
A Framework for Evaluating the
Readability of Test Code in the
Context of Code Maintainability

A Family of Empirical Studies

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Pirmin Urbanke
Matrikelnummer 01527339

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Ass. Dipl.-Ing. Dr.techn. Dietmar Winkler
Mitwirkung: Mag. Rudolf Ramler

Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl

Wien, 6. Dezember 2022
Pirmin Urbanke Dietmar Winkler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A Framework for Evaluating the
Readability of Test Code in the
Context of Code Maintainability

A Family of Empirical Studies

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Pirmin Urbanke
Registration Number 01527339

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Ass. Dipl.-Ing. Dr.techn. Dietmar Winkler
Assistance: Mag. Rudolf Ramler

Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl

Vienna, 6th December, 2022
Pirmin Urbanke Dietmar Winkler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Pirmin Urbanke

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. Dezember 2022
Pirmin Urbanke

v

Acknowledgements

I thank my supervisor Dietmar Winkler and Rudolf Ramler from Software Competence
Center Hagenberg (SCCH) for assisting me in this work with ideas and feedback, which
we discussed in many meetings. This assistance also made it possible to publish parts of
this work in scientific journals. Of course thanks also go out to family and friends who
supported me throughout my study.

The financial support by the Christian Doppler Research Association, the Austrian
Federal Ministry for Digital & Economic Affairs and the National Foundation for Research,
Technology and Development is gratefully acknowledged.

vii

Kurzfassung

Kontext und Motivation: Das Testen von Software ist in der Softwareentwicklung eine
gängige Tätigkeit mit vielfältigem Nutzen. Es gibt gewisse Garantien, dass das Programm
über seinen Lebenszyklus wie erwartet funktioniert, es hilft beim Finden und Ausbessern
von fehlerhaften Verhalten, es ist Dokumentation, gibt Verwendungsbeispiele, etc.. Trotz-
dem wird Testcode oft stiefmütterlich behandelt, was zu Qualitätseinbußen auch in Bezug
zur Lesbarkeit führt. Wenn jedoch der Test schlecht lesbar ist, können weiterführende
Tätigkeiten wie Wartung von Tests oder das Ziehen von korrekten Schlussfolgerungen
basierend auf Tests beeinträchtigt werden. Aber was ist überhaupt lesbarer Testcode?
Da Testcode einen anderen Einsatzzweck als Produktivcode hat und über einzigartige
Eigenschaften wie Prüfmethoden (assertion methods) besitzt, könnte die Lesbarkeit von
Testcode von anderen Einflussfaktoren abhängen als jene von Produktivcode.

Ziel: Wir schlagen ein Framework vor, das zur Bewertung der Lesbarkeit von Testcode
verwendet werden kann. Weiters bietet es auch Informationen über Lesbarkeitsfaktoren
an, und gibt Best-Practice-Beispiele zur Verbesserung. Neben diesem Hauptziel geben
wir einen Überblick über die akademische Literatur auf dem Gebiet der Lesbarkeit von
Testcode und vergleichen sie mit den Meinungen von Praktikern. Wir untersuchen die
Auswirkung von Codeänderungen (Refactorings), die sich auf die weithin diskutierten
Lesbarkeitsfaktoren beziehen, auf die Lesbarkeit von Testfällen. Darüberhinaus sammeln
wir Kriterien für die Bewertung der Lesbarkeit aus Freitextantworten, untersuchen den
Einfluss der Erfahrung von Entwicklern auf die Bewertung der Lesbarkeit und bewerten
die Genauigkeit eines Bewertungsprogramms für die Lesbarkeit, das häufig in anderen
Studien verwendet wird.

Methodik: Wir sammeln umfangreiche Informationen über die Lesbarkeit von Testcode,
indem wir eine systematische Zuordnung von akademischer Literatur mit den Ergebnis-
sen einer systematischen Zuordnung von Literatur aus der Praxis (sog. grey literature)
kombinieren. Wir führen ein Humanexperiment zur Lesbarkeit von Testcode mit 77
erfahrungsmäßig meist angehenden Programmiererninnen und Programmierern aus dem
akademischen Umfeld durch, um verschiedene Einflussfaktoren auf die Lesbarkeit zu un-
tersuchen. Wir kategorisieren und gruppieren Freitextantworten der Versuchsteilnehmer
und vergleichen die menschlichen Lesbarkeitsbewertungen mit Programmbasierten Les-
barkeitsbewertungen. Schließlich führen wir nach der Erstellung des Frameworks für die

ix

Bewertung der Lesbarkeit, das auf den vorherigen Ergebnissen basiert, eine Evaluierung
durch und vergleichen sie mit den Ergebnissen des ursprünglichen Humanexperiments.

Ergebnisse: Die Literaturstudien ergeben 16 relevante Quellen aus der Wissenschaft
und 56 Quellen aus der Praxis. Aus beiden Studien geht ein anhaltendes Interesse an
der Lesbarkeit von Testcode hervor. Wissenschaftliche Quellen konzentrieren sich auf die
Untersuchung von automatisch generiertem Testcode, der oft mit manuell geschriebenen
Tests verglichen wird (88%). Zur Erfassung der menschlichen Lesbarkeit werden vor
allem Umfragen als Methoden verwendet (44%), die in fast allen Fällen Likert-Skalen
enthalten. Bei der praxisbezogener Literatur (56 Quellen) handelt es sich meist um Blogs
von Praktikern, die ihre Meinung und Erfahrungen zu Problemen aus ihrer täglichen
Arbeit mitteilen. Es gibt klare Überschneidungen bei den Lesbarkeitsfaktoren, die in
beiden Gemeinschaften diskutiert werden, aber einige Faktoren sind exklusiv für jede
Gemeinschaft. Bei dem Humanexperiment fanden wir einen statistisch signifikanten
Einfluss auf die Lesbarkeit von Testfällen bei fünf von zehn untersuchten Codeänderungen,
die Lesbarkeitsfaktoren zuzuordnen sind. Wir sehen keinen großen Einfluss der Erfahrung
auf die Lesbarkeitsbewertungen, obwohl frühere Untersuchungen einen Einfluss der
Erfahrung auf das Verständnis und die Wartungsaufgaben festgestellt haben. Nach der
Kategorisierung von rund 2500 Freitextantworten zu urteilen, bewerten die Teilnehmer
die Lesbarkeit auf der Grundlage von Testnamen, Struktur und Abhängigkeiten (d. h.
testet der Test nur ein Verhalten?). Die Bewertungen des Bewertungprogramms für die
Lesbarkeit liegen in etwa 51% der untersuchten Testfälle zwischen dem 0,25% und 0,75%-
Quantil unserer menschlichen Bewertungen. Wir haben auch festgestellt, dass unsichtbare
Unterschiede in der Formatierung (z. B. Leerzeichen, Tabulatoren) die Bewertungen des
Programms um bis zu 0,25 auf einer Skala von 0 bis 1 beeinflussen. Die Bewertung des
Frameworks zeigt eine geringere Streuung der Bewertungen zwischen den Teilnehmern und
eine höhere Bewertungsgeschwindigkeit im Vergleich zu den Bauchgefühl-Bewertungen
der ersten Experimente. Insgesamt bewertet das Framework die Tests zu optimistisch.
Allerdings ist die Aussagekraft aufgrund der geringen Anzahl von Umfrageteilnehmern (5)
sehr begrenzt. Daher ist diese Evaluierung lediglich ein Konzept, das wir in zukünftigen
Arbeiten weiterverfolgen werden.

Conclusio: Bei den Literaturstudien fanden wir unterschiedliche Auffassungen über
die Lesbarkeit von Testfällen in der Praxis und in der Wissenschaft, die sich aus den
unterschiedlichen Kontexten der jeweiligen Gruppen ergeben. Die Bewertungen des
Lesbarkeitsprogramms sind nicht genau genug, um ihnen blind zu vertrauen. Sie müssen
noch mit menschlichem Fachwissen ergänzt werden. Unser Framework zur Bewertung
der Lesbarkeit ermöglicht eine effizientere Bewertung der Lesbarkeit. Eine groß angelegte
Evaluierung ist für zukünftige Arbeiten geplant.

Abstract

Context and Motivation: Software testing is a common practice in software devel-
opment and serves many functions. It provides certain guarantees that the software
works as expected across the life cycle of the system, it helps with finding and fixing
erroneous behaviour, it acts as documentation, provides usage examples, etc.. Still, test
code is often treated as an orphan, which leads to poor quality tests also with respect to
readability. However, if the test has poor readability, upstream activities like maintaining
tests or drawing correct conclusions from tests may be compromised. But what is readable
test code? Since test code has a different purpose than production code and contains
exclusive features like assertion methods, the factors influencing readability may deviate
from production code.
Objective: We propose a framework, which can be used to evaluate the readability
of test code. It also provides information on factors influencing readability and gives
best-practice examples for improvements. Aside from this main goal, we give an overview
on academic literature in the field of test code readability and compare it to opinions of
practitioners. We investigate the impact of modifications, related to widely discussed
readability factors, on the readability of test cases. Furthermore, we gather readability
rating criteria from free text answers, investigate impact of developer experience on
readability ratings and evaluate the accuracy of a readability rating tool, which is often
used in other studies.
Methods: We collect extensive information on test code readability by combining a
systematic mapping of academic literature with the results of a systematic mapping of
grey literature. We conduct a human-based experiment on test code readability with
77 mostly junior-level participants in academic context, to investigate various influence
factors to readability. We categorise and group free text answers from the experiments
participants and compare the human readability ratings with tool generated readability
ratings. Finally, after the construction of the readability assessment framework, which is
based on the previous results, we perform an evaluation and compare it to the results of
the initial human-based experiment.
Results: The literature studies result in 16 relevant sources from the scientific commu-
nity and 56 sources from practitioners. From both literature mappings we see an ongoing
interest in test code readability. Scientific sources focus on investigating automatically
generated test code, which is often compared to manually written tests (88%). For
capturing human readability, they primarily use surveys as methods (44%), which contain

xi

Likert scales in almost all cases. Grey literature (56 sources) mostly consists of blogs
from practitioners, sharing their opinion and experience on problems found in their daily
work. There is a clear intersection on readability factors discussed in both communities,
but some factors are exclusive to each community. For the human-based experiment,
we found statistical significant influence on the readability of test cases in five of ten
investigated modifications, which map to readability factors. We do not see much influ-
ence of experience on readability ratings, although previous research found experience
influencing understanding and maintenance tasks. Judging from the categorisation of
around 2500 free text answers, the participants rate readability based on Test naming,
Structure and Dependencies (i.e., does the test ensure only one behaviour?). The ratings
of the readability rating tool are between the 0.25% and 0.75% quantile of our human
ratings in around 51% of the investigated test cases. We also found influence of invisible
differences in formatting (i.e. spaces, tabulators) affecting the tools ratings up to 0.25 on
a scale from 0 to 1. The framework evaluation shows a decreased variation in the ratings
across participants and increased rating speed compared to gut feeling ratings from the
initial experiments. Overall, the framework rates tests to optimistically. Nevertheless,
the validity is very limited, due to a small number of survey participants (5). Therefore,
this evaluation is merely a concept, which we pursue in future work.
Conclusion: From the literature mappings we found different views on test case read-
ability between practitioners and academia, which come from the different contexts of
the communities. The ratings from the readability tool are not accurate enough in order
to trust them blindly. They still need to be complemented with human expertise. Our
readability evaluation framework enables a more efficient assessment of readability. A
large scale evaluation is planned for future work.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Context & Motivation . 1
1.2 Problem Description . 3

2 Related Work 7
2.1 Test Process . 7
2.2 Test Case Generators . 9
2.3 (Test) Code Readability . 10
2.4 Test Smells . 12

3 Research Questions 15
3.1 Design Science Cycle . 15
3.2 Research Overview and Research Questions 18

4 Systematic Mapping Study (SMS) 23
4.1 SMS Protocol & Process . 23
4.2 SMS Analysis Results . 28

5 Grey Literature Study 39
5.1 Study Protocol and Process . 39
5.2 Grey Literature Analysis Results . 41

6 Initial Readability Study 51
6.1 Experiment Setup and Procedure . 51
6.2 Experiment Results . 54

7 Readability Framework - Development and Evaluation 71
7.1 Readability Factor Questions . 71

xiii

7.2 Readability Factor Guidelines . 72
7.3 Evaluation . 76

8 Discussion and Limitations 81
8.1 Discussion . 81
8.2 Limitations . 86

9 Summary and Future Work 91
9.1 Summary . 91
9.2 Future Work . 93

List of Figures 95

List of Tables 97

Bibliography 99

A) Sources of Academic Literature for Systematic Mapping 107

B) Sources of Grey Literature for Systematic Mapping 109

CHAPTER 1
Introduction

1.1 Context & Motivation
Writing unit tests is a crucial part of software engineering. As software changes over time
after the initial development, tests have to be maintained too. It is common knowledge
that hard to read production code is hard to maintain. The same also holds for test
code, because maintenance tasks usually include reading the code at least once. A lack
of readability can lead to developers spending much time on understanding the code and
may even lead to the introduction of new bugs, because they misinterpreted some part
of the code. Therefore, each person playing a role in the specification, implementation
and maintenance of software tests should aim for high readability. The discussion on the
readability of (production) code exists for a long time and there exist different approaches
to assess its readability. Test code however pursues other goals than production code,
hence the aspects which influence its readability may differ. Therefore, the main goal
of this work is to propose a framework for readability evaluation of test code.
In order to reach this goal we gather and compare information on factors influencing
readability in academic and grey literature in the course of two systematic mapping
studies. We will conduct a readability experiment with humans and an established
readability rating tool. From the human-based experiment we extract rating criteria from
free text answers and combine them with the other findings to a readability evaluation
framework. Finally, we conceptually evaluate the framework with a survey.

The main contributions of this work to scientific community include the individual
mapping studies and the comparison of views from academia and practitioners. These
provide insights into the relations between these communities and can be used to justify
new investigations. The collection of rating criteria and the investigation of influence
factors can be used as input for improving the readability of test case generators.
The main contributions for practitioners also include the mapping of both types of
literature, because it adds scientific viewpoints on best-practice methods. The readability

1

1. Introduction

assessment framework can be used by testers, developers and instructors as an input
during test code reviews, which may speed up the review process and lead to more
consistent ratings from all participants. The guidelines give advice on how tests could be
improved with respect to readability.

After the overview on this work, we set up the overall context which is software testing
in general. Myers et al. [49] give a common definition of testing in The art of software
testing:
"Testing is the process of executing a program with the intent of finding errors."

Software testing is part of quality assurance, widely adopted by industry (Bertolino et al.
[6]) and is a valuable tool to gain confidence in the implemented functionality. However,
it not only increases confidence in a product it also secures private data, saves money
or lives. A common example for saved money is the short flight and explosion of the
Ariane 5 rocket [45], where a 64 bit floating point number was stored into a 16 bit field
causing disastrous behaviour. Another example, the so called Heartbleed bug 1, found in
a popular encryption library affected the whole internet. Being part of many web servers,
it allowed attackers to steal communication from 24 - 55% of popular HTTPS sites,
Durumeric et al. [18]. This communication could also contain access credentials. What
do these examples have in common? They both could have been found with software
testing, as probably all faults in software systems.

Besides increasing confidence in the code base, tests can also be seen as documentation.
Test cases show developers how the system behaves in normal and exceptional situations.
Apart from that, positive test cases act as an example on how the system under test can
be used, e.g. they present instantiation of complex objects or basic workflows. To keep
time spent with the tests short and in order to allow developers to focus on productive
work, test cases should be readable and easily understandable. Testers profit from
readable tests, because readable code is usually easier to maintain and to review. Our
work supports development of readable tests, because by applying the framework they
get trained on spotting test code which could be improved.

Not only testers and developers profit from readable test code but also test case designers
might find it valuable to know, if different kinds of tests deviate strongly in readability. By
combining the readability assessments of test cases from classes and modules, managers
and team leaders get an overview on a additional quality aspect of their test suite, which
may give hints to hard-to-test production code.

Although it is possible to write unit tests with standard libraries from programming
languages, a dedicated testing framework provides useful functionality for setting up and
executing tests. The most important aspect are the so-called assertions, which come
in different flavours. Assertion methods allow the programmer to check that the program
is in a certain state at a specific point in the execution. When the program satisfies the
state, the test continues, else it fails with a message to the programmer.

1CVE-2014-0160 The Heartbleed bug https://cve.mitre.org/cgi-bin/cvename.cgi?name=
cve-2014-0160, visited: 2021-06-12

2

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

1.2. Problem Description

1.2 Problem Description

Readability is a quality criteria which influences maintainability, because a developer
might have to adapt tests written by someone else. At some point the developer might
have to decide if a test case should only be modified or if a complete rewrite would
improve future maintenance tasks. In this case a framework for assessing readability can
deliver valuable insights, which can also be reproduced by other developers. Also no
matter how the developer decides, the developer has to know how the test case should
be modified, in order to improve the readability.

Software tests can be used by developers as additional documentation of the functionality
of certain parts of the system. Besides, developers also have to write tests themselves
when doing test driven development or have to review test code, so they clearly profit
from a framework for readability assessment we propose. Test case designers might
also find the results of the work useful, because by knowing which tests are rated as
more readable, they can adapt their design to improve future tests. Team leaders and
managers get an overview on a quality aspect of their test suite which can also be a hint
to problems in production code. Therefore, the main goal of the work is to propose a
framework for readability assessment of test code.

When it comes to test code quality, the term test smell will pop up sooner or later. Test
smells are a special version of code smells only occurring in test code. This term was
coined by Van Deursen et al. [70]. Code smells are not directly bugs in the code but more
like unfortunate code design decisions, which can lead to problems in the future. The
term code smell was invented by Kent Beck and got the attention of a larger audience
in a book by Martin Fowler [23], who defines code smells as: ’A code smell is a surface
indication that usually corresponds to a deeper problem in the system’.2 This definition is
already a hint, that test smells capture a different problem and do not necessarily have
to do with test code readability.

As an example for the problem with test smells, the following Listing 1 shows a test with
two smells. In the test case we first initialize an object of the imaginary Calculator class.
Then we test this object by using assertion methods provided by the testing framework.
The assertEquals() method assures that the first parameter (the expected parameter
/ ground truth) is equal to the second parameter. We assume that the methods add()
and multiply() return an integer. The third parameter of the assertion is unused. All
assertions of the JUnit framework have this optional parameter, which can be used to
define a custom message printed to console in case this assertion fails. Coming to the
actual smells, the listing firstly contains an Assertion Roulette smell, because there are
multiple assert statements with the message parameter unused. This can make the failing
assertion harder to find. Secondly, the test has a Eager Test smell, because different
methods of the system under test are tested in a single test case (methods add and

2Martin Fowler, blog entry: CodeSmell https://martinfowler.com/bliki/CodeSmell.html
visited: 2022-11-21

3

https://martinfowler.com/bliki/CodeSmell.html

1. Introduction

multiply). Thirdly the Magic Numbers smell is present, because integer literals instead
of variables or constants with a descriptive name are used.

1 // SMELLY TEST CASE
2

3 @Test
4 public void testAddAndMult() {
5 Calculator calc = new Calculator();
6 // Test smells: Eager Test, Assertion Roulette, Magic Numbers
7 assertEquals(5, calc.add(2, 3));
8 assertEquals(4, calc.multiply(2, 2));
9 }

Listing 1: Test smells in this listing lines 7-8: Eager test: Different methods are tested in
one test method. Assertion Roulette: the message parameter of the assert statements
should be used. Magic Numbers: Descriptive variables or constants should be used
instead of integer literals. Refactored version in Listing 2.

A refactored version of this test, where these three smells are removed, could look
something like Listing 2. By giving each assertion its own test method, only one thing
is tested at a time. Since the tests only contain one assertion, the message parameter
can be left unused. The setup for the tests is the same, therefore it is extracted into
a separate @BeforeEach method, which gets executed before each test method. The
integer literals are replaced with local variables. However, is the refactored version really
better in terms of readability or would a less aggressive refactoring be more readable?
Consider that, for example, the refactored version uses much more lines, methods and
variables than the smelly version.

Like natural language texts, source code too can be more or less readable. Therefore, code
readability is determined by how easily humans can understand a given piece of source
code. Of course this feature is subjective but there still are traits in code which support
or prevent readability. Buse et al. [8], Posnett et al. [57] or more recently Scalabrino
et al. [64] investigated such human preferences and constructed a readability metric for
source code. Scalabrino et al. [64] published a tool, which generates readability ratings
for Java source code. While this tool allows to rate readability of large amounts of code,
it is trained for all kinds of code and not specifically for tests. Since test code has to
achieve different goals than production code, the tools response may be a bit fuzzy.

The rest of the work is organized as follows. In the next chapter, Chapter 2, we provide
an overview on the related work concerning test code quality and readability. Next,
in Chapter 3 we present and justify our research questions, which we use to gather
information for the proposed readability framework. The questions are grouped by the
methods utilised and answered in order of appearance, hence Chapter 4 deals with the
systematic mapping study in academic literature, Chapter 5 answers questions related

4

1.2. Problem Description

1 // REFACTORED TEST CASE
2

3 private Calculator calc;
4 @BeforeEach
5 public void setUp() {
6 calc = new Calculator();
7 }
8

9 @Test
10 public void testAdd() {
11 int result = 5;
12 int addend1 = 2;
13 int addend2 = 3;
14 assertEquals(result, calc.add(addend1, addend2));
15 }
16

17 @Test
18 public void testMultiply() {
19 int result = 4;
20 int multiplicand = 2;
21 assertEquals(result, calc.multiply(multiplicand, multiplicand));
22 }

Listing 2: JUnit5 tests with a setup method which is called before each test method.
The tests themselves only assert one thing at a time. Integer literals in the assertion are
replaced with variables. Original version in Listing 1.

to results of the grey literature study and Chapter 6 reports results of an experiment
concerning test code readability in academic context. In Chapter 7 we take key findings
of the previous chapters into account to present a proposal for a readability framework,
which we conceptually evaluate with a survey. We discuss the result and list threats to
validity of this work in Chapter 8. Finally, we conclude with Chapter 9 containing a
summary of the findings and prospect on future work.

5

CHAPTER 2
Related Work

After the general introduction to the context and the problem at hand, we firstly take a
look at the test process, which ensures a well structure approach and test code generators,
which can generate test suites for large programs in short time. Then we provide a short
overview on (test) code readability and the topic of test smells, which are also relevant
to test code quality.

2.1 Test Process
Software systems are tested on different levels and also in different stages of develop-
ment. Figure 2.1 shows two common representations of software development processes.
Figure 2.1a shows the V-model by Spillner et al. [68], it presents the different steps
in software development with their corresponding testing counterparts. Unit testing or
component testing is situated on the lowest level and is concerned with the functionality
of one small part of a program. In object oriented programming often a class and its
methods are unit tested. The next level is integration testing, where the interaction of
these units is investigated. Next the tests on system level are performed, which ensure
the functionality of the complete system. The last test level, the acceptance test assures
the conformance to the customers requirements. More detailed descriptions of this and
other levels of testing, which are utilised depending on the requirements are omitted,
because in this work the focus lies on unit tests.

A more modern process of software development shown in Figure 2.1b is the SCRUM
process, which is a common proxy for agile project management. The members of a
SCRUM team choose their tasks for a development period, the sprint, from a product
backlog themselves. The period of a sprint usually lasts for two to four weeks. At the
end of a sprint the new functionality is presented to the customer. In contrast to the
V-model tests for a functionality are written during development, which again highlights
the importance that developers should also know how to write good tests.

7

2. Related Work

Although it is not exclusive to the SCRUM model, test driven development (TDD) as
proposed by Kent Beck is closely connected to agile software development. According to
the preface of Kent Becks book on TDD [4] it follows two simple rules which are "Write
new code only if an automated test has failed" and "Eliminate duplication". From these
rules he derives the well known development cycle: Red → Green → Refactor. In the
first step ’red’ the desired behaviour of the actual program is written in a test case. The
test case does not have to compile at this stage. Next, in the ’green’ stage, the program
is implemented in a fast, maybe unclean way, until the test passes. Finally, in ’refactor’,
the previously fast written code is cleaned up. In TDD every development starts with a
test case and the test cases determine the behaviour of the program. Hence readable
tests allow for faster development, because developers can identify the requirements of
the test case more easily.

Functional system
design

Requirements
definition

Technical system
design

Component
specification

Programming

Component test

Integration test

System test

Acceptance test

Verification &
Validation
Implementation &
Integration

(a) The traditional V-model shows dif-
ferent steps in software development
with their corresponding testing coun-
terparts. Figure redrawn; original
from Spillner et al. [68].

New
functionality

Sprint
(2 - 4 weeks)

Develop &
Test

Wrap

Adjust Review

15 min daily meeting:
1. What was done?
2. Current problems?
3. Goal for today?

Team
chooses}

Product
backlog

Sprint
backlog

(b) Agile software development process
in the SCRUM model. Testing is done
in each sprint.

Figure 2.1: Common representatives of traditional and agile software development
processes.

The tests themselves are executed in different environments, for example on the developers
machine (Beller et al. [5]) or automatically during the build process when continuous
integration is used (Fowler [19], Meyer [48]). Because programming languages like Java,
C# or C++ do not explicitly provide testing facilities in their standard libraries, testing
frameworks like JUnit (Gamma et al. [26]) for Java were developed.
But how do the developers or testers know when to stop testing, because they tested
the complete system? This is where test metrics come in to play. As an example the
books by Jorgensen et al. [35] or Kaner et al. [36] list several metrics. A fairly simple
one is code coverage, where the lines of code, which are reached by the test cases are
counted. A little bit more evolved is the branch coverage, where the execution paths are
counted. E.g. an if-then-else structure has two branches, the if and the else branch.
This metric is useful for finding missed execution paths fast. With additional tools e.g.

8

2.2. Test Case Generators

Apache Maven for Java and appropriate plugins, such coverage criteria can easily be
setup as quality criteria which give developers instant feedback after each execution of
the test suite. To fulfil such coverage metrics without much effort, test case generation
suites like Randoop [51] or Evosuite [25] exist.

2.2 Test Case Generators
Although test case generators like Randoop [51] or Evosuite [25] can quickly generate
large test suites, they both produce badly readable or maintainable tests, see Listing 3
and Listing 4 for examples from both generators. Both samples look rather chaotic, their
test naming just consists of ’test’ and an consecutive number, the variable names consist
of class names and again consecutive numbers. In the Evosuite test in Listing 3 on the
plus side there is some structure indicated with the empty lines. However it is used for
separating not only different behaviours from one class but also from different ones (i.e.
StringUtils and Stack). From this perspective the name of the test itself comes to
no surprise, because finding a reasonable name for such a test is at least challenging. In
the Randoop generated test in Listing 4 there are no empty lines for structuring but
all assertions are grouped at the bottom of the test, which is a common best-practice
because it suggests a ’Arrange Act Assert’ structure. However, this is not the case here,
because two Arrange and Act steps are performed consecutively. The first two steps go
from line 8 to 12, the second steps from 13 to 16. Finding an appropriate test name is
also challenging, even if all tested methods come from the StopWatch class. Last but
not least the block of assertions at the bottom looks intimidating but effectively they
only check three booleans which should be false, one string representation (line 18)
and equalness of a long value (line 21). The first parameter of the assertions is used
for constructing an assertion message, which could be avoided by using the appropriate
assertion, which generate these messages automatically. Besides it would also get rid of
comparisons like boolean 4 == false.

As we have seen there is much potential for improvements in test case generation.
Therefore, researchers propose various enhancements for this tools. Palomba et al.[53]
observe that generated tests with low cohesion (one test case should only test few
behaviours) and high coupling (multiple tests test the same behaviour) negatively impact
maintenance activities. Therefore, they include this criteria in the generation algorithm
and show in an empirical study that their tests had less coupling and higher cohesion.
Daka et al.[14] include readability criteria based on a human model into the generation
algorithm of Evosuite and demonstrate this approach on selected Java classes. The
improved Evosuite algorithm produces slightly more readable tests without loss of code
coverage. Robinson et al. [58] present some techniques for generating more maintainable
regression unit test suites. In experiments with an industrial system their tests needed
fewer edits when the system under testevolved and their tests were considered readable
by the developers of the system.

Roy et al. [60] improve readability of tests by generating test cases summaries and

9

2. Related Work

1 @Test
2 @Timeout(4000)
3 public void test303() throws Throwable {
4 boolean boolean0 = StringUtils.isAlpha((CharSequence) null);
5 assertFalse(boolean0);
6
7 String[] stringArray0 = StringUtils.split(", '");
8 assertNotNull(stringArray0);
9

10 Stack<Object> stack0 = new Stack<Object>();
11 assertEquals(0, stack0.size());
12 assertTrue(stack0.isEmpty());
13 assertTrue(stack0.empty());
14 assertEquals("[]", stack0.toString());
15 assertEquals(10, stack0.capacity());
16 assertNotNull(stack0);
17
18 // Undeclared exception!
19 // Index: 2791
20 Exception e = assertThrows(IndexOutOfBoundsException.class,
21 () -> stack0.listIterator(2791));
22 verifyException("java.util.Vector", e);
23 }

Listing 3: Test case generated with Evosuite

renaming identifiers and test names with a deep learning model. They integrate this tool
into EvoSuite and show with a survey that this approach increases readability.

Daka et al. [12] propose a model for classifying the readability of unit tests. They
also integrated it into Evosuite and evaluated the effectiveness of their model with an
experiment. Participants preferred the improved tests, although answers to questions on
the test code were as accurate as for the unimproved version. The code factors influencing
readability identified by Daka et al. are used by Setiani et al. [65] in combination with
developer related metrics for a new readability model.

2.3 (Test) Code Readability
Since the advent of programming languages the readability of the code written in these
languages has been of relevant concern. COBOL is probably the first language which tried
to achieve high readability with sticking to English language as close as possible [61].
This is in contrast to a nearly equally old language like ALGOL which appears more like
a language like C or Java. But just because COBOL is considered to be a language with
many unreadable programs, this does not mean that English-like syntax in programming
languages is bad. Consider SQL for example, which contains a magnitude of optional

10

2.3. (Test) Code Readability

1 public static boolean debug = false;
2
3 @Test
4 public void test551() throws Throwable {
5 if (debug)
6 System.out.format("%n%s%n", "RegressionTest1.test551");
7 StopWatch stopWatch1 = new StopWatch("");
8 stopWatch1.reset();
9 stopWatch1.reset();

10 boolean boolean4 = stopWatch1.isSuspended();
11 java.lang.String str5 = stopWatch1.toString();
12 boolean boolean6 = stopWatch1.isSuspended();
13 stopWatch1.start();
14 stopWatch1.stop();
15 boolean boolean9 = stopWatch1.isStarted();
16 long long10 = stopWatch1.getStartTime();
17 assertTrue("'" + boolean4 + "' != '" + false + "'", boolean4 == false);
18 assertEquals("'" + str5 + "' != '" + "0:00:00" + "'", str5, "0:00:00");
19 assertTrue("'" + boolean6 + "' != '" + false + "'", boolean6 == false);
20 assertTrue("'" + boolean9 + "' != '" + false + "'", boolean9 == false);
21 assertTrue("'" + long10 + "' != '" + 1592683830012L + "'",
22 long10 == 1592683830012L); // flaky
23 }

Listing 4: Test case generated with Randoop

keywords, which make queries appear more like English sentences than program code.
And even more recently a trend towards Behaviour Driven Development with frameworks
like Cucumber and the language Gherkin1 enforce the goal to write automated tests in
natural language, see Listing 5.

1 Feature: Checkout
2
3 Scenario: Pay order with filled cart
4 Given the Customer has filled shopping cart
5 When the Customer clicks the 'Order now' button
6 Then the Customer must have enough money on their payment method

Listing 5: Test case written in the language Gherkin

After this short introduction on code readability we turn the focus on recent research on
this topic. Grano et al. [30] conclude that manually written test code is less readable
than production code, but automatically generated tests are even less readable. Lin et al.
[43] come to the same conclusion for identifiers and also list characteristics for different

1Gherkin reference: https://cucumber.io/docs/gherkin/reference/

11

https://cucumber.io/docs/gherkin/reference/

2. Related Work

qualities of identifiers. However, Grano et al. [30] used a model to compute readability,
which could give different ratings than humans.

Concerning code readability metrics Buse et al.[8] constructed a general code readability
metric using structural properties of code like line length, amount of keywords or length
of identifiers. With their metric they show that a selected set of large software projects
tend to get more readable as they get more mature. Choi et al. [11] use similar metrics
in their approach. Xu et al. [75] compute readability with word correctness and the
property of an identifier being memorable. A more recent general readability model
was proposed by Scalabrino et al. [64] who combine structural and textual features
like readability of comments or consistency of identifiers, which were not considered by
previous work in this breadth. However, we do not know how well these models perform
when rating test code.

Oliveira et al. [50] provide an overview on general code readability and propose an
informal definition of readability and legibility because these and similar terms are often
used interchangeably in the field of software engineering. In this work the focus lies on
specifically on test code, which is different to production code.

Although Scalabrino et al. [63] indicate that there is no correlation between automatically
generated readability ratings and understandability of source code, we still assume that
most programmers and testers find more joy in working with readable test code (apart
from a masochistic point of view).

2.4 Test Smells
When researching test code quality test smells are a prominent topic. Van Deursen et
al. [70], define a set of eleven test smells which are regularly referenced by publications
on this topic. The authors also provide suggestions on how these smelly tests can be
refactored.

Ceccato et al. [9, 10] and Shamshiri et al. [67] performed experiments in the field of
test smells and maintenance of test code. The accuracy of performing maintenance tasks
like bug-fixing, is equal, no matter if a test was generated or written by humans. Also
Ceccato et al. state that developers experience plays an important role when working on
such tasks. However, the relation between experience and perceived readability of test
cases is still an open question.

Test smells are highly diffused in test code and they also appear in other languages than
Java, which is focused by researchers. De Blesser et al. [15] investigated diffusion of test
smells in Scala projects. Palomba et al. [52] and Grano et al. [31] report that test case
generators like Randoop, Evosuite or JTExpert often add high amounts of specific smells
to their tests.

In the domain of test smells Garousi et al. [28], [27] conducted a large multivocal
literature mapping, which differs from a standard SLR in the way, that grey literature for

12

2.4. Test Smells

example blogs, forums and videos is included alongside scientific sources, after a rigorous
examination of the sources quality. With this approach the authors gather 166 sources
and extract 196 names for test smells. These are an excellent source for classifying
unknown smells, although, due to the sheer amount of smell names, some are synonyms
for the same smell.

For searching test smells in large amounts of source code, tool support is available. Bavota
et al. [3] proposed one for Java, which was also adopted by other researchers. However,
also other tools and metrics are available for various languages. Khom et al. [39] propose
a Bayesian approach for detecting smells, De Bleser et al. [16] propose a smell detector
for Scala. Fernandes et al. [21] performed a systematic literature review and provide a
list of available tools. They found 61 tools, where 29 were available for download and
covered different languages.

Our work will sketch the landscape of test code readability research with a systematic
mapping study, which is a more specific topic than the overview for general code readability
by Oliveira et al. [50]. We further enrich the literature study by including grey literature
from practitioners to investigate which influence factors to readability are discussed in
practice. With an initial readability study with students we investigate the influence of a
selected set of factors on readability. Furthermore we extract readability criteria from
free text rating explanations gathered in the experiment, because broad investigations on
such factors are hardly available in the context of test code readability. The work by
Setiani et al. [66] investigates such criteria but differs in the selection of the test cases,
because they use constructed examples and we use test cases from open source software
projects. We analyse the accuracy of a readability rating tool, because the tool may not
be specialised on test code and might give different ratings than humans. Finally, we
investigate the impact of developer experience on readability ratings.

13

CHAPTER 3
Research Questions

In order to propose a framework for readability assessment of test code, we need broad
knowledge on test code readability. We start with a short explanation on the research
approach, which is the theoretical foundation of this work. Afterwards we present the
concrete research overview with an explanation of the individual steps of this work.
Finally, we define the research questions we derived to design a framework for readability
assessment of test code.

3.1 Design Science Cycle
We follow a process inspired by Design Science Frameworks proposed by Hevner et
al. [33] and Wieringa [71]. Figure 3.1 shows how this work fits into the design science
framework by Wieringa.

Since the sentence ’L’art pour l’art’, does not apply to science, there exists a Social
context in every research project (see top of Figure 3.1). It is defined by the stakeholders
of the project and amongst others contains possible users like testers; developers or
instructors, or profiteers like the scientific community. The social context defines the goal
of this work to Propose a framework for readability assessment of test code, because as
stated in Section 1.2, test code readability is a relevant problem in software engineering.

Wieringa summarises design science as ’Design science is the design and investigation of
artifacts in context.’. The artifacts under investigation target to solve a problem in the
real world. These problems are called Design problems (see the box ’Design’ in the middle
left of Figure 3.1). Potential solutions to design problems can have many forms, some of
which manage to solve the problem completely or partially, while others completely fail
to solve the problem or instead they may solve another design problem. In this work
the design problem is the main goal of this work, which is to Propose a framework for
readability assessment of test code.

15

3. Research Questions

Social context
Testers, developers, test case designers, scientific community

Propose a
framework

for readability
assessment

Proposed
readability
framework

Related work in academia, practical knowledge and best practice in grey literature,
opinions from practitioners

Existing
readability models,
readability rating

tools

Proposed
readability
framework

Context to investigate
Proposed readability framework

Answers to RQs,
results of readabilty framework evaluation

Info for
answering

RQs

New
answers to
own RQs

Design science

Knowledge context

Answering knowledge
questions about the
artifact in context

Investigation
Designing an artifact to

improve a problem
context

Design

Figure 3.1: Redrawn design science framework from Wieringa [71], adapted to the research
approach of this work.

In order to increase the odds of designing an artifact, which solves or improves the posed
problem, we investigate the context in a first step (see the left to right arrow in the center
of Figure 3.1). This investigation answers so-called Knowledge questions, which are not
only related to the artifact in the context but also the context itself. The knowledge
questions in this work are primarily defined by the research questions in this chapter.

We answer the research questions with information from the Knowledge context (see
bottom of Figure 3.1), which contains related work in academia, knowledge from prac-
titioners and other sources. By publishing this work we also give back information to
the knowledge context with the answers to the research questions and finally with the
proposed readability framework.

When we answered the research questions (see the right to left arrow in the center of
Figure 3.1), we end the first iteration of the design science cycle and design the artifact,
which is the readability assessment framework. Existing readability models or rating
tools from the knowledge context also influence the design of the artifact.

In the second and last iteration of the design science cycle in this work we evaluate the
readability framework in the context. This will show strengths and weaknesses of the

16

3.1. Design Science Cycle

proposed solution. The insights from this evaluation could then be used to improve the
design.

12

Create
Readability
Assessment
Framework

Contribution
of search terms,

readability
factors

Readability
factors

1

Conduct
Systematic
Mapping

Study (acad.)

RQ1.x: Factors influencing readability,
readability models, readability rating tool

RQ2.x: Factors influencing readability,
comparison of industry and academic perspective

Tools
response

(automated)

Initial Readability Study

4

6

Prepare
Challenge

7

Execute &
Analyse

Challenge

Questionnaires

Human Based

5

9

Prepare
Test Cases

10

Execute &
Analyse
Tool

Prepared test cases

Tool Based

8

11

Compare
ResultsResults

RQ3.x: Readability evaluation
results (human and tool)

Human results

Readability tool
(Scalabrino et al.)

Assessment
questions

Challenge
participants

Lecture
team

Challenge
infrastructure

Published
paper
Exposé

SMS
process

Challenge
process

Related
work

Script-assisted
challenge setup

Best
practice

Evaluation results14

Prepare
Evaluation

15

Execute &
Analyse

Evaluation

Questionnaires

Human Based Evaluation

13

2

Conduct
Systematic
Mapping

Study (pract.)

3

Select
and

Adapt
Test
Cases

Test
cases

Test cases
mainly

open source
software

Figure 3.2: Research overview in IDEF0 notation.

17

3. Research Questions

3.2 Research Overview and Research Questions
We provide an overview on the concrete research of this work followed by a reasoned
definition of research questions and applied methodology. Figure 3.2 shows an overview of
the research process in IDEF0 notation1. IDEF0 diagrams use the ICOM semantic, which
assigns objects, which take part in an activity or function (the rectangles) a special role
in this activity, depending on which side of the rectangle the object enters the activity.
ICOM stands for:

Input: the left edge of activities are inputs which will be transformed into the output.
E.g.: the complete research process uses the inputs published paper, exposé, etc.

Control: the top edge of activities is meant for objects which ensure that the activity
produces a correct output.

Output: the right edge of activities is reserved for outgoing arrows, the results of the
activity.

Mechanism: the bottom edge of activities describes what the activity needs to transform
input to output. This can be tools, infrastructure, persons etc.

One notable overall input for this work is the published paper (Winkler et al. [72]) and
another paper, which is currently under review for publication (Winkler et al. [73]). The
author of this work conducted the research presented in these papers under supervision
of Dietmar Winkler and Rudolf Ramler, which are also main advisor and main assistant
of this work. The text passages, figures and tables, which were taken from these papers
were created by the author of this work. At the start of each relevant chapter a note
clarifies the origin of these passages.

We start this work with a systematic mapping study (SMS) on academic literature (see
activity one in the top left in Figure 3.2). With this we obtain answers related to RQ1
and its sub-questions. That is, we get an overview of the publication landscape, the
kind of methods used, the types of conducted studies, factors influencing readability,
readability models and a readability rating tool. The process of the SMS assures a certain
reproducibility of the results.

The contribution of search terms i.e. ’Which search terms lead to relevant search results?’,
and the set of readability factors act as control for the second activity, a SMS on so-
called grey literature. According to Garousi et al. [29], who compose guidelines for
grey literature reviews in software engineering, a widely accepted definition is ’<grey
literature> is produced on all levels of government, academics, business and industry in
print and electronic formats, but which is not controlled by commercial publishers, i.e.,

1ISO/IEC/IEEE 31320-1:2012(en) Information technology — Modeling Languages — Part 1: Syn-
tax and Semantics for IDEF0. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:
31320:-1:ed-1:v1:en, accessed: 2022.11.23

18

https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:31320:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:31320:-1:ed-1:v1:en

3.2. Research Overview and Research Questions

where publishing is not the primary activity of the producing body’ by Farace et al. [20].
The contribution of search terms guide the search terms of the grey literature search to
obtain accurate search results. We map the found influence factors in grey literature to
the ones found in academic literature and compare the perspectives from industry and
academia. This results in answers related to RQ2.x.

The combined readability factors from step two control the selection of test cases in
step three. The test cases mainly originate from open source software projects, a small
proportion comes from student-written test cases. We create alternative versions of the
test cases with respect to the readability factors with best practice approaches.

We use the adapted test cases in our initial readability study (see activity four), which
consists of two different kinds of evaluations. On the one hand we have a human-
based experiment in the form of a testing challenge, where we first create surveys with
Google.Forms. These contain screenshots of test case snippets, which have to be rated
and reasoned concerning the readability of the tests. The challenge participants are
students from different runs of a software testing course at TU Wien. On the other hand,
in the tool-based experiment we use the readability rating tool from Scalabrino et al. [64]
to obtain readability ratings for the same test cases as in the human experiment. In order
to get consistent ratings from the tool we first prepare the test cases by unifying certain
aspects of formatting. When both experiments are finished, we compare the tools result
to the readability ratings of the participants. Summarising, with the initial readability
study we answer questions related to RQ3.x, obtain analysed results for the human and
the tool rating and a script-assisted challenge setup for creating similar surveys in the
future.

Armed with the human results, which contain readability rating criteria from the partici-
pants and factors influencing readability, we create the readability assessment framework
in activity twelve. The framework is based on best practice examples and contains a set
of assessment questions which target factors influencing readability.

In the last steps we evaluate the readability framework with a survey with a selected set
of test cases. We create the survey with Google.Forms assisted by the previously created
script. Finally, after the execution of the survey the analysis of the answers shows the
evaluation result, which concludes the research overview.

RQ1: What do we know about test code readability in academic
literature?
The first question is refined and split up into the following sub-questions. It lays the
foundation for this work and we will answer this questions with a SMS on academic
literature. In the context of literature studies in research projects there also exists another
approach, the systematic literature review (SLR).

SLRs as proposed by Kitchenham et al. [40] are to some extent similar to a SMS but
their goals and therefore some of their methods differ from each other. A SLR has

19

3. Research Questions

clearly defined goals and aggregates and analyses primary studies to gather evidence on
effectiveness or usefulness of a process. This requires an in-depth analysis of the quality
of the studies, which can limit the amount of studies under investigation.

In contrast, according to Petersen et al. [56] a SMS is more explorative than a SLR,
since it aims to give an overview on the publication landscape of a given field. This can
be used to discover research trends or gaps. Research questions can be formulated more
generic and a rigorous quality control of the selected studies is not mandatory, therefore
larger quantities of studies can be processed. A key part is the mapping or clustering
which summarises aspects of the studies of the field.

We use the SMS approach, because we want to obtain an overview of test code readability
in scientific literature and because our goal is not to investigate the effectiveness or
usefulness of a specific process in this stage of the work. Related to this part of the
work is Oliveira et al. [50] who give an overview on general code readability, whereas we
specifically focus on test code readability.

RQ1.1: What is the importance of test code readability in scientific com-
munities?
With this RQ we want to obtain an overview on the demographic of publications
concerning timeline and venues.

RQ1.2: Which types of studies are published and which research methods
are used?
This RQ provides an overview on the types of studies and the methodology used
by these studies. The results of this question will provide a benefit to our own
selection of methods.

RQ1.3: Which factors influence readability of test code?
Code can vary in many ways and we are interested which e.g. structural features
like line length have a relevant influence on readability.

RQ1.4: Which kinds of tests were investigated?
Software tests can come in various flavours ranging from unit tests to automated
GUI tests or even test scripts for manual execution. Depending on the kind of test
different readability criteria will be relevant.

RQ1.5: Which executable models for assessing code readability exist?
For constructing our framework we would like to have some tool support. Therefore
we will systematically search for tools in academic literature starting from the raw
search results of the SMS.

RQ2: What is the opinion of practitioners on test code readability?
Software testing is a common practice in software development, therefore we enhance our
SMS of academic literature with views from practitioners with a SMS of grey literature.

20

3.2. Research Overview and Research Questions

According to guidelines for including grey literature in research proposed by Garousi et
al. [29], this work can be classified as a multivocal literature mapping. For this part of
the work we follow a similar process like in the previous SMS for academic literature,
with the guidelines from Garousi et al.[29] in mind.

RQ2.1: Which influence factors are discussed in grey literature?
Instead of asking a selection of practitioners directly, we search the internet for
sources, which discuss test code readability and extract the influence factors. We
use this approach, because we assume that many developers use the internet as a
source of information and inspiration.

RQ2.2: What is the difference between influence factors in scientific liter-
ature and grey literature?
The focus of scientists and practitioners on influence factors might be different. A
comparison of the viewpoints will broaden our understanding of the topic.

RQ3: What insights can we obtain from a readability experiment with
students?
We conduct a human-based readability experiment with students over multiple years.
The participants come from software testing courses at TU Wien and were asked to rate
code snippets and explain their rating with free text answers in an online setting. We
use an online setting, because it is more convenient for the participants which we hope
positively affects the amount of participants. The disadvantage of this approach is the
decreased the level of control over the experiment participants, e.g. the participants can
be disturbed by random events or they could affect their ratings by talking to each other,
etc..

In order to increase the practical relevance of the experiment we mostly use test cases
from open source software projects. This avoids to rely on toy examples and some bias
in the construction of the tests, because the tests were not written by the author or
someone related to the author of this work. The selection of test cases is based on the
readability factors found by the previous research questions. The experiment follows an
A/B testing approach, where some participants evaluate the readability of a unmodified
version of the test case and other participants do the same for a modified version.

We conduct a technology-based readability experiment with the tool from Scalabrino
et al. [64], with the same test cases as the human-based experiment. This allows us to
compare both ratings.

RQ3.1: Do factors discussed in practice show an influence on readability
when scientific methods are used?
We study the impact of a selection of readability factors by analyzing results of
the A/B testing experiment. We perform the statistical analysis in R on level a of

21

3. Research Questions

α = 0.05% starting with a Shapiro-Wilk test to check for normal distribution of the
data. Normally distributed data would allow us to use a parametric test like the
t-test for unpaired data, which has more statistical power than the non-parametric
Wilcoxon Rank Sum test. We test on the difference of ratings in the A/B groups
and report the effect size with Cliff’s Delta (δ). We interpret the returned effect
size according to Romano et al. [59] with |δ| < 0.147 "negligible", |δ| < 0.33 "small",
|δ| < 0.474 "medium", otherwise "large". This approach is also used by [60] for their
Likert scale data.

RQ3.2: What criteria do students use for readability ratings?
Human readability judgement is a complex process. We evaluate and categorise
free text answers of the experiments participants. We hope that we can synthesize
some commonalities which will enhance our framework. Setiani et al. [66] ask a
similar question however, our experiment differs in test cases and participants.

RQ3.3: What is the impact of developer experience in context of readabil-
ity?
While the impact of developers experience on maintenance activities like debugging
was investigated by Ceccato et al. [9, 10] this question was not asked directly. We
expect similar results, because performing maintenance tasks with software tests
usually includes reading the test case at least once.

RQ3.4: What is the accuracy of automatic readability assessment in com-
parison to students rating?
In order to decide if the tool from Scalabrino et al. [64] found in RQ1.4 is useful
for us, we evaluate if its ratings are comparable to human ratings.

22

CHAPTER 4
Systematic Mapping Study (SMS)

This part of the work focuses on the Systematic Mapping Study (SMS). After a coarse
description of the process we cover each step in detail. Finally, we show the results and
give answers to RQ1 and its sub-questions.

Note: Main parts of this chapter are already published as Winkler et al. [72] and
under review for another publication as Winkler et al. [73]. The parts concerning the
contribution of search terms (Subsection 4.2.2) and the search for a readability tool
(Subsection 4.2.7) are novel in this work.

4.1 SMS Protocol & Process
Systematic mapping studies are a great opportunity for preparing new primary studies as
described by Petersen et al. [55, 56]. The major difference between an ordinary literature
review and a SMS is the systematic approach, which allows other researchers to reproduce
the results of the mapping. To accomplish this, all activities during the recherche, like
the used search engine, search string and initial results are rigorously documented.

Figure 4.1 presents a coarse representation of the procedure. In the first two steps we
define a search string, which we execute on search-able databases for scientific, peer-
reviewed literature, which are Scopus, ACM and IEEE. After deduplicating the results of
the queries, we sift out studies irrelevant for this topic based on a set of in- and exclusion
criteria by title and abstract of the study. If the abstract and the title do not provide
enough information, a full text reading is performed. In step three we perform backward
snowballing with the intermediary result in order to find important literature not already
included in the set. With this step finished, we obtain our final result in step four after
filtering and deduplicating the results from the backward snowballing. We use this result
to answer RQ1.1 - RQ1.4.

23

4. Systematic Mapping Study (SMS)

Results: 1168 Results: 11

1. Apply Search 2. Deduplicate &
Filter Results

-1157 -325

Results: 341 Analysis of
16 Results

3. Backward
Snowballing

4. Deduplicate &
Filter Results

+330

Figure 4.1: SMS process and amount of received publications.

4.1.1 Apply Search
Based on the research questions from RQ.1 we defined the following keywords: test, code,
model, readability, understandability, legibility and smell. According to Oliveira et al.
[50] the terms readability, understandability and legibility have overlapping meaning in
software engineering, therefore we use them to create the concrete search strings shown
in Table 4.1. Systematic mapping studies can be conducted with various search engines,
which have a large search space like Google Scholar. We however use Scopus, IEEE and
ACM, because they solely return peer reviewed papers [46], which increases trust in the
quality of the SMS. Scopus is a meta search engine which indexes scientific literature of
all kinds, ACM and IEEE are well-established sources for computer science literature.

The queries were performed on Scopus, IEEE and ACM, and we filtered the studies based
on title, abstract and keywords. In the ACM string we removed the term "understandabil-
ity" in the "abstract filter", because it returned too many results. For ACM we searched
in the ACM Guide to Computing Literature which offers a larger search space than the
ACM Full-Text Collection. We conducted the search at the end of November 2021 without
limiting the publication year. It returned a total of 1168 raw results (Scopus: 458, IEEE:
230, ACM: 480), spanning from the year 2021 to 1969, with strongly decreasing studies
per year before the year 2000. Based on the merged results, we proceeded to the next
step.

4.1.2 Deduplicate & Filter Result
We first deduplicated the raw results based on the digital object identifier (DOI) and
title, which removed 237 studies. Next, we imported the result set into a spreadsheet
solution for applying inclusion and exclusion criteria. We included a study if both of
the following criteria were fulfiled:

• Conference papers, journal/magazine articles, or PhD theses (returned by ACM)

• Readability, understandability or legibility of test code is an object of the study

We excluded a study if one of following criteria applied:

24

4.1. SMS Protocol & Process

Table 4.1: Search strings in different databases.

Database Search string
Scopus SUBJAREA (COMP) TITLE-ABS-KEY(((code) AND (test* OR model)

AND (readability OR understandability OR legibility)) OR (("test" OR
"code") AND (smell) AND (readab* OR understandab* OR legib*)))

IEEE (("All Metadata": code) AND ("All Metadata": test* OR "All Metadata":
model) AND ("All Metadata": readability OR "All Metadata": understand-
ability OR "All Metadata": legibility)) (("All Metadata": "test" OR "All
Metadata": "code") AND ("All Metadata": smell) AND ("All Metadata":
readab* OR "All Metadata": understandab* OR "All Metadata": legib*))

ACM ((Title:(code) AND Title:(test* model) AND Title:(readability understand-
ability legibility)) OR (Keyword:(code) AND Keyword:(test* model) AND
Keyword:(readability understandability legibility)) OR (Abstract:(code)
AND Abstract:(test* model) AND Abstract:(readability legibility))) OR
((Abstract:("test" "code") AND Abstract:(smell) AND Abstract:(readab*
understandab* legib*)) OR (Keyword:("test" "code") AND Keyword:(smell)
AND Keyword:(readab* understandab* legib*)) OR (Title:("test" "code")
AND Title:(smell) AND Title:(readab* understandab* legib*)))

• Not written in English

• Conference summaries, talks, books, master thesis

• Duplicate or superseded studies

We evaluated the criteria based on title and abstract of the results. When in doubt about
including or excluding, the evaluated study was discussed with a second evaluator. This
step left us with 11 results.

4.1.3 Backward Snowballing
Since relevant literature might refer to further important studies, we used the references
included in the 11 studies for backward snowballing via Scopus. This increased the result
set by 330 to a total of 341 studies.

4.1.4 Deduplicate & Filter Result
By comparing these 341 studies with the initial result set we found and removed 53
duplicates. Similar to step 2, we applied the inclusion and exclusion criteria. Additionally,
after a full text reading, we summarised all remaining studies on presentation slides (see
Figure 4.2 for an example) and discussed and reevaluated them as a author team. With
this, we reduced the result set by 325 and obtained a final result of 16 studies.

25

4. Systematic Mapping Study (SMS)

Figure 4.2: Example for a slide summarising contents of a study.

4.1.5 Excluded studies

In this subsection, we provide four representative examples and rationale for studies that
we excluded in the final publication set after discussion of all authors:

Grano et al.[32] focus on semi-structured interviews with five developers from industry
and a confirmatory online survey to synthesize which factors matter for test code quality.
Although readability is seen as a critical factor by all participants, the analysis of
readability was not in the scope of this work.

Tran et al. [69] investigated general factors for test quality by interviewing 6 developers
from a company. Quality factors are discussed with natural language tests brought by
the participants. Since our work has its specific focus on test code, readability of natural
language tests was not considered further.

Bavota et al. [3] report on four lab experiments with an overall number of 49 students
and 12 practitioners and effects on maintenance tasks from eight test smells. These test
smells occur frequently in software systems. While this work clearly shows that test
smells negatively affect correctness and effort for specific maintenance tasks, a connection
between test smells and readability is not shown.

Deiß[17] reports on a case study with emphasis on reporting experiences and challenges
from a semi-automatic refactoring of a TTCN-2 test suite to TTCN-3. Improvements of
readability focus on reducing complicated or unnecessary code artifacts generated by the
automatic refactoring. We excluded this study since the focus was the migration from
TTCN-2 to TTCN-3 and not an investigation of readability of test code.

26

4.1. SMS Protocol & Process

Table 4.2: Final Set of Publications based on the Search Process.

Idx Title Authors Venue Year Study Type Analyzed Tests RP

[A1] Developer’s Perspectives on
Unit Test Cases
Understandability

Setiani N.
et al.[66]

ICSESS 2021 Experiment
+ Survey
(hum)

Randoop,
Evosuite,
manual

[A2] DeepTC-Enhancer: Improving
the Readability of
Automatically Generated
Tests

Roy D. et
al.[60]

ASE 2020 Experiment
+ Survey
(hum)

Evosuite yes

[A3] Test case understandability
model

Setiani N.
et al.[65]

IEEE
Access

2020 Experiment
(hum)

Intellitest

[A4] On the quality of identifiers in
test code

Lin B. et
al.[44]

SCAM 2019 Survey
(hum)

Evosuite,
manual

yes

[A5] An empirical investigation on
the readability of manual and
generated test cases

Grano G. et
al.[30]

ICPC 2018 Experiment Evosuite,
manual

yes

[A6] Specification-Based testing in
software engineering courses

Fisher G. &
Johnson
C.[22]

SIGCSE 2018 Experiment
+ Survey
(hum)

Spest,
JMLUnit,
manual

[A7] An industrial evaluation of
unit test generation: Finding
real faults in a financial
application

Almasi M.
et al.[2]

ICSE-
SEIP

2017 Experiment
+ Survey
(hum)

Randoop,
Evosuite,
manual

yes

[A8] Generating unit tests with
descriptive names or: Would
you name your children thing1
and thing2?

Daka E. et
al.[13]

ISSTA 2017 Experiment
+ Survey
(hum)

Evosuite,
manual

[A9] How Good Are My Tests? Bowes D. et
al.[7]

WETSoM 2017 Concept
paper (hum)

n.a.

[A10] Automatic test case
generation: What if test code
quality matters?

Palomba F.
et al.[53]

ISSTA 2016 Experiment Evosuite

[A11] Automatically Documenting
Unit Test Cases

Li B. et
al.[42]

ICST 2016 User study
(hum)

manual

[A12] The impact of test case
summaries on bug fixing
performance: An empirical
investigation

Panichella
S. et al.[54]

ICSE 2016 Experiment
(hum)

Evosuite yes

[A13] Towards automatically
generating descriptive names
for unit tests

Zhang B. et
al.[76]

ASE 2016 Prototype
and User
Study (hum)

manual

[A14] Modeling readability to
improve unit tests

Daka E. et
al.[12]

ESEC/
FSE

2015 Experiment
+ Survey
(hum)

Evosuite

[A15] Evolving readable string test
inputs using a natural
language model to reduce
human oracle cost

Afshan S.
et al.[1]

ICST 2013 Experiment
(hum)

Test data:
generated,
manual

[A16] Exploiting common object
usage in test case generation

Fraser G. &
Zeller A.[24]

ICST 2011 Experiment Generated
(own solution)

27

4. Systematic Mapping Study (SMS)

4.2 SMS Analysis Results
Table 4.2 summarizes the final set of studies obtained from the search process. The table
provides index (Idx), title, author, venue and publication year of the studies. With the
notion of research methods described by Wohlin et al. [74] in mind, it also provides
information on the method reported by the study used for assessing readability (cf.
column Study Type in Table 4.2) and if human participants were involved. The column
Analyzed Tests indicates how the investigated tests were created e.g. manual (i.e., human
written tests) or automated with a tool (in the table we mention the tool used for test
generation). Finally, RP shows whether or not the authors offer their study material for
replication.

4.2.1 Summaries of Selected Studies
In the following we briefly summarize the main aspects of each of the selected primary
studies:

[A1] Setiani et al. [66]. In an online survey, 49 participants from freelancing platforms
choose between two tests from a set of Randoop, EvoSuite or manual tests and comment
on readability. Analysis of free text answers shows that naming (identifiers & tests),
simplicity, independence (test is a unit test), structure, assertions (amount & message),
comments and exceptions influence readability.

[A2] Roy et al. [60]. Deep learning model for generating test case summaries and
renaming variables and test names. Approach applied to EvoSuite. In an online survey,
36 participants from academia and industry (some with knowledge of the system under
test (SUT)) rate test cases. Results show that the improvement significantly increases
readability.

[A3] Setiani et al. [65]. Test case understandability model by combining static code
features identified by Daka et al. [A14] and developer related metrics (mostly experience)
collected by an experiment conducted by Honfi and Mizskei [34]. In the referenced
experiment, master students were asked to decide if a test case passes or fails. Results
show that the combined metric performs better than the single metrics.

[A4] Lin et al. [44]. In an online survey, 19 subjects from academia and industry rate the
quality of identifiers from test cases with possibility to suggest new identifiers. Results
show several characteristics of various quality identifiers and a list of suggestions for
identifier naming.

[A5] Grano et al. [30]. Comparison of production code, human tests, and EvoSuite tests
with the readability model by Scalabrino et al. [62]. Investigated code from three Apache
Commons projects with a total of 479 classes under test. Results show that in general
human test code is less readable than production code, but generated test code is even
less readable. Generated tests perform badly with respect to the metrics used by the
readability model.

28

4.2. SMS Analysis Results

[A6] Fisher and Johnson [22]. Readability investigation of Java test cases generated with
the tool Spest from formal specifications. In a survey, 134 students choose which of
two tests is more readable. Results show that Spest tests are not as readable as human
tests. The main difference between Spest and human tests lies in identifier naming and
additional comments in the test.

[A7] Almasi et al. [2]. Evaluation of EvoSuite and Randoop by trying to detect already
fixed faults in a real system and by investigating developers’ opinions about these tools.
Insights on the feedback include concerns about the readability of the generated tests,
that the generated assertions only find easy faults, and that generated test data is not
meaningful.

[A8] Daka et al. [13]. Generate test names based on the content of the test. Approach
applied to EvoSuite. Comparison with human expert name in an online experiment with
47 students shows that the improved naming has a positive effect on students’ ability to
match names to test cases and production code. They also show that the participants
agree with automatically generated names.

[A9] Bowes et al. [7]. During a two day workshop with industry partners a list of factors
relevant to high quality tests was compiled. Enriched with guidelines on how to improve
tests and how these factors can be assessed. Readability is one of these factors and is
positively influenced by simplicity and expressiveness of tests. On the other side, the use
of magic numbers and branching interfere with readability.

[A10] Palomba et al. [53]. Tool to compute test cohesion (i.e., "a test should only test
one thing") and test coupling (i.e., "one behavior should only be verified by one test"), as
defined by Meszaros [47]. Most EvoSuite tests perform badly on these metrics; therefore,
the tool is added to EvoSuite’s test generation as a quality measure to create improved
tests.

[A11] Li et al. [A11]. UnitTestScribe is a tool for generating test code documentation
or test case summaries for C# unit tests written by humans. An online survey with 26
persons from academia and industry shows that the generated descriptions are useful for
understanding the test cases.

[A12] Panichella et al. [54]. TestDescriber is a tool for generating inline descriptions for
tests. Experimental application on EvoSuite tests with 30 participants from academia
and industry, which have to fix bugs, adapt tests, and rate comprehensibility of tests in
the end. Results show that generated summaries support participants to identify and fix
more bugs.

[A13] Zhang et al. [76]. NameAssist is a tool for renaming human written tests based on
their contents. A comparison of BLEU scores from test names written by three graduate
students, names from other name generators and NameAssist shows that NameAssist
names are more similar to expert written names. A lab survey with three graduate
students with 60 test cases shows that in 83% NameAssist names are at least equivalent

29

4. Systematic Mapping Study (SMS)

to the original name (of unknown quality). Names generated by NameAssist are mostly
preferred over other name generators.

[A14] Daka et al. [12].By correlating various static code features with human readability
ratings from crowdworkers for human written and EvoSuite tests, the authors create
a readability model for test code. Features are amount of assertions, max line length,
etc. The calculated correlations show several code metrics connected to readability. An
improvement of EvoSuite with this readability model shows that 30 students decide 14%
faster if a test passes, with no change in accuracy. Crowdworkers in an online survey
prefer the improved tests in 69% of the cases.

[A15] Afshan et al. [1]. Test data of type string automatically generated with respect to
a natural language model. An online questionnaire with eight questions and participants
from a crowdworking platform shows that it takes the participants less time to evaluate
the expected result from a string method when human like test data is used. Comparison
of their approach with IGUANA test data generator for C ported to Java.

[A16] Fraser and Zeller [24]. Tool for generating human looking tests by scanning the
API of the SUT for common usage of objects in the system. The amount of imported
classes in a test file is used as a readability proxy. Underlying rationale: when a test case
needs objects from many different classes, it is harder to understand.

4.2.2 Contribution of Search Terms

In order to analyse the contribution of the search terms to the search result, we counted
the amount of studies where the terms readab, understandab or legib occur in title,
abstract or keywords. These word stems of the search terms are part of the actual
search strings and account for different variations of these terms. Figure 4.3a shows the
result for the raw unfiltered search results, Figure 4.3c gives the concrete numbers. Note
that multiple search terms can appear in one study. Clearly legibility has the lowest
contribution with 31 studies (2%) containing this term. This indicates that legibility
is not used as a synonym for the other search terms in our result. Understandability
appears in 275 studies (22%), however; we explicitly excluded this term in one part of
the ACM search string, because it returned too many results. Still, Scopus and IEEE
both have fewer studies with understandability than readability. Finally, readability has
the largest contribution to the result with 949 studies (76%) containing this term.

The same kind of analysis for the final set of studies in Figure 4.3b shows a similar
distribution. From the 16 studies none contain the term legibility, three (19%) under-
standability and ten (62%) readability. From this result we know that at least three
studies do not contain one of the terms. This shows that snowballing yielded relevant
studies, which could not be found by the original search string.

30

4.2. SMS Analysis Results

Legibility Understandability Readability

Search Term

0

200

400

600

800

S
in
g
le
O
cc
u
rr
en
ce

Source

Scopus

ACM

IEEE

Snowball

(a) Amount of studies from the raw unfil-
tered results containing search terms associ-
ated with readability.

Legibility Understandability Readability

Search Term

0

2

4

6

8

10

S
in
g
le
O
cc
u
rr
en
ce

(b) Amount of studies from the final set con-
taining search terms associated with read-
ability.

Scopus ACM IEEE Snowball Sum: Perc:
Legibility 12 12 7 0 31 2%
Understandability 147 36 83 9 275 22%
Readability 327 432 154 36 949 76%
Sum: 486 480 244 45 1255 100%
Perc: 39% 38% 19% 4 100%

(c) Data for Figure 4.3a. One study can contain multiple search terms.

Figure 4.3: Contribution of search terms.

4.2.3 RQ 1.1. What is the importance of test code readability in
scientific communities?

Venues addressing readability of test code. Table 4.2 shows 12 unique venues
where studies were published and presented. Most prominently, three studies were
presented at ICST (International Conference on Software Testing, Verification and
Validation), two at ASE (International Conference on Automated Software Engineering)
and at ISSTA (International Symposium on Software Testing and Analysis). The other
venues each have one relevant study.

Timeline of published readability studies From the publishing years shown in
Table 4.2 and visualised in Figure 4.4, we see that in 2016 four, 2017 three, and 2018
& 2020 two studies were published. In the other years spanning from 2011 until 2021
(exception to 2012 and 2014) one relevant study was published.

31

4. Systematic Mapping Study (SMS)

RQ 1.1 Findings. What is the importance of test code readability in scientific
communities? The results indicate an ongoing general interest in the readability of
test code (wide range of venues) with a strong focus on testing related venues and
software engineering automation.

20
11
20
12
20
13
20
14
20
15
20
16
20
17
20
18
20
19
20
20
20
21

0

2

4

6

8

10

12

14

16

18

N
u
m
b
er
o
f
st
u
d
ie
s

0

1

2

3

4

5

Accumulated

Individual

Years Individual Accumulated
2011 1 1
2012 0 1
2013 1 2
2014 0 2
2015 1 3
2016 4 7
2017 3 10
2018 2 12
2019 1 13
2020 2 15
2021 1 16

Figure 4.4: Number of studies per year and accumulated.

4.2.4 RQ 1.2 Which types of studies are published and which
research methods are used?

Which types of studies are published? Table 4.2 gives an overview of the type
of studies as reported by the authors of the respective papers. Experiment is the most
prevalent type with a total of 12 studies containing either solely of an experiment (6) or
an experiment in combination with a survey (6). A typical representative of the latter
kind is Setiani et al. [A1], who conduct an A/B testing experiment with crowdworkers via
a survey. While studies of type experiment + survey always contain human participants,
studies with only an experiment do not involve humans in half of the cases (3). For
instance, Grano et al. [A5] compared generated tests, (existing) human tests, and
production code with ratings from a readability model. The remaining four studies each
report a different kind of study. Lin et al. [A4] perform a survey on identifier quality
in test code and Bowes et al. [A9] discuss testing principles in a concept paper from a
workshop with industry partners. Li et al.[A11] conduct a user study for evaluating a
tool for automatic test case documentation and, finally, Zhang et al. [A13] developed a
prototype for test name generation, evaluated in a user study. Except from three studies,
all involve some form of human participation where in nine cases also practitioners were
included.

32

4.2. SMS Analysis Results

Which research methods are used in scientific studies? Concerning the utilized
types shown in Table 4.2, most studies (12) report an experiment which is combined
with a survey in 6 studies. Human involvement is quite common, in 13 from 16 studies
humans take part in experiments, surveys or play another role as participants of the
study. Next, we present details on the individual types of studies.

Experiment: When studies evaluate the effect of an approach with humans, they either
ask participants to answer questions to a given test case without knowing the origin
like in Roy et al. [A2] or Daka et al. [A8] or participants have to choose between
two versions (forced choice) like in Setiani et al. [A1] or Daka et al. [A14]. For
analysing the experiments results, seven from twelve studies use a form of the
Wilcoxon test, most commonly the Wilcoxon rank sum test. Furthermore, these
studies report the effect size with the Vargha-Delaney (Â12) statistic or Cliff’s
Delta. Two of these studies also use the Shapiro-Wilk test for normal distribution
to decide if a parameterized test can be applied. The remaining studies interpret
the results without statistical tests.

Survey: Five out of seven studies use online questionnaires, one uses an off-site question-
naire and for one study the kind of survey could not be extracted. In the surveys
six out of seven studies use Likert scales often for rating readability. Free text
answers are also common for optionally elaborating on a rating or as a mitigation
against random readability ratings like in Daka et al. [A8].

User study and Prototype: The two studies of these types use surveys with Likert
scale or forced choice questions with opportunity to elaborate on the rating. Zhang
et al. [A13] use the Wilcoxon test for comparing the results of a prototype tool
with other tools after a test on normality with the Shapiro-Wilk test.

Concept Paper: Bowes et al. [A9] brainstorm and discuss quality evaluation of software
tests with industry partners. Afterwards they merge the result with their own
teaching experience and relevant scientific literature and books on software testing.

RQ 1.2 Findings. Which types of studies are published and which research methods
are used? The prevalent types of study are experiments which can contain a survey.
Human participation in the experiments is common. For gathering humans opinion on
readability online questionnaires with Likert scales and free text answers are common.
The dominant result analysis consists of a statistical analysis with a Wilcoxon test
after an optional test on normality with the Shapiro-Wilk test.

4.2.5 RQ 1.3 Which factors influence readability of test code?
In this RQ we explore the factors that have been found to influence readability of test code.
Table 4.3 maps candidate factors to the studies that investigate them. Two approaches of

33

4. Systematic Mapping Study (SMS)

how influence factors are considered in the primary studies can be distinguished. Studies
either (a) investigate the impact of one or more individual factors, often related to
the attempt to improve readability with a specific approach or tool, or (b) they target
readability models constructed from a combination of many factors. The majority of the
primary studies (13 in total; see Table 4.3a) consider individual factors. Readability
models were subject to study only in three instances (Table 4.3b), although such models
are commonly used in the general research on source code readability.
In the following we briefly explain the factors we identified in the primary studies. The
number in brackets shows the number of studies including the particular factor.
• Test names (6): The name of the test method or test case. Not only generated tests
have poor names but also names provided by humans often convey few useful information.
Therefore, Zhang et al. [A13] propose a tool for automatic test renaming. Additionally,
in some studies, e.g., like Setiani et al. [A1] or Bowes et al. [A9], participants agree on
the importance of test names for readability.
• Identifier names (5): Naming of variable names in test cases. Especially Lin et
al. [A4] investigate this factor thoroughly and also provide characteristics of good and
bad identifier names based on a survey. Roy et al. [A2] propose an automatic way for
identifier renaming in test cases.
• Comments (2): Single comments in test code providing useful information. According
to Fisher and Johnson [A6], one of the differences between their generated tests and human
tests is the lack of explanatory comments. In Setiani et al. [A1], survey participants also
mention comments being to some degree important to readability.
• Test summaries (3): Documentation describing the whole test case support under-
standing what the tests do, for example as Javadoc like in Roy et al. [A2] or interleaved
with test code like in Panichella et al. [A12].
• Test structure (5): Structural features of test methods like maximum line length,
number of identifiers, length of identifiers, amount of control structures, etc. They are
also used in combination by automatic readability raters e.g. from Daka et al. [A14],
who propose a rater especially for test cases.
• Dependencies (3): The number of classes a single test case depends on, as proposed
by Fraser et al. [A16], or if a test is truly a unit test and therefore independent from
other parts of the system. Test coupling and cohesion discussed by Palomba et al. [A10]
describe dependencies between tests and are included in this factor.
• Test data (3): Testers often have to evaluate data used in assertions to decide if a
test has truly failed or if there is a fault in the test. Afshan et al. [A15] investigate this
topic and show that readable string test data helps humans predicting correct outcome.
Furthermore, in the workshop study from Bowes et al. [A9] developers, amongst others,
state that magic numbers are detrimental to readability.
• Assertions (2): This factor relates to the amount of assertions in a test case as well
as to assertion messages. Although assertions are an integral part of test code, Daka

34

4.2. SMS Analysis Results

et al. [A14] report low correlation and predictive power for the amount of assertions in
a test with respect to readability. In the survey from Setiani et al. [A1] assertions are
mentioned to have an influence, but other factors like naming are deemed more important.
Almasi et al. [A7] report developer concerns on automatically generated assertions.

• Textual features (1): Textual features focus on natural language properties part
of test cases like consistency of identifiers or identifiers present in a dictionary. These
features can be easily computed and are therefore frequently used in readability models
and automatic readability raters like in Scalabrino et al. [62] used by Grano et al. [A5].

Table 4.3: Reported factors influencing test code readability.

(a) Studies investigating individual factors.

Individual factors A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
Test names (6) • • • • • •
Identifier names (5) • • • • •
Comments (2) • •
Test summaries (3) • • •
Test structure (2) • •
Dependencies (3) • • •
Test data (3) • • •
Assertions (2) • •

(b) Studies using readability models.

Readab. models A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
Textual features (1) •
Test structure (3) • • •

RQ 1.3 Findings. Which factors influence readability of test code? The majority of
studies investigates influence of individual factors on readability. Overall the top
three of investigated factors are test names, test structure and identifier names

4.2.6 RQ 1.4 Which type of test code was investigated in context of
readability?

This RQ explores the type of test code investigated in the primary studies, e.g., in
terms of test level, programming language, and generated/automated code. Except

35

4. Systematic Mapping Study (SMS)

Evosuite
4

25%

Manual
2

12% Spest,
JMLUnit,

other

Randoop
2

12%

2
12%3

19%

2
12%

Figure 4.5: Venn diagram showing combinations and amount of different types of tests
analyzed by the relevant studies.

from Li et al.[A11] and Setiani et al. [A3], who investigate C# unit tests, the dominant
programming language is Java. Unit tests are the primary target with respect to the
testing level although improvements for, e.g., identifier naming could also be applied to
tests at other levels.

Figure 4.5 shows the studied types of tests and the combinations in which they were
compared. 9 studies in total (4+2+3) investigate EvoSuite, either individually or
in combination with other generated or manually written tests. Randoop tests are
investigated in 2 studies in combination with EvoSuite and manual tests. 4 studies
investigate tests generated with other tools. Although manual tests are exclusively
investigated only 2 times, they appear 9 times in total including combinations with
generated tests.

RQ 1.4 Findings. Which type of test code was investigated in context of readability?
The main focus of readability investigation lies on automatically generated tests,
which are often compared to manually written tests.

4.2.7 RQ 1.5 Executable Readability Models
The following sections describe the search for a readability rating tool based on the
raw search results of the previous academic SMS. Figure 4.6 gives an overview on the
individual steps.

Step 1: Apply Search. We used the raw search results obtained from search queries
on Scopus, IEEE and ACM as described in Section 4.1.

Step 2: Deduplicate & Filter Results. We filtered the search results of the academic
SMS with focus on tools for rating readability of source code. We include a study if
both of the following criteria were fulfilled:

36

4.2. SMS Analysis Results

Results: 1168 Results: 1

1. Apply Search 2. Deduplicate &
Filter Results

-1167 -33

Results: 34 One Readability
Tool

3. Forward
Snowballing

4. Deduplicate &
Filter Results

+33

Figure 4.6: Tool search process.

• Conference papers, journal/magazine articles, or PhD theses (returned by ACM)

• The study provides access to a tool for rating readability of source code.

We excluded a study if one of following criteria applied:

• Not written in English

• Conference summaries, talks, books, master thesis

• Duplicate or superseded studies

By analysing title and abstract the authors reduced 1168 studies to 16 for full text
reading. The 16 studies were selected, because they may use or propose a model for
rating readability of source code. After full text reading, one study by Scalabrino et
al. [64] remains, because it is the only study which provides access to the proposed
readability rating tool.

Step 3: Forward Snowballing. Since the search string for the academic SMS targets
studies on test code readability, there may exist other tools which generate readability
ratings of source code. In order to find such tools, we use the single remaining study for
forward snowballing with Scopus, which returns 33 studies citing Scalabrino et al. [64]
in September 2022. We think that this approach is reasonable, because 5 out of the 16
studies already use the tool by Scalabrino et al. presented in [64] (or a preceding paper e.g.
[62]) in their work. This indicates that this tool is known in the community. Therefore, we
assume that a study proposing a new tool for rating readability will reference Scalabrino
et al. [64].

Step 4: Deduplicate & Filter Results. None of the 33 studies present executable
tools for rating readability of code snippets. There exists a study which may provide an
executable tool in the future. Karanikiotis et al. [37] present examples for readability

37

4. Systematic Mapping Study (SMS)

ratings on a website 1, which may allow to rate readability of arbitrary code snippets in
the future. At the time of writing (September 2022) this functionality is not implemented.

Result Since the forward snowballing did not add new tools to the result set, we will
use the tool by Scalabrino et al. [64] for the rest of this work.

RQ 1.5 Findings. Which executable models for assessing code readability exist?
We found one tool by Scalabrino et al. [64], which can be used for assessing code
readability.

1Readability rating website by Karanikiotis et al. https://readability-evaluator.netlify.
app/

38

https://readability-evaluator.netlify.app/
https://readability-evaluator.netlify.app/

CHAPTER 5
Grey Literature Study

In this chapter, we first describe the study protocol and process, with the used search
string and search engine for the grey literature study followed by presentation of the
results including a list of readability factors discussed in practice and a comparison to
the results of the previous systematic mapping study of scientific sources in Chapter 4.

Note: This chapter is part of a work, which is currently under review for publication as
Winkler et al. [73].

5.1 Study Protocol and Process
The process for conducting the review of grey literature is similar to the scientific literature
review, except that there is no backward snowballing as shown in Figure 5.1. A key
guideline and source of information was the work by Garousi et al. [29], which provided
many useful inputs for this part of the work. We decided to add grey literature to
this work, because testing is primarily done in industry by practitioners. Instead of
asking testers in an survey about their preferences, we collected various sources on the
internet, because we assume that the internet is one of the first places used for information
gathering.

Results: 247 Analysis of
56 Results

1. Apply Search 2. Deduplicate &
Filter Results

-191

Figure 5.1: Grey literature review process and amount of received grey sources.

39

5. Grey Literature Study

Step 1: Apply Search. Based on the research questions and knowledge obtained
from the previous literature search we used the search strings "test code" readability and
"test code" understandability. We performed these queries separately on Google using
a script for extracting all results. The script mimics a search without being logged in
with a Google account. Therefore personalized search results should be reduced to some
degree. In contrast to Googles prediction of hundreds of thousands of results, the search
returned 146 results for "test code" readability and 101 for "test code" understandability
(total: 247) in mid-February 2022.

Step 2: Deduplicate & Filter Results. We first deduplicate the results by compar-
ing the links which removed 11 sources. The result set was imported into a spreadsheet
solution for applying inclusion and exclusion criteria.

Inclusion Criteria. We included a source if both of the following criteria were fulfilled:

• Readability or understandability of test code is a relevant part of the source. This
is the case if the length of the content on readability is sufficient and if the source
contains concrete examples of factors influencing readability.

Exclusion Criteria. We excluded a source if one of following criteria applied:

• Not written in English

• Literature indexed by ACM, Scopus, IEEE

• Duplicates, videos, dead links

The criteria were evaluated based on the contents of the source. This is on the one hand
the information returned by the search, because we collected all information Google
displays on its result pages. On the other hand we visited each page where the given
information was not sufficient for a clear decision. This step left us with 56 results ready
for further analysis.

Excluded Sources. As for the scientific literature, we provide some examples and
rationale for sources, that where excluded when applying in and exclusion criteria: The
entry of Karhik 1 is a blog entry, which is relatively short and primarily lists features of
AssertJ. Although the entry mentions readability improvement by using AssertJ in one
sentence, it gives no reasons for this claim. In total this source reads like an advertisement
for AssertJ. The entry of Bas Broek2 is a large blog entry with a primary focus on the

1Karhik, Use AssertJ to improve your test code readability ...
- Upnxtblog, https://www.upnxtblog.com/index.php/2018/04/25/
use-assertj-to-improve-your-test-code-readability-maintenance-of-tests-easier/

2Bas Broek, (Improving Your) XCTAssert* Failure Messages | Bas’ Blog, https://www.basbroek.
nl/xctassert-asterisk

40

https://www.upnxtblog.com/index.php/2018/04/25/use-assertj-to-improve-your-test-code-readability-maintenance-of-tests-easier/
https://www.upnxtblog.com/index.php/2018/04/25/use-assertj-to-improve-your-test-code-readability-maintenance-of-tests-easier/
https://www.basbroek.nl/xctassert-asterisk
https://www.basbroek.nl/xctassert-asterisk

5.2. Grey Literature Analysis Results

readability of assertion failure messages. Factors relevant to this study naming of test
cases and a given-when-then structure are mentioned in a total of three sentences which is
only a small proportion of the whole entry. With the same rationale we also exclude source
Wikipedia3, because the primary focus is on test driven development and readability is a
side topic. Likewise the entry on Programmer All4 has much content and also provides
code snippets. Still, the focus is on unit testing in general and not improving readability.
Karlo Smid5 discusses the DRY-principle (don’t repeat yourself) in the context of unit
testing. However, the blog entry is relatively short and primarily references to another
source already present in the result set [G51]. Although the following collaborative
source6 has a reasonable size and also has a section on readability, the statements are too
generic and do not contain a concrete influence factor to readability. Finally, there are
also many sources which are off-topic, because e.g. they discuss general code readability
or quality; advantages of unit testing; or are documentation pages of test frameworks.

5.2 Grey Literature Analysis Results
In the following sections we present the results7 of the grey literature review and give
answers to RQ2.1 and RQ2.2.

Figure 5.2: Snippet from grey literature analysis showing sources and extracted readability
factors.

We extracted the discussed readability factors by tagging each source with keywords which
are mentioned in the context of test code readability, see Figure 5.2 for a snippet of the
spreadsheet. If a keyword is mentioned in a different context it is excluded. For example
in [G41] the use of helper methods is only mentioned in context of easier maintenance,
therefore this appearance of helper methods is not counted.

3Wikipedia, Test-driven development, https://en.wikipedia.org/wiki/Test-driven_
development

4Unit test 2 - Programmer All, https://www.programmerall.com/article/98141652585/
5Karlo Smid, Kill The Unit Test - Tentamen Software Testing Blog, https://blog.tentamen.

eu/kill-the-unit-test/
6TestGuide - OpenStack wiki, https://wiki.openstack.org/wiki/TestGuide
7The availability of the internet sources can not be guaranteed. At the time of the grey literature

mapping mid-February 2022 all the sources listed in this work where available.

41

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://www.programmerall.com/article/98141652585/
https://blog.tentamen.eu/kill-the-unit-test/
https://blog.tentamen.eu/kill-the-unit-test/
https://wiki.openstack.org/wiki/TestGuide

5. Grey Literature Study

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Σ row

Year

Src/Year

Str

TeN

Asse

Help

Depe

Fix

IdN

Co

DRY

TeD

DSL

Para

T
o
p
ic
s
in
B
lo
g
s

2 4 0 1 2 6 4 2 5 2 2 6 10 10 56

0 1 0 0 1 2 3 0 3 1 2 0 7 6 26

0 0 0 1 1 1 3 1 2 1 1 0 6 7 24

0 1 0 1 1 3 2 2 3 0 0 2 3 3 21

0 1 0 1 1 1 2 1 3 0 1 1 3 6 21

0 0 0 1 1 2 2 0 1 0 1 0 3 6 17

0 2 0 0 1 3 2 0 1 0 1 0 1 4 15

0 0 0 0 0 0 2 1 1 1 1 0 4 3 13

1 0 0 0 0 3 0 0 3 1 1 0 2 2 13

2 2 0 0 1 0 1 1 0 1 0 1 1 3 13

0 0 0 0 1 2 1 0 0 0 1 0 1 5 11

0 0 0 0 1 0 2 0 1 0 0 2 1 1 8

0 0 0 0 0 0 0 0 0 0 0 0 4 3 7

Figure 5.3: Factors investigated by grey literature. The bottom most row gives the
amount of sources per year, which may investigate multiple factors.

Factor across years. Figure 5.3 shows the factors investigated by the blogs across
the years. The bottom line Src/Year gives the number of sources in this year
which investigated the factors above. Some sources discuss multiple readability
factors, hence the sum of discussed factors is larger than the sum of sources. Apart
from parameterized tests, which appeared seven times only in the years 2020 and
2021 and fewer sources in 2017 and 2018 there are no obvious fluctuations in
the distribution of factors. Table 5.1 shows the selected sources ordered by years
descending and the investigated factors in detail, where these effects are also visible.

Programming languages. Concerning programming languages 16 sources mention
Java or use Java code snippets, C# appears in nine and Java Script in eight
sources. Kotlin, Python and Ruby each appear in two sources, Scala, Typescript
and Go are mentioned in one source each. Some sources do not mention a certain
programming language or use code snippets, because they provide general best
practices for testing. This is in accordance with the findings in academic literature
in the previous chapter in Subsection 4.2.6, where Java is the dominant language
used in studies on test code readability.

Source types. Figure 5.4 shows the identified types of grey source. From the 56
sources we identify around 80% (44 in total) as blog entries of various sizes. A
source is also identified as a blog, when there is no clear indication that an editorial

42

5.2. Grey Literature Analysis Results

Blog
44
79%

Phd

1
2%

Presentation

2
4% Other

3
5%

Magazine

3
5%

Book
3
5%

Type Absolute Relative
Blog 44 79%
Book 3 5%
Magazine 3 5%
Other 3 5%
Presentation 2 4%
Phd 1 2%
Sum: 56 100%

Figure 5.4: Identified types of the selected grey sources.

team is involved. The types of the remaining 12 sources are spread out quite evenly
across three books, three magazines, two presentations (slide shows), one Phd thesis
and three other types (stackoverflow, wiki, cheatsheet).

5.2.1 RQ 2.1 Which influence factors are discussed in grey literature?
Table 5.1 shows all selected grey sources and their associated factors. The first set
of factors originate from the previous systematic mapping study (SMS) on scientific
literature shown in the previous chapter in Subsection 4.2.5. The second set of factors
were only found in the grey literature and did not appear in the previous SMS. The
detailed investigation on the differences follows in Subsection 5.2.2.

Known Factors from SMS: This set of influence factors have been derived from the
SMS with focus on whether or not these factors have been discussed in practice.

Assertions (21) (Asse): The use of appropriate assertions or custom assertions is
suggested in eleven sources e.g. [G7][G2]. Nine sources mention assertion libraries
like AssertJ (Java) or FluentAssertions (C#) since they enable a more natural
language style for asserting properties and contain additional assertions for collection
types [G43][G12]. Four sources stress the importance of assertion messages for
debugging.

43

5. Grey Literature Study

Table 5.1: List of all selected sources by years descending found by the grey literature
search, mapped to factors relevant to readability. Orange factors were already found in the
previous SMS. Asse: assertions, Co: comments, Depe: dependencies, IdN: identifier
names, Str: structure, TeD: test data, TeN: test names, TS: test summaries„ TF:
textual features, DRY: DRY principle, DSL: domain specific language, Fix: fixtures,
Help: helper structures, Para: parameterized test

Asse Co Depe IdN Str TeD TeN TS TF DRY DSL Fix Help Para

[G2] • • • • • • •
[G35] • • • • • •
[G45] • •
[G21] • • • • • • • •
[G55] • • • • • • •
[G53] • • • •
[G31] • •
[G23] • • • • • • •
[G36] • •
[G48] • • • •
[G3] • • • • • •
[G6] • • • •
[G22] • •
[G39] • • • • •
[G20] • • • •
[G54] • •
[G19] • • •
[G16] • • • •
[G49] • • • •
[G50] • •
[G51] •
[G43] •
[G1] • •
[G30] •
[G34] •
[G47]
[G46] • •
[G44] • • • • • • •
[G17] • •
[G38] • • •
[G52] •
[G12] • • • • •
[G41] • •
[G18] • • • • • •
[G13] • • • •
[G42] •
[G9] • • • • •
[G15] • • • • • •
[G56] • • • • •
[G5] • •
[G26] • • • • • • •
[G4] • •
[G29] • • • •
[G8] • • • •
[G33] • • •
[G32]
[G11] • • • •
[G27] • • • •
[G14] • • • • •
[G7] • • • •
[G40] •
[G10] • •
[G24] •
[G37] • • •
[G25] •
[G28] • •
Sum: 21 13 17 13 26 11 24 0 13 8 15 21 7

44

5.2. Grey Literature Analysis Results

Comments (13) (Co)): Eleven sources use comments in their snippets or also mention
them in the text to highlight Arrange, Act, Assert or similar structures. However,
this is not a strict rule for every author e.g. source [G49] uses empty lines as an
alternative or [G12] mentions to use comments with respect to the capabilities of
the testing framework. If the framework already provides such structural hints,
then comments are unnecessary. Common code comments are mentioned by three
sources with the general advice to avoid them e.g. [G18].

Dependencies (17) (Depe): All 17 sources agree that one test should only test one
functionality or behavior. This affects readability positively, because the test stays
short and the test name can be more descriptive, since only one behavior has to
be described. Four sources highlight to only assert properties which are absolutely
necessary for the functionality described by the test name and resist the urge
to check additional properties. The ’one assertion per test’ rule mentioned by
e.g. [G23][G18] can be tried out but often a functionality has to be checked with
multiple assertions.

Identifier names (13) (IdN): While seven sources only give generic information (e.g.
should have meaningful or intention revealing names), other authors suggest to
either prefix variables with expected and actual [G21] or use names like testee,
expected, actual [G9]. Overall the naming should be consistent.

Structure (26) (Str): 21 out of 26 sources suggest the use of patterns like Arrange,
Act, Assert ([G23]), Given, When, Then [G12] or Build, Operate, Check [G46]. Two
sources [G27] [G18] suggest to group similar test cases to see difference more quickly.
Sources [G44][G16] suggest to watch out for ’eye-jumps’ e.g. a variable, which is
initialized many line breaks away from its usage. The absence of logic, shortness,
and coherent formatting of test cases is also mentioned by different authors.

Test data (11) (TeD): Five authors suggest to avoid literal test data (a.k.a. magic
values), instead local variables, constants or helper functions should be used to pro-
vide additional information e.g. [G29][G26]. However, [G21] argues that declaring
local variables for this purpose can quickly increase the test size and the mapping
between variable and actual value has to be kept in mind when reading the test.
Finally, test data should be production-like and simple, one author also recommends
to highlight important data.

Test names (24) (TeN): All sources suggest coherent naming of test cases and most
of them suggest a concrete naming pattern like givenFooWhenBarThenBaz [G2] or
subject_scenario_outcome [G49]. Still many acknowledge that there exist various
patterns as alternatives. Three sources which cover Java and Kotlin [G23][G52][G21]
explicitly suggest to use spaces in test names. This may be caused by the lack
of support for such naming by Java, since other authors using other languages
like Ruby or Javascript use spaces in their test names without further note e.g.
[G49][G3]. Long names are explicitly okay for two sources, since these methods are

45

5. Grey Literature Study

not called in other parts of the code. Finally, different opinions exist on the inclusion
of the name of the concrete tested method in the test name. Sources [G33][G9][G7]
do not recommend to include the method name because, if the method name
changes, the test name has to change too. Instead the tested behavior should be
described. On the other hand side [G14] and [G26][G44] suggest to include the
method name in the test name.

Test summaries (TS), Textual features (TF) (0): Test summaries were not men-
tioned in any of the sources. For textual features, which focus on natural language
aspects in test cases, we could argue that using a consistent naming scheme falls into
this factor. However, we already have specialised factors which are more suitable.

New Factors from Grey Literature Analysis: This set of influence factors have
been discussed in practice with limited consideration in scientific literature.

DRY principle (13) (DRY): In the sources which mention the Don’t Repeat Yourself
principle there is an agreement that strict adherence to this principle hides away
information important for understanding test cases. Instead some suggest to focus
more on the Descriptive And Meaningful Phrases (DAMP) principle [G9] or to
find a balance between these principles. Sources [G28][G45] e.g. suggest to describe
what is done thoroughly (DAMP), how it is done can be hidden in a helper method
(DRY).

Domain specific language (8) (DLS): In order to make tests more readable also for
non programmers these authors use helper functions or Gherkin (behavior driven
testing with Cucumber) as domain specific languages. These languages describe the
executed behavior in a natural language way and hide away the execution details
e.g. [G30][G34].

Fixtures (15) (Fix): Although 13 authors use fixtures, sometimes in combination with
setup methods, two authors [G56][G44] argue against the use of fixtures, because
they are not visible in the test itself and may contain important information.
Similarly [G21] argues that moving reusable test data into a fixture forces the
reader to jump between two locations. Finally, [G15] suggest that fixtures should
only be used for infrastructure and not for the system under test.

Helper structures (21) (help): 13 sources recommend helper methods in order to
hide (irrelevant) details like creating objects or asserting properties [G20][G13].
The Builder Pattern (or similar patterns) are used by five sources for creating the
objects under test e.g. [G37][G55]. Inheritance of test classes is seen critically by
three authors e.g. [G45][G56].

Parameterized test (7) (Para): The sources use parameterized (aka data-driven or
table-driven) tests to reduce code duplication. This is also done by authors who
are not in strict favor of the DRY principle e.g.[G21].

46

5.2. Grey Literature Analysis Results

RQ 2.1 Findings. Which influence factors are discussed in grey literature? Most of
the sources discuss structural influence factors, test naming, usage of assertions and
helper methods and test dependencies.

5.2.2 RQ 2.2 What is the difference between influence factors in
scientific literature and grey literature?

Most of the factors found in scientific literature are also mentioned in grey sources.
However, the focus of the investigation can vary. E.g., grey literature focuses on semantic
structure like Arrange, Act, Assert, whereas scientific literature has a stronger focus
on enumerable structural properties like line length or number of identifiers. Table 5.2
gives an overview on the differences. In the following section we compare views from the
scientific community and practitioners.

Assertions (21) (Asse): There is little evidence in scientific literature on the effect of
assertions on readability. Setiani et al. [A1] report low influence of assertion mes-
sages. Almasi et al. [A7] report concerns from developers about the meaningfulness
of generated assertions. Leotta et al. [41] report no significant influence on test
comprehension when AssertJ is used instead of basic JUnit assertions. However,
other positive effects were observed.

Comments (13) (Co)): The usage of comments for highlighting the structure of the
test is not investigated in scientific literature. Fisher and Johnson [A6], explain
different readability ratings between generated tests and human tests also with
the lack of explanatory comments. Setiani et al. [A1], survey participants also
mention comments being to some degree important to readability. These findings
are to some extent surprising, because the recommendation in grey literature such
explanatory comments is generally to avoid them.

Dependencies (17) (Depe): The recommendation that one test should only test one
functionality or behavior is added to test case generation by Palomba et al. [A10].
According to Daka et al. [A14] and Setiani et al. [A1] the amount of assertions
only has low predictive power for readability. This supports the not so strict
interpretation of the "one assertion per test" rule.

Identifier names (13) (IdN): The survey from Lin et al. [A4] shows the importance of
meaningful, concise and consistent identifiers. The renaming approach by Roy et al.
[A2] also suggests variable names like expected and result. The deep learning model
was trained with software projects reaching a certain level of quality. Therefore, it
appears like identifier names as mentioned by the grey literature sources are a part
of high quality tests.

47

5. Grey Literature Study

Table 5.2: Differences in influence factors between scientific and grey literature. (Over-
lapping factors shown as highlighted rows.)

Formal Literature Grey Literature

Structure
Identifier length
Line length
Constructor calls
Unique identifiers
Number of identifiers
Control structure Control structure
Length of test case Length of test case
Other static code features

Avoid eye jumps
Group similar test cases
Coherent formatting
Semantic structure (AAA, GWT, etc.)

Test names
Use of patterns Use of patterns

Consistent naming
Long names okay
Spaces in names
Include method under test in name
Do not include method under test in name

Assertions
Amount of assertions

Fluent assertions
Assertion messages Assertion messages

Appropriate assertions
Custom assertions

Helper methods /classes
Builder pattern
Avoid inheritance of test classes, prefer composition
Methods for each step (given when then)
PageObject

Dependencies
One test for one behaviour One test for one behaviour
Amount of assertions (Try) one assert per test

Setup method / fixtures
Use both
Use setup methods, avoid fixture
No test data in fixture
Avoid too long fixtures

Comments
For structuring test cases (e.g. AAA pattern) (or use
empty lines)

Explanatory comments Avoid, can become outdated

DRYness
Not too DRY, violate if needed
DRY - DAMP balance
KISS

Identifier names
Consistent Consistent
Concise Concise
Meaningful Meaningful
Use patterns Use patterns

Test data
No magic values No magic values
Production like / simple values / human like Production like / simple values / human like

Hard coded expected values instead of computed
Highlight important data

48

5.2. Grey Literature Analysis Results

Structure (26) (Str): Literature published in academic context focuses more on
countable properties like maximum line length, amount of control structures etc.
e.g. Grano et al. [A5], Daka et al. [A14] or Setiani et al. [A3]. In contrast to this,
the authors of the grey sources focus on a semantic form of structure like the AAA
pattern, which is also discussed in another study by Setiani et al. [A1]. They report
moderate positive influence on readability from the Arrange, Act, Assert structure.

Test data (11) (TeD): Participants of the workshop from Bowes et al. [A9] also
recommend to avoid magic values. Almasi et al. [A7] and Afshan et al. [A15]
highlight importance of meaningful or human-like test data.

Test names (24) (TeN): Like in grey literature, scientific literature also uses naming
patterns, when test cases are renamed. Zhang et al. [A13] or Daka et al. [A8] use
testSubjectOutcomeScenario although outcome and scenario can be left out. The
approach by Roy et al. [A2] generates test names with a machine learning model.
Based on the examples given in the paper it does not seem to include the concrete
method under test in the name. In other studies e.g. by Panichella et al. [A12] or
Setiani et al. [A3] survey participants highlight the importance of meaningful test
names.

Test summaries (TS), Textual features (TF) (0): Test summaries were not men-
tioned in any of the sources. For textual features, which focus on natural language
aspects in test cases, we could argue that using a consistent naming scheme falls into
this factor. However, we already have specialized factors which are more suitable.

RQ 2.2 Findings. What is the difference between influence factors in scientific
literature and grey literature? There is a clear intersection in the factors investigated
by scientific and grey literature. However, the factors are sometimes covered in
different ways. We found two influence factors exclusively covered in scientific
literature and extracted five new influence factors from grey literature.

49

CHAPTER 6
Initial Readability Study

For the following initial readability study we take the results from the systematic mapping
study (Chapter 4) and the grey literature review (Chapter 5) and investigate a selection of
identified influence factors influencing with focus on the perception of test case readability.
Materials of the experiments are available.1

Note: Parts of this chapter are part of a work, which is currently under review for
publication as Winkler et al. [73]. The parts concerning the rating criteria of students
(Subsection 6.2.3), the analysis of the impact of experience on readability ratings (Sub-
section 6.2.4) and the comparison to the readability rating tool (Subsection 6.2.5) are
novel in this work.

4. Execute
A/B Experiment3. Create Survey

Anlysis of
 77 Responses

Google Forms
Questionnaires

2. Apply Best
Practices1. Search Tests

Alternate Tests
B Version

Original Tests
A Version

Figure 6.1: Experiment process and amount of received responses.

6.1 Experiment Setup and Procedure
Participants from multiple years of a master course on software testing at TU Wien were
invited to participate in this online challenge, with the possibility of a few bonus points
for the course as a reward.

1Material available under: https://drive.google.com/drive/folders/1pvFgQ4md2_
Gpthr_fx6x0H8vTiu89Qly?usp=share_link

51

https://drive.google.com/drive/folders/1pvFgQ4md2_Gpthr_fx6x0H8vTiu89Qly?usp=share_link
https://drive.google.com/drive/folders/1pvFgQ4md2_Gpthr_fx6x0H8vTiu89Qly?usp=share_link

6. Initial Readability Study

Table 6.1: Listing of test cases with their assigned influence factor, originating project
and differences made for both versions. A (original version) and B (altered version)
denote the groups.

Influence
Factor

Test Name Origin Project Modification A/B

Structure testPrimitiveTypeClass
Serialization

Apache Commons Lang3 Loops vs. unrolled loops

Structure testReducedFraction Apache Commons Lang3 Loops vs. unrolled loops (exemplary val-
ues)

Structure testContainsIgnoreCase
_LocaleIndependence

Apache Commons Lang3 Loops vs. unrolled loops

Assertions test10 Apache Commons Lang3 Try catch vs. AssertThrows
Assertions test2 Apache Commons Lang3 Try catch vs. AssertThrows
Assertions test303 Apache Commons Lang3 Try catch vs. AssertThrows
Structure testInvert Apache Commons Lang3 Variable reuse
Structure testNegate Apache Commons Lang3 Variable reuse
Structure testAbs Apache Commons Lang3 Variable reuse
Structure test551 Apache Commons Lang3 Remove package names, if-structure, sys-

tem out print and helper variables
Structure test0074 Apache Commons Lang3 Remove package names, if-structure, sys-

tem out print and helper variables
Structure test1113 Apache Commons Lang3 Remove package names, if-structure, sys-

tem out print and helper variables
Comment testContainsRange Apache Commons Lang3 Remove comments
Comment testFactory_double Apache Commons Lang3 Remove comments
Comment testWrap_StringInt

StringBooleanString
Apache Commons Lang3 Remove comments

Parameterized testPrimitiveTypeClass
Serialization

Apache Commons Lang3 Loops vs. Parameterized. Replace with
@MethodSource

Parameterized testReducedFraction Apache Commons Lang3 Loops vs. Parameterized. Replace with
@MethodSource (chained stream)

Parameterized testContainsIgnoreCase
_LocaleIndependence

Apache Commons Lang3 Loops vs. Parameterized. Replace with
inlined CSV

Dependencies testAllNullBooleans Apache Flink Split up tests
Dependencies testSerializeAndParse Protoclbuffers Protobuf Split up tests (original has comments)
Dependencies testSetContentObject Apache Commons Email Split up tests (original has comments)
Assertions testFourElement2 JetBrains IntelliJ Commu-

nity
Specific assertions (JUnit vs. Ham-
crest/AssertJ)

Assertions showsAllStsGaDownloads Dchartfield Sagan Specific assertions (JUnit vs. Ham-
crest/AssertJ)

Assertions indexedReadAndIndexed
WriteMethods

Spring Framework Specific assertions (JUnit vs. Ham-
crest/AssertJ)

Dependencies testChoicesWithValid
DefaultValue

Apache Flink Remove unnecessary try catch

Dependencies testApplyToMovesValue
PassedOnShortName
ToLongNameIfLong
NameIsUndefined

Apache Flink Remove unnecessary try catch

Dependencies testApplyToWithMultiple
Types

Apache Flink Remove unnecessary try catch

Fixture, test
data

Student Example 03 Student Solution Remove fixture and member variables or
constants

Fixture, test
data

Student Example 02 Student Solution Remove fixture and member variables or
constants or constants

Fixture, test
data

Student Example 01 Student Solution Remove fixture and member variables or
constants

52

6.1. Experiment Setup and Procedure

The experiment follows an A/B testing approach, because such experiments are in general
a good approach for comparing the effect of a treatment to a population. Therefore, the
participants rate readability of original and altered test cases. In our scientific literature
review we also found some studies using this approach e.g. Roy et al. [60] or Setiani et al.
[66]. Figure 6.1 shows an overview on the experiment process. We discuss the individual
steps in the following sections.

Search Tests

We selected 27 test cases covering different influence factors from 8 sources, which also
contain generated tests by Randoop and Evosuite. Table 6.1 shows influence factor, test
name and origin project. Additionally we selected 3 tests as control group, which are not
shown in this table. Most tests including the automatically generated tests come from
Apache Commons Lang3. The last three tests with origin project "Student Solution" are
selected tests written by students for an course assignment.2

Apply Best Practices

For each test, except the control groups, we create alternative versions of these tests,
keeping in mind the results from the previous findings and our own experience. Column
"Modification A/B" in Table 6.1 gives a short description on the differences between A
and B version.

Create Survey

For each challenge run we use a selection of 18 original test cases, highlighted by the
horizontal line in Table 6.1 to create the questionnaires for the survey. In total there are
6 different questionnaires consisting of 3 where the test cases are in "original" order and 3
where this order is reversed. Each questionnaire contains tests from each influence factor
and for both versions, the participants do not know of influence factors or if the test
was modified. Also they either get to see the original test case or the modified version
i.e., they never see both versions of the same test case. Including tests of the control
group each questionnaire contains 12 tests in total. The participants are asked to rate
the readability on a 5 point Likert scale from 1 (unreadable) to 5 (easy to read) and
to give up to three free text reasons for their rating. Before and after this main task,
there is a pre- and post-questionnaire for collection information on the participants and
acceptance of the challenge.

We created the questionnaires google.forms, because it provides an easy way for creating
surveys, which can also be reused for future replications. Although the graphical user
interface for creating the forms is intuitive and easy to use, importing the screenshots of
the test cases or reordering the questions to create the reversed versions is tedious and
error-prone. Luckily Google offers a JavaScript based scripting language (Apps Script) for

2Material available under: https://drive.google.com/drive/folders/1pvFgQ4md2_
Gpthr_fx6x0H8vTiu89Qly?usp=share_link

53

https://drive.google.com/drive/folders/1pvFgQ4md2_Gpthr_fx6x0H8vTiu89Qly?usp=share_link
https://drive.google.com/drive/folders/1pvFgQ4md2_Gpthr_fx6x0H8vTiu89Qly?usp=share_link

6. Initial Readability Study

a range of its services, which we use to automate this part of questionnaire creation. The
collected data from the forms can be exported in various formats for further processing.
Beside the survey forms, we provided the selected tests in a PDF and as plain text files
as additional materials for the study participants.

Execute A/B Experiment

The survey was open for two weeks in each iteration and the participants were free to
start and stop their run at any time in this period. The working duration for one round
was about one hour. Across all iterations, we received responses from 77 participants.

Analysis

We use the software R to calculate the significance of the results with statistical tests
on level of α = 0.05%. According to an analysis with the Shapiro-Wilk test, the rating
data does not follow a normal distribution. Therefore and since our data is unpaired, we
use the Wilcoxon Rank Sum test. When a significant difference between the distribution
of the groups A and B is detected, we report the effect size with Cliff’s Delta (δ).
Roy et al. [60] used the same approach for their Likert scale data. Cliff’s Delta is
interpreted according to Romano et al. [59] with |δ| < 0.147 "negligible", |δ| < 0.33
"small", |δ| < 0.474 "medium", otherwise "large"

For the qualitative analysis of the free text comments we use the previously found
influence factors as base factors. In order to keep more detailed information of the
comments during categorisation, we add sub-factors. These sub-factors are added each
time, when a comment does not fit into the already existing factors. Comments are
assigned to every fitting category, hence one comment can appear in multiple categories.
The categorisation was done in a SVG-Editor in a hierarchical structure (see Figure 6.2)
and analysed with a spreadsheet solution.

6.2 Experiment Results
This section presents the results of the controlled experiment to investigate the readability
of a selected set of test cases. Some factors influencing readability appear more than
once in Table 6.1 and the modifications have different goals. Therefore we analyse
the differences between groups A and B across these modifications. We discuss each
modification after an overview on the participants in the following sections.

6.2.1 Participants experience
To gather some information about our participants we asked for their amount of experience
in general and professional software development in years. They could choose between
0, 1-2, 2-5 and >5 years. Table 6.2 shows results of both questions. Almost 45% of our
participants have more than five years of experience in software development and more
than 50% have two to five years of experience. Concerning professional development

54

6.2. Experiment Results

Figure 6.2: Example screenshot from comment categorisation. The comments are stacked
beside the sub-factors. Yellow comments are duplicates.

Table 6.2: Information on participants experience.

(a) General Software Development Experience
[years].

Years Absolute Percentage
2-5 41 53.2%
>5 34 44.2%
1-2 2 2.6%
Sum: 77 100.0%

(b) Professional Software Development Experi-
ence [years].

Years Absolute Percentage
2-5 25 32.5%
1-2 24 31.2%
0 20 26.0%
>5 8 10.4%
Sum: 77 100.1%

around 30% have either one to two or two to five years of experience. In total around
75% have worked at least one year.

55

6. Initial Readability Study

6.2.2 RQ 3.1 Do factors discussed in practice show an influence on
readability when scientific methods are used?

Figure 6.3 shows the distribution of the aggregated readability ratings including boxplots
for the investigated modification mapping to influence factors. Table 6.3 shows the results
from the statistical analysis. The first column "Modification A/B (Influence Factor) maps
to the according columns in Table 6.1. We discuss each modification in the following
sections. As a reminder, we interpret Cliff’s Delta (δ) according to Romano et al. [59]
with |δ| < 0.147 "negligible", |δ| < 0.33 "small", |δ| < 0.474 "medium", otherwise "large",

Loops vs. Unrolled (Figure 6.3a). In this modification the difference between A and
B of the aggregated results is significant with p = 0.02. The effect size δ = −0.35
is on the lower end of a "medium" effect size. The analysis of the individual tests
reveals that the whole modification is significant, because of the last test with
p = 0.01 and δ = −0.67 ("large" effect). In this test the code contains two 2D
arrays, nested loops to perform the test and string concatenation for the assertion
message. The modified version primarily consists of assertions for all cases the
loops generate, without assertion messages.

Try Catch vs. AssertThrows (Figure 6.3b). Here the difference between A and
B is barely significant p = 0.04 for the second test, although it has a "large" effect
size with δ = −0.54. One possible explanation for this result could be the relative
short size of this test in comparison to the other ones in this modification. Due to
the short length, there may be no possibility for other bad practices to mask the
positive influence of this modification.

Variable Re-Use (Figure 6.3c). Neither the figure nor the statistical analysis show
a significant difference in the ratings.

Structure (Figure 6.3d). Overall there is a clear difference between the groups of
this modification with p = 0.0 and a "large" effect, δ = −0.59. Only for one of the
three tests the difference between groups is not significant with p = 0.16.

Comments (Figure 6.3e). Although none of the individual tests has a significant
difference between A and B, the aggregated result is significantly different with p =
0.02 and has a lower "medium" effect size with δ = 0.36. Since we removed comments
in the original versions of the tests, the A version contains more information than
B. A look at Figure 6.3e and the median values in the Table 6.3 shows that the
participants gave the A version better ratings. This is also reflected by the positive
sign of the effect size. The comments do not highlight the structure of the test, they
are of the nature "explanatory comments". This is a confirmation of the positive
influence of comments on readability found by scientific literature.

56

6.2. Experiment Results

A B

0.00

0.25

0.50

0.75

1.00

4

5

10

7

3

1

4

4

13

7

(a) Loops vs. Unrolled

A B

0.00

0.25

0.50

0.75

1.00

8

11

7

1

0

7

9

8

3

1

(b) Try Catch vs. Asserts

A B

0.00

0.25

0.50

0.75

1.00

0

2

5

17

4

0

3

8

15

3

(c) Variable Reuse

A B

0.00

0.25

0.50

0.75

1.00

20

5

3

0

0

4

14

7

3

0

(d) Package Names, If-Str.

A B

0.00

0.25

0.50

0.75

1.00

1

2

8

6

11

0

6

11

10

1

(e) Remove Comments

A B

0.00

0.25

0.50

0.75

1.00

14

11

8

6

6

2

11

8

16

7

(f) Loops vs. Parameterized

A B

0.00

0.25

0.50

0.75

1.00

6

8

6

18

7

0

3

5

27

13

(g) Split Up Tests

A B

0.00

0.25

0.50

0.75

1.00

11

8

17

5

3

8

17

13

9

1

(h) Specific Assertion

A B

0.00

0.25

0.50

0.75

1.00

6

13

9

18

1

3

13

9

13

10

(i) Unnecessary Try Catch

A B

0.00

0.25

0.50

0.75

1.00

2

4

5

16

19

0

3

8

16

19

(j) Remove Fixture

Figure 6.3: Distribution and box plots of aggregated readability ratings per A/B modi-
fication. Ratings from a five-point Likert scale range from 0 (not readable) to 1 (very
readable). The numbers on the right hand side of the histograms represent the amount
of answers for this rating.

57

6. Initial Readability Study

Table 6.3: Statistical analysis of experiment results using a two-sided Wilcoxon Rank
Sum test (p) and Cliff’s D (δ) for effect size. δ is only shown for p < 0.05.

A B Compare
Modification A/B (Influence Factor) N med sd N med sd p δ

Loops vs. Unrolled Loops (Structure) 29 0.50 0.30 29 0.68 0.27 0.02 -0.35
testPrimitiveTypeClassSerialization 9 0.75 0.20 11 0.75 0.23 0.21
testReducedFraction 9 0.50 0.23 9 0.50 0.32 0.89
testContainsIgnoreCase_LocaleIndependence 11 0.25 0.29 9 0.75 0.22 0.01 -0.67

Try Catch vs. AssertThrows (Assertions) 27 0.26 0.21 28 0.34 0.27 0.31
test10 9 0.25 0.22 10 0.25 0.30 0.90
test2 9 0.25 0.20 9 0.50 0.26 0.04 -0.54
test303 9 0.25 0.24 9 0.25 0.23 0.89

Variable Reuse (Structure) 28 0.71 0.19 29 0.66 0.21 0.32
testInvert 9 0.75 0.18 11 0.50 0.23 0.54
testNegate 9 0.75 0.22 9 0.75 0.12 0.15
testAbs 10 0.75 0.17 9 0.75 0.22 0.78

Package Names, If-Structure,.. (Structure) 28 0.10 0.17 28 0.33 0.22 0.00 -0.59
test551 8 0.00 0.19 11 0.50 0.21 0.00 -0.82
test0074 9 0.00 0.22 8 0.25 0.21 0.16
test1113 11 0.00 0.12 9 0.25 0.11 0.03 -0.51

Remove Comments (Comments) 28 0.71 0.29 28 0.55 0.21 0.02 0.36
testContainsRange 9 0.75 0.22 10 0.75 0.17 0.43
testFactory_double 9 1.00 0.26 9 0.50 0.17 0.08
testWrap_StringIntStringBooleanString 10 0.75 0.36 9 0.25 0.22 0.15

Loops vs. Parameterized (Parameterized) 45 0.38 0.35 44 0.59 0.29 0.00 -0.34
testPrimitiveTypeClassSerialization 14 0.75 0.27 15 0.75 0.22 0.85
testReducedFraction 14 0.25 0.35 14 0.25 0.30 0.77
testContainsIgnoreCase_LocaleIndependence 17 0.00 0.20 15 0.75 0.28 0.00 -0.84

Split Up Tests (Dependencies) 45 0.57 0.33 48 0.76 0.20 0.00 -0.33
testAllNullBooleans 14 0.75 0.35 17 0.75 0.17 0.08
testSerializeAndParse 15 0.75 0.32 16 0.75 0.21 0.60
testSetContentObject 16 0.50 0.29 15 0.75 0.21 0.01 -0.50

Specific Assertion (Assertions) 44 0.39 0.30 48 0.39 0.26 0.93
testFourElement2 16 0.50 0.26 17 0.25 0.30 0.44
showsAllStsGaDownloads 14 0.50 0.31 16 0.50 0.20 0.73
indexedReadAndIndexedWriteMethods 14 0.25 0.32 15 0.50 0.27 0.47

Unnecessary Try Catch (Dependencies) 47 0.47 0.28 48 0.57 0.31 0.12
testChoicesWithValidDefaultValue 16 0.75 0.22 17 0.75 0.27 0.90
testApplyToMovesValuePassedOnShortName... 15 0.25 0.27 16 0.25 0.27 0.90
testApplyToWithMultipleTypes 16 0.38 0.29 15 0.75 0.31 0.01 -0.53

Remove Fixture (Fixture, Test Data) 46 0.75 0.28 46 0.78 0.23 0.87
Student Example 03 16 0.75 0.33 16 0.75 0.27 0.54
Student Example 02 15 0.75 0.24 15 1.00 0.18 0.17
Student Example 01 15 1.00 0.23 15 0.75 0.19 0.10

58

6.2. Experiment Results

Loops vs Parameterized (Figure 6.3f). Like in Loops vs. Unrolled the difference
of the complete modification between groups A and B is significant with p = 0.00
and δ = −0.34, a lower "medium" effect size, because of the last test. The original
version is the same as in Loops vs. Unrolled but the modified version extracts
the test case data into an inlined CSV as input for the parameterized test case.
The other forms of parameterized tests did not lead to significant changes in the
readability ratings.

Split Up (Figure 6.3g). There is a clearly significant difference between A and B
with p = 0.0 but only a "small" effect size, although with δ = −0.33 it is on the
edge to a "medium" effect size. In detail there is one significant test p = 0.01 with
δ = −0.50, a large effect size. When looking at the median values and the figures,
we see that both versions are quite readable but the modified tests have few to no
ratings in the lower part of the readability scale.

Assertions (JUnit, Hamcrest, AssertJ) (Figure 6.3h). There is no significant
difference in readability when using standard JUnit assertions compared to assertions
with Hamcrest or AssertJ assertions. This result confirms findings from Leotta et
al. [41].

Unnecessary Try Catch (Figure 6.3i). One test shows a significant difference with
p = 0.01 and δ = −0.53, a "large" effect size. With medians of 0.75 the first test
is almost very readable in both versions. However, we accidentally introduced an
error in the modified version (we declared a variable twice, which is not allowed
in Java). In the comments the participants noticed this error, therefore this error
might mask the positive effect of the intended modification. The second test with
medians of 0.25 has a very long test name which the participants criticise. This
again might mask the positive effect of the modification.

Fixture (Figure 6.3j). We do not see a significant difference between the two versions
neither in the figure nor in the table. The tests all have a quite good rating, which
is could be caused by the participants knowledge about the system under test.

RQ 3.1 Findings. Do factors discussed in practice show an influence on readability
when scientific methods are used? Applying test code best practices is no silver bullet
for improved readability. Statistical analysis of the aggregated results show significant
differences between original and modified versions in five out of ten modifications. In
these cases, with the expected exception to the modification "Remove Comments",
the modifications have a positive influence on readability ratings.

6.2.3 RQ 3.2 What criteria do students use for readability ratings?
In the following sections we present findings from the analysis of the participants ex-
planations for their readability ratings. Additionally we also analyse the participants

59

6. Initial Readability Study

perception of their own rating behaviour, based on answers from the post-questionnaire.

Overall criteria

To get an understanding on the overall rating criteria of our participants we count the
amount of comments assigned to the super category of influence factors shown in Table 6.4.
The top three categories (Test names, Structure, Dependencies) account for around 54%
of the comments. Around 11% could not be assigned to any category. This representation
gives a hint on the importance of the given super categories to the readability ratings.

Table 6.4: Super category of influence factors with amount of assigned comments.

Super Category Σ Com %
Test names 564 22.3%
Structure 442 17.4%
Dependencies 352 13.9%
Context & Comments 270 10.6%
Assertions 157 6.2%
Test data 114 4.5%
DRYness 106 4.2%
Identifier names 104 4.1%
Parameterized test 57 2.2%
Fixtures 47 1.9%
Unnecessary Try-Catch 31 1.2%
Helper methods /classes 17 0.7%
Unassigned comments 273 10.6%
Sum: 2534 100%

For obtaining insights on more concrete criteria Table 6.5 shows the top 15 selection of
the amount of comments assigned to sub categories, which make up for 1651 out of 2534
comments (around 65%). Sub categories for unassigned comments are left out, because
they add no further value to this analysis. Each sub category is either prefixed with + to
indicate a positive influence or with - to indicate a negative influence on the readability
rating.

The super categories of the first six entries are more or less in accordance with the ranking
of the super categories in the previous Table 6.4. For test names there is either critique
or praise on the descriptiveness in 526 comments (around 21%). For dependencies in 256
comments (around 10%) participants criticise that the test should have been split up
into multiple test cases, because different behaviours or functionalities are tested in the
given test case. The opposite, the positive influence that a test tests only one thing is
mentioned in 46 comments (around 2%). Participants praise or criticise the formatting or
structure of the test case in 275 comments (around 11%), because they can not recognize
any structure (e.g. Arrange Act Assert) in the test cases or line breaks are not intuitive.

60

6.2. Experiment Results

Finally, Missing Context is criticised in 103 comments (around 4%) in example when a
test performs an action, which needs a deeper understanding of the system under test or
the test suite.

Table 6.5: Top 15 of sub category of influence factors with amount of assigned comments.

Sub Category Super Category Σ Com %
- Undescriptive test name Test names 323 12.7%
- Division into several test cases possible Dependencies 256 10.1%
+ Meaningful test name Test names 203 8.0%
+ Good formatting / structure visible Structure 167 6.6%
- Bad formatting / no structure Structure 108 4.3%
- Missing Context Context & Comments 103 4.1%
- Undescriptive variable names Identifier names 72 2.8%
+ Short Structure 70 2.8%
- No/Useless comments Context & Comments 62 2.4%
- Variables/Constants preferred Test data 51 2.0%
- Too many assertions Dependencies 50 2.0%
- No parameterized tests used Parameterized test 49 1.9%
+ Tests only one thing Dependencies 46 1.8%
+ Simple testcase Structure 46 1.8%
+ Meaningful comments Context & Comments 45 1.8%
Sum: 1651 65.1%

After the first six entries the ranking of super categories between Table 6.4 and Ta-
ble 6.5 begin to differ. Identifier names are criticised in 72 comments (around 3%),
most prominently when one letter variables or abbreviation-only variables are used.
Appreciation for short test cases is also voiced in 70 comments (around 3%). In 62
comments, participants criticise the absence of explanatory comments or the presence of
useless comments. This sub category is related to Missing Context, but in this category
the participants explicitly demanded explanatory comments, while context can also be
provided by other measures e.g. ability to quickly look up the implementation of the
system under test. The discussion on literals versus variables or constants is also present
in the comments. While 51 comments would prefer variables or constants in some test
cases, 15 would prefer literals in other test cases. The critique on too many assertions in
50 comments is related to Division into several test cases possible because a test with
this shortcoming usually contains multiple assertions. However, comments in the sub
category Too many assertions did not state that the test should be split up. Too avoid
over-interpretation of the comments we keep both sub categories. Finally, participants
criticise missed opportunities for usage of parameterized test in 49 comments. This is the
case when loops are used or a test case tests one behaviour with different input values.

61

6. Initial Readability Study

Participants perception

After the participants rated and commented on the test cases, they were asked to elaborate
on their general rating criteria and limitations they observed while rating the test cases.
We categorised the free text answers similar to the comments on the rating. Table 6.6
shows the result of the categorisation for both questions. In contrast to the previous
categorisation with two levels, we only use one level, because there are fewer answers
(one answer per participant and question). When comments match to multiple categories
they are counted multiple times. Hence the sums of comments exceed the amount of
participants and vary across the tables.

Table 6.6: Participants perception after rating readability of test cases.

(a) Criteria for rating readability reported by
participants.

Category Σ Com %
Naming 49 26.5%
Structure 41 22.2%
Dependencies 19 10.3%
Context & Comments 17 9.2%
Time to understand 15 8.1%
Assertions 12 6.5%
Experience 11 5.9%
DRY-Principle 11 5.9%
Unassigned 10 5.4%
Sum: 185 100%

(b) Limitations and problems observed while
rating readability.

Category Σ Com %
Naming 39 26.4%
Dependencies 32 21.6%
Context & Comments 25 16.9%
Structure 21 14.2%
DRY-Principle 11 7.4%
Assertions 5 3.4%
Unassigned 15 10.1%
Sum: 148 100%

The top four rating criteria (Naming, Structure, Dependencies and Context & Comments)
shown in Table 6.6a fit to the previously discussed rankings and make up for the majority
(around 68%) of comments. This indicates that the participants actual rating criteria
and their perceived rating criteria after assessing the test cases are in accordance with
each other. The time to understand a test case or own experience gathered from courses;
best practices or work also play a role for the rating for some participants.

Table 6.6b shows the limitations and main problems reported by the participants while
assessing the readability. The ranking of the categories is the same as in Table 6.6a
except for Structure. The participants used this question primarily to summarise their
main points of criticism on the previously rated tests, which reflects their actual rating
well.

RQ 3.2 Findings. What criteria do students use for readability ratings? The high
level rating criteria used by the participants of the experiment are Naming, Structure,

62

6.2. Experiment Results

Dependencies and Context & Comments. On a lower level test naming, testing only
one behaviour, ensuring a clear structure and providing enough context on the system
under test are criteria mentioned in a majority of comments.

6.2.4 RQ 3.3 What is the impact of developer experience in context
of readability?

In order to investigate the impact of experience on the readability ratings, we first
map the results of questions related to software development experience discussed in
Subsection 6.2.1 to experience levels as shown in Figure 6.4.

Figure 6.4: Mapping from answers in the questionnaire to experience levels.

Figure 6.5 shows the resulting distribution of experience levels across both versions of the
experiment. In both versions the distribution of experience levels is similar with around
50% of junior- 30% senior- and 20% beginner-level participants. The participants are
distributed across the six groups quite uniformly in both versions. Still, not all experience
levels contain participants from each group.

Figure 6.6 shows the readability ratings for each experiment version grouped by experience
level. The figures show no clear differences in the readability ratings between the
experience levels, with exception to the beginner level of the second version in Figure 6.6b.
The Wilcoxon rank sum test with a two sided alternative hypothesis shows a similar
result when comparing the experience levels beginner vs. junior and junior vs. senior.
Only the beginner level of version B shows a significant difference to the junior level
with a p-value of 0.0049. The effect size computed with Cliff’s Delta gives a value of

63

6. Initial Readability Study

Beginner Junior Senior

Experience Level

0.0

2.5

5.0

7.5

10.0

12.5
A
m
o
u
n
t
p
a
rt
ic
ip
a
n
ts

Group
1

4

2

5

3

6

Grp Beg Jun Sen Sum Perc
1 2 2 1 5 17%
2 0 2 3 5 17%
3 1 4 1 6 21%
4 1 1 2 4 14%
5 1 2 1 4 14%
6 1 3 1 5 17%
Sum 6 14 9 29 100%
Perc 21% 48% 31% 100% 0

(a) Experiment version A.

Beginner Junior Senior

Experience Level

0

5

10

15

20

25

A
m
o
u
n
t
p
a
rt
ic
ip
a
n
ts

Group
1

4

2

5

3

6

Grp Beg Jun Sen Sum Perc
1 1 5 2 8 17%
2 4 0 3 7 15%
3 1 4 4 9 19%
4 1 5 2 8 17%
5 0 5 3 8 17%
6 1 6 1 8 17%
Sum 8 25 15 48 100%
Perc 17% 52% 31% 100% 0

(b) Experiment version B.

Figure 6.5: Distribution of participants experience levels. For each version groups with
similar colors work on the same test cases in reversed order.

0.189 (small effect size). Since the effect size is small and there is no significant difference
between the other experience levels, this represents only little evidence for experience
influencing readability ratings.

RQ 3.3 Findings.What is the impact of developer experience in context of readability?
We found a significant difference with a small effect size in the readability ratings
between experience levels in of the four possible cases. Therefore we do not see much
impact of developer experience in context of readability.

6.2.5 RQ 3.4 What is the accuracy of automatic readability
assessment in comparison to students rating?

In the following section we compare the participants rating with the rating from the
readability tool by Scalabrino et al. [64] in order to decide if we should add it to the

64

6.2. Experiment Results

Beginner Junior Senior

0.00

0.25

0.50

0.75

1.00

9

14

17

26

4

23

34

38

46

20

13

21

35

30

9

(a) Experiment version A.

Beginner Junior Senior

0.00

0.25

0.50

0.75

1.00

6

18

22

25

23

51

65

48

82

40

21

39

39

52

26

(b) Experiment version B.

Figure 6.6: Distribution of readability ratings by experience levels.

readability framework. We also report observations from using the tool, which can be
used for improving the tool.

Tool description

The readability tool is a command line Java application, which can (amongst others)
be used to rate readability of Java code snippets, Java classes or whole projects. When
classes or projects are rated, the readability of a class is computed as the mean read-
ability of the methods in the class. The tool including detailed usage instructions is
available for download at https://dibt.unimol.it/report/readability/. For
this comparison we used the latest version of the tool updated in May 2021 3.

Influence of different whitespace characters

During analysis of the tool generated readability ratings we noticed different results for
test cases, which are present in both versions of the experiment. While in most of these
cases the different tool ratings can be attributed to minor visual improvements of the
test case for the survey form (Google.Forms has a rather narrow line width), in two cases
there is no difference in the appearance (see Figure 6.7, group ’original’, test case 2A,
12B). A close inspection of 2A shows that one line uses space characters for indentation
instead of tabs and there are trailing tab characters in one line. In 12B both versions use
spaces as indentation but one version contains indented lines without program statements
and trailing space characters in one line.

In order to unify this aspect of formatting we adjusted the whitespace characters with
a script, which removes trailing whitespace and replaces indentation whitespace with
either tabs or spaces (1 tab == 4 spaces). Figure 6.7a also shows the comparison of the
adjusted versions (groups ’spaces’ and ’tabs’). As expected the difference in the tools
rating for test cases 2A and 12B is now 0, because our script removed invisible differences.

3SHA1 sum of the download readability.zip:
e556b9b05ed14ed76c122170bd7d43fbc39cf80b8acac2930caebe96ac284329

65

https://dibt.unimol.it/report/readability/

6. Initial Readability Study

(a) Difference between ratings. The groups
denote the whitespace character used for inden-
tation. ’Original’ can include tabs and spaces.

1A 2A 3A 10AB/11A 11B 12A 12B

Test Case

0.00

0.05

0.10

0.15

0.20

0.25

D
iff
e
re
n
c
e
in
R
e
a
d
a
b
ili
ty

original

spaces

tabs

(b) Description of differences in formatting.

Test Case Visible Difference
1A One line break
2A No visible difference
3A Three line breaks
10AB/11A No difference
11B Two line breaks
12A Three line breaks
12B No visible difference

Figure 6.7: Comparison of tool-generated readability ratings for test cases in both survey
versions. Values shown in subfigure a are result of e.g. |1Av1 − 1Av2|

Since indentation characters and trailing whitespace do not influence the tools rating in
the altered versions, the figure shows exemplary for test case 1A, that one line break can
alter the tools rating by 0.1 on a scale from 0 to 1.

We further investigate the influence of invisible formatting and apply the previously
described script on all test cases. In Figure 6.8 and Figure 6.9 the tools ratings for the
different versions are small in most cases, for 56 out of 72 test cases (around 78%) the
largest difference is between 0.01 and 0.04. The most extreme difference between the
tools ratings appears in test case 3B in Figure 6.8 with a value of around 0.3. Listing 6
shows the corresponding original snippet and its different whitespaces. In the modified
versions only one kind of indentation characters are used and trailing whitespaces in the
highlighted lines are removed.

66

6.2. Experiment Results

A(9) B(11)

0.00

0.25

0.50

0.75

1.00

0

0

3

4

2

0

1

0

5

5

1 (1,2)

A(9) B(9)

0

2

5

1

1

1

2

2

3

1

2 (3,4)

A(11) B(9)

4

3

2

2

0

0

1

2

5

1

3 (5,6)

A(9) B(10)

0.00

0.25

0.50

0.75

1.00

3

3

3

0

0

3

5

1

0

1

4 (7,8)

A(9) B(9)

3

4

2

0

0

1

2

3

3

0

5 (9,10)

A(9) B(9)

2

4

2

1

0

3

2

4

0

0

6 (11,12)

A(9) B(11)

0.00

0.25

0.50

0.75

1.00

0

1

3

5

0

0

2

5

3

1

7 (13,14)

A(9) B(9)

0

1

0

6

2

0

0

3

6

0

8 (15,16)

A(10) B(9)

0

0

2

6

2

0

1

0

6

2

9 (17,18)

A(9) B(11)

0.00

0.25

0.50

0.75

1.00

0

1

5

3

0

0

1

4

4

2

10 (19,20)

A(9) B(9)

0

3

1

5

0

0

0

2

6

1

11 (21,22)

A(10) B(9)

0

2

4

4

0

0

1

3

5

0

12 (23,24)

A(8) B(11)

0.00

0.25

0.50

0.75

1.00

6

1

1

0

0

0

4

4

3

0

13 (25,26)

A(9) B(8)

6

1

2

0

0

2

3

3

0

0

14 (27,28)

A(11) B(9)

8

3

0

0

0

2

7

0

0

0

15 (29,30)

A(9) B(10)

0.00

0.25

0.50

0.75

1.00

0

0

3

3

3

0

0

4

5

1

16 (31,32)

A(9) B(9)

0

0

4

0

5

0

1

5

3

0

17 (33,34)

A(10) B(9)

1

2

1

3

3

0

5

2

2

0

18 (35,36)

Median (human) Original (tool) Spaces (tool) Tabs (tool)

Figure 6.8: Discrete violinplots for participants readability rating and readability tool
ratings for survey version A.

67

6. Initial Readability Study

A(14) B(15)

0.00

0.25

0.50

0.75

1.00

0

2

4

4

4

0

1

4

7

3

1 (1,2)

A(14) B(14)

3

6

1

2

2

2

6

2

3

1

2 (3,4)

A(17) B(15)

11

3

3

0

0

0

4

2

6

3

3 (5,6)

A(14) B(17)

0.00

0.25

0.50

0.75

1.00

2

2

1

6

3

0

0

2

8

7

4 (7,8)

A(15) B(16)

1

3

1

6

4

0

2

0

11

3

5 (9,10)

A(16) B(15)

3

3

4

6

0

0

1

3

8

3

6 (11,12)

A(16) B(17)

0.00

0.25

0.50

0.75

1.00

4

3

7

2

0

5

7

2

2

1

7 (13,14)

A(14) B(16)

2

2

6

2

2

0

6

6

4

0

8 (15,16)

A(14) B(15)

5

3

4

1

1

3

4

5

3

0

9 (17,18)

A(16) B(17)

0.00

0.25

0.50

0.75

1.00

4

5

3

4

0

4

11

1

1

0

10 (19,20)

A(15) B(16)

2

5

7

1

0

1

1

5

7

2

11 (21,22)

A(17) B(15)

8

6

3

0

0

7

3

2

2

1

12 (23,24)

A(16) B(17)

0.00

0.25

0.50

0.75

1.00

1

1

2

12

0

0

4

3

7

3

13 (25,26)

A(15) B(16)

2

7

4

1

1

3

6

3

4

0

14 (27,28)

A(16) B(15)

3

5

3

5

0

0

3

3

2

7

15 (29,30)

A(16) B(16)

0.00

0.25

0.50

0.75

1.00

2

2

2

7

3

0

3

2

7

4

16 (31,32)

A(15) B(15)

0

1

2

5

7

0

0

2

2

11

17 (33,34)

A(15) B(15)

0

1

1

4

9

0

0

4

7

4

18 (35,36)

Median (human) Original (tool) Spaces (tool) Tabs (tool)

Figure 6.9: Discrete violinplots for participants readability rating and readability tool
ratings for survey version B.

68

6.2. Experiment Results

1 public class Test {
2
3 @DefaultLocale(language = "de", country = "DE")
4 −�|@Test
5 −�|public void testContainsIgnoreCase_LocaleIndependence() {
6 −�| −�|Locale.setDefault(Locale.ENGLISH);
7 −�| −�|assertTrue(StringUtils.containsIgnoreCase("i", "I"));
8 −�| −�|assertTrue(StringUtils.containsIgnoreCase("I", "i"));
9 −�| −�|assertTrue(StringUtils.containsIgnoreCase("\u03C2", "\u03C3"));

10 −�| −�|assertTrue(StringUtils.containsIgnoreCase("\u03A3", "\u03C2"));
11 −�| −�|assertTrue(StringUtils.containsIgnoreCase("\u03A3", "\u03C3"));
12 assertFalse(StringUtils.containsIgnoreCase("\u00DF", "SS"));
13
14 −�| −�|Locale.setDefault(new Locale("tr"));
15 −�| −�|assertTrue(StringUtils.containsIgnoreCase("i", "I"));
16 −�| −�|assertTrue(StringUtils.containsIgnoreCase("I", "i"));
17 −�| −�|assertTrue(StringUtils.containsIgnoreCase("\u03C2", "\u03C3"));
18 −�| −�|assertTrue(StringUtils.containsIgnoreCase("\u03A3", "\u03C2"));
19 −�| −�|assertTrue(StringUtils.containsIgnoreCase("\u03A3", "\u03C3"));
20 assertFalse(StringUtils.containsIgnoreCase("\u00DF", "SS"));
21
22 −�| −�|Locale.setDefault(Locale.getDefault());
23 −�| −�|assertTrue(StringUtils.containsIgnoreCase("i", "I"));
24 −�| −�|assertTrue(StringUtils.containsIgnoreCase("I", "i"));
25 −�| −�|assertTrue(StringUtils.containsIgnoreCase("\u03C2", "\u03C3"));
26 −�| −�|assertTrue(StringUtils.containsIgnoreCase("\u03A3", "\u03C2"));
27 −�| −�|assertTrue(StringUtils.containsIgnoreCase("\u03A3", "\u03C3"));
28 assertFalse(StringUtils.containsIgnoreCase("\u00DF", "SS"));
29 −�|}
30 }

Listing 6: Test case 3B original. Highlighted lines show trailing spaces.

Accuracy of tool ratings compared to human ratings

In the following section we compare the tool generated ratings to the rating data from
the experiment. With the previous findings in mind we define that the tool represents
the participants rating of a test case iff at least one of the three ratings from the tool is
in between the 0.25% and the 0.75% quantile of the test case. We round the tools rating
to two decimal points. The violinplots in Figure 6.8 and Figure 6.9 contain boxplots
where the boxes visualize the 0.25% and the 0.75% quantile. As an example in Figure 6.8
the tools rating in test case 1B reflects the participants rating, because the spaces rating
is inside the box.

Table 6.7: Amount of test cases where the tools rating is between the 0.25% and the
0.75% quantile (i.e. the ’box’ of the boxplot) of participants ratings.

Tool Rating
Exp. Version In Box Outside Box
A 15 21
B 22 14
Sum: 37 35

Table 6.7 shows result of applying the above definition on all test cases. For 37 out of 72
test cases (around 51%) the tools rating is in accordance with the participants ratings.

69

6. Initial Readability Study

If we add special cases, where the range of the box is zero and the tools ratings are in
vicinity (Version A: 2A, 15B. Version B: 10B), the result would increase to 40 out of 72
tool ratings in accordance with participants ratings (around 56%).

RQ 3.4 Findings. What is the accuracy of automatic readability assessment in
comparison to students rating? In 37 out of the 72 test cases (around 51%) the tools
rating is between the 0.25% and the 0.75% quantile of participants ratings. Invisible
differences in formatting can influence the tools rating in extreme cases up to 0.25
on a scale from 0 to 1.

70

CHAPTER 7
Readability Framework -

Development and Evaluation

We present the readability framework which consists of a set of questions and supplemen-
tary information in the following sections. The framework is based on the findings of the
literature surveys from Chapter 4 and Chapter 5 and the experiment from Chapter 6. The
selection of the presented readability factors is based on the results from the investigation
of factors discussed in practice (see Subsection 6.2.2) and rating criteria of the participants
(see Subsection 6.2.5). The guidelines are influenced by the extracted readability factors
from the literature surveys (see Subsection 4.2.5, Subsection 5.2.1, Subsection 5.2.2).

7.1 Readability Factor Questions
The following questions in Table 7.1 target the factors influencing readability, which
showed significant influence in our experiment or which were used as criteria by the
participants of the experiment. These questions can be seen as a checklist, which can be
quickly used in a test code review as a basis for discussion.

− ∼ +
1. Has the test a clear structure?
2. Is the test free of control structures?
3. Is the naming of and in the test case adequate?
4. Does the test verify only one specific behaviour?
5. Does the test provide enough context?
6. Does the test use assertions appropriately?

Table 7.1: Set of questions related to readability factors.

71

7. Readability Framework - Development and Evaluation

Each question has three possible answers, which are assigned to a certain amount of
points. Summing up the points gives a readability score for a test case ranging from 0
(not readable) to 12 (well readable). This score allows a comparison with other readability
assessments.

− (0 pt.): the test mostly fails the criterion.

∼ (1 pt.): the test fulfils and fails the criterion in almost equal parts.

+ (2 pt.): the test mostly fulfils the criterion.

7.2 Readability Factor Guidelines
The following sections explain why the factors targeted by the question are important
and gives best practice examples and food for thought for improvements.

7.2.1 Structure
Aim for a clear structure. Empty lines or comments for enforcing structure

Why: A structure, which clearly separates common parts of a test method helps to
locate them. It also allows the reader to expect certain actions from these parts like in a
newspaper article, which can be divided into header, teaser and main text.

How: There exist various structuring patterns, three popular ones are AAA (Arrange;
Act; Assert), BOC (Build; Operate; Check) and GWT (Given; When; Then). These
patterns all follow the same approach, the first step sets up the scene e.g. initializes
variables and prepares the system under test (SUT). The second step then performs one
or more actions on the SUT which are finally checked with assertions in the third step.
Empty lines or even comments indicating the current step can be used to emphasize this
structure.

Avoid control structures. Use alternatives e.g. unroll loops, split up tests,
parameterize

Why: Control structures add a layer of complexity e.g. in a loop one has to keep in
mind the loop variable, in an if-structure one has to evaluate the alternative path.

How: If-structures can be avoided by creating one separate test case for each alter-
native path of the if-structure or by appropriate usage of assertions (instead of if
(condition) fail(); use assertTrue(condition);. Loops can be unrolled
when the amount of iterations is reasonable e.g. when adding three items into a data
structure. Parameterized tests are a good way to replace loops, which are used to iterate
through different instances of one test case e.g. in Listing 8.

72

7.2. Readability Factor Guidelines

1 @Test
2 public void testToppingRetrivalAfterReadValidRecipes() {
3 IceCreamMachine machine = new IceCreamMachine();
4 IceCreamRecipes recipes = new IceCreamRecipes();
5 recipes.add(new Recipe().name("Choco-Nuts").ice("Chocolate").topping("Hazelnuts"));
6 recipes.add(new Recipe().name("Vanilla").ice("Vanilla"));
7 recipes.add(new Recipe().name("Banana-Split").ice("Banana").topping("Chocolate Sauce"));
8 machine.readRecipes(recipes);
9 assertEquals("Hazelnuts", machine.getToppingOf("Choco-Nuts"));

10 assertEquals("None", machine.getToppingOf("Vanilla"));
11 assertEquals("Chocolate Sauce", machine.getToppingOf("Banana-Split"));
12 }
13
14 @Test
15 public void testToppingRetrivalAfterReadValidRecipes() {
16 // Arrange
17 IceCreamMachine machine = new IceCreamMachine();
18 IceCreamRecipes recipes = new IceCreamRecipes();
19
20 recipes.add(new Recipe().name("Choco-Nuts").ice("Chocolate").topping("Hazelnuts"));
21 recipes.add(new Recipe().name("Vanilla").ice("Vanilla"));
22 recipes.add(new Recipe().name("Banana-Split").ice("Banana").topping("Chocolate Sauce"));
23 // Act
24 machine.readRecipes(recipes);
25 // Assert
26 assertEquals("Hazelnuts", machine.getToppingOf("Choco-Nuts"));
27 assertEquals("None", machine.getToppingOf("Vanilla"));
28 assertEquals("Chocolate Sauce", machine.getToppingOf("Banana-Split"));
29 }

Listing 7: Test without and with emphasised structure.

7.2.2 Naming

Consistent naming. Use naming patterns and conventions for tests and
variables

Why: When someone has to read a test case e.g. when looking at a test failure, the
test name will be one of the first parts which will be read. Ideally the name prepares the
reader for the actual content of the test i.e. it provides enough context on the scenario
and summarises the primary intention of the test case. Beside test names variable names
are another source for context, hence a consciously chosen name is beneficial to readability.
Consistency of test and variable naming might not pay of for a single test but with
increasing size of the test suite it e.g. allows developers to expect a certain behaviour
from certain variables.

How: Consistent naming can be supported by naming patterns e.g. test_subject_out-
come_scenario or givenFooWhenBarThenBaz. There exist numerous alternatives, some
also violate common code style conventions e.g. usage of underscores in Java method
names. Such violations can be argued as long as the team uses some pattern to keep
test names consistent. Test names can include the tested method instead of the tested
behaviour. While this approach facilitates finding new test names it contains the risk that
test names have to be edited when the name of the tested method changes. Although
the length of test method names is not that critical as the length of production method
names, it still can get too long e.g. testApplyToMovesValuePassedOnShortNameToLong-

73

7. Readability Framework - Development and Evaluation

1 // Test from: org.apache.commons.lang3.StringUtilsContainsTest
2 @DefaultLocale(language = "de", country = "DE")
3 @Test
4 public void testContainsIgnoreCase_LocaleIndependence() {
5 final Locale[] locales = {Locale.ENGLISH, new Locale("tr"),
6 Locale.getDefault()};
7
8 final String[][] tdata = {
9 {"i", "I"},

10 {"I", "i"},
11 {"\u03C2", "\u03C3"}};
12
13 final String[][] fdata = {
14 {"\u00DF", "SS"}};
15
16 for (final Locale testLocale : locales) {
17 Locale.setDefault(testLocale);
18 for (int j = 0; j < tdata.length; j++) {
19 assertTrue(StringUtils.containsIgnoreCase(tdata[j][0], tdata[j][1]));
20 }
21 for (int j = 0; j < fdata.length; j++) {
22 assertFalse(StringUtils.containsIgnoreCase(fdata[j][0], fdata[j][1]));
23 }
24 }}
25
26 @ParameterizedTest
27 @CsvSource({
28 "en, true, i, I ",
29 "tr, true, i, I ",
30 "de, true, i, I ",
31 "en, true, I, i ",
32 "tr, true, I, i ",
33 "de, true, I, i ",
34 "en, true, \u03C2, \u03C3 ",
35 "tr, true, \u03C2, \u03C3 ",
36 "de, true, \u03C2, \u03C3 ",
37 "en, false, \u00DF, SS",
38 "tr, false, \u00DF, SS",
39 "de, false, \u00DF, SS"
40 })
41 public void testContainsIgnoreCase_LocaleIndependence(Locale testLocale,
42 boolean expected,
43 String a,
44 String b) {
45 Locale.setDefault(testLocale);
46 assertEquals(expected, StringUtils.containsIgnoreCase(a, b));
47 }

Listing 8: Test with loops written as a parameterized test.

NameIfLongNameIsUndefined 1. Besides common naming guidelines, naming certain
variables testee, expected, actual or adding these terms to the variable name determines
the roles of these variables in the test case.

7.2.3 Dependencies
One test should test one behaviour, multiple assertions can be used

Why: A test, which tests only one behaviour is shorter than a test case which sets
up and checks multiple behaviours. This allows developers to get an overview on the

1This test was part of the readability rating experiment. In the comments many participants criticised
the length of the test name.

74

7.2. Readability Factor Guidelines

test case more quickly. Checking multiple behaviours in one test case can also affect
the test name in a negative way. A test name should describe the content of the test
in a compact way, but the more behaviours are added to a test case, the more it will
become harder to find a compact name. Hence it is likely to end up with a test name
like testClassXWorksAsExpected.

How: Only asserting properties of the SUT which are strictly necessary for a given
test scenario, is a good way to avoid testing multiple behaviours at once. Resist the
temptation of asserting additional properties. This goes hand in hand with using as few
assertions as possible. For many simple scenarios one assertion is sufficient. When a test
case tests different behaviours, splitting up the test into separate tests is the primary
option. In special cases e.g. when different combinations of parameters are tested a
parameterized test may also be a viable solution.

7.2.4 Context & Comments
Provide enough context with comments or other forms of documentation
(assertion messages, documentation of the SUT, etc.)

Why: Abbreviations, complicated test scenarios, quirks of the system can be hard to
grasp not only for developers new to a project but also for the initial developers of a
project after enough time has passed. Therefore developers have to spend additional
time to come up with a sufficient explanation with the risk of misinterpreting parts of
the test, which could lead to errors in the future.

How: Although the primary sources for context are test and variable names, values of
variables and assertion messages can also provide helpful information. Depending on the
project or development environment fast access to the documentation of the SUT also
helps with understanding. If the measures before still do not provide enough context, the
missing bits of information can be provided by comments. Comments should be seen as a
last resort option, because they can clutter the test code and they have to be maintained
too.

7.2.5 Assertions
Use appropriate assertions

Why: Testing frameworks provide a wide range of assertion methods intended for
checking specific properties with little effort. The intended kind of check is embedded
in the name of the assertion, which is valuable information for the reader. One of the
best examples is checking exceptions in Java with JUnit5 shown in Listing 9, where the
exception handling can be replaced by one assertion.

How: Knowing the testing framework and the assertion it provides is a key requirement
for the ability to choose the appropriate assertions. From the point of readability, the

75

7. Readability Framework - Development and Evaluation

1 @Test
2 void testWithInappropriateAssertions() {
3 Calculator calculator = new Calculator();
4 try {
5 calculator.divide(1, 0));
6 fail();
7 } catch (ArithmeticException exception) {
8 assertTrue(exception.getMessage().equals("/ by zero"));
9 }

10 }
11
12 @Test
13 void testWithAppropriateAssertions() {
14 Calculator calculator = new Calculator();
15 Exception exception = assertThrows(ArithmeticException.class,
16 () -> calculator.divide(1, 0));
17 assertEquals("/ by zero", exception.getMessage());
18 }

Listing 9: Testing exceptions with inappropriate and appropriate assertions.

kind of assertions e.g. standard JUnit assertions or fluent assertions (e.g. AssertJ) was
not found to have an effect on readability.

7.3 Evaluation
In order to evaluate the readability framework, we set up a survey based on the initial
human-based readability study presented in Chapter 6 and compare the new results with
the initial ratings and the tool ratings.

Setup Survey

In this survey2 each participant gives ratings to the complete set of test cases shown
in Table 7.23. We used this list of 34 original and modified tests 4 in the B-version of
the initial readability study in Chapter 6. Since the participants evaluate the questions
on the original and the modified version of the same test, we ordered the test cases in
a way, that the tests are mixed. That is, tests with the same kind of modification are
separated by a minimum of three tests and both versions of one test (the A/B versions)
are separated by a minimum of five tests. Additionally, we create a reversed version, to
avoid bias coming from the ordering. At the start and at the end of the survey, we again
collect information on the participants in a pre-questionnaire and feedback on the survey
in a post-questionnaire. Furthermore, at the start of the survey, we provided an overview

2Surveys are available under: https://docs.google.com/forms/d/e/1FAIpQLScF_
MO3w4fgf7CAzZ9XXH-LxbFLc_hG8fyjR_BOZSwitbNE5g/viewform?usp=sf_link

https://docs.google.com/forms/d/e/1FAIpQLSeJcsMZlJVf851c6pRUnyE7rfh0hZ1uA_
AMquxhMZclyJQKvA/viewform?usp=sf_link

3In the actual survey, the test of the control group is only rated once. We copied the resulting value
in Table 7.2 for symmetry reasons.

4Material available under: https://drive.google.com/drive/folders/1pvFgQ4md2_
Gpthr_fx6x0H8vTiu89Qly?usp=share_link

76

https://docs.google.com/forms/d/e/1FAIpQLScF_MO3w4fgf7CAzZ9XXH-LxbFLc_hG8fyjR_BOZSwitbNE5g/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScF_MO3w4fgf7CAzZ9XXH-LxbFLc_hG8fyjR_BOZSwitbNE5g/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeJcsMZlJVf851c6pRUnyE7rfh0hZ1uA_AMquxhMZclyJQKvA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeJcsMZlJVf851c6pRUnyE7rfh0hZ1uA_AMquxhMZclyJQKvA/viewform?usp=sf_link
https://drive.google.com/drive/folders/1pvFgQ4md2_Gpthr_fx6x0H8vTiu89Qly?usp=share_link
https://drive.google.com/drive/folders/1pvFgQ4md2_Gpthr_fx6x0H8vTiu89Qly?usp=share_link

7.3. Evaluation

on the assessment questions, including short explanations, in order to create a common
ground with respect to the meaning and criteria of the questions.

Execute Survey

The survey was open for one week and invitations were sent out to acquaintances of
the author and tutors from TU Wien, who all have a background in Java programming.
The invited people were asked to start one of the surveys depending on if their day of
birthday is even or odd, to allow for an equal distribution across the two groups.

We received a total of five responses, which clearly limits the ability to generalise from
the results. We assume that the approximated survey duration of 1h up to 1h 20min and
no completion reward was a significant deterrent to potential participants. Hence, we
will improve these aspects in future iterations.

Preliminary Results

Although the low response count prevents any sensible statistical analysis, we still take a
look at the preliminary results of the ratings generated with the framework. Table 7.2
shows a summary of the aggregated framework ratings from the participants. For this, as
described in Section 7.1, each answer gets assigned 0 to 2 points, which are summed up
for each participant. This results in a scale from 0 (not readable) to 12 (well readable).
In the table, we refrain from normalising the scale to a range from 0 to 1 to avoid
decimals. Looking at the standard deviation in 27 cases it is below 2 and in 18 cases
the difference between minimum and maximum ratings are lower or equal 3. When we
normalise the standard deviation to the 0-1 range in 27 cases the standard deviation
is below 0.17. In the initial experiment (see the lower half of tests in Table 6.3), these
values are in most cases above 0.20. This suggests, that the ratings from the framework
are more concentrated and have less scatter, compared to the initial readability ratings.
Nevertheless, there are also cases where the ratings diverge e.g. test cases 4A, 9A have
standard deviations from 2.9 to 3.3. Normalised this translates to values from 0.24 to
0.27, which are not uncommon in the initial experiment.

In Figure 7.1, we add the the mean values of the framework ratings to the discrete
violinplots of the initial experiment alongside the various ratings of the readability
tool. Generally, in 29 of 36 cases, the mean framework ratings rate the tests more
readable than the median initial ratings. In some cases e.g. 3A; 9B; 14B, there is a large
difference between the frameworks and the median cases. As a detailed example test
case 3A contains a nested loop and the frameworks rating is close to the tool ratings
but fails to capture the human ratings. Also in most cases (30) the ratings from the
framework are higher than the median human ratings. Hence, the framework might
profit from adaptations which would lead to lower ratings. For measuring the accuracy
of the frameworks ratings we apply the same method as for the tools rating described in
Subsection 6.2.5 and used in Table 6.7. That is, we count the amount of test cases where
the frameworks rating is in between the 0.25% and the 0.75% quantile of the participants

77

7. Readability Framework - Development and Evaluation

A B
Idx Test Name mean sd min max mean sd min max
1 testPrimitiveTypeClass Serialization 8.6 1.3 7 10 10.4 2.1 7 12
2 testReducedFraction 6.0 2.0 4 9 8.2 1.3 7 10
3 testContainsIgnoreCase_LocaleIndependence 5.0 1.2 4 7 10.2 1.1 9 11
4 testAllNullBooleans 8.2 3.3 3 12 12.0 0.0 12 12
5 testSerializeAndParse 8.4 0.9 7 9 11.4 1.3 9 12
6 testSetContentObject 8.4 2.5 6 12 10.2 2.5 6 12
7 testFourElement2 5.2 1.9 2 7 5.0 1.6 3 7
8 showsAllStsGaDownloads 8.4 1.8 6 10 7.6 1.1 6 9
9 indexedReadAndIndexedWriteMethods 8.0 2.9 5 12 8.8 1.6 7 11
10 Control 4.6 2.5 2 7 4.6 2.5 2 7
11 Control & Filler 4.6 2.5 2 7 8.4 1.1 7 10
12 Filler 4.4 1.5 3 7 6.0 1.9 4 8
13 testChoicesWithValidDefaultValue 7.4 1.3 6 9 10.6 1.3 9 12
14 testApplyToMovesValuePassedOnShortNameToLongNameIfLongNameIsUndefined7.2 1.5 5 9 10.0 1.6 8 12
15 testApplyToWithMultipleTypes 6.8 1.3 5 8 10.4 1.7 8 12
16 Student Solution03 10.2 0.4 10 11 10.8 0.8 10 12
17 Student Solution02 11.2 0.8 10 12 11.2 1.3 9 12
18 Student Solution01 12.0 0.0 12 12 11.6 0.5 11 12

Table 7.2: Summary of preliminary results of readability ratings generated with the
framework. The scale ranges from 0 (not readable) to 12 (well readable).

rating. This range is represented by the ’box’ of the boxplots. With this measurement
18 from 36 test cases (50%) are inside the box. The tools ratings shown in Table 6.7 are
in the box in 22 cases for these test cases (exp. version B) but in the other version (exp.
version A) only 15 cases are in the box.

Taking a look at the working time, the five participants needed something between 1h
and 1h30min to complete the assessment of the given 34 test cases (around 2 to 2.5
minutes per test). A direct comparison to the initial experiment, where the participants
mostly needed 30 to 60 minutes (around 2.5 to 5 minutes per test) for 12 test cases, is
difficult, because in the initial experiment they had to give free text answers. However,
in a code review situation, developers will probably have to articulate and reason their
opinion on a piece of code. Since the framework provides reasons for the ratings this
means that with the help of the framework, developers can faster give reasoned opinions
to the readability of test cases.

Summing up, the preliminary results show a lower standard deviation in the ratings
compared to the ratings without assessment questions in the initial readability study. The
ratings are between the 0.25% and the 0.75% quantile of the initial readability ratings in
50% of the cases. From an efficiency standpoint the rating can help developers to rate
and provide reasons to readability of test code faster compared to gut feeling ratings.

78

7.3. Evaluation

A(14) B(15)

0.00

0.25

0.50

0.75

1.00

0

2

4

4

4

0

1

4

7

3

1 (1,2)

A(14) B(14)

3

6

1

2

2

2

6

2

3

1

2 (3,4)

A(17) B(15)

11

3

3

0

0

0

4

2

6

3

3 (5,6)

A(14) B(17)

0.00

0.25

0.50

0.75

1.00

2

2

1

6

3

0

0

2

8

7

4 (7,8)

A(15) B(16)

1

3

1

6

4

0

2

0

11

3

5 (9,10)

A(16) B(15)

3

3

4

6

0

0

1

3

8

3

6 (11,12)

A(16) B(17)

0.00

0.25

0.50

0.75

1.00

4

3

7

2

0

5

7

2

2

1

7 (13,14)

A(14) B(16)

2

2

6

2

2

0

6

6

4

0

8 (15,16)

A(14) B(15)

5

3

4

1

1

3

4

5

3

0

9 (17,18)

A(16) B(17)

0.00

0.25

0.50

0.75

1.00

4

5

3

4

0

4

11

1

1

0

10 (19,20)

A(15) B(16)

2

5

7

1

0

1

1

5

7

2

11 (21,22)

A(17) B(15)

8

6

3

0

0

7

3

2

2

1

12 (23,24)

A(16) B(17)

0.00

0.25

0.50

0.75

1.00

1

1

2

12

0

0

4

3

7

3

13 (25,26)

A(15) B(16)

2

7

4

1

1

3

6

3

4

0

14 (27,28)

A(16) B(15)

3

5

3

5

0

0

3

3

2

7

15 (29,30)

A(16) B(16)

0.00

0.25

0.50

0.75

1.00

2

2

2

7

3

0

3

2

7

4

16 (31,32)

A(15) B(15)

0

1

2

5

7

0

0

2

2

11

17 (33,34)

A(15) B(15)

0

1

1

4

9

0

0

4

7

4

18 (35,36)

Median (human) Framework (mean) Original (tool) Spaces (tool) Tabs (tool)

Figure 7.1: Discrete violinplots for initial participants readability ratings, mean readability
framework and readability tool ratings for survey version B.

79

CHAPTER 8
Discussion and Limitations

Firstly we recall and discuss the findings of the research questions we defined to reach
the goal of proposing a readability assessment framework for test code. Secondly, we
address various threats to validity based on the threats listed in Wohlin et al. [74].

Note: Parts of Section 8.2 are based and extended from a work under review for another
publication as Winkler et al. [73].

8.1 Discussion
RQ1: What do we know about test code readability in academic
literature?
In the first question we laid the foundation of this work with a systematic mapping study
(SMS) with academic literature, with work from Petersen et al. [55, 56] in mind.

RQ1.1: What is the importance of test code readability in scientific com-
munities?
Answer: The results indicate an ongoing general interest in the readability of
test code (wide range of venues) with a strong focus on testing related venues and
software engineering automation.
Discussion: We did not investigate how the field of test code readability compares
to other fields of software engineering with respect to the published studies per
year. E.g. it may be that other fields have grown at a faster rate compared to test
code readability in the given time period.

RQ1.2: Which types of studies are published and which research methods
are used?

81

8. Discussion and Limitations

Answer: The prevalent types of study are experiments which can contain a survey.
Human participation in the experiments is common.

For gathering humans opinion on readability online questionnaires with Likert
scales and free text answers are common. The dominant result analysis consists of
a statistical analysis with a Wilcoxon test after an optional test on normality with
the Shapiro-Wilk test.

Discussion: Concerning the types of studies and research methods we report the
study types reported by the authors of the studies. We rely on the correctness of
this information and do not use a different classification scheme.

RQ1.3: Which factors influence readability of test code?
Answer: The majority of studies investigates influence of individual factors on
readability. Overall the top three of investigated factors are test names, test
structure and identifier names.

Discussion: Although we did not investigate or categorise the magnitude of
influence or importance of the influence factor it is interesting to see, that the top
two influence factors are in accordance with the top rating criteria obtained from
our testing challenge. This confirms the importance of these and further studies in
these directions.

RQ1.4: Which kinds of tests were investigated?
Answer: The main focus of readability investigation lies on automatically generated
tests, which are often compared to manually written tests.

Discussion: The focus on readability investigation of automatically generated
tests comes to no surprise considering that current test code generators have much
room for improvement (e.g. Daka et al. [12, 13], Palomba et al. [53], Roy et al.
[60]). When improving the readability of test code generators the knowledge on
what was improved can also be helpful when humans write test code. By comparing
manually written tests to automatically generated tests solely by a readability
rating, e.g. a Likert scale, we obtain knowledge about which test is more readable
but the factors, which influence this rating, often remain unknown. The approach
by Setiani et al. [66] and our approach are different to these studies, because we
also extract readability criteria from free text answers.

RQ1.5: Which executable models for assessing code readability exist?
Answer: We found one tool by Scalabrino et al. [64], which can be used for
assessing code readability.

Discussion: Although there exist some studies which use executable models to
rate readability (e.g. Buse et al. [8], Choi et al. [11], Xu et al. [75]), at the time
of writing there only exists this one tool by Scalabrino et al. [64]. However in

82

8.1. Discussion

the future the work by Karanikiotis et al. [38]1 may be the next state of the art
readability rating tool available to the public.

RQ2: What is the opinion of practitioners on test code readability?
We assume developers frequently use the internet in their daily work, for recherche,
because it provides easy access to information and inspiration. Hence we systematically
gathered sources, which deal with test code readability.

RQ2.1: Which influence factors are discussed in grey literature?
Answer: Most of the sources discuss structural influence factors, test naming,
usage of assertions and helper methods and test dependencies.
Discussion: Also a majority of the sources recommend to be consistent, be it in
the tests structure when using patterns like Arrange, Act, Assert; when naming
tests with patterns like givenFooWhenBarThenBaz ; or naming identifiers.
Overall the recommendations or best-practice examples in the sources seem reason-
able, often the authors of the (mostly) blog entries explain their opinion and give
code examples. One the one hand there are influence factors where there are pretty
clear opinions on the best-practice solution e.g. for Dependencies all sources which
cover this factor agree that one test should only test one behavior. On the other
hand different opinions exist e.g. the inclusion of a concrete method name in the
test name. Such differences may be attributed to the features of the programming
language, testing framework or generally the context of the author.

RQ2.2: What is the difference between influence factors in scientific liter-
ature and grey literature?
Answer: There is a clear intersection in the factors investigated by scientific and
grey literature. However, the factors are sometimes covered in different ways. We
found two influence factors exclusively covered in scientific literature and extracted
five new influence factors from grey literature.
Discussion: Overall we found around three times as much relevant grey sources
as compared to scientific sources. This is no surprise given the lower entry level for
a blog entry compared to a scientific study. The influence factors Test summaries
and Textual features which exclusively appear in academic sources can be argued
with the exclusiveness of the underlying technology to academia. That is, test
summaries as investigated by the studies are generated from test code and the
required software does not seem to be publicly available or well known. This also
holds for readability models like textual features. Of course practitioners could
also write test summaries themselves but considering that documenting production
code and software testing are not the most popular activities, the nonexistent test
summaries may not be that surprising.

1Readability assessment website by Karanikiotis et al. https://readability-evaluator.
netlify.app/

83

https://readability-evaluator.netlify.app/
https://readability-evaluator.netlify.app/

8. Discussion and Limitations

From the grey sources we extracted five new readability factors like usage of Helper
structures or Fixtures. The reason for the absence of these factors in scientific
literature may be attributed to the focus of academia on test code generators, which
may be not evolved enough to deal with these problems yet. This could also be
one reason for the differences in the coverage of readability factors.

RQ3: What insights can we obtain from a readability experiment with
students?
We conducted a human-based A/B experiment on readability over multiple years with
participants from software testing courses at TU Wien. The participants were asked
to rate and reason on test cases from mostly open source software. The test cases
target different factors relevant to readability, which we found in the preceding studies
on academic and grey literature. We modified the test cases to create the alternate/B
versions for the experiment according to best practice. The analysis of the results consists
of a statistic analysis with R following an approach, which is also used by a study from
Roy et al. [60] with similar data. In order to obtain criteria relevant to readability ratings
we categorised and grouped free text answers from the participants.
Last but not least we evaluate the accuracy of readability rating tool from Scalabrino et
al. [64] with the ratings obtained from the human experiments.

RQ3.1: Do factors discussed in practice show an influence on readability
when scientific methods are used?
Answer: Applying test code best practices is no silver bullet for improved read-
ability. Statistical analysis of the aggregated results show significant differences
between original and modified versions in five out of ten modifications. In these
cases, with the expected exception to the modification "Remove Comments", the
modifications have a positive influence on readability ratings.
Discussion: The analysis confirms that best practices are not hard rules and
their successful application depends on the concrete case. The results of Remove
Comments and Specific Assertion are good examples, because for comments a
common opinion is to avoid them, because they are an indicator for design flaws.
Nevertheless the tests where we removed the comments were rated less readable
than the original counterparts. A similar case is the use of assertion with Hamcrest
matchers or AssertJ compared to standard JUnit assertions. In the grey sources we
found usage of AssertJ or similar assertion libraries is often connected with a more
natural language style for asserting properties which suggests that the readability
is increased. However, our results show no such effect which is in accordance to
Leotta et al. [41]. Another possible explanation for absence of effects could be
that the (positive) effects of the modification are masked by more prominent effects
which appear in both versions of the test case.

RQ3.2: What criteria do students use for readability ratings?
Answer: The high level rating criteria used by the participants of the experiment

84

8.1. Discussion

are Naming, Structure, Dependencies and Context & Comments. On a lower level
test naming, testing only one behaviour, ensuring a clear structure and providing
enough context on the system under test are criteria mentioned in a majority of
comments.
Discussion: We categorised the free text comments on the participants readability
ratings on two categories (super and sub rating criteria, super criteria contain one
or more sub criteria). Based on the categorisation or the structure of the groups
slightly different results are possible. Still, the top two rating categories of the
participants (test naming and structure) are also in the top two of readability
factors investigated by scientific and grey literature. Also these results are to some
extent comparable to results from Setiani et al. [65].
The rating criteria can be used for justifying further research into other readability
factors. Exemplary the for the factor Dependencies we only found three publications
or for the factor Structure, where the publications focus on countable properties of
test code more than semantic structure.

RQ3.3: What is the impact of developer experience in context of readabil-
ity?
Answer: We found a significant difference with a small effect size in the readability
ratings between experience levels in one of the four possible cases. Therefore we do
not see much impact of developer experience in context of readability.
Discussion: Interestingly the results do not support a strong influence of expe-
rience on readability ratings. Indeed in one of the four analysed cases there is
a significant difference with a small effect size but this could also be a random
deviation. In contrast previous research on maintenance tasks Ceccato et al. [9] or
understandability tasks Setiani et al. [65] show an influence of experience on such
tasks. Therefore we expected to see clearly visible influence of experience on the
readability ratings, because performing such tasks in general includes reading the
code at least once. Maybe not overall experience but experience with the concrete
system under test is more important.

RQ3.4: What is the accuracy of automatic readability assessment in com-
parison to students rating?
Answer: In 37 out of the 72 test cases (around 51%) the tools rating is between
the 0.25% and the 0.75% quantile of participants ratings. Invisible differences in
formatting can influence the tools rating in extreme cases up to 0.25 on a scale
from 0 to 1.
Discussion: We evaluated the readability rating tool from Scalabrino et al. [64].
Depending on the definition of accuracy of the tool i.e. ’With which rating does
the tool represent the ratings of the humans?’, different results can be obtained.
Exemplary, if the tools rating only has to be on the side of the rating, where the
median rating of students resides, the tool would represent the humans rating in
around 66% of the cases (also depending on the special case where the median is

85

8. Discussion and Limitations

0.5). This may sound promising at first sight but in this setup the possibility for a
random correct rating is 50%, because the median can either be in the lower or the
upper half of the scale and the tool has a 50:50 chance of ’guessing’ the correct half.
In combination with the influence of invisible formatting differences e.g. indented
lines which are otherwise empty or a mixture of tabulator and space characters for
indentation, we do not think that the readability framework would be improved by
the addition of this tool yet.

8.2 Limitations
In the following sections we discuss various threats to validity according to Wohlin et al.
[74].

8.2.1 Internal validity
Internal validity can be threatened e.g. when the results are affected by a biased selection
of participants of an experiment or sources for a literature review. Interactions between
participants of an experiment also fall into this category.

• In context of the Systematic Mapping Study (SMS) and the grey literature study,
the keyword, search string, analysis items, and the data extraction and analysis
has been executed by one of the authors and intensively reviewed and discussed
within the author team. The SMS was also discussed with external experts.

• The search strings for the SMS focus on the readability of test code. The terms
understandability and legibility were used as additional search strings to obtain a
wider range of publications.

• The search strings for the grey literature study contain readability and understand-
ability but not legibility, because this search term did not contribute to the result
set in the SMS.

• The controlled experiment setup for the initial readability study was tested in a pilot
run to ensure consistency of the experiment material. We have used a cross-over
design of test case samples to avoid bias of the experiment participants caused by
selection and ordering of test cases. The individual runs of the experiment were
conducted with different participants, hence learning or saturation effects should
be minimal to non-existent.

• Concerning the control groups in the empirical study, the Wilcoxon Rank Sum
test does not suggest a significant difference between the readability ratings, when
comparing groups with the same questionnaire. However, there is a significant large
effect when comparing control groups of different questionnaires. We hypothesize
that participants might adapt their rating on the readability of the previous tests.

86

8.2. Limitations

One of the questionnaires contains six original automatically generated tests. Previ-
ous studies have shown that such tests have worse readability than manually written
tests. According to our hypothesis the control group in this questionnaire should
have a better readability rating than the the control tests in the questionnaire where
no automatically generated tests are present. This hypothesis is strengthened by the
medians (med_control_gen=0.5 vs. med_control_no_gen=0.25). Additionally,
the sign of the large effect size of δ = 0.58 shows that the control group in the
questionnaire with automatically generated tests has better readability ratings than
other control groups.
Apart from the tests in the control group, the unmodified tests from the modifica-
tions Loops vs. Unrolled (LU) and Loops vs. Paramaterized (LP) are also the same.
Hence, we compare the ratings from these A groups. When looking at the median
values the hypothesis seems to hold, because the values from the LP modification
are lower in two of three tests (med_LU vs. med_LP: 0.75 vs. 0.75; 0.5 vs. 0.25;
0.25 vs. 0). However, the Wilcoxon test does not detect a significant difference in
the ratings with p = 0.11.

• The participants from the concept evaluation of the readability assessment frame-
work are acquaintances from the author of this work.

8.2.2 External validity
External validity focuses on the overall relevance of the results i.e. how well do the results
generalize to day-to-day practice?

• The Systematic Mapping Study is limited to academic context although we include
a wide range of publications by searching with Scopus, ACM and IEEE. We reduce
this limitation by conducting a survey of grey literature with Google which returned
views of practitioners mostly in the form of blogs. By combining the results from
both studies we could extract overlapping topics and topics discussed in either
academic or practitioner context.

• The experiment was conducted with students from three iterations of the master
course software testing at TU Vienna, which could limit generalization. By collecting
information on the experience of the participants, we know that most participants
already worked in industry and have at least junior level experience. Therefore,
the experiments results are representative for junior developers.

• Except for three tests, we selected all test cases from real world projects and
applied common code refactorings to create alternative versions for the experiment.
Nonetheless the results are still limited to the selected test cases.

• The participants primarily rated readability of the test cases with the google.forms
survey. Since the survey only contains screenshots of the test cases, the appearance
of the code (font, highlighting, ...) may differ from their own preferences. To give

87

8. Discussion and Limitations

the participants the option to use their preferred code appearance, we provided
text files with the test cases of the different groups. However, this option was only
used rarely.

• The contents of the readability framework originate from the experiment with
mostly junior level participants and the literature surveys, which also contains the
opinions from practitioners. While this approach is a good foundation, the external
validity could be further increased with an evaluation with more participants than
the evaluation presented in this work.

• The test cases used in the evaluation of the readability framework are a selection of
the tests used in the initial readability study. Hence, mostly test cases from open
source software projects where used and the same limitations apply.

• The participants of the framework evaluation only rated the test cases with
google.forms, hence the same limitations as for the initial readability study apply.

• At this stage the usefulness of the framework for practitioners is limited, because
the questions have to be answered manually. We deliberately choose to realise the
framework as a questionnaire, because it allows us to evaluate our assumptions
quickly. While answering of some of the questions related to syntax, like absence of
control structures or appropriate usage of assertions could be implemented with
static code analysis tools like Checkstyle2, other questions, which involve the notion
of semantics, need a more advanced approach. Such an approach may contain
deep learning solutions, which need large amounts of training data. Exemplary,
Roy et al. [60] use a dataset of 274 projects containing 96,534 unit test files for
the DeppTC-Enhancer in order to improve the readability of unit tests. Since we
have not evaluated if the readability factor question can capture human readability
ratings at all, such an investment of time is out of scope for this work.

8.2.3 Construct validity
’Construct validity concerns generalizing the result of the experiment to the concept or
theory behind the experiment’, Wohlin et al. [74].

• We conducted the studies for academic and grey literature with insights and best-
practices from literature studies by Garousi et al. [27, 29] and Petersen et al. [56].
The empirical experiment was set up with guidelines proposed by Wohlin et al.
[74].

• All investigations in this work are primarily limited to readability, e.g. we did not
investigate side effects on maintainability or productivity from the modified test
cases used in the experiment. Still, we have the opinion that maintaining readable

2Checkstyle homepage: https://checkstyle.sourceforge.io/

88

https://checkstyle.sourceforge.io/

8.2. Limitations

tests is in general more enjoyable or pleasant than working with unreadable tests.
When the maintenance is more pleasant, there should be less resistance against
performing such tasks. Hence, the tests get maintained more often.

• We found no influence of experience on readability ratings in our analysis. However,
we do not cover the complete range of experience present in real life. Our participants
can have zero to some years of professional software development experience, but we
certainly do not have participants with ten or more years of experience. Therefore,
this result is also limited to junior-level developers.

• In the experiments announcement and information material the students were told
that the reward (bonus points for the course) depends on their active participation.
This could motivate the participants to be nit-picky when criticising readability of
test cases, because when they find many points to criticise, they can write more text
into the comment fields, which proves their active participation. This effect may
impact the ability to generalize the ratings for the concrete test cases. Nevertheless,
the aggregation of rating criteria is still valid, because the most important points
of criticism should still be mentioned the most.

8.2.4 Conclusion validity
The validity of conclusions is threatened when e.g. assumptions for statistical tests are
violated or the measures are unreliable which can be the case when a reproduction of an
experiment gives different results, Wohlin et al. [74].

• We applied the listed in- and exclusion criteria on the raw results of the literature
search and discussed the selected sources as a team. We documented the used
search strings, the search engines and the overall process to allow a reproduction of
the results.

• The experiment and evaluation survey setup with the online questionnaire in a
setting not controlled by the authors introduces the risk of participants being
disturbed by random events. We tried to reduce this risk by giving the participants
information on the estimated work duration of one run, which allows them to
schedule their run.

• The classification of rating criteria was conducted by one of the authors, by assigning
comments to a base set of categories and by adding additional categories as needed.
Although the author tried to be as objective as possible, it may be that a different
author would add other categories or classify comments differently, because a
comment is interpreted in another way.

• We used the Shapiro-Wilk test for testing for normality, which would allow us to
use a parametric statistical test. This approach is also used by Roy et al. [60]
whose methodology and data is similar to ours.

89

8. Discussion and Limitations

• Before each statistical analysis with the Wilcoxon Rank Sum test, we tested for
normality with the Shapiro-Wilk test. Since the Shapiro-Wilk test does not suggest
normality for the data sets and the data is unpaired, we used the Wilcoxon Rank
Sum test for every statistical test in this work.

• We report the effect size with Cliff’s Delta, because it allows an interpretation of
the magnitude of difference between two groups. It is also used by other studies in
this field like Grano et al. [30]

• Although the readability framework provides information on the readability factors
targeted by the questions, there still is room for interpretation when answering the
questions. A software based solution, which would use machine learning approaches,
would make the ratings more consistent and to some degree also more objective.

• The concept evaluation of the readability assessment framework has too few partic-
ipants in order to draw reliable conclusions from the generated ratings. A proper
evaluation needs more participants.

90

CHAPTER 9
Summary and Future Work

In the following sections we summarize our findings, list potential threats to validity and
conclude this work with possibilities for future work.

Note: Parts of Section 9.1 are based and extended from a work under review for another
publication as Winkler et al. [73].

9.1 Summary
The goal of this work was to propose a framework for readability evaluation of test code.
For this we conducted a family of empirical studies and started with a systematic mapping
study (SMS) on academic literature to obtain an overview on the influence factors to
readability investigated by the scientific community. Furthermore we searched for a
tool for rating readability. We broadened the scope of the SMS by adding practitioners
perspectives from a grey literature survey. We conducted an experiment in academic
context with 77 participants to investigate the impact of a selected set of influence factors
from the combination of sources from academia and practice. We also gathered the
participants rating criteria and compared the ratings from a readability rating tool to the
participants ratings. Finally, we combined the results into a readability framework, which
can be used to rate readability of test code and gives information on factors influencing
readability of test code.

We have seen an ongoing general interest in test code readability in academia based on
the timeline of publications and publication venues (see Subsection 4.2.3). An ongoing
interest in this topic is also visible from the publication timeline for grey literature sources
(see Figure 5.3).

Differences between types of sources and methodology. Scientific literature primarily uses
experiments in combination with surveys followed by a statistical analysis for investigating
influence factors to code readability (see Subsection 4.2.4). Grey literature mostly consists

91

9. Summary and Future Work

of blogs of practitioners who share their own experience or opinion on test code readability
(see Figure 5.4).
Unique readability factors. Both grey and scientific literature contain independent sets of
readability factors. For scientific literature this set consists of readability models, which
combine individual readability factors, and test code summaries (see Subsection 4.2.5).
For grey literature we found five additional factors e.g. helper structures or test fixtures.
Concerning these factors there exist different views and even conflicting opinions. These
can be related to the used/applied technology, testing framework, and test level/approach
(see Subsection 5.2.1). The unique readability factors found in grey literature and the
overall mapping of readability factors can be used in the scientific community for justifying
research into underrepresented topics, which could also improve the readability of test
case generators. For practitioners like testers and developers the comparison of influence
factors is of interest, because it provides scientific viewpoints on best-practice approaches
discussed in grey literature.
Focus of interest. The scientific community has a focus on investigating or improving
readability of automatically generated tests (see Subsection 4.2.6). Practitioners on the
other side do not deal with with test code generators in the context of readability but
focus on problems from their day-to-day work. This may be one of the reasons why
certain readability factors are exclusive to the scientific community and practitioners.
Insights from testing experiment. We investigated ten widely discussed readability factors.
For five out of ten modifications, which map to readability factors, (Loops vs. Unrolled
Loops; Package Names, If-Structures; Remove Comments; Loops vs. Parameterized and;
Split Up Tests) there exists a statistical significant influence on the readability of the
test cases (see Subsection 6.2.2). The other modifications do not show such a strong
influence on the readability, which could be caused by the nature of best practices i.e.
best practices are only applicable in certain situations and they are not silver bullets
(e.g., modification Try Catch vs. AssertThrows; see Subsection 6.2.2). Our investigation
of the participants experience levels shows no clear effect on the readability ratings
(see Subsection 6.2.4). This is an interesting result, because previous research found
experience influencing maintenance (Ceccato et al. [9]) and code understandability tasks
(Setiani et al. [65]). Since such tasks usually require developers to read the code at
least once some influence of experience on readability would have been plausible. The
comparison of the readability rating tool from Scalabrino et al. [64] to the participants
ratings shows that the tools rating does not capture the participants opinion so well that
no human inspection is needed (see Subsection 6.2.5). The findings on the influence of
different whitespace characters can be used to improve this tool or raise awareness for
such influence factors for authors for other tools.
Finally, we extracted groups of rating criteria from free text comments into where the
most common high level criteria mentioned are Naming, Structure, Dependencies and
Context & Comments (see Subsection 6.2.3). On that note these results are to some
extent comparable to results from Setiani et al. [65]. Just as the collection and mapping
of readability factors these rating criteria can be used as input for other research projects,

92

9.2. Future Work

which e.g. could improve the readability of automatically generated tests. For testers
and developers or instructors the criteria can act as information about which readability
criteria deserve the most care.
Readability framework. We combined the previous findings in a readability framework,
which consists of a questionnaire (see Section 7.1) and guidelines on factors influencing
readability (see Section 7.2). While the questionnaire can be used by practitioners for
test code reviews, the guidelines provide additional background on individual readability
factors and best practice examples. The evaluation with 5 human participants preliminary
shows reduced scatter between the participants ratings compared to ratings without the
questionnaire. Furthermore, the framework is able to capture the humans rating in half of
the test cases investigated, although it often gives a more optimistic rating. That is, the
framework rates a test more readable than it might really be. Finally, the participants
of the evaluation where more time efficient when assessing the test cases. However,
the amount of participants is low, which limits the ability to generalise the evaluation.
Nevertheless, the questions can surely act as an input and speed up for test code reviews.
Although the ratings generated with the framework may not be accurate in all cases,
answering the questions quickly gives a first reasoned impression of the readability. When
the developer does not feel like the resulting rating conforms with the gut feeling, she/he
can still think about additional reasons, which affect the readability. The collected best
practice guidelines give advice on how tests could be improved with respect to readability,
which then also influence maintainability positively. These contributions are especially
interesting for instructors, developers and testers.

9.2 Future Work
In this work we presented a first proposal for a readability framework and conducted
a evaluation with human participants. However, the concept evaluation only consists
of 5 participants, which strongly limits its general validity. Therefore, a evaluation
on a larger scale would deliver more hints on how the framework could be optimised
and provide more robust results with respect to the agreement of raters, the accuracy
of ratings and the possible speed up of the review process. Another opportunity for
tuning the readability framework is the generation of the readability score. Right now
all questions contribute to the rating equally. Since the rating criteria extracted from
free text comments are not equally distributed, some factors appear more often than
others. Hence, a different weighting of the questions could make the generated score
more similar to the aggregated gut feeling readability rating of humans. Additionally,
after a thorough evaluation of the framework, machine learning techniques should be
utilised to answer the questions, which can not be answered sufficiently by static code
analysis tools like Checkstyle. In the current state, the framework generates work for
its users when it solely used to generate readability ratings i.e., someone has to answer
the questions. Stakeholders like project managers or team leaders would profit from an
automated readability assessment, which allows them to get an overview on the quality
of their test suites without much additional work.

93

9. Summary and Future Work

We also plan to investigate further factors influencing readability and refactorings,
which we found with the literature studies, with additional iterations of our testing
challenge. This will further deepen our knowledge on test code readability and also lead
to improvements of the readability framework.

94

List of Figures

2.1 Common representatives of traditional and agile software development pro-
cesses. 8

3.1 Redrawn design science framework from Wieringa [71], adapted to the research
approach of this work. 16

3.2 Research overview in IDEF0 notation. 17

4.1 SMS process and amount of received publications. 24
4.2 Example for a slide summarising contents of a study. 26
4.3 Contribution of search terms. 31
4.4 Number of studies per year and accumulated. 32
4.5 Venn diagram showing combinations and amount of different types of tests

analyzed by the relevant studies. 36
4.6 Tool search process. 37

5.1 Grey literature review process and amount of received grey sources. . . . 39
5.2 Snippet from grey literature analysis showing sources and extracted readability

factors. 41
5.3 Factors investigated by grey literature. The bottom most row gives the amount

of sources per year, which may investigate multiple factors. 42
5.4 Identified types of the selected grey sources. 43

6.1 Experiment process and amount of received responses. 51
6.2 Example screenshot from comment categorisation. The comments are stacked

beside the sub-factors. Yellow comments are duplicates. 55
6.3 Distribution and box plots of aggregated readability ratings per A/B modi-

fication. Ratings from a five-point Likert scale range from 0 (not readable)
to 1 (very readable). The numbers on the right hand side of the histograms
represent the amount of answers for this rating. 57

6.4 Mapping from answers in the questionnaire to experience levels. 63
6.5 Distribution of participants experience levels. For each version groups with

similar colors work on the same test cases in reversed order. 64
6.6 Distribution of readability ratings by experience levels. 65
6.7 Comparison of tool-generated readability ratings for test cases in both survey

versions. Values shown in subfigure a are result of e.g. |1Av1 − 1Av2| . . 66

95

6.8 Discrete violinplots for participants readability rating and readability tool
ratings for survey version A. 67

6.9 Discrete violinplots for participants readability rating and readability tool
ratings for survey version B. 68

7.1 Discrete violinplots for initial participants readability ratings, mean readability
framework and readability tool ratings for survey version B. 79

96

List of Tables

4.1 Search strings in different databases. 25
4.2 Final Set of Publications based on the Search Process. 27
4.3 Reported factors influencing test code readability. 35

5.1 List of all selected sources by years descending found by the grey literature
search, mapped to factors relevant to readability. Orange factors were al-
ready found in the previous SMS. Asse: assertions, Co: comments, Depe:
dependencies, IdN: identifier names, Str: structure, TeD: test data, TeN:
test names, TS: test summaries„ TF: textual features, DRY: DRY principle,
DSL: domain specific language, Fix: fixtures, Help: helper structures, Para:
parameterized test . 44

5.2 Differences in influence factors between scientific and grey literature. (Over-
lapping factors shown as highlighted rows.) 48

6.1 Listing of test cases with their assigned influence factor, originating project
and differences made for both versions. A (original version) and B (altered
version) denote the groups. 52

6.2 Information on participants experience. 55
6.3 Statistical analysis of experiment results using a two-sided Wilcoxon Rank

Sum test (p) and Cliff’s D (δ) for effect size. δ is only shown for p < 0.05. 58
6.4 Super category of influence factors with amount of assigned comments. . . 60
6.5 Top 15 of sub category of influence factors with amount of assigned comments. 61
6.6 Participants perception after rating readability of test cases. 62
6.7 Amount of test cases where the tools rating is between the 0.25% and the

0.75% quantile (i.e. the ’box’ of the boxplot) of participants ratings. . . . 69

7.1 Set of questions related to readability factors. 71
7.2 Summary of preliminary results of readability ratings generated with the

framework. The scale ranges from 0 (not readable) to 12 (well readable). 78

97

Bibliography

[1] S. Afshan, P. McMinn, and M. Stevenson. Evolving readable string test inputs using
a natural language model to reduce human oracle cost. In Proceedings - IEEE 6th Int.
Conf. on Software Testing, Verification and Validation, ICST 2013, pages 352–361,
2013.

[2] M.M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds. An industrial
evaluation of unit test generation: Finding real faults in a financial application. In
Proceedings - 2017 IEEE/ACM 39th Int. Conf. on Software Engineering: Software
Engineering in Practice Track, ICSE-SEIP 2017, pages 263–272. Institute of Electrical
and Electronics Engineers Inc., 2017.

[3] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave Binkley.
Are test smells really harmful? an empirical study. Empirical Software Engineering,
20(4):1052–1094, 2015.

[4] Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

[5] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven Amann,
and Andy Zaidman. Developer testing in the ide: Patterns, beliefs, and behavior.
IEEE Transactions on Software Engineering, 45(3):261–284, 2017.

[6] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In
Future of Software Engineering (FOSE’07), pages 85–103. IEEE, 2007.

[7] D. Bowes, T. Hall, J. Petrić, T. Shippey, and B. Turhan. How good are my tests?
In Int. Workshop on Emerging Trends in Software Metrics, WETSoM, pages 9–14.
IEEE Computer Society, 2017.

[8] Raymond PL Buse and Westley R Weimer. Learning a metric for code readability.
IEEE Transactions on Software Engineering, 36(4):546–558, 2009.

[9] M. Ceccato, A. Marchetto, L. Mariani, C.D. Nguyen, and P. Tonella. An empirical
study about the effectiveness of debugging when random test cases are used. In
Proceedings - International Conference on Software Engineering, pages 452–462, 2012.
doi: 10.1109/ICSE.2012.6227170.

99

[10] M. Ceccato, A. Marchetto, L. Mariani, C.D. Nguyen, and P. Tonella. Do automat-
ically generated test cases make debugging easier? an experimental assessment of
debugging effectiveness and efficiency. ACM Transactions on Software Engineering
and Methodology, 25(1), 2015. doi: 10.1145/2768829.

[11] Sangchul Choi, Suntae Kim, Jeong-Hyu Lee, JeongAh Kim, and Jae-Young Choi.
Measuring the extent of source code readability using regression analysis. In Inter-
national Conference on Computational Science and Its Applications, pages 410–421.
Springer, 2018.

[12] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer. Modeling readability to
improve unit tests. In 2015 10th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE 2015 - Proceedings, pages 107–118, 2015. doi: 10.1145/
2786805.2786838.

[13] E. Daka, J.M. Rojas, and G. Fraser. Generating unit tests with descriptive names
or: Would you name your children thing1 and thing2? In ISSTA 2017 - Proceedings
of the 26th ACM SIGSOFT Int. Symposium on Software Testing and Analysis, pages
57–67. Association for Computing Machinery, Inc, 2017.

[14] Ermira Daka, José Campos, Jonathan Dorn, Gordon Fraser, and Westley Weimer.
Generating readable unit tests for guava. In International Symposium on Search
Based Software Engineering, pages 235–241. Springer, 2015.

[15] J. De Bleser, D. Di Nucci, and C. De Roover. Assessing diffusion and perception of
test smells in scala projects. In IEEE International Working Conference on Mining
Software Repositories, volume 2019-May, pages 457–467, 2019. doi: 10.1109/MSR.
2019.00072.

[16] Jonas De Bleser, Dario Di Nucci, and Coen De Roover. Socrates: Scala radar for
test smells. In Proceedings of the Tenth ACM SIGPLAN Symposium on Scala, pages
22–26, 2019.

[17] Thomas Deiß. Refactoring and converting a ttcn-2 test suite. Int. Journal on
Software Tools for Technology Transfer, 10(4):347–352, 2008.

[18] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al. The
matter of heartbleed. In Proceedings of the 2014 conference on internet measurement
conference, pages 475–488, 2014.

[19] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous integration: improving
software quality and reducing risk. Pearson Education, 2007.

[20] Dominic John Farace and Joachim Schöpfel. Grey literature in library and information
studies. De Gruyter Saur, Berlin ; New York, 2010. ISBN 1282885294. doi: 10.1515/
9783598441493.

100

[21] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Eduardo
Figueiredo. A review-based comparative study of bad smell detection tools. In
Proceedings of the 20th International Conference on Evaluation and Assessment in
Software Engineering, pages 1–12, 2016.

[22] G. Fisher and C. Johnson. Specification-based testing in software engineering
courses. In SIGCSE 2018 - Proc. of the 49th ACM Techn. Symposium on Computer
Science Education, volume 2018-January, pages 800–805. Association for Computing
Machinery, Inc, 2018.

[23] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Professional, 2018.

[24] G. Fraser and A. Zeller. Exploiting common object usage in test case generation. In
Proceedings - 4th IEEE Int. Conf. on Software Testing, Verification, and Validation,
ICST 2011, pages 80–89, 2011.

[25] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering, pages 416–419,
2011.

[26] Erich Gamma, Kent Beck, et al. Junit: A cook’s tour. Java Report, 4(5):27–38,
1999.

[27] V. Garousi and B. Küçük. Smells in software test code: A survey of knowledge
in industry and academia. Journal of Systems and Software, 138:52–81, 2018. doi:
10.1016/j.jss.2017.12.013.

[28] V. Garousi, B. Kucuk, and M. Felderer. What we know about smells in software
test code. IEEE Software, 36(3):61–73, 2019. doi: 10.1109/MS.2018.2875843.

[29] Vahid Garousi, Michael Felderer, and Mika V Mäntylä. Guidelines for including
grey literature and conducting multivocal literature reviews in software engineering.
Information and Software Technology, 106:101–121, 2019.

[30] G. Grano, S. Scalabrino, H.C. Gall, and R. Oliveto. An empirical investigation on
the readability of manual and generated test cases. In Proceedings of the Int. Conf.
on Software Engineering, pages 348–351. IEEE Computer Society, 2018.

[31] G. Grano, F. Palomba, D. Di Nucci, A. De Lucia, and H.C. Gall. Scented since
the beginning: On the diffuseness of test smells in automatically generated test code.
Journal of Systems and Software, 156:312–327, 2019. doi: 10.1016/j.jss.2019.07.016.

[32] Giovanni Grano, Cristian De Iaco, Fabio Palomba, and Harald C Gall. Pizza versus
pinsa: On the perception and measurability of unit test code quality. In 2020 IEEE
Int. Conf. on Software Maintenance and Evolution (ICSME), pages 336–347. IEEE,
2020.

101

[33] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS quarterly, pages 75–105, 2004.

[34] David Honfi and Zoltán Micskei. Classifying generated white-box tests: an ex-
ploratory study. Software Quality Journal, 27(3):1339–1380, 2019.

[35] Paul C Jorgensen. Software testing: a craftsman’s approach. CRC press, 2018.

[36] Cem Kaner, Jack Falk, and Hung Q Nguyen. Testing computer software. John Wiley
& Sons, 1999.

[37] Thomas Karanikiotis, Michail D. Papamichail, and Andreas L. Symeonidis. Multilevel
readability interpretation against software properties: A data-centric approach. In
Marten van Sinderen, Leszek A. Maciaszek, and Hans-Georg Fill, editors, Software
Technologies, pages 203–226. Springer International Publishing, 2021. ISBN 978-3-
030-83007-6.

[38] Thomas Karanikiotis, Michail D. Papamichail, and Andreas L. Symeonidis. Multilevel
readability interpretation against software properties: A data-centric approach. In
Marten van Sinderen, Leszek A. Maciaszek, and Hans-Georg Fill, editors, Software
Technologies, pages 203–226. Springer International Publishing, 2021. ISBN 978-3-
030-83007-6.

[39] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui.
A bayesian approach for the detection of code and design smells. In 2009 Ninth
International Conference on Quality Software, pages 305–314. IEEE, 2009.

[40] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK,
Keele University, 33(2004):1–26, 2004.

[41] Maurizio Leotta, Maura Cerioli, Dario Olianas, and Filippo Ricca. Fluent vs basic
assertions in java: An empirical study. In 2018 11th International Conference on the
Quality of Information and Communications Technology (QUATIC), pages 184–192,
2018. doi: 10.1109/QUATIC.2018.00036.

[42] B. Li, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, and N.A. Kraft. Auto-
matically documenting unit test cases. In Proceedings - 2016 IEEE Int. Conf. on
Software Testing, Verification and Validation, ICST 2016, pages 341–352. Institute of
Electrical and Electronics Engineers Inc., 2016.

[43] B. Lin, C. Nagy, G. Bavota, A. Marcus, and M. Lanza. On the quality of identifiers
in test code. In Proceedings - 19th IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2019, pages 204–215, 2019. doi:
10.1109/SCAM.2019.00031.

[44] B. Lin, C. Nagy, G. Bavota, A. Marcus, and M. Lanza. On the quality of identifiers
in test code. In Proceedings - 19th IEEE Int. Working Conf. on Source Code Analysis

102

and Manipulation, SCAM 2019, pages 204–215. Institute of Electrical and Electronics
Engineers Inc., 2019.

[45] Jacques-Louis Lions, Lennart Luebeck, Jean-Luc Fauquembergue, Gilles Kahn,
Wolfgang Kubbat, Stefan Levedag, Leonardo Mazzini, Didier Merle, and Colin
O’Halloran. Ariane 5 flight 501 failure report by the inquiry board, 1996.

[46] Alberto Martín-Martín, Enrique Orduna-Malea, Mike Thelwall, and Emilio Delgado
López-Cózar. Google scholar, web of science, and scopus: A systematic comparison
of citations in 252 subject categories. Journal of Informetrics, 12(4):1160–1177, 2018.
ISSN 1751-1577. doi: https://doi.org/10.1016/j.joi.2018.09.002.

[47] Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson Education,
2007.

[48] Mathias Meyer. Continuous integration and its tools. IEEE software, 31(3):14–16,
2014.

[49] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The art of
software testing, volume 2. Wiley Online Library, 2004.

[50] Delano Oliveira, Reydne Bruno, Fernanda Madeiral, and Fernando Castor. Evaluat-
ing code readability and legibility: An examination of human-centric studies. In 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 348–359. IEEE, 2020.

[51] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random testing
for java. In Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion, pages 815–816, 2007.

[52] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia. On the
diffusion of test smells in automatically generated test code: An empirical study. In
Proceedings - 9th International Workshop on Search-Based Software Testing, SBST
2016, pages 5–14, 2016. doi: 10.1145/2897010.2897016.

[53] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia. Automatic test
case generation: What if test code quality matters? In ISSTA 2016 - Proceedings of
the 25th Int. Symposium on Software Testing and Analysis, pages 130–141. Association
for Computing Machinery, Inc, 2016.

[54] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H.C. Gall. The impact
of test case summaries on bug fixing performance: An empirical investigation. In
Proceedings - Int. Conf. on Software Engineering, volume 14-22-May-2016, pages
547–558. IEEE Computer Society, 2016.

[55] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic map-
ping studies in software engineering. In 12th International Conference on Evaluation
and Assessment in Software Engineering (EASE) 12, pages 1–10, 2008.

103

[56] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for conducting
systematic mapping studies in software engineering: An update. Information and
Software Technology, 64:1–18, 2015.

[57] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. A simpler model of
software readability. In Proceedings of the 8th working conference on mining software
repositories, pages 73–82, 2011.

[58] Brian Robinson, Michael D Ernst, Jeff H Perkins, Vinay Augustine, and Nuo
Li. Scaling up automated test generation: Automatically generating maintainable
regression unit tests for programs. In 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), pages 23–32. IEEE, 2011.

[59] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, and Jeff Skowronek. Appropri-
ate statistics for ordinal level data: Should we really be using t-test and cohen’sd for
evaluating group differences on the nsse and other surveys. In annual meeting of the
Florida Association of Institutional Research, volume 177, page 34, 2006.

[60] D. Roy, Z. Zhang, M. Ma, V. Arnaoudova, A. Panichella, S. Panichella, D. Gonzalez,
and M. Mirakhorli. Deeptc-enhancer: Improving the readability of automatically
generated tests. In Proceedings - 2020 35th IEEE/ACM Int. Conf on Automated
Software Engineering, ASE 2020, pages 287–298. Institute of Electrical and Electronics
Engineers Inc., 2020.

[61] Jean E. Sammet. A method of combining algol and cobol. In Papers Presented
at the May 9-11, 1961, Western Joint IRE-AIEE-ACM Computer Conference, IRE-
AIEE-ACM ’61 (Western), page 379–387, New York, NY, USA, 1961. Association for
Computing Machinery. ISBN 9781450378727. doi: 10.1145/1460690.1460734.

[62] Simone Scalabrino, Mario Linares-Vasquez, Denys Poshyvanyk, and Rocco Oliveto.
Improving code readability models with textual features. In 2016 IEEE 24th Int.
Conf. on Program Comprehension (ICPC), pages 1–10. IEEE, 2016.

[63] Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario Linares-Vásquez,
Denys Poshyvanyk, and Rocco Oliveto. Automatically assessing code understand-
ability: How far are we? In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 417–427. IEEE, 2017.

[64] Simone Scalabrino, Mario Linares-Vásquez, Rocco Oliveto, and Denys Poshyvanyk.
A comprehensive model for code readability. Journal of Software: Evolution and
Process, 30(6):e1958, 2018.

[65] N. Setiani, R. Ferdiana, and R. Hartanto. Test case understandability model. IEEE
Access, 8:169036–169046, 2020.

[66] N. Setiani, R. Ferdiana, and R. Hartanto. Developer’s perspectives on unit test cases
understandability. In Proceedings of the IEEE Int. Conf. on Software Engineering

104

and Service Sciences, ICSESS, volume 2021-August, pages 251–255. IEEE Computer
Society, 2021.

[67] S. Shamshiri, J.M. Rojas, J.P. Galeotti, N. Walkinshaw, and G. Fraser. How do
automatically generated unit tests influence software maintenance? In Proceedings
- 2018 IEEE 11th International Conference on Software Testing, Verification and
Validation, ICST 2018, pages 250–261, 2018. doi: 10.1109/ICST.2018.00033.

[68] Andreas Spillner, Tilo Linz, and Hans Schaefer. Software testing foundations: a
study guide for the certified tester exam. Rocky Nook, Inc., 2014.

[69] Huynh Khanh Vi Tran, Nauman Bin Ali, Jürgen Börstler, and Michael Unterkalm-
steiner. Test-case quality–understanding practitioners’ perspectives. In Int. Conf. on
Product-Focused Software Process Improvement, pages 37–52. Springer, 2019.

[70] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. Refactoring
test code. In Proceedings of the 2nd international conference on extreme programming
and flexible processes in software engineering (XP), pages 92–95, 2001.

[71] Roel J Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

[72] Dietmar Winkler, Pirmin Urbanke, and Rudolf Ramler. What do we know about
readability of test code? - a systematic mapping study. In Proceedings of the 5th
Workshop on Validation, Analysis, and Evolution of Software Tests, in conjunction
with the 29th IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2021.

[73] Dietmar Winkler, Pirmin Urbanke, and Rudolf Ramler. Investigating the readability
of test code combining scientific and practical views. Technical Report CDL-SQI
2022-24, CDL-SQI, TU Wien, Vienna, Austria, October 2022. Under review at
Empirical Software Engineering Journal (EMSEJ), Special Issue on “Code Legibility,
Readability, and Understandability”.

[74] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in software engineering. Springer Science & Business
Media, 2012.

[75] Weifeng Xu, Dianxiang Xu, and Lin Deng. Measurement of source code readability
using word concreteness and memory retention of variable names. In 2017 IEEE
41st Annual Computer Software and Applications Conference (COMPSAC), volume 1,
pages 33–38. IEEE, 2017.

[76] B. Zhang, E. Hill, and J. Clause. Towards automatically generating descriptive
names for unit tests. In ASE 2016 - Proceedings of the 31st IEEE/ACM Int. Conf.
on Automated Software Engineering, pages 625–636. Association for Computing
Machinery, Inc, 2016.

105

A) Sources of Academic
Literature for Systematic

Mapping

[A1] N. Setiani, R. Ferdiana, and R. Hartanto. Developer’s perspectives on unit
test cases understandability. In Proceedings of the IEEE Int. Conf. on Software
Engineering and Service Sciences, ICSESS, volume 2021-August, pages 251–255.
IEEE Computer Society, 2021.

[A2] D. Roy, Z. Zhang, M. Ma, V. Arnaoudova, A. Panichella, S. Panichella, D. Gonzalez,
and M. Mirakhorli. Deeptc-enhancer: Improving the readability of automatically
generated tests. In Proceedings - 2020 35th IEEE/ACM Int. Conf on Automated
Software Engineering, ASE 2020, pages 287–298. Institute of Electrical and Elec-
tronics Engineers Inc., 2020.

[A3] N. Setiani, R. Ferdiana, and R. Hartanto. Test case understandability model.
IEEE Access, 8:169036–169046, 2020.

[A4] B. Lin, C. Nagy, G. Bavota, A. Marcus, and M. Lanza. On the quality of identifiers
in test code. In Proceedings - 19th IEEE Int. Working Conf. on Source Code
Analysis and Manipulation, SCAM 2019, pages 204–215. Institute of Electrical
and Electronics Engineers Inc., 2019.

[A5] G. Grano, S. Scalabrino, H.C. Gall, and R. Oliveto. An empirical investigation
on the readability of manual and generated test cases. In Proceedings of the Int.
Conf. on Software Engineering, pages 348–351. IEEE Computer Society, 2018.

[A6] G. Fisher and C. Johnson. Specification-based testing in software engineering
courses. In SIGCSE 2018 - Proc. of the 49th ACM Techn. Symposium on Com-
puter Science Education, volume 2018-January, pages 800–805. Association for
Computing Machinery, Inc, 2018.

[A7] M.M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds. An industrial
evaluation of unit test generation: Finding real faults in a financial application. In
Proceedings - 2017 IEEE/ACM 39th Int. Conf. on Software Engineering: Software

107

Engineering in Practice Track, ICSE-SEIP 2017, pages 263–272. Institute of
Electrical and Electronics Engineers Inc., 2017.

[A8] E. Daka, J.M. Rojas, and G. Fraser. Generating unit tests with descriptive names
or: Would you name your children thing1 and thing2? In ISSTA 2017 - Proceedings
of the 26th ACM SIGSOFT Int. Symposium on Software Testing and Analysis,
pages 57–67. Association for Computing Machinery, Inc, 2017.

[A9] D. Bowes, T. Hall, J. Petrić, T. Shippey, and B. Turhan. How good are my tests?
In Int. Workshop on Emerging Trends in Software Metrics, WETSoM, pages 9–14.
IEEE Computer Society, 2017.

[A10] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia. Automatic
test case generation: What if test code quality matters? In ISSTA 2016 -
Proceedings of the 25th Int. Symposium on Software Testing and Analysis, pages
130–141. Association for Computing Machinery, Inc, 2016.

[A11] B. Li, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, and N.A. Kraft. Auto-
matically documenting unit test cases. In Proceedings - 2016 IEEE Int. Conf. on
Software Testing, Verification and Validation, ICST 2016, pages 341–352. Institute
of Electrical and Electronics Engineers Inc., 2016.

[A12] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H.C. Gall. The impact
of test case summaries on bug fixing performance: An empirical investigation. In
Proceedings - Int. Conf. on Software Engineering, volume 14-22-May-2016, pages
547–558. IEEE Computer Society, 2016.

[A13] B. Zhang, E. Hill, and J. Clause. Towards automatically generating descriptive
names for unit tests. In ASE 2016 - Proceedings of the 31st IEEE/ACM Int. Conf.
on Automated Software Engineering, pages 625–636. Association for Computing
Machinery, Inc, 2016.

[A14] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer. Modeling readability
to improve unit tests. In 2015 10th Joint Meeting of the European Software
Engineering Conf. and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE 2015 - Proceedings, pages 107–118. Association
for Computing Machinery, Inc, 2015.

[A15] S. Afshan, P. McMinn, and M. Stevenson. Evolving readable string test inputs
using a natural language model to reduce human oracle cost. In Proceedings -
IEEE 6th Int. Conf. on Software Testing, Verification and Validation, ICST 2013,
pages 352–361, 2013.

[A16] G. Fraser and A. Zeller. Exploiting common object usage in test case generation. In
Proceedings - 4th IEEE Int. Conf. on Software Testing, Verification, and Validation,
ICST 2011, pages 80–89, 2011.

108

B) Sources of Grey Literature for
Systematic Mapping

[G1] Gleb Bahmutov. Readable cypress.io tests - gleb bahmutov. Blog, 2019. https:
//glebbahmutov.com/blog/readable-tests/.

[G2] Anshul Bansal. Best practices for unit testing in java - baeldung. Magazine, 2021.
https://www.baeldung.com/java-unit-testing-best-practices.

[G3] Peter Bloomfield. How to write a good unit test - peter bloom-
field. Blog, 2020. https://peter.bloomfield.online/
how-to-write-a-good-unit-test/.

[G4] Rafał Borowiec. Test code readability improved: Junit with mock-
ito and fest ... Blog, 2013. https://blog.codeleak.pl/2013/07/
test-code-readability-improved-junit.html.

[G5] Marcos Brizeno. Write better tests in 5 steps - thoughtworks.
Blog, 2014. https://www.thoughtworks.com/insights/blog/
write-better-tests-5-steps.

[G6] Vadim Bulavin. Vadim bulavin auf twitter: "9. a good unit test must
have three ... Blog, 2020. https://twitter.com/v8tr/status/
1217483476406079491?lang=de.

[G7] Dan Carter. Make your automated tests easy to read - dc coding - dan
... Blog, 2011. https://codingblog.carterdan.net/2020/02/11/
make-your-automated-tests-easy-to-read/.

[G8] Roberto Casadei. Effective unit testing - slideshare. Presentation, 2013. https:
//de.slideshare.net/RobertoCasadei/effective-unit-testing.

[G9] Henry Coles et al. Write damp test code - java for small teams - ncrcoe.
Wiki, 2015. https://ncrcoe.gitbooks.io/java-for-small-teams/
content/v/restructure/tests/1900_write_damp_test_code.html.

109

https://glebbahmutov.com/blog/readable-tests/
https://glebbahmutov.com/blog/readable-tests/
https://www.baeldung.com/java-unit-testing-best-practices
https://peter.bloomfield.online/how-to-write-a-good-unit-test/
https://peter.bloomfield.online/how-to-write-a-good-unit-test/
https://blog.codeleak.pl/2013/07/test-code-readability-improved-junit.html
https://blog.codeleak.pl/2013/07/test-code-readability-improved-junit.html
https://www.thoughtworks.com/insights/blog/write-better-tests-5-steps
https://www.thoughtworks.com/insights/blog/write-better-tests-5-steps
https://twitter.com/v8tr/status/1217483476406079491?lang=de
https://twitter.com/v8tr/status/1217483476406079491?lang=de
https://codingblog.carterdan.net/2020/02/11/make-your-automated-tests-easy-to-read/
https://codingblog.carterdan.net/2020/02/11/make-your-automated-tests-easy-to-read/
https://de.slideshare.net/RobertoCasadei/effective-unit-testing
https://de.slideshare.net/RobertoCasadei/effective-unit-testing
https://ncrcoe.gitbooks.io/java-for-small-teams/content/v/restructure/tests/1900_write_damp_test_code.html
https://ncrcoe.gitbooks.io/java-for-small-teams/content/v/restructure/tests/1900_write_damp_test_code.html

[G10] Amey Dhoke. Do you really want moist test - ameydhoke’s blog.
Blog, 2009. http://maverick-amey.blogspot.com/2009/05/
do-you-really-want-moist-test.html.

[G11] Erik Dietrich. Test readability: Best of all worlds - daedtech. Blog, 2013. https:
//daedtech.com/test-readability-best-of-all-worlds/.

[G12] Bas Dijkstra. Three practices for creating readable test
code. Blog, 2016. https://www.ontestautomation.com/
three-practices-for-creating-readable-test-code/.

[G13] Marc Duiker. Improving unit test readability: helper methods &
named ... Blog, 2016. https://blog.marcduiker.nl/2016/06/01/
improving-unit-test-readability-named-args.html.

[G14] Trevor Foucher Dustin Boswell. The Art of Readable Code. O’Reilly,
2012. https://www.oreilly.com/library/view/the-art-of/
9781449318482/ch14.html.

[G15] Urs Enzler. Clean code cheat sheet - planetgeek.ch. Cheatsheet,
2014. https://www.planetgeek.ch/wp-content/uploads/2014/11/
Clean-Code-V2.4.pdf.

[G16] Javier Fernandes. Rethinking testing through declarative pro-
gramming. Blog, 2020. https://betterprogramming.pub/
rethinking-testing-through-declarative-programming-/
335897703bdd.

[G17] Michael Foord. 30 best practices for software development and test-
ing. Magazine, 2017. https://opensource.com/article/17/5/
30-best-practices-software-development-and-testing.

[G18] Tobias Goeschel. Writing better tests with junit - codecentric ag
blog. Blog, 2016. https://blog.codecentric.de/en/2016/01/
writing-better-tests-junit/F.

[G19] Jason Gorman. Readable parameterized tests - codemanship’s blog.
Blog, 2020. https://codemanship.wordpress.com/2020/09/26/
readable-parameterized-tests/.

[G20] Hugh Grigg. A simple, readable, meaningful test style with
jest. Blog, 2020. https://notestoself.dev/posts/
simple-readable-meaningful-jest-test-style/.

[G21] Philip Hauer. Modern best practices for testing in java -
philipp hauer’s blog. Blog, 2021. https://phauer.com/2019/
modern-best-practices-testing-java/.

110

http://maverick-amey.blogspot.com/2009/05/do-you-really-want-moist-test.html
http://maverick-amey.blogspot.com/2009/05/do-you-really-want-moist-test.html
https://daedtech.com/test-readability-best-of-all-worlds/
https://daedtech.com/test-readability-best-of-all-worlds/
https://www.ontestautomation.com/three-practices-for-creating-readable-test-code/
https://www.ontestautomation.com/three-practices-for-creating-readable-test-code/
https://blog.marcduiker.nl/2016/06/01/improving-unit-test-readability-named-args.html
https://blog.marcduiker.nl/2016/06/01/improving-unit-test-readability-named-args.html
https://www.oreilly.com/library/view/the-art-of/9781449318482/ch14.html
https://www.oreilly.com/library/view/the-art-of/9781449318482/ch14.html
https://www.planetgeek.ch/wp-content/uploads/2014/11/Clean-Code-V2.4.pdf
https://www.planetgeek.ch/wp-content/uploads/2014/11/Clean-Code-V2.4.pdf
https://betterprogramming.pub/rethinking-testing-through-declarative-programming-/335897703bdd
https://betterprogramming.pub/rethinking-testing-through-declarative-programming-/335897703bdd
https://betterprogramming.pub/rethinking-testing-through-declarative-programming-/335897703bdd
https://opensource.com/article/17/5/30-best-practices-software-development-and-testing
https://opensource.com/article/17/5/30-best-practices-software-development-and-testing
https://blog.codecentric.de/en/2016/01/writing-better-tests-junit/F
https://blog.codecentric.de/en/2016/01/writing-better-tests-junit/F
https://codemanship.wordpress.com/2020/09/26/readable-parameterized-tests/
https://codemanship.wordpress.com/2020/09/26/readable-parameterized-tests/
https://notestoself.dev/posts/simple-readable-meaningful-jest-test-style/
https://notestoself.dev/posts/simple-readable-meaningful-jest-test-style/
https://phauer.com/2019/modern-best-practices-testing-java/
https://phauer.com/2019/modern-best-practices-testing-java/

[G22] Brian Hnat. Dryer tests - the dumpster fire project. Blog, 2020. https://
thedumpsterfireproject.com/dryer-tests.

[G23] Arho Huttunen. How to make your tests readable - arho huttunen. Blog, 2021.
https://www.arhohuttunen.com/test-readability/.

[G24] Jason Jarrett. Fluent specification extensions - developing on stax-
manade. Blog, 2009. https://staxmanade.com/2009/02/
fluent-specification-extensions/.

[G25] Kristopher Johnson. Is duplicated code more tolerable in unit tests? - stack
overflow. Stackoverflow, 2008. https://stackoverflow.com/questions/
129693/is-duplicated-code-more-tolerable-in-unit-tests.

[G26] Petri Kainulainen. Writing clean tests - petri kainulainen. Blog, 2014. https:
//www.petrikainulainen.net/writing-clean-tests/.

[G27] Tuomas Kareinen. Readable tests - tuomas kareinen’s blog. Blog, 2012. https:
//tkareine.org/articles/readable-tests.html.

[G28] Vladimir Khorikov. Dry vs damp in unit tests - enterprise craftsman-
ship. Blog, 2008. https://enterprisecraftsmanship.com/posts/
dry-damp-unit-tests/.

[G29] Lasse Koskela. Effective Unit Testing. Manning, 2013. https://livebook.
manning.com/effective-unit-testing/chapter-4.

[G30] Adit Lal. Kotlin dsl - let’s express code in "mini-language" - part 5 of 5. Blog,
2019. https://www.aditlal.dev/kotlin-dsl-part-5/.

[G31] Daniel Lehner. 3 easy fixes for perfect unit test code - de-
vmate. Blog, 2021. https://www.devmate.software/
3-easy-fixes-for-perfect-unit-test-code/.

[G32] Daniel Lindner. unit test - schneide blog. Blog, 2013. https://schneide.
blog/tag/unit-test/.

[G33] Pawel Lipinski. or how to write tests so that they serve you well. Pre-
sentation, 2013. https://2013.jokerconf.com/presentations/03_02_
lipinski_pawel_jokerconf-presentation.pdf.

[G34] NAIDELE MANJUNATH and OLIVIER DE MEULDER. No code? no problem
— writing tests in plain english - nyt ... Blog, 2019. https://open.nytimes.
com/no-code-no-problem-writing-tests-in-plain-english-/
537827eaaa6e.

[G35] Robert C. Martin. Clean Code: Chapter 9. Pearson, 2021. https://reee3.
home.blog/2021/02/17/clean-code-9/.

111

https://thedumpsterfireproject.com/dryer-tests
https://thedumpsterfireproject.com/dryer-tests
https://www.arhohuttunen.com/test-readability/
https://staxmanade.com/2009/02/fluent-specification-extensions/
https://staxmanade.com/2009/02/fluent-specification-extensions/
https://stackoverflow.com/questions/129693/is-duplicated-code-more-tolerable-in-unit-tests
https://stackoverflow.com/questions/129693/is-duplicated-code-more-tolerable-in-unit-tests
https://www.petrikainulainen.net/writing-clean-tests/
https://www.petrikainulainen.net/writing-clean-tests/
https://tkareine.org/articles/readable-tests.html
https://tkareine.org/articles/readable-tests.html
https://enterprisecraftsmanship.com/posts/dry-damp-unit-tests/
https://enterprisecraftsmanship.com/posts/dry-damp-unit-tests/
https://livebook.manning.com/effective-unit-testing/chapter-4
https://livebook.manning.com/effective-unit-testing/chapter-4
https://www.aditlal.dev/kotlin-dsl-part-5/
https://www.devmate.software/3-easy-fixes-for-perfect-unit-test-code/
https://www.devmate.software/3-easy-fixes-for-perfect-unit-test-code/
https://schneide.blog/tag/unit-test/
https://schneide.blog/tag/unit-test/
https://2013.jokerconf.com/presentations/03_02_lipinski_pawel_jokerconf-presentation.pdf
https://2013.jokerconf.com/presentations/03_02_lipinski_pawel_jokerconf-presentation.pdf
https://open.nytimes.com/no-code-no-problem-writing-tests-in-plain-english-/537827eaaa6e
https://open.nytimes.com/no-code-no-problem-writing-tests-in-plain-english-/537827eaaa6e
https://open.nytimes.com/no-code-no-problem-writing-tests-in-plain-english-/537827eaaa6e
https://reee3.home.blog/2021/02/17/clean-code-9/
https://reee3.home.blog/2021/02/17/clean-code-9/

[G36] Brooklin Myers. Readable test code matters. - brooklin my-
ers. Blog, 2021. https://brooklinmyers.medium.com/
readable-test-code-matters-e46cc5c411bb.

[G37] Mark Needham. Tdd: Test dryness - mark needham. Blog, 2009. https:
//www.markhneedham.com/blog/2009/01/30/tdd-test-dryness/.

[G38] Thomas Papendieck. Why sometimes unit tests do more harm
than good? Blog, 2017. https://www.beyondjava.net/
why-sometimes-unit-tests-do-more-harm-than-good.

[G39] Corina Pip. Clean code in tests: What, why and how? - test-
project. Blog, 2020. https://blog.testproject.io/2020/04/22/
clean-code-in-tests-what-why-and-how/.

[G40] Patrick Reagan. Keep your friends close, but your test data
closer - viget. Blog, 2009. https://www.viget.com/articles/
keep-your-friends-close-but-your-test-data-closer/.

[G41] Jon Reid. 3 reasons why it’s important to refactor tests - quality coding. Blog,
2016. https://qualitycoding.org/why-refactor-tests/.

[G42] Jason Roberts. Improve test asserts with shouldly - visual studio magazine.
Magazine, 2015. https://visualstudiomagazine.com/articles/2015/
08/01/improve-test-asserts-with-shouldly.aspx.

[G43] Jason Roberts. Diagnosing failing tests more easily and improving
test ... Blog, 2019. http://dontcodetired.com/blog/post/
Diagnosing-Failing-Tests-More-Easily-and-Improving-Test-/
Code-Readability.

[G44] Matheus Rodrigues. What makes good unit test? readability -
matheus rodrigues. Blog, 2018. https://matheus.ro/2018/01/15/
makes-good-unit-test-readability/.

[G45] Jan Van Ryswyck. Avoid inheritance for test classes - princi-
pal it. Blog, 2021. https://principal-it.eu/2021/01/
avoid-inheritance-for-test-classes/.

[G46] Anmol Sarna. Do you think your code is perfect? well,
think again. Blog, 2018. https://blog.knoldus.com/
do-you-think-your-code-is-perfect-well-think-again/.

[G47] Simone Scalabrino. Automatically Assessing and Improving Code Read-
ability and Understandability. PhD thesis, Università degli Studi del
Molise, 2019. https://iris.unimol.it/retrieve/handle/11695/
90885/92359/Tesi_S_Scalabrino.pdf.

112

https://brooklinmyers.medium.com/readable-test-code-matters-e46cc5c411bb
https://brooklinmyers.medium.com/readable-test-code-matters-e46cc5c411bb
https://www.markhneedham.com/blog/2009/01/30/tdd-test-dryness/
https://www.markhneedham.com/blog/2009/01/30/tdd-test-dryness/
https://www.beyondjava.net/why-sometimes-unit-tests-do-more-harm-than-good
https://www.beyondjava.net/why-sometimes-unit-tests-do-more-harm-than-good
https://blog.testproject.io/2020/04/22/clean-code-in-tests-what-why-and-how/
https://blog.testproject.io/2020/04/22/clean-code-in-tests-what-why-and-how/
https://www.viget.com/articles/keep-your-friends-close-but-your-test-data-closer/
https://www.viget.com/articles/keep-your-friends-close-but-your-test-data-closer/
https://qualitycoding.org/why-refactor-tests/
https://visualstudiomagazine.com/articles/2015/08/01/improve-test-asserts-with-shouldly.aspx
https://visualstudiomagazine.com/articles/2015/08/01/improve-test-asserts-with-shouldly.aspx
http://dontcodetired.com/blog/post/Diagnosing-Failing-Tests-More-Easily-and-Improving-Test-/Code-Readability
http://dontcodetired.com/blog/post/Diagnosing-Failing-Tests-More-Easily-and-Improving-Test-/Code-Readability
http://dontcodetired.com/blog/post/Diagnosing-Failing-Tests-More-Easily-and-Improving-Test-/Code-Readability
https://matheus.ro/2018/01/15/makes-good-unit-test-readability/
https://matheus.ro/2018/01/15/makes-good-unit-test-readability/
https://principal-it.eu/2021/01/avoid-inheritance-for-test-classes/
https://principal-it.eu/2021/01/avoid-inheritance-for-test-classes/
https://blog.knoldus.com/do-you-think-your-code-is-perfect-well-think-again/
https://blog.knoldus.com/do-you-think-your-code-is-perfect-well-think-again/
https://iris.unimol.it/retrieve/handle/11695/90885/92359/Tesi_S_Scalabrino.pdf
https://iris.unimol.it/retrieve/handle/11695/90885/92359/Tesi_S_Scalabrino.pdf

[G48] Carlos Schults. Unit testing best practices: 9 to ensure you do it right. Blog, 2021.
https://www.testim.io/blog/unit-testing-best-practices/.

[G49] Jenny Shih. A field guide to unit testing: Readability. Blog, 2020. https:
//codecharms.me/posts/unit-testing-readability.

[G50] John Ferguson Smart. What makes a great test automation frame-
work? - linkedin. Blog, 2020. https://www.linkedin.com/pulse/
what-makes-great-test-automation-framework-john-ferguson-/
smart.

[G51] Derek Snyder and Erik Kuefler. Testing on the toilet: Tests too dry? make
them damp! Blog, 2019. https://testing.googleblog.com/2019/12/
testing-on-toilet-tests-too-dry-make.html.

[G52] Tengio. More readable tests with kotlin - tengio. Blog, 2016. https://www.
tengio.com/blog/more-readable-tests-with-kotlin/.

[G53] Vdaas Vald. The unit test strategy in vald. Blog,
2021. (Company blog) https://vdaas-vald.medium.com/
the-unit-test-strategy-in-vald-912ed6f14fbd.

[G54] Vtestcorp. Unit testing tutorial: 5 best practices - vtest blog. Blog, 2020. https:
//www.vtestcorp.com/blog/unit-testing-best-practices/.

[G55] T. Yonekubo. Readable test code - medium. Blog, 2021. https://medium.
com/@t-yonekubo/readable-test-code-cad8a7babc7b.

[G56] Gil Zilberfeld. Test attribute #2: Readability - java code geeks.
Blog, 2014. https://www.javacodegeeks.com/2014/07/
test-attribute-2-readability.html.

113

https://www.testim.io/blog/unit-testing-best-practices/
https://codecharms.me/posts/unit-testing-readability
https://codecharms.me/posts/unit-testing-readability
https://www.linkedin.com/pulse/what-makes-great-test-automation-framework-john-ferguson-/smart
https://www.linkedin.com/pulse/what-makes-great-test-automation-framework-john-ferguson-/smart
https://www.linkedin.com/pulse/what-makes-great-test-automation-framework-john-ferguson-/smart
https://testing.googleblog.com/2019/12/testing-on-toilet-tests-too-dry-make.html
https://testing.googleblog.com/2019/12/testing-on-toilet-tests-too-dry-make.html
https://www.tengio.com/blog/more-readable-tests-with-kotlin/
https://www.tengio.com/blog/more-readable-tests-with-kotlin/
https://vdaas-vald.medium.com/the-unit-test-strategy-in-vald-912ed6f14fbd
https://vdaas-vald.medium.com/the-unit-test-strategy-in-vald-912ed6f14fbd
https://www.vtestcorp.com/blog/unit-testing-best-practices/
https://www.vtestcorp.com/blog/unit-testing-best-practices/
https://medium.com/@t-yonekubo/readable-test-code-cad8a7babc7b
https://medium.com/@t-yonekubo/readable-test-code-cad8a7babc7b
https://www.javacodegeeks.com/2014/07/test-attribute-2-readability.html
https://www.javacodegeeks.com/2014/07/test-attribute-2-readability.html

	Kurzfassung
	Abstract
	Contents
	Introduction
	Context & Motivation
	Problem Description

	Related Work
	Test Process
	Test Case Generators
	(Test) Code Readability
	Test Smells

	Research Questions
	Design Science Cycle
	Research Overview and Research Questions

	Systematic Mapping Study (SMS)
	SMS Protocol & Process
	SMS Analysis Results

	Grey Literature Study
	Study Protocol and Process
	Grey Literature Analysis Results

	Initial Readability Study
	Experiment Setup and Procedure
	Experiment Results

	Readability Framework - Development and Evaluation
	Readability Factor Questions
	Readability Factor Guidelines
	Evaluation

	Discussion and Limitations
	Discussion
	Limitations

	Summary and Future Work
	Summary
	Future Work

	List of Figures
	List of Tables
	Bibliography
	A) Sources of Academic Literature for Systematic Mapping
	B) Sources of Grey Literature for Systematic Mapping

