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Abstract Fast-charging capacities must be sufficiently
allocated to meet the charging demand of the grow-
ing battery electric vehicle (BEV) fleet. We present
a methodology for testing the implementability of
a planned charging infrastructure for highway net-
works in terms of underutilized charging capacities
and bottlenecks. A linear optimization model for
determining charging activities at a fast-charging in-
frastructure was developed to accomplish this. Using
a bottom-up approach, we modeled the charging
activities based on the traffic flow between starting
and destination points in the network. The proposed
model is applied to a planned fast-charging infras-
tructure along the highway network in the east of
Austria. The obtained results reveal that the charging
infrastructure is capable ofmeeting demand during all
observed extreme traffic load and temperature condi-
tions. Thus, no bottlenecks are detected, but locations
of charging stations with overestimated capacities are
discovered, implying that the local capacities would
never be fully utilized. Our findings also highlight
the importance of considering the spatio-temporal
dynamics of charging activities and the traffic flow
when expanding fast-charging infrastructure.
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Räumlich-zeitliche Modellierung von
Ladeaktivitäten zur Identifizierung von
Engpässen in geplanter
Autobahnladeinfrastruktur für
batterieelektrische PKWs

Zusammenfassung Die Schnellladekapazitäten müs-
sen regelmäßig erweitert werden, um den Ladebedarf
der wachsenden Flotte von batterieelektrischen Fahr-
zeugen zu decken. In dieser Arbeit präsentieren wir ei-
ne Methodik, mit der die Umsetzbarkeit einer geplan-
ten Autobahnladeinfrastruktur im Hinblick auf Lade-
kapazitäten, die kaum genutzt werden, und Engpäs-
se in den Ladevorgängen getestet werden kann. Zu
diesem Zweck wurde ein lineares Optimierungsmo-
dell entwickelt, das die Ladeaktivitäten an einer vorge-
gebenen Schnellladeinfrastruktur modelliert. In die-
ser Modellformulierung wird ein Bottom-up-Ansatz
verwendet, wobei die Ladeaktivitäten basierend auf
dem Verkehrfluss modelliert werden. Das vorgeschla-
gene Modell wird auf eine geplante Schnellladeinfra-
struktur entlang des Autobahnnetzes im Osten Öster-
reichs angewendet. Die Ergebnisse zeigen, dass die
betrachtete Ladeinfrastruktur ausreichend ist, um die
Nachfrage unter verschiedenen extremen Bedingun-
gen in Bezug auf Verkehrsbelastung und Temperatur
zu decken. Daher werden hier keine Engpässe fest-
gestellt, hingegen aber schon Standorte von Ladesta-
tionen mit überschätzten Ladekapazitäten entdeckt,
d.h. die dort geplanten Kapazitäten würden nie voll-
ständig genutzt werden. Darüber hinaus zeigen un-
sere Ergebnisse, dass die Beachtung von der räum-
lich-zeitlichen Dynamik von Ladeaktivitäten und dem
Verkehrsfluss den Ausbau der Schnellladeinfrastruktur
optimaler gestalten kann.
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1 Introduction

The Paris Agreement stipulates a clear goal for the
electrification of the passenger transport sector for
2040, implying that 20% of the global passenger trans-
port fleet must to be electrified by that time. Follow-
ing such stipulation, many countries have commit-
ted to meeting these goals and motivating the diffu-
sion of battery electric vehicles (BEVs) by introducing
both monetary and non-monetary incentives [6, 28,
32]. Studies that have analyzed barriers and effec-
tive motivators for the adoption of BEVs have identi-
fied that fast-charging plays a critical role [3, 6]. They
find that the issue of slow charging causing aversion
to purchasing a BEV can be eliminated by increasing
charging power and allocating fast-charging stations
in places that are easily accessible to potential BEV
drivers.

During the last decade, major advances in the field
of BEV technology have been made, and the charging
power of a regular BEV has increased significantly,
allowing to charge for a distance of 200km in 15min
(at 150kW), in contrast to the minimum of one hour
(at 22kW), which is typical for car models introduced
to the market at earlier stages of BEV adoption [29].
Following these developments in charging power
and growth of the BEV fleet, many countries have
established a fast-charging infrastructure, which is
expanding rapidly to meet the growing fast-charging
demand [28]. Studies on this topic generally distin-
guish between the development of fast-charging in-
frastructure in urban areas, rural areas, and high-level
road networks. Fast-charging infrastructure planning
along highway and motorway networks1 stands out
here because of the less flexible route choice. Plan-
ning of charging capacities for highway networks
mainly focus on the allocation of charging stations
at a sufficient density to counteract range anxiety2

and sizing these charging stations to meet the local
charging demand while avoiding waiting times of the
BEV drivers [26].

Many studies have proposed methodologies for
charging infrastructure planning[23, 26]. Most of
these studies modeled an initial setup of charging
infrastructure, focusing exclusively on determining
the optimal positions for the charging stations [7,

1 In this work, highways andmotorways are included in the term
highway.
2 Range anxiety describes the fear of being stranded while travel-
ing with a BEV due to the limited driving range of the vehicle and
unavailability of a charging opportunity.

19]. Others also plan the sizing of the charging sta-
tions [20, 34]. Nonetheless, many of the proposed
methodologies, make various assumptions and sim-
plifications related to charging demand estimation.
Given this, tools are required to determine which
planning approach to use and which planned charg-
ing infrastructure to implement to ensure adequate
coverage of charging demand coverage while also al-
locating investment costs in charging infrastructure
cost-effectively.

This paper’s work is concerned with this specific
problem statement. We propose a modeling frame-
work for testing the feasibility of a planned fast-charg-
ing infrastructure. We accomplish this by modeling
charging activity using a bottom-up approach with
the charging activity based on traffic flow movement.
The modeling framework is applied to a planned fast-
charging infrastructure along the highway network in
the east of Austria for 2030. This charging infrastruc-
ture is tested under different realistic conditions and
charging demand distributions. The primary goals are
to identify potentially missallocated or missing charg-
ing capacities and to derive implications for the design
of planning tools for future highway charging infras-
tructure expansion.

2 Literature Review

2.1 Charging infrastructure planning models for
high-level road networks

[23] examined the various proposed models designed
to plan BEV charging infrastructure. Themodeling ap-
proaches used differ significantly in terms of the input
variables considered and the output type; for exam-
ple, although some model types only decide on the
allocation of charging infrastructure, others also de-
termine the optimal sizing of charging stations. The
authors of [23] identify that the most frequent ap-
proach in the optimization of fast-charging infrastruc-
ture for highway networks is the flow-capturing loca-
tion model (FCLM), which was originally introduced
by [17] and is formulated as a mixed-integer linear
program (MILP). The most important input data for
this are the information on origin-destination traffic
flows, which describe the total number of vehicles
traveling between network nodes in a single day. Ac-
cordingly, a predetermined number of charging sta-
tions are assigned to potential positions for charging
station placement while maximizing the number of
vehicles passing these. Some studies propose exten-
sions: The flow-refueling location model (FRLM) [21]
and the capacitated FRLM (CFRLM) [33] are two no-
table extensions. The former formulation considers
the vehicles’ limited range, whereas the latter suc-
ceeds in including constraints that impose an upper
limit on charging capacity at a charging station. The
authors of [35] present a planning tool for the long-
term charging infrastructure planning. This planning
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tool is based on the FCLM and considers changes in
traffic flows, BEV technology, and the user’s costs over
time. In the study of [36] where the allocation and
sizing of charging stations is optimized in two steps,
the FRLM is used to first determine the optimal alloca-
tions. In the second step, the local charging capacities
are determined by simulating vehicle flow along the
highway network to estimate the charging demand at
each charging station.

Other planning approaches, in addition to the
widely used FCLM, can be found in the literature:
For example, in [25], an iterative approach based
on graph analysis is described which determines the
optimal number of charging points at highway ser-
vice areas. In [10], a MILP model with nonlinear
constraints is formulated. This model formulation
considers traffic movement and queuing processes in
great detail, and the objective function incorporates
the minimization of queuing times at charging sta-
tions. Meanwhile, in the study [11], charging demand
is first approximated for each service area based on
the local traffic count. Given the limited driving range
of BEVs and the limited number of charging points
in a service area, a cost-effective demand-covering
charging infrastructure is designed.

2.2 Modeling charging activity based on spatial and
temporal traffic flow dynamics

Charging activity is frequently modeled to plan the
charging infrastructure or the distribution grid [8, 18,
36]. Although some studies derive the geographical
distribution of charging demand using information
about typical mobility patterns [24, 31], others obtain
time series on charging activity in spatial and tem-
poral extent based on traffic flow modeling: In the
above-mentioned study by [36], the movement of sin-
gular vehicles is simulated and for each, the position
of where they charge is determined based on a fixed
set of charging station allocations. [2] represent traf-
fic flow and charging activities along highways using
the fluid dynamic model. The model formulation in-
cludes a predetermination of the number of vehicles
needing to charge at a given charging station and the
assumption that vehicles will only charge once dur-
ing a trip. [39] propose modeling charging demand
using the cell transmission model and develop an ur-
ban charging demand model. Cells in their model
formulation represent nodes, and charging stations.
The number of vehicles entering a charging station is
counted for each cell. Moreover, the number of vehi-
cles entering a charging station is determined by an
assumed ratio of vehicles passing a charging station
and the ones entering to charge.

2.3 Testing implementability of planned charging
infrastructure

In scientific literature, the testing of the imple-
mentability of infrastructure that is planned by var-
ious types of planning tools is rich in the field of
energy systems and transport [13, 37]. However, re-
search that is particularly dedicated to the testing of
charging infrastructure is scant. In particular, only
two studies of this kind are found in the literature. In
the study by [22], an agent-based simulation is used
to identify bottlenecks in charging stations that are
allocated at workplaces. The charging processes are
modeled in great detail, with the model incorporat-
ing, for example, the process of cable switching at
a charging pole. The charging demand is modeled us-
ing typical community mobility patterns. All vehicles
are plug-in hybrid electric vehicles, and bottlenecks
are identified based on the e-mileage of the hybrid
vehicles. [15] present an agent-based simulation to
stress-test urban fast-charging infrastructure. This
research aims to gain insight into strategies for the
optimal expansion of public fast-charging infrastruc-
ture. The authors use key performance metrics such
as the occupancy ratio and the frequency of failed
charging attempts to identify allocations of missing
charging capacities.

2.4 Progress beyond state of the art:

Based on this literature review, the scientific contri-
bution and novelties of this work can be summarized
as follows:

� With this study, we contribute to the currently
scarce collection of studies dedicated to the stress-
testing of charging infrastructure. The current study
is the first one explicitly dedicated to the appli-
cation of fast-charging infrastructure along high-
way networks in this context. Numerous proposed
methods exist for planning and expanding charg-
ing infrastructure, and the growing share of BEVs
necessitates their implementation. Therefore, the
implementability of a planned charging infrastruc-
ture must be validated and tested to ensure that
the installed charging stations and their sizingmeet
the charging demand while ensuring cost-effective
allocation of infrastructure investment costs.

� We develop a charging model that determines the
queuing and charging activities in a given fast-
charging infrastructure. The model is formulated
as a linear optimization program. Vehicle fleets
are modeled as continuous, swarm-like entities in
this model, resulting in a coarser granularity to the
representation of traveling vehicles than in agent-
based models. This allows the identification of in-
frastructural bottlenecks at geographically wider
scale.
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Fig. 1 Modeling frame-
work and derived key per-
formance indicators for
testing the implementabil-
ity of a planned charging
infrastructure

� The focus of this study is not only identifying miss-
ing or overestimated charging infrastructure capac-
ities, but also on determining implications for im-
proving the fast-charging infrastructure planning.
The wide range of proposed modeling approaches
used in the planning of highway charging infras-
tructure differ in the mathematical formulation,
considered input parameters, and assumptions
made in their design. Given this, the question arises
as to what degree of limited input information, con-
sidering traffic flow, mobility patterns, and related
assumptions, still leads to a sufficient allocation of
charging capacity.

3 Methodology and Materials

The modeling framework’s design aims to test the
implementbability of a planned fast-charging infras-
tructure. This includes, on the one hand, determin-
ing whether charging demand is sufficiently covered
without significantly prolonging trips by long-dis-
tance travelers3 driving a BEV, that is, identifying the
presence of potential bottlenecks, and, on the other
hand, testing whether the charging infrastructure is
cost-efficiently allocated, so that no overcapacities
are installed that are never used – this would indicate
a poor allocation of investment costs in charging in-
frastructure. The outline of this modeling framework
is illustrated in Fig. 1:

� The spatio-temporal chargingmodel forms the key
component of this modeling framework. Themodel
maps charging activity at charging stations in both
time and space. This is accomplished by consider-
ing the spatial and temporal dimensions of traffic

3 Travelers with a trip distance of at least 100km [9].

load along the highway network, including origin-
destination flows and mapping charging demand
bottom-up. The model is formulated as a linear op-
timization model, with continuous, swarm-like en-
tities representing the traveling vehicle fleet along
the highway network. The objective function de-
scribes the minimization of the number of waiting
vehicles at all charging stations which directly mini-
mizes the amount of time spent waiting at charging
stations during all trips conducted on the given
highway network.

� One part of the input data for the optimization
model is the geography of the highway network
along with information on the planned charging in-
frastructure for this network. The required descrip-
tors of this input are, in particular, the locations of
fast-charging stations and their respective sizing,
that is, the planned capacities at each charging sta-
tion. Furthermore, the number of traveling BEVs
between specific origin and destination points, as
well as the state of charge of the vehicles at the time
of entry into the highway network are part of the
traffic flow data. Both these parameters are deter-
mined randomly for each highway-entering vehicle
fleet to include a representation of the variability of
the vehicles’ state of charge.

� The most relevant output data of the optimization
model used for further analysis are the load curves
describing the operation of each charging station
and time series reflecting the number of vehicles
waiting in the queue to charge.

� Toassess the implementability of the planned charg-
ing infrastructure, this study derived key perfor-
mance indicators (KPIs) from the output data of
the optimization model. At all planned charging
stations, three KPIs are determined: The number
of waiting vehicles in a queue corresponds to the
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number of vehicles whose charging demand is met
with a delay rather than immediately upon arrival
at a charging station. While queue length aids in
the identification of bottlenecks in the charging in-
frastructure, two technical parameters, namely, the
utility rate and the difference between planned ca-
pacities and the peak power at which a charging is
operated, are also introduced as KPIs. These two
KPIs are intended to provide insights into the busi-
ness case of a fast-charging station along a highway,
and reveal planned capacities that would be rarely
or never used.

3.1 Spatio-temporal charging model

The spatio-temporal charging model is formulated as
a linear optimization program. Vehicles are accumu-
lated to fleets f and modeled as a swarm-like entity.
This grouping is made by accumulating vehicles driv-
ing a similar route, that is, traveling among the same
highway sections c. Each fleet’s movement and charg-
ing activity is observed at time steps t ∈T which are
set after a chosen time resolution Δt . The extend of
a highway section c, distc , is directly defined by Δt
via distc = Δt ∗ vc , vc being the average driving speed
within the highway section c. Based on a given charg-
ing infrastructure, a charging capacity of the size Capc
is assigned to highway sections at which charging sta-
tions are allocated.

To implement the BEV drivers desire of avoiding
queues, the following objective function is formu-
lated:

minx
∑

f

∑

c

∑

t
nqueue,t
f ,c (1)

This expresses the minimization of the number of

vehicles waiting in queue, nqueue,t
f ,c of all fleets f at all

highway sections c and at all observed time steps t4.
The objective function introduces a fundamental as-
sumption in this model formulation: highway charg-
ing is coordinated. BEV drivers would always charge
in such a way – in terms of location and timing – that
the total number waiting vehicles of all traveling ve-
hicles on the highway network is kept to a minimum.

4 Note that this representation of the queuing process is different
from the traditional representations such as the M/M/* model
that allows to express the uncertainty of the arrival moment at
a service area. We do not explicitly consider uncertainty in this
case because the departure time is determined randomly. Fur-
thermore, the discrete queue representation used here allows for
the linear formulation of this model. The impact of this simplifi-
cation on the obtained results should be negligible as long as Δt
is roughly set to the time span of a regular charging process. More
importantly, only the queue length is here of relevance, rather
than parameters, such as average waiting time, which are esti-
mated using the M/M/* queuing models.

Fig. 2 Modeled activities of battery electric vehicles at
a highway section c: Vehicles that enter the highway net-
work at highway section c or travel from an adjacent highway
section to this one either pass the charging station here or en-
ter the charging station to charge their battery. If the charging
station is fully occupied, vehicles wait in the queue. Subse-
quently, vehicles travel to the next highway section or arrive
at their destination. Next to the number of vehicles of fleet f
at time step t at each activity, nt

f ,c , their state of charge is also

tracked, Qt
f ,c

Fig. 2 illustrates how a highway section c containing
a charging station is conceptualized and the different
activities of vehicles at a highway section c: The in-
coming or outgoing activity describes the movement
from one highway section to another. Vehicles en-
ter the highway at the beginning of a highway section
and exit the highway network when they reach their
destination. Vehicles will either pass by the charging
station or enter it, where they will either begin charg-
ing immediately or wait in line to charge.

To ensure a minimum state of charge of the vehicles
in the fleet f at all times t and in all places c, the state
of charge Qt

f ,c is tracked in parallel with the number

of vehicles nt
f ,c . For any given time t , highway sec-

tion c and car fleet f , the number of vehicles nt
f ,c in

a specific state is defined together with a charging ca-
pacity Qt

f ,c . The following relationship is established
between these two layers of information:

Qt
f ,c ∈

(
nt
f ,c ∗SOCmin ∗Capbattf ,nt

f ,c ∗SOCmax ∗Capbattf

)

:∀t ,c, f
(2)

These equations ensure that the state of charge is
proportional to the number of vehicles at all times
and during all vehicle activities. Another important
feature introduced by these equations is that the ve-
hicle’s state of charge is always high enough for the
vehicle to travel further, given a minimum state of
charge given in percentage, SOCmin. Moreover, the
battery capacity is not higher than an upper limit of
state of charge, SOCmax, i.e., a vehicle cannot charge
more energy than its battery can store when this value
is set to 1.
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Expressing the movement of the vehicles and the
transition between the previously, described activi-
ties, constraints in the form of balance equations are
defined for both layers of information. For example,
the following equation applies for vehicles entering
a highway section c and its state of charge:

nin,t
f ,c +n

entering,t
f ,c = nin_pass,t

f ,c +n
in_wait_charge,t
f ,c :∀t ,c, f

(3)

Qin,t
f ,c +Q

entering,t
f ,c =Q

in_pass,t
f ,c +Q

in_wait_charge,t
f ,c :∀t ,c, f

(4)

The left term, nin,t
f ,c +n

entering,t
f ,c , expresses the num-

ber of vehicles of a fleet f entering the highway sec-

tion c at time step t , nentering,t
f ,c being the number of

vehicles entering the highway network at time step t
at highway section c of fleet f and nin,t

f ,c the number
of vehicles which have just traveled from an adjacent
highway section c′ and entered highway section c.

The right term, nin_pass,t
f ,c +n

in_wait_charge,t
f ,c , represents

the split among the fleet, into one part of the fleet
f that is about to pass directly through the highway

section c, nin_pass,t
f ,c , and another which will proceed to

drive to the charging station, nin_wait_charge,t
f ,c .

The queue itself is modeled analogously to a stor-
age system:

nwait,t
f ,c =nwait,t−1

f ,c +nin_wait,t
f ,c −n

wait_charge_next,t
f ,c :∀t ,c, f

(5)

Qwait,t
f ,c =Qwait,t−1

f ,c +Qin_wait,t
f ,c −Q

wait_charge_next,t
f ,c

:∀t ,c, f
(6)

The total number of vehicles waiting in the queue,

nqueue,t
f ,c , is the sum of nwait,t

f ,c and n
wait_charge_next,t
f ,c . This

number increases when vehicles enter the queue by
the amount of nin_wait,t

f ,c . The value decreases at time
step t +1 by the number of vehicles that are about to

connect to start charging, nwait_charge_next,t
f ,c .

The energy charged during a charging process by
a fleet f at a time step t , depends on the number

of vehicles charging, ncharge,t
f ,c , and the charging power

of a vehicle, P
charge,BEV

. Moreover, drivers have the
flexibility of how long a vehicle is charged which is

bounded by a minimum charging time tmin and the
time resolution Δt 5:

E
charged,t
f ,c ≥ n

charge,t
f ,c ∗P

charge,BEV
f ∗ tmin ∗μ

charge
f

:∀t ,c, f
(7)

E
charged,t
f ,c ≤n

charge,t
f ,c ∗P

charge,BEV
f ∗Δt ∗μ

charge
f :∀t ,c, f

(8)

At all charging stations, the total amount of charged
energy during each time step t is limited through the
installed capacity at the given highway section c, Capc :

∑

f
E
charged,t
f ,c μ

charge
f ≤Capc :∀t ,c (9)

More details on the mathematical formulation of
the model are found in Appendix 2.

3.2 Description of Austrian case study

The modeling framework is applied to a fast-charging
infrastructure planned for the highway network in the
east of Austria. Fig. 3 depicts all highways and motor-
ways within Austrian borders and the geographic ex-
tent of the test-bed used for this study. The Austrian
highway network can be roughly divided into two un-
connected road networks, as shown in this session.
The East section of the network has been selected for
analysis to present an application to a network that
contains multiple intersections and important transit
routes throughout of Austria6.

Table 1 displays chosen parameter settings for this
study’s model application. The planned fast-charging
infrastructure is designed for the year 2030, a sig-
nificant year in the decarbonization plans for the
transport sector, as the Paris Agreement explicitly

Table 1 Model parameter settings and characteristics of
the modeled battery electric vehicle (BEV) fleet for the ap-
plication to the test-bed
Model parameter Value

Temporal resolution Δt 0.25h

Driving speed v 110km/h

BEV share ε 30%

BEV battery capacity Capbatt 100kWh

BEV charging power P
charge,BEV

250kW

BEV specific energy consumption at low tempera-

tures d
spec, winter

0.2kWh/km

BEV specific energy consumption at high tempera-

tures d
spec, summer

0.15kWh/km

5 Potential restrictions by the electricity grid impacting the elec-
tricity grid are neglected and sufficient power supply is assumed
here.
6 For example, parts of this highway network are part of the
Rhine-Danube corridor which is essential to the Trans-European
Transport Network.
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Fig. 3 Geographical ex-
tend of the highway net-
work serving as a test-bed
and its allocation in the East
of Austria

states a 20% electrification of global road transport by
2030 [32]. The share of electrification in the passenger
car fleet is assumed to be higher for Austria than glob-
ally, and, therefore, we assume a share of BEVs of 30%
in this study, as previously assumed in [11]. The tem-
poral resolution is set to 15min corresponding to an
approximate time of a fast-charging process at 350kW.
Assuming a constant driving speed of 110km/h in the
entire highway network results in a geographic resolu-
tion of 27.5km. Vehicle parameters are set here after
predictions and expectations for future developments
in BEV technology found in [1, 30].

3.2.1 Four representative days
To assess the robustness of a planned charging in-
frastructure, we observe charging and queuing pro-
cesses under extreme charging demand conditions.
Representative days are created to represent different
typical days in traffic load and temperature, as these
factors play a vital role in occurrence of charging de-
mand along highways [5, 27, 38]. We include a dif-

Table 2 Descriptions of representative days used to eval-
uate the charging infrastructure under different conditions
in traffic flow and temperature
Representative day Description

Workday in winter – Travels prominently for the purpose of commuting
and business

– Cold temperature

Workday in summer – Travels prominently for the purpose of commuting
and business

– Warm temperature

Holiday in winter – Travels prominently for the purpose of leisure,
increased transit traffic

– Increased amount of transit traffic

– Cold temperature

Holiday in summer – Travels prominently for the purpose of leisure,
increased transit traffic

– Increased amount of transit traffic

– Warm temperature

ferentiation between workdays and weekend days,
commonly made in the description of mobility pat-
terns [5]. Moreover, we introduce these two types of
days for a day in both winter and summer and reflect
their impact by introducing an increased/decreased
specific energy consumption as a result of tempera-
ture differences. Table 2 displays a description of the
case study. The inclusion of these four case studies
aims, among other things, to provide insight into the
model’s sensitivities to the difference in the distribu-
tion of traffic load and temperature.

3.2.2 Origin-Destination flows
The vehicle movement is defined by the distance be-
tween the origin and destination (O–D) nodes on the
highway network. For this, O–D points represent-
ing NUTS-3 regions are introduced, as well as points
representing neighboring countries to include cross-
border traffic. Fig. 4 displays these. The position
of nodes representing Austrian NUTS-3 regions was
determined by projecting the geometric centroids of
the most-populated municipality within a region onto
the network shape. Nodes representing neighboring
countries were placed directly at the network’s end
points.

The traffic flow data used here describes individual
motorized mobility patterns and are obtained from
the project GREENROAD [4] during which a traffic
flow model was calibrated using highway traffic count
data for Austria. The data describe the accumulated
number of vehicles traveling between Austrian mu-
nicipalities and neighboring countries on an average
workday. Fig. 4 displays the traffic load resulting from
long-distance travels and the point allocations of O–D
nodes along the Austrian highway network. Based on
the traffic load on a workday, traffic load for a typical
holiday was derived which is also displayed in Fig. 4.

To dis-aggregate the total daily number of vehicles
traveling between the O–D nodes to higher tempo-
ral resolution, this study used typical distributions of
departure time evaluated in [16]. The temporal res-
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Fig. 4 a Traffic load on
a workday. b Traffic load
on a holiday. The orange
markers indicate locations
of origin–destination (O–D)
nodes. Names of the rep-
resented countries and
NUTS-3 regions are written
right beside these

a b

olution of fleets entering the highway network is set
to an hour, which means that a certain number of
vehicles depart at each full hour at all O–D nodes. We
do not anticipate that this resolution will significantly
impact the results because movement and charging
activities are still observed on a quarter-hourly basis.

3.2.3 Input fast-charging infrastructure
Fig. 5 displays the fast-charging infrastructure used
here. It is planned for the year 2030 using parame-
ters on the electric vehicle fleet as stated in Table 1
and is the output by a model described in the study
by [11]. The planning tool is an optimization model
that allocates and sizes fast-charging infrastructure
along a high-level road network while keeping infras-
tructure investment costs to a minimum. It is based
on a graph representation of the road network. The

Fig. 5 Capacities of planned fast-charging infrastructure for
2030

following are the main assumptions and simplifica-
tions made in the design of this planning tool:

� For charging station allocation, existing resting ar-
eas are considered potential sites, with an upper
limit on installed capacity at each.

� Charging demand is defined at each rest stop and
is assumed to be the result of the energy consump-
tion of long-distance BEV drivers traveling along
the highway network. Here, annual peaks in traf-
fic load and increased energy consumption due to
cold temperatures are taken into account. The algo-
rithm determines where charging capacity should
be allocated to meet this demand.

� This is done while considering the limited range of
BEVs and the geographic distribution of traffic load
along the highway network.

� The allocations of origin and destination points of
BEVs traveling along the highway network are ig-
nored.

The modeling approach used here for the most part is
as described in [11], except for a minor change in the
demand calculation for the traffic load resulting from
the provided O–D data rather than being retrieved
from traffic counters mounted along the highway net-
work.

3.3 Open-source programming environment and
data availability

The analysis presented here is implemented using
Python 3.8 with pyomo 6.2 [14] and Gurobi soft-
ware [12] for the model solution. The problem size of
the case study here is defined by |T | = 120 observed
time steps, |C | = 92 highway sections and |F | = 700.
This results in 20 Mio. decision variables and 34 Mio.
constraints. Given the large size of this problem,
solutions are computed using the barrier algorithm
without crossover. The computational time of amodel
run takes about 1500s for model building and 8000s
for the solution on an Intel Core i7 CPU with 3.4GHz
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Table 3 Demand-related descriptors and key performance indicators (KPI) during different representative days
Representative Days

Metric Workday in winter Workday in summer Holiday in winter Holiday in summer

Total number of long-distance trips 294,924 294,924 208,222 208,222

Total energy consumed (GWh) 8.7 6.5 6.2 4.6

Total energy charged by all BEVs (GWh) 3.3 2.8 2.7 2.3

Avg. state of charge at arrival (%) 33% 35% 33% 35%

Avg. utility rate UR 0.52 0.48 0.47 0.43

Avg. difference between peak power and
installed capacity ΔP̂c in kW (nb. of not used
poles)

874 (2–3) 1579 (4–5) 1672 (4–5) 2687 (7–8)

Objective value
∑

t , f ,cn
queue,t
f ,c 0.0 0.0 0.0 0.0

and 64GB RAM. The code is available here: https://
github.com/antoniagolab/StressTestFastChargingInfr.

4 Results

This section presents the most relevant results of this
research. First, observations made during model ap-
plication in the different representative days’ condi-
tions are described and compared. The second part of
this section takes a closer look at seasonal differences
and delves deeper into the operation of two charging
stations. Finally, the results of a sensitivity analysis
are discussed. The design of this sensitivity analysis is

Fig. 6 Charging station
at which the full capac-
ity is used and not used.
Charging stations are clas-
sified as fully used if the
difference between peak
load and installed capac-
ity is smaller than the peak
power of a charging pole
with 350kW. Each subfig-
ure displays this classifica-
tion for a different represen-
tative day: a Workday in
winter. b Workday in sum-
mer. c Holiday in winter. d
Holiday in summer a b

c d

aimed at observing local changes and changes in the
overall charging infrastructure in the response to the
removal of charging capacity.

4.1 Identification of bottlenecks and overcapacities
in planned charging infrastructure

Table 3 displays observations made during the appli-
cation of the modeling framework to the different rep-
resentative days which vary in traffic load and temper-
ature. The table displays metrics related to the input
to provide insight into the differences in charging de-
mand as well as resulting values for key performance
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Fig. 7 Distributions of the utility rate of charging stations dur-
ing the different representative days

indicators (KPI). Figs. 6 and 7 display more detailed
information on the technical KPIs that are the differ-
ence between peak load and installed capacity, ΔP̂ ,
and the utility rate, UR. Fig. 6 illustrates a binary clas-
sification of charging stations, indicating the full local
charging capacity at which charging stations are used.
Charging stations are classified here as “Full capac-
ity used” when ΔP̂ is smaller than the peak power of
one charging pole, 350kW, indicating that all charg-
ing poles are being used at the given charging station
during some point throughout the day. Fig. 7 displays
the distributions of the observed values for UR for the
four representative days.

Overall, the following observations are made:

� The objective value equals 0 during all days, im-
plying that no queuing occurs in all observed cir-
cumstances. Therefore, all battery electric vehicles
(BEVs) recharge as soon as they arrive at a charging
station, and the considered fast-charging infras-
tructure has no bottlenecks.

� During theworkday inwinter, all BEV’s total amount
of charged energy is the highest which is also re-
flected by the highest, value of the average UR
(0.52). This peak in energy demand is given by
the high number of long-distance BEV trips and the
increased energy consumption due to the low tem-
perature during winter. The average value for ΔP̂
is here also the lowest, indicating that, on average,
a charging station has 2-3 unused charging poles7.

� The state of charge of the vehicles at arrival is
slightly higher during the summer workday and

7 Considering a peak power of a charging pole to be 350kW.

holiday than during the winter. This observation is
most likely due to the lower energy consumption of
BEVs during the summer.

� The distributions of the utility rates UR do not vary
significantly between the representative days as the
median and average values vary between 0.43 and
0.56.

� There are six charging stations where none of the
observed traffic load and temperature, conditions
cause all charging poles to be used. During a sum-
mer vacation, the number of charging stations that
are not fully utilized increases to 12.

4.2 Insights into infrastructure utilization

Here, a closer look is taken at two charging stations
at which significant differences in load occur between
the different representative days. Two charging sta-
tions were chosen at random from a set of charging
stations which are fully utilized during a workday in
winter but not on other days (as indicated in Fig. 6).
Fig. 8 displays the allocation and load curves of the
selected charging stations which are indicated here
as “charging station A” and “charging station B”. Ta-
ble 4 displays observed KPI values for UR and ΔP̂ to
give a more detailed impression on how the local load
changes due to the different conditions.

On a holiday in summer, 6212kW of unused charg-
ing capacity at charging station A and 3647kW at
charging station B are observed. This corresponds
respectively to 14-15 and 10 unused charging poles.
Relative to the total size of the charging stations, this
makes up for 25% of all charging capacity at charging
station A and 35% at charging station B. On a summer
holiday, utilization rate for both charging stations,
is cut in half, falling from 0.29 to 0.16 at charging
station A and from 0.28 to 0.16 at charging station
B. Note that the workday in winter and the holiday
in summer represent two extreme conditions in the
charging demand and, therefore, they represent such,

Table 4 Comparison of key performance indicators at
two selected charging stations observed during the four
different representative days (utility rate UR and the differ-
ence between peak load and installed capacity ΔP̂ )

Representative days

Workday in
winter

Workday in
summer

Holiday in
winter

Holiday in
summer

Charging station A

UR 0.29 0.24 0.22 0.16

ΔP̂ (kW)

(nb. of not used
poles)

154 (0–1) 299 (0–1) 1456 (4–5) 6212 (14–15)

Charging station B

UR 0.28 0.24 0.21 0.16

ΔP̂ (kW)

(nb. of not used
poles)

67 (0–1) 1143 (3–4) 722 (2) 3647 (10–11)

702 Spatio-temporal charging model for the identification of bottlenecks in planned highway charging. . . K



Originalarbeit

Fig. 8 a Load curves at
charging station A observed
during the different rep-
resentative days. b Load
curves at charging station B
observed during the differ-
ent representative days. c
Locations of charging sta-
tions A and B

a b

c

the lower and upper limits for a range of charging
station utilization.

4.3 Sensitivity analysis: capacity reduction

This sensitivity analysis examines how charging activ-
ity changes in response to a capacity reduction in the
charging infrastructure. Given that the planning tool
used to plan the fast-charging infrastructure allocates
charging capacities to cover peak demand, i.e., charg-
ing demand on a workday in winter, queuing occurs
if charging capacity is reduced. Therefore, we assume
that an entire charging station is not operational and
thus unavailable for charging.

For this, a charging station annotated as “charg-
ing station D” is selected. Its allocation is illustrated
in Fig. 9 on the top right. This charging station was
chosen for the following reasons: First, it is located
on a segment of the highway with multiple charging
stations. On a workday in winter, all charging sta-
tions on this segment are fully utilized, indicating that
no overcapacity exists. Therefore, if a charging sta-
tion is not operating on this segment, the likelihood
of queuing is high because there are no overcapac-
ity facilities nearby to compensate the sudden outage
of this charging station. Second, this charging sta-
tion in particular has the largest capacity sizing along
this segment, which again increases the changes that
queuing would occur. The load curve of charging sta-
tion D during a workday in winter is displayed in Fig. 9
on the top left. On a workday in winter, its utility rate
is 0.52, whereas and 102MWh is charged here dur-
ing the total day. Load curves of the directly adjacent
charging stations, C and E, are also displayed in Fig. 9

and indicate that these are similarly highly occupied
as charging station D.

Table 5 shows how the model output parameters
change in response to the capacity reduction at charg-
ing station D. Surprisingly, the outage of charging sta-
tion D does not result in the formation of queues.
Overall, the model’s response is unaffected: The state
of charge at arrival of all driving BEVs on the highway
network and even the ones traveling, including those
passing through the highway section where charging
station D is located (i.e., likely to charge there) re-
mains consistent. The impact on the load curves of
the charging stations C and E is also minor as indi-
cated in Fig. 5 in dark blue. The total amount of the
charged energy by all BEVs decreases by 30MWh and
the average UR value increases by 0.01 implying that
part of the demand coverage not supplied by charging
station D, 102MWh, is redistributed to other charg-
ing stations and compensated through overall slightly
higher utilization of the other charging stations in the
highway network.

5 Discussion

This study’s most striking finding is that no queuing is
observed in the charging station network under con-
sideration. A cost-minimizing optimization model al-
locates and sizes charging capacities based on peak
demand to plan the tested fast-charging infrastruc-
ture. Peak demand for BEVs typically occurs during
a workday in the winter due to high traffic loads and
low outdoor temperatures. Moreover, the charging
infrastructure under consideration is designed with
these specific conditions in mind. Therefore, it is
expected that no queuing will occur during the ap-
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Fig. 9 a Load curve of
charging station D observed
during a workday in winter.
b Locations of charging sta-
tions C, D and E. c Load
curves at charging station
C before and after the ca-
pacity reduction in charging
station D. d Load curves at
charging station E before
and after the capacity re-
duction in charging station
D

a b

c d

Table 5 Parameters related to charging activity before
and after charging capacity is removed from charging sta-
tion D

Before capacity
reduction

After capacity
reduction

Total energy charged by all BEVs (MWh) 3337 3307

Av. state of charge at arrival of all
vehicles (%)

32.52% 32.47%

Av. state of charge at arrival of vehicles
traveling through charging station D(%)

31.64% 31.61%

Avg. utility rate UR 0.52 0.53

Objective value
∑

t , f ,cn
queue,t
f ,c 0.0 0.0

plication to all of the considered representative days.
Queuing should occur when the demand exceeds
peak demand or charging capacity is removed. The
latter case is tested during the sensitivity analysis by
simulating a charging station outage. Contrary to
the expectations, no queuing occurs, and the charg-
ing load is compensated at other charging stations
throughout the highway network. This implies that
the planned charging infrastructure has overestimated
charging capacity. This finding is also supported by
the presence of large differences in peak load and
installed capacity at multiple charging stations on
a winter workday. However, the absence of bottle-
necks here may be also related to the efficiency of
the charging infrastructure modeled by the spatio-
temporal charging model.

The accumulation of vehicles into continuous,
swarm-like entities most definitely increases this ef-
ficiency in charging infrastructure utilization, as the
modeled vehicle fleets can split into smaller entities

of arbitrary size, disperse along their route, and re-
distribute stored energy among them. Like swarm in-
telligence, this enables the vehicle fleets to act even
more efficiently to meet a minimum of the objec-
tive function. A more granular representation of ve-
hicles, such as not adding vehicles to a fleet, and
defining variables related to the number of vehicles
as integers rather than continuous, could help to re-
duce this “swarm intelligence”. This would substan-
tially increase the problem’s dimension while causing
solubility issues, thereby limiting the model’s large-
scale applicability. Another factor contributing to this
flexibility is the assumption of coordinated charging,
which is made in formulating the objective function
that is the minimization of the number of vehicles
waiting in line. This takes away a BEV driver’s lim-
ited individual knowledge of uncoordinated charging
and its individual goal of reaching the destination in
the shortest amount of time. The assumption of co-
ordinated charging may result in a reduction of peak
load because charging activities are organized in such
a way that the local peak load at charging stations is
reduced to avoid the queue formation.

Based on our thorough analysis and gained experi-
ence, we conclude that charging capacities are signifi-
cantly oversized and partially biased in their position.
Possible explanations include the following. First, the
charging stations are planned to meet the charging
demand expected from long-distance BEVs traveling
along the highway network. Therefore, the planned
charging infrastructure compensates for all consumed
energy. The planning tool ignores the fact that BEVs
do not leave the highway network in the same state of
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charge that they entered it with. Second, another over-
looked piece of information closely related to this is
the allocation of the vehicle exit points: Charging de-
mand coverage is partially allocated outside the route
of vehicles from which the charging demand origi-
nates. Third, the spatial dynamics of demand cover-
age are taken into account in a limited way overall,
whereas the temporal dynamics of charging demand
are not considered at all by this planning tool.

6 Conclusion

This study tested planned fast-charging capacities in
their practical implementation by determining the
queuing and waiting time of battery electric vehicles
while driving from origin to destination using this
infrastructure. By doing so, we contribute to research
on a topic that has received little attention thus far.
In particular, charging and queuing activities for East
Austrian highways in 2030 are investigated under var-
ious traffic load conditions. We investigate different
representative conditions in traffic load to better un-
derstand the use of planned charging capacities. For
example, charging and queuing were observed during
a winter workday characterized by heavy traffic and
increased energy consumption of BEVs due to low
temperatures. Overall, there was no queuing; thus,
no bottlenecks were identified in this charging infras-
tructure. Nonetheless, high utilization was observed
at many charging stations. Meanwhile, spare charging
capacity that was never used was detected at other
charging stations during peak demand on a winter
workday. This implies a charging capacity missalloca-
tion. The obtained results on utilization factors and
peak load, as well as the insights into seasonal differ-
ences in charging activity, can aid in gaining a better
understanding of the economics of a fast-charging
station allocated at a rest area along a highway.

Our findings also point to the importance of includ-
ing spatio-temporal dynamics in the planning of fast-
charging infrastructure, that is, how charging activities
change in response to changes in charging capacity,
most notably expansion. The observed response in
our results is to some degree impacted by the assump-
tion of coordinated charging. In this regard, future
research should be investigate the impact of charging
infrastructure expansion on charger utilization given
less coordination of the charging activity. Aside from
the assumption of coordinated charging, other model
formulation simplifications must be tested for their
impact on observed results in smaller test-beds, such
as the representation of groups of vehicles as con-
tinuous entities and the coarse representation of the
charging and waiting processes determined by the
chosen size of observed time steps.

Furthermore, more insight into how a planning tool
can be improved to meet charging demand while al-
locating charging infrastructure cost-efficiently is re-
quired. The proposed implementability test can pro-

vide information on allocating potential bottlenecks
and spare capacity under various temperature and
traffic load conditions. The next step is to create
a modeling framework that will allow these insights to
be built upon and parameters describing flaws in the
planned infrastructure to be fed back into a planning
tool. This approach may combine a top-down with
a bottom-up methodology, allowing both benefits.
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7 Appendix

7.1 Nomenclature

Table 6 Nomenclature
Nomenclature

Indices

t ∈T Time step

c ∈C Highway section

f ∈F Vehicle fleet

Decision variables

nin,t
f ,c Number of incoming vehicles of fleet f to highway section c at time step t

Q in,t
f ,c (kWh) stored energy in batteries of incoming fleet f to highway section c at time step t

npass,t
f ,c Number of vehicles of fleet f which drive through highway section c at time step t

Qpass,t
f ,c (kWh) stored energy in batteries of fleet f passing through highway section c at time step t

nqueue,t
f ,c Number vehicles of fleet f in queue at highway section c at time step t

Qqueue,t
f ,c (kWh) stored energy in batteries of fleet f that is waiting in queue at highway section c at time step t

nentering,t
f ,c Number of vehicles of fleet f which enter the highway network at highway section c at time step t

Qentering,t
f ,c (kWh) stored energy in batteries of fleet f which enter the highway network at highway section c at time step t

narriving,t
f ,c Number of vehicles of fleet f which arrive at their destination at highway section c at time step t

Qarriving,t
f ,c (kWh) stored energy in batteries of fleet f which arrive at their destination at highway section c at time step t

ncharge,t
f ,c Number of vehicles of fleet f charging at highway section c at time step t

Echarged,t
f ,c (kWh) energy charged by vehicles of fleet f at highway section c at time step t

Technical vehicle fleet specifics

Q init
f (kWh) initial state of charge at departure of fleet f

d
spec
f (kWh/km) average specific energy consumption of car fleet f

P
charge,BEV
f (kW) average charging power of car fleet f

μ
charge
f Charging efficiency of fleet f

Capbattf (kWh) battery charging capacity of fleet f

SOCinitf (%) state of charge of fleet f at the entrance to the highway network

SOCmin (%) minimum allowed state of charge of a BEV battery

SOCmax (%) maximum allowed state of charge of a BEV battery

Infrastructure-related parameters

Capc (kW) installed charging capacity at highway section c

distc (km) length of highway section c

URc Utilization rate of charging station allocated at highway section c

ΔP̂c (kW) difference between peak load and installed capacity at charging station located at highway section c
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7.2 Details on mathematical formulation of spatio-
temporal charging

Further equations of the chargingmodel are described
in the following. Tables 7 and 8 provide descriptions
on the variables and formulas.

Q
entering,t
f ,c = n

entering,t
f ,c ∗SOCinit

f ∗Capbatt
f (10)

n
in_wait_charge,t
f ,c = nin_wait,t

f ,c +n
in_charge,t
f ,c (11)

Q
in_wait_charge,t
f ,c =Qin_wait,t

f ,c +Q
in_charge,t
f ,c

−E
consumed_charge_wait,t
f ,c

(12)

E
consumed_charge_wait,t
f ,c = 1

2
∗distc∗d spec

f ∗nin_charge,t
f ,c (13)

n
to_charge,t
f ,c = n

in_charge,t
f ,c +n

wait_charge_next,t−1
f ,c (14)

n
charge1,t
f ,c = n

in_charge,t
f ,c (15)

Q
input_charge1,t
f ,c =Q

in_charge,t
f ,c (16)

n
charge1,t
f ,c = n

output_charged1,t
f ,c (17)

n
output_charged1,t+1
f ,c = n

finished_charge1,t
f ,c +ncharge2,t (18)

Q
output_charged1,t+1
f ,c =Q

input_charge1,t
f ,c +E

charged1,t
f ,c (19)

Q
output_charged1,t
f ,c =Q

input_charge2,t
f ,c +Q

finished_charge1,t
f ,c

(20)
n
output_charged2,t+1
f ,c = n

finished_charge2,t
f ,c +ncharge3,t (21)

Q
output_charged2,t+1
f ,c =Q

input_charge2,t
f ,c +E

charged2,t
f ,c (22)

Q
output_charged2,t
f ,c =Q

input_charge3,t
f ,c +Q

finished_charge2,t
f ,c

(23)

Table 7 Complementary nomenclature
Decision variables

nwait,t
f ,c Number of vehicles of fleet f which wait in queue at highway section c at time step t and will not leave it at time step t +1

Qwait,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f which wait in queue at highway section c at time step tand will not leave it at time

step t +1

nin_wait_charge,t
f ,c Number of vehicles of fleet f which are about to enter the charging station and proceed to charge or wait in queue at highway section c

at time step t

Q in_wait_charge,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f which are about to enter the charging station and proceed to charge or wait in

queue at highway section c at time step t

nin_wait,t
f ,c Number of vehicles of fleet f which are about to enter the queue at highway section c at time step t

Q in_wait,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f which are about to enter the queue at highway section c at time step t

nin_pass,t
f ,c Number of vehicles of fleet f which are about to pass through highway section c at time step t

Q in_pass,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f which are about to pass through highway section c at time step t

nin_charge,t
f ,c Number of vehicles of fleet f which are about to charge at highway section c at time step t

Q in_charge,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f which are about to charge at highway section c at time step t

nto_charge,t
f ,c (kWh) number of vehicles of fleet f which are entering the charging station without waiting in the queue at highway section c at time

step t

nwait_charge_next,t
f ,c Number of vehicles of fleet f which are about to enter the charging station but are still in the queue at highway section c at time step t

ncharge1,t
f ,c Number of vehicles of fleet f charging at highway section c at time step t during first time span of Δt

ncharge2,t
f ,c Number of vehicles of fleet f charging at highway section c at time step t during second time span of Δt

ncharge3,t
f ,c Number of vehicles of fleet f charging at highway section c at time step t during third time span of Δt

n
output_charged3,t+1
f ,c = n

finished_charge3,t
f ,c (24)

Q
output_charged3,t+1
f ,c =Q

input_charge3,t
f ,c +E

charged3,t
f ,c (25)

Q
output_charged3,t
f ,c =Q

finished_charge3,t
f ,c (26)

n
finished_charge,t
f ,c = n

finished_charge1,t
f ,c +n

finished_charge2,t
f ,c

+n
finished_charge3,t
f ,c

(27)

Q
finished_charge,t
f ,c =Q

finished_charge1,t
f ,c +Q

finished_charge2,t
f ,c

+Q
finished_charge3,t
f ,c

(28)
nexit,t+1
f ,c = npass,t

f ,c +n
finished_charge,t
f ,c (29)

Qexit,t+1
f ,c =Qpass,t +Q

finished_charge,t
f ,c −Econsumed_pass,t

f ,c

−E
consumed_exit_charge,t
f ,c

(30)
Econsumed_pass,t
f ,c =distc ∗d

spec
f ∗npass,t

f ,c (31)

E
consumed_exit_charge,t
f ,c = 1

2
∗distc ∗d

spec
f ∗n

finished_charge,t
f ,c

(32)
nexit
f ,c = n

arriving,t
f ,c +nout,t

f ,c (33)

Qexit
f ,c =Q

arriving,t
f ,c +Qout,t

f ,c (34)

nout,t
f ,c = nin,t

f ,c ′ (35)
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Table 7 (Continued)
Decision variables

Q input_charge1,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f before entering the charging station at highway section c at time step t

Qoutput_charge1,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f after charging for the time span of Δt the charging station at highway section c at

time step t

Q input_charge2,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f before starting to charge for the time span of another Δt at highway section c at

time step t

Qoutput_charge2,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f after charging for the time span of 2∗Δt at the charging station at highway section

c at time step t

Q input_charge3,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f before starting to charge for the time span of a third Δt at highway section c at

time step t

Qoutput_charge3,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f after charging for the time span of 3∗Δt at the charging station at highway section

c at time step t

nfinished_charge1,t
f ,c Number of vehicles of fleet f charging at highway section c at time step t which are finished with the charging after first time span of

Δt

nfinished_charge2,t
f ,c Number of vehicles of fleet f charging at highway section c at time step t which are finished with the charging after time span 2∗Δt

nfinished_charge3,t
f ,c Number of vehicles of fleet f charging at highway section c at time step t which are finished with the charging after time span 3∗Δt

Qfinished_charge1,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f after finishing charging after the time span of 1∗Δt at the charging station at

highway section c at time step t

Qfinished_charge2,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f after finishing charging after the time span of 2∗Δt at the charging station at

highway section c at time step t

Qfinished_charge3,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f after finishing charging after the time span of 3∗Δt at the charging station at

highway section c at time step t

nfinished_charge,t
f ,c Number of vehicles of fleet f which are finished charging at highway section c at time step t

Qfinished_charge,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f after finishing charging at the charging station at highway section c at time step t

nexit,t
f ,c Number of vehicles of fleet f which are leaving highway section cat time step t

Qexit,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f which are leaving highway section c at time step t

nout,t
f ,c Number of vehicles of fleet f which are leaving highway section c but not the highway network at time step t

Qout,t
f ,c (kWh) stored energy in batteries of vehicles of fleet f which are leaving highway section c but not the highway network at time step t

Econsumed_charge_wait,t
f ,c (kWh) energy consumed by vehicles of fleet f which are about to enter the charging station or queue at highway section c at time step t

Econsumed_exit_charge,t
f ,c (kWh) energy consumed by vehicles of fleet f which have charged and are about to exit highway section c at time step t

Econsumed_pass,t
f ,c (kWh) energy consumed by vehicles of fleet f which have passed highway section c at time step t

Table 8 Formula descriptions
Formula refer-
ence

Description

A1 Definition of intital state of charge of vehicles entering the highway section

A2, A3, A4 The charging station is placed at the middle of a highway section where the vehicles proceed to directly charge or wait in queue.

A5, A6 The number of charging vehicles consists of the ones that directly proceed to charging after entering the charging station and the ones exiting
the queue.

A7–A19 Vehicles can charge up to the time span of 3∗Δt which corresponds in the case study of this work to 45min. This model feature was imple-
mented here to allow vehicles of the charging power of down to 44kW also allow to charge as charging at this power is classified as the lowest
power for fast-charging.

A9, A12, A15 After each Δt , vehicles may be either finished with the charging process or proceed to charge for another Δt . This is limited to 3∗Δt

A20–A23 Energy is consumed while driving through a highway section and between finishing charging at a charging station and exiting the highway
section.

A24, A25, A26 At the end point of a highway section, vehicles either exit the highway network as they have reached their destination or enter the next highway
section that is along their route.
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