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Abstract

With the appearance of Microsofts Kinect sensor gesture recognition has become a commonly
discussed topic. Since gestures are a natural form of communication used by humans, interfaces
that are controlled by gestures recognition is a promising way to improve the interaction be-
tween humans and computers. Therefore also the FoSIBLE1 project, part of the AAL2 program,
introduces a gesture controlled user interface to ease up the interaction for elderly people using
a digital system. But not only new user interfaces are interesting in context with gesture control,
but also the question how the motion of humans is captured has different answers.

In this thesis it is evaluated, if the AE3 data generated by the UCOS4 sensor can be used for
hand/arm gesture recognition. The results from this are a first step for the future development
of an embedded gesture recognition device based on the UCOS sensor. The UCOS sensor is a
novel biologically inspired 3D sensing device developed by AIT5 that senses scene dynamics
and exclusively transmits edge information of moving objects while hiding static areas. The so
gathered pixel information data are communicated via a sparse, asynchronous protocol called
address-event-representation. Trajectories of moving objects like hands/arms are also encoded
within this address-event data. A specially modified firmware for gesture recognition enables
filtering these trajectories out of the address-event stream. Based on this data features are cal-
culated which are used to classify the gestures using different machine learning methods, the
Hidden Markov Model and the Decision Tree. Both classification methods are trained with dif-
ferent sized sets of gestures containing ten, eight and four gestures. From each gesture at least 52
samples are used to evaluate the gesture recognition. The results of the Hidden Markov Model
and the Decision Tree are compared with each other.

For Evaluation ten different gestures (eight directional gestures, a select gesture and a return
gesture) which are intended to control a multimedia interface were defined. Totally 1463 ges-
tures were recorded, annotated and stored in a gesture database. The classifiers were trained with
gestures from this database. Varying the parameters and using cross validation following results
were obtained for both methods: Recognition rate with ten gestures approx. 90%, recognition
rate with eight gestures approx. 95% and recognition rate with four gestures approx. 100%.

1Fostering Social Interaction for the Well-Being of the Elderly
2Ambient Assisted Living
3Adress Event
4Universal COunting Sensor
5Austrian Institute of Technology
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Kurzfassung

Gestenerkennung ist spätestens seit dem Erscheinen vom Microsofts Kinect Sensor ein weitrei-
chend bekanntes Thema. Da Gesten ein vom Menschen natürlich eingesetztes Kommunikations-
mittel darstellen verspricht man sich von auf Gestenerkennung basierenden Benutzerinterfaces
eine Verbesserung der Interaktion zwischen Menschen und Computern. Auch im Zuge des AAL6

Projektes FoSIBLE7 soll eine gestenbasierte Benutzeroberfläche älteren Menschen die Interak-
tion mit einem digitalen System erleichtern. Aber nicht nur neue Benutzerinterfaces sind von
Interesse, auch die Frage wie die Bewegung von Menschen erfasst wird kann auf vielfältige Art
und Weise gelöst werden.

In dieser Diplomarbeit wird untersucht, ob die vom UCOS8 Sensor generierten AE9 Daten zur
Erkennung von Hand/Arm Gesten verwendet werden können. Die Arbeit dient als Grundlage für
das zukünftige Ziel, auf Basis des UCOS Sensors ein integriertes System zur Gestenerkennung
zu entwickeln. Der UCOS Sensor ist ein neuartiger, vom AIT10 entwickelter, biologisch inspi-
rierter 3D Sensor, welcher auf temporalen Kontrast aufgrund von Szenendynamiken reagiert
und die so gewonnenen Pixelinformationen auf in Form von Adress-Events auf asynchroner
Basis sendet. Innerhalb dieser Adress-Events sind auch Trajektorien von bewegten Objekten,
wie beispielsweise Händen, encodiert. Eine speziell für diese Anwendung modifizierte Firmwa-
re ermöglicht es, diese Trajektorien aus dem Adress-Event Strom zu filtern. Aus diesen Daten
wurden grundliegende Features berechnet, welche dann für eine Klassifikation durch Hidden
Markov Modelle und durch einen Entscheidungsbaum verwednet wurden. Die beiden Klassi-
fikationsmethoden wurden mit verschieden großen Gesten-Sets bestehend aus zehn, acht und
vier vordefinierten Gesten trainiert. Jedes der Gesten-Sets enthielt mindestens 52 Samples. Die
Ergebnisse beider Methoden wurden miteinander verglichen.

Für die Evaluierung wurden zehn verschiedene Gesten (acht direktionale Gesten, eine Auswahl-
geste und eine Retourgeste), welche zur Steuerung eines Multimediainterfaces vorgesehen sind,
definiert. Bei Testaufnahmen wurden 1463 Gesten aufgenommen und nach einer manuellen An-
notation in einer Gestendatenbank gespeichert. Diese Daten wurden dann zum Trainieren der
Klassifikatoren verwendet. Mittels verschiedener Parameter wurde dann eine Kreuzvalidierung

6Ambient Assisted Living
7Fostering Social Interaction for the Well-Being of the Elderly
8Universal COunting Sensor
9Adress Event

10Austrian Institute of Technology
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der Algorithmen durchgeführt. Dabei ergaben sich mit beiden Methoden für zehn Gesten Erken-
nungsraten um die 90%, für acht Gesten Erkennungsraten um 95% und für vier Gesten Erken-
nungsraten nahe 100%.
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CHAPTER 1
Introduction

The target of this work is to evaluate, if the AER1 data generated by AIT2s UCOS3 sensor can be
used for gesture recognition. This evaluation is done as part of the AAL4 [1] project FoSIBLE5,
because the development of an alternative natural and easy-to-use input method for a multimedia
interface is one of the aims of the project [4]. FoSIBLE was established to support and relieve
social interaction in the daily life of the elderly with regard to their individual living circum-
stances, needs and interests. According to the research conducted for FoSIBLE, many people
prefer aging at home over institutional care facilities [52], whereas remaining in the community
in later life can be problematic - not only because of medical problems, but also because of
the loss of companionship [52]. The loss of companionship can lead to isolation, depression,
decreased socialization and may have negative impacts on the general health status [52]. While
social support aims to facilitate interaction within the neighborhood, social interactions beyond
the near environment with remotely living family members and friends also seems to be impor-
tant [4].

1.1 Motivation

Gestures are an integral part of human communication [39]. They are (wittingly or unwittingly)
used to send signals to other humans and the environment without using words and without
making sounds. Be it for enhancement or simple support of human communication, gestur-
ing is natural in human behavior [24] [39]. Therefore, gesture recognition promises to provide
an easy-to-use, intuitive and natural interface for the interaction with computers or electronic
systems in general [62]. Especially the arrival of Microsoft’s Kinect 3D-sensing device on the

1Address Event Representation
2Austrian Institute of Technology
3Universal COunting Sensor
4Ambient Assisted Living
5Fostering Social Interaction for the Well-Being of the Elderly
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consumer market has triggered a boom in the development and demonstration of gesture control
interfaces [14]. In 2012 at least 350 companies are developing custom applications that are us-
ing the gesture recognition capabilities of Microsoft’s Kinect [14]. With the increased interest in
gesture recognition it is also interesting to evaluate another technological approach for sensing
human motion in this field of application. Therefore the aim of this work is to evaluate whether
it is possible to use AIT’s UCOS sensor for gesture recognition. A comparison of the techno-
logical sensor approaches is not part of this work.

UCOS

Kinect Name of Menu

Figure 1.1: Early concept of intelligent furniture with an integrated console-based community
platform controlled by gestures

The development of a console-based community platform and focusing on sensor-based hap-
tic input and output devices and intelligent furniture in order to enable shared experiences with
others is a major task of the FoSIBLE project [4]. An example for early concepts of a intelli-
gent piece of furniture is given in Figure 1.1, where a TV-set and the sensor for gesture control
is mounted together in a cupboard. The aim to integrate gestures for controlling the FoSIBLE
application is to offer an alternative to the main input method based on a tablet device. The
users should not need any additional device, they can immediately start to interact with the sys-
tem by just moving their hands. Searching the remote control devices will be a thing of the
past, since the basic controls will be available without additional control devices. Gestures are

2



a natural input modality that evolved from real-world interaction styles being more intuitive and
easier to learn than indirect input modalities like remote controls [38]. According to a study
which evaluated performance and acceptance of older adults using freehand gestures for TV
Menu control [20] the persons participating had a very positive attitude towards gesture-based
interactions. This study supports the conclusion, that gesture recognition is a promising in-
put method for the elderly. Under this circumstances the verification of a novel sensor device
for a new application - gesture recognition - also becomes a topic worth to take a further look on.

1.2 Problem Statement and Scope of Work

AIT has developed biomimetic inspired stereo vision sensors, which use the AER data format.
Information on local intensity changes is detected and measured asynchronously and individ-
ually by each pixel at temporal resolution in the microsecond range. The operation principle
results in highly efficient compression of visual data through temporal redundancy suppression
at the focal-plane [59]. Data are communicated via a sparse, asynchronous, event based pro-
tocol, the address-event-representation, or AER. By its nature, this vision-sensor technology
is especially suited for applications involving accurate detection of continuous motion like the
tracking of hand/arm movement in gestures. The AE6 representation is fundamentally different
from the image frame data that are usually produced by conventional digital systems at a fixed
frame rate [13].

Currently the biomimetic stereo vision sensor is used for counting persons, therefore it is named
Universal COunting Sensor (UCOS). Gesture recognition is a promising new application for
this stereo vision sensor. The target of this master thesis is to develop computation methods
for efficient processing of AER data for the recognition of hand/arm gestures. This means that
software algorithms for the extraction of features and for gestures recognition on the AER data
stream have to be developed.

The outcome of this work evaluates if the AER-Data produced by the UCOS sensor can be used
for dynamic hand/arm gesture recognition. Also two different training and recognition concepts
will be compared: a machine-learning and a rule-based approach. The rule-based approach
has the advantage, that (a possible future embedded) implementation of the gesture recognition
algorithms in the device will not take too much effort, since the rules can easily be transferred
into the embedded environment. A machine learning approach is more state-of-the-art and it
also led to promising results in preceding works [42] [67]. A system ready to be released on the
consumer market is not the aim of this work.

6Adress Event
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1.3 Methodological Approach

The investigation is based on the AER data produced by the existing UCOS stereo sensor sys-
tem, which is actually designed to count people passing by underneath it. The work covers the
whole process from data acquisition to gesture recognition. A specific set of simple hand/arm
gestures is used for this study. AIT has already implemented some basic algorithms to process
AER data. This algorithms that are implemented in Mathworks MATLAB7. As basic format
conversion functions of those algorithms are used and/or extended during this work, Mathworks
MATLAB is used for all calculations and programming tasks in this thesis.

Tracking the closest object that moves next to the sensor is already implemented in the embed-
ded firmware of the device. The extracted tracks are also encoded in the UCOS sensor’s AER
data stream. When moving a hand/arm in front of the device (performing a hand/arm gesture)
the sensor will continuously output the position of the hand/arm given that it is the closest object
to the sensor.

The resulting tracks have to be cleaned, filtered and preprocessed. The data from the prepro-
cessed tracks is used to extract features that may contain velocity, direction and shape of the
movements. Then it will be analyzed which of the features are useful for gesture recognition.
It is expected that combinations of features - for example direction an shape of the movement -
resemble individual gestures, which should be detected by the gesture recognition algorithms.

For all test and evaluation activities test data was recorded, evaluated and categorized. A
database for the track data had to be created. In the first attempt a rule-based approach was
used to evaluate the features and to detect the gestures. Furthermore the features will be eval-
uated using a stochastic machine learning model (HMM8, SVM9, ...) to detect the different
gestures that were performed. The results of the-rule based and the machine-learning approach
are evaluated individually and are then compared against each other.

1.4 Main Contribution

The evaluation, if the AER data generated by the UCOS sensor can be used for gesture recog-
nition, represents the main contribution of this work. The focus is, how this data can be used,to
automatically train machine-learning based classifiers for gesture recognition. Two different ma-
chine learning approaches are used to demonstrate gesture recognition using the UCOS sensor,
HMM and DT10. The HMM is chosen, because it has the ability to model the time aspect of
the features describing a gestural hand/arm motion. The DT was chosen, because it automati-
cally generates a set of rules, that can be transferred to other programming environments (i.e.

7Matrix Laboratory, a numerical computing environment and fourth-generation programming language devel-
oped by MathWorks

8Hidden Markov Model
9Support Vector Machines

10Decision Tree
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C or others used for embedded implementation) with little effort, because this rules consist of
widely-used “if-then” statements.

The main contribution does not focus on the technological characteristics of the UCOS sensor,
but on the processing of the AER data and the algorithms for machine-learning based gesture
recognition. One function of the UCOS sensor is to track hands/arms that are moving in front
of the sensor. Trajectories of this movements are encoded within the AER data generated by
the sensor. This trajectories have to be filtered out of the AER stream to be used for gesture
recognition, which was implemented within this work.

For this thesis a tool to annotate the recordings that are used for training an evaluation of the
classifiers, had to be implemented. Another contribution is the selection of features for ges-
ture recognition. The methods to calculate the features, a visual inspection of features and a
discussion on their usability for gesture recognition were made for this thesis. Due to the char-
acteristics of the UCOS sensor, only dynamic gestures can be recognized [13]. Taking this into
account a GUI11-concept and gestures based on this GUI-concept (eight directional gestures, a
select gesture and a return gesture) were defined to be used for training and evaluation. Gestures
were recorded and annotated resulting in a gesture database containing 1463 samples. This sam-
ples were used to train the two machine-learning methods, HMM and DT which are proposed
for gesture recognition in this thesis.

1.5 Thesis Structure

On the first pages the motivation and short introduction into the topic of this work is presented.
In Chapter 2 related work and the state of the art is presented. First the topic of “human computer
interaction” that is relevant for human gesture recognition is discussed. This topic is followed
by an overview about the nature of human gestures. For recognition tasks gestures can divided
in different categories, mainly concerning their meaning and the way they are performed. This
topic is also presented in Chapter 2. An introduction into gesture recognition, an introduction of
selected features and a overview on selected classification methods is given in Chapter 2. Chap-
ter 2 is finalized by introducing related works concerning human motion recognition.

In Chapter 3 the methodology for this work is presented. The chapter begins with an introduc-
tion of the UCOS sensor used in this thesis. After introducing the sensor a GUI concept to be
used with gestures is presented, this section is followed by the introduction of the GUI-related
gestures defined for this work. An introduction into the methods for data recording and pre-
processing is also part of this section as is the test database and the annotation method used to
generate the ground truth. The features calculated from the data generated by the UCOS sensor
are presented within this section. Also the machine learning methods used in this work are part
of the methodology discussion. Finally the validation method used in this work is presented at
the end of Chapter 3.

11Graphical User Interface
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In Chapter 4 the implementation oft the methodologies presented earlier is described. The most
important functions used for the training and the evaluation of the classifiers is presented in this
chapter.

Chapter 5 begins with a visual evaluation of the calculated features used for gesture recogni-
tion. Afther this a preface for classification concerning the test databases is given. This preface
includes an overview of the actual contents of the test database generated for this work. Then
the results for the classification with Hidden Markov Models are presented, which is followed
by the results for the gesture recognition using a Decision Tree. Chapter 5 is finalized with a
comparison of the results for both methods.

On the last pages of this thesis, in Chapter 6, a summary of the results from this work is given and
also a outlook into the future is presented. Three appendices containing additional information
are also added to this work.
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CHAPTER 2
Related Work and State of the Art

This chapter gives an overview of related work on gestures, human computer interaction and
gesture recognition. Section 2.1 introduces the term “human computer interaction”, which is
relevant for human gesture recognition in context with interaction with machines. Section 2.2
gives a brief overview on the nature of human gestures and introduces concepts to categorize
gestures. A brief and general summary about the topic of gesture recognition, the typical steps
necessary for gesture recognition, an introduction of selected features and a brief overview on
classification methods are provided in Section 2.3. In Section 2.4 related work on gesture recog-
nition is presented - two works that are using data acquired with a similar sensor as UCOS and
other works that primary intend to recognize dynamic gestures.
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2.1 Human Computer Interaction

This section gives a short overview on human computer interaction. It is linked to the same topic
discussed in [38]. The main intention of HCI1 is to analyze interactions between humans and
machines, especially computers. Figure 2.1 illustrates that knowledge of different areas of re-
search have to be linked together. Therefore HCI is an interdisciplinary field of science. Figure
2.1 shows that experts from diverse fields of knowledge like human sciences, technology and
interface design have to cooperate to make the work with computers (and machines) as com-
fortable and practical as possible [21]. As the following historic example shows, one may never
underestimate the importance of HCI. The primary cause for the accident in the nuclear power
plant on Three Mile Island (USA) was poor user interface design: the overload of information
displayed on a large number of gauges and displays made it impossible for the operators to find
the relevant error messages which could prevent the disaster [89]. This shows that in critical
areas, where accidents have a high impact on the environment (e.g. nuclear pollution), HCI
becomes important to rule out human error [38] [89]. HCI is not only important in critical appli-
cations. It is essential in all areas, where humans and computers have to work together [48] [38].

Figure 2.1: The interdisciplinary field of research of HCI according to [21]

1Human Computer Interaction
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Interdisciplinary research combining human sciences, technology and interface design has lead
to a better understanding how humans work with computers and machines [38]. According to
Norman [34] the interaction between humans and computers can be modeled by the seven stages
of action illustrated in Figure 2.2. The model visualizes the steps humans take when interacting
with computer systems. It describes how users of a computer system form goals and undertake
the steps required to achieve the goal of using a computer. The seven stages of action describe
the problem experts (writers, designers and engineers) face when they have to meet the goals
of the users as two gulfs between the user and the system (developed by the experts). The gulf
of execution represents the users difficulty to translate a psychological goal into a physical ac-
tion. The user’s difficulty in evaluating whether the response of the computer system meets the
desired goal is represented by the gulf of evaluation. For a successful interaction between hu-
mans and machines it is highly important to build a bridge between the physical and the mental
world [34]. [38]

To think about HCI is also useful for gesture recognition intended to control computers. Es-
pecially when the gesture patterns are predefined and cannot be changed by the users, intuitive
gestures have to be used [79]. In the state of development of a gesture recognition system re-
search (like [20]) has to be conducted, to find out, what gestures are intuitive for the users [79].
This has to be done to reduce the problems appearing in the gulf of execution to a minimum.

Figure 2.2: Model of interaction according to [21]
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2.2 Gestures

For the development of a system for gesture recognition it is necessary to know what is to be
recognized. Therefore, in this section an overview on the topic “gestures” is presented. The first
part of this section deals with the meaning of gestures for human communication. The second
part of this sections introduces how to differentiate and categorize human gestures.

Gestures and Humans

One of the first means of communication used by children are gestures as the usage of ver-
bal means of communication emerges after gesticulation in human development [39]. Gestures
and body language play a natural role in the communication of grown ups [39]. For example
politicians adjust their body language to to emphasize their message in order to win voters [55].
Gesture forms an integrated system with speech and strengthens the message transported con-
veyed with words [39]. According to [39] listeners are more likely - how much more is not
told by [39] - to grasp what was said in a speech if it is accompanied by a gesture conveying
the same message as the words said. Vice versa, a gesture contrary to the words can lead to
misunderstandings, making the effect worse than using no gestures at all [39]. There is also
considerable evidence, that gestures do not only play an important role for listeners, but they are
also important for the speaker [39]. Fewer mistakes and verbal hesitations occur when speakers
support their talk by gestures while suppressing gestures leads to a less fluent speech [39]. Ges-
tures are used to support verbal communication even when communication partners do not see
each other, for example, when using the telephone or an intercom system [39]. Even speakers
who are blind from birth and therefore have never seen somebody moving their hands or amrs.
They even do so, using gestures, when they are talking to other blind people. [38] [39] [18] [66]

It is not clearly defined, what gestures have to look like. As mentioned before different cultures
are full of varying ways of communication by gestures and body language [62]. If one thinks
about dances and rituals of indigenous people one can see that they are full of gestures [30] [27].
This is another prove, of how deep communication through the body and through movement of
body parts is embedded within human beings. Gestures can have different meanings, depending
on current situations, or on cultural background [38]. For example the well-known hand-gesture
divers use to signal “OK” (connecting the thumb and forefinger in to a circle, and holding the
other fingers straight or relaxed in the air) has other meanings too. In some countries this gesture
symbolizes a number, in other ones it has a insulting meaning [91]. This cultural aspects have to
be considered when developing a gesture recognition system, especially when dealing with the
development of a gesture set [62].

Types of Gestures

For the development of a system for gesture recognition it is also necessary to take a look at
how gestures, especially hand and arm gestures can be differentiated [38]. Generally gestures
are understood as expressive, meaningful body motions that involve physical movements of the
fingers, hands, arms, head, face, or the whole body [62]. The intention of such a gesture is inter-
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action with the environment or, to convey meaningful information [39]. Gestures are composed
of small subspace of possible human motion, mostly specialized to some distinct body parts
(hand, face, ... [62]) but for some applications (fitness training [42], gaming [12] ,...) it can be
interesting to see the whole body as gesture source. So, a gesture can be seen as a compression
technique for the information to be transmitted, that subsequently has to be reconstructed by the
receiver [62].

First of all one has to differentiate between static and dynamic gestures, because they are sig-
nificantly different [38]. Static gestures, also known as poses, have to keep the same shape until
they are recognized. For example, they can be differentiated by position, rotation and form of
the body part used to gesture. Typical examples for static gestures can be found in sign lan-
guage, or the way a policemen controls the flow of traffic on the streets. It is not the way a
posture is gained that determines the meaning of a static gesture, but the information is encoded
in the posture itself. In comparison to that a single movement contains the major information
for dynamic gestures. Gestures that encode their information in both movement and shape are
called dynamic gestures too. Examples for dynamic gestures include pointing gestures and other
gestures that encode information in movement (e.g. German sign language [56]) [38]. Due to
the technological aspects of the UCOS sensor, which are explained in Section 3.1, only dynamic
gestures can be recognized by the sensor and are therefore used in this work [13].

As gestures cannot only be categorized by the amplitude (or lack) of the movement necessary
to shape them, two different taxonomies concerning gestures are reviewed on the next pages:
a general taxonomy for HCI according to [47] and a taxonomy specialized for hand/arm ges-
tures according to [70]. A major problem within gesture research is the lack of commonly used
terms describing the interactions [47]. A taxonomy which sorts gestures into five categories is
introduced in [47]: deictic gestures, manipulative gestures, semaphoric gestures, gesticulation
and language gestures. This taxonomy is illustrated in Figure 2.3. The main idea behind this
categorization is to define the optimal gesture class for each interaction scenario possible in HCI.

hand/arm movements

deictic

pointing gesture to 

indicate a concrete or 

abstract object, location, 

direction

manipulative

gesture aimed at 

controlling some entitiy 

with tight mapping of the 

movements

gesticulation

coverbal gestures that 

acompany everyday 

speech

semaphore

systems of signalling 

using flags, lights or 

arms in a stylized 

dictionary

sign language 

linguistically based and 

performed using a series 

of individual gestures 

that combine to form 

gramtical structures

Figure 2.3: Taxonomy of gestures in HCI according to [47]
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• Deictic gestures primary consist of pointing actions that enable the selection or identifica-
tion of an object. [40] describes deictic gestures as pointing gestures that refer to people,
objects, or events in space or time. The content of a speech is modified when accompa-
nied by this type of gestures as they help with disambiguation. Deictic gestures can be
compared with the role of spoken spoken intonation. These gestures represent a very basic
form of communication and are often intuitively used.

• Manipulative gestures are defined by the direct relation between hand/arm movement
and the movement of a controlled entity or virtual object. In [72] manipulative gestures
are defined as: “those whose intended purpose is to control some entity by applying a
tight relationship between the actual movements of the gesturing hand/arm with the entity
being manipulated”.

• Semaphoric gestures are defined as systems of signaling using flags, lights or arms [72].
They can consist of dynamic and static gestures, wheras static gestures are represented by
a defined body shape or posture. The main task of semaphoric gestures is to communicate
symbols to a machine. Each of the semaphoric gestures resembles a symbol. An example
for a static semaphoric gesture (or symbol) is the “OK” gesture mentioned earlier, an
example for a dynamic semaphoric gesture is implying a “Hello!” by waving the hand.
The gestures defined for this work can be sorted into this category.

• Gesticulation is one of the most natural forms of gesture. It is an essential part in dia-
logues between humans that normally consist of speech and gestures [47]. Gesticulation
is a specific and spontaneous hand or arm movement when speaking. It does not require
any training or learning. The poise of the talking is not relevant for this type of gesture.

• Language gestures have to be discussed independently from other gesture styles. They
are linguistic-based and they require the continuous interpretation of multiple and indi-
vidual hand signs that have to be combined to form grammatical structures [47]. An ad-
ditional level of processing is required to understand language gestures, because a whole
collection of gestures has to be interpreted to understand the information encoded within
them. In sign language gestures are not only semaphoric, but also deictic. Even copying
of gestures (mimetic gestures) can be found in sign language [38]. In HCI sign languages
are important for assistant and teaching systems, e.g. when teaching sign language to
children.

The taxonomy by [47], that is introduced above, does not only concern hand/arm movements,
but it also refers to the meaning of gestures where the whole body is involved. A taxonomy that
is more specialized on hand/arm gestures concerning HCI introduced in [70]. The tree in Figure
2.4 illustrates the division of hand/arm gestures into different classes. The classification begins
with splitting hand/arm movements into two categories: Unintentional movements, which have
no meaning for HCI and gestures that fulfill a specific function. These gestures can be split
up into two subgroups: manipulative gestures and communicative gestures. As discussed ear-
lier, manipulative gestures refer directly to an object and are not divided into further subclasses.
Communicative gestures can be divided into acts and symbols. Symbols either can be referential

12



like moving a finger according to the movement of a wheel, or the modalize to strengthen the
meaning of spoken instructions. Acts can be divided into deictic gestures, usually represented
by pointing actions and mimetic gestures that imitate known actions. The gestures that are de-
fined for this work in Section 2.2 are designed to control the multimedia interface introduced in
Section 3.2. Therefore deictic and symbols are used in this thesis.

hand/arm movements

gestures unintentional movements

communicativemanipulative

modalizingreferentialdeictic mimetic

symbolsacts

Figure 2.4: Taxonomy of hand/arm gestures in HCI according to [70]

2.3 Gesture Recognition

In this section information about gesture recognition are presented. The first part of this section
introduces gesture recognition in general and gives an overview about the topic. In the second
part of this section the typical processing steps used in gesture recognition are described. This
description can be seen as a summary of all works that have been investigated for this study. In
the last part of this section a selection of classification methods used for gesture recognition is
introduced.

Overview

According to [79], [24] and [62] gesture recognition is a topic of computer science. Its goal is
to interpret human gestures via mathematical algorithms. As described earlier gestures can have
different meanings. So a gesture recognition system is dependent on the source of gesture and
the application it should be used for [62].

According to [79] and [62] gesture recognition has a wide-range of applications. Thus, it does
not only act as an input source for computer applications. Examples for applications for gesture
recognition are: developing aids for the hearing impaired, recognizing sing language, monitoring
the emotional state of people, lie detection, automated fitness evaluation for (elderly) persons,
fall detection, medically monitoring of stress and/or emotion, lie detection, robotics, applications
in the automotive sector (e.g. to detect if the driver is tired) and gaming [66] [62] [79] [49] [35].
Gesture recognition, especially understanding gestures, plays a role in robotics, where the recog-
nition of the meaning of movements of human beings turns out to be critically important in order
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to improve HRI2 [66]. To distinguish the different meanings of human movements is challeng-
ing, as equal actions and movements can have different meanings depending on the current
situation and on social and cultural context [66] [62]. This makes it challenging to develop in-
dependent systems that are able to understand gestures.

Current research on hand gesture recognition for HCI relies on mathematical models like HMM
or NN3 [62]. In addition particle filtering in combination with the condensation algorithm [44],
finite state machines and soft computing approaches are used for gesture recognition [62]. It is
also possible to use 3D4 body pose estimation and skeletal models for gesture recognition [87].
Different devices are used to gather data on human motion (or the motion of limbs) and/or static
positions, too. Therefore the numerous approaches to gesture recognition do not only differ
in the way how the movement or position of humans is statistically evaluated, but also in the
way the movement or position of humans is acquired. Some works use a wearable device, such
as data gloves [69] or suits equipped with sensors [46]. Other devices used for gesture recog-
nition are for example mice and special remotes like the WiiMote [38]. Microsoft research
introduced a solution which enables the recognition of acoustic signals produced by a mobile
phone, which was moved around in a room equipped with microphones, for gesture recogni-
tion [84]. Studies on gesture recognition rely on different computer vision technologies [62].
For example stereo camera systems generating 3D data are used for gesture recognition as are
standard consumer WebCams [62] [87] [46] [28]. Active sensors (like Microsoft Kinect) that
project a pattern of light and recognize the deformation of the pattern, are used as are time-of-
flight cameras [26] [41] [62] [28] [51]. Even combinations of different vision sensors are used
for gesture recognition - in [28] the Kinect sensor is used in combination with a web cam and
in [33] time-of-flight and color cameras are used together. The visual approaches for gesture
recognition can also be divided into approaches using markers on persons and such that do not
use markers [38]. Since the introduction of Microsofts Kinect sensor in 2010, the field of vision
based gesture recognition has been noticed by moving into consumer market [12] [10] [79]. The
sensor was intended primary as a game controller for Microsofts XBox 360 [12], but shortly
after the release the technology inspired people all over the world to develop other applications
for the sensor [5], even including the control of PC5s [14]. Finally, an official software develop-
ment kit for using the Kinect sensor with the PC was released by Microsoft [6] making further
developments possible [79]. The idea to use the visual recognition of human motion as input for
HCI, especially as game controller, was also used in 2003, when Sony introduced the EyeToy as
controller for the PlayStation [79]. Nowadays, in 2012, even TV-sets with gesture recognition
are available on the markets as Samsung has introduced the Smart-TV that can be controlled by
hand gestures [10]. On the left side of Figure 2.5 Samsung’s Smart-TV is shown. The right side
of Figure 2.5 shows the usage of the Kinect sensor for controlling games.

2Human Robot Interaction
3Neuronal Networks
4Three-Dimensional space
5Personal Computer
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Figure 2.5: Commercial applications for gesture recognition: Samsung Smart-TV and Mi-
crosoft XBox 360 + Kinect (images from [10] and [12])

Typical Processing Steps in Gesture Recognition

The typical processing steps for gesture recognition are: data acquisition, segmentation and/or
preprocessing, feature extraction and classification [38]. This chain of steps is illustrated in
Figure 2.6. As stated earlier, works concerning gesture recognition use many different types of
sensors to acquire the position or motion of humans [62]. Depending on the method the motion
data is gained, different preprocessing methods have to be used: In works using Kinect [77] [16]
or time-of-flight cameras [25] [26] the gathered depth information is used to segment the body
or body parts like hand, arm, leg and head out of the recorded data. If a mono camera is used,
algorithms like the Condensation algorithm introduced in [44] are used to recognize body parts
of interest [76]. The segmentation is performed to keep only objects of interest [90]. The objects
of interest are used to calculate features for each gesture [79].

data 

acquisition

segmentation/

preprocessing

feature 

extraction
classification

Figure 2.6: Data processing steps used in gesture recognition (image adapted from [38])

Features used for gesture recognition vary from relatively simple features like “velocity of the
tracked hand” [56], “distance between hands” [56], “absolute position of the hand” [56], “high-
est point of motion” [67], “median of the height of a moving person” [67], “orientation of the
main axis of a moving person” [67] and “vertical velocity of the highest point of a moving
person” [67] to more complex features like “relative pixelcount“ [93], “shape-context of a hu-
man” [42], “gradient histogram” [29] and “the overall depth information” [90]. As one can see,
many different observations and characteristics can be used as features - the selection of features
depends on the data acquired and the intended application of the gesture recognition. A selection
of features from related work that were introduced above is presented in the next section. 2.3.
These features are used for the training of a classifier with ground-truth data and for the recog-
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nition of untrained samples. The section after the introduction of the features gives an overview
on classification methods that were used in related works.

Features

A fundamental task in the means of gesture recognition is the selection of the best features for
the classification [42]. Redundant features cause unnecessary computation load and the selection
of poor features likely leads to false classifications [42]. Features that describe the content at
the best possible rate have to be selected [42]. In this section, selected features (relative pixel
count, depth features and 2D features) that were used in related work concerning human motion
recognition, are described. Some of the presented features make use of 3D information and
others are using image-processing techniques. Most of the features described here have already
been used as input for Hidden Markov Models as for other classification methods.

Relative Pixel Count

In [42] and [93] a so-called “relative pixel count” is used as input for a HMM classification.
In [93] binary images are generated from conventional video information. In this binary images
a region of interest around the human body was selected. This region is divided into meshes and
for each of the meshes the relative count of black pixels is calculated [42]. The feature vector is
built with Equation 2.1 [93]. In the equation the ratio of black pixels in each mesh is calculated.
Mm, Nm are the counts and i, j are the indexes along the image dimension [93]. In Figure 2.7
the complete mesh feature generation is illustrated.

f(i, j) =
number of black pixels(i, j)

Mm ·Nm
(2.1)

In [93] reconnection rates of 96% for the detection of 5 different tennis strokes were achieved
by using only this feature. In [42] the activated pixels delivered from the sensor were used
to calculate the relative pixel count feature on on the fly. In combination with another feature
recognition rates of 97.33% were achieved in [42].
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..
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N

Figure 2.7: Mesh feature (graphic adapted from [93])
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Features based on Depth Information

A special advantage available with 3D systems is the option to use the depth information to
calculate features [42]. The depth information can be used for calculating the relative distance
of certain body parts, or the whole body, to the sensor. In [90] preprocessed depth images were
used to calculate these three depth based features:

• Body centroid (2D)

xbs =

N∑
n=1

xsn1 {xnd ∈ Depth level of body}
N∑
n=1

1
{
xnd ∈ Depth level of body

}

• Hand displacement (2D)

xhs = xbs −

N∑
n=1

xsn1 {xnd ∈ Depth level of hand}
N∑
n=1

1
{
xnd ∈ Depth level of hand

}

• Relative depth level of the hand (1D)

dhr = xbd − xhd

xbd and xhd are the depth levels (grayscale values in the depth map images) of the body and
the hand [90].

In [90] recognition rates around 92% were achieved when these features and HMMs were used
for the detection of nine different gestures for gaming applications.
In [67] a 3D sensor is used, which only recognizes motions is used. In Figure 2.8 two frames of
data from such a sensor can be seen [67]. Information on the basic features computed from that
depth is visible in this figure, too. The so gathered basic features a reused as feature themselves
or used to calculate further combinations of features. Thus, a set of time dependent features is
collected:

• Angle of the main axis

• Vertical volume distribution ratio

• Vertical velocity of the highest point

• Orientation of the main axis

• Ratio of the occupied ground area to height

• Highest point
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In [67] this features lead to promising results when they were used on HMMs and on a MLP6 to
recognize falls of humans.

Figure 2.8: Features used in combination with a motion sensor (figures from [67])

Geometric Information 2D

In [80] trajectories generated with a computer mouse are used as gesture source. In Figure 2.9
a gesture from [80] is shown with its relevant lengths and angles labeled with the intermediate
variables. By using this basic geometric informations, a total of thirteen geometric features are
computed [80]. Those features are interesting for this work and are therefore introduced here.
The features introduced in [80] are:

• Cosine and sine of initial angle with respect to the X axis:

d =
√

(x2 − x0)2 + (y2 − y0)2 f1 = cosα =
(x2 − y0)

d
f2 = sinα =

(y2 − y0)
d

• Length of the bounding box diagonal:

f3 =
√

(xmax − xmin)2 + (ymax − ymin)2

• Angle of the bounding box:

f4 = arctan
xmax − xmin
ymax − ymin

• Distance between the first and the last point:

f5 =
√

(xp−1 − x0)2 + (yp−1 − y0)2

• Cosine and sine of the angle between the first and the last point:

f6 = cosβ =
(xp−1 − y0)

f5
f7 = sinβ =

(yp−1 − y0)
f5

6MuliLayer Perceptron, an artificial neural network
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• Total gesture length:

∆xp = xp+1 − xp ∆yp = yp+1 − yp f8 =

p−2∑

p=0

√
∆x2p + ∆y2p

• Total angle traversed:

Θp = arctan
∆xp∆yp−1 −∆xp−1∆yp
∆xp∆xp−1 −∆yp∆yp−1

f9 =

p−2∑

p=1

Θp f10 =

p−2∑

p=1

|Θp| f11 =

p−2∑

p=1

Θ2
p

• Maximum speed (squared):

∆tp = tp+1 − tp f12 =
p−2
max
p=0

∆x2p + ∆y2p
∆t2p

• Path duration:

f13 = tp−1 − t0

According to [80] some of the features (f1, f2, f6, f7) are sines or cosines of angles. Others
(f5, f10, f11, f12) depend on angles directly and require inverse trigonometric functions to com-
pute. A four quadrant arctangent is needed to compute Θp that returns an angle between−π and
π. These features are used on elementary statistical pattern recognition techniques [80] where
recognition accuracies around 97.00% were reached.

3.3. FEATURES 51

�
�

�
p

(x0 � y0)

(x2 � y2)
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(xp � yp)
(xp+1 � yp+1)

(xP � 1 � yP � 1)

(xmin � ymin)
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f4
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Figure 3.2: Feature calculation
Gesture 6 of figure 3.1 is shown with its relevant lengths and angles labeled with the intermediate variables
used to compute features or the features themselves where possible.

f4 = arctan
ymax � ymin

xmax � xmin

Distance between first and last point:

f5 = � (xP � 1 � x0)2 + (yP � 1 � y0)2

Cosine and sine of angle between first and last point:

f6 = cos
�

= (xP � 1 � x0)
�

f5
f7 = sin

�
= (yP � 1 � y0)

�
f5

Total gesture length:

Let � xp = xp+1 � xp

� yp = yp+1 � yp

Figure 2.9: Geometrical features calculated from trajectories (from [80])
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Classification Methods

This section gives a short introduction into classification methods used for gesture recognition.
In some of the related works about gesture recognition and human motion recognition machine-
learning methods like NN, HMM and SVM are used. Other works use classical pattern recogni-
tion methods like pattern matching. On the following pages selected recognition methods - like
NNs, SVMs and HMMs - are briefly introduced. Information about useful literature containing
further details on the methods is presented here, too.

Neuronal Networks

In [42] Neuronal Networks (NN) are introduced as method for gesture recognition. [42] states,
that NN were first used for gesture recognition in the early 90’s by [63]. Subsequently they
were adapted for further applications [42]. According to [62], NNs are becoming more impor-
tant in the area of gesture recognition, especially, in static gesture recognition tasks. According
to [42], the main application of NN for classifying human motion can be seen in the recognition
of sign language such as in [63]. In [67] the MLP, which is a form of NN, as used to detect hu-
man falls. In this work the also evaluated HMM led to slightly better detection results than the
MLP. According to [88], examples for other applications for NNs are: recognition of speakers in
communications, diagnosis of hepatitis, recovery of telecommunications from faulty software,
interpretation of multimeaning Chinese words, undersea mine detection, texture analysis, three-
dimensional object recognition, hand-written word recognition and facial recognition.

Generally, the information processing paradigm known as NN is inspired by the way how biolog-
ical nervous systems, such as the brain, process information [88]. In NN neurons are processing
information to solve certain problems [42]. Like the biological role model, NNs are learning by
example [88]. Thus, NNs are trained for specific applications such as texture analysis [88]. In
Figure 2.10 a simple neuron, with multiple inputs and just one output, is illustrated.

According to [42] NNs are not the first choice for the recognition of dynamic gestures. Therfore,
NNs are not explained in detail here. However, a detailed description of NN can be found in [88].

Neuron

X1

X2

Xn

INPUTS OUTPUT

TEACH/USE

TEACHING INPUT

Figure 2.10: A simple neuron (image adapted from [88])
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Support Vector Machines

According to [42], Support Vector Machines (SVM) are also used for gesture recognition. For
example in [81], SVMs are used to recognize human actions and in [32] SVMs are used to
recognize pointing gestures. SVMs offer outstanding generalization capability and have a repu-
tation of being a highly accurate paradigm [81]. According to [42], SVMs were first introduced
by [31] for pattern recognition. Originally, SVM models were defined for the classification of
linearly separable classes of objects [45]. Basically, a SVM finds the unique hyperplane having
the maximum margin for any particular set of two-class objects [45].The optimal hyperplane
and the optimal margin for such a linear separable case are shown in Figure 2.11. In this figure
the margin of the largest separation between the two classes is represented by the gray marked
boxes [31]. According to [45], classes that cannot be separated with a linear classifier can be
classified with SVM. If non-linear classes are to be classified, the coordinates of the objects are
mapped into a high-dimensional features space in which the two classes can be separated with
a linear classifier [45]. More details on SVM in general, and on their applications can be found
in [45], [31] and in [11].

optimal margin

optimal hyperplane

Figure 2.11: SVM: A linear separable example (figure adapted from [31])

Hidden Markov Models

The Hidden Markov Model (HMM) is a stochastic model [75] that has a lot of applications - for
example: automatic speech recognition [75], hand-writing recognition [19], spam filters [58].
In [90], [93], [37], [29], [35], [67] and [42] HMMs are used for the classification of human
motion, respectively gestures.
According to [62], the HMM is a double stochastic process governed by an underlying Markov
chain that has a finite number of states and a set of random functions, where each of the functions
is associated with one state [75] [36]. This stochastic process is started in one of the states. In
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discrete time instants an observation symbol according to the random function corresponding to
the current state is generated [62]. For each transition between the states a pair of probabilities
does exist [62]. These probabilities are defined as follows:

1. “transition probability, which provides the probability for undergoing the transition;” [62]

2. “output probability, which defines the conditional probability of emitting an output symbol
from a finite alphabet when given a state.” [62]

According to [62], the HMM is rich in mathematical structures. Spatio–temporal information is
efficiently modeled by the HMM [62]. As the only thing visible in this process is a sequence
of observations the model is termed “hidden” [62]. In all recognition processes which use the
HMM, a HMM model has to be constructed for each event that has to be classified [62]. HMM
based gesture recognition shows promising results when applied on AE data [67] [42]. More
information about HMMs can be found in [75], [36] and on [85]. Additionally, more detailed
information on HMMs is presented in Section 3.7 of this work.

2.4 Works on Gesture and Motion Recognition

In this section selected works concerning visual gesture recognition and visual motion recog-
nition are presented. In the first part of this section works using a sensor closely related to the
sensor used in this work are presented. Works using other sensors and methods for visual gesture
recognition and visual motion recognition are presented in the second part of this section. The
last part of this section contains a summary of the introduced works and compares the results of
these works with other works that are not introduced in detail in this study.

Address Event Data used for Motion Recognition

Two works that use AER data generated by sensors of the UCOS family for fall detection [67]
and for analyzing dance movements for fitness training of elderly people [42] are introduced
here. Both, [67] and [42] use a further evolution of AIT’s dynamic stereo vision sensor UCOS
- the so called ATIS7 sensor. The main difference between the ATIS and the UCOS sensor is,
that the first one has a higher resolution (304 x 240 pixels) than the latter one (128 x 128 pixels),
but the basic principle of the devices are the same. The UCOS sensor is described in detail in
Section 3.1. The AE analyzed in this two works are not directly gestures but they can be seen as
such. The event of “falling down” can be understood as a body gesture while the dance move-
ments resemble gestures that involve the whole body or at least parts of it. Both of works are
part of projects belonging the AAL joint program.

Fall Detection

According to the research conducted for [67] the number of elderly people in the population is
increasing. Therefore further technical development of minimal intrusive assistance systems is

7Asynchronous Time based Image Sensor
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necessary to enable elderly people to live as long as possible on their own without considerable
help from other people. Thus a major issue for unsupervised living of elderly people is the
recognition of critical situations (especially falls), which should trigger an alarm automatically
for getting help, if the person cannot solve the incident alone. The improvements in this field
will not only to reduce costs for care facilities, but it will also improve the quality of live for
elderly people [3]. Therefore the development of such systems is a major goal of the project
CARE (see [3]). To evaluate the abilities of the ATIS sensor when used for of fall detection a
database containing 7568 samples without falls and 113 sample with falls was generated. The
falls were recorded in a laboratory, which was equipped to emulate a typical home environment
as displayed in Figure 2.12. A total of ten persons, seven men and three women, acted on per-
formed activities like “sitting on a chair”, “standing up or sitting down to a chair”, “picking up
objects from the floor”, “walking around slowly”, “lying down to a couch” and other non-critical
actions. The test persons also performed critical situations which all included different fall sce-
narios like “falling backwards because of loosing balance” or “falling because of missing the
chair to sit on”. A sequence of such a fall scenario is illustrated in Figure 2.13. In the beginning,
the person is walking and at the end the person lies on the floor with little movement.

Figure 2.12: Laboratory environment for the recording of the acted scenarios (from [67])

The previously recorded data was used to extract different features like “orientation of the main
axis” and “vertical volume distribution ratio” (see Section 2.3 and [67] for more details). The
features were then used to train and evaluate two different machine learning approaches, HMM
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and MLP. Using a cross validation on the HMM, 109 out of 113 fall samples were classified
correctly but there were also 100 out of 7568 non fall samples, which were classified as falls. The
classification using the MLP led to a similar result. Out of 113 fall samples 110 were classified
correctly, but 103 out of 7568 non fall samples were also recognized as falls. Basically the results
from [67] show, that the ATIS sensor in combination with HMM or MLP could be used for fall
detection. [67] states, that the rate of misclassified non fall events is a major issue for further
development, since the false classifications would lead to a false alarms keeping emergency
responders busy.

Figure 2.13: Snap-shots of the depth map during the fall. The depth is color coded in a way that
brighter green colors stand for nearer objects. (from [67])

Dance Fitness Training

The work presented here is part of the Silvergame project (see [86]). The motivation for [42]
and the Silvergame project is also related to the growing number of elderly people in the popula-
tion. Research conducted for [86] and [42] showed that it is important (not only, but especially)
for elderly people to make regular exercises to stay healthy and vital. Therefore a system that
supports the fitness training of elderly people has been developed, which can provide this target
group with facilities so they can stay healthy. Some elderly people do not have the opportunity
to go to private trainers, a system that recognizes human motion in the area of dance and fit-
ness training for elderly people is introduced in [42]. This system is meant to encourage elderly
people to do their regular dance exercises and to give feedback on the quality of the training. A
dance exercise consists of a number of different figures or activities depending on the choreog-
raphy and the piece of music. For the work introduced here eight different activities like “arms
pointing with 360 degree axis left rotation” and “arms pointing with 360 degree axis right rota-
tion” were used (see [42] for more details). One of the activities is displayed in Figure 2.14.
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Figure 2.14: Dance activity, a person performing a rotation to the right and pointing with the
hand. (from [42])

Activities A1 A2 A3 A4 A5 A6 A7 A8 Recog. Rate[%]
A1 77 0 0 0 0 0 0 0 100.00
A2 0 80 0 0 0 0 0 1 98.77
A3 0 2 66 0 0 0 0 4 91.67
A4 0 0 0 78 0 0 0 2 97.50
A5 0 0 0 0 29 0 0 0 100.00
A6 0 1 1 0 0 86 0 0 95.56
A7 0 0 0 0 1 0 79 3 95.18
A8 0 0 0 0 0 0 0 68 100.00

Table 2.1: Full evaluation matrix for best result from [42] (A1-A8 represent the activities)

For evaluation and training fifteen individuals carried out eight different activities which were
recorded using the ATIS sensor. From this actions not only the stereo data containing depth in-
formation, but also the mono data from one sensor and the left-right overlay mono data without
depth information were used. These three different types of data were used separately to cal-
culate features like “relative pixel count” and “relative disparity/distance”. These features were
then used to train a HMM. The cross validation revealed that the usage of left-right overlay
mono data leads to a slightly better average recognition rate of 97.33% compared to the 95.65%
achieved when stereo data was used. The full evaluation matrix for the best recognition result is
shown in Table 2.1.

Selected Work on Vision-Based Gesture Recognition

In this section three selected works concerning vision-based gesture recognition are introduced.
Two of the works use the Microsoft Kinect sensor and one uses a stereo camera. These works
are presented here, because their topic is the recognition of dynamic gestures as in this study.
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Sign Language Recognition

In [56] the implementation of a framework for gesture recognition using Microsofts Kinect and
HMMs is presented. This framework is intended to recognize the signals of the German sign
language. Information about the German sign language can be found in [23] and [2]. In [56]
the functionality of the Open NI driver [8] was used with the Kinect. This driver is necessary to
use the middleware NITE that features a bult-in body segmentation function for the Kinect [7].
This body segmentation supplies the gesture recognition framework with information about the
position of the users’ joint positions. These join positions are transmitted as three-dimensional
vectors containing the coordinates of each body part (e.g. head, left hand, right hand,...). The
position informations are used to calculate the features such as “velocity”, “distance between
hands” and “absolute position of the hand” [56]. The features are used to train a HMM for each
gesture to be recognized [56]. Figure 2.15 shows a sequence of recordings that is used to calcu-
late features which are then used to train a HMM.

Figure 2.15: Example of a training sequence (from [56])

In Figure 2.16 the dynamic aspects of the German sign language are highlighted with green ar-
rows. In this figure the signs “Giraffe”, “Wasser kochen”, “Berg” and “Mitte” can be seen. Six
additional signs - “Berlin”, “Danke”, “Kreuzberg”, “Neukölln”, “Paket” and “Verstehen” - were
used for the training and the evaluation of the framework. Thus, a gesture set of ten gestures
was used. Informations on how this gestures are performed can be found in [2]. For evaluation
a cross validation method was used. Recorded data from one person fluent in sign language and
one peson not fluent in sign language were used. One third of the recorded samples was kept
and the rest was used to train the HMMs [56]. The data not used for training was then used
to evaluate gesture recognition framework. The best results in [56] lead to recognition results
of 100% for all signs with exception of the sign “Verstehen”, where a accuracy of 97.7% was
reached. [56] concludes, that the approach of using depth cameras for sign language recognition
is worth further consideration and leaves room for further improvements.
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Figure 2.16: The signs “Giraffe”, “Wasser kochen”, “Berg” and “Mitte” in German sign lan-
guage, motion is marked green (adapted from [2])

Recognition of the Graffiti Alphabet

In [53] the methods developed in a preceding work on recognizing gestures on a tablet de-
vice [54] are applied to the hand-tracking results of the Kinect sensor. In the preceding work a
“...template-based incremental recognition algorithm for pen strokes and touch-screen gestures”
was introduced [54]. As the tracking information gathered by using the Kinect sensor does not
differ much from the strokes of a pen on a tablet, the same algorithm can be applied on both
with minor changes for the Kinect [53]. Basically, the algorithm estimates the posterior prob-
abilities of the user’s currently incomplete stroke within a set of template classes [54]. Using
this algorithm it is possible to predict the user’s intended template gesture based on a partial
stroke [54]. An advantage of this method is that continuous feedback from the recognizer can
be provided to the user while producing the stroke [54]. For this continuous recognition the
predefined templates are divided into segments. Such a segmentation is illustrated on the left
side in Figure 2.17. For each of the user’s partial strokes the likelihood of being the best match
for one of the templates is calculated [54]. It is also checked whether the user’s stroke matches
not only the segments but a complete template. If a stroke describes a complete template, the
corresponding template class has to be prioritized higher than those template classes whose best
matches are segments representing complete templates [54]. On the right side of Figure 2.17, a
partial stroke that matches either one of two templates’ prefix segments is illustrated. Without
knowing the end-point of the gesture, the predictions made by the recognition algorithm might
fluctuate between both templates [54]. Therefore, using an end-point bias is used to match a
complete template when the user finishes the gesture [54]. As similarity measures Euclidean
distances and turning angles are used to calculate the similarity between point sequences [54].
More details on the algorithm can be found in [54].

As mentioned earlier, the algorithms developed in [54] are applied to the hand tracking results
of the Kinect sensor. To determine the beginning and the end of a gesture, an input zone was
defined in a certain distance between the user’s hand and the Kinect sensor. If the user is moving
the hand in this area, the motion is interpreted as gesture-input [53]. The setup used in [53] is
illustrated on the left side of Figure 2.18. To evaluate the gesture recognition accuracy, a set
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• We show that turning angle is a more accurate recognition
feature than Euclidean distance. We also demonstrate that
by combining both features further small gains in accu-
racy can be obtained.
• We introduce an end-point bias term and show that this ad-

dition to the algorithm is crucial in order for incremental
template-based recognition to be as accurate as existing
baseline algorithms that recognize complete strokes.
• We describe how the incremental recognition algorithm

can be used to design new visualizations that reveal as-
pects of the recognition process to users.

2. Continuous Recognition

In this section we describe how the recognition algorithm
works. The algorithm infers the user’s intended template in
real-time while the user is producing a stroke.

2.1. Templates and Segments

A template ω j is a pair (ι,S), where ι is the label (for ex-
ample Copy) and S = {Si} is a set of segments describing
progressively increasing excerpts of the complete template
stroke. An individual segment S = [s1,s2, . . . ,sn]

T is a vec-
tor of n time-ordered points. The first segment has length l,
the second has length l× 2, the next l× 3, and so on, un-
til the last segment describes the complete original template
gesture (Figure 1).

Figure 1: A complete template (left) and the segments gen-
erated from it (right). The red dot indicates the starting po-
sition.

2.2. Recognition

Let Ω = {ωk} be the set of templates and let the point vector
I = [i1, i2, . . . , in]T represent the complete input pattern with
n sample points. We will refer to a partial input of I with i
points [i1, i2, . . . , ii]T as Ii.

For each new point at index i the system computes the
posterior probability for each template ω j ∈Ω using Bayes’
rule:

P(ω j|Ii) =
P(ω j)P(Ii|ω j)

∑k P(ωk)P(Ii|ωk)
, (1)

where P(ω j) is the prior probability, P(Ii|ω j) is the like-
lihood and the denominator is the marginalization term.

If there is no information on which templates are more
common than others we use a uniform prior. Otherwise, the
prior can be designed to incorporate information about the
task. For example, if the recognition algorithm is used to
detect gestural commands, certain commands (e.g. Copy)
are likely more frequently used than others. This informa-
tion can be provided to the recognition algorithm via the
prior. Another example is if the recognition algorithm is
used to enable users to enter text. For instance, a letter rec-
ognizer such as Graffiti or Unistrokes [GR93] can provide
language model information, such as letter frequencies, to
the recognition algorithm via the prior. Yet another text en-
try example is the gesture keyboard [KZ04,ZK03], commer-
cialized as ShapeWriter/Swype/T9 Trace/Flext9. A gesture
keyboard enables users to write text by sliding their fin-
ger over a touch-screen keyboard. These systems associate
touch-screen gestures to individual words. A prior enables
such algorithms to use language model information to influ-
ence recognition outcomes.

2.3. Likelihood

The likelihood is the probability that partial input Ii matches
a template ω j:

P(Ii|ω j) = Pl(Ii|ω j)E(Ii|ω j). (2)

Pl(Ii|ω j) is the likelihood of the user’s partial stroke be-
ing the best matching partial segment for the template ω j.
This likelihood is found by searching for the segment of the
template ω j that maximizes the likelihood of the distance
function D (defined in the next subsection):

Pl(Ii|ω j) = arg max
Sk∈S j∈ω j

D(Ii,Sk). (3)

E(Ii|ω j) is an end-point detection term we introduced to
bias the algorithm towards shorter templates in the case that
many templates share similar prefixes. We found that the fol-
lowing formula enabled the best performance:

E(Ii|ω j) = 1+κexp
(
−(1−D(Ii,Slast))

2
)
, (4)

where Slast is the last segment in the set of segments in
ω j. This last segment represents the complete template. The
intuition behind the end-point bias is to take into account
whether the user’s stroke matches a segment describing a
partial template or matches a complete template. If the stroke
describes a complete template then it is important that its
corresponding template class is prioritized higher than those
template classes whose best matches are segments represent-
ing incomplete templates.
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For example, in Figure 2 the user has articulated a partial
stroke (left) that matches either one of two templates’ prefix
segments, indicated as dashed blue lines (right). Without the
end-point bias there is not enough information provided to
the recognition algorithm to disambiguate these templates.
As a result, the predictions made by the recognition algo-
rithm may fluctuate between both templates arbitrarily. By
using an end-point bias, the recognition algorithm can dis-
ambiguate among several likely templates so that in the case
that the user’s input strongly matches a complete template
that template will be preferred. There are two free param-
eters that need to be properly set for this end-point bias to
work. The first is κ and the second is one of the variances in
the distance function D (described below). These parameters
are tuned on a training dataset.

Figure 2: An example of two segments (right) matching a
user’s stroke (left). The red dot indicates starting position.

2.4. Distance Function

The distance function is a combination of the probability
estimates of two similarity measures between the point se-
quences I and S:

D(I,S) = exp

(
−
[

λ

(
x2

e

σ2
e

)
+(1−λ)

(
x2

t

σ2
t

)])
. (5)

The first measure (xe) is the mean Euclidean distance be-
tween corresponding points in I and S. The second measure
(xt ) is the mean turning angle between corresponding lines in
I and S. These measures are explained in the next subsection.
σe and σt are variance estimates for both measures. We treat
the similarity measures as Gaussians since we assume the
sums of point-wise comparisons in the Euclidean distance
measure and the sums of line-wise comparisons in the turn-
ing angle measure are sums of independent and identically
distributed Gaussian random variables. Since the number of
summands in the similarity measures tends to be high (since
they are related to the number of sampling points) we assume
(via the central limit theorem) that the similarity measures
themselves are Gaussian.

λ∈ [0,1] is a mixture weight that controls the relative con-
tribution for both similarity measures. Strictly speaking we
can omit λ if we are only interested in the optimal relative
contribution of both similarity measures since the ratio of
the variances suffices to control this. However, estimating
the variance for each feature separately and subsequently

finding an optimal mixture weight makes the relative con-
tribution of each feature more transparent and enables us to
selectively turn on or off an individual feature without hav-
ing to retune its individual variance.

2.5. Similarity Measures

There are many choices of similarity measures (or features)
for computing a similarity between two point sequences. In
this paper we investigate two of the most popular features:
Euclidean distance and turning angles. These features have
been demonstrated to provide accurate results in a variety of
applications (e.g. [KZ04, WAWL07, AB10]).

For both similarity measures, let a1,a2, . . . ,an and
b1,b2, . . . ,bn be two sequences of points, resampled so that
they have an equal number of sampling points.

The first similarity measure is the mean Euclidean dis-
tance between all corresponding points:

xe =
1
n

n

∑
i=1
||ai−bi||. (6)

Mean Euclidean distance has been widely used in gesture
recognition (e.g. [KZ04, WAWL07]). It requires both point
sequences to be normalized. We do this by translating them
so that their centroids are at the origin of the coordinate sys-
tem and by scaling one of them so that the diagonal of the
bounding box is unity whilst preserving the aspect ratio.

The second similarity measure computes the mean turning
angle between two point sequences using a fixed reference
axis:

xt =
1

n−1

n

∑
i=2

dt(ai,ai−1,bi,bi−1), (7)

where dt is the the angular difference in radians for two
corresponding line segments that connects the ith and i−1th
corresponding points.

This similarity measure was originally proposed by
Niblack and Yin [NY95] for image-lookup databases and
was later used by Appert and Bau [AB10] to predict the
scale of gestures for the command selection technique Oc-
topocus [BM08].

2.6. Filtering

We also filter the posterior probabilities with a moving aver-
age to make the predictions slightly more stable. We found
that a window over the last five predictions provided a good
balance between responsiveness and stability.
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Figure 2.17: On the left: A complete template and the segments generated from it. On the right:
an example of two segments matching a user’s stroke. (graphics from [54])

of one-handed and two-handed gestures was used. The one-handed gestures used for [53] are
illustrated on the right side in Figure 2.18. In total 1683, gestures that were performed by 18
persons have been collected. These data were then used to train and to evaluate the recognition
algorithm [53]. The recordings from eight persons were used for the training of the algorithm,
the rest was kept for the evaluation. When using the test data on the trained recognition algorithm
a maximum accuracy of 92.7% was achieved for one-handed gestures and a maximum accuracy
of 96.2% was achieved for two-handed gestures.

gesture articulation by the user. To perform this delimitation
we use a zoning technique. When the user is interacting with
the Kinect we continuously measure the distance between the
user’s hand and the Kinect. When this distance is below a set
threshold the hand is defined to be within what we call the
input zone. A similar approach has previously been used to
delineate 3D selections [6]. We experimented with various
thresholds. One solution is to use the absolute distance be-
tween the user’s hand and the Kinect. We implemented this
solution and used a threshold of 1.5 meters in front of the
Kinect. While this solution proved to be robust, it may in
some situations be advantageous to have a flexible input zone
that is invariant of the distance between the user’s body and
the Kinect. We therefore also developed a method for deter-
mining whether the user’s hand is within the input zone based
on a relative measure. It uses a binary classifier that is defined
as the following decision rule:

z(vb, vh, dh) =

{
1, if vb < γvb ∧ vh < γvh ∧ dh > γdh
0, otherwise ,

in which vb is the speed of the user’s body, vh is the speed
of the user’s hand, dh is the distance between the user’s hand
and the user’s body, and γvb, γvh and γdh are empirically de-
termined parameters. When z = 1 the user’s hand is within
the input zone. We set the thresholds for γvb, γvh and γdh
by estimating them from data gathered from four volunteers.
The participants held a wireless mouse in their right hand.
They were explained the concept of an input zone and then
asked to use a forward-motion to move their hand into the
input zone, then move the hand laterally, and thereafter pull
their hand out of the input zone. We instructed participants to
press and hold down the left mouse button when they felt that
their hand was within the input zone and to release the left
mouse button when they felt they were outside of the zone.
Based on this data we estimated the parameter values using
cross-validation. We evaluated the binary classifier by inves-
tigating how accurately it could classify a sample point as
being inside or outside the input zone using three tolerance
thresholds: 5, 10 or 15 sample points to the left or to the right
of the boundary. Cross-validation showed that the accuracy
was 88.0%, 91.2% and 93.4% respectively.

There is some noise in the signal when users are entering
and exiting the input zone. We therefore discard a portion
of the beginning and end of the trace, a process known as
de-hooking in the handwriting recognition community. The
de-hooking parameters are also learned from training data.

While the hand is within the input zone the system concate-
nates the projected (x, y) positions of the hand into a progres-
sively increasing input vector:

Ii = [(x1, y1), (x2, y2), . . . , (xi, yi)].

When a new sampling point is received the system computes
a posterior probability for gesture template ωk as:

P (ωk|Ii) =
P (ωk)P (Ii|ωk)∑
n P (ωn)P (Ii|ωn)

,

where P (ωk) is the prior probability and P (Ii|ωk) is the like-
lihood. If there are reasons to believe certain gestures are

more likely than others (for example, due to context), the
prior can reflect this. However, in the experiments reported
in this paper the prior is uniform. The likelihood is found by
searching for the sub-segment of the template ωj that max-
imizes the likelihood of a distance function in combination
with an end-point bias [3]. The continuous recognition algo-
rithm uses two features for the distance function: the mean
Euclidean distance and the mean turning angle between two
point vectors. The relative weighting between these two fea-
tures is controlled via a mixture weight parameter. For details
we refer the reader to the complete description of the contin-
uous gesture recognition algorithm [3].

In this paper we extend the continuous gesture recognition
algorithm so that it can also recognize two-handed gestures.
In this case we have two input vectors I

(l)
i and I

(r)
j for the

left- and right-hand gesture articulations respectively and we
are interested in the posterior probability for a bimanual ges-
ture ω(lr)

k . Assuming conditional independence under a joint
model this posterior probability is:

P (lr)
(
ω
(lr)
k |I(l)i , I

(r)
j

)
=

P
(
ω

(lr)
k

)
P
(
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(l)
i |ω(l)

k

)
P
(
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(r)
j |ω(r)

k

)

∑
n P
(
ω
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)
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in which P
(
ω
(lr)
k

)
is the prior for the bimanual gesture, and

P
(
I
(l)
i |ω

(l)
k

)
and P

(
I
(r)
j |ω

(r)
k

)
are the likelihoods for the

left- and right-hand parts of the bimanual gesture template
respectively.

We also created a bimanual interface that enables users to
simultaneously using the dominant hand to gesture and the
non-dominant hand to modulate the recognition results. Fig-
ure 1 shows a user gesturing using this interface. In the figure
the user is writing text in thin air by gesturing Graffiti letters
(cf. Figure 2). While the user is gesturing the system continu-
ously updates the four most likely predicted gesture templates
to the left in the display. By moving the non-dominant hand
up or down the user can select among these alternatives. We
found that this style of interaction is particularly effective if a
user requires very high recognition accuracy.

Figure 1. A user is writing in thin air by gesturing Graffiti letters and
selecting among alternative predicted letters to the left of the display.

EVALUATION
We tested recognition accuracy on three gesture sets: the $1
gesture set [10], the Graffiti gesture set, and a bimanual ges-
ture set which we created ourselves. The $1 gesture set and
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the Graffiti gesture set have been previously used in recogni-
tion experiments (e.g. [3, 10]). The gesture sets are illustrated
in Figure 2.

Figure 2. The gesture sets used in the evaluation. The beginning of a
gesture is indicated by a solid dot. Top: the set of one-handed gestures
from the $1 gesture set [10]. Middle: the set of one-handed gestures from
the Graffiti alphabet. Bottom: the set of two-handed gestures we created
ourselves.

We used a Microsoft XBox 360 Kinect sensor connected to a
Windows 7 laptop. Each session was divided into a practice
and a testing part. In the practice part we explained to the
participants the concept of the input zone and demonstrated
how to articulate gestures with the Kinect. In the testing part
participants were shown a series of gestures on the screen and
asked to reproduce them as quickly and as accurately as pos-
sible. To ensure reproducibility we used an absolute distance
of 1.5 meters between the participant’s hand and the Kinect
to decide whether the participant’s hand was inside or outside
the input zone.

We recruited 18 volunteers from our university campus. Their
ages ranged between 18–35. None of the participants had any
prior experience of using a Kinect sensor. The 18 participants
were randomly split into two groups with nine participants
each to avoid effects due to fatigue and motor learning con-
founding the results. Participants in the first group were asked
to to articulate the gestures in the Graffiti and the bimanual
gesture sets. Each Graffiti gesture was performed once and
each gesture in the bimanual gesture set was performed five
times. In total, each participant in this group performed 27 +
16 × 5 = 107 gestures. Participants in the second group were
asked to to articulate the gestures in the $1 set. Each gesture
in the gesture set was performed five times. In total, each par-
ticipant in this group performed 16 × 5 = 80 gestures. This
data collection task lasted approximately 20–30 minutes for
each participant.

Recognizer (E,T,E+T) and input style Accuracy ∆
One-handed (E) 90.3% ·
One-handed (T) 92.3% 2.0%
One-handed (E+T) 92.7% 0.4%
Two-handed (E) 86.2% ·
Two-handed (T) 96.2% 10.0%
Two-handed (E+T) 96.2% 0%

Table 1. Accuracy and absolute gains in accuracy for complete one-
handed and two-handed 2D gestures. One-handed gesture recognition
was tested with the $1 [10] and the Graffiti gesture sets. Two-handed
gesture recognition was tested with a gesture set we designed ourselves.
E: Euclidean distance only, T: turning angle only, E+T: combination.

In total we collected 1683 one-handed and two-handed ges-
tures. We split the data into a training and test set by randomly
designating the gestures collected from four participants in
each group (eight participants in total) as the training set and
the rest of the gestures as the test set. The held-out test set
was only used for final evaluations. Using the training set we
searched for the optimal mixture weight for the continuous
gesture recognition algorithm and the two additional parame-
ters we have introduced in this paper: the window size of the
moving average used for smoothing, and the proportion of
the input gesture which is de-hooked. We used the parameter
configuration that maximized accuracy on the training set and
evaluated the algorithms on the held-out test set.

Table 1 summarizes the recognition results for complete ges-
tures. The system recognized complete one-handed gestures
with an accuracy of 92.7%. This is similar to prior work [3]
on recognition of pen stroke gestures drawn on a Tablet PC,
which found that continuous recognition of complete gestures
resulted in 94.5% accuracy. Also consistent with prior work
[3], the turning angle feature resulted in higher accuracy than
Euclidean distance. Combining both features using an opti-
mal mixture weight resulted in a negligible gain in accuracy.

The system recognized the two-handed gestures with an ac-
curacy of 96.2%, which is slightly higher than the accuracy
obtained for one-handed gestures. Again, the turning angle
feature resulted in higher accuracy than Euclidean distance.
Combining both features made no difference. Bimanual ges-
ture recognition was easier, which is unsurprising since un-
der an appropriate probabilistic model two simultaneous in-
put gestures provide additional information to the recognizer.

Figure 3 plots average accuracy as a function of the propor-
tion of a complete one-handed or two-handed gesture. The
solid lines in the figure show the performance of the contin-
uous gesture recognition algorithm. The dashed lines show
the performance of a baseline algorithm that only recognizes
complete gesture templates. The baseline algorithm uses op-
timal parameter values learned from the training set. Cross
marks denote the accuracy for top-1 matches while squares
denote the accuracy for top-3 matches.

As is evident in the figure, the continuous recognizer is much
better at predicting the participants’ intended gestures at all
stages of the articulation process. As a reference point, the
continuous gesture recognition algorithm was able to achieve
an accuracy of 46.0% for one-handed and 55.0% for two-
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Figure 2.18: On the left: the setup used to recognize the stroke gestures. On the right: set of
one handed gesture from the $1 gesture set [92] and the Graffiti alphabet. (images from [53])

Human Body Gestures as Inputs for Gaming

In [90] human body gestures that are recorded with a calibrated stereo camera are intended to
be used as input for gaming. The captured stereo pairs are initially corrected for geometric and
photometric distortion. Then the correspondence problem between the two images is solved
by using the Markov Random Field framework [90]. The stereo images is optimized by using
belief propagation [90]. The outcome of this process is a depth (or disparity) map: The depth
map measures how far away each pixel is from the camera [90]. This depth map is used to
calculate features for gesture recognition. Therefore, some preprocessing is necessary: First the
depth map is down-sampled to 32 x 24 pixels. After the down sampling discontinuity-preserving
smoothing is allied to the data [90]. In the last preprocessing step the human body is segmented
from the disparity data. This preprocessing steps are illustrated on the left side in Figure 2.19.
The shape of the human performing the gesture is used to calculate the features. The features
used in [90] are: “body centroid (2D)”, “hand displacement (2D)” and “relative depth level of
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the hand (1D)”. This features are used to train a HMM for each gesture to be recognized. More
details on the algorithms used can be found in [90].

PDFill PDF Editor with Free Writer and Tools
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Figure 2.19: On the left: preprocessing of the depth images. (a) original frame; (b) depth
map; (c) down-sampled map; (d) segmented map. On the right: test setup and a sample frame.
(images from [90])

The gestures used in [90] to evaluate the gesture recognition method developed resemble boxing
actions. A “defense” movement is crossing both fists in front of the head while “dodging” is to
shift quickly aside. “Dashes” are straight arm-length punches thrown from the leading hand. A
“hook” is swinging the arm, which is bent at nearly 90 degrees, into the opponent. Finally, a
“uppercut” is a blow directed upward, as to boxing an opponents chin. Except “defense”, all of
these gestures can be performed with (or to) the left and right side [90]. These nine gestures were
recorded from eight persons with different heights, weights and skin colors [90]. The recording
setup and a person performing a boxing motion can be seen on the right side in Figure 2.19. By
applying a leave-one-out cross validation the 336 recorded samples were used to test the gesture
recognition. The evaluation led to an overall accuracy of 91.96% [90]. The detailed results of
the evaluation for all boxing actions can be found in Table 2.2.

Action Name Test Trials Recognized Accuracy [%]
Defese 40 39 97.50

Left Doge 32 30 93.75
Right Doge 40 38 95.00
Left Dash 40 35 87.50

Right Dash 40 36 90.00
Left Hook 40 35 87.50

Right Hook 16 15 93.75
Left Uppercut 40 34 85.00

Right Uppercut 48 47 97.92
Overall 336 309 91.96

Table 2.2: Results for the recognition of boxing actions from [90]
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Overview on Related Work

After introducing five related works in detail this overview is intended to summarize these works.
It is also intended to briefly present a few other related works. The works that were introduced
above have been selected because they use a similar sensor and/or are intended to recognize sim-
ilar gestures as are to be recognized in this study. The results from these works will be compared
with the outcome of this study.

In [81] a framework for human activity modeling is introduced. After extracting reliable key-
points from a video clip, features are acquired by using the temporal self-similarities defined on
the fuzzy log-polar histograms [81]. These features are used to train a SVM to realize an action
recognition model. The method proposed in [81] is validated on two publicly available action
datasets, the KTH dataset and the Weizmann action dataset [81] by using the leave-one-out cross
validation technique. With this evaluation a recognition accuracy of 98.7% was achieved.
In [93] a set of time-sequential images is transformed into an image feature vector sequence.
This sequence is converted into a symbol sequence by vector quantization. The symbol sequence
is used as feature for the training and verification of HMMs. Experimental results in [93] led to
a recognition accuracy around 90%.
The recognition of Malaysian sign language in video data is the topic of [37]. After the res-
olution of video data is reduced a skin segmentation takes place. After the skin segmentation
has been undergone, all that is left in the images are blobs of hands and a blob of the head. In-
formations about these blobs (“Centroids”, “Distance between Hands and Face” and the “Hand
Orientation”) are used as features to train HMMs. In [37] the HMMs are used for classification.
To train the HMM 560 video sequences are used and another 112 video sequences are used for
testing. Thus, recognition rates about 83% is achieved [37].
A method for recognition of pointing gestures is presented in [32]. This video-based system is
intended to identify the points on a screen which a user is pointing to with his arm being in a
fully extended position towards the screen [32]. The silhouette of the user was extracted from
the video data. The information on the silhouette was used to extract features like the position
where the person is standing, the position of the fingertip, and the position of the shoulder and
to construct a feature vector for each video frame. This features are used to train a SVM in order
to obtain the 2D position of the target point on the screen [32]. By using a leave-one-out cross
validation and using four videos from two different persons a recognition accuracy of 94.4%
was achieved.
In [29] a technique for a view-invariant detection of basic human actions like walking, jogging,
hand waving and boxing is introduced. Sub-classifiers that are based on SVM are used to detect
human body parts [29]. For each detected body the histogram of oriented gradients is used as a
feature for the HMM that is used to classify human actions. For validation, the KTH database
and the HERMES indoor sequence data set were used [29]. For the recognition of human actions
an average accuracy of 79.5% was achieved.
To have a teleprocessing robot which is recognizing and following to military hand signals is the
target of [16]. Military signals as “Halt”, “Crawl Forward” and “Retreat” should be recognized
by the robot. In [16] the Kinect sensor is used to record human actions. Relevant features such
as frequency and amplitude are used in a SVM to classify the gestures. By using randomized
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offline testing recognition results with over 96% accuracy were achieved [16].
In [76] an engine to recognize dynamic hand gestures is introduced. A combination of static
shape recognition, Kalman filter based hand tracking and a HMM based temporal characteriza-
tion scheme is used as recognition strategy [76]. In an experiment five users were performing a
total of 100 gestures [76] where 97% of the gestures were classified correctly.

The results of the related work show, that many different approaches for gesture recognition
exist. Most of the results, even when using different methods, are leading to recognition re-
sults greater than 90%. The results for recognizing human motions do not only depend on the
classification method used, but also on the selected features. The data used for evaluation has
an influence on the evaluation results, too. Related work on gesture recognition using a similar
sensor led to promising results when using the HMM for classification [42] [67]. A literature re-
search conducted in [42] also showed that the HMM leads to promising results in human motion
recognition. Table 2.3 gives an overview on the results of the related works.

Paper/Work Topic sensor recognition
method

average
recogntion
rate

Sadek 2011 [81] Recognition of human
actions

mono camera SVM 98.70%

Yamamoto 1992
[93]

Recognition of tennis
strokes

mono camera HMM >90.00%

Falinie 2012 [37] Recognition of malaysian
sign language

mono camera HMM 83.00%

Cěrnekova 2007
[32]

Recognition of pointing
gestures

mono camera SVM 94.40%

Chakraborty
2008 [29]

Recognition of human
actions

mono camera HMM 79.50%

Bernstein
2011 [16]

Recognition of military
gestures

Kinect SVM 9̃6.00%

Kristensson 2012
[53]

Recognition of dynamic
hand gestures

Kinect template
matching

92.70%

Lang 2011 [56] Recognition of german sign
language

Kinect HMM 97.70%

Ramamoorthya
2003 [76]

Recognition of dynamic
hand gestures

mono camera HMM 97.00%

Wang 2008 [90] Using human body gestures
as inputs for gaming

stereo camera HMM 91.96%

Hahn 2011 [42] Recognition of dance
motions

UCOS family HMM 97.33%

Table 2.3: Results of related works on gesture recognition

31



2.5 Summary of Related Work and State of the Art

In this chapter, related work and the state of the art for gesture recognition was presented. First,
in Section 2.2, the topic of human computer interaction was examined leading to the conclusion
that knowledge from various scientific fields is necessary to implement good user interfaces and
good input methods. HCI is important for this work because the outcome of this study is a first
step for the development of a system to control a multimedia user interface.
Section 2.2 presented informations on the meaning of gestures for human communication and
ways to categorize human gestures. Because of the fact that the UCOS sensor is only capa-
ble of detecting motion [13], the gestures used in this study are dynamic gestures. If using
the taxonomy introduced in [47], the gestures used in this work can be sorted in to the cate-
gory of semaphoric gestures. These gestures are primary intended to communicate symbols to
a machine [47]. When using the taxonomy from [70] which is more specialized on hand/arm
gestures concerning HCI, the gestures defined for this work can be seen as deictic gestures and
symbols. [47]
Information about gesture recognition are provided in Section 2.3. In this section an overview
about the topic of gesture recognition is provided. The typical processing steps and selected clas-
sification methods are presented in this section. These processing steps are basically valid for
all approaches about gesture recognition [62]. An overview on classification methods for ges-
ture recognition was presented, too. In this section different types of features were explained,
too. The approach of [80], in which basic geometric quantities were used as features, is very
promising for this work as the trajectories produced by the UCOS sensor are similar to trajec-
tories of movements of a computer mouse. Thus, a similar approach is used in this work. As
there are many solutions possible for gesture recognition, finding the optimal method is a chal-
lenging task. Therfore, a more detailed review on selected related works about the recognition
of gestures and human motions was presented in Section 2.4. In these related works, different
sensors, different classification methods and different features were used. In most of the related
works that were examined for this study, average recognition accuracies of 90% and better were
achieved. In this work HMMs are used for gesture recognition because of the promising results
that were achieved when a HMM classification and a sensor similar to the UCOS sensor were
used for human motion recognition [42] [67]. Additionally, a literature study on human mo-
tion recognition in [42] shows, that the HMM is one of the most promising machine-learning
methods for the recognition of human motion.
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CHAPTER 3
Methodology

This chapter describes the steps of the methodological process of this study. The first section
(Section 3.1) describes the dynamic stereo vision sensor and the AER data representing three
dimensional movements. It also describes the special modifications of the AER data for gesture
recognition. The second section (Section 3.2) presents a simple concept for a gesture controlled
GUI. Section 3.3 presents a set of gestures based on the GUI concept which was introduced in
the previous section, and the technological aspects concerning the UCOS sensor. Section 3.4
presents the methods used to obtain AER data and describes the preprocessing steps used before
feature calculation. A database for the recorded data is presented in Section 3.5. Additionally a
tool for navigation through the database and for annotation of the recorded data is also introduced
in this section. The features used for gesture recognition are described in Section 3.6. In Section
3.7 two machine learning concepts for gesture recognition are introduced: the HMM and the
DT. A trained decision tree can be interpreted as set of rules. It is seen as a “quasi-rule based”
recognition method. In Section 3.8 the method for the evaluation of the gesture recognition is
explained.
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3.1 Dynamic Stereo Vision Sensor for Gesture Recognition

This section introduces the UCOS sensor and gives a short overview of its intended purpose
and its technical specifications. In addition the AE data format produced by the sensor and the
modifications necessary on the for gesture recognition are introduced here.

Intended Purpose

The UCOS stereo vision sensor developed by AIT is an integrated optical 3D sensing device
that was originally developed for people counting applications (see Figure 3.2) [13]. In the
monitoring area of the sensor persons are detected and counted according to their moving direc-
tion [13]. The detection of persons is based on the detection of movements at a certain distance
from the sensor. Depending on the configuration of the detection zone, only movements in a
certain distance are relevant for counting persons, making it possible to count only grown ups
without children [13]. Figure 3.1 shows the typical application of this sensor. On the left side,
the schematic of a passageway is displayed. When people move below the sensor, their heads are
tracked. If a person passes a certain line underneath the sensor an increase of the count (of the
direction the person is moving to) is triggered [13]. The visualization of the AER data generated
when a person is moving below the sensor can be seen on the right side of Figure 3.1. For this
work especially the visualization of the persons’ moving direction by a trajectory is important.

Figure 3.1: Current application for UCOS: counting persons (figure adapted from [13])
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Technical Details

One can see in Figure 3.2 that the UCOS sensor system employs two specialized optical CMOS1

sensors of 128x128 pixels which cover a photosensitive surface of 5.1 x 5.1mm². The distance
between the sensitive pixels is 40µm [13] [59]. Each of the sensor’s pixels quantisizes local rel-
ative light intensity changes to generate spike events [59]. This means that only the pixels which
detect an intensity change produce an output [59]. This functionality is biologically inspired,
therefore such an optical CMOS sensor is often referred to as a silicon retina [61]. At the output
of the sensor these events appear as an asynchronous stream of data, the so-called address events
(AE, TAE2), which code the pixel coordinates and the time of the intensity change in a stream
of asynchronous vector information rather than in image frames [13] [59]. Further processing
steps are used to multiplex the AEs of the two sensing elements to one AE-stream. A built in
BlackFin digital signal processor from AnalogDevices with a CPU3 core clock frequency of
600MHz, 32MB of RAM4 and 4MB of non volatile memory is used to perform a stereo match-
ing of the left and right image by using the SAD5 Algorithm [9] [15]. The 3D depth information
is also encoded in the AE stream which is available at the sensor’s Ethernet LAN6 connector in
an UDP7 data format [13].

Figure 3.2: AITs UCOS Sensor (from [13])

1Complementary Metal Oxide Semiconductor
2Timed Address Event
3Central Processing Unit
4Random Access Memory
5Sum of absolute differences
6Local Area Network
7User Datagram Protocol
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Generally, the sensor’s principle of operation allows a robust and fast tracking of moving objects
at up to 200 acquisitions per second [15]. Moving objects within a range of about three meters
can be detected by the sensor [13]. Due to the fact that only movement is detected, no effort
has to be put into separating a person from the background. The work of extracting the person
is already done by the sensor [13]. Another advantage of the UCOS sensor is that it works in a
wide dynamic range which allows operation also at bad light conditions (operation range 0.1Lux
to 100kLux) [13]. This, combined with the other advantages mentioned above, suggests that the
UCOS sensor is predestinated for indoor (and outdoor) motion recognition [13]. Examples for
the sensor’s output can be seen in the right part of Figure 3.1 and in Figure 3.3.

Figure 3.3: Person performing a circle movement in front of the sensor

Tracking

As mentioned above, the tracking of the highest point of persons (or objects) moving below the
sensor is already implemented in the firmware of UCOS. When applied to count people, this
feature is used to track the heads of people passing underneath the sensor (as illustrated in Fig-
ure 3.1) [13]. The tracks are visible for a longer time within the AER data than the AER data
that represent the shape of a person. The higher persistence of the tracks is achieved by send-
ing them not only once, but five times. The tracks are intended to visualize the movement of a
person within the sensor data [13]. Not only the tracks are encoded within the AER data stream
produced by the sensor, but also the numbers visible in the left upper and left lower corners on
the right side in Figure 3.1.

If the sensor is not mounted overhead, but faces the person performing a gesture - as illustrated
in Figure 3.4, tracking of the highest point becomes tracking the nearest body part which is in
most of the cases a hand or an arm. The sensor detects the moving object, but does not make
any differentiation whether the object is a hand, a head, a foot or even a pet running in front of
the sensor. The output of the scenario when a person in front of the sensor performs a circular
movement with their arm can be seen in Figure 3.3. To achieve optimal tracking results, the
focus of the sensor should be in a concrete gesturing area in a predefined distance between one
and three meters [13].
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Figure 3.4: Hand/arm moved in front of the sensor

Special AER Format

As described earlier, the UCOS sensor streams its data, the so-called AER data, using UDP [13]
[83]. If the option to visualize the the track within the AER data is activated, the numbers and
the scan lines are encoded within the AER-Stream, too. Normally, there is no way to distinguish
the tracks, scan lines and numbers from the other AER data that contains information on pixel
activity - the actual information oft the object moving in front of the sensor [83]. For this
work it is required to use the sensor’s embedded tracking function. Therefore it is necessary
to identify which type of AER data is actually received from the UCOS device. Thus, some
small modifications of the original data format are necessary to distinguish useful data that
contains tracks from unwanted data containing information which is not relevant for the current
application. A comparison of the two data formats mentioned is illustrated in Figure 3.5. The
original UCOS stereo data format is displayed at the top of the illustration and the modified data
format is located in the lower part of the picture [83]. Two messages are transmitted for each
pixel activity. These messages stay basically the same in the original and in the modified data
format. Each of these messages has a length of 32bit. The messages are continuously transmitted
alternating one after another. Normally the sequence of transmitted data packages should look
like this: [TS AE TS AE TS ... AE TS AE ...] [42]. TS8 is the time stamp of the activity while
AE represents the location of the activity. It contains the Address (ADDR9), information on
depth and other flags and messages [83]. The main difference between the unmodified and the
more specialized data format is located in the little part, which contains the further information.
Normally in the AE part of the message sixteen bits are used to encode the pixel activity address
information while another eight bits are used to encode the depth information if existing. One bit

8Time Stamp
9Address
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is used as a flag to signalize the existence and validy of the depth information. If this flag is not
set, the bits containing the depth information are meaningless. The remaining seven bits out of
the 32bit data package usually remain unused [83]. For the task-specific data format for gesture
recognition another three bits get an important role. These three bits are used to distinguish
between the different meanings an AER can have. In order to keep backward compatibility with
the previously used AER format a setting of 0x00 represents the stereo events from the sensor.
If the message bits are set to 0x01 the AER represents a pixel of the scan lines which can be
encoded within the data stream. If set to 0x02 the received pixel information becomes part of
the numbers that display actual counting value of persons that have passed the scan line. The
most interesting setting for the gesture recognition is 0x03. There the received AER message
contains a pixel which is part of the track that can be used at further steps in the recognition
process. Finally, the message can contain the value 0x04 where the AER is part of a cross
which can used to mark the beginning of a track [83]. For this work the setting 0x03 is the most
important, because the output of the tracking function is used for further steps in the gesture
recognition process. All other types of data have to be filtered out.

ADDR TS
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8bit depth 16bit Adresse7bit 
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Depth Address Time Stamp

the Beginning of the Tracks

Figure 3.5: Conventional UCOS AER format (top) and special AER format for gesture recog-
nition (from [83])
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3.2 Simple GUI Concept for Gesture Recognition

The design or the implementation of a GUI is not directly related to this work’s task. However,
to have an idea of what the gesture navigation could be used for, some thoughts have been spent
on this topic. The better a system is designed for a selected input method the better it can be
operated and the better is the user experience when working with it [38]. Therefore, to reach a
coherent and usable system to be navigated by gestures, it is important that the applications -
especially their GUI - is designed and optimized for gesture navigation. The gestures to be used
for navigation have to correspond with the reactions of the GUI and vice versa [38]. The gesture
set used for this work is defined and described in detail in Section 3.3.

timeout

Figure 3.6: Visualization of the timeout before selection of a menu item

Generally, the proposed GUI has to be seen as a rudimentary concept of a multimedia interface
for an application which uses a TV10-set as a display. It is one of the first concepts that have
been introduced to the FoSIBLE project members. This GUI represents a basic concept that
is intended to support the development of the gesture navigation system. The concept for the
proposed GUI is quite simple. Basically, horizontal actions trigger a reaction of a horizontal
menu and vertical actions trigger a reaction of a vertical menu. Therefore, the simplest set of
gestures required to navigate this menus consists of four directional gestures. When the smallest
possible gesture set is used, the selection of a menu item is to be triggered automatically by a
timeout after the last movement of the user. As illustrated in 3.6, the timeout can be visualized
by a sequential color change of the frame around the selected item.

In Figure 3.7 a screen displaying menus and an information region can be seen. The information
region can contain multimedia data like text, pictures or video clips. In the information area
no navigation takes place. Navigation is performed by moving the horizontal and vertical bars
under the green selection window like a slot-machine (casino gambling machine) which turns
the symbols in the players field of view. Figure 3.8 shows the same principle applied to a wel-
come screen that appears directly after activating the system (e.g. after turning on the TV on).
In both GUIs, dark gray arrows are symbolize the direction of possible bar movements. This is
intended to invite the user to perform gestures corresponding to the pointing directions of the
arrows without much learning effort. Both screens have one thing in common: they can be nav-
igated by using a reduced gesture set. A select or return gesture is not necessary for navigating
through the menus.

10Television
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Figure 3.7: Screen containing information in a hypothetical GUI specialized for gesture control

Figure 3.8: Welcome screen in a hypothetical GUI specialized for gesture control

Figure 3.9 shows a screen to be used to select pictures from a photo gallery. The typical view
for selecting images from a photo gallery is a perspective where the thumbnails of the pictures
are shown as tiles next to each other. Navigating through this field of items just in horizontal
direction, jumping to the next line when reaching the end of the current line, is not very user
friendly. To enable a navigation in all directions, it is necessary to deactivate the side menu,
otherwise it would not be clear whether the gesture corresponds to the thumbnails or to the side
menu. This is why the menu on the left side is grayed out in 3.9. Now the plane containing
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the thumbnails can be moved using horizontal and vertical gestures. Th plane moves below the
selection window (symbolized by a green square). This can be compared with moving an ob-
ject under a fix-mounted magnifying glass. A picture can be selected by stopping the movement
when reaching it. If no further movement takes place the picture will be shown on the full screen
after the timeout.

Until now navigation through the GUI is possible by using only four gestures. However, this is
not very comfortable. There is also the question, how to leave the full-screen view or the thumb-
nail screen to return to previous menus. One answer is that the selection can be triggered by
a timeout after the movement and “return” buttons can be implemented in the thumbnail view.
The full-screen view of a picture can be reduced to a thumbnail after another gesture is detected.
Another answer is to give more options to the user by introducing additional directions for the
navigation to enable the users to move to all eight neighbors of a thumbnail picture. Four addi-
tional gestures in diagonal directions allow the plane that contains the thumbnails to be moved
in eight directions. Giving the user the option of selecting an item by using a special gesture
and to return to a previous menu screen by using another special gesture makes it a total of ten
gestures to navigate this system. The gestures introduced in Section 3.3 can be used to navigate
such a GUI.

Figure 3.9: Screen containing thumbnail pictures in a hypothetical GUI specialized for gesture
control
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3.3 Defintion of Specific Gestures

Since humans can produce nearly a infinite number of different movements with their hands and
arms [57], it was decided to define a specific and finite set of gestures for the implementation
and the test process of a gesture recognition system. All gestures chosen for verification and
testing of the gesture recognition based on AER data were defined with the intention to be used
for navigation trough a simple multimedia menu as introduced in Section 3.2. Since the UCOS
sensor used to generate the AER data only detects movement, only dynamic gestures can be
used in this work [13]. A limited set of gestures, of which each gesture itself is kept simple, is
used to keep the work load of learning the gestures for users as low as possible. For everyday
use unnatural movements can not be used as gesture representatives [38] [20]. A set of ten
relatively simple dynamic gestures was chosen as gesture representatives used for navigation -
eight directional gestures and two gestures with non-directional and therefore special meanings.
One of the special gestures is to be used to select an item and the other is used to return to a
previous menu. In theory this predefined gestures have very distinctive directions and shapes,
which makes it easy for humans to recognize the differences in the movements. Basically, this
should also enable the differentiation of the meanings of the gestures for an artificial recognition
mechanism, which is to be evaluated within this work.

Gesture name Acronym
down DO
up UP
left LE
right RI
rightup RU
rightdown RD
leftup LU
leftdown LD
roof RF
wave WV

Table 3.1: Gesture names and short gesture names

Directional Gestures

The directional gestures defined for this work can be compared to the arrow keys on a computer
keyboard. Normally, navigating through a menu by using the arrow keys means moving a cursor
or the menu items into a certain direction. Therefore, directional gestures are considered a basic
requirement for navigation tasks. These gestures are easy to understand and do not require much
effort to be performed. A straight and distinctive hand/arm movement into a certain direction is
interpreted as a directional gesture into the same direction. Moving the hand/arm in a horizontal
axis means left or right, moving the hand/arm in a vertical axis means up or down. Navigation
towards the corners of the screen is possible, too. To navigate into a diagonal direction the
movements between the horizontal and the vertical axis are interpreted as diagonal gestures.
A schematic of the eight directional gestures can be seen in Figure 3.10: there a person is
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performing the gestures using the right hand. The gestures can also be performed using the left
hand. The amplitude of the gesture performed should be between 20cm to 60cm. The movement
should be carried out using a deliberate movement. The directional gestures are named according
to the direction of the movement: “down”, “up”, “left”, “right”, “rightup”, “rightdown”, “leftup”
and “leftdown”. In this work acronyms are used that correspond to this names. These acronyms
can be found in Table 3.1.

Figure 3.10: Eight directional gestures

Select Gesture

Navigating between menu items without the option of selecting any items is not intuitive [20].
Therefore, a commonly known and intuitive movement is intended to represent the user’s wish
to select an item. The movement chosen for this task is waving the hand from left to right and
left again. It’s like implying a “Hello!” by waving the hand. How often the hand is moved
from one side to the other is not defined for this gesture, waving should be carried out until it
is recognized by the system. A schematic of the “select” gesture is illustrated in Figure 3.11:
there a person is waving with the right hand, but the gesture can also be produced using the left
hand, too. The amplitude of the gesture should be between 10cm to 30cm. As for the directional
gestures the movement should be carried out using a deliberate movement. The “select” gesture
is named “wave”. It’s corresponding acronym can be found in Table 3.1.

Return Gesture

In the context of multimedia menu navigation the option of returning to the previous menu
is necessary. Therefore, an additional simple gesture was defined: moving the hand/arm in a
roof shaped pattern. Thus, moving the hand/arm diagonally up and diagonally down, without
stopping the movement is to be recognized as the “return” gesture. A schematic of this gesture
can be seen in Figure 3.12: there a person is performing a roof-shaped movement with the right
hand. For the “return” gesture the overall movement of the hand/arm has to be to the right. This
means, if the right hand is used to perform the gesture the direction of the movement has to
be away from the body. If the left hand/arm is used to perform the gesture movement towards
the body is required to keep the overall movement to the right. However, this limitation of
this gesture is changed in a future state of the gesture recognition system. The amplitude of
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the gesture should be between 30cm and 60cm. As for all other gestures defined above, the
movement should be done deliberately. Because it’s roof-shaped pattern the “return” gesture is
named “roof”. It’s corresponding acronym can be found in Table 3.1, too.

Figure 3.11: Hand waving as selection ges-
ture

Figure 3.12: Roof shaped movement as return
gesture
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3.4 Data Recording and Preprocessing

Since gesture recognition is a new field of application for the AER produced by the UCOS
sensor, no sample data is available so far. The test- and training data had to be recorded and
preprocessed. This section describes the recording setup an the preprocessing steps required for
this study. This section also gives an overview on how to extract tracks and how to translate
these tracks to a format which can be used for further processing.

Recording Setup

For the FoSIBLE project the gesture recognition is applied in a living room environment [4]. A
laboratory setting similar to the future every-day use scenario was built up for recording test and
learning data for the evaluation process. The sensor and the person performing the gesture are
placed in a similar distance and position as they are found in a normal living room environment.
Figure 3.13 shows a schematic of a normal living room with the sensor placed on top of a TV-
set, so a person standing in the gesture zone in front of the television can use his/her hand/arm
movement to control applications on the TV-screen. As illustrated in Figure 3.4 the sensor can
also be placed on a tripod instead of placing it on top of TV-set. Against the background that
in future every-day use the sensor used in a living room and that similar distances to such an
environment should be kept, it is recommended for the in-laboratory recordings that the sensor
is mounted in a height of approximately 1.5m. The person performing the gestures has to be
positioned in a central position in front of the sensor in a distance between 1.5m and 2m. As the
living-rooms in future applications will be different, a variation of the recorded data is desirable.
Therefore, the exact height and distances are not so important for the recording of test data,
it is sufficient that the distance are kept approximately. The lenses of the sensor have to be
facing towards the gesture zone and the operator. The illumination is not modified for test data
recording, normal office light is used. Changes of the illumination are relevant only for for future
test data recording. The settings of the UCOS sensor used in this study for recording gestures
can are listed in Appendix C. It is important that the firmware which enables the special AER
format introduced in Section 3.1 is loaded into the UCOS sensor [83]. To activate the output of
trajectories the command “diagnose 2” has to be sent to sensor via console that is provided in
SmartEyeCenter, a software briefly introduced in the next section [13].

Recording Software

For recording and controlling the UCOS sensor the software SmartEyeCenter developed by AIT
has to be used on a PC [13]. This software is delivered together with the sensor on a memory
medium [13]. Figure 3.14 shows a screenshot of the GUI from SmartEyeCenter running on a
standard Windows PC. This software enables the user to display the sensor data, to configure
the UCOS sensor and it offers a text-based console meant as an advanced configuration tool
for experts [13]. An important aspect for evaluating the UCOS sensor’s potential for gesture
recognition is that this software also has a built-in recording feature. This makes it possible to
collect reusable data samples for the development process. The recorded data is stored in binary
format (.bin), that can be directly read into MATLAB for further off-line processing.
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Figure 3.13: Setup for recording

Figure 3.14: Application for recording and sensor control: SmartEyeCenter
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Finding Tracks

At first the data has to be converted from binary to a format that can be further processed by
MATLAB. Since the AER stream received from the sensor does not only contain track informa-
tion [13], the relevant data has to be exported. This is done by applying a bit mask to the received
data frames to remove all packets which do not match the bit mask. The result of this procedure
leaves pure track data for further processing. Since the original use of the tracks is to visualize
the direction a person underneath the sensor is walking, a higher persistence of the AER data
containing the tracks is implemented by sending this data five times. Therefore, additional work
has to be done if the tracks are used for gesture recognition, as the increased persistence is not
useful for this application. These multiples of the tracks have to be removed, because only one
track is used for feature calculation. Short tracks with less than ten points are also not useful for
gesture recognition since they mostly represent unintentional small movements. Therefore, they
are removed from the data, too. Figure 3.15 shows the difference between the initially received
track data (left) and the reduced data (right), after the initial preprocessing.

Figure 3.15: Raw and processed track data

Figure 3.16 shows a more detailed overview of the steps which have to be performed to extract
relevant track data from the recorded data. When the binary file is loaded into MATLAB a chain
of transformations of the data passes through. First, the binary information is converted into the
now 32bit long words described in Section 3.1 by using the function ae_bin2mat.m. Then,
the function ae_trackfilter.m applies the bit mask to the AE word so that all the infor-
mation that does not contain track data is ignored during the further processing steps. For easier
handling and better readability information like pixel coordinates, depth and time stamp are now
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extracted from the two 32bit long words by the function spverb|eth2itn.m|. This information is
stored in a structure called ITN Structure. As described earlier, this data is used for the removal
of doubles and tracks that too small for further use. The function ae_trackfilter.m is
custom built for this study. A listing of relevant parts of the code can be found in Appendix B.
The other two functions were provided from AIT.

MATLABsmart eye center

Data 

recording

remove 

doubles.bin file

ae_bin2mat eth2itn

remove too 

short tracks

load file to 

MATLAB

ae_trackfilter

AE, all data AE, tracks only

AE, all data AE, tracks only.bin

eth (2x32bit 

array)

eth (2x32bit 

array)

itn structure

Figure 3.16: Steps from data recording to tracks ready for annotation
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3.5 Test Database and Data Annotation

For further use the recorded test data has to be organized and sorted. Therefore, a database with
a simple structure and a GUI called “TracksortGUI” for annotating and editing the data were
developed. The data in this database is then used for the training and the verification of the
gesture recognition mechanism. A brief description of the database and a short introduction into
the GUIs functions is prsented in this section. Also the quality criteria for a track are discussed
in this section.

Database Structure

Basically, the test and learn database consists of two MATLAB data structures. One structure is
used to store information about files that were already processed. The other structure is used to
store information about the tracks that were annotated. These tracks can be used for the training
and the verification of the gesture recognition mechanism. For each file TracksortGUI generates
an entry that contains: the file name, the directory and the name of the computer that was used
to annotate the file. Unique ID11s of the tracks extracted from this file are stored in the file
information. The structure containing the track data consist of an array of structures itself. For
each detected and annotated track an entry is generated that contains the AE information (e.g.
coordinates and time stamps), the recording parameters (e.g. sensor distance, person performing
the gesture, light conditions) and the quality criteria that enables the selection of better or worse
executed gestures. The type of the gesture represented by the track is stored in this entry. [71]

Anntotation Tool

In order to annotate and sort the recorded track data it is necessary to visually inspect and anno-
tate the recorded track data. This is done by using the tool TracksortGUI that was programmed
in MATLAB for this study. It is specialized to work with the track data generated by the UCOS
sensor. If a new collection of database should be crated, at first, a new directory to store the
database has to be defined. Alternatively, an existing database can be edited or extended by
using this tool [94].
To add new track data to the existing or empty database, a directory containing previously
recorded files has to be selected. In the directory, all files that have not been annotated yet
are opened in a row, one after another. Then the tracks are extracted from the file according to
the process described in Section 3.4. Each track is displayed separately in TracksortGUI. The
beginning of the displayed track is marked with a green dot, its ending is marked with a red
dot. Now, the track can be inspected visually by an operator and sorted to a certain gesture class
according to the definitions in Section 3.3. The quality of a track can be rated, too, by using this
custom built tool. However, quality statements on the recorded trajectories are a subjective issue.
A track that looks like the gestures described in Section 3.3 without deviations has to be tagged
as “perfect (5)”, a track with minimal deviations “very good (4)”. Tracks that have deviations
but still clearly resemble certain gestures have to be rated as “good (3)”. If the deviations are
bigger the rating has to be “acceptable (2)”. If a trajectory is nearly unidentifiable for the human

11Identifier that uniquely identifies an object or record
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eye it has to be tagged as bad (1). Tracks which do not resemble any of the predefined gestures
have to be considered as invalid (0). A more detailed description of TracksortGUI can be found
in [94].

Figure 3.17: GUI for track annotation
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3.6 Features

All gesture recognition approaches that were reviewed for this study imply that distinguished
features have to be calculated [67] [42] [87] [62] [56] [90] [76]. In this section the features used
in this work are introduced. These features were kept simple, because of the future target to
implement the gesture recognition system in an embedded device with limited computational
resources. Therefore, features that are primary based on geometric information like angle and
length - similar to those in [80] - are used in this work.

Length

The length of a track is defined as the accumulated sum of all distances between adjacent points.
The distance between them is calculated using the Pythagorean Theorem [82]. This can be seen
in Equation 3.1. The result of this calculation is then summarized to the previously calculated
distances as can be seen in Equation 3.2.

∆x0 = x1 − x0,∆x1 = x2 − x1, ...,∆xn−1 = xn − xn−1

∆y0 = y1 − y0,∆y1 = y2 − y1, ...,∆yn−1 = yn − yn−1 (3.1)

The variables ∆x and ∆y represent the difference of the coordinates the neighbor points in a
Cartesian coordinate system. They can also be interpreted as an adjacent and opposite site of
a right triangle which enables the use of the Pythagorean theorem [82] and basic trigonometric
functions [82] for further calculations.

lengthn =
n∑

1

√
∆x2n + ∆y2n (3.2)

Speed

Another possible feature is the speed of the expansion of a track. The parameter is calculated us-
ing the distance between two points and also the time difference ∆t is used to calculate the speed.
Again, the variables ∆x and ∆y represent the distance between the points in a Cartesian coor-
dinate system. The calculation is done in the same way as for the length, using the Pythagorean
theorem [82]. Since the speed is defined as the covered distance divided by time [43], the dif-
ferential time stamp ∆t between two activities is used for this calculation. This can be seen in
Equation 3.3

speedn =

√
∆x2n + ∆y2n

∆tn
(3.3)
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Orientation

Another feature that is applied for identification of the meaning of a track is the orientation. The
orientation of a track can be defined in different ways. In this case, two different definitions
are chosen. One option is to calculate the angle between adjacent points; the other option is to
calculate the angle between the starting point of a track to each of the following points. The
absolute orientation of a track can be seen as the average value of all orientations collected. This
average value is also used used to make an approximation where the track is moving to.

-π, +π

0

+π/2 -π/2

-π/4

-3π/4+3π/4

+π/4 +π/8 -π/8

-3π/8+3π/8

+5π/8

+7π/8 -7π/8

-5π/8

right

downup

left

up

down

left right

Figure 3.18: Meaning of angles

In the calculation of the length the variables ∆x and ∆y represent the difference of the coor-
dinates of the points in a Cartesian coordinate system. Therefore, the calculation is done the
same way as for the calculation of the length. These values are used to calculate the angle in the
rectangular triangle formed between the adjacent points. To do so, a trigonometric function - the
four-quadrant inverse tangent - is used [82]. The results of this function have a value between
−π and +π. The meaning of such an angle value of the data produced by the UCOS sensor is
illustrated in Figure 3.18.

orientationn = arctangent(∆xn,∆yn) (3.4)
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Orientation between neighbor points

The initial way to calculate the orientation is to calculate the orientation to the nearest neighbor
point. This method is depicted in Figure 3.19. For more flexibility, it is also possible to calculate
the orientation to a neighbor point in a certain distance of n points.

x

y

α
α

α α
α

α
α α

Figure 3.19: Calculating the orientation between neighbors

Orientation between first and current point

An alternative to the calculation of the orientation between neighbors is calculating the angles
between the starting point and all other points of a used track as feature. Basically, the calculation
of the angle is done in the same way as the calculation for the orientation between adjacent
points. However, the variables ∆x and ∆y are now calculated in relation to the first point of the
track [82]. This method is illustrated in Figure 3.20.

∆x0 = x1 − x0,∆x1 = x2 − x0, ...,∆xn−1 = xn − x0
∆y0 = y1 − y0,∆y1 = y2 − y0, ...,∆yn−1 = yn − y0 (3.5)
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Figure 3.20: Orientation between first and following points

Bounding Box Area and Ratio

The Bounding Box (BB12) is the area covered by a box around the gesture movement [67]. The
surface area and the ratio of the lengths of the sides of the box are used as features in this work.
To calculate these characteristics, the maximum and minimum value for x and y have to be deter-
mined. This is done by comparing these values to each other. When a minimum or a maximum
is found, the value is stored and saved as the new minimum or maximum value. Then this value
is compared to the rest of the values. When the minimum values and the maximum values for
x and y are determined, the bounding box characteristics are calculated. This is done everytime
a coordinate is checked, thus, the bounding box characteristics change everytime the maximum
and the minimum value change.

Since the Bounding Box is a rectangle (red in Figure 3.21), the covered surface area (light red in
Figure 3.21) is calculated by multiplying the sides that form the rectangle with each other [82].
The length of the sides ( ∆x, ∆y in Figure 3.21) is represented by the four most distant co-
ordinates (xmax, xmin, ymax, ymin in Figure 3.21). The ratio between the sides is used as a
feature, too. If the side ∆y has a size of zero, the ratio between the sides is also set to zero. The

12Bounding Box
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BB characteristics are calculated for each pair of variables while the vector containing the track
information is stepped trough by a loop. If there is no change, the old value is kept as charac-
teristic of the current trajectory. In case of a change, the BB-ratio is modified, whereas only the
maximum of the BB-area is kept. The way to calculate the BB features is showed in Equation 3.6

∆xn−1 = max(x0...n)−min(x0...n)

∆yn−1 = max(y0...n)−min(y0...n)

BBArean−1 = ∆xn−1 ∗∆yn−1

BBRation−1 =
∆xn−1

∆yn−1
...for∆yn−1 > 0

BBRation = 0...for∆yn−1 = 0 (3.6)
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xmin xmax

ymin

ymax

Δx

Δy

Figure 3.21: Schematic of a Bounding Box
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Sensor Segmentation - Direction Changes

The directional gestures defined in Section 3.3 are moving to one direction. On contrary, wav-
ing and drawing a roof in the air as defined in Section 3.3, involve more direction changes. This
leads to the conclusion, that the number of direction changes is another useful feature for gesture
recognition based on AER trajectories. Thus, a simple approach was chosen to detect directional
changes which is described here: the sensor surface, respectively the coordinates of active pix-
els, were segmented into horizontal and vertical zones. The number of zones is set in the range
between one and the size of the sensor - 128 in case of the UCOS sensor. It is appropriate to
use values which are in a range of 128

2n to reduce rounding errors. As illustrated in Figure 3.22,
the zones are numbered from 1 to n. When the track moves through the zones, the algorithm
registers if the identifiers of the zone are increasing or decreasing. A change from increasing
numbers to deceasing numbers is recognized as a direction change. This is done separately for
horizontal and vertical movements.

4 5

x

y

1 2 3

+1

+1

Figure 3.22: Sensor segmentation and direction changes
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3.7 Machine Learning Based Gesture Recognition

Since related work on gesture recognition using a similar sensor led to promising results when
using the HMM method for classification, the HMM method is used in this work, too. A litera-
ture research conducted in [42] also showed, that the HMM leads to promising results in human
motion recognition. The second method evaluated in this study is the DT. The DT is selected
because it generates a set of rules as output that can easily be used in future embedded imple-
mentations of a gesture recognition system based on the UCOS sensor. In this section, Hidden
Markov Models (HMM) and the Decision Tree (DT) are introduced. It also describes how the
HMM and the DT are trained and used for gesture recognition.

Introducing Hidden Markov Models

Formally speaking, a HMM is a variant of a finite state machine that contains two random pro-
cesses. The first of them is the invisible so called Hidden Markov Chain [36]. The Hidden
Markov Chain is a mathematical system that examines chain-like transitions from one state into
another, under the condition that the current state depends only on the preceding state. The
HMM is characterized by the states q(t) and the transition probabilities aij between the states.
The second process generates the visible output o(t), also known as observation symbols, with
probability distribution bik that depends on the states of the hidden process [67] [19]. This for-
mal definition is depicted in Figure 3.23 which is adapted to fit to the example presented in [36]
and [75]. In [36] and [75] the same description of the basic principals and notations for HMMs
is given: consider a person that is tossing three coins in a closed room. It is not visible how
the coins are tossed. Only the outcomes of the coin flips are shown on a display outside of the
room. In other words, a series of hidden coin tossing experiments is performed. The only visible
result is the output sequence consisting of tails and heads (e.g. TTTHHHTHTTHHT). This se-
ries of observations is called observation sequence. For people outside the room the sequence in
which the different coins are is tossed is unknown, as is the probability of selecting the different
coins. To estimate how much the outcome depends on the biasing of the coins and the order of
the tosses, it may be presumed that tosses of the third coin result in more heads significantly,
but all coins are thrown with equal probability. Naturally, it could be expected that with these
prerequisite a far greater number of heads would be found in the output sequence. But if the
bias probability of tossing the third coin (state) after either the first or the second coin (state)
is zero and assuming that tossing begins in most of the cases with the first or the second coin
(state) the outcome of heads and tails will be almost equally distributed, in spite of the bias. It is
clearly visible that the output sequence strongly depends on the individual bias of the coins, the
probabilities of the transition between the states and on the initial state to begin the observation.
These three sets characterize what is called the HMM of this tossing-the-coin experiment.
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Figure 3.23: Hidden Markov Model (graphics adapted from [85])

Both [36] and [75] introduce the marble and urn model to extend the ideas of the HMM to a
more complicated situation. As depicted in Figure 3.24, this model consists of N large glass
urns placed in a room. Each of them is filled with a large number of colored marbles. The
marbles in the urns have M different colors. The process of obtaining an observation can be
described as follows: In the room full of urns a mastermind picks an initial urn according to a
random process. From this urn a marble is picked, also at random. The color of the selected
marble is noted as observation. The marble is then put back into the urn it was selected from and
then a new urn is chosen according to the random selection process that is associated with the
current urn. Then the marble selection process is repeated. As noted in [75], this entire process
generates a finite observation sequence of colors, which could be modeled as the visible output
of a HMM. The simplest HMM that corresponds to the marble and urn game is the one in which
each state corresponds to a specific urn and for which the marble-color probability is defined for
each urn (state). The state transition matrix of the HMM dictates the choice of the urns (states).

P (RED) = b1(1)

P (BLUE) = b1(2)

P (GREEN) = b1(M)

P (RED) = b1(1)

P (BLUE) = b1(2)

P (GREEN) = b1(M)

P (RED) = bN(1)

P (BLUE) = bN(2)

P (GREEN) = bN(M)

Figure 3.24: A N-state urn and marble model to illustrate the general case of a discrete symbol
HMM (graphics adapted from [75])
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Referring to the short formal definition and as illustrated by the marble example the character-
izing parameters of the HMM can be summarized as follows: [75] [67] [36]

• Hidden states:
Q = {qi} , i = 1, ..., N
N represents the number of states (bags in the marble example or biased coins in the
coin-tossing example.)

• Observations: O = {ok} k = 1, ...,M
M represents the number of distinct observation symbols (marbles of different colors, or
heads and tails in the example)

• Transition probabilities:
A = {aij} where aij = P (qj @ t+ 1|qi @ t)
P (a|b) is the conditional probability of a given b. This means, aij is the probability that
the state qi is proceeded by the state qj .

• Emission or output probabilities: B = {bik = bi(ok) = P (ok|qi)}
P (ok|qi) is the conditional probability that the output is the observation ok, given that the
current state is qi.

• Initial state probability:

π = {pi = P (qi @ t = 1)} .
π specifies the probability to be in state i at the beginning of the experiment, at time t = 1.

To denote a HMM, a so called triple λ = (A,B, π) is used. The states Q and the outputs O are
usually self evident [85].

In literature three main problems of HMMs which have been solved for most applications are
pointed out: [36]

1. If a model λ = (A,B, π) is given: how to compute P (O|Λ), the probability of the occur-
rence of the observation sequence O = O1, O2, ..., OT ?

2. If a model λ = (A,B, π) is given: how to find the most likely sequence of states for a
given output sequence, so that P (O, I|Λ) is maximized?

3. How to adjust the HMM parameters λ = (A,B, π) in order to maximize P (O|Λ) or
P (O, I|Λ) ?

These three problems can be solved by applying the following algorithms: The first problem,
computing the probability of occurrence of an observation sequence, can be solved by using
the Forward and Backward algorithm [75]. The second problem, finding the optimal state se-
quence, can be solved by using the Viterbi algorithm [75]. By applying the Baum-Welch al-
gorithm, the third problem, finding the best matching state transition and output probability,
can be solved [75]. More information about the employment of these algorithms can be found
in [85], [75] and [36].
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There is more than one type of HMMs [75]. A special case is the ergodic or fully connected
HMM in which each state can be reached from every other state (including itself) in a finite
number of steps [75]. For some applications - including gesture recognition - a HMM, in that
not each state can be reached from all other, models better than the ergodic model [75]. Signals
that change over time can be modeled better by using the left-right type of HMM, in which the
states proceed from left to right [42]. Such a left-right model is depicted in Figure 3.25. It is
visible, that in this model only transitions from a state to itself or a state more on the right are
possible.
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Figure 3.25: A 4-state left-right model and its corresponding state transition matrix (graphics
adapted from [75])

Training and Recognition with Hidden Markov Models

For the gesture recognition introduced in this study, the calculated features are used as obser-
vations to train the HMM. Not only one HMM, but one HMM for each gesture has to be
trained [19]. For example a HMM that is meant to detect the gesture “right” is trained with
features calculated from the corresponding recorded gesture. The same is done with the HMMs
for the other ten gestures, presented in Section 3.3. As depicted in Figure 3.26, these ten indi-
vidually trained HMMs work in parallel. To recognize a gesture, each of the HMMs is presented
with the same feature set of an unrecognized track. Each of the HMMs will use these features to
calculate whether the features of the unknown track fit to the model. The decision which gesture
is represented by the analyzed feature set is made by selecting the maximum likelihood out of
the results.

The features of a track are combined to an array. In this array a feature vector for each point
in time is formed. This feature vectors are attached to each other in the sequence they occur to
construct a feature cell array. By doing so, an array of feature vectors is constructed for each
track. For training the feature arrays for all tracks representing a specific gesture are combined
to a cell array. This cell array represents the training data for one specific gesture, thus it is used
to train the HMM that intended to recognize this gesture. The process of generating the cell
array is depicted in Figure 3.27. As mentioned earlier, each gesture is to be recognized by a
custom trained HMM [19]. Therefore, the process of generating a feature cell has to be repeated
for each gesture. The Toolbox from [64] with modifications from [78] is used to train the HMMs
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and to use them for classification.
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Figure 3.26: Training and classification using HMMs
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Introducing the Decision Tree

The decision tree is a way to display an algorithm that supports decisions [65]. According
to [65], decision trees are a way to represent rules which are based on data with hierarchical and
sequential structures that recursively partition the data. As its name implies, decision trees use
a tree-like graph to show the decisions made and the resulting consequences, including change
event outcomes, resource costs and utility [65]. Decision tree learning is an inductive learning
algorithm that generates a classification tree for classifying data [65]. Normally, to generate a
decision tree a “divide and conquer” strategy is used. The feature space, which is based on a
training set is recursively partitioned to generate a classification tree. Thus, a specific decision
rule is implemented at each branch, where single or multiple combinations of attribute inputs or
features are part of the rule [17].

The structure of a decision tree can be compared to a biological tree. A biological tree consists
of roots, branches and leaves - so does the decision tree. Similar to a biological tree that begins
with its roots, a decision tree always begins with the root node. The outermost parts of a tree
in nature are it’s leaves, which is the same for the decision tree. The leaves of the decision tree
are called terminal nodes, which represent the final classification [65]. Just as tree sap in a bio-
logical tree passes several branches on it’s way from the roots to the leaves, the decisions which
have to be made in a classification tree also have to pass over several branches. This branches
are the interior nodes of a decision tree. They represent the stages leading to the decision [65].
The root and the interior nodes together are also called non-terminal nodes [65]. A set of rules
implements the classification process which starts at the root, follows a path through the tree’s
non-terminal nodes and ends at one terminal node which symbolizes the label of the object being
classified [74]. The path through a decision tree is determined by a set of rules. A decision has
to be made at each non-terminal node to determine the path to the next node [17]. An example
of a simple binary decision tree which meant to help making decisions about selling shares, is
given in Figure 3.28 [74].

fall ≤ 100 points

previous day = fall
sell

hold

buy

true false

true

true

previous day = rise

false

sell

true false

Figure 3.28: A simple decision tree with binary splits (graphics adapted from [74])
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According to [65], there is a need for efficient, robust and versatile methods to examine and
evaluate data that represents the outcome of experiments and of projects [65]. A decision tree
can be used for data exploration in one or in combinations of the following methods [65]:

• Description: data can be reduced by transforming it into a more compact form. This
compact form is easier to process and better understandable, but the essential characteris-
tics of the data must not get lost. Data in the descriptive form should provide an accurate
summary.

• Classification: analyzing data and checking whether it contains well-separated classes of
objects, in order to interpreted the data in a meaningful way based on a substantive theory.

• Generalization: finding a way to map independent to dependent variables to find a model
that can forecast future values of the dependent variable.

According to [65], decision trees have a large field of applications. Automatic ways to cre-
ate rules in the form of decision trees are used in nearly every field that requires data explo-
ration [65]. In the real world decision trees are used in agriculture, astronomy, biomedical
engineering, financial analysis, image processing, language processing, manufacturing and pro-
duction, medicine, etc. [65].

The generation of a decision tree from a training set is called “tree induction” [73], “tree build-
ing” or “tree growing” [65]. Typical tree induction systems generate the tree in a greedy top-
down fashion. Typically an algorithm similar to the following algorithm is used. The following
algorithm starts with an empty tree and uses the a training set to grow the tree: [17] [65]

1. Create a leaf node with the class c if all the training examples at the current node t belong
to category s.

2. If not all training examples at the current node t belong to category s, the score of each
one of the set of possible splits S by using a goodness measure.

3. The best split s∗ has to be chosen as test for the current node.

4. For each distinct outcome of s∗ a child node has to be created. The edges between parent
and child nodes have to be labeled with the outcomes of s∗ and the training data has to be
partitioned into the child nodes using s∗

5. If all training samples at node t belong to the same class as the node, node t is said to be
pure. Thus, there is no need to split it in further branches. For all child nodes that are not
pure the previous steps have to be repeated.

More details on the way decision trees are generated can be found in [65] and [74]. As the
decision tree produces a set of rules for the path trough the tree, the tree can easily be interpreted
as a set of if-then instructions [60]. Generally, people are able to understand decision tree models
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with no or only a little explanation [65]. Decision trees need little data preparation, they are also
very flexible with the input data - both numerical and categorical data can be handled [65].
With decision trees it is possible to analyze large amounts of data using standard computing
resources [68]. It is a great advantage that there are many approaches to generate a decision
tree, as it allows building the tree automatically and then using the simple-to-understand and
uncomplicated structure of the tree to implement the set of rules generated by the tree induction
to classifying the data [22]. The decision tree therefore promises to be a good way to implement
a recognition in an embedded system. [68] [22]

Training and Recognition with Decision Trees

For the gesture recognition introduced in this study, the features introduced earlier in Section
3.6 are used to generate a decision tree, with leaves that represent the decision about gestures
resembled by an uncategorized feature set. The features have to be specially prepared for the
learning of the decision tree, as the structure used to train the HMMs is not compatible to the
data structure for DT training [60]. As depicted in Figure 3.29, the features have to be presented
in a table-like structure to the DT induction algorithm. In this structure the ground truth, thus,
the name of the actual gesture, has to be stored in the far left column. The training table contains
the data for all gestures. No split up has to be made, for only one tree is to be generated for
classification. In contrary to the HMM the decision tree is not time dependent. Therefore, the
features have to be summarized for each track. This is done by dividing each track into six
segments, with the average angle (orientation and orientation from first to current) is calculated
for each segment. Separately the average of the angle values of the whole track is used as a
feature. The maximum value is used for all other features, resulting in a training data table
consisting of seventeen columns - one for the ground truth and sixteen for the features. To
recognize or classify a gesture, a feature set calculated from a trajectory is presented to the tree
without the ground truth [60]. The decision tree classifier directly presents the name of the
gesture stored in each leave. This output can be easily processed or compared to the ground
truth for evaluation [60]. In this study the Statistics Toolbox of MATLAB was used to generate
a simple binary decision tree. How to use this Toolbox is described in [60].

ground truth 1 F11 F12 F13 F14 F1n

ground truth 2 F21 F22 F23 F24 F2n

ground truth 3 F31 F32 F33 F34 F3n

ground truth m Fm1 Fm2 Fm3 Fm4 Fmn

Figure 3.29: Feature structure for generating the DT
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3.8 Cross Validation

For the evaluation of the result of the gesture recognition a leave-one-out cross validation is used.
Initially, an equally sized set of recorded tracks for each gesture was randomly picked from the
test and training database. It is also possible to select a previously stored data set, so that all
evaluations can be made using the same tracks. Another option is to select all data, normally
only data sets of equal size are used. The data set is used to calculate the features necessary to
train the HMMs or to generate the DT. This is where the leave-one-out process comes into play.
Now, all feature sets are used to train the HMMs or to generate the DT except one that is going to
be used later to test the classifiers [50]. The single feature set is then presented to the HMM or the
DT to be classified and assigned to a certain type of gesture [50]. The result of the classification
is then compared to the ground truth. The outcome is then stored in the confusion matrix which
is a square matrix that shows the ground truth and actual classifications [50]. The leave-one-out
procedure is repeated for all feature sets of the previously selected data set. Therefore, each
track is left-out once, while the other tracks are used to train the classifiers. Using the confusion
matrix, recognition rates for each single gesture and an overall average recognition rate can be
calculated.
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3.9 Summary of Methodology

In this chapter the methods used for gesture recognition are introduced and discussed. The first
section provides information about the UCOS sensor. As profound knowledge of the underlying
technology of the UCOS sensor is required to use this device for gesture recognition such infor-
mation is provided in Section 3.1. Technical details on the sensor and its current use - counting
people - are presented, too. After the introduction of the built-in tracking function of the UCOS
sensor the modifications on the AE data format, which are necessary for gesture recognition, are
explained.
In Section 3.2 and Section 3.3 two linked topics are introduced. In the first of these sections
a concept for a gesture controlled GUI is presented. This GUI is conceived especially for this
study. It does not represent a final solution but it gives a clue about which and how many ges-
tures are necessary to be recognized by a gesture recognition system to be used for HCI. Thus,
a set of ten gestures - eight directional gestures and two symbolic gestures - were defined in
Section 3.3. In the previously presented GUI concept combinations of four, eight or ten of these
gestures can be used for navigation.
How these gestures are recorded with the UCOS sensor, which setup and which settings can be
used for recording is introduced in Section 3.4. This recorded trajectories are annotated and then
stored in a database. This database and the annotation methods are presented in Section 3.5.
The annotated and stored trajectories from the database are used to calculate features for clas-
sification. The features discussed in this work are: “lenght”, “speed”, “orientation”, “BB-
charactersitics” and “direction changes”. The features were kept simple because only low com-
putational power should be required to calculate them.
The classification methods used in this work are presented in Section 3.7. Because of the promis-
ing results in closely related works [42] [67] it was decided that the HMM should be used in this
work. The results from this classification method are compared with a second, a rule-based,
approach. As a trained DT can be interpreted as a set of rules, this method is selected as sec-
ond approach. Theory on both methods and how they can be used for gesture recognition are
explained, too.
Finally, in Section 3.8 the leave-one-out cross validation is presented as a method for the evalu-
ation of the UCOS-based gesture recognition approach.
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CHAPTER 4
Implementation

In this chapter the implementation of the gesture recognition is described. In Section 4.1 gen-
eral information about the implementation of the training and the recognition process using the
HMMs is presented. Information about the implementation of the training and the recognition
process using theDTs is presented in Section 4.2. Section 4.3 provides an overview on the im-
plementation of the feature calculation used for HMM and DT.

4.1 Implementation of the HMM classification

As mentioned in Section 3.7, one HMM for each gesture has to be trained. To train a HMM
the function HMM=train(data,M,Q,numb_it,lr,thresh)1 from [78] is used. This
function trains a HMM for each set of training data. This function requires the training data
formatted as described in Section 3.7, the number of states Q, the number of Gaussian density
functions M, the covariance type cov, the option for the type of the HMM left_right and
the threshold for stopping the training tresh. In order to find the best result different settings
for the number of states and the number of Gaussian density functions were tested. The num-
ber of states was varied for every run between 1 and 20. Increasing the number of Gaussian
mixtures to values greater than 1 leads to uncontrollable instabilities which have to be ruled out
in future work. There are thee different types of covariance possible: “full”, “spherical”’ and
“diag” [78]. In this work the setting “diag” was chosen because it led to the best recognition re-
sults. Setting left_right to 1 enables the so-called left-right HMM. As described in Section
3.7, this type of HMM is chosen for time dependent signals like the gesture use in this work.
During the training of the HMM iterations are performed until the model parameters converge
with the training data within a certain threshold. This threshold has a default value of 10−4. It
was also set to 10−3, 10−2 and higher values, where a setting of 10−2 proved to deliver the best

1for better readability shortened: HMMt̄rain(...)
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results because convergence problems occurred for small thresholds. Alternatively the train-
ing is stopped when the maximum number of iterations - specified by numb_it - is reached.
Within the function HMM=train(...) the functions init_mhmm(data,Q,M,cov,lr)2

and learn_mhmm(data,prior0,transmat0,mu0,Sigma0,mixmat0,numb_it,
thresh,0,cov)3 are called, where the init_mhmm(...) function initializes the parame-
ters for the function learn_mhmm(...) that actually trains the HMMs.

The so trained HMMs recognize gestures by using the recognize function from [78]:
[result,loglikV,path]=recognize[data,HMM1,HMM2,HMM3...)4

During this process the data is matched to a HMM using the Viterbi Algorithm. The function
recognize(...) requires the features of the data to be classified and the previously trained
HMMs as input. As mentioned above, the output of this function consists of the structures
result (containing the vector of recognition results), loglikV (containing the recognition
likelihood) and path (containing the optimal path when matching data sequence and model).
From this output values, the recognition likelihood is used to classify the track as a certain ges-
ture. The HMM with the maximum likelihood is supposed to match the track.

Paramter used setting
trparam.useequal true
trparam.tr_quality 2
trparam.no_gestures 10, 8 or 4
featureparam.featureset [true, true, true, true, false, false, true, true]
featureparam.norm π
featureparam.multi 1
featureparam.cutfirst 1
featureparam.cutlast 0
featureparam.diffn_orient 3
featureparam.segments 32
featureparam.maxcnt 50
featureparam.tton 0
featureparam.dct_en true
featureparam.dct_multi 100
hmmparam.Ns varied between 1 and 20
hmmparam.Kg 1
hmmparam.nr_iter 8
hmmparam.ltr true
hmmparam.Tresh 1e-2

Table 4.1: Optimal parameters used in the function HMM_chain

The whole process of selecting and loading data from the database, calculating the features,
training the HMMs, using them for recognition and performing the cross validation was auto-

2for better readability shortened: init_mhmm(...)
3for better readability shortened: learn_mhmm(...)
4for better readability shortened: recognize(...)
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mated in the eval function:
[eval]=HMM_chain(trparam,hmmparam,featureparam,use_track_ids)5.
This function selects data from the test database which is then cyclically used for training, recog-
nition and cross valuation. Different settings for the way the tracks are selected, the way the
HMM is trained and the way how the features are calculated can be specified, using the in-
put parameters. The parameters for the track settings are specified by the structure trparam.
The variable trparam.useequal can be used to force the function to use training data with
an equal amount oft tracks. The variable trparam.tr_quality is used to select the qual-
ity of the tracks used. The variable no_gestures defines the size of the gesture set used,
where “10” represents the full gesture set and “4” represents the minimum useful gesture set.
The variable hmmparam contains the earlier described parameters used to train the HMMs.
The feature parameters are used to specify which features should be calculated and how they
should be calculated. Using the variable feAtureparam.featureset, the features can
be turned on and off by setting the referring values to “true” or “false”. The setting [true,
true, true, true, false, false, true, true] was used in this work to ac-
tivate all features except “speed” and “length”. The parameter featureparam.norm can
be used to activate the normalization of the feature values. The feature values for the orien-
tations are in a well knowN range between −π and +π. “BB-area” and “BB-ratio” are de-
termined by the resolution of the sensor. As the UCOS sensor has a resolution of 128 x 128
pixels the maximum value for “BB-ratio” is 128 and the maximum value for the “BB-area” is
16384. The count of the directions is limited by the value featureparam.maxcnt. All
these values of the features are normalized between 0 and the value defined by the parameter
featureparam.norm. If featureparam.norm is set to “0”, the normalization is turned
off. The values of the features can also be multiplied by a certain value which is specified by
the parameter featureparam.multi. With the parameters featureparam.cutfirst
and featureparam.cutlast one can specify whether and how many elements should be
cut away at the beginning and the end of each feature vector. Typically, the first element of the
feature vector is cut away because it is in most cases 0, while no cuts are made at the end. The
parameter featureparam.tton is used to enable and disable the original time stamp in the
feature vector. The time stamp is not required for training the HMM, but it is useful for the
evaluation of the features. The parameter featureparam.dct_en is used to enable or dis-
able the performing of a discrete cosine transformation on the feature vector and the parameter
featureparam.dct_multi is used to multiply the result of the DCT6 by a value specified
in this parameter [42]. The parameter use_track_ids is used to hand a set of track IDs to the
function. The track IDs are then used for training and classification, instead of randomly picked
IDs. The output [eval] of the function HMM_chain(...) contains the confusion matrix
from the cross validation (eval.Confusion), the IDs of the tracks used for training and
recognition (eval.track_ids), the IDs of the wrong classified tracks (eval.false_ids)
and the input parameters (eval.hmmparam,eval.featureparam and eval.trparam).
The input parameters and the track IDs stored in the output can be used as an input for further
test runs. An overview of the parameter settings for the function HMM_chain(...) is given

5for better readability shortened: HMM_chain(...)
6Discrete Cosine Transformation
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in Table 4.1. The code of the function HMM_chain(...) is listed in Appendix B.

4.2 Implementation of the DT (Quasi Rule Based) Classification

In contrast to the HMM, only one decision tree has to be generated for the gesture set. The input
data for training has to contain all information on gestures that have to be recognized. The de-
cision tree is generated with the function tree=classregtree(Train.F, Train.gt,
’names’,Data.fname) which is included in the Statistics Toolbox from MathWorks [60].
The input for this function consists of the features from the training data (Train.F) and the
corresponding ground truth (Train.gt) in the format presented in section 3.7. The parameter
’names’ indicates that the value of Data.fname is a cell array of names for the predictor
variables (features) in the same order in which they appear in the feature table from which the
tree is created.

The tree created by the previously described function is used for classification with the function
result=eval(tree,Test.F)7 which is part of the Statistics Toolbox from MathWorks,
too [60]. This function requires the previously generated tree (tree) and the features of the
data to be classified (Test.F) as its input. The function eval(...) returns the names of the
gestures as classification result in the same order as presented to the decision tree.

Paramter used setting
trparam.useequal true
trparam.tr_quality 2
trparam.no_gestures 10, 8 or 4
featureparam.featureset [true, true, true, true, false, false, true, true]
featureparam.norm 0 (means off)
featureparam.multi 1
featureparam.cutfirst 1
featureparam.cutlast 0
featureparam.diffn_orient 3
featureparam.segments 32
featureparam.maxcnt 50
featureparam.tton 0
featureparam.dct_en false
featureparam.dct_multi 1

Table 4.2: Optimal parameters used in the function DT_chain

Similar to the HMM, the whole process of selecting and loading data from the database, calculat-
ing the features, generating the DT, using it for classification and performing the cross validation
was automated with the function:
[retvals]=DT_chain(trparam,featureparam,use_track_ids)8.

7for better readability shortened: eval(...)
8for better readability shortened: DT_chain(...)
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Basically, this function does the same as the function HMM_chain(...) that was described
in Section 4.1. It selects data from the test database or uses predefined data for cyclical train-
ing, recognition and cross validation. The input parameters are more or less the same as for the
function HMM_chain(...). However, the DT does not need hmmparam- only trparam
and featureparam have to be specified. The parameters for the track selection are the same
as for the HMM. The same tracks are used for both classification methods to achieve a com-
parable result. The main difference between these two approaches is due to the parameters
for the feature calculation. In case of the DT the normalization (featureparam.norm) is
turned off and the multiplier for the features (featureparam.multi) is always set to 1.
Also the DCT is turned off by setting the parameter (featureparam.dct_en) to “false”.
Therefore, the parameter (featureparam.dct_multi) has no meaning and is set to 1. The
output [retvals] of the function DT_chain(...) contains the confusion matrix from the
cross validation (retvals.Confusion), all decision trees generated during the cross valida-
tion retvals.treecollection and the input parameters (eval.featureparam and
eval.trparam). An overview of the parameter settings for the function DT_chain(...)
is given in the Table 4.2. The code for the function DT_chain(...) can be found in Ap-
pendix B.

4.3 Feature Calculation

For the calculation of each of the features described in Section 3.6 a function was implemented.
These functions primary use the calculations that are described in Section 3.6. The parame-
ters that are stored in featureparam are used to calculate the features from the AE-data.
The variable featureparam is explained in Section 4.2 and Section 4.1. The parameter
featureparam. norm is optional for all functions. As described above, this parameter
can be used to specify a normalization of the calculated feature data. The AE data which is used
to calculate the features is handed over to the feature calculation function by the input parameter
Tr. For the calculation of the feature “orientation between first and current point” the function
Orientation1tE=f_trorient_1toend(Tr,featureparam.norm) is used.
The function Orientation=f_trorient(Tr,diffn_or,featureparam.norm) is
used to calculate the feature “orientation”. The parameter diffn_or specifies the distance be-
tween two corresponding points of a trajectory which are used to calculate the orientation. The
function [BB-area,BB-ratio]=f_trBB(Tr,featureparam.norm) is used to cal-
culate the BB features. This function returns the features “BB-area” and “BB-ratio”. The func-
tion [chX,chY]=f_trdirchange(Tr,segments,maxcnt,featureparam.norm)
is used for the calculation of the direction changes. The parameter maxcnt specifies the maxi-
mum number of direction changes to be counted.

For increased flexibility the function FV=featcollector3(Tr,timemstmp_on,
featureparam,diffn_orient,segments,maxcnt) is implemented. This offers the
option to generate a feature set according to the parameter fetureparam.featureset that
is described in Section 4.1 above.
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4.4 Summary of Implementation

In this chapter the implementation of the training and the recognition process using the HMMs,
the implementation of the training and the recognition process using the DT and the implemen-
tation of the feature calculation were presented. All of the functions introduced are very flexible
and offer options for parameter variations. Thus, they might be useful for future use, too.
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CHAPTER 5
Experimental Results

In this chapter the results of the evaluation of the gesture recognition methods evaluated in this
thesis are presented. In Section 5.1 a visual inspection of the features used in this work is
presented.

5.1 Visual Evaluation of Features

Before training the HMM or the decision tree, the calculated features have to be evaluated.
This is done by performing a visual inspection of the calculated features. The features “ori-
entation”, “orientation from the beginning to the current point”, “speed”, “length”, “BB-area”,
“BB-ratio”, “horizontal directional changes” and “vertical directional changes” are calculated
for each recorded track that symbolizes a gesture. All results of the calculations for a certain
gesture type are plotted into figures - one figure for each feature. For each kind of gesture the
results of one type of feature are plotted one after another resulting in a side by side view that
enables a visual inspection whether the feature has distinctive characteristics. The results are
presented in eight plots, one for each feature. With these plots the characteristics of the ten
gestures defined in Section 3.3 can be evaluated. This overview makes it easy to see whether
the calculated features show significant differences for the different gestures. It is assumed that
the more the features are different for each gesture the better the recognition results are. For
example, the comparison of the feature “orientation between first and current point” is displayed
in Figure 5.1 in this section. The comparisons for the other features can be found in Appendix
beginning on page 97.

As visible in Figure 5.1 the “orientation between first and current point” is significantly different
for all gestures. The accumulation of the angle values for “down” is about π and −π. The accu-
mulation of the angle values for “up” is about 0. It could be observed, that the accumulations for
“left” and “right” are about π2 and −π

2 . For the diagonal gestures “rightup”, “leftup”, “leftdown”
and “rightdown” the accumulations of angles are about −π

4 , π
4 , 3π

4 and −3π
4 . For the gesture
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roof no clear accumulation is visible, but the values seem to change in a characteristic way be-
tween −π

2 and 0. The feature “orientation between first and current point” is inconclusive for
the “wave” gesture, but it shows a significant accumulation near −π

2 . The fact that the gestures
used in this work were performed by a right handed person could provide an explanation for this
accumulation. As visible in Figure A.1 the same accumulations as for “orientation between first
and current point” can be found in the accumulations of the of the feature “orientation”, but “ori-
entation between first and current point” has a more averaging effect. Being very characteristic
for nearly all gestures, the two “orientation” features are used for gesture recognition.

Comparisons of the calculated features “length” and “speed” for each gesture type track are
depicted in Figure A.3 and Figure A.2. As visible in these illustrations, neither “length” nor
“speed” show remarkable differences for the different gestures. Therefore, these two features
are not relevant for the gesture recognition.

When looking at the BB features, respectively the “BB-area” depicted in Figure A.4 and the
“BB-ratio” depicted in Figure A.5, different behaviors for different gestures are visible. The
“BB-area” value remains relatively low for the horizontal and vertical gestures. It increases fast
to high values for the diagonal gestures. For the gesture “roof”, the development of “BB-area” is
intermediate between the development of the vertical/horizontal “BB-area” and the development
of the diagonal “BB-area”. Therefore, it is slightly different to both. Overall, the “BB-area” for
the gesture “wave” stays on the lowest values, but the difference is not so significant in com-
parison to the horizontal/vertical gestures. The “BB-ratio” shows more differences between the
gestures. It increases fast for the “left” and “right” gestures, but it stays nearly at 0 in the case
of “up” and “down” gestures. It is also visible that the “BB-ratio” in the case of diagonal ges-
tures accumulates around 1. The “BB-ratio” for the gesture “roof” is like a mix of diagonal and
horizontal gestures. It develops very characteristically over time. The “BB-ratio” for the gesture
“wave” has a significant accumulation around 0.5. These facts lead to the conclusion that the
BB-characteristics are very important features for the gesture recognition application examined
in this work.

The calculation results of the features that count the direction changes in horizontal and vertical
directions are depicted in Figure A.7 and Figure A.6. As “waving” consists of movements into
different directions these two features - “vertical direction changes” and “horizontal direction
changes” - are significantly different for the gesture “wave” in comparison to the other ges-
tures. For the gesture “roof” the number of direction changes is slightly higher than for all other
gestures except wave. As the directional features are characteristic for the gestures “roof” and
“wave” these features are to be used for gesture recognition, too.
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Figure 5.1: Comparison of the feature “orientation between first and current point” for ten
different gestures
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5.2 Preface for Classification

The HMMs and the DT were trained with annotated data. This data was recorded from one
person performing the gestures defined in Section 3.3 and by using the test setup presented in
Section 3.4. The recorded data was categorized as gestures with different quality measures ac-
cording to the visual inspection of the recorded data. The quality criteria are divided into five
grades: “bad (1)”, “acceptable (2)”, “good (3)”, “very good (4)” and “pefect (5)”. Unrecogniz-
able and unintentional movements were sorted out of the recorded data and tagged “invalid (0)”.
All results were stored in a database containing 1463 recorded tracks of which 141 are “invalid
(0)”, therefore, not used for training and recognition. The tracks with the quality measure “bad
(1)” were not used, too. The unused data is kept in the database for future evaluation. Tracks
rated as “acceptable (2)” and better were randomly selected for the initial training of the HMM
and the DT. For better comparability of the results, the same tracks were used for other training
and recognition runs with other training parameters, given that the same size of the gesture set
was used. To provide a better overview the data sets for each gesture were kept at the same size.
When a gesture set of ten or eight gestures is used, the gesture “leftup” with the smallest num-
ber of 52 valid samples determines the size of the training data sets for the other gestures to 52
tracks. As the gesture “leftup” is not part of the minimal gesture set of four gestures, the size of
the data set for each gesture is determined by the 89 valid database entries for the gesture “left”.
Therefore, the tests with the reduced gesture set were done with 89 tracks for each gesture. Table
5.1 gives an overview on the status of the training database.

DB entries bad acceptable good very good perfect invalid sum
down 18 48 102 20 4 0 192
up 52 35 43 12 2 0 144
left 24 36 41 9 3 0 113
right 10 25 52 19 7 0 113
rightup 50 59 60 13 1 0 183
leftup 11 24 17 11 0 0 63
rightdown 28 57 99 20 0 0 204
leftdown 13 24 43 9 1 0 90
roof 28 52 63 10 2 0 155
wave 12 17 24 12 0 0 65
invalid 0 0 0 0 0 141 141
total 1463

Table 5.1: Status of the test and training database
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5.3 Classification with the Hidden Markov Models

This section summarizes the classification results of the HMMs. The best recognition result for
the full gesture set of ten gestures, the best result for a set consisting of eight gestures and the
best recognition result for a minimum gesture set with only four gestures are introduced on the
following pages.

Classification using the HMM on ten gestures

The full gesture set used for the classification in this work consists of the gestures “left”, “right”,
“up”, “down”, “rightup”, “rightdown”, “leftup”, “leftdown”, “roof” and “wave”. The parame-
ters for the evaluation were set as specified in Table 4.1. The number of states for the HMM was
varied between 1 and 20, the result of this variation can be seen in Figure 5.2. In this figure it
can be seen that the best result with ten gestures is achieved when setting the number of states
to 14. At this point, both, the blue line of the average recognition and the lower red line for the
minimum recogniton rate (the rate for the worst recognized gesture) are at their maximum. For
other settings the upper red line, which represents the maximum recognition rate for a single
gesture, reaches 100%, but the minimum and average recognition rates at this settings are much
worse. Therefore, the best result for recognizing ten gestures was achieved using 14 states for
the training of the HMM.
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Figure 5.2: HMM: finding the best result for the parameter “number of states” for ten gestures

Figure 5.3 and Table 5.2 show the results of the cross validation for the best result with ten
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gestures. The average recognition rate using ten gestures is 89.61%. It is clearly visible that
the gestures “rightup” and “rightdown” have a poor recognition rate of 76.92% because they are
often mismatched with the gesture “roof” and “down”. This happens because the gesture “roof”
consists of a movement similar to “rightup” combined with “rightdown”. The movement for
the gesture “rightdown” is very similar to the movement for “down”, because the gestures are
not always performed in a perfect way. The gesture “down” has a relatively high recognition
rate of 96.15%, however 20.63% of the gestures classified as “down” are classified false. The
gesture “roof” has with its 18.97% a relatively high rate of false classifications. This result
correspond with the low classification rates of the gestures “rightup” and “rightdown”. The
gesture “wave” is also a relatively problematic gesture being often classified as another gesture.
The recognition rate for “wave” is 80.77%, all other gestures except “rightup” and “rightdown”
have a recognition rates greater than 90%.
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Figure 5.3: HMM: recognition summary of the best result for ten gestures
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Classification using the HMM on eight gestures

To rule out the problems considering the recognition of the gestures “wave” and “roof”, these
gestures were left out and the classification was performed with only eight directional gestures.
Again the parameters for the evaluation were set as specified in Table 4.1 and the number of
states were varied between 1 and 20. One can read from Figure 5.4 that the best result for the
state variation with eight gestures is achieved when the Number of States is set to eight. The
blue line of the average recognition rate is at the maximum compared to the other points as well
as the lower red line for the minimum recognition rate. As for ten gestures, other settings could
lead to a maximum recognition rate for a single gesture of 100%, but the minimum and the av-
erage recognition rates at other settings are much lower. The best result for the recognition of
the eight gestures is achieved when using eight states.
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Figure 5.4: HMM: finding the best result for the parameter “number of states” for eight gestures

Figure 5.5 and Table 5.3 show the result of the cross validation for the best result with 8 ges-
tures. The average recognition rate in the case of using eight gestures is 94.71%. Having left out
the trouble makers “roof” and “wave”, the highest false classification rate of 7.55% can still be
found at the gesture “down”, which is primary mismatched with the gesture “rightdown”. Also,
the gesture “rightdown” on its part has a false classification rate of 7.55% being mismatched
with the gesture “leftup”. This could be caused by the small unintentional upwards movement
of the arm after performing the intentional downwards movement. The gesture “rightup” and
“rightdown” have the poorest recognition rate of 92.31%, while all other gestures have a recog-
nition rate greater than 94%. This result leads to the conclusion that the features selected for the
gesture recognition are more distinguishable for the classifier when using a smaller set of more

80



simple gestures, leading to a better result in comparison to the recognition of ten gestures.
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Figure 5.5: HMM: recognition summary of the best result for eight gestures

DO UP LE RI RU RD LU LD T F TPR [%]
DO 49 1 0 0 0 1 0 1 49 3 94.23
UP 0 50 0 0 1 0 1 0 50 2 96.15
LE 0 0 50 0 0 0 2 0 50 2 96.15
RI 0 0 0 51 1 0 0 0 51 1 98.08
RU 0 1 0 2 48 1 0 0 48 4 92.31
RD 2 0 0 1 0 49 0 0 49 3 94.23
LU 1 1 0 0 0 2 48 0 48 4 92.31
LD 1 0 1 0 1 0 0 49 49 3 94.23
T 49 50 50 51 48 49 48 49
F 4 3 1 3 3 4 3 1 AVG 94.71
FPR [%] 7.55 5.66 1.96 5.56 5.88 7.55 5.88 2.00 5.26

Table 5.3: HMM: confusion matrix of the best result for eight gestures
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Classification using the HMM on four gestures

As there occur still relatively high rates of false classifications when using eight gestures, the
gesture set was reduced to a minimum gesture set. Only the four directional gestures “left”,
“right”, “up” and “down” were used for the third evaluation of the HMM-based gesture recogni-
tion. As the visual inspection of the features has showed this four are very distinguishable. The
parameters for the evaluation were again set as specified in Table 4.1 and the number of states
was varied between 1 and 20. The best setting for the number of states can be found in Figure
5.6. The best result for the state variation with 4 gestures is achieved when the number of states
is set to 4,5 or 16. At this settings the recognition rate for all gestures is 100% - the lines for the
minimum, the maximum and the average recognition rate meet at 100%. For example, the result
with a setting of 5 states is presented here. However, the result is exactly the same with 4 or 16
states.
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Figure 5.6: HMM: finding the best result for the parameter “number of states” for four gestures

Figure 5.7 and Table 5.4 show the result of the cross validation for the best result with four ges-
tures. The average recognition rate when using four gestures is 100.00%. Reducing the gesture
set leads to very good results. Having left out all of the problematic gestures, no gestures are
mismatched, as the features - especially the angles - are very different if only four directions
are relevant. The reduced gesture set tolerates poorly executed movements that could easily be
interpreted as another gestures, if there are more than four gestures to recognize. To summa-
rize, a gesture set of four gestures leads to more accurate result compared to the results of the
recognition of eight or ten gestures.
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Figure 5.7: HMM: recognition summary of the best result for four gestures

DO UP LE RI T F TPR [%]
DO 89 0 0 0 89 0 100.00
UP 0 89 0 0 89 0 100.00
LE 0 0 89 0 89 0 100.00
RI 0 0 0 89 89 0 100.00
T 89 89 89 89
F 0 0 0 0 AVG 100.00
FPR [%] 0.00 0.00 0.00 0.00 0.00

Table 5.4: HMM: confusion matrix of the best result for four gestures
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5.4 Classification with the Decision Tree (Quasi Rule Based)

This section summarizes the classification results of the DT. The best recognition result for the
full gesture set of ten gestures, the best result for a set consisting of eight gestures and the best
recognition result for a minimum gesture set with only four gestures are introduced in the fol-
lowing sections.

Classification using the DT on ten gestures

Similar to the classification using the HMM, the full gesture set used for this classification ap-
proach consists of the gestures “left”, “right”, “up”, “down”, “rightup”, “rightdown”, “leftup”,
“leftdown”, “roof” and “wave”. The parameters for the evaluation are set as specified in Table
4.2. Figure 5.8 and Table 5.5 show the best result of the cross validation for the recognition
of ten gestures. When using these ten gestures the average recognition rate is 91.15%. The
gestures “roof” and “wave” are the most problematic, because both of them have a high false
classification rate - greater than 19%. Especially, the recognition of the gesture “wave” is with
19.61% often wrong as it is frequently false categorized as the gestures “right” and “roof”. This
increases the false classification rate for “right” to 9.26% and drops recognition rate for “wave”
to 78.85%. In addition to “wave” also the gestures “roof” and “leftdown” are often not classified
the way the should be. While these three gestures have a recognition rate below 90%, the other
seven gestures have a recognition rate greater than 90%.
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Figure 5.8: DT: recognition summary of the best result for ten gestures
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Classification using the DT on eight gestures

As one can see in the result for ten gestures “wave” and “roof” are the most problematic gestures
to be recognized as such. These gestures were therefore left out and the classification was
performed with only eight directional gestures with the parameter settings as specified in Table
4.2. Figure 5.9 and Table 5.6 show the best result of the cross validation with a gesture set
that consist of eight gestures. The average recognition rate using the reduced gesture set is
96.39%. Similar to the HMM leaving out the problematic gestures “roof” and “wave” lowers the
maximum false classification rate to 7.41%. No gesture was falsely recognized as the gestures
“leftdown” and “left”. The gesture “left” has even a recognition rate of 100%. Similar to the
HMM, the features selected for the gesture recognition are more distinguishable for the classifier
when using a smaller set of gestures, which leads to more accurate results than in the case of a
bigger gesture set of ten gestures.
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Figure 5.9: DT: recognition summary of the best result for eight gestures
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DO UP LE RI RU RD LU LD T F TPR [%]
DO 50 2 0 0 0 0 0 0 50 2 96.15
UP 2 49 0 0 1 0 0 0 49 3 94.23
LE 0 0 52 0 0 0 0 0 52 0 100.00
RI 0 0 0 51 0 1 0 0 51 1 98.08
RU 0 1 0 0 50 1 0 0 50 2 96.15
RD 0 0 0 0 0 50 2 0 50 2 96.15
LU 0 0 0 0 0 2 50 0 50 2 96.15
LD 0 0 1 0 1 0 1 49 49 3 94.23
T 50 49 52 51 50 50 50 49
F 2 3 1 0 2 4 3 0 AVG 96.39
FPR [%] 3.85 5.77 1.89 0.00 3.85 7.41 5.66 0.00 3.68

Table 5.6: DT: confusion matrix of the best result for eight gestures
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Classification using the DT on four gestures

Similar to the classification using the HMMs, the gesture set was reduced to a minimal gesture
set of four directional gestures. The parameters for the evaluation were kept as specified in Table
4.2. The best result of the cross validation with four gestures is shown in Figure 5.10 and Table
5.7. The average recognition rate when using only four gestures is 99.16%. The gesture “up”
was only once classified as “down” and the gesture “down” is falsely classified twice as “up”.
This reduced the recognition rate for “down” to 98.88% and the recognition rate for “up” to
97.75%. The other two gestures have a recognition rate of 100.00%. Removing all problematic
gestures from the gesture set leads to very accurate results.
Again, the features - especially the orientations - are very different for four directions. The
reduced gesture set once more seems to tolerate poorly executed movements better. As for the
HMM, the recognition rate in case of using four gestures is significantly higher when using the
reduced gesture set of four gestures than when eight or ten gestures have to be classified.
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Figure 5.10: DT: recognition summary of the best result for 4 gestures

When using four gestures, the rules generated for classifying the data are easy to read and to
transfer to other programming languages. The MATLAB generated code of the decision tree
(see Listing 5.1) for four gestures consists of just 13 lines - primary simple if-then instructions.
A sample of the decision tree for four gestures can be seen in Figure 5.11.
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DO UP LE RI T F TPR [%]
DO 88 1 0 0 88 1 98.88
UP 2 87 0 0 87 2 97.75
LE 0 0 89 0 89 0 100.00
RI 0 0 0 89 89 0 100.00
T 88 87 89 89
F 2 1 0 0 AVG 99.16
FPR [%] 2.22 1.14 0.00 0.00 0.84

Table 5.7: DT: confusion matrix of the best result for 4 gestures

right left

down up down

down up

BB Ratio < 1.21875   

Angle N < 0.145336   Angle N < 0.201241   

Angle 1tE6 < -0.900196   Angle N5 < 0.0199299   

Angle N5 < -0.681997   

  BB Ratio >= 1.21875

  Angle N >= 0.145336   Angle N >= 0.201241

  Angle 1tE6 >= -0.900196   Angle N5 >= 0.0199299

  Angle N5 >= -0.681997

PDFill P
DF Editor with Free Writer and Tools

Figure 5.11: Example of trained decision tree for 4 gestures
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Decision tree for classification
1 if BB Ratio<1.21875 then node 2 elseif BB Ratio≥1.21875 then node 3 ...

else up
2 if Angle N<0.145336 then node 4 elseif Angle N≥0.145336 then node 5 ...

else left
3 if Angle N<0.201241 then node 6 elseif Angle N≥0.201241 then node 7 ...

else up
4 class = right
5 class = left
6 if Angle 1tE6<-0.900196 then node 8 elseif Angle 1tE6≥-0.900196 then ...

node 9 else up
7 if Angle N5<0.0199299 then node 10 elseif Angle N5≥0.0199299 then ...

node 11 else down
8 class = down
9 class = up

10 if Angle N5<-0.681997 then node 12 elseif Angle N5≥-0.681997 then ...
node 13 else down

11 class = down
12 class = down
13 class = up

Listing 5.1: Example for resulting If-then code for the tree presented in Figure 5.11

91



5.5 Summary of Results and Comparison between HMM and DT

Both, the HMM and the DT approach lead to similar results when tested on the same set of
training and recognition data. The results for both approaches are summarized in Table 5.8. The
recognition rate for the full gesture set of ten gestures is around 90% for both approaches, for
eight gestures the recognition rate is around 95%. Finally, reducing the gesture set to a minimum
of four gestures, resulted in a recognition rate of nearly 100%. With the larger gesture sets the
DT shows a slightly better performance than the HMM. However, when the minimum gesture
set is used for recognition the HMM delivers a bit higher accuracy than the DT. Additionally
there has to be considered that due to stability problems the results of the HMM-based gesture
recognition were achieved by using only one Gaussian mixture. This might be a reason for the
poor recognition results for the gestures “rightdown” and “leftdown”. This problem has to be
ruled out in future work, and it has to be evaluated whether the HMM will then show better
recognition results. Still, the implementation of a HMM-based embedded gesture recognition
device using the UCOS sensor might be hard to realize because of the limited computing re-
sources within the device.

[%] HMM10 DT10 HMM8 DT8 HMM4 DT4
DO 96.15 90.38 94.23 96.15 100.00 98.88
UP 92.31 98.08 96.15 94.23 100.00 97.75
LE 96.15 98.08 96.15 100.00 100.00 100.00
RI 96.15 94.23 98.08 98.08 100.00 100.00
RU 76.92 90.38 92.31 96.15
RD 76.92 90.38 94.23 96.15
LU 98.08 96.15 92.31 96.15
LD 92.31 88.46 94.23 94.23
RF 90.38 86.54
WV 80.77 78.85
Avg. Rate 89.61 91.15 94.71 96.39 100.00 99.16

Table 5.8: Recognition results, comparison between HMM and DT for 10, 8 and 4 gestures

For both, the HMM approach and the DT approach, the results show that a reduced gesture set
leads to more accurate recognition results than a full gesture set. Better overall recognition re-
sults might be achieved when only parts of the gestures are recognized and the decision about
the meaning of a gesture is resembled by sequential combinations of gesture parts recognized by
a second decision instance. It might also be useful to use all data produced by the UCOS sensor
for gesture recognition, not only the output of the embedded tracking function.

Under this prerequisites, the decision tree seems to be the better solution for implementing the
prototype of an embedded gesture recognition device, especially when using a reduced gesture
set of eight gestures. However, both methods still need further improvements to increase the
usability of such a system for gesture recognition.
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CHAPTER 6
Conclusion and Future Work

In the last chapter of this thesis Section 6.1 is used to compare the results of this work with
related works. In this section it is also concluded whether results accomplished by using UCOS-
generated AE data for gesture recognition are promising for further implementations of a gesture
recognition system based in this sensor.
Some ideas for further development and brief outlook on future tasks on UCOS-based gesture
recognition is presented in Section 6.2.

6.1 Conclusion and Discussion of the Results

There are different scientific and commercial solutions for human gesture recognition. In this
work gesture recognition was evaluated as a new application for an existing sensor generating
address event data. Especially, the tracking function of the sensor which is intended to support
the sensors’s function of counting people, was used as the source of data. In order to get recog-
nition results, a basic framework with Hidden Markov Models and Decision Trees was designed
for training and recognition. Both of the machine learning approaches were trained with dif-
ferent gestures and gesture sets of different size in order to evaluate the general functionality of
the approaches and to find out how many different gestures can be detected using the selected
features. Both, the Hidden Markov Model approach and the Decision Tree approach, were eval-
uated within an execution of a leave-one-out cross validation. Simple feature calculations were
used, because a future development should lead to the development of an embedded gesture
recognition sensor based on the UCOS device. The calculation of the features still needs a lot
of computational resources which is likely to cause a high latency between the execution of a
gesture and its recognition in a future embedded solution. When previously calculated features
are presented to the recognition algorithms especially the Decision Tree leads to good results. It
is also a method that is simple to implement, making an early prototype based on this solution
possible in near future. The HMM also leads to accurate recognition results although a higher
number of mixtures of Gaussian could not be used. If these problems are ruled out in the future
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the HMM might show even better results than the DT.

Paper/Work Recog. of: Sensor Recog.
Method

Nr.
Gestures

Average
Accuracy

Kristensson 2012
[53]

dyn. hand gestures Kinect template
matching

>10 92.70%

Lang 2011 [56] german sign
language

Kinect HMM 10 97.70%

Ramamoorthya
2003 [76]

dyn. hand gestures mono
camera

HMM 5 97.00%

Wang 2008 [90] body gestures stereo
camera

HMM 9 91.96%

Hahn 2011 [42] dance motions UCOS
family

HMM 8 97.33%

This study dyn. hand gestures UCOS HMM 10 89.61%
8 94.71%
4 100.00%

DT 10 91.15%
8 96.39%
4 99.16%

Table 6.1: Comparison of the results of this study and related works

In Table 6.1 a comparison of this study and related works is provided. From this overview it
is visible that the recognition accuracy of the methods used in this work are in a similar range
as the results from related works. It is also visible, that the works where a lower number of
different gestures have to be recognized provide higher recognition rates than the works where
more different gestures have to be recognized. The same observation was made in this study.
Basically, the results of this work show that it is possible for the UCOS sensor to be used as
gesture recognition device. They also show that the outcome of this work is in a range with
competing approaches for gesture recognition. Finally, these results build the base for further
developments and improvements on UCOSbased gesture recognition.

6.2 Future Work

The major task for future work is to find and solve the problem within the HMM recognition
which prevents using more than one Gaussian mixture for the training of the HMMs. Addi-
tional filtering and preprocessing for the input data has to be evaluated, as it might lead to better
results. Therefore further filters could be useful to improve the recognition rates. For this eval-
uation only the data produced by the embedded tracking function of the UCOS sensor was used
as data source. Extracting features from all AE data using not only the tracks might also lead
to more accurate recognition results. It might also be interesting to use the approach and the
presented in [53] on the AE-based trajectories.
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To get a more representative result it is necessary to use the infrastructure developed an built for
this work on an increased number of training and test data sets. It is also necessary to record
data from more than one person since the way the people perform gesture differs from person to
person.

For everyday use it is also necessary to find a way to recognize and rule out irregular gestures
and unintentional movements, so that the do not trigger a reaction on a gesture controlled inter-
face.
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APPENDIX A
Appendix A: Feature Plots
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Figure A.1: Comparison of the feature “orientation” for ten different gestures
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Figure A.2: Comparison of the feature “speed” for ten different gestures
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Figure A.3: Comparison of the feature “length” for ten different gestures
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Figure A.4: Comparison of the feature “BB-area” for ten different gestures
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Figure A.5: Comparison of the feature “BB-ratio” for ten different gestures
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Figure A.6: Comparison of the feature “vertical direction changes” for ten different gestures
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Figure A.7: Comparison of the feature “horziontal direction changeds” for ten different gestures
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APPENDIX B
Appendix B: Code

B.1 Appendix B, Code: Filter different AER types

41 % bitmasks
42 % 10987654321098765432109876543210
43 % 3 2 1 0
44 % Stereo Evens (do nothing)
45 maskinfo(1) = uint32(bin2dec('00000000000000000000000000000000'));
46 % Scanlines
47 maskinfo(2) = uint32(bin2dec('00000010000000000000000000000000'));
48 % Counter numbers
49 maskinfo(3) = uint32(bin2dec('00000100000000000000000000000000'));
50 % Tracks
51 maskinfo(4) = uint32(bin2dec('00000110000000000000000000000000'));
52 % Crosses on beginning of tracks
53 maskinfo(5) = uint32(bin2dec('00001000000000000000000000000000'));
54

55 %check the status od the tree masking bits
56 mymask = uint32(bin2dec('00001110000000000000000000000000'));
57 %apply mask
58 index = find (bitand(ae(1,:),mymask)==maskinfo(type));
59

60 if (¬isempty(index));
61 ae = ae(:,index);
62 else ae = [];
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B.2 Appendix B, Code: HMM Chain

148 DB_Path = ...
149 'C:\Users\Matthias Zima\Documents\Informatik\Diplomarbeit\Data\tracks.mat';
150

151 gesture_names={'down' 'up' 'left' 'right' 'rightup' ...
152 'rightdown' 'leftup' 'leftdown' 'roof' 'wave'};
153

154 %no diagonal gestures
155 %gesture_names={'down' 'up' 'left' 'right' 'wave'};
156

157 % Variables to Store LoglikV
158 Result.ids = [];
159 Result.gt = {};
160 Result.loglikV_norm = [];
161

162 countup=1;
163

164 % Variables to save IDs of false deteced gestures
165 failindex=0;
166 false_ids=[];
167 % ************************************************************************/
168 % * Open Database
169 % ************************************************************************/
170 trackdata = load_trackdata_from_DB(DB_Path);
171

172 % ************************************************************************/
173 % * Select Tracks with specific quality from DB
174 % ************************************************************************/
175 % * Tracks with quality better or equal to 'tr_quality' are selected
176 % * for training and verification
177 % * 1 ... down 5 ... rightup 9 ... roof
178 % * 2 ... up 6 ... leftup 10... wave
179 % * 3 ... left 7 ... rightdown
180 % * 4 ... right 8 ... leftdown
181 % ************************************************************************/
182 if DB_select
183 for ind=1:no_gestures
184 track_ids{ind} = select_tracks( trackdata, gesture_names{ind}, ...
185 tr_quality , '>');
186 [¬,track_cnt(ind)] = size(track_ids{ind});
187 end;
188

189 % ********************************************************************/
190 % * Take equal number of samples from all tracks (min) if selected
191 % * so that all datasets have the same size. The number of tracks used
192 % * depends on the tinyest gesture set. If there ar 150 up gesturere
193 % * and 30 wave gestures recorded and annotated in the database, 30
194 % * random gestures of the other datasets will be picked.
195 % * To reuse this dataset the used track_ids are sored in the output.
196 % * HMM_chain can be started using previously stored track_ids.
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197 % ********************************************************************/
198 if useequal
199 sizedata = min(track_cnt);
200

201 for ind=1:no_gestures
202 rpointers = randperm(track_cnt(ind));
203

204 pointers = sort(rpointers(1:sizedata));
205

206 for index=1:sizedata
207 ids_to_use{ind}(index) = track_ids{ind}(pointers(index));
208 end;
209 end;
210

211 track_ids=ids_to_use;
212 end;
213 end;
214

215 % ************************************************************************/
216 % * Get total number of tracks to be checked
217 % ************************************************************************/
218 countdown=0;
219 for index1=1:no_gestures
220 [¬,temp]=size(track_ids{index1});
221 countdown=countdown+temp;
222 end;
223

224 % ************************************************************************/
225 % * Initialize Confusion Matrix
226 % ************************************************************************/
227 Confusion=zeros(no_gestures);
228

229 % ************************************************************************/
230 % * keep each dataset once out of trainingdata, train with the rest and
231 % * validate
232 % ************************************************************************/
233 for index1=1:no_gestures
234 [¬,no_tracks]=size(track_ids{index1});
235 failindex = 0;
236 % ********************************************************************/
237 % * Generate Feature Cell Arrays for "fixed" gestures
238 % ********************************************************************/
239 for index3=1:no_gestures
240 if index36=index1
241 FCA{index3}=getFCA(trackdata,track_ids{index3},featureparam);
242 end
243 end;
244 disp('Fixed Feature Cell Arrays generated!')
245

246 for index3=1:no_gestures
247 if index36=index1
248 % ************************************************************/
249 % * Train the HMMs with trainingdata
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250 % ************************************************************/
251 HMM(index3)=train2(FCA{index3}.data_tr,Kg,Ns,nr_iter,ltr,Tresh);
252 end;
253 end;
254 disp('Training of fixed HMMs finished');
255

256 for index2=1:no_tracks
257 % ****************************************************************/
258 % * Show, how many tracks are left to be used.
259 % ****************************************************************/
260 text=['Processing, ', num2str(countdown), ' Tracks to go!'];
261 disp(text);
262 countdown=countdown-1;
263

264 % ****************************************************************/
265 % * Generate Feature Cell Arrays for "permutated" gestures
266 % ****************************************************************/
267 FCA{index1}=getFCA(trackdata,track_ids{index1}, ...
268 featureparam, track_ids{index1}(index2));
269

270 disp('Permutated Feature Cell Array generated!')
271

272 % ************************************************************/
273 % * Train the permutated HMM with trainingdata
274 % ************************************************************/
275 HMM(index1)=train2(FCA{index1}.data_tr,Kg,Ns,nr_iter,ltr,Tresh);
276

277 disp('Training of Permutated HMM finished');
278

279 % ****************************************************************/
280 % * Recognize gesture using test data
281 % ****************************************************************/
282 loglikV=ones(no_gestures,1)*-inf;
283 [¬,FCA_len]=size(FCA{index1}.data_te);
284 for index3=1:no_gestures
285 [¬,loglikV(index3),¬] = recognize(FCA{index1}.data_te,...
286 HMM(index3));
287 %loglikV_orig(index3)=loglikV;
288

289 Result.loglikV_norm(((index1-1)*index2)+index2,index3)=...
290 loglikV(index3)/FCA_len;
291 Result.loglikV_orig(((index1-1)*index2)+index2,index3)=...
292 loglikV(index3);
293 end
294 %loglikV_norm=loglikV/FCA_len;
295

296

297 Result.ids = [Result.ids ; FCA{index1}.id_te];
298 Result.gt{countup,1} = gesture_names{index1};
299 %Result.loglikV_norm(index2,index2) = ...

[Result.loglikV_norm(index1) ; loglikV_norm];
300 %Result.loglikV_orig = loglikV_orig;
301
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302 countup=countup+1;
303

304 [¬,gesture_nr]=max(loglikV);
305

306 % ****************************************************************/
307 % * Store result in Confusion Matrix
308 % ****************************************************************/
309 Confusion(index1,gesture_nr)=Confusion(index1,gesture_nr)+1;
310

311 % ****************************************************************/
312 % * Store ID's of false classified tracks
313 % ****************************************************************/
314 if gesture_nr 6= index1
315 failindex=failindex+1;
316 false_ids{index1}(failindex)=FCA{index1}.id_te;
317 end
318

319 end
320

321 end
322

323 % ************************************************************************/
324 % * store data for evalution
325 % ************************************************************************/
326 eval.hmmparam=hmmparam;
327 eval.trparam=trparam;
328 eval.featureparam=featureparam;
329 eval.Confusion=Confusion;
330 eval.false_ids=false_ids;
331 eval.track_ids=track_ids;
332 eval.FCA=FCA;
333 eval.Result=Result;
334

335 end
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B.3 Appendix B, Code: DT Chain

110 DB_Path = ...
111 'C:\Users\Matthias Zima\Documents\Informatik\Diplomarbeit\Data\tracks.mat';
112

113 gesture_names={'down' 'up' 'left' 'right' 'rightup' ...
114 'rightdown' 'leftup' 'leftdown' 'roof' 'wave'};
115

116 %no diagonal gestures
117 %gesture_names={'down' 'up' 'left' 'right' 'wave'};
118

119 % Variables to Store LoglikV
120 Data.F = [];
121 Data.gt = {};
122 Data.fname = {};
123 Data.track_ids1 = [];
124

125 countup=1;
126

127 % Variables to save IDs of false deteced gestures
128 failindex=0;
129 false_ids=[];
130 % ************************************************************************/
131 % * Open Database
132 % ************************************************************************/
133 trackdata = load_trackdata_from_DB(DB_Path);
134

135 % ************************************************************************/
136 % * Select Tracks with specific quality from DB
137 % ************************************************************************/
138 % * Tracks with quality better or equal to 'tr_quality' are selected
139 % * for training and verification
140 % * 1 ... down 5 ... rightup 9 ... roof
141 % * 2 ... up 6 ... leftup 10... wave
142 % * 3 ... left 7 ... rightdown
143 % * 4 ... right 8 ... leftdown
144 % ************************************************************************/
145 if DB_select
146 for ind=1:trparam.no_gestures
147 track_ids{ind} = select_tracks( trackdata, gesture_names{ind}, ...
148 trparam.tr_quality , '>');
149 [¬,track_cnt(ind)] = size(track_ids{ind});
150 end;
151

152 % ********************************************************************/
153 % * Take equal number of samples from all tracks (min) if selected
154 % * so that all datasets have the same size. The number of tracks used
155 % * depends on the tinyest gesture set. If there ar 150 up gesturere
156 % * and 30 wave gestures recorded and annotated in the database, 30
157 % * random gestures of the other datasets will be picked.
158 % * To reuse this dataset the used track_ids are sored in the output.
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159 % * HMM_chain can be started using previously stored track_ids.
160 % ********************************************************************/
161 if useequal
162 sizedata = min(track_cnt);
163

164 for ind=1:trparam.no_gestures
165 rpointers = randperm(track_cnt(ind));
166

167 pointers = sort(rpointers(1:sizedata));
168

169 for index=1:sizedata
170 ids_to_use{ind}(index) = track_ids{ind}(pointers(index));
171 end;
172 end;
173

174 track_ids=ids_to_use;
175 end;
176 end;
177

178 % ************************************************************************/
179 % * Get total number of tracks to be checked
180 % ************************************************************************/
181 countdown=0;
182 for index1=1:trparam.no_gestures
183 [¬,temp]=size(track_ids{index1});
184 countdown=countdown+temp;
185 end;
186

187 % ************************************************************************/
188 % * Initialize Confusion Matrix
189 % ************************************************************************/
190 Confusion=zeros(trparam.no_gestures);
191 Confusion2=zeros(trparam.no_gestures);
192

193 % ************************************************************************/
194 % * keep each dataset once out of trainingdata, train with the rest and
195 % * validate
196 % ************************************************************************/
197 for index1=1:trparam.no_gestures
198 % ********************************************************************/
199 % * Generate Feature Matrix
200 % ********************************************************************/
201 Preds{index1}=getPredictors(trackdata,track_ids{index1},...
202 featureparam, numsegments, gesture_names{index1});
203

204 Data.F=[Data.F;Preds{1,index1}.F];
205 Data.gt=[Data.gt;Preds{1,index1}.gt];
206 Data.fname=Preds{index1}.fname;
207 Data.track_ids1=[Data.track_ids1,track_ids{index1}];
208

209 end
210 Data.track_ids1=rot90(Data.track_ids1,3);
211 Data.track_id=track_ids;
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212

213 [sizeDataset,¬]=size(Data.F);
214 countdown=sizeDataset;
215 good = 0;
216 bad = 0;
217

218 % ************************************************************************/
219 % * For Cross Validation: leave one out and train with the Rest
220 % ************************************************************************/
221 for index=1:sizeDataset
222 msg=['Performing Crossvalidation, ',num2str(countdown) ,...
223 ' Tracks to go!'];
224 disp(msg)
225 countdown=countdown-1;
226

227 % select Testdata
228 Test.F=Data.F(index,:);
229 Test.gt=Data.gt(index,:);
230 Test.track_ids1=Data.track_ids1(index,:);
231

232 % leave out Testdata from trainingsdata
233 storecnt=0;
234 for ind=1:sizeDataset
235 if ind6=index
236 storecnt=storecnt+1;
237 Train.F(storecnt,:)=Data.F(ind,:);
238 Train.track_ids1(storecnt,1)=Data.track_ids1(ind,1);
239 Train.gt(storecnt,1)=Data.gt(ind,1);
240 end;
241 end;
242

243 tree = classregtree(Train.F, Train.gt, 'names', Data.fname);
244

245 treecollection{index}=tree;
246

247 disp('Tree generated')
248

249

250 result=eval(tree,Test.F);
251

252 disp('-----------------------------');
253 disp(Test.gt);
254 disp(result);
255

256 if strcmp(Test.gt,result)
257 good=good+1;
258 else
259 bad=bad+1;
260 end;
261

262 perc=(good/(good+bad))*100;
263

264 for index2=1:trparam.no_gestures
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265 if strcmp(gesture_names{index2},Test.gt)
266 confpos_gt=index2;
267 end;
268 if strcmp(gesture_names{index2},result)
269 confpos_rec=index2;
270 end;
271

272 end;
273

274 Confusion(confpos_gt,confpos_rec)=Confusion(confpos_gt,confpos_rec)+1;
275 end;
276

277 % ************************************************************************/
278 % * store data for evalution
279 % ************************************************************************/
280 retvals.trparam=trparam;
281 retvals.featureparam=featureparam;
282

283 retvals.Data=Data;
284 retvals.Confusion=Confusion;
285 retvals.treecollection=treecollection;
286

287 retvals.perc=perc;
288

289 end
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APPENDIX C
Appendix C: Sensor Settings

C.1 Settings of the UCOS Sensor

1 *************** System ***************
2 Application Software: UCOS
3 FLASH Board type: UCOS XL
4 FLASH Sensor ID: 1068
5 FLASH Location: Zim's_Desk
6 Version: 1.7FoSIBLE
7 Build: 1.7.6-3252r+
8 Date: 2011-11-14 11:49
9 Configuration: Standard

10 StereoLib: 2.18.1
11 MAC address: 00.60.36.07.20.64
12 Stereo/Mono: Stereo
13 CountMode: Statistic
14 Calibration: STOPPED
15 Calibration State: OK
16 FLASH Uart Baud: 9600 (default: 9600)
17

18 *************** Network ***************
19 FLASH OutputMode: 1 (default: 1)
20 FLASH StreamMode: 1 (default: 0)
21 Diagnose: 2 (default: 0)
22 BoardIP: 192.168.0.1
23 SendTo: 192.168.0.2
24 FLASH ConPort: 20010 (default: 20010)
25 FLASH SendToServer: 192.168.1.1
26 Flash Memory Usage [%]: 99
27 FLASH Flash Sectors Available: 16 (default: 16, ...

range=[1,16])
28 TFTP Transfer: no transfer
29 TFTP period: 10
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30 Flash filename: <unknown>
31 FLASH Time server IP:
32 FLASH time synchronization period: 0 (default: 0)
33

34 *************** Application ***************
35 FLASH Focal: 4.000000 (default: 4.000000, ...

range=[1.000000,36.000000])
36 FLASH Height: 230 (default: 320, ...

range=[100,1000])
37 FLASH Shiftx: -1 (default: 0, ...

range=[-20,20])
38 FLASH Shifty: 2 (default: 0, ...

range=[-40,40])
39 FLASH DisparityMin: 1 (default: 4, ...

range=[0,127])
40 FLASH DisparityMax: 33 (default: 60, ...

range=[0,127])
41 FLASH FrameSize: 10 (default: 22, ...

range=[8,64])
42 FLASH AEMin: 4 (default: 4, ...

range=[0,64])
43 FLASH CMin: 0.100000 (default: 0.100000, ...

range=[0.000000,1.000000])
44 FLASH Blendl: 0 (default: 0, ...

range=[0,100])
45 FLASH Blendr: 0 (default: 0, ...

range=[0,100])
46 FLASH Blendtop: 0 (default: 0, ...

range=[0,100])
47 FLASH Blendbot: 0 (default: 0, ...

range=[0,100])
48 FLASH Gridsize: 16 (default: 32)
49 FLASH Width: 100 (default: 300, ...

range=[100,1000])
50 FLASH Interval: 10 (default: 60, ...

range=[0,86400])
51 FLASH Pulse: 0 (default: 20)
52 FLASH ActiveHigh: 0 (default: 1)
53 FLASH Scl_1: 51 (default: 55, ...

range=[0,127])
54 FLASH Scl_2: 75 (default: 75, ...

range=[0,127])
55 FLASH Direction: 1 (default: 1)
56 FLASH Nomatchstyle: 1 (default: 1)
57 FLASH Stereooutput: 0 (default: 0)
58

59 *************** DAC ***************
60 FLASH BiasCas 0: 4000000 (default: 4000000)
61 FLASH BiasInjGnd 1: 1600000 (default: 1600000)
62 FLASH BiasReqPd 2: 16777215 (default: 16777215)
63 FLASH BiasReqPuX 3: 2100000 (default: 2100000)
64 FLASH BiasDiffOff 4: 800 (default: 800)
65 FLASH BiasReq 5: 23000 (default: 23000)
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66 FLASH BiasRefr 6: 0 (default: 0)
67 FLASH BiasReqPuY 7: 9300000 (default: 9300000)
68 FLASH BiasDiffOn 8: 600000 (default: 600000)
69 FLASH BiasDiff 9: 10000 (default: 10000)
70 FLASH BiasFoll 10: 3300000 (default: 3300000)
71 FLASH BiasPr 11: 2000 (default: 2000)
72

73 *************** Flags ***************
74 Send to Server: no
75 Store in memory: no
76 Send over serial: no
77

78 *************** UDP Handler ***************
79 connection status: DISABLED
80 FLASH data type: XML packets
81 send period: 200
82 lost packets: 0
83 unsent packets: 0
84 FLASH port: 20070 (default: 20070, ...

range=[1000,65535])
85 OK

Listing C.1: UCOS settings for gesture recognition
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