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Abstract
The labeling of point features on a map is a well-studied topic. In a static setting, the goal is to
find a non-overlapping label placement for (a subset of) point features. In a dynamic setting, the
set of point features and their corresponding labels changes, and the labeling has to adapt to such
changes. To aid the user in tracking these changes, we can use morphs, here called transitions,
to indicate how a labeling changes. Such transitions have not gained much attention yet, and we
investigate di�erent types of transitions for labelings of points, most notably consecutive transitions
and simultaneous transitions. We give (tight) bounds on the number of overlaps that can occur
during these transitions. When each label has a (non-negative) weight associated to it, and each
overlap imposes a penalty proportional to the weight of the overlapping labels, we show that it is
NP-complete to decide whether the penalty during a simultaneous transition has weight at most k.

Related Version arXiv:2202.11562

1 Introduction

Maps are ubiquitous in the modern world: from geographic to political maps, and from
detailed road networks to schematized metro maps, maps are used on a daily basis. Advances
in technology allow us to use digital maps on-the-fly and in a highly interactive fashion, by
means of panning, zooming, and searching for map features. Besides changes induced by the
user, maps can also change passively, for example automated panning during gps routing, or
changing points of interest when visualizing time-varying geospatial (point) data.

Important features on a map are often labeled. Examples of such features are areas
(such as countries and mountain ranges), curves (for example roads and rivers), and most
importantly points (of interest). The aforementioned interactions force map features and their
corresponding labels to change, by appearing, disappearing, or changing position. Instead of
swapping between the map before and after such changes, we can use morphs, here called
transitions, to allow the user to more easily follow changes in map features and labelings.
Figure 1 shows why such transitions are important: even for two very similar map labelings,
a lot of mental e�ort can be required to identify the di�erences.
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Figure 1 A visual scan of the individual labels is necessary to identify all changes [11].
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Figure 2 (a) The four candidate positions for label l of point p, with l placed in the top-right
position. (b) Labels continuously move between candidate positions using the sliding-position model.

While previous research focused mainly on (the complexity of) computing labelings, in
various static [1, 8, 12], interactive [3, 4, 9, 10], and dynamic [2, 5] settings, in this abstract
we study transitions on maps that show point features P and their labels L. Let P be a
finite point set in R

2, where each point pi œ P has a label li œ L associated to it. Labels
are axis-aligned unit-sized squares in the frequently used four-position model, that is, each
point pi has four possible candidate positions to place label li [8] (see Figure 2a). While
labels are often modeled as arbitrary (axis-aligned) rectangles, we use squares with side
length ‡ = 1 for simplicity, and show in [7] how our results extend to arbitrary rectangles. A
labeling L ™ L of P consists of a set of pairwise non-overlapping labels, and can be drawn
on a map conflict-free, by drawing only the labels that are in L with their associated points.
If the label l œ L for a point p œ P is not contained in L, we do not draw p either.

Furthermore, we work in a dynamic setting, where points appear and disappear at di�erent
moments in time, and hence the set P changes through additions and deletions. Every time
additions and deletions are made to P , a new overlap-free labeling must be computed, thus
resulting in a change from labeling L1, before the changes, to labeling L2, afterwards. In this
abstract we study di�erent types of transitions from L1 to L2. During such a transition, the
individual labels are allowed to move in the sliding-position model [12] (see Figure 2b). Our
aim is to find transitions that achieve optimization criteria, such as minimizing the number
of overlaps during a transition, or minimizing the time required to perform a transition. To
our knowledge, this is the first time transitions have been studied in this way.

Problem description. Given two (overlap-free) labelings L1 and L2, we denote a transition
between them with L1 ≠æ L2. Such a transition consists of changes of the following types.

Additions If only label li of a feature point pi must be added, we denote this by L1

Ai≠æ L2.
Removals If only label li of a feature point pi must be removed, we denote this by L1

Ri≠æ L2.
Movements If only label li of a feature point pi must change from its position in L1 to a new

position in L2, we denote this by L1

Mi≠≠æ L2. Movements are unit speed and axis-aligned,
in the sliding-position model. Note that a diagonal movement, as in Figure 3a (left),
takes twice as long as a movement to an adjacent position.

A label is stationary if it remains unchanged during a transition. Applying multiple transitions
consecutively is indicated by chaining the corresponding transition symbols: L1

MiMj≠≠≠æ L2

denotes that label li moves before label lj . Furthermore, L1

M≠æ L2 is a shorthand for
applying all movement-transitions simultaneously. All these notions extend to additions and
removals, using A and R, respectively, instead of M . A transition has no e�ect if no point
must be transformed with the respective transition, e.g., even if there are no additions, the
transition L1

A≠æ L2 is still applicable; it simply does not modify the labeling.
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Figure 3 (a) Minimizing overlaps by moving around the gray stationary label. (b) Minimizing
duration by using a single movement along the green arrow, instead of moving along the red arrows.

We aim to identify types of transitions that try to achieve the following goals.

G1– Minimize overlaps While the two labelings are overlap-free, overlaps can occur during
the transition from L1 to L2. Those overlaps should be avoided as much as possible, by,
for instance, adjusting the movement direction of labels, as shown in Figure 3a.

G2– Minimize transition duration The main goal is still to show a map in a (mostly) static
state. Hence, we want to perform the transitions as fast as possible. This can be achieved
by disallowing detours, as in Figure 3b, or by performing the changes simultaneously.

Optimizing both goals simultaneously is often impossible as there can be a trade-o�: per-
forming the transition as fast as possible to achieve G2 often leads to unnecessary overlaps,
while preventing as many overlaps as possible to achieve G1 may require more time. However,
to work towards both G1 and G2, we can perform all additions simultaneously, as well as all
removals. Furthermore, if we perform removals before movements, and movements before the
additions, we create free space for the movements, to reduce the number of overlaps without
wasting time. Let X be an arbitrary way of performing all movements required to change
from L1 to L2 (consecutively and/or simultaneously), then we can observe the following.

I Observation 1. A transition of the form L1

RXA≠≠≠æ L2 aids in achieving both G1 and G2.

In the following sections we introduce and analyze di�erent transition styles, each a
variant of the style RXA, as prescribed by Observation 1, while filling in X in a unique way.

All omitted proofs and details can be found in the complete version [7].

2 Consecutive Transitions

Naive transitions. Before we can propose more elaborate transition styles, we first evaluate
the potential overlaps for a single label performing its movement. Figure 4a shows how only
a single stationary square label can interfere with the moving label.

I Lemma 2.1. In L1

RMiA≠≠≠≠æ L2, where only label li moves, at most one overlap can occur.

Next we consider an arbitrary order of all n moving labels in a transition. We define a
conflict graph, which has a vertex for each moving label, and an edge between overlapping
labels. With a packing argument we locally bound the degree of each of the n moving labels
to 14 by considering the start, intermediate, and end position of such a label (these overlaps
are achieved in Figure 4b). By the handshaking lemma this results in at most 7n overlaps.

I Lemma 2.2. In L1

RM1 ...MnA≠≠≠≠≠≠≠æ L2 at most 7n overlaps can occur.

EuroCG’22



39:4 Transitions in Dynamic Map Labeling

(b)(a)

li

li

lj

Figure 4 (a) Since all labels are squares with side length ‡, the moving blue label li can overlap
only a single gray stationary label lj . (b) The blue label li overlaps 14 other labels during the
movement transitions. The green labels move before li, red labels move after li.

DAG-based transitions. To refine the naive approach, we model dependencies between
movements in a movement graph, and use it to order movements and avoid certain overlaps.

I Definition 2.3 (Movement graph). Let M = {M1 , . . . ,Mn} be a set of movements. Create
for each movement Mi œM a vertex vi, and create a directed edge from vi to vj , vi æ vj , if
some intermediate or end position of Mj overlaps with the start position of Mi , or the end
position of Mj overlaps with some intermediate position of Mi . If intermediate positions of
Mi and Mj overlap, create the edge vi æ vj , i < j. This results in the movement graph GM.

An example for a movement graph is shown in Figure 5.

I Theorem 2.4. Movements in L1

RM1 ...MnA≠≠≠≠≠≠≠æ L2 can be rearranged such that at most n+m
overlaps occur, if removing m edges transforms GM, with M = {M1 , . . . ,Mn}, into a DAG.

Proof. By Lemma 2.1, we know that at most one overlap occurs when moving a single label
to a free end position. This leads to at most n overlaps for n consecutively moving labels, if
no label moves to (or through) a position occupied by a label, which starts moving later.

Let GM be a movement graph with M = {M1, . . . ,Mn}. There are two cases:

Case (1) If GM is acyclic, then handling all movements according to any topological ordering
of the vertices of GM produces no additional overlaps.

Case (2) If GM contains cycles, then overlaps may be inevitable because each label in such
a cycle wants to move to or through a position that is occupied by another moving label.
Moreover, as the movements happen sequentially, one label in this cycle must move first
and therefore may cause an overlap. Let m be the smallest number of edges that must be
removed to break each cycle in GM, i.e., the size of a minimum feedback arc set S. As
GM is cycle-free after removing S, case (1) applies and m additional overlaps su�ce. J

We can see in Figure 5 that this bound is tight. Furthermore, it is not always necessary to
perform all movements consecutively. We can observe that movements which are unrelated in
GM can be performed simultaneously: when no overlap is possible, there is no edge in GM.
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Figure 5 (a) The blue label is added in this transition and forces n+m inevitable overlaps during
movement (n = 8 and m = 1). Gray labels are stationary. (b) The corresponding movement graph.

3 Simultaneous Transitions

Figure 6 shows three timelines of di�erent transition styles, (1) a naive consecutive transition,
(2) a DAG-based transition, and (3) simultaneous movement. While (1) produces four overlaps
and takes four units of time, (2) and (3) produce no overlaps, and (3) only takes a single unit
of time. This shows that it is sometimes unnecessary to perform the movements consecutively
to minimize overlaps. In this section, we investigate how simultaneous movements influence
the number of overlaps, and the complexity of minimizing overlaps.

I Theorem 3.1. In L1

RMA≠≠≠æ L2 at most 6n overlaps can occur, where n is the number of
labels that must be moved, and all movements are performed at unit speed.

Proof sketch. We again use a conflict graph, as for Lemma 2.2, with a more intricate packing
argument than before (see Figure 7). We consider a ‡-wide area around the movement of
each label l, and argue where the start positions of labels overlapping l can be located inside
this area. We then bound the degree of each of the n moving labels to 12 (and this degree is
achieved in Figure 7d), which by the handshaking lemma results in at most 6n overlaps. J
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Figure 6 Comparison of possible movement orderings with respect to G1 and G2.
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Figure 7 Overlapping regions for (a) non-diagonal and (c) diagonal movement of the blue label l.
Label l has at most (b) eight overlaps, (d) twelve overlaps with moving (white) labels. Labels
starting in orange/red areas cannot overlap l, as l moves away, or they overlap the end position of l.

3.1 Complexity of Computing Simultaneous Transitions
In this section, we show that it is NP-complete to minimize the number of overlaps in a
weighted L1

RMA≠≠≠æ L2-transition by choosing the direction of diagonal movements.

I Definition 3.2 (Weighted Transition). Let L1

�≠æ L2 be a transition, where � denotes
an arbitrary transition style of additions, movements, and removals, and let w be a weight
function that assigns to each label l œ L a non-negative weight w(l) œ R

+

0
. A weighted

transition L1

�≠æ
w

L2 performs L1

�≠æ L2, but when two labels li and lj overlap, a penalty of
weight w(li) ·w(lj) is introduced. The total penalty W is equal to the sum of penalty weights.

I Problem 1. Given a weighted transition L1

RMA≠≠≠æ
w

L2 and k œ R
+

0
, can we assign a

movement direction to each diagonal movement such that the total penalty W is at most k?

I Theorem 3.3. It is NP-complete to decide whether W is at most k for L1

RMA≠≠≠æ
w

L2.

Proof sketch. Given a movement direction for each label, it is easy to check whether W is
at most k by considering each pair of labels and checking for overlaps. Hence Problem 1 is
contained in NP. For NP-hardness, we reduce from an instance F of Planar Monotone
Max 2-Sat [6]. Figure 8 gives an overview of the required gadgets. Clause and variable
gadgets consist of two opposing labels at their core, corresponding, respectively, to the
assignments of the two literals in a clause, or the binary choice for a variable. For an
unsatisfied clause, an overlap occurs inside the clause gadget, whenever both labels move
towards each other (inwards). The corresponding labels have weight one, and hence such
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Figure 8 Reduced instance for the formula F = (¬x ‚ ¬z) · (¬x ‚ ¬y) · (¬y ‚ ¬z) · (x ‚ y) ·
(y ‚ z) · (x ‚ z). The weight of white and green labels is n + 1 and 1, respectively.

an overlap would incur a penalty of weight one. A variable gadget has two opposing labels
for setting the variable to true or false. Choosing a movement direction outward from the
variable gadget, for example on the “true”-side, will cause a domino e�ect, propagating
towards the gadgets of clauses with negative occurrences of this variable. There it results in
inward movement, and hence this corresponds to setting the variable to not be false (and thus
be true). Choosing the outward movement for both variable states is never beneficial: that
variable is neither true nor false. The movement directions chosen in the variable gadgets are
propagated to the appropriate clauses using the (planar) embedding of the incidence graph
of F . All labels outside of clause gadgets have weight n+ 1 and hence producing an overlap
outside of a clause gadget will result in a large penalty of weight greater than n. As such, we
either have movement directions that produce a total penalty of at most k for some positive
k < n, and overlaps correspond to unsatisfied clauses, or we have a total penalty of at least n,
and no clauses can be satisfied (or the variable assignment is inconsistent). Thus, n ≠ k
clauses are satisfiable in F , if and only if we have k overlaps in our reduced instance. J

4 Conclusion

In this abstract we performed a first investigation into the number of overlaps produced by
transitions on labelings of points, and started by proving tight upper bounds for various
transition styles. Finally, we showed that it is NP-complete to decide whether a weighted
simultaneous transition has a penalty of at most k. We see this abstract as a first step
towards understanding such transitions in map labeling. Therefore we have many open
questions for future work, such as:

Do transitions work well in practice? Can we verify our results with a prototype?

EuroCG’22



39:8 Transitions in Dynamic Map Labeling

Should we develop new transition styles or improve the existing ones? Can we utilize more
structured movement, like performing all movements in the same direction simultaneously?
Is choosing the direction of labels in simultaneous transitions still NP-hard in the unit
weight case?
Can we analyze transitions from the point of view of (algorithmic) stability?
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