Π is monotone and I0 ⊆ I ,
we have

Nhex
Π (I0) v Nhex

Π (I) = {I},
that is, there exists some I1 ∈ Nhex

Π (I0) such that I0 ⊆ I1 ⊆ I . Generally, we obtain, for every
n ≥ 0, In+1 ∈ Nhex

Π (In) for some In ⊆ In+1 ⊆ I . Clearly, this construction yields a computa-
tion I↑ with result I∞ ⊆ I . By Proposition 6.2.3, I∞ is a fixpoint of Nhex

Π . Consequently, since
I is a minimal fixpoint of Nhex

Π , I∞ = I . Hence, I is derivable.

Corollary 6.2.11. Let Π be a positive monotone HEX program, and let I ∈ IΠ. If I ∈
mfp(Nhex

Π ), then I is derivable.

Proof. Is an immediate consequence of Theorem 6.2.10 and Corollary 6.1.8.

Arguably, Theorem 6.2.10 shows that the notion of computation adequately formalizes the
intuitive meaning of “iterating”Nhex

Π . However, ifNhex
Π is not positive or contains nonmonotone

external atoms, the notion of computation of Nhex
Π is no longer well-defined.

In the next section we define approximations of Nhex
Π similar to approximations of T hexΠ in

the case of normal HEX programs (see Chapter 4).

60



6.3 Non-Deterministic Approximations and Computations

Let us briefly recall some basic definitions and intuitions of Approximation Theory combined
with normal HEX programs (see Chapter 4).

Given a normal HEX program Π, the extended van Emden-Kowalski operator T hexΠ : IΠ −→
IΠ characterizes (supported) models of Π and is, in general, nonmonotone. An approximation
of T hexΠ is any operator AhexΠ : IcΠ −→ IcΠ which is monotone with respect to the precision
ordering ⊆p and coincides with T hexΠ on IΠ.

Moreover, recall from Definition 4.1.8 that the first argument of the extended Fitting approx-
imation Φhex

Π is defined, for each (I1, I2) ∈ IcΠ, by

Φhex
Π (I1, I2)1 =

{
H(r) : r ∈ Π : 〈B(r) 〉(I1,I2) = t

}
,

that is, Φhex
Π (I1, I2)1 contains every disjunction H(r) ∈ DHBΠ such that the body of r is

true with respect to the 3-valued interpretation (I1, I2). Furthermore, the first argument of the
ultimate approximation T hexΠ is defined (see Definition 4.4.1), for each (I1, I2) ∈ IcΠ, by

T hexΠ (I1, I2)1 =
⋂

I1⊆J⊆I2

T hexΠ (J).

Analogously, in this section we define approximations of the non-deterministic immediate
consequence operator Nhex

Π (Pelov and Truszczyński, 2004; Pelov, 2004). Since Nhex
Π is not a

lattice operator, Approximation Theory is not directly applicable. However, we can define the
following non-deterministic approximations of Nhex

Π .

Definition 6.3.1 (Non-deterministic approximations). Let Π be a disjunctive HEX program.
Define, for each (I1, I2) ∈ IcΠ, (i) the non-deterministic Fitting approximation of Nhex

Π by

FhexΠ (I1, I2) = MM
(
I1 ∪ Φhex

Π (I1, I2)1

)
, (6.4)

(ii) and the non-deterministic ultimate approximation of Nhex
Π by

N hex
Π (I1, I2) = MM

(
I1 ∪ T hexΠ (I1, I2)1

)
. (6.5)

The next result shows that FhexΠ and N hex
Π similarly relate to Nhex

Π as Φhex
Π and T hexΠ relate

to T hexΠ .

Proposition 6.3.2. Let Π be a HEX program, I ∈ IΠ, (J1, J2), (I1, I2) ∈ IcΠ, and AhexΠ ∈{
FhexΠ ,N hex

Π

}
. Then,

1. AhexΠ (I, I) = Nhex
Π (I), and

2. (J1, J2) ⊆p (I1, I2) implies AhexΠ (J1, J2) v AhexΠ (I1, I2).

Proof. (1) Since T hexΠ (I, I) = Φhex
Π (I, I) = T hexΠ (I), the equality holds. (2) Follows directly

from the facts that Φhex
Π and T hexΠ are both monotone with respect to ⊆p, and MM is monotone

(see Lemma 6.2.8).

61



In the sequel letAhexΠ ∈
{
FhexΠ ,N hex

Π

}
. In Section 6.2 we defined the notion of computation

for Nhex
Π and showed its adequacy in the case that Nhex

Π is monotone. Proposition 6.3.2 shows
that AhexΠ is monotone which implies that we can reasonably adapt the notion of computation to
approximations FhexΠ and N hex

Π of Nhex
Π . Therefore, we now define computations of AhexΠ with

respect to some interpretation I .

Definition 6.3.3 (Computation). Let Π be a disjunctive HEX program„ and let I ∈ IΠ. By an
AhexΠ -I-computation (Marek et al., 2004) we mean a sequence JI,↑ = (Ji)i≥0 ∈ INΠ such that
J0 = ∅ and, for every n ≥ 0,

1. Jn ⊆ Jn+1 ⊆ I , and

2. Jn+1 ∈ AhexΠ (Jn, I).

We call JI,∞ =
⋃
i≥0 Ji the result of computation JI,↑ and say that an interpretation J ∈ IΠ,

J ⊆ I , is AhexΠ -I-derivable if there exists a computation JI,↑ with result JI,∞ = J .

Condition (1) states that every Jn has to be a subset of I , i.e., we consider only those out-
comes compatible with the assumption that every atom in I is not false.

Example 6.3.4. Let Π be the classical disjunctive program consisting of the following proposi-
tional rules:

a ∨ b←
c← a,∼ b.

We show that I = {a, c} is FhexΠ -I-derivable. Let I0 = ∅. We compute

FhexΠ (I0, I) = MM
(

Φhex
Π (I0, I)1

)
= MM({a ∨ b}) = {{a}, {b}},

and define I1 = {a} ∈ FhexΠ (I0, I). For the next iteration, we compute

FhexΠ (I1, I) = MM
(
I1 ∪ Φhex

Π (I1, I)1

)
= MM({a, a ∨ b, c}) = {I},

and define I2 = I . Finally, since we have

FhexΠ (I2, I) = FhexΠ (I, I) = Nhex
Π (I) = {I},

we define In = I for every n ≥ 2, and obtain a FhexΠ -I-computation JI,↑ with result JI,∞ = I .
Hence, I isFhexΠ -I-derivable. Similar calculations show that JI,↑ is also aN hex

Π -I-computation.

6.4 Answer-Set Semantics

In this section we translate the definitions of Section 4.2 to the case of disjunctive HEX pro-
grams, and the corresponding non-deterministic operators as follows. Let Π be a disjunctive
HEX program.

62



1. Instead of considering T hexΠ , we consider the non-deterministic van Emden-Kowalski op-
erator Nhex

Π as an appropriate operator of describing one-step of logical derivation.

2. Instead of iterating Φhex
Π ( . , I)1 to the least fixpoint Φhex,↓

Π (I), we “iterate” FhexΠ ( . , I) in
terms of FhexΠ -I-computations to the minimal fixpoints Fhex,↓Π (I).

3. Since disjunctive rules are non-deterministic, we consider minimal models instead of least
models, and minimal fixpoints instead of least fixpoints.

With these intuitions in mind, we now define (2-valued) answer-set semantics.

Definition 6.4.1 (Answer-set semantics). Let Π be a disjunctive HEX program„ and let I ∈ IΠ.
We say that I is an FhexΠ -answer set if I ∈ Fhex,↓Π (I) where

Fhex,↓Π (I) = mfp
(
FhexΠ ( . , I)

)
.

Example 6.4.2. Let Π be the disjunctive HEX program consisting of the following rules:

p(a) ∨ q(a)←
⊥←∼ p⊆#q,∼ ⊥,

where, for each I ∈ IΠ, I |= p⊆#q iff pI ⊆ qI (see Example 2.2.2). Intuitively, the first rule
states that a ∈ pI or a ∈ qI , whereas the second rule states that pI has to be a subset of qI .6 We
show that I = {q(a)} is the only FhexΠ -answer set. First, we compute FhexΠ (∅, I) = {{p(a)}, I}
which shows that ∅ is not a fixpoint of FhexΠ ( . , I) (i.e., ∅ 6∈ FhexΠ (∅, I)). Second, we compute
FhexΠ (I, I) = Nhex

Π (I) = {I} and conclude I ∈ Fhex,↓Π (I), that is, I is an FhexΠ -answer set.
We now show that I ′ = {p(a)} is not an FhexΠ -answer set. Since I ′ 6|= p⊆#q and I ′ 6|= ⊥,

the second rule “fires”, that is, we obtain Nhex
Π (I ′) = {{p(a),⊥}}. Therefore, we conclude

that I ′ is not a fixpoint of FhexΠ ( . , I ′) and, hence, not an FhexΠ -answer set. Finally, since FhexΠ -
answer sets are minimal (see Theorem 6.4.8), I is the only FhexΠ -answer set.

Example 6.4.3. Consider the disjunctive HEX program consisting of the following rules:

q(a) ∨ q(b)←
q(a)← (∃x q(x))#,

where (∃x q(x))# is defined as in Example 4.2.9. We show that I = {q(a)} is an FhexΠ -answer
set. Since FhexΠ (∅, I) = {{q(a)}, {q(b)}}, the empty set is not a fixpoint of FhexΠ ( . , I). In
contrast, we have

FhexΠ (I, I) = MM({q(a) ∨ q(b), q(a)}) = {{q(a)}},

which shows that I is indeed a minimal fixpoint ofFhexΠ and, hence, anFhexΠ -answer set. Finally,
it is easy to verify that {q(b)} and {q(a), q(b)} are not FhexΠ -answer sets.

6Notice that the second rule is a constraint (see Example 2.1.2).

63



In analogy to Proposition 4.1.3 we have the following result.

Proposition 6.4.4. Let Π be a HEX program, and let I ∈ IΠ. If I is an FhexΠ -answer set of Π,
then I is a fixpoint of Nhex

Π .

Proof. Follows directly from Proposition 6.3.2.

We now show that the FhexΠ -answer-set semantics indeed generalize the answer-set seman-
tics (Gelfond and Lifschitz, 1991) of classical disjunctive programs. To this end, we first prove
the following result (see Example 3.3.7).

Lemma 6.4.5. Let Π be a classical disjunctive program, and let I ∈ IΠ. Then, FhexΠ ( . , I) =
Nhex

ΠI
.

Proof. Observe that (5.2) also holds for disjunctive programs.

Theorem 6.4.6. Let Π be a classical disjunctive program, and let I ∈ IΠ. Then, I is an answer
set of Π (in the classical sense (Gelfond and Lifschitz, 1991)) iff I ∈ Fhex,↓Π (I).

Proof. We have the following equivalences: I is an answer set of Π iff I is a minimal model
of ΠI iff I ∈ mfp

(
Nhex

ΠI

)
(Corollary 6.1.8) iff I ∈ mfp

(
FhexΠ ( . , I)

)
(Lemma 6.4.5) iff I ∈

Fhex,↓Π (I) (see proof of Proposition 4.37 in Pelov (2004)).

The next result states that results of AhexΠ -I-computations are fixpoints of AhexΠ ( . , I).

Proposition 6.4.7. Let Π be a HEX program, I ∈ IΠ, and JI,∞ be the result of some AhexΠ -I-
computation JI,↑. Then, JI,∞ is a fixpoint of AhexΠ ( . , I).

Proof. Similar to the proof of Proposition 6.2.3.

At this point, it is not clear whether FhexΠ -answer sets are minimal, which is a key require-
ment when defining semantics of logic programs. The next theorem shows that FhexΠ -answer
sets are indeed minimal models.

Theorem 6.4.8. Let Π be a HEX program, and let I ∈ IΠ. If I is an FhexΠ -answer set of Π, then
I is a minimal model of Π.

Proof. Similar to the proof of Theorem 4.33 in (Pelov, 2004).

6.5 Ultimate Answer-Set Semantics

In this section we define ultimate answer-set semantics of disjunctive HEX programs. In the se-
quel let Π be a disjunctive HEX program. Recall from Definition 6.3.1 that the non-deterministic
ultimate approximation of Nhex

Π is defined by

N hex
Π (I1, I2) = MM

(
I1 ∪ T hexΠ (I1, I2)1

)
,

where T hexΠ is the ultimate approximation of the extended van Emden-Kowalski operator T hexΠ

(see Definition 4.1.1).

64



Definition 6.5.1 (Ultimate answer-set semantics). Let Π be a disjunctive HEX program. We say
that an interpretation I ∈ IΠ is an ultimate answer set of Π if

I ∈ N hex,↓
Π (I) = mfp

(
N hex

Π ( . , I)
)
.

Since the results of Chapter 4 are only valid in the case that T hexΠ is a lattice operator (i.e., Π
is normal), we have to explicitly state the next result.

Lemma 6.5.2. Let Π be a HEX program, and let (I1, I2) ∈ IcΠ. Then, Φhex
Π (I1, I2)1 ⊆

T hexΠ (I1, I2)1.

The next result shows that the non-deterministic ultimate approximation N hex
Π is “more

precise” than the non-deterministic Fitting approximation FhexΠ .

Proposition 6.5.3. Let Π be a HEX program. Then, for each (I1, I2) ∈ IcΠ,

FhexΠ (I1, I2) v N hex
Π (I1, I2).

Proof. Follows directly from the facts thatMM is monotone (Lemma 6.2.8) and Φhex
Π (I1, I2)1 ⊆

T hexΠ (I1, I2)1 (Lemma 6.5.2).

The next result shows that, as in the normal case (see Proposition 4.4.4), the ultimate answer-
set semantics are “weaker” in the sense that every FhexΠ -answer set is also an ultimate answer
set.

Theorem 6.5.4. Let Π be a HEX program, and let I ∈ IΠ. If I is an FhexΠ -answer set, then I is
an ultimate answer set of Π.

Proof. Let I ∈ Fhex,↓Π (I) = mfp(FhexΠ ( . , I)). Then, by Proposition 6.3.2 and Proposition
6.4.4, we have N hex

Π (I, I) = FhexΠ (I, I) = Nhex
Π (I) = {I} which shows that I is a fixpoint of

N hex
Π ( . , I). To prove minimality, suppose there exists some J ( I such that J is a fixpoint of
N hex

Π ( . , I). Then, J is a pre-fixpoint of N hex
Π ( . , I) and, hence, by Proposition 6.5.3,

FhexΠ (J, I) v N hex
Π (J, I) v {J},

that is, J is a pre-fixpoint of FhexΠ ( . , I) and, hence, a fixpoint; a contradiction to the minimality
of I . Consequently, I ∈ N hex,↓

Π (I).

The next example shows that the converse of Theorem 6.5.4 does, in general, not hold.

Example 6.5.5. Reconsider the normal HEX program Π of Example 4.4.3 consisting of the
following rules:

a← a#

a←∼ a#.

Since Φhex
Π (∅, {a})1 = ∅, we have FhexΠ (∅, {a}) = {∅}, that is, ∅ is a minimal fixpoint of

FhexΠ ( . , {a}). Hence, Fhex,↓Π ({a}) = {∅} and {a} is thus not an FhexΠ -answer set. In contrast,
since T hexΠ (∅, {a})1 = {a}, we haveN hex,↓

Π ({a}) = {{a}}which shows that {a} is an ultimate
answer set.

65



Example 6.5.6. Reconsider the disjunctive HEX program Π of Example 6.4.2 consisting of the
following rules:

p(a) ∨ q(a)←
⊥←∼ p⊆#q,∼ ⊥.

We have seen in Example 6.4.2 that I = {q(a)} is the only FhexΠ -answer set. By using N hex
Π

instead of FhexΠ , the same calculation shows that I is also an ultimate answer set of Π. In detail,
N hex

Π (∅, I) = {{p(a)}, I} shows that ∅ is not a fixpoint ofN hex
Π ( . , I); moreover,N hex

Π (I, I) =
Nhex

Π (I) = MM ({q(a), p(a) ∨ q(a)}) = {I} shows that I is a minimal fixpoint ofN hex
Π ( . , I)

and, hence, an ultimate answer set of Π.

66



CHAPTER 7
Semantic Properties of Disjunctive

HEX Programs

In this chapter we show the following semantic properties of the (ultimate) answer-set semantics
defined in Section 6.4 and Section 6.5. In Section 7.1 we show that the answer-set semantics of
disjunctive HEX programs extends the 2-valued answer-set semantics of normal HEX programs
as defined in Section 4.2.

Recall from Section 6.4 and Section 6.5 that (ultimate) answer sets are defined in terms of
minimal fixpoints. This definitions are non-constructive. In Section 7.2 we show that every
(ultimate) answer-set is derivable by a bottom-up computation. Moreover, given an answer set
I , we define an algorithm for constructing a computation with result I .

In Section 7.3 we show that (ultimate) answer sets are supported. That is, in every (ultimate)
answer set I each atom is justified by some rule of the program.

Finally, in Section 7.4 we show that every answer set is an FLP-answer set. The converse,
however, generally does not hold (see Example 7.4.2).

7.1 Disjunctive Answer-Set Semantics extend Normal Answer-Set
Semantics

In Chapter 4 we defined (2-, and 3-valued ultimate) answer-set semantics of normal HEX pro-
grams (see Section 4.2 and Section 4.4) by applying Approximation Theory (Denecker et al.,
2000a, 2002, 2004). Moreover, in Section 6.4 we defined 2-valued answer-set semantics for
the class of disjunctive HEX programs by adapting concepts from Approximation Theory to the
class of non-deterministic functions. Clearly, every normal HEX program is, formally, also a
disjunctive HEX program. Hence, the question arises whether the 2-valued answer-set seman-
tics of disjunctive HEX programs extends the 2-valued answer-set semantics of normal HEX
programs. Theorem 7.1.4 answers this question positively, i.e., we show that, given a normal
HEX program Π, the 2-valued Φhex

Π -answer sets coincide with the FhexΠ -answer sets, and the

67



ultimate answer sets with respect to T hexΠ coincide with the ultimate answer sets with respect to
N hex

Π .

Example 7.1.1. Reconsider the normal HEX program Π of Example 4.2.9 consisting of the
following rules:

p(a)←∼ (∃x q(x))#

q(b)← (∃x q(x))#.

In Example 4.2.9 we have seen that I = {p(a)} is the only Φhex
Π -answer set. We show that I is

also an FhexΠ -answer set, i.e., I ∈ Fhex,↓Π (I) = mfp
(
FhexΠ ( . , I)

)
. First, we have

FhexΠ (∅, I) = MM
(

Φhex
Π (∅, I)1

)
= MM(I) = {I}.

This shows that ∅ is not a fixpoint of FhexΠ ( . , I). Second, we have

FhexΠ (I, I) = Nhex
Π (I) = MM

(
I ∪ T hexΠ (I)

)
= MM(I) = {I}

which shows that I is indeed a minimal fixpoint of FhexΠ ( . , I) and, consequently, an FhexΠ -
answer set.

Let Π be a HEX program. Recall from Section 6.3 that FhexΠ and N hex
Π are defined in terms

of the non-deterministic operator MM selecting, from a given set D ⊆ DHBΠ of disjunc-
tions, the minimal models of D. However, if D contains only atoms (i.e., D ∈ IΠ), MM is
deterministic. This is formally stated in the next lemma.

Lemma 7.1.2. Let Π be a HEX program. Then, for each I ∈ IΠ, MM(I) = {I}.

From Lemma 7.1.2 we immediately conclude the following result.

Corollary 7.1.3. Let Π be a normal HEX program. Then, for each (I1, I2) ∈ IcΠ,

1. FhexΠ (I1, I2) =
{
I1 ∪ Φhex

Π (I1, I2)1

}
, and

2. N hex
Π (I1, I2) =

{
I1 ∪ T hexΠ (I1, I2)1

}
.

We now prove the assertion stated in the beginning of this section.

Theorem 7.1.4. Let Π be a normal HEX program, and let I ∈ IΠ. Then we have the following
equivalences:

1. I is an Φhex
Π -answer set iff I is an FhexΠ -answer set.

2. I is an ultimate answer set with respect to T hexΠ iff I is an an ultimate answer set with
respect to N hex

Π .

68



Proof. (1) (⇒) Suppose I is an Φhex
Π -answer set, i.e., I = lfp

(
Φhex

Π ( . , I)1

)
. First, since

Φhex
Π (I, I)1 = I , we haveFhexΠ (I, I) = {I}. Second, suppose there exists some J ( I such that

J ∈ FhexΠ (J, I) = {J ∪Φhex
Π (J, I)1}. Then, Φhex

Π (J, I)1 ⊆ J which implies Φhex
Π (J, I)1 = J ,1

a contradiction to the assumption that I is an Φhex
Π -answer set.

(⇐) Since, by assumption, I is FhexΠ -I-derivable (see Section 7.2), there exists a FhexΠ -I-
computation JI,↑ = (Ji)i≥0 with result JI,∞ = I . Moreover, by Corollary 7.1.3, FhexΠ ( . , I) is
deterministic, and since Φhex

Π ( . , I)1 is monotone with respect to set inclusion, it is easy to see
that Ji = Φhex,i

Π (∅, I) for every i ≥ 0. Finally, since I is the result of JI,↑, we conclude that I
is the least fixpoint of Φhex

Π ( . , I)1.
(2) Analogous to (1).

7.2 Answer Sets are Derivable

Recall from Section 4.2 (see Proposition 4.2.7) and Section 4.4 that 2-valued (ultimate) answer
sets of normal HEX programs have a constructive fixpoint characterization. However, in the
case of disjunctive HEX programs, the definition of (ultimate) answer sets given in Section 6.4
is non-constructive. Nevertheless, in this section we show that each (ultimate) answer set is
derivable, i.e., has a bottom-up computation (see Definition 6.3.3). Moreover, we present an
algorithm for constructively computing (ultimate) answer sets.

Example 7.2.1. Let Π be the disjunctive HEX program of Example 6.4.2 consisting of the
following rules:

p(a) ∨ q(a)←
⊥←∼ p⊆#q,∼ ⊥,

In Example 6.4.2 we have seen that I = {q(a)} is the only FhexΠ -answer set. We define a FhexΠ -
I-computation JI,↑ with result JI,∞ = I as follows. Let J0 = ∅, and Ji = I for every i ≥ 1.
Since I ∈ FhexΠ (∅, I) and I ∈ FhexΠ (I, I) = {I}, JI,↑ = (Ji)i≥0 is a FhexΠ -I-computation with
result JI,∞ = I .

Let Π be a disjunctive HEX program, and let AhexΠ ∈
{
FhexΠ ,N hex

Π

}
. Algorithm 2 presents

a guess & check algorithm for constructively computing the AhexΠ -answer sets of Π (see Figure
7.2); in Theorem 7.2.2 we prove the soundness and the completeness of Algorithm 2.

Theorem 7.2.2 (Soundness, Completeness). Let Π be a HEX program, letAhexΠ ∈ {FhexΠ ,N hex
Π },

and let I ∈ IΠ. Then, I is an AhexΠ -answer set of Π iff I ∈ ComputateAnswerSets(I,AhexΠ )
where ComputateAnswerSets(I,AhexΠ ) is defined as in Algorithm 2.

Proof. (⇒) We have to show that if I is anAhexΠ -answer set, then (i) I = Computation(I,AhexΠ )
where Computation(I,AhexΠ ) is defined as in Algorithm 1, and (ii) I is a minimal fixpoint of

1Notice that ΦhexΠ ( . , I)1 is monotone with respect to set inclusion (see Section 4.2). Hence, we have J ⊆
ΦhexΠ (J, I)1.

69



Fhex,↓Π (I)

∅

I

HBΠ

Ij

I1

I2

I3

Figure 7.1: Non-deterministic computation of I ∈ mfp
(
FhexΠ ( . , I)1

)
.

AhexΠ ( . , I). Part (ii) follows directly from the definition of an AhexΠ -answer set (see Definition
6.4.1). For part (i) we have to show that for each AhexΠ -I-computation JI,↑, JI,∞ = I . Let
J0 = ∅. Since I is a fixpoint of AhexΠ ( . , I), we have AhexΠ (I, I) = {I}. Furthermore, since
AhexΠ ( . , I) is monotone (Proposition 6.3.2) and (J0, I) ⊆p I , we have

AhexΠ (J0, I) v AhexΠ (I, I) v {I},

that is, there exists some J1 ∈ AhexΠ (J0, I) such that J0 ⊆ J1 ⊆ I . Generally, we obtain, for
every n ≥ 0, Jn+1 ∈ AhexΠ (Jn, I) for some Jn ⊆ Jn+1 ⊆ I . Clearly, this construction yields a
computation JI,↑ with result JI,∞ ⊆ I . By Proposition 6.4.7, JI,∞ is a fixpoint of AhexΠ ( . , I).
Consequently, since I is, by assumption, a minimal fixpoint of AhexΠ ( . , I), JI,∞ = I . Hence,
we have I = Computation(I,AhexΠ ).

(⇐) Let JI,∞ = Computation(I,AhexΠ ). By definition of Algorithm 1, JI,∞ is the result
of someAhexΠ -I-computation. Hence, if JI,∞ = I , then I is a fixpoint ofAhexΠ ( . , I). Moreover,
in line numbers 7-11 of Algorithm 2 we check whether I is a minimal fixpoint of AhexΠ ( . , I).
Since, by assumption, I ∈ ComputeAnswerSets(I,AhexΠ ), we have I ∈ mfp(AhexΠ ( . , I))
which proves that I is an AhexΠ -answer set.

However, in general, there exists no canonical AhexΠ -I-computation, as the following exam-
ple illustrates.

70



Algorithm 1 Construct an AhexΠ -I-computation with result JI,∞.

Input: An interpretation I ∈ IΠ, and an approximation AhexΠ ∈
{
FhexΠ ,N hex

Π

}
.

Output: The result JI,∞ of an AhexΠ -I-computation.
1: procedure COMPUTATION(I ,AhexΠ )
2: J0 ← ∅
3: i← 0
4: repeat
5: Ji+1 ← Select any Ji+1 ∈ AhexΠ (Ji, I) such that Ji+1 ⊆ I
6: i← i+ 1
7: until Ji = Ji−1

8: JI,∞ ← Ji
9: return JI,∞

10: end procedure

Algorithm 2 Compute the AhexΠ -answer sets by guess & check.

Input: A HEX program Π, and an approximation AhexΠ ∈
{
FhexΠ ,N hex

Π

}
.

Output: The (2-valued) AhexΠ -answer sets of Π.
1: procedure COMPUTATEANSWERSETS(Π,AhexΠ )
2: AS ← ∅
3: for I ∈ IΠ do
4: JI,∞ ← Computation(I,AhexΠ )
5: if JI,∞ = I then
6: mfp← t
7: for J ( I do . I ∈ mfp(AhexΠ ( . , I))?
8: if J ∈ AhexΠ (J, I) then
9: mfp← f

10: end if
11: end for
12: if mfp = t then
13: AS ← AS ∪ {I}
14: end if
15: end if
16: end for
17: return AS
18: end procedure

71



J0 = ∅ = K0

J1 = {a} {b} = K1

Ji = {a, b} = Ki

Figure 7.2: Computations JI,↑ and KI,↑ of Example 7.2.3.

Example 7.2.3. Reconsider the classical disjunctive program Π of Example 6.2.6 consisting of
the following propositional rules:

a ∨ b←
a← b

b← a.

We show that I = {a, b} is an FhexΠ -answer set and that there exist two equally adequate FhexΠ -
I-computations JI,↑ and KI,↑ with results JI,∞ = KI,∞ = I . Let J0 = K0 = ∅. Applying
FhexΠ to (∅, I) yields FhexΠ (∅, I) = {{a}, {b}}. Let J1 = {a} and K1 = {b}, and observe
J1,K1 ⊆ I . Finally, we have FhexΠ (J1, I) = FhexΠ (K1, I) = {I}. Let Ji = Ki = I for
every i ≥ 2. This yields two computations JI,↑ = (Ji)i≥0 and KI,↑ = (Ki)i≥0 with results
JI,∞ = KI,∞ = I as desired (see Figure 7.2).

7.3 Answer Sets are Supported

A basic requirement for semantics of logic programs is that every intended model contains only
atoms justified by the program (Apt et al., 1988), i.e., only supported atoms (see Example 3.2.3).
In this section we show that the (ultimate) answer-set semantics as defined in Section 6.4 and
Section 6.5 is supported.

In the sequel let Π be a disjunctive HEX program. We say that an interpretation I ∈ IΠ is
(i) weakly supported (Brass and Dix, 1997) if for every atom a ∈ I there exists some rule r ∈ Π
such that a ∈ H(r) and I |= B(r), and (ii) supported (Brass and Dix, 1997) if for every atom
a ∈ I there exists some rule r ∈ Π such that I |= B(r) and I 6|= H(r) − {a}. Clearly, if I is
supported, then I is weakly supported.

Example 7.3.1. Consider the classical disjunctive program Π consisting of the following single
rule:

a ∨ b←∼ c.

72



Then, for instance, {a} and {b} are (weakly) supported, {a, b} is weakly supported but not
supported, and {c} is not (weakly) supported.

We now prove that every FhexΠ -, and ultimate answer set of Π is (weakly) supported.

Theorem 7.3.2. Let Π be a disjunctive HEX program, and letAhexΠ ∈
{
FhexΠ ,N hex

Π

}
. For every

I ∈ IΠ, if I is an AhexΠ -answer set, then I is supported.

Proof. Suppose that I is not supported, i.e., there exists some atom a ∈ I such that for every
r ∈ Π with a ∈ H(r), I 6|= B(r) or there exists some a′ ∈ H(r), a′ 6= a, such that a′ ∈ I . Let
I ′ = I − {a}. We claim that I ′ is a model of Φhex

Π (I ′, I)1. Let d ∈ Φhex
Π (I ′, I)1 be an arbitrary

disjunction, and let r ∈ Π be a rule such that H(r) = d and 〈B(r) 〉(I′,I) = t. Then, since
(I ′, I) ⊆p I , we have, by Lemma 4.1.10, I |= B(r). We distinguish the following two cases:
(i) if a 6∈ H(r) then I ′ |= H(r) by definition of I ′ (notice that I is, by assumption, a model of
Π and thus I |= H(r)); and (ii) if a ∈ H(r) then, by assumption, there exists some a′ ∈ H(r),
a′ 6= a, such that a′ ∈ I ′, i.e., I ′ |= H(r). Consequently, I ′ is indeed a model of Φhex

Π (I ′, I)1.
Therefore, by definition of FhexΠ , I ′ is a fixpoint of FhexΠ ( . , I), a contradiction to the minimality
of I .

Since d ∈ T hexΠ (I ′, I)1 only if d ∈
⋂
I′⊆J⊆I T

hex
Π (J) only if there exists a rule r ∈ Π with

H(r) = d and I |= B(r), the case for N hex
Π is analogous.

Corollary 7.3.3. Let Π be a disjunctive HEX program, and let AhexΠ ∈
{
FhexΠ ,N hex

Π

}
. For

every I ∈ IΠ, if I is an AhexΠ -answer set, then I is weakly supported.

7.4 Answer Sets are FLP-Answer Sets

Given a normal HEX program Π, in Section 5.2 we have seen that every 2-valued Φhex
Π -answer

set is an FLP-answer set (see Theorem 5.2.5); however, the converse does, in general, not
hold (see Example 5.2.6). We argued in Section 5.4 that this divergence is due to the well-
supportedness (Shen, 2011) of 2-valued Φhex

Π -answer-set semantics.
Now the question naturally arises whether every FhexΠ -answer set is an FLP-answer set. The

next theorem gives a positive answer to this question.

Theorem 7.4.1. Let Π be a disjunctive HEX program, and let I ∈ IΠ. If I is an FhexΠ -answer
set, then I is an FLP-answer set of Π.

Proof. By assumption, I is a fixpoint of FhexΠ ( . , I). Hence, by Proposition 6.3.2, we have

FhexΠ (I, I) = Nhex
Π (I) = {I},

which implies that I is a model of Π (Proposition 6.1.7), and thus a model of fΠI .
Suppose there exists some interpretation J ( I such that J is a model of fΠI . We claim

that there exists a FhexΠ -I-computation KI,↑ = (Ki)i≥0 with KI,∞ ⊆ J . By Lemma 5.2.4, we
have, for each (I1, I2) ∈ IcΠ,

Φhex
Π (I1, I2)1 = Φhex

fΠI (I1, I2)1.

73



Hence, we have, for each (I1, I2) ∈ IcΠ,

FhexΠ (I1, I2) = FhexfΠI (I1, I2). (7.1)

Let K0 = ∅. Since (K0, I) ⊆p (J, I) ⊆p J we have, by Lemma 4.1.10 and (7.1),

FhexΠ (K0, I) = FhexfΠI (K0, I) v FhexfΠI (J, I) v FhexfΠI (J, J) = Nhex
fΠI (J) v {J}, (7.2)

where the last equation follows from the assumption that J is a model of fΠI together with
Proposition 6.1.7. Hence, there exists some K1 ⊆ I such that K1 ∈ FhexΠ (K0, I). With the
same argument as in (7.2) we obtain FhexΠ (K1, I) v {J} which entails that there exists some
K2 ⊆ I such that K2 ∈ FhexΠ (K1, I). Iterating this process yields a FhexΠ -I-computation KI,↑

with KI,∞ ⊆ J ( I , a contradiction to Theorem 7.2.2. Consequently, I is a minimal model of
fΠI and, hence, an FLP-answer set of Π.

In contrast to Theorem 7.4.1, the next example shows that, in general, not every FLP-answer
set is an FhexΠ -answer set.

Example 7.4.2. Reconsider the normal HEX program Π of Example 5.2.6 consisting of the
following rules:

a← f#[a, b]

b← g#[a, b]

where f and g are defined as in Table 5.1. We have seen in Example 5.2.6 that I = {a, b} is
an FLP-answer set of Π, but not an ultimate answer set with respect to T hexΠ . Hence, since Π is
normal, by Theorem 7.1.4 I is not an ultimate answer set with respect to N hex

Π .

74



CHAPTER 8
Related Work

In this chapter we consider related work. In Section 8.1 we compare in detail our approach used
in Chapter 6, and the approach used by (Pelov and Truszczyński, 2004; Pelov, 2004).

In Section 8.2 we argue that the disjunctive Fitting operator defined by (Calimeri et al., 2006)
is, in general, not appropriate for defining (ultimate) semantics of arbitrary classical disjunctive
programs based on Approximation Theory.

In Section 8.3 we compare our 2-valued (ultimate) answer-set semantics of normal HEX
programs, as defined in Section 4.2, with strong and weak answer-set semantics (Eiter et al.,
2004a, 2008).

Finally, in Section 8.4 we compare our semantics with well-supported semantics as defined
in (Shen, 2011).

8.1 Comparison to Pelov and Truszczyński (2004)

In Chapter 6 we used non-deterministic operators for defining 2-valued (ultimate) answer-set
semantics of disjunctive HEX programs. The approach we used is motivated by the work of
Pelov and Truszczyński (2004) and Pelov (2004, Chapter 4.4). However, the approaches are not
entirely identical, so in this section we elaborate these differences in detail.

Pelov (2004) and Pelov and Truszczyński (2004) extend partially concepts of Approximation
Theory to the class of non-deterministic operators by combining ideas from disjunctive logic
programming (Minker and Rajasekar, 1990; Lobo et al., 1992; Fernández and Minker, 1995;
Seipel et al., 1997) and Approximation Theory. Since aggregates can be simulated by external
atoms (see Section 3.1 in (Eiter et al., 2005)), we translate the definitions given in (Pelov and
Truszczyński, 2004; Pelov, 2004) to the language of HEX programs and define, for a given
disjunctive HEX program Π, the non-deterministic immediate consequence operator (Pelov and
Truszczyński, 2004; Pelov, 2004), for each I ∈ IΠ, by

NSel
Π (I) = Sel

(
T hexΠ (I)

)
, (8.1)

75



where Sel : P(DHBΠ) −→ P(IΠ) is a selection function satisfying the following axioms:1

1. Sel(D) ⊆ {I ∈ IΠ : I |= D}
2. Sel(D) v {I ∈ IΠ : I |= D}
3. I ⊆ ΛD for every I ∈ Sel(D).

Clearly, the functionMM (see (6.3)), selecting the minimal models ofD, is a selection function
(see Proposition 2 in (Pelov and Truszczyński, 2004)). Since we only used MM in this thesis
(see Chapter 6), we focus on NMM

Π in the sequel.
Pelov and Truszczyński (2004) proposed the notion of computation (Marek et al., 2004)

as an appropriate formalization of the process of “iterating” non-deterministic operators. In
Chapter 6 we successfully applied this notion to non-deterministic (ultimate) approximations,
and proved in Section 7.2 that (ultimate) answer sets are derivable. However, the following
example, presented in (Pelov and Truszczyński, 2004), shows that the definition of NMM

Π is not
compatible with the notion of computation.

Example 8.1.1 (Pelov and Truszczyński (2004), Example 3). Consider the classical disjunctive
program Π consisting of the following propositional rules:

a ∨ b ∨ c←
a← b

b← c

c← a.

Observe that I = {a, b, c} is the only model of Π. Let I0 = ∅. By applying NMM
Π to I0, we

obtain NMM
Π (I0) = {{a}, {b}, {c}}. However, since NMM

Π ({a}) = {{c}}, NMM
Π ({b}) =

{{a}}, and NMM
Π ({c}) = {{b}}, there is no I1 ∈ NMM

Π (I0) such that there exists some
I2 ∈ NMM

Π (I1) such that I1 ⊆ I2. Hence, there exists no computation I↑ = (Ii)i≥0 with
result I∞ = I (Pelov and Truszczyński, 2004). In contrast, we have Nhex

Π (I0) = NMM
Π (I0),

but Nhex
Π ({a}) = {{a, c}}, Nhex

Π ({b}) = {{a, b}}, and Nhex
Π ({c}) = {{b, c}}; Furthermore,

Nhex
Π ({a, c}) = Nhex

Π ({a, b}) = Nhex
Π ({b, c}) = I which shows that I is derivable by some

computations with respect to Nhex
Π .

Let us analyze Example 8.1.1, and the difference between NMM
Π and Nhex

Π , more precisely.
Recall from Section 6.1 that Nhex

Π is designed in such a way that the assumptions made about
disjunctions are contained in every outcome of Nhex

Π applied to an interpretation (see Example
6.1.4, and the discussion after Example 6.2.6). That is, each computation of I (with respect
to Nhex

Π ) represents one path of possible assumptions. For instance, I1 = {a} ∈ Nhex
Π (I0)

represents the assumption that in a ∨ b ∨ c the atom a is true, whereas b and c are false. From
this assumption, we derive with the last rule that c is also true; since a ∨ b ∨ c ← does not
contain the information that in the current computation we assume a to be true, we have to add
a to the outcome, resulting in I2 = {a, c} ∈ Nhex

Π (I1). In contrast, after applying NMM
Π to I1,

1Recall from Section 6.1 that DHBΠ is the set of all disjunctions which can be formed with atoms from ΛΠ.

76



the immediate consequence operator NMM
Π “forgets” that a has been assumed, and only derives

{c} (i.e., NMM
Π treats disjunctive facts in the same way as non-disjunctive facts).

Finally, it is worth noting that we additionally defined ultimate answer-set semantics which
is more precise than FhexΠ -answer-set semantics (see Section 6.5).

8.2 Disjunctive Fitting Operator

Calimeri et al. (2006) extend the Fitting operator (Fitting, 1985) to the class of classical dis-
junctive programs as follows. Given a classical disjunctive program Π, define the disjunctive
extended Fitting operator (Calimeri et al., 2006), for each (I1, I2) ∈ IcΠ, by

ΦΠ,∨(I1, I2) =
(
I ′1, I

′
2

)
,

such that

I ′1 =
{
a ∈ H(r) : r ∈ Π : 〈B(r) 〉(I1,I2) = t and

〈
a′
〉

(I1,I2)
= f for every a′ ∈ H(r)− {a}

}
I ′2 =

{
a ∈ H(r) : r ∈ Π : 〈B(r) 〉(I1,I2) ≥ u and

〈
a′
〉

(I1,I2)
≤ u for every a′ ∈ H(r)− {a}

}
.

The operator ΦΠ,∨ is an approximation of the disjunctive van Emden-Kowalski operator defined,
for each I ∈ IΠ, by

TΠ,∨(I) =
{
a ∈ H(r) : r ∈ Π : I |= B(r) and I 6|= a′ for every a′ ∈ H(r)− {a}

}
.

Notice that TΠ,∨ is a lattice operator defined on the complete lattice IΠ. Hence, in principle,
Approximation Theory (see Chapter 3) is applicable. That is, by instantiating Theorem 3.4.1,
we can define, for each (I1, I2) ∈ IcΠ, the disjunctive ultimate approximation by

TΠ,∨(I1, I2) =

 ⋂
I1⊆J⊆I2

TΠ,∨(J),
⋃

I1⊆J⊆I2

TΠ,∨(J)

 .

Moreover, we obtain the stable revision operators Φ↓↑Π,∨ and T ↓↑Π,∨ (see Section 3.3) and, hence,
disjunctive versions of the (ultimate) fixpoint semantics defined in Chapter 4.

However, the next example shows that, in general, TΠ,∨ is not an adequate operator for ap-
plying Approximation Theory and defining fixpoint semantics of arbitrary classical disjunctive
programs.

Example 8.2.1. Reconsider the classical disjunctive program Π of Example 8.1.1 consisting of
the following propositional rules:

a ∨ b ∨ c←
a← b

b← c

c← a.

77



Observe that I = {a, b, c} is an ultimate answer set (with respect to N hex
Π ) of Π, i.e., a subset

minimal fixpoint of N hex
Π ( . , I). In contrast, we have TΠ,∨({a, b}) = {a, c}, TΠ,∨({a, c}) =

{b, c}, and TΠ,∨({b, c}) = {a, b} and, hence, TΠ,∨(∅, I)1 =
⋂
J⊆I TΠ,∨(J) = ∅. That is, we

have T ↓Π,∨(I) = ∅ which proves that I is not an ultimate answer set with respect to TΠ,∨. Since
TΠ,∨ yields the most answer sets, I is not an ΦΠ,∨-answer set.

Calimeri et al. (2006) did not apply Approximation Theory (i.e., did not define 3-valued
answer-set semantics), but defined only the least fixpoint of ΦΠ,∨ with respect to some interpre-
tation (I1, I2) ∈ IcΠ. Moreover, Calimeri et al. (2006) studied syntactically restricted programs
– the question whether Approximation Theory in combination with ΦΠ,∨ can be reasonably
applied to these syntactically restricted classes of disjunctive programs remains open.

8.3 Strong and Weak Answer-Set Semantics

Description logic programs2 (Eiter et al., 2004a, 2008) are predecessors of HEX programs (Eiter
et al., 2005). Formally, a description logic program (or dl-program)KB consists of a description
logic knowledge base L and an extended classical normal program Γ possibly containing so
called dl-atoms. Roughly, a dl-atom is a bi-directional link between the logic program Γ and
the knowledge base L. Important is here that the truth of a dl-atom d in an interpretation I with
respect to L, in symbols I |=L d, can be represented by a Boolean function. Hence, each dl-atom
d occurring in KB can be simulated by an external atom d#

L defined, for every interpretation I ,
by (see Section 3.2 in Eiter et al. (2005))

dL(I) =

{
t if I |=L d

f otherwise.

Given a dl-program KB, we denote by ΠKB the normal HEX program obtained from KB by
replacing each dl-atom d with d#

L . For ease of exposition, we will drop the reference to KB
from the notation and simply write Π instead of ΠKB. Under this translation, we immediately
obtain FLP-answer-set semantics and fixpoint semantics of dl-programs. Additionally, Eiter
et al. (2004a, 2008) and Eiter et al. (2004b, 2011) defined strong and weak answer-set semantics
of arbitrary dl-programs, and well-founded semantics of monotone dl-programs, respectively.
Let KB be a dl-program and Π be the corresponding normal HEX program. By Λ#,m

Π we mean
the set of all external atoms a ∈ Λ#

Π which are known to be monotone, and define Λ#,?
Π =

Λ#
Π − Λ#,m

Π . Given an interpretation I ∈ IΠ, define the strong Gelfond-Lifschitz reduct (Eiter
et al., 2004a, 2008) of Π with respect to I and L by

sΠI
L =

{
H(r)← B+(r)− Λ#,?

Π : r ∈ Π : I |= B+(r) ∩ Λ#,?
Π and I |= B∼(r)

}
.

Intuitively, we compute the reduct sΠI
L by (i) deleting every rule r ∈ Π such that either I 6|= a for

some a ∈ B+(r)∩Λ#,?
Π , or I |= b for some∼ b ∈ B∼(r), and (ii) deleting from each remaining

2http://sourceforge.net/projects/dlvhex/files/dlvhex-dlplugin/

78

http://sourceforge.net/projects/dlvhex/files/dlvhex-dlplugin/


rule r ∈ Π all literals in B∼(r)∪
(
B+(r) ∩ Λ#,?

Π

)
. Notice that sΠI

L is a positive (i.e., negation-

free) monotone normal HEX program, which implies that T hex
sΠIL

has a least fixpoint. Finally, we

say that I is a strong answer set (Eiter et al., 2004a, 2008) of Π if I = lfp(T hex
sΠIL

).
The next example shows that not every strong answer set is also an (ultimate) answer set of

Π.

Example 8.3.1. Consider the normal HEX program Π consisting of the following single rule:

p(a)←∼ (not p(a))# (8.2)

where, for each I ∈ IΠ, I |= (not p(a))# iff I 6|= p(a). For readers familiar with the formalism
of dl-programs, it is worth noticing that Π has the same behavior as the the dl-program KB =
(∅,Γ), where Γ consists of the following single rule:

p(a)←∼ DL[S −∩ p;¬S](a) (8.3)

where d = DL[S −∩ p;¬S](a) is a dl-atom, S is a concept, and −∩ is an update operator (see
Eiter et al. (2008)). However, we proceed with (8.2). We show that I = {p(a)} is a strong
answer set of Π. Since we have I |=∼ (not p(a))#, the strong Gelfond-Lifschitz reduct sΠI

L is
equal to the single fact p(a)←. Hence, I is the least fixpoint of T hex

sΠIL
and, thus, a strong answer

set of Π. In contrast, we have T hexΠ (∅, I)1 = ∅ which shows T hex,↓Π (I) = ∅. That is, I is not an
ultimate answer set of Π and, thus, not an Φhex

Π -answer set (see Proposition 4.4.4).

We now define weak answer-set semantics. Let KB be a dl-program, and let Π be the
corresponding normal HEX program. Given an interpretation I ∈ IΠ, define the weak Gelfond-
Lifschitz reduct (Eiter et al., 2004a, 2008) of Π with respect to I and L by

wΠI
L =

{
H(r)← B+(r)− Λ#

Π : r ∈ Π : I |= B+(r) ∩ Λ#
Π and I |= B∼(r)

}
.

The only difference to the strong Gelfond-Lifschitz reduct is that in wΠI
L we do not only delete

possibly nonmonotone atoms from Λ#,?
Π , but every external atom from Λ#

Π . Clearly, wΠI
L is a

positive normal program without external atoms and, hence, T hex
wΠIL

is monotone and has a least

fixpoint. We say that I is a weak answer set (Eiter et al., 2004a, 2008) of Π if I = lfp(T hex
wΠIL

).

Proposition 8.3.2 (Eiter et al. (2004a), Theorem 11). LetKB be a dl-program, and let Π = ΠKB
be defined as above. For every I ∈ IΠ, if I is a strong answer set of Π, then I is a weak answer
set of Π.

Example 8.3.3. Reconsider the normal HEX program Π of Example 8.3.1. We have seen in
Example 8.3.1 that Π is the translation of the dl-program KB = (∅,Γ) where Γ consists of the
single rule (8.3). Moreover, we have seen that I = {p(a)} is a strong answer set of Π. Hence,
by Proposition 8.3.2, I is also a weak answer set of Π which shows that not every weak answer
set is also an (ultimate) answer set of Π.

79



Example 8.3.1 and Example 8.3.3 show that our (ultimate) answer-set semantics of Chapter 4
which base on Approximation Theory do not coincide with strong or weak answer-set semantics.
In the next section we argue that this divergence is due to the well-supportedness (Shen, 2011;
Fages, 1994) of our semantics (see Section 5.4).

8.4 Well-Supported Semantics

In the sequel let KB = (L,Γ) be a dl-program. For every ground literal `, and interpretations
I1, I2 ∈ IΠ, I1 ⊆ I2, define the relation “I1 up to I2 satisfies `” (Shen, 2011), denoted (I1, I2) |=
`, as follows:

1. For a ground atom a ∈ HBΠ, (I1, I2) |= a if a ∈ I1, and (I1, I2) |=∼ a if a 6∈ I2.

2. For a ground dl-atom d, (I1, I2) |= d if J |= d for every J ∈ [I1, I2], and (I1, I2) |=∼ d
if J 6|= d for every J ∈ [I1, I2].

Consequently, the up to satisfaction relation coincides with the 3-valued evaluation function
〈 . 〉(I1,I2) (see (4.2) and (4.4)), i.e., we have, for each (I1, I2) ∈ IcΠ and each literal `, the
following equivalence:

(I1, I2) |= `⇔ 〈 ` 〉(I1,I2) = t.

Hence, we can rephrase Shen’s definition of strongly well-supportedness (see Definition 4 in
(Shen, 2011)) as follows. We say that an interpretation I of KB is strongly well-supported if
there exists a strict well-founded partial order ≺ on I such that for every a ∈ I there exists a
rule r ∈ Γ with H(r) = a and a proper subset J ( I such that 〈B(r) 〉(I1,I2) = t, and for
every b ∈ J , b ≺ a. The equivalence between the notion of strongly well-supportedness and our
notion of well-supportedness (see Definition 5.4.2) is evident.

Moreover, we can rewrite Shen’s extended van Emden-Kowalski operator TKB (see Defini-
tion 5 in (Shen, 2011)), for each (I1, I2) ∈ IcΠ, as follows:

TKB(I1, I2) =
{
H(r) : r ∈ Π : 〈B(r) 〉(I1,I2) = t

}
.

Then we have the following equivalence (see Definition 4.1.8).

Proposition 8.4.1. Let KB be a dl-program, and let Π = ΠKB be defined as in Section 8.3.
Then, for each (I1, I2) ∈ IcΠ, TKB(I1, I2) = Φhex

Π (I1, I2)1.

Let I be an interpretation ofKB. We say that I is a strongly well-supported answer set (Shen,
2011) of KB if I = lfp (TKB( . , I)). The following proposition is an immediate consequence of
Proposition 8.4.1 and Proposition 4.2.7.

Theorem 8.4.2. Let KB be a dl-program, let Π = ΠKB be defined as in Section 8.3, and let
I be an interpretation of KB. Then, I is a strongly well-supported answer set of KB iff I is a
2-valued Φhex

Π -answer set.

80



Considering the equivalences described above, it comes as no surprise that 2-valued Φhex
Π -

answer-set semantics are well-supported (see Theorem 5.4.7). Moreover, the equivalences show
that Shen’s (strongly) well-supported answer-set semantics is naturally captured within the more
general framework of Approximation Theory. However, the use of Approximation Theory al-
lowed us to additionally define the whole class of 3-valued (ultimate) answer-set semantics
(which contain well-founded semantics) which lead to a more general approach than the one
proposed by (Shen, 2011).

The next example shows that a dl-program consisting of a single rule is not well-supported.
That is, it shows that strong and weak answer sets (as defined in Section 8.3) are, in general, not
free of circular justifications.

Example 8.4.3. Reconsider the normal HEX program Π of Examples 8.3.1 and 8.3.3 consisting
of the single rule r given in (8.2). We have seen in Example 8.3.1 that Π can be interpreted as
a translation of the dl-program KB consisting of the single rule (8.3). By definition of d, we
have the following self-supported loop:3 p(a)⇐ ¬d# ⇐ p(a). Formally, for I = {p(a)} to be
well-supported, we have to find a subset J ( I such that 〈B(r) 〉(J,I) = t and J ≺ p(a) (see
Section 5.4). Since ∅ is the only proper subset of I , and 〈B(r) 〉(∅,I) 6= t, we conclude that I is
not well-supported.

Finally, it is worth mentioning that Shen and Wang (2012) extended the strongly well-
supported answer-set semantics to the class of general logic programs (Bartholomew et al.,
2011) where the head and bodies of rules can be arbitrary first-order formulas. They formulated
the extension in terms of well-justified FLP-answer sets, i.e., FLP-answer sets (see Section 2.2)
without circular justifications. The application of Approximation Theory to the class of general
logic programs remains an open issue for future research.

3Recall from Section 5.4 that⇐ denotes the informal statement “truth is supported by” (Shen, 2011).

81





CHAPTER 9
Conclusions

For logic programs with negation, a range of different purely declarative semantics have been
proposed in the last two decades, among them the Kripke-Kleene semantics (Fitting, 1985), the
well-founded semantics (Van Gelder et al., 1991), and the answer-set semantics (Gelfond and
Lifschitz, 1991). These semantics have been adopted to a large number of extensions of classical
logic programs. However, since one has to adopt each semantics separately, this process is
cumbersome in general. Moreover, it is not always clear which of the possible extensions to
accept as the “canonical” one.

Approximation Theory (Denecker et al., 2000a, 2002, 2004), on the other hand, uniformly
characterizes the mentioned semantics within an abstract algebraic framework by studying the
fixpoints of the associated (monotone or nonmonotone) one-step provability operators in terms
of monotone approximations. Thus, the framework makes it convenient to extend the semantics
to a new class of programs.

The goal of this thesis was to lift the Kripke-Kleene-, well-founded-, and (3-valued) answer-
set semantics to the class of HEX programs (Eiter et al., 2005) by applying Approximation
Theory, and to compare them with the standard FLP-answer-set semantics. This was in par-
ticular relevant, because HEX programs constitute a powerful extension of classical disjunctive
programs, and are able to represent various other formalisms (e.g., dl-programs, and logic pro-
grams with aggregates).

The main contributions were that we uniformly defined the full class of the mentioned 3-
valued semantics for normal (i.e., disjunction-free) HEX programs by applying Approximation
Theory. Moreover, we defined ultimate versions of these semantics, which are the most pre-
cise one with respect to Approximation Theory. Furthermore, we showed that the recently de-
fined strongly well-supported answer-set semantics (Shen, 2011) are equivalent to our 2-valued
answer-set semantics. However, since we used the machinery of Approximation Theory, our
approach is much more general and elegant from a mathematical and practical point of view. Fi-
nally, we obtained 2-valued (ultimate) answer-set semantics for disjunctive HEX programs and
showed that they can be constructively characterized in terms of bottom-up computations.

83



As a result of our investigation, we obtained constructive and uniform semantics for a gen-
eral class of logic programs with nice properties. More precisely, in the case of normal HEX
programs, it turned out that our 2-valued answer-set semantics are well-supported which is con-
sidered to be a key requirement. Moreover, to the best of our knowledge, the introduction of
well-founded semantics for this class of programs is novel. Finally, our 2-valued (ultimate)
answer-set semantics turned out to be computable in a bottom-up manner, which led to a con-
structive algorithm for computing the (ultimate) answer sets of a given program.

However, there remain open issues. For the class of disjunctive HEX programs, we in-
troduced only 2-valued answer-set semantics, but no well-founded semantics. Therefore, one
line of future research is to define well-founded semantics at least for syntactically restricted
classes of disjunctive HEX programs. Moreover, Approximation Theory has been extended to
algebraically capture the notions of strong and uniform equivalence (Truszczyński, 2006); it is
interesting to apply these results to the class of HEX programs by using the results obtained in
this thesis. Furthermore, from a practical point of view, it will be interesting to implement the
introduced semantics and compare them with the standard one. Finally, it will be interesting to
apply the machinery of Approximation Theory to a more general class of HEX programs where
the head and body of a rule can contain arbitrary formulas (so called general logic programs
(Bartholomew et al., 2011)).

84



Bibliography

Apt, K. R., Blair, H. A., and Walker, A. (1988). Towards a theory of declarative knowledge.
In Minker, J., editor, Foundations of Deductive Databases and Logic Programming, pages
89–148. Morgan Kaufmann Publishers.

Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge.

Bartholomew, M., Lee, J., and Meng, Y. (2011). First-order extension of the FLP stable model
semantics via modified circumscription. In Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence (IJCAI 2011), pages 724–730.

Basol, S., Fink, M., Erdem, O., and Ianni, G. (2010). HEX programs with action atoms. In
Hermenegildo, M. and Schaub, T., editors, Technical Communications of the 26th Interna-
tional Conference on Logic Programming, Leibniz International Proceedings in Informatics
(LIPIcs), pages 24–33. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl.

Brass, S. and Dix, J. (1997). Characterizations of the disjunctive stable semantics by partial
evaluation. The Journal of Logic Programming, 32(3):207–228.

Brewka, G., Eiter, T., and Truszczyński, M. (2011). Answer set programming at a glance.
Communiications of the ACM, 54(12):92–103.

Calimeri, F., Faber, W., Pfeifer, G., and Leone, N. (2006). Pruning operators for disjunctive
logic programming systems. Fundamenta Informaticae, 71(2-3):183–214.

Clark, K. L. (1978). Negation as failure. In Minker, J. and Gallaire, H., editors, Logic and Data
Bases, pages 293–322. Plenum Press, New York.

Davey, B. A. and Priestley, H. A. (2002). Introduction to Lattices and Order. Cambridge
University Press, Cambridge, 2 edition.

Denecker, M., Marek, V., and Truszczyński, M. (2000a). Approximations, stable operators,
well-founded fixpoints and applications in nonmonotonic reasoning. In Minker, J., editor,
Logic-Based Artificial Intelligence, volume 597 of The Springer International Series in En-
gineering and Computer Science, pages 127–144. Kluwer Academic Publishers, Norwell,
Massachusetts.

85



Denecker, M., Marek, V., and Truszczyński, M. (2000b). Uniform semantic treatment of default
and autoepistemic logics. In Cohn, A. G., Guinchiglia, F., and Selman, B., editors, Pro-
ceedings of the 7th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2000), pages 74–84. Morgan Kaufmann Publishers, Los Altos, California.

Denecker, M., Marek, V., and Truszczyński, M. (2002). Ultimate approximations in nonmono-
tonic knowledge representation systems. In Fensel, D., Guinchiglia, F., McGuinness, D. L.,
and Williams, M.-A., editors, Proceedings of the 8th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2002). Morgan Kaufmann Publishers.

Denecker, M., Marek, V., and Truszczyński, M. (2003). Uniform semantic treatment of default
and autoepistemic logics. Artificial Intelligence, pages 79–122.

Denecker, M., Marek, V., and Truszczyński, M. (2004). Ultimate approximation and its appli-
cation in nonmonotonic knowledge representation systems. Information and Computation,
192(1):84–121.

Eiter, T., Brewka, G., Dao-Tran, M., Fink, M., Ianni, G., and Krennwallner, T. (2009a). Combin-
ing nonmonotonic knowledge bases with external sources. In Ghilardi, S. and Sebastiani, R.,
editors, Proceedings of the 7th International Symposium on Frontiers of Combining, volume
5749 of Lecture Notes in Computer Science, pages 18–42. Springer, Trento, Italy.

Eiter, T., Faber, W., Leone, N., and Pfeifer, G. (2000). Declarative problem-solving using the
DLV system. In Minker, J., editor, Logic-Based Artificial Intelligence, pages 79–103. Kluwer
Academic Publishers, Norwell, Massachusetts, USA.

Eiter, T., Gottlob, G., and Mannila, H. (1997). Disjunctive datalog. ACM Transactions on
Database Systems, 22(3):364–418.

Eiter, T., Ianni, G., and Krennwallner, T. (2009b). Answer set programming: a primer. In
Reasoning Web. Semantic Technologies for Information Systems, volume 5689 of Lecture
Notes in Computer Science, pages 40–110. Springer, Heidelberg.

Eiter, T., Ianni, G., Lukasiewicz, T., and Schindlauer, R. (2011). Well-founded semantics for
description logic programs in the semantic web. ACM Transactions on Computational Logic,
12(2):11:1–11:41.

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., and Tompits, H. (2008). Combining answer
set programming with description logics for the Semantic Web. Artificial Intelligence, 172(12-
13):1495–1539.

Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2005). A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pages 90–96.

Eiter, T., Lukasiewicz, T., Schindlauer, R., and Tompits, H. (2004a). Combining answer set
programming with description logics for the semantic web. In Dubois, D., Welty, C., and

86



Williams, M.-A., editors, Proceedings of the 9th International Conference of the Principles
of Knowledge Representation and Reasoning (KR 2004), pages 1–11.

Eiter, T., Lukasiewicz, T., Schindlauer, R., and Tompits, H. (2004b). Well-founded semantics
for description logic programs in the semantic web. In Antoniou, G. and Boley, H., editors,
Rules and Rule Markup Languages for the Semantic Web, volume 3323 of Lecture Notes in
Computer Science, pages 81–97. Springer, Berlin.

Faber, W., Leone, N., and Pfeifer, G. (2004). Recursive aggregates in disjunctive logic pro-
grams: semantics and complexity. In Alferes, J. and Leite, J., editors, Proceedings of the 9th
European Conference on Logics in Artificial Intelligence, volume 3229 of Lecture Notes in
Computer Science, pages 200–212. Springer, Berlin.

Faber, W., Pfeifer, G., and Leone, N. (2011). Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence, 175(1):278–298.

Fages, F. (1994). Consistency of Clark’s completion and existence of stable models. Journal of
Methods of Logic in Computer Science, 1(1):51–60.

Fernández, J. A. and Minker, J. (1995). Bottom-up computation of perfect models for disjunctive
theories. The Journal of Logic Programming, 25(1):33–51.

Fitting, M. (1985). A Kripke-Kleene semantics for logic programs. Journal of Logic Program-
ming, 2(4):295–312.

Fitting, M. (1991). Bilattices and the semantics of logic programming. The Journal of Logic
Programming, 11(2):91–116.

Fitting, M. (1994). Tableaux for logic programming. Journal of Automated Reasoning,
13(2):175–188.

Fitting, M. (2002). Fixpoint semantics for logic programming - a survey. Theoretical Computer
Science, 278(1-2):25–51.

Gebser, M., Kaufmann, B., and Schaub, T. (2012). Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence, 187-188(C):52–89.

Gelfond, M. and Lifschitz, V. (1988). The stable model semantics for logic programming. In
Kowalski, R. and Bowen, K., editors, Proceedings of the 5th International Conference and
Symposium on Logic Programming (ICLP/SLP 1988), pages 1070–1080. MIT Press, Cam-
bridge.

Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3-4):365–385.

Ginsberg, M. L. (1988). Multivalued logics: a uniform approach to reasoning in artificial intel-
ligence. Computational Intelligence, 4(3):265–316.

87



Giunchiglia, E., Lierler, Y., and Maratea, M. (2006). Answer set programming based on propo-
sitional satisfiability. Journal of Automated Reasoning, 36(4):345–377.

Heymans, S. and Toma, I. (2008). Ranking services using fuzzy HEX programs. In Calvanese,
D. and Lausen, G., editors, Proceedings of the 2nd International Conference on Web Reason-
ing and Rule Systems (RR 2008) volume 5341 of Lecture Notes in Computer Science, pages
181–196. Springer-Verlag, Berlin/Heidelberg.

Hinman, P. G. (2005). Fundamentals of Mathematical Logic. A K Peters Ltd., Wellesley,
Massachusetts.

Hitzler, P. and Wendt, M. (2005). A uniform approach to logic programming semantics. Theory
and Practice of Logic Programming, 5(1–2):93–121.

Hoehndorf, R., Loebe, F., Kelso, J., and Herre, H. (2007). Representing default knowledge in
biomedical ontologies: application to the integration of anatomy and phenotype ontologies.
BMC Bioinformatics, 8(1):377.

Kleene, S. C. (1952). Introduction to Metamathematics. Van Nostrand, New York.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scarcello, F. (2006). The
DLV system for knowledge representation and reasoning. ACM Transactions on Computa-
tional Logic, 7(3):499–562.

Lifschitz, V. (2002). Answer set programming and plan generation. Artificial Intelligence,
138:39–54.

Lifschitz, V. (2010). Thirteen definitions of a stable model. In Blass, A., Dershowitz, N., and
Reisig, W., editors, Fields of Logic and Computation, pages 488–503. Springer-Verlag, Berlin.

Lloyd, J. W. (1987). Foundations of Logic Programming. Springer-Verlag, Berlin, 2 edition.

Lobo, J., Minker, J., and Rajasekar, A. (1992). Foundations of Disjunctive Logic Programming.
The MIT Press, Cambridge.

Marek, V., Niemelä, I., and Truszczyński, M. (2004). Logic programs with monotone cardi-
nality atoms. In Lifschitz, V. and Niemelä, I., editors, Proceedings of the 7th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2004), volume
2923 of Lecture Notes in Computer Science, pages 154–166. Springer-Verlag, Berlin.

Marek, V. and Truszczyński, M. (1999). Stable models and an alternative logic programming
paradigm. In Apt, K. R., Marek, V., Truszczyński, M., and Warren, D. S., editors, The Logic
Programming Paradigm: a 25-Year Perspective, pages 375–398. Springer, Berlin.

McCarthy, J. (1959). Programs with common sense. In Proceedings of the Symposium of the
National Physical Laboratory on the Mechanisation of Thought Processes, pages 77–84. De-
fense Technical Information Center.

88



Minker, J. and Rajasekar, A. (1990). A fixpoint semantics for disjunctive logic programs. The
Journal of Logic Programming, 9(1):45–74.

Moore, R. C. (1985). Semantical considerations on nonmonotonic logic. Artificial Intelligence,
25:75–94.

Niemelä, I., Simons, P., and Soininen, T. (1999). Stable model semantics of weight constraint
rules. In Gelfond, M., Leone, N., and Pfeifer, G., editors, Proceedings of the 5th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 1999), volume
1730 of Lecture Notes in Computer Science, pages 317–331. Springer-Verlag, Berlin.

Pelov, N. (2004). Semantics of logic programs with aggregates. PhD thesis, Katholieke Univer-
siteit Leuven, Leuven.

Pelov, N. and Truszczyński, M. (2004). Semantics of disjunctive programs with monotone ag-
greggates - an operator-based approach. In Delgrande, J. P. and Schaub, T., editors, Proceed-
ings of the 10th International Workshop on Non-Monotonic Reasoning (NMR 2004), pages
327–334.

Przymusinski, T. (1990). Well-founded semantics coincides with the three-valued stable seman-
tics. Fundamenta Informaticae, 13(4):445–463.

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(1-2):81–132.

Seipel, D., Minker, J., and Ruiz, C. (1997). Model generation and state generation for disjunctive
logic programs. The Journal of Logic Programming, 32(1):49–69.

Shen, Y.-D. (2011). Well-supported semantics for description logic programs. In Walsh, T., ed-
itor, Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI
2011), pages 1081–1086. AAAI Press, California.

Shen, Y.-D. and Wang, K. (2012). FLP Semantics without circular justifications for general
logic programs. In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI
2012).

Simons, P., Niemelä, I., and Soininen, T. (2002). Extending and implementing the stable model
semantics. Artificial Intelligence, 138:181–234.

Smyth, M. B. (1978). Power domains. Journal of Computer and System Sciences, 16:23–36.

Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309.

Truszczyński, M. (2006). Strong and uniform equivalence of nonmonotonic theories – an alge-
braic approach. Annals of Mathematics and Artificial Intelligence, 48(3-4):245–265.

Van Emden, M. and Kowalski, R. (1976). The semantics of predicate logic as a programming
language. Journal of the ACM, 23(4):733–742.

89



Van Gelder, A., Ross, K. A., and Schlipf, J. S. (1991). The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):619–649.

Wang, K. and Zhou, L. (2003). Comparisons and computations of well-founded semantics for
disjunctive logic programs. ACM Transactions of Computational Logic, 6(2):295–327.

90


	Contents
	1 Introduction
	1.1 Background
	1.2 Problem Statement and Method
	1.3 Summary of Contributions
	1.4 Structure of the Thesis

	2 HEX programs
	2.1 Syntax
	2.2 FLP-Answer-Set Semantics

	3 Approximation Theory and Classical Logic Programming
	3.1 Bilattices
	3.2 Approximations, Operators, Kripke-Kleene Fixpoints
	3.3 Stable revision operator and stable fixpoints
	3.4 Ultimate approximations and ultimate fixpoints

	4 Fixpoint Semantics of Normal HEX Programs
	4.1 Kripke-Kleene semantics
	4.2 Three-Valued Answer-Set Semantics
	4.3 Well-Founded Semantics
	4.4 Ultimate Semantics

	5 Semantic Properties of Normal HEX Programs
	5.1 Monotone Normal HEX Programs Have Nice Properties
	5.2 Two-Valued Answer Sets are FLP-Answer Sets
	5.3 Well-Founded Semantics Approximate FLP-Answer-Set Semantics
	5.4 Two-Valued Answer-Sets are Well-Supported

	6 Fixpoint Semantics of Disjunctive HEX programs
	6.1 Non-Deterministic Operator
	6.2 Iterating the Non-Deterministic Operator by Computations
	6.3 Non-Deterministic Approximations and Computations
	6.4 Answer-Set Semantics
	6.5 Ultimate Answer-Set Semantics

	7 Semantic Properties of Disjunctive HEX Programs
	7.1 Disjunctive Answer-Set Semantics extend Normal Answer-Set Semantics
	7.2 Answer Sets are Derivable
	7.3 Answer Sets are Supported
	7.4 Answer Sets are FLP-Answer Sets

	8 Related Work
	8.1 Comparison to Pelov2004a
	8.2 Disjunctive Fitting Operator
	8.3 Strong and Weak Answer-Set Semantics
	8.4 Well-Supported Semantics

	9 Conclusions
	Bibliography

