
Adaptability in Distributed Stream
Processing

Implementation and Evaluation using ESC
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Roland Kölbel
Matrikelnummer 0928067

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Dr. Benjamin Satzger

Wien, 01.10.2012
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Adaptability in Distributed Stream
Processing

Implementation and Evaluation using ESC
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Roland Kölbel
Registration Number 0928067

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Dr. Benjamin Satzger

Vienna, 01.10.2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Roland Kölbel
Schelleingasse 36, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Abstract

The processing of large data sets is normally done using batch-oriented approaches. However,
when confronted with the processing of live data streams and events, which are usually subject
to high fluctuations in terms of data arrival, these batch-oriented approaches are not applicable.

For addressing these kinds of processing requirements, various stream processing engines
have been developed. One of these engines is ESC [24], a cloud based stream processing engine
designed for computations with real time demands written in Erlang [5]. In order to cope with
increasing or decreasing computational needs, ESC is able to automatically scale by attaching
or releasing nodes using information about the workload of the underlying machines. But, for
preventing an overload of a node due to bursty data arrival or intensive computation, this ap-
proach alone is not sufficient. An adaptation technique is needed that, on the one hand, is able to
identify unbalanced work distributions and take counteracting measures, and, on the other hand,
is utilizing strategies of placing operators intelligently onto nodes, such that the chance of an
overload situation becomes less likely.

The problem of mapping operators to nodes can be divided into two separate problems.
First of all, the question on where to place operators initially is to be answered. Therefore, three
different approaches have been implemented and analyzed. These include the random mapping
of operators to nodes, the creation of operators on the currently least loaded node, as well as the
mapping of an operator to a node, according to its unique name and considering the logic of the
currently executed scenario.

Secondly, a strategy is needed, which is deciding when and where to move operators between
nodes, in order to establish a balanced load distribution. Hence, two different load-balancing ap-
proaches have been implemented and analyzed. The first strategy balances the load by moving
random workers from nodes with a high load to nodes with a lower load. In addition to that,
the second strategy, which constitutes the main focus of this thesis, is derived from an existing
solution to a problem of mapping tasks to processor nodes at run-time, which is called Particles
Approach [29]. Therefore, a porting of the existing algorithm has been performed into the envi-
ronment of distributed stream processing systems, together with an analysis of its effectiveness.

In order to compare the developed concepts with each other, a benchmarking application
is required. Currently, the only available benchmark for stream processing systems is Linear
Road [4], which simulates vehicles on expressways in a large metropolitan area. The developed
methods are therefore checked using the Linear Road benchmark. Observed performance gains
with different approaches are compared with each other and with the results of other stream
computing engines.

iii

Kurzfassung

Die Verarbeitung von großen Datenbeständen wird in der Regel mithilfe eines Batch-Verfahrens
durchgeführt. Wenn jedoch die Verarbeitung von Datenströmen und Events in Echtzeit erfor-
derlich ist, und das Volumen der ankommenden Daten hohen Fluktuationen unterliegt, können
diese Batch-Verfahren nicht mehr angewendet werden.

Um diesen Anforderungen zu begegnen, wurden verschiedene Systeme zur Verarbeitung
von Datenströmen entwickelt. Eines dieser Systeme ist ESC [24], ein cloud-basiertes System
zur Durchführung von Echtzeit-Berechnungen auf Datenströmen geschrieben in Erlang [5]. Da
die zur Berechnung erforderlichen Ressourcen ständigen Veränderungen unterliegen, ist ESC
in der Lange, durch automatisches Hinzufügen oder Entfernen von Netzknoten zu skalieren.
Die dafür notwendigen Informationen werden den Informationen zur Arbeitslast der zugrunde
liegenden Maschinen entnommen.

Jedoch ist dieses Vorgehen alleine für die Verhinderung einer Überbelastung eines Netzkno-
tens, aufgrund von stoßweise ankommenden Daten oder aufgrund von intensiven Berechnungen,
nicht ausreichend. Eine Adaptionstechnik ist erforderlich, welche, auf der einen Seite, eine nicht
ausbalancierte Lastverteilung erkennen kann und in der Lage ist, Gegenmaßnahmen zu treffen.
Sowie, auf der anderen Seite, intelligente Strategien zur Platzierung von Operatoren auf Netz-
knoten nutzt, so dass die Wahrscheinlichkeit einer Überlastung deutlich reduziert wird.

Die Platzierung von Operatoren auf Netzknoten lässt sich in zwei separate Problemstellun-
gen aufteilen. Zunächst ist die Frage zu beantworten, auf welchem Netzknoten ein Operator
erzeugt werden soll. Diesbezüglich wurden drei unterschiedliche Strategien implementiert und
analysiert. Dazu gehören die zufällige Zuordnung von Operatoren auf Netzknoten, die Erstel-
lung von Operatoren auf dem am wenigsten ausgelasteten Netzknoten, sowie die Zuordnung
eines Operatoren zu einem Netzknoten auf der Basis des eindeutigen Namens des Operators, als
auch unter Einbeziehung des Graphen zum aktuell ausgeführten Szenario.

Weiterhin wird eine Strategie benötigt, welche eine Entscheidung trifft, wann und wohin
Operatoren zu bewegen sind, um eine balancierte Lastverteilung innerhalb des Netzwerks her-
zustellen. Daher wurden zwei verschiedene Strategien implementiert und analysiert. Die erste
Strategie balanciert die Lastverteilung durch die Verschiebung von zufällig ausgewählten Opera-
toren von Netzknoten mit hoher Last, zu Netzknoten mit geringer Last. Zusätzlich dazu wurde ei-
ne zweite Strategie entwickelt, welche den Hauptfokus dieser Arbeit bildet. Dieser Ansatz wurde
abgeleitet von einer bereits existierenden Lösung zu dem Problem der Zuordnung von Aufgaben
zu Prozessoren zur Laufzeit, bekannt unter dem Namen Particles Approach [29]. Demzufol-
ge wurde der vorhandene Algorithmus in das Umfeld der Datenstrom-Analyse übertragen und,
wenn notwendig, angepasst, sowie dessen Effektivität analysiert.

v

Zur Gegenüberstellung der entwickelten Konzepte und zur Belegung einer Leistungsverbes-
serung ist der Einsatz eines Benchmarks notwendig. Der einzige, aktuell verfügbare Benchmark
für Systeme zur Datenstromanalyse ist Linear Road [4], in welchem Fahrzeuge auf Autobah-
nen in einer Großstadt simuliert werden. Die zu testende Applikation muss einen generierten
Datenstrom verarbeiten, welcher für ein System zur Berechnung von Mautgebühren steht. An-
schließend werden die errechneten Ergebnisse auf Korrektheit, sowie auf die Einhaltung ma-
ximaler Antwortzeiten, überprüft. Sämtliche entwickelte Methoden wurden daher mithilfe des
Linear-Road-Benchmarks überprüft. Die beobachteten Leistungsveränderungen mit verschiede-
nen Strategien wurden miteinander, sowie mit den Ergebnissen anderer Systeme zur Datenstro-
manalyse, verglichen.

Contents

1 Introduction 1
1.1 Background: Distributed Stream Processing 1
1.2 Background: Adaptability Techniques . 2
1.3 Contribution . 3

2 State of the Art 5
2.1 Distributed Stream Processing . 5
2.2 Adaptation to Load Changes . 14
2.3 Conclusion . 16

3 Related Work 17
3.1 Nature Inspired Algorithms . 17
3.2 Conclusion . 26

4 Architecture of ESC 27
4.1 Main Components of ESC . 28
4.2 Scenario Definition and Event Processing . 28
4.3 Worker Migration . 30

5 Operator Placement Approaches 31
5.1 Initial Worker Placement . 31
5.2 Load Balancing . 34

6 Benchmarking Distributed Stream Processing Systems 39
6.1 Benchmarking with Linear Road . 39
6.2 Linear Road Benchmark Implementation in ESC 44

7 Results 45
7.1 Evaluation Framework . 45
7.2 Test Results . 48

8 Conclusion and Future Work 53

Bibliography 55

vii

A Simulation Results Summary 59
A.1 Load Distribution . 59
A.2 4 Slaves - 4 Expressways . 60
A.3 4 Slaves - 8 Expressways . 61
A.4 8 Slaves - 4 Expressways . 63
A.5 8 Slaves - 8 Expressways . 64

B ESC User Manual 67
B.1 Introduction . 67
B.2 Requirements . 67
B.3 Installation . 68
B.4 Configuration . 69
B.5 The ESC-Web-Interface . 70
B.6 Creating and Running Scenarios . 75
B.7 Create scenario configuration file . 76
B.8 Example Scenarios . 76

viii

CHAPTER 1
Introduction

The amount of generated data online is increasing daily and is more and more taking the form of
data streams, meaning a time ordered series of events or readings. Especially events generated
from social networks are, on the one hand, rising in numbers each day, and on the other hand,
becoming more and more important regarding their interpretation. Stream Data Management
Systems are able to evaluate these live data streams in real time by executing continuous queries.
In order to keep the latency of these systems low, to optimize their resource consumption and to
ensure the best possible quality of service, adaptation to the current data stream load is necessary.
Within this thesis, several adaptation methods have been developed, implemented and evaluated
using the stream data management system ESC [24].

1.1 Background: Distributed Stream Processing

A large class of applications is emerging, in which data, generated by some external environ-
ment, is pushed asynchronously to servers that process this information. For this new application
class conventional DBMS fall short, because stream-oriented systems are, in contrast to DBMS,
predominantly geographically distributed and their distribution offers scalable load management
and higher availability. These new applications include, for example, sensor networks, location-
tracking services, fabrication line management, network management and social networks as
well. What characterizes these applications is their need to process high-volume data streams
in a timely and responsive fashion. Therefore, these applications are typically called “stream-
based” applications. The difference between this new class of applications and traditional DBMS
is that the architecture of current databases assumes a pull-based model of data access. This
means that when a user wants to have access to the data, he submits a query to the system and
an answer is returned. In contrast to that, stream-based applications invert the traditional data
management model by assuming users to be passive and the data management system to be ac-
tive. The data is pushed to the system, which must evaluate a given set of queries in response, to
detect events. Query answers are then pushed to the waiting user or to another application [31].

1

1.2 Background: Adaptability Techniques

Many stream management systems are inherently distributed and therefore large and unpre-
dictable in terms of system parameters. The tuning of system performance for these systems
turns out to be a very challenging task, but vital, as these systems process live events and their
latency must be as low as possible. As a consequence, collecting accurate statistics of system
parameters from all involved nodes at runtime would be necessary in order to make the right
decisions regarding the improvement of system performance and system efficiency. These sys-
tem parameters include properties of the data stream itself (data arrival rates, value distribution,
etc.), the load of the processing server, the network transfer rate and the network transfer delay.
Predictions about these system parameters are very hard and, in addition to their unpredictabil-
ity, they may evolve over time. Due to these complicating factors, the initial system setup most
likely will result in unsatisfying system performance. To be less vulnerable under these circum-
stances, the ability to adapt itself to changing system parameters without human intervention is
absolutely vital for stream processing applications.

In order to keep the latency low, despite unforeseeable data rates and possible bursty data
arrival, stream processing systems must have plans to adapt accordingly. Several techniques
already exist dealing with the question of adaptation in distributed environments. A small
overview of discovered techniques together with a short description is presented in Table 1.1.
Chapter 2.2 then gives a more detailed description of adaptation techniques and how they work
in particular.

Technique Description
Adaptation by
load shedding

When an overload is detected as a result of static or dynamic analysis,
the incoming event tuples are reduced. One way to do that is dropping
tuples at random points in the network in an entirely uncontrolled man-
ner. Another way of doing load shedding is to drop tuples depending
on the importance of the packets contents by the definition of certain
quality of service information [2].

Adaptation by
load balancing

Whenever the system shows a degradation in latency, it is possible that
only a small subset of all available nodes is responsible for the loss
in performance. Therefore, actions can be taken to distribute the load
across all nodes in a more efficient manner.

Adaptation by
releasing or at-
taching process-
ing resources

Especially, when a system is deployed into a cloud environment, the
availability of processing resources is not an issue. Nevertheless, pro-
cessing resources and energy resources should not be wasted by having
every available processing resource enabled and dedicated to the stream
processing system, when it is not needed. The stream processing sys-
tem should detect automatically when it can release or attach processing
resources, and do so whenever feasible.

Table 1.1: Overview Adaptability Techniques

2

1.3 Contribution

Within this thesis, several adaptation techniques have been implemented, analyzed and com-
pared with each other. Each technique deals with the problem of how to map operators to nodes
in an efficient manner, which can be divided into two separate problems. First of all, the ques-
tion on where to place operators initially is to be answered. Therefore, three different approaches
have been implemented and analyzed. These include the random mapping of operators to nodes,
the creation of operators on the currently least loaded node, as well as the mapping of an opera-
tor to a node, according to its unique name and considering the logic of the currently executed
scenario.

Secondly, a strategy is needed, which is deciding when and where to move operators between
nodes, in order to establish a balanced load distribution. Hence, two different load-balancing ap-
proaches have been implemented and analyzed. The first strategy balances the load by moving
random workers from nodes with a high load to nodes with a lower load. In addition to that,
the second strategy, which constitutes the main focus of this thesis, is derived from an existing
solution to a problem of mapping tasks to processor nodes at run-time, which is called Particles
Approach [29]. Therefore, a porting of the existing algorithm has been performed into the envi-
ronment of distributed stream processing systems, together with an analysis of its effectiveness.

In order to compare the developed concepts with each other, and to prove a gain in the
processing performance of the system, a benchmarking application is required. Currently, the
only available benchmark for stream processing systems is Linear Road [4], which simulates
vehicles on expressways in a large metropolitan area. An incoming data stream, simulating
a tolling system for vehicles, needs to be processed by the tested application. Afterwards, the
benchmark verifies that every result arrived at the correct time and issues a rating. The developed
methods are therefore checked using the Linear Road benchmark. Observed performance gains
with different approaches are compared with each other and with the results of other stream
computing engines.

3

CHAPTER 2
State of the Art

Over the last ten years, distributed stream processing has found its way from academia into
the industry. More and more use cases arise as the flood of daily generated data is increasing
rapidly and its evaluation is getting more and more important. The following chapters include an
overview of the concepts and techniques that are currently in use in the productive environment
regarding distributed stream processing.

2.1 Distributed Stream Processing

The main aspect of stream processing is its possibility to filter data rapidly by the help of Con-
tinuous Queries (CQ). In traditional systems, the arrival of queries initiates access to a stored
collection of data. On the contrary, in a stream processing system, the arrival of data initiates
access to a stored collection of queries. Arriving data, over which Continuous Queries are ex-
ecuted, can be effectively infinite. Therefore every used query operator must be non-blocking
and must continuously return incremental results [9].

TelegraphCQ

TelegraphCQ is a Data Stream Management System developed by UC Berkeley. It contains
a suite of novel technologies for continuously adaptive query processing [9]. The Telegraph
project has been initiated at UC Berkeley at the beginning of the year 2000 with the goal of
developing an adaptive dataflow architecture for supporting a wide variety of data intensive,
networked applications [9]. Initially, TelegraphCQ was used to support Federated Facts and
Figures (FFF), a query system for deep-web data [25]. The implementation is written in C/C++
and heavily leverages the PostgreSQL code base. TelegraphCQ offers the evaluation of several
continuous queries over several data streams with support for windowed queries using a basic
version of the SQL dialect. The architecture of TelegraphCQ is shown in Figure 2.1.

In order to receive queries from the clients, a listener interface is available, which accepts
multiple continuous queries and adds them dynamically to the running executor. When a query

5

TelegraphCQ
Executor

Buffer
Pool

TelegraphCQ
Wrapper

QP
DUs

Streamers

Shared memory
infrastructure

Query
Plans

Output
Queues

TelegraphCQ
FrontEnd

Listener
Parser

Optimizer
Catalog

Disks

Proxy

Clients

Figure 2.1: Architecture of TelegraphCQ (taken from [9])

is received, the server parses, analyzes and optimizes the query into an adaptive query plan.
These plans are dynamically folded into the running queries in the executor. The results of these
queries are then placed in client-specific output queues. Another listener picks up results from
the output queues and sends the results back to the client applications [9].

The TelegraphCQ project has been closed in 2006, but several spin-offs, like for example
Truviso [10], are still under active development.

Aurora

Aurora is a single-site stream engine developed at Brandeis University, Brown University and
MIT [31]. The development of Aurora began 2002 and ended 2006 with the start of its successor
project, “Borealis”, which is presented below. Aurora evaluates data-flows and, hence, applies
the boxes and arrows paradigm, which means that incoming tuples flow through a loop-free,
directed graph of processing operations. These operations currently contain seven primitive
operators, like for example “filter”, “aggregate”, “union” and “resample” [2].

Further on, Aurora allows the definition of quality of service requirements by the use of qual-
ity of service graphs, that specify the utility of the output in terms of several performance related
and quality related attributes [2]. An image of the basic architecture of Aurora is presented in
Figure 2.2.

In contrast to the systems presented previously, distributed stream processing systems focus
more on distribution and on the balancing of load within the node network. When a system is

6

Input data
streams

Output to
applications

Continuous & ad hoc
queries

Operator boxes Historical
Storage

QoS specs

Figure 2.2: Aurora system model (taken from [8])

confronted with very high and fluctuating load, having an effective distribution and load balanc-
ing strategy is essential, especially in stream processing environments. The more a system is
able to scale, when subjected to heavier load, the better. A couple of representative systems, that
make use of distribution, is presented in the following chapters together with a short description
of their applied strategies.

Borealis

Borealis is a second-generation distributed stream processing engine, that is being developed
at Brandeis University, Brown University and MIT as the successor of the Aurora stream pro-
cessing system. In order to add distribution capabilities to the already present stream processing
capabilities of Aurora, Borealis inherits the core stream processing functionality from Aurora
and the distribution functionality from Medusa, a scalable distributed stream processing system
developed at MIT in 2003 [19].

As Aurora, Borealis supports continuous queries, which can be seen as one framework of
operators, whose processing is distributed to multiple sites [1]. The components of one Borealis
node and its exposed interfaces are depicted in Figure 2.3. Together with the features inher-
ited by Aurora, Borealis also supports the dynamic revision of query results, dynamic query
modifications as well as scalable optimization [1].

A Borealis application is a single connected diagram of processing boxes deployed on a
network of N servers, which can be referred to as a site [1]. The components shown in Fig-
ure 2.4 continuously optimize the allocation of query network fragments to processing sites.
These components can be categorized into “Monitors” and “Optimizers”, and can be described
as follows [1].

• Monitors: There are local monitor types and global monitor types. Local monitors run
at each site and produce a collection of local statistics, which they forward periodically to
the end-point monitor. The end-point monitor runs at every site and evaluates the quality
of service for every output message and keeps the quality of service statistics.

7

Transport Independent RPC (XML,TCP,Local)

QueryProcessor HA
MonitorCatalog

NH
Optimizer

Admin
LocalGlobal

IOQueues

Control DataMeta−data

Borealis Node

Load
Shedder

Local Optimizer
Priority

Scheduler

Storage
Persistent

Processor
Box

Storage Manager

Data Interface Control Interface

Query Processor
Catalog

Local

(Bu�ers and CP data)

Figure 2.3: Borealis Architecture (taken from [1])

• Optimizers: A local optimizer runs at every site and schedules messages as well as sheds
load, if necessary. Another optimizer, called the neighbourhood optimizer, balances the
resources at a site with those of its immediate neighbours. The global optimizer accepts
information from the end-point monitors and makes global optimization decisions.

Global Optimizer

at every site

Local Monitor

Neighborhood Optimizer

Local Optimizer

noisicedscitsitats trigger

at output sites

End−point Monitor

Figure 2.4: Borealis Optimizer Components (taken from [1])

System S and SPADE: The System S Declarative Stream Processing Engine

System S is a distributed stream processing middleware under development at IBM T. J. Watson
Research Centre [14]. The runtime of System S can be scaled from one node to thousands of
computer nodes. Queries are executed as Data-Flow Graphs, consisting of a set of processing
elements connected by streams. The relevant parts of SPADE inside the System S are shown in
Figure 2.5.

8

Dataflow Graph Manager
(DGM)

Resource Manager
(RM)

PECPE PE

Data Fabric Server
(DF)

PECPE PE

Data Fabric Server
(DF)

Storage
subsystem LAN

SAN

Figure 2.5: Stream processing core of System S (taken from [14])

The following features are provided by SPADE for the System S middleware [14].

• An intermediate language for flexible composition of parallel and distributed data flow
graphs. The language includes standard operators like “Functor”, “Aggregate”, “Join”,
“Sort”, “Barrier”, “Punctor”, “Split” and “Delay”

• A toolkit of type-generic, built-in stream processing operators

• A rich set of stream adapters to ingest/publish data from/to outside sources

9

In order to run stream processing applications on the System Processing Core (SPC) of
System S, SPADE employs a code generation framework that transforms applications into the
required format. In addition to these features, SPADE introduces performance optimization and
scalability to System S applications by applying three optimization strategies, which are created
by SPADE’s code generation framework [14]:

• Operator Grouping: The problem of finding the best operator-to-PE mapping for bal-
ancing load (an example is illustrated in Figure 2.6) is solved in SPADE by the use of
an optimization partitioner. By having information about the CPU load and network traf-
fic statistics for the data-flow graph, the partitioner aims at minimizing the total inter-PE
communication.

• Execution Model Optimization: Build-in operators could generate multi-threaded code,
which runs on many cores in parallel. Assuming multi-threaded code for each operation,
the problem is to decide how to efficiently distribute threads to operators within a PE.

• Vectorized Processing Optimization: The vectorized operations on list types get ac-
celerated through Single-Instruction Multiple-Data (SIMD) operations available in most
modern processers. SPADE makes use of Streaming SIMD Extensions (SSE) on the Intel
processors to accelerate the basic arithmetic operations on list types.

O4O3

O3 O4

O2O1

O2O1

PE1

PE2

Figure 2.6: Example Operator-to-PE mapping in SPADE (taken from [14])

SCSQ

SCSQ allows the processing of stream queries on supercomputers and has been developed at
Uppsala University in 2006 [32]. Its initial purpose was to process data streams from a radio
telescope with data rates of several terabits per second [17]. The name SCSQ stands for Super
Computer Stream Query Processor, pronounced “cisqueue”, and the system is running on the
BlueGene IBM cluster (see also Figure 2.7).

10

CNC

SP

SPSP

SP

idleidle

BlueGene

QM

FrontBack-end

Preparator

Preparator Client
managerFSP

Query
coordinator

Figure 2.7: Components of SCSQ (taken from [32])

The scaling inside the SCSQ system happens by dynamically incorporating more compu-
tational resources as the amount of data grows. As the system is operating inside of a cluster,
the adding and releasing of resources is cheap in comparison with, for example, distributed
environments inside local area networks.

In order to reduce the volume of the resulting stream in realtime, continuous queries filter
and transform the stream to identify events. For an efficient filtering and transforming of the
streams before merging and joining them, SCSQ supports sub-queries parameterized by stream
identifiers, which execute in parallel on different nodes. The executed continuous queries are
specified declaratively by the use of a query language similar to SQL, extended with streaming
and vector processing operators [33].

The implementation of SCSQ is based on AMOS II (Active Mediator Object System), which
has been modified to allow the execution of continuous queries. Currently, the SCSQ project is
still under active development and reaches the highest scores in Linear Road [33].

Yahoo S4

Yahoo S4 is a distributed platform, that allows programmers to develop applications for pro-
cessing continuous, unbounded streams of data [21]. Every event inside the system has a key
assigned to it and is routed with affinity to processing elements, which consume the events and
either emit new events or publish results [21].

Originally, Yahoo S4 has been developed in order to render the most relevant ads in an opti-
mal position on a “search and results” page based on a data stream containing user preferences,
geographic location, prior queries or prior clicks. The system follows the actors model [3] and
makes use of Apache ZooKeeper [28] in order to perform cluster management, that can be shared
by many systems in the data center. An example of a query inside of Yahoo S4 is given in Figure
2.8.

11

QuoteSplitterPE (PE1) counts unique
words in Quote and emits events for
each word.

A keyless event (EV) arrives at PE1 with quote:
“I meant what I said and I said what I meant .”, Dr. SeussEV Quote

KEY null
VAL quote="I ..."

EV WordEvent
KEY word="i"
VAL count=4

EV WordEvent
KEY word="said"
VAL count=2

MergePE (PE8) combines partial
TopK lists and outputs fi nal
TopK list.

EV PartialTopKEv
KEY topk=1234
VAL words={w:cnt}

PE1

PE2

PE5

PE3 PE4

PE6 PE7

PE8

EV UpdatedCountEv
KEY sortID=2
VAL word=said count=9

EV UpdatedCountEv
KEY sortID=9
VAL word="i" count=35

WordCountPE (PE2-4)
keeps total counts for
each word across all
quotes. Emits an event
any time a count is
updated.

SortPE (PE5-7)
continuously sorts partial
lists. Emits lists at periodic
intervals

PE1 QuoteSplitterPE null
PE2 WordCountPE word="said"
PE4 WordCountPE word="i"

PE7 SortPE sortID=9

PE ID PE Name Key Tuple

PE5 SortPE sortID=2

PE8 MergePE topK=1234

Figure 2.8: Word Count Example in Yahoo S4 (taken from [21])

Complex Event Processing in Commercial Enterprises

Complex event processing is used especially inside distributed computing and information sys-
tems, which are systems that automate the operations of commercial enterprises. With the ad-
vancing of technology and the growth of the Internet, these distributed information processing
systems grew beyond the single enterprise, across the boundaries between enterprises. Informa-
tion is no longer limited to the domain of one enterprise, but shared between different enterprises
and, therefore, the foundation for trading partnerships and the automation of business collabo-
rations. When viewed at a macro level, all these various enterprises and organisations are com-
ponents of the system, which communicate through the use of networks. Messages, or “events”,
flow across these networks between these enterprises. The components react to the events they
receive and issue new events that are sent to other components. These systems are so called
“event driven” – they live or die based upon the message flowing across their IT networks. As
for the year 2001, 5.000 till 10.000 messages per second flowed through a single large brokerage
house’s information technology layer, and soon that number will be even higher [18].

The main problem of these so called “enterprise systems” is the huge amount of generated
events, often up to zillions of events per hour or per day. Currently, there is no technology

12

capable of viewing these events and activities that are going on inside these systems in ways
that humans can understand. Enterprises are investing huge amounts of money into the develop-
ment of tools that are able to monitor events in the basic networks that carry information. The
challenge in developing these tools is to answer questions about events that are not simply low-
level network activities, but are high-level activities related to what the systems are intended to
achieve – so called business-level or strategic-level events. By the use of these tools it should
be possible to answer questions like “What caused our trading system to sell automobiles to a
customer in Texas?” or “What is causing the system to fail to execute this trading agreement?”.
These questions are about complex events, which are build out of lots of simpler events [18].

In order to do complex event processing, an event processing technology is needed that
solves or tackles the following related problems [18]:

• Monitor events at every level in IT systems

• Detect complex patterns of events

• Trace causal relationships between events in real time

• Take appropriate action when patterns of events of interest or concern are detected

• Modify our monitoring and action strategies in real time

What is an event?
According to [18], an event is an object that is a record of an activity in a system. An event

may be related to other events and has three aspects:

• Form: The form of an event is an object, which may have particular attributes or data
components. These can include, for example, the time period of the activity.

• Significance: As an event signifies an activity, the form of an event usually contains data
describing the activity it signifies.

• Relativity: An event is related to other events by time, causality and aggregation, which
is called its relativity.

Events are often confused with messages by assuming “An event is just a message”. This
is due to the fact that message generation is a common way of generating events that signify
activities. The difference is that events also have significance and relativity. Additionally, event
processing must deal with relationships between events in contrast to message processing [18].

Currently, enterprises are becoming, or have already become, event-driven, autonomous,
information processing systems, so called electronic enterprises [18]. An example for an event-
driven business process is given in Figure 2.9. The workflow “ProcessOrder” is initiated inside
the enterprise by an event, which is stating that a customer placed an order for a product. At the
end of the workflow, the enterprise initiates the activity of billing the customer. In carrying out
this simple linear workflow, the enterprise boundaries are crossed many times by outgoing and
incoming events. Each compiled rule is trigged by an event from one step of the process and
generates a new event that initiates the next step.

13

Valid

Terminate Instance

Invoice Print

Demo Query

Part QueryPrice Query

Ship Query Query

Quote

GL Query

Spare Parts

Product Shipment Request
Request

Invoice Print

Event-Driven Business Process

The ProcessOrder work�ow speci�cation implemented as an actual process operating in the
global event cloud. ProcessOrder is an event-driven, not an activity-driven, process.

Process Activities

Global Event Cloud
Process Rules

When a valid order
is received, select
the vendor with
the lowest price.

1. New Order

2. Select Vendor

4. Billing

Product Shipped
Selected

Service Request Invoice Print

Select

Spare Part Query

When a vendor is
selected, send a
ship order to the
vendor’s warehouse.

When a UPS routing
number is received,
terminate the
process.

3. Pick, Pack, and
Ship Product

Valid Order

Select Vendor

Vendor Selected

Ship Order

Product Shipped

Terminate Instance

Figure 2.9: Example enterprise operation in the global event cloud (taken from [18])

2.2 Adaptation to Load Changes

Stream processing systems evaluate events that arrive at an unpredictable rate. When these
input rates exceed the machine’s capacity, the system will become overloaded and the latency
will deteriorate. These overload situations are usually unforeseen and an immediate reaction
is vital, adapting the system’s capacity to the increased load by adding more resources or by
distributing computation to multiple nodes. If these approaches are not possible, not feasible
or not economically meaningful, the system must shed load and thus degrade the quality of the
answer in order to guarantee latency.

The addition of resources in order to compensate shortages in processing power is certainly
the most straightforward way of addressing the problem. Due to the fact that adding new pro-
cessing power is, in most scenarios, not economically feasible and generally takes too much
time until the new components are operable, this concept is not further discussed throughout this
thesis. The strategy of load balancing, on the other hand, is one of the main topics of this thesis.
Current approaches are discussed in depth in Chapter 3. In the remaining part of this chapter,
techniques that deal with the strategy of load shedding are described in detail.

Load shedding is the process of dropping excess load from the system and should only be
applied when no other approach, which does not degrade the answer, is promising to restore
normal operation. In an overload situation the system will shed load, thus degrading the answer
in order to improve the observed latency. For doing effective load shedding, the questions, when
to shed load, where to shed load and how much load to shed, must be answered.

14

One technique for doing load shedding, that has been proposed by Tatbul et al. [26], suggests
the dynamic insertion or the dynamic removal of “drop” operators into or from query plans, as
required by the current load. An example of how this adding and removing of “drop” operators
could look like, is illustrated in Figure 2.10. According to this technique, two types of “drop”
operators exist. The first type drops a fraction of the incoming tuples in a randomized fashion,
whereas the other type drops tuples based on the importance of their content.

c2

c3

c1

c2

c3

c1

p1

p2

p3

p1

p2

p3

Cycle Savings QoS CursorsDrop Insertion Plan

cursor

D

D

D

D

m
or

e
lo

ad
 s

he
dd

in
g

le
ss

 lo
ad

 s
he

dd
in

g

Figure 2.10: Load Shedding Road Map (taken from [26])

Another approach suggested by Tatbul et al. [27], takes into account that resource manage-
ment decisions at any server node will affect the characteristics of the workload received by its
children. Because of this load dependency between nodes, a given node must figure out the
effect of its load shedding actions on the load levels of its descendant nodes. The approach con-
tinues by modelling the distributed load shedding challenge as a linear optimization problem,
which is solved, on the one hand, with the help of a solver as a centralized solution, and, on the
other hand, as a distributed approach based on metadata aggregation and propagation.

15

2.3 Conclusion

Complex events and their processing are becoming more and more important, especially in en-
terprise environments. A huge variety of stream processing systems have already been developed
and are in productive use today. In order to adapt to fluctuating loads, these systems apply cer-
tain strategies for which some have been described in detail. New techniques and approaches,
which are subject to current research and deal more with the load balancing aspect of distributed
stream processing systems, are described in the following chapter.

16

CHAPTER 3
Related Work

Trends show that IT is more and more transformed into large integrated service networks with
growing complexity, which results in potential ineffectiveness and insufficient manageability
[15]. In order to regain efficiency, and thereby improve manageability, strategies and algorithms
are needed that address these new conditions. On the one hand, the question of where to put
services, the so called Placement Problem, needs to be answered by these approaches. On the
other hand, these approaches need to propose a strategy on how to balance the load emitted
by these services inside the service network, the so called Load Balancing Problem. In the
following chapters, approaches are presented, that neither require central control nor complete
information about the system itself, and which focus on how the adaptation problem can be
solved.

3.1 Nature Inspired Algorithms

Biologically inspired algorithms use behavioural patterns from the field of biology and have
been adapted in order to be applied in the field of computer science. In doing so, the results of
millions of years of evolution guide as a model for optimizations to solve related problems, like
the problem of adaptability in computer networks. In the following chapters, three algorithms
originating from the field of nature are presented. The first algorithm described is inspired by ant
colonies, the second algorithm simulates a hormone system and the third described algorithm
replicates cell transformation and locomotion.

17

Ant Colony Algorithm

Ant Colony Optimization [11] is a cooperative meta-heuristic that is being successfully applied
to various combinatorial optimization problems [22]. The desirable feature of ant colonies is
their ability to find the shortest path from their nest to a food source in a relatively short time,
without any initial knowledge of the surrounding environment and in a completely decentralized
way. In order to achieve these vital characteristics, ants communicate in an indirect manner,
which is called stigmergy. First of all, ants deposit traces of pheromone on their trail, which
makes this trail more attractive to other ants. Afterwards, an evaporation of pheromones makes a
path less attractive. When alternative trails are chosen randomly at the beginning, the pheromone
level of a path is inverse proportional to the path’s length with high probability [22]. This
behaviour of ants is illustrated in Figure 3.1, where an obstacle is placed into a real ant trail and
the shortest path C is chosen due to a much higher amount of pheromones [11].

A

E

A

E

Obstacle

D

B
CH Obstacle

A

E

B

D
CH

Figure 3.1: Ant Colony Algorithm (taken from [11])

For the question on how this Ant Colony Optimization can be transferred to solve the prob-
lem of adaptability, several suggestions have been made. Rammig et al. describe an approach
to use Ant Colony Optimization for service migration in sensor networks. The desired goal, ac-
cording to the paper, is to dynamically find a mapping of services to nodes, such that the global
communication costs between services and application tasks, requesting these services, are min-
imal. Within the proposed algorithm, services are the equivalent of food sources, calls made by
the requesters represent the ants, whereas the requesters represent the formicaries. Wireless links
between the nodes constitute the paths, which the ants can use for their walks. While requests
are being routed to the destination service, they leave pheromone on the nodes, which “evap-
orate” over time, meaning they are deleted after their timer expired. By using this mapping,
requests choose with high probability the shortest path after a certain amount of time, without
central control.

Another approach on how Ant Colony Optimization can be used to assign services to nodes
has been proposed by Graupner et al. [15]. For each service a service managerMs is instantiated,

18

which creates multiple ants and sends them out to the network. Each ant is equipped with a
service list containing the service, the services cooperating with it and their current resource
requirements. The ant travels from one server to another choosing the servers along its path
based on a probability computed locally. In each step, one of the services from the list is assigned
to the current server, as shown in Figure 3.2. On each server the ant evaluates the score of the
server in respect to each service from its list and causes the pheromone table, which contains
scores for service-server placements, of the current server to be updated. The table is later on
used by other ants to decide which server to visit next. When the ant has assigned all services,
it reports its path to the service manager Ms and terminates. The service manager compares all
reported paths using the partial objective function, which rates a specific placement, and decides
about a rearrangement of the placement.

Figure 3.2: Placing of services by an ACO based algorithm (taken from [15])

Efficient Task Distribution using an Artificial Hormone System

In order to allocate tasks in a completely decentralized and self-organized way, Brinkschulte
et al. proposed an algorithm, which is based on an artificial hormone system. The described
strategy is intended for middleware based task allocation to heterogeneous processing elements,
as illustrated in Figure 3.3.

Processing Element Processing Element

Task . . . Task

Processing Element

. . .

Middleware

Task . . . Task Task . . . Task

Figure 3.3: Processing Elements, Middleware and Tasks in the Artificial Hormone System Al-
gorithm (taken from [7])

For the allocation of tasks to processing elements, three different types of hormones are
used [7]:

19

• Eager Value: The Eager Value hormone determines how well a processing element can
execute a task. The higher the Eager Value is, the better a processing element can execute
a task.

• Suppressor: The Suppressor hormone suppresses the execution of a task on a processing
element. Its values are subtracted from the Eager Values in order to prevent duplicate task
allocation or to indicate a deteriorating state of a processing element.

• Accelerator: Values for the Accelerator favour the execution of a task on a processing
element. They are added to the Eager Value and can be used to cluster cooperating tasks
in the neighbourhood or to indicate an improved state of a processing element.

The basic control loop of the system (Figure 3.4), which is executed for every task on every
processing element, works as follows:

• Determination based on the level of the three hormone types, if a task Ti is executed on a
processing Element PEγ or not.

• Local static Eager Value Eiγ indicates how well the task Ti executes on PEγ

• From this value, all Suppressors Siγ received for the task Ti on PEγ are subtracted and all
accelerators received for Task Ti on PEγ are added resulting in a modified Eager Value
Emiγ for task Ti on PEγ .

• The modified Eager Value is sent by the middleware to all other processing elements of
the system and compared to the modified Eager Values Emiγ received from all other
processing elements for this task.

• Is Emiγ greater than all received Eager Values Emiγ , the task Ti will be taken by PEγ .

• Now task Ti on PEγ sends Suppressors Siγ to all other processing elements to prevent a
duplicate task allocation.

• Accelerators Aiγ are sent to neighboured processing elements to favour the clustering of
cooperating tasks.

• The described procedure is repeated periodically.

As each processing element is responsible for its own tasks, the described approach is com-
pletely decentralized. The communication to other processing elements is realized by a unified
hormone concept, and the implementing system is thereby achieving several self-X properties:
self-organizing, self-configuring, self-optimizing and self-healing [7]. Additionally, the algo-
rithm is realtime capable, as there are tight upper time bounds for self-configuration [7].

20

For i,
received

suppressors
Si

For i,
received

accelerators
Ai

Local
eager value

Ei

-

+ +

Modified
eager values

Emi
send by i,

For i,
received

eager values
Emi

a > b
?

Take task Ti on
PE

Suppressors
Si

send by i,

Accelerators
Ai

send by i,

Task Ti on PE

a

b

Notation: Hi Hormone for task Ti executed on PE
Hi : Hormone from task Ti executed on PE , Latin letters are task indices, Greek letters are processing element indices

Figure 3.4: Control Loop for the Hormone Based Algorithm (taken from [7])

Self-Organization inspired by Cell Transformation and Locomotion

A framework, which offers a federation of components the possibility to adapt itself by using
an approach originating from the transformation and locomotion behaviour of cells, has been
proposed by Satoh [23]. The federation of components, which may run on heterogeneous com-
puters, is thereby able to react to changes in user requirements and their associated context,
such as user location and user tasks [23]. Components, which constitute the overall system,
are implemented as mobile agents, that can travel from computer to computer under their own
control. Additionally to these autonomous moving and duplication characteristics, one or more
components can be combined as a virtual computer over distributed systems.

This combination or federation of components can be transformed and made mobile through
bio-inspired self-organization, such as that undertaken by cells in their transforming and crawl-
ing locomotion. The proposed framework permits a component to speculatively deploy its clones
at multiple neighbouring computers and to select one of the most appropriate clones. This be-
haviour corresponds to the process, lamellipodia bacteria go through in motile cells. Each com-
ponent can have its own deployment policy for specifying spatial constraints between its location
and the locations of other components at neighbouring computers.

Examples for possible deployment policies include (Figure 3.5):

• Follow: When a component declares “follow” to another component, then if the other
component moves, the declarer or its clone migrates to the destination or a nearby proper
host. This behaviour can also be defined as aggregation.

21

• Dispatch: This policy enables a component to stay in the current location and, upon the
migration of a related component, a clone of the component is created and deployed at the
new location of the related component.

• Fill: When a component declares “fill” for another component, then if the other compo-
nent moves, the declarer or its clone migrates to the source of the latter component, or a
nearby host. This behaviour can also be described as “tracking of footprints”.

• Shift: The “shift” policy enables a component to simply follow the movement of another
component.

B

C

A AB

C

B

C

A Clone B

Clone C

B

C

A AB

C

B

C

A A

C

B

C

B
Clone B

Clone C

A

Policy.FOLLOW

Policy.FOLLOW

Policy.DISPATCH

Policy.DISPATCH

Policy.SHIFT

Policy.SHIFT

Policy.FILL

Policy.FILL

Step 1 (Policy.FOLLOW) Step 2 (Policy.FOLLOW)

Step 1 (Policy.DISPATCH) Step 2 (Policy.DISPATCH)

Step 1 (Policy.SHIFT) Step 2 (Policy.SHIFT)

Step 1 (Policy.FILL) Step 2 (Policy.FILL)

Figure 3.5: Migration policies in a Cell (taken from [23])

By enabling each component to migrate over a distributed system under its own policy, the
federation as a whole is mobile and able to transform in a self-organized manner. In doing so, the
system is able to adapt itself to changes in processing requirements in a completely decentralized
way and without the need of any additional knowledge of the system environment.

22

Physically Inspired Algorithms: The Particles Approach

In contrast to the approaches described previously, physically inspired algorithms draw their
inspiration out of phenomena observable in the world of physics. One of these algorithms,
which has been proposed by [29], serves as a basis for the adaptation strategy developed in this
thesis. Heiss and Schmitz have analyzed the problem of mapping tasks to processor nodes at run-
time in multi-programmed multi-computer systems, and came up with an algorithm that uses the
concept of physical forces to balance the system load, also known as Particles Approach [29].

Every task running inside the system is considered a particle on which several forces act
upon, and each aspect of the allocation goal is modelled by a dedicated force. The process
of load balancing can be thought of as a container in which several fluids of different viscosity
reside. Upon the addition of a different fluid, representing the load increase, the fluids reorganize
themselves according to the acting physical forces.

As an illustrating example, one could imagine a flat container with an even bottom and
different amounts of non-mixable fluids of different viscosity, placed at different points (Figure
3.6). Gravitation forces the fluids to run, but frictional resistance and cohesion forces, that make
up the viscosity, are working counter. Thinner fluids may spread out evenly across the bottom
of the container, while more viscous fluids stick together like a lump. After adding an additional
fluid, the distribution will reach a stable state with balanced forces (Figure 3.7) in a certain
amount of time.

Figure 3.6: Adding a Fluid (taken from [29])

Figure 3.7: Equilibrium after adding fluid (taken from [29])

23

Using the image described before, the algorithm considers parallel computation as fluids
with the tasks as particles. The load potential at each node in the system is used to define a grav-
itational force, whereas the communication relations along with their intensities are associated
with a cohesion force in direction and magnitude. Finally, the costs to migrate a task are acting
as a frictional resistance, which counteracts the load balancing force.

Thus, the algorithm pursues the following goals [29]:

• Minimization of load unbalances

• Minimization of communication costs

• Avoidance of unproductive migrations

• Stability, e.g. avoidance of oscillations

Parameters and Functions

In order to calculate the necessary forces acting upon the tasks, the parameters shown in Table
3.1 must be known and are used in the following chapters to define each force.

a(k, l) Time it takes to transport one data unit from processor k to processor l
T Set of tasks
CsubseteqTxT Set of communication channels
c(i, j) Set of communication channels
loc(j) Length of task ti (number of instructions to be executed)
si Length of task ti (number of instructions to be executed)
di Size of description of task ti (amount of data to be migrated)
r Random variable drawn from a uniform distribution over the interval

[0, 1)
zi Number of performed migrations for a task

Table 3.1: Parameters for force calculation

Load Balancing Force

The Load Balancing Force between two adjacent nodes is defined as the ratio of their load
potentials, and should counteract a node overload. To determine the load potential of a node,
three different definitions are possible. The load potential of a node can be defined as the number
of tasks assigned, as shown in Equation 3.1, the amount of work assigned, as shown in Equation
3.2, or it can be defined as the time it takes to execute the work, as shown in Equation 3.3.

V k
load := |{j : loc(j) = k}| (3.1)

V k
load :=

∑
j:loc(j)=k

sj (3.2)

24

V k
load :=

1

µk

∑
j:loc(j)=k

sj (3.3)

Defining the load potential of a node by the time it takes to execute the assigned work
(Equation 3.3) is the most accurate strategy, as it considers different processor speeds and
different sizes of the task. Finally, the load balancing force is defined as the ratio of the load
potentials, as illustrated in Equation 3.4.

f j→klb (ti) := clb

(
vjload + 1

vkload + 1

)
(3.4)

Communication Force

The Communication Force is based on the communication intensities between the tasks, and
should group the respective tasks together on the same node to minimize network transport. In
order to calculate the Communication Force, the current position of each communication partner
is needed. Additionally to that, the communication costs of a pair of communicating tasks must
be known, which can be defined as the product of the amount of transferred data and the distance
between the two tasks. The communication potential of a task ti residing at node k is defined as
its total communication costs, as illustrated in Equation 3.5.

vkcom(ti) :=

|T |∑
j=1

a(k, loc(j)) c(i, j) (3.5)

Damping Force

The shipment and the installation of a task at the target node means cost, thus migration is
only useful in cases, where the gain achieved by the migration outweighs the incurred cost.
Therefore, the Damping Force can be seen analogous to the physical friction of a body, which
acts as a counterforce to any other force attracting the body. Thus, any attracting force must
exceed the friction in magnitude to move the body. Consequently, the Damping Force is defined
as the negated value of its size multiplied by the distance between the two nodes, as shown in
Equation 3.6.

f j→kfrict(ti) := −cfrictdia(k, k) (3.6)

In order to prevent processes from oscillating between two nodes, a second damping compo-
nent is introduced that counteracts migration. Therefore, a migration counter zi is used, which
increases with each migration, and a constant defining the maximum amount of permitted mi-
grations. Then, a migration is then only if the quotient of the current number of migrations,
and the amount of migrations permitted, is smaller or equal to a random variable drawn from a
uniform distribution over the interval [0, 1), as illustrated in Equation 3.7.

25

xi :=

{
1, if r ≥ zi

maxmigs

0, otherwise
(3.7)

Algorithm

In order to apply the presented concepts, it is necessary to define when the system should cal-
culate the forces and migrate tasks, so when to execute a so called load balancing step. Load
balancing should naturally take place when the load situation changed, thus, when tasks are gen-
erated or finished. Generating new tasks makes the generating site a possible sender of load, it
therefore initiates a load balancing step. If tasks are finished, the finishing site informs all direct
neighbours about the load change and continues normal operation. If necessary, the informed
neighbours start the load balancing procedure. After collecting all required load information
from its neighbours, the load balancing node determines, which of its tasks are eligible for mi-
gration by evaluating xi according to Equation 3.7. For all eligible tasks, all forces are calculated
that attract the task into one of the possible directions defined by the direct links according to
Equation 3.8.

f j→kres (ti) := f j→klb (ti) + f j→kcom (ti) + f j→kfrict(ti) (3.8)

The maximum resulting force is taken as the total force acting on a task. Of all tasks that
are attracted to a neighbour, we choose the one with the biggest resulting force and initiate its
migration. After each migration, the source node informs its neighbours about the new load
situation, which may lead to a domino effect of load balancing activities. At each node, load
balancing stops if either no task is eligible for migration or all forces are negative.

3.2 Conclusion

The finding of algorithms to challenge the adaptation problem in large distributed systems in a
decentralized manner is still an ongoing topic in current research. Some approaches have been
presented that solve the problem at hand in many different ways. Each presented approach uses
nature as innovative force and transfers beneficial characteristics of nature phenomena into their
strategies. In the following chapters, one of these described algorithms, the Particles Approach,
serves as a basis for an own algorithm. The Particles Approach is modified were necessary,
implemented into the stream management system ESC and benchmarked at the end.

26

CHAPTER 4
Architecture of ESC

ESC is a cloud based stream processing engine designed for computations with real time de-
mands following the actors pattern [3]. The system offers a simple programming model in
which programs are specified by directed acyclic graphs (DAGs). The DAG defines the data
flow of a program. Its vertices represent operations applied to the incoming data tuples [24].
Each tuple is composed out of the name of the processing element, a worker key, an event key
and an event value. An example of an ESC setup with 4 slave nodes is illustrated in Figure 4.1.

Browser Interface

Slave Slave

Slave Slave

Master

Interface

External Events External Events

External Events External Events

External Events

Figure 4.1: Illustration of an ESC setup with 4 slave nodes

27

4.1 Main Components of ESC

ESC is separated into three independent applications, which include the master application, the
slave application and the interface application. Each application can run on a separate machine.
Nevertheless, it is recommended to run the master application and the interface application to-
gether on the same node, and every slave application instance on a separate machine.

The main duties of the master application include the management of slave nodes, the initial
placement of workers on nodes, as well as the start of scenarios. In contrast to that, the interface
application is able to interact with a browser using the WebSocket Protocol [13], making it
possible to monitor ESC within a browser window. Finally, the slave instances process received
events according to the logic defined in modules assigned to the processing element, the received
event belongs to. Furthermore, the slave instances distribute their load information, as well as
their latency to every other slave instance within the network of nodes, to every registered node.
Lastly, each slave instance is responsible for the creation and moving of worker instances.

4.2 Scenario Definition and Event Processing

Scenarios are defined using configuration files with an erlang-oriented syntax. Each configura-
tion file contains a definition of the scenario graph, a section for assigning options to the included
processing elements, and an area containing global scenario properties, like the applied load bal-
ancing strategy or the initial worker placement strategy. An example, which is a small version
of the linear road scenario configuration file, is given in Listing 1.

{graph, [% scenario graph as a list of adjacent PE-Ids
{xway0, [car]}, {car, [accident_evaluator]},
{accident_evaluator, []}

]}.

{pe_ids, [% PE-Ids with module, arguments and options
{xway0, [

{module, lr_xway}, {arguments, []},
{events, any}, {node, any} {hibernate, off},
{movable, false}

]}
]}.

{properties, [% global scenario properties
{load_balancing_strategy, lb_none},
{placement_strategy, pl_least_loaded}

]}.

Listing 1: Example Scenario Configuration File

28

Within the first section of the scenario configuration file, a graph is created by combining
adjacent processing elements. Afterwards, in the second section, every specified processing el-
ement is configured. An overview of every configuration parameter, together with their possible
assignments and a corresponding description, is given in Table 4.1.

Parameter Value Range Description

module Module The name of the module, which contains the worker imple-
mentation.

arguments Arguments A list of arguments for the worker instantiation. The de-
fault assignment is the empty list [].

events [any | Events] By defining a list of event keys, incoming events can be
filtered. If all incoming events should be forwarded to the
processing element, the assignment must be any.

node [any | Node] Definition of the node, where the processing element is cre-
ated. The default assignment is any.

hibernate [off | on] If set to on, every worker instance will stay in a hibernate
state, where it consumes much less memory. Upon recep-
tion of a new event, the worker instance gets activated, and
returns to the hibernate state after the event has been pro-
cessed. The default assignment is off .

movable [true | false] If set to false, every worker instance of this PE stays on
the node where it has been created. The default assignment
is true.

Table 4.1: Options for Processing Elements

After a mapping of processing elements to corresponding modules within the scenario con-
figuration file has been performed, the modules must be implemented. Therefore, similar to the
implementation of an interface, three methods must be provided. To illustrate a minimal worker
example, an implementation is given in Listing 2. Upon creation, termination, as well as upon
reception of a new event, the designated method is called.

% initialize worker callback
initialize(WorkerState) -> WorkerState.

% terminate worker callback
terminate(WorkerState) -> ok.

% event processing
event(WorkerKey, {EventKey, EventValue}, WorkerState) -> ok.

Listing 2: Minimal Worker Example

29

4.3 Worker Migration

Migrating workers between nodes is crucial for achieving a balanced work distribution. In order
to move a worker, two things have to be ensured. First of all, the process of moving must not
slow down the processing of events designated to the worker, that should be moved. Second of
all, the state of the worker after the move should be identical to the state, the worker would have
had if no movement had taken place.

An approach designed to ensure the mentioned requirements is illustrated in Figure 4.2. In
order for the worker to continue its work, a separate process is created which transfers the state
of the worker to the new node. That way, no delay is introduced by the data transfer. Finally,
in order for the copied worker to have the same state after the move, the original worker buffers
every incoming event. Once, after the transfer of the worker state is complete, the buffered event
queue is transferred and processed by the new worker, such that the state of the worker does not
change by the worker move.

Master
NodeC

Slave
NodeA

Process
Node A

Worker1
{NodeB, Pid2}

Slave
NodeB

Worker1
{NodeA, Pid1}

Actor

4.4: {event_buffer, EventList}

4.5: suspend

4.3: {register_worker, Worker1, Pid2, NodeB}

4.2: {register_worker,
Worker1, Pid2}

4.1: {unregister_worker,
Worker1}

1.1.1: {start_worker,
Worker1}

4: {system_move_worker
_finished,

Pid2, NodeB} 3: ok

1.2: {spawn, State, Pid2,
NodeB}

2: {set_worker_state, State}

1.1.2: Pid2

1.1: {create_worker, Worker1}

1: {system_move_worker,
NodeB}

Figure 4.2: Sequence Diagram of a Worker Move

30

CHAPTER 5
Operator Placement Approaches

5.1 Initial Worker Placement

In order to create a new worker, a decision has to be made on where the new worker is to be
placed. This decision is important, as an optimal placement strategy for a scenario reduces the
need for costly worker moves and thereby improves overall performance. The optimal placement
approach is only possible, if perfect knowledge exists about the amount and type of incoming
tuples for every point in the future. Under these conditions, at any new worker creation the ideal
node candidate is already known. But as these conditions do not apply for stream processing
systems, where incoming data is generally unpredictable, only approximations to an optimal
placement are possible.

Within this thesis, three different placement strategies have been developed and compared
with each other. The first, and most simple, placement strategy randomly chooses a node from
the list of available nodes. A second approach chooses the currently least loaded node as the
new worker location. The last approach, Similar ID, tries to include knowledge about the current
scenario in order to find an ideal node candidate.

Random Node

The first developed approach on how to assign workers to nodes is by picking a candidate ran-
domly out of the available node list, as shown in Listing 3.

node_for_worker(_Worker = {_PeId, _WorkerKey}) ->
Nodes = m_monitor:registered_nodes(),
random:seed(now()), % initialize random generator
lists:nth(random:uniform(length(Nodes)), Nodes).

Listing 3: Random Placement

Even though choosing a node randomly is a rather simple approach, it has two significant
advantages. First of all, the decision on where to create the worker is very fast in contrast to other

31

strategies. Furthermore, the distribution of workers to nodes is uniformly distributed, which is
especially an advantage when every worker has the same memory footprint.

Least Loaded Node

Another possibility is to create the worker on the currently least loaded node within the node
network, as illustrated in Listing 4.

node_for_worker(_Worker = {_PeId, _WorkerKey}) ->
m_monitor:get_least_loaded_node().

Listing 4: Least Loaded Placement

In order to know, where the currently least loaded node is located, a global load monitoring
functionality has to be available. Within the analyzed application, every node sends its load
to every other node in the node network in random intervals. Hence, the distribution of load
information is completely decentralized.

Although the placing of a worker on the least loaded node reliefs every busy node and only
assigns workers to nodes, which apparently have enough resources, this approach has two major
disadvantages. Firstly, it is not possible to have absolute knowledge about the exact load of
every node in the node network. That means, if a decision is made on where a node is to be
placed depending on the node load, the load situation of this node could already have changed.
Secondly, in situations where a lot of workers have to be created in a short amount of time,
the least loaded node is flooded with new workers, leading to a significant imbalance of load
distribution.

32

Similar Worker ID

In contrast to the strategies described previously, Similar Worker ID requires knowledge of the
executed scenario, which in this case is Linear Road [4]. The developed approach, which is
shown in Listing 5, assumes for example, that every worker key begins with the expressway its
worker is assigned to.

node_for_worker(Worker = {_, WorkerKey}) ->
case xway(WorkerKey) of

u -> m_log:warn("Placement failed.");
X -> node_for_xway(X)

end.

% first element of the worker key is always the expressway
xway(Key) when (is_tuple(Key) and size(Key) > 0) ->

element(1, Key);
xway(_) -> u. % undefined

node_for_xway(Expressway) ->
Nodes = lists:sort(m_monitor:registered_nodes()),
Pos = (Expressway rem erlang:length(Nodes)) + 1,
Node = lists:nth(Pos, Nodes), Node.

Listing 5: Similar ID Placement

After the expressway is extracted from the worker key, a node is returned according to the
given expressway, such that every expressway is always mapped to the same node. This be-
haviour is based on two predictions about the scenario itself and on the execution setup. First of
all, an assumption is made that the amount of expressways corresponds to the amount of execut-
ing nodes. Secondly, the amount of load, that emanates from every expressway, is presumed to
be more or less equal. If these predictions hold true, a balanced allocation of workers to nodes
is guaranteed.

In order for this approach to work efficiently, good knowledge of the scenario setup, as
well as of the incoming data, is required. Hence, the quality of this approach heavily relies on
the made assumptions and their conformance with the observed behaviour during the scenario
execution.

33

5.2 Load Balancing

The definition of an initial placement strategy for workers provides a way to counteract overload
situations before they occur. But in situations, where the type and amount of incoming data, as
well as the underlying scenario setup, are unknown or not predictable, additional mechanisms
are needed to prevent a system overload and to guarantee the lowest possible latency. In order
to achieve this, a load balancing strategy must be applied, that is moving worker between nodes
when necessary and thereby achieving a potentially optimized worker distribution with improved
quality of service characteristics.

Three different load balancing approaches have been analyzed within this thesis, upon which
one of these approaches means no load balancing at all. Executing the scenario without a load
balancing strategy should give an impression on whether or not an improvement is observable
with the utilization of load balancing, or whether the additionally introduced computational
overhead is causing a decrease in system performance.

Naive Approach

As the name already suggests, the Naive Approach does not include a sophisticated strategy on
how to react if a load imbalance occurs. In fact, upon detection of a load imbalance, its sole
measure to counteract is to move a random worker from the monitored node to the currently
least loaded node within the node network, as shown in Listing 6.

handle_info(timeout, State) ->
TargetNode = get_least_loaded_node(),
balance_load(TargetNode),
erlang:send_after(?TIMEOUT(), self(), timeout),
{noreply, State};

balance_load(Node) ->
Pids = s_monitor:registered_worker_pids(),
move_random_pid(Pids, Node);

move_random_pid(Pids, TargetNode) ->
P = lists:nth(random:uniform(length(Pids)), Pids).
i_main:move_worker(P, TargetNode).

get_least_loaded_node() ->
C = m_monitor:registered_nodes(), % node candidates
S = lists:sort(fun(N1, N2) -> load(N1) < load(N2) end, C),
N = lists:nth(1, S),
case load(N) + ?DELTA < load(node()) of true -> N -> node().

load(N) -> m_monitor:get_node_load(N).

Listing 6: Naive Load Balancing

After a new scenario is loaded, a new server instance is created on every slave node, which is
responsible for the load balancing. The created server instance than analyzes the load situation

34

periodically, leaving a random time interval between each check to prevent the initiation of a load
balancing step by multiple nodes at once. When a slave instance is executing a load balancing
step, the load information received from every other slave node is compared with the own load
and a decision is made, whether the need for load balancing exists, or not. If so, a random worker
is picked from the list of workers on the slave node and placed on the currently least loaded node
within the node network.

The Particles Approach

In contrast to the previously described strategy, the Particles Approach takes significantly more
factors into account before making load balancing decisions. The approach is adapted from the
algorithm described in Chapter 3.1, where it was presented in combination with the problem of
mapping tasks to processor nodes at runtime. Despite the fact that the original algorithm was
designed to work in a different environment, the transition of major parts was possible without
any significant modification. The main section of the algorithm is given as a simplified extract
in Listing 7.

incoming_event(_, {SenderPeId, _}, SenderPos, _, State) ->
CI = communication_intensities(SenderPeId, SenderPos),
TimeSinceLastUpdate = timer:now_diff(now(), last_update()),
handle_event(self(), CI, TimeSinceLastUpdate, State).

handle_event(Pid, CI, T, State) when T > ?UPDATE_FORCE_INTERVAL ->
{BestNode, Force} = get_best_node(CI),
MoveCounter = State#slave_worker.move_counter
update_force(BestNode, Force, MoveCounter, self()),
erlang:put(com_int, undefined); % clear communications dictionary

handle_event(_, CI, _, _) -> put(com_int, CI).

get_best_node(CI) ->
lists:foldl(fun(N, {MaxN, MaxF}) ->

F = lb_force(N) + comm_force(N) + damping_force(N),
case F > MaxF of true -> {N, F}; false -> {MaxN, MaxF} end

end, {node(), 0}, m_monitor:registered_nodes()).

update_force(N, F, MC, Pid) -> gen_server:cast(?M, {move, N, F, MC, Pid}).

Listing 7: The Particles Approach - Implementation

Just like in the Naive Approach described before, upon initialization of a scenario, a new
server instance is started on every slave node. As well as in the Naive Approach, the server
instance initiates a load balancing step after a randomly generated timeout. But, in contrast to
the previous approach, the worker that is drawn to another node with the highest force is moved,
whether there exists a load imbalance, or not. After a worker has been moved, the list of workers
and their attracting forces is cleared.

In order for the server instance to get hold of the attracting forces, each worker is responsible
for the determination of the node, it is drawn to the most, and the forwarding of this information
to the server instance. As the force calculation is computationally expensive, it is only performed

35

after a minimum time interval, which is checked for each worker separately. If a new event is
received within the minimum time interval, only the communication intensity with the sending
node is increased and saved in the process dictionary. Should the new event occur after the
minimum time interval, the attracting force to every node within the node network is calculated.
If the node with the highest attracting force is not the current node, a message is sent to the
server instance, containing the process id of the worker, the total force and the attracting node.
As described before, the server instance then moves the worker with the highest attracting force.

Load Balancing Force

As the load of every node is distributed periodically via multicast, every worker has instant
access to calculate the load balancing force, as shown in Listing 8.

% load balancing directed to a target node
lb_force(Node) -> trunc(?WEIGHT * f(l(node()), l(Node))),

f(MyLoad, TargetLoad) when MyLoad < TargetLoad - ?DELTA ->
(-1) * ((TargetLoad + 1) / (MyLoad + 1));

f(MyLoad, TargetLoad) when MyLoad > TargetLoad + ?DELTA ->
(MyLoad + 1) / (TargetLoad + 1);

f(_, _, _, _) ->
0. % return 0 if load is in DELTA interval

l(N) -> m_monitor:get_node_load(N).

Listing 8: Load Balancing Force

In contrast to the original algorithm, the load balancing force can become negative and
depends on a defined delta value. On the one hand, if the load of the examined node is higher
than the load of the original node, plus a defined delta value, a positive force is returned. On the
other hand, when the load of the examined node is smaller than the load of the original node,
minus a defined delta value, the returned force is negative. If none of these conditions holds true,
the load balancing force is zero.

Communication Force

For the determination of the communication force, a node is imposing on another node, the
difference between the communication potential of the original node and the communication
potential of the original node is calculated and multiplied with a defined weight constant, as
illustrated in Listing 9.

The communication potential of a node for a worker is determined by multiplying the inten-
sity of every communication with the latency between the given node and the communication
partner node. Consequently, the result of subtracting the two communication potentials yields
a statement about the possible improvement in communication latency, that could be gained by
moving the worker to the analyzed node.

36

% communication force directed to a target node
comm_force(Node) ->

trunc(?W * (com_pot(node()) - com_pot(Node))).

com_pot(Node) -> % communication potential
CI = communication_intensities(),
dict:fold(fun({_, N}, I, S) -> S + latency(Node, N) * I end, 0, CI).

latency(N1, N2, _) when N1 =:= N2 -> 0;
latency(N1, N2) ->

case lists:keyfind({N1, N2}, 1, s_monitor:get_latencies()) of
{_, L} when L < 1 -> 1; {_, L} -> L; _ -> 1

end.

Listing 9: Communication Force

Damping Forces

Every moving of a worker from one node to another node is expensive, as it means an additional
transfer of data within the node network. Hence, a force is required that prevents unprofitable
worker migrations, as well as oscillating worker moves, where the best suitable node for a worker
changes periodically in short time slots. The first damping force component, presented in Listing
10, leads to the preferred moving of workers that have, on the one hand, a low memory footprint,
and, on the other hand, a small latency to the desired target node.

% damping force directed to a target node
damping_force(Node) ->

{memory, Memory} = process_info(self(), memory),
trunc(?W * (-1) * s_monitor:get_latency(Node) * Memory).

Listing 10: Damping Force 1

Inherent to every worker is a move counter, that is increased on every worker move. As
shown in Listing 11, the current move counter is used, in conjunction with a constant defin-
ing the amount of maximum migrations, to prevent workers from moving periodically between
nodes. A situation, where this kind of worker oscillation occurs, is when multiple attracting
forces of approximately the same amount exist for a worker and the most suitable node candi-
date is changing frequently.

% decision, whether a new move candidate is accepted, or not
move(W, Pid, F, Node, MC) ->

case random:uniform() >= (MC / ?MAX_MIGRATIONS) of
true -> new_worker_entry(Worder, Pid, F, Node);
false -> null

end.

Listing 11: Damping Force 2

37

CHAPTER 6
Benchmarking Distributed Stream

Processing Systems

The operator placement approaches described previously, together with the system architecture
presented in Chapter 4, form a stream computing system with mechanisms to adapt itself, on
the one hand, according to the arriving data, and, on the other hand, under consideration of the
load situation within the node network. But, without a statement regarding the performance
of the developed approaches, no conclusion can be drawn if any gain in the quality of service
characteristics has been achieved. Therefore, a benchmarking system is needed to provide the
desired results, and to offer a comparison of different strategies with each other, as well as
a comparison with other stream processing systems. The only benchmark, that is available for
stream processing systems, and for which test results with other stream processing systems exist,
is Linear Road, which is presented in the following chapters.

6.1 Benchmarking with Linear Road

The simulation of streaming data poses a unique challenge to the design of a benchmark. For
instance, the input data must have semantic validity and cannot be random. As a typical data
stream presents discrete measurements of a continuous activity, the content of the data stream
should be consistent with this activity. Furthermore, the absence of a query language standard
for stream queries means that the benchmark queries must be specified in a more general, though
unambiguous way. Ultimately, performance metrics for a stream processing benchmark should
be based on response time, rather than completion time [4].

As stream queries are predominantly continuous, the typical database benchmark metric of
“completion time” is inappropriate, given that such queries never complete. A more appropri-
ate metric for streams could be “response time”, meaning the average or maximum difference
between the time, that an input arrives, and the time, outputs are computed. Furthermore, a

39

possible metric could be “supported query load”, meaning how much input a stream system can
process while still meeting specified response times and correctness constraints [4].

After the benchmark has been performed, its output must be verifiable, even though results
returned may vary depending on when and how they have been generated. As the results of
continuous queries may depend upon evolving historical state, or the arrival order of tuples,
several different results for the same query may be “correct”. Hence, the validation should
account for queries that have multiple correct answers [4].

The Linear Road benchmark has been designed to meet all of the described challenges.
Linear Road simulates a toll system for a motor vehicle expressway of a large metropolitan
area. The tolling system applies “variable tolling”, which means it uses dynamic factors, such as
traffic congestion and accident proximity, to calculate toll charges. Further features of the Linear
Road benchmark include accident detection and accident alert notifications, traffic congestion
measurements, toll calculations and the answering of historical queries [4].

A system implementing the Linear Road benchmark must maintain statistics about the num-
ber of vehicles and the average speed on each segment of each expressway on a per minute basis.
Furthermore, the system has to detect accidents, deliver accident alerts to nearby vehicles and
calculate toll charges dynamically, based on segment statistics and proximate accidents, as well
as notify cars of their charges and assess the calculated tolls. Each query answer must satisfy the
response time and correctness requirements specified. Then, the throughput that a system can
sustain while meeting these requirements, which is measured in the number of expressways L,
constitutes the benchmark score (L-Rating) [4].

Linear City

Linear City is composed out of parallel expressways, that run horizontally ten miles apart, as
illustrated in Figure 6.1. For simplicity, there are no expressways in vertical direction. Each
expressway has four lanes in eastbound direction, and four lanes in westbound direction. Of
these four lanes, three are travel lanes and one lane is devoted to entrance and exit.

Lane 4 (Exit)Lane 0 (Entrance)

Eastbound

Lane 4 (Exit) Lane 0 (Entrance)

 Westbound

1 mile

Lane 1 (Travel)

Lane 2 (Travel)

Lane 3 (Travel)

Lane 3 (Travel)

Lane 2 (Travel)

Lane 1 (Travel)





(0, 0) (527999,0)

Expressway 0

Expressway 1

Expressway 2

Expressway 3

Expressway 4

Expressway 5

Expressway 6

Expressway 7

Expressway 8

Expressway 9

(263999,0)

EW

N

S

(0, 263999)

(0, 527999)

Figure 6.1: Geometry of Linear City (taken from [4])

40

Input Data

Two files are produced by the input data generator, which is shipped together with the Linear
Road benchmark. The first file contains historical data, summarizing ten weeks of tolling history,
that must be maintained by the system to answer historical query requests that refer to data dating
prior to the start of the simulation. Hence, the data contains tuples for toll history of the form
(V ID, Day, Xway, Tolls), such that Tolls is the total amount of tolls spent on expressway
Xway on day Day by vehicle V ID. Before the simulation is started, the contents of the history
file must already have been loaded in order to reply correctly to historical queries [4].

The second file contains the stream data, generated by the MIT Traffic Simulator [30].
Thus, the file consists of position reports of cars, account balance requests, daily expendi-
ture requests and travel time requests. A position report is a tuple of the form (Type =
0, T ime, V ID, Spd,XWay, Lane,Dir, Seg, Pos), where Time is the time stamp identifying
the time at which the position report was emitted, V ID is an integer identifying the vehicle that
emitted the position report, Spd is the speed, andXWay, Lane,Dir, Seg together with Pos in-
dicate the vehicles position. In contrast to that, an account balance request is a tuple of the form
(Type = 2, T ime, V ID,QID), where Time is the time when the request occurs, V ID is the
vehicle making the request and QID is an integer query identifier. Whenever historical data is
queried, a daily expenditure request of the form (Type = 3, T ime, V ID,XWay,QID,Day)
is issued, such that V ID is the vehicle issuing the request, QID is an integer query iden-
tifier, XWay and Day identify the expressway and the day, where 1 stands for yesterday
and 69 for 10 weeks ago. Finally, a travel time request is a tuple of the form (Type =
4, T ime, V ID,XWay,QID, s_init, s_end,DOW,TOD), such that V ID is the vehicle is-
suing the request, QID is the integer query identifier, XWay is the expressway upon which the
journey occurs (from segment s_init to segment s_end), DOW and TOD specify the day of
the week and the minute, when the journey would take place [4].

Benchmark Requirements

In order for a system to pass the Linear Road benchmark, it needs to fulfill several requirements.
First of all, the system needs to meet all requirements regarding toll notifications, which are
summarized in Table 6.1. The trigger for the sending of a toll notification is an incoming
position report. If the car, that sent the position report, has reached another segment, other than
the segment it sent its last position report from, and the current lane is not an exit lane, a toll
notification is issued and returned to the car, informing it about the assessed toll. The notification
contains the last average speed within the last five minutes of the segment, that has been left by
the car. Furthermore, the assessed toll is attached to the notification, calculated incorporating
the last average speed, as stated before, and the existence of an accident in a segment up to four
segments upstream. Lastly, the returned notification must be issued not more than five seconds
after the position report has been sent [4].

41

Trigger Position report, q

Preconditions q .Seg 6= ←q .Seg, l 6= EXIT

Output (Type: 0, VID: v, Time: t, Emit: t′,
Spd: Lav(M(t), x, s, d),
Toll: Toll(M(t), x, s, d))

Recipient v

Response t′ − t ≤ 5Sec

Table 6.1: Toll Notification Requirements (taken from [4]))

The second type of requirement involves accident alerts, which is summarized in Table 6.1.
As well as in the requirement before, the trigger for an accident alert is a position report. If a
car changes its segment, the current lane is not an exit lane, and an accident exists within five
segments downstream, an accident notification is issued and sent to the car. An accident on a
position is present, whenever an identical position report is sent by more than one car more than
three times in a row. In case that one of the cars issues a position report indicating that it moved
from the position, where the accident occurred, and the remaining amount of cars is below one,
the accident is assumed to be cleared. The accident alert has to be sent not later than five seconds
after the triggering position report was issued [4].

Trigger Position report, q

Preconditions ∃s′,0≤i≤4(s′ = Dn(q .Seg, d, i) ∧
Acc_in_Seg(M(t)− 1, x, s′, d)),

q .Seg 6= ←q .Seq, 6= EXIT

Output (Type: 1, Time: t, Emit: t′, Seg: s′)

Recipient v

Response t′ − t ≤ 5Sec

Table 6.2: Accident Alert Requirements (taken from [4]))

42

A car can query its current toll balance and issue an account balance request. The required
output, containing the current toll of the querying car, is described in Table 6.3. The system has
to answer to an account balance query within a time interval of five seconds [4].

Trigger Account balance request, a

Preconditions −

Output (Type: 2, VID: v, Time: t, Emit: t′,
ResultTime: τ , QID: q,
Bal:

∑
p∈ tollset(v), (f(p))) s.t.

p .Time ≤ τ ,
p .Seg 6= Last1(v, t) .Seg)
f(p) =
Toll(M(p .Time), p .XWay, p . Seg, p .Dir)

Recipient v

Response t′ − t ≤ 5Sec

Accuracy τ ≥ t− 60Sec

Table 6.3: Account Balance Requirements (taken from [4]))

The last requirement type involves daily expenditure queries, requesting the toll a car has
gathered for a given day. A response for this kind of query has to be issued within ten seconds,
in order to pass the benchmark, as can be seen in Table 6.4.

Trigger Daily Expenditure request, d

Preconditions −

Output (Type: 3, Time: t, Emit: t′, QID: q,
Bal:

∑
p∈ tollset(v), (f(p))) s.t.

Day(p − Time) = d,
p .XWay = x
f(p) =
Toll(M(p .Time), p .XWay, p . Seg, p .Dir)

Recipient v

Response t′ − t ≤ 10Sec

Table 6.4: Daily Expenditure Requirements (taken from [4]))

43

6.2 Linear Road Benchmark Implementation in ESC

An implementation for the Linear Road benchmark for the ESC stream processing system has
been performed within the scope of this thesis. The developed scenario uses 12 processing
elements and is written in Erlang. A graph, showing the connections between the processing
elements, is illustrated in Figure 6.2.

segmentcar_tollexpressway7expressway3

expressway2 expressway6

expressway1 expressway5

expressway0 expressway4 car accident_evaluator

Figure 6.2: Linear Road Scenario DAG

For each processing element, worker instances are created and distributed between the slave
nodes. Every worker instance has a worker key, allowing the work for a processing element to
be distributed and therefore be processed in parallel. The flow of events, and the division of
processing elements into worker instances, is illustrated in Figure 6.3.

...

INPUT STREAM

expressway1
key: {1,#}

expressway2
key: {2,#}

worker key: {expressway
number; random hash value}

...

car
key: {1,#}

car
key: {1,#}

worker key:
{expressway
number; hash
value from car
id}

events: all

events:
car_position_
update

. ..car_toll
key: {1,#}

car_toll
key: {1,#}

worker key: {expressway
number; hash value from
car id}
events:
account_balance_query;
daily_expenditure_query

.

...car_toll
key: {1,#}

car_toll
key: {1,#}

accident_eval
key: {1,#}

accident_eval
key: {1,#}

worker key: {expressway;
hash value from car id}

segment
{1,0,0}

segment
{1,0,1}

. . . segment
{1,0,0}

segment
{1,0,1}

events:
car_stop_on_position,
car_unstop_on_position

events:
new_near_accident,
cleared_near_accident

events:
car_in_segment;
car_enters_segment;
car_left_segment

events:
toll_notification,
toll_assessment

worker key: {expressway;
position; direction}

Figure 6.3: Linear Road Implementation

44

CHAPTER 7
Results

By the combination of the system illustrated in Chapter 4, together with the presented operator
placement approaches in Chapter 5, and the execution of the benchmark described in Chapter
6, results concerning the effectiveness of the developed system and the adaptation approaches
can be obtained. Therefore, the chapter is organized as follows:

• Presentation of the evaluation framework (Chapter 7.1)

• Description of the test results using the Linear Road benchmark (Chapter 7.2)

• Comparison of the results with other stream processing engines (Chapter 7.2)

7.1 Evaluation Framework

The evaluation framework used is predefined by the Linear Road benchmark described in Chap-
ter 6.1. It is currently the only evaluation framework available for distributed stream processing
systems, which has been tested with a wide range of other systems. Due to the wide usage,
many test results are already available and can be used for comparison. The following chapters
describe the used hardware scenarios and the input data characteristics.

Historical Data and Stream Datasets

The input data for the Linear Road benchmark is generated by the MIT Traffic Simulator [20].
For each expressway, the generation of stream data takes about 5 hours, depending on the speed
of the generating computer. The data is stored in a data file which consists of position reports,
account balance queries, daily expenditure queries and travel time estimation queries as comma
separated values. For every expressway, a separate file is generated by the MIT Traffic Simulator
and, after the data generation for every expressway has finished, the data is merged by the Linear
Road data generator in order to prevent duplicate car ids and to have cars crossing expressways.

45

The generated data corresponds to three hours of traffic volume, where the quantity of gen-
erated events is rising each minute, as shown in Figure 7.1. Further on, the following character-
istics are ensured:

• Each vehicle undertakes at least one journey during the simulation. A journey always
begins on an entry ramp and finishes on an exit ramp.

• Every car emits a position report every 30 seconds and never travels faster than 100 mph,
thus, it emits at least one event from every segment it travels on.

• It is guaranteed, that each vehicle has an average speed of 40 mph or less when entering or
leaving an expressway, thus, emitting at least one position report from an entrance ramp
and one position report from an exit ramp for every journey.

• An accident is created in a random location on each expressway for every 20 minutes of
position reports and takes anywhere between 10 and 20 minutes to be cleared.

• With 1 % probability a report is accompanied with a historical request.

• About 50 % of the requests are account balance queries, 10 % are requests for daily
expenditures and about 40 % are request for travel time estimation.

• The 3 hour simulation of a single expressway consists of 12 million position reports, about
67.000 account balance queries and 12.000 daily expenditure queries.

• The amount of records increases from 14 records per second at the start of the simulation
to about 1700 records per second at the end.

0

100

200

300

400

500

600

700

800

900

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101
106
111
116
121
126
131
136
141
146
151
156
161
166
171
176

Tu
pl

es
 p

er
 M

in
ut

e
(K

)

Minute of Simulation

1 Expressway 4 Expressways 8 Expressways

Figure 7.1: Load Distribution

46

Evaluation Measures

The most important measure for evaluating a distributed stream processing system with the
Linear Road benchmark is the amount of expressways a system can process without exceeding
the limits regarding the response time. Within the specification of the Linear Road benchmark,
limits are defined for every type of query, which must not be exceeded by the executing system.
The limits for each request type are summarized in Table 7.1.

Request Type Response Time Limit
Toll Notification t′ − t ≤ 5 sec

Accident Notification t′ − t ≤ 5 sec

Account Balance Request t′ − t ≤ 5 sec

Daily Expenditure Request t′ − t ≤ 10 sec

Table 7.1: Response Time Requirements for Linear Road

In order to compare different configurations of ESC with each other, the number of express-
ways as evaluation measure is not enough. Instead, it is necessary to use the exact input for each
of the different configurations to gain reliable results concerning their performance. Therefore,
the response time for each query is taken as an evaluation measure. Finally, the average of all
response times and the maximum value are used for rating purposes.

Test Scenario Environment

The Linear Road benchmark has been executed on three independent machines of the same
hardware configuration. Each machine has been equipped with a 16 core CPU at a speed of 2.40
GHz, possessing 32 GB of memory. Furthermore, Debian Linux 6 has been used as operating
system together with Erlang in version R15B02. For the execution of the master application,
one of the three machines has been used. Hence, the slave instances have been distributed on
the remaining two machines. In order for the slave instances to run on separate cores, a CPU
topology has been defined [12], allocating a specific CPU core to the scheduler of the Erlang
VM. A summary of the different environments is given in Table 7.2.

Characteristic Master Node Slave Node
CPU 16 Core CPU @ 2.40 GHz 1 Core CPU @ 2.40 GHz
Memory 32 GB RAM 6 GB RAM
Process Limit 100.000 100.000.000

Table 7.2: Test Scenario Environment

47

7.2 Test Results

The Linear Road benchmark has been executed with 4 and 8 slave instances, as well as with 4
and 8 expressways, leading to eight different scenario environments. Within each environment,
every combination of initial operator placement strategy and load balancing approach has been
tested, resulting in 36 executions of the Linear Road benchmark with a total time of 108 hours.

As in previously published implementations of Linear Road [4] [16] [6], the travel time esti-
mation was not implemented. Therefore, queries of this type were ignored and do not appear in
the test results. In case no values appear in the chart for a specific configuration, the scenario did
not complete because of a node overload. Nevertheless, a complete and more detailed overview
of the maximum response times of every scenario is given in Appendix A.

4 Slaves - 4 Expressways

Similar ID -
None

Similar ID -
Naive

Similar ID -
Particles

Random -
None

Random -
Naive

Random -
Particles

Least
Loaded -

None

Least
Loaded -

Naive

Least
Loaded -
Particles

Toll 3,057 2,942 3,615 5,027 4,874 3,615 5,419 3,576
Accident 2,535 2,464 2,948 4,856 4,719 2,881 4,816 2,873
Daily Exp. 0,303 0,343 0,369 0,759 0,648 0,383 0,766 0,376
Account B. 0,302 0,324 0,366 0,753 0,66 0,373 0,767 0,361

0

1

2

3

4

5

6

M
ax

im
um

 R
es

po
ns

e
Ti

m
e

[s
]

Figure 7.2: Test Results for 4 Slaves and 4 Expressways

As the chart in Figure 7.2 shows, nearly every scenario completed the benchmark in the
environment 4 Slaves - 4 Expressways, with the exception of the configuration Least Loaded
- None. Of the configurations, that did complete the benchmark, the configurations Random
- None and Least Loaded - Naive did not fulfill the requirements, as the maximum response
time lies above 5 seconds. Consequently, the initial placement strategy, that performs best, is
Similar ID, as the lowest response times have been measured, without regard to the used load
balancing strategy. Furthermore, when comparing the load balancing strategies with each other,
the Particles approach performed best, as constantly low maximum response times have been
measured.

48

4 Slaves - 8 Expressways

None of the configurations did complete in the 4 Slaves - 8 Expressways environment. Due to
the huge amount of incoming events, every configuration came to a stop due to a node overload
before the simulation has been completed. Hence, no statement can be made, whether or not
the necessary requirements have been met, or which of the tested scenarios performed best.
Nevertheless, a detailed overview about the maximum response times of each minute during the
simulation is attached in Appendix A.

8 Slaves - 4 Expressways

Similar ID -
None

Similar ID -
Naive

Similar ID -
Particles

Random -
None

Random -
Naive

Random -
Particles

Least
Loaded -

None

Least
Loaded -

Naive

Least
Loaded -
Particles

Toll 2,973 2,588 3,638 3,69 3,782 3,532 4,26 3,638
Accident 2,439 1,901 2,753 3,639 3,696 2,893 3,424 2,847
Daily Exp. 0,304 0,454 0,684 0,763 0,816 0,598 0,678 1,323
Account B. 0,309 0,476 0,614 0,747 0,792 0,572 0,693 0,741

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

M
ax

im
um

 R
es

po
ns

e
Ti

m
e

[s
]

Figure 7.3: Test Results for 8 Slaves and 4 Expressways

Except the Least Loaded - None configuration, all scenarios did complete the benchmark and
fulfilled the necessary requirements, as illustrated in Figure 7.3. As the imposed load is small in
contrast to the amount of available slave instances, no huge difference in response time has been
observed. Therefore, no optimal strategy could be identified within the analyzed environment.

49

8 Slaves - 8 Expressways

Similar ID -
None

Similar ID -
Naive

Similar ID -
Particles

Random -
None

Random -
Naive

Random -
Particles

Least
Loaded -

None

Least
Loaded -

Naive

Least
Loaded -
Particles

Toll 1,429 1,64 1,629 5,493 7,572 1,599 1,627
Accident 1,173 1,177 1,391 3,154 4,925 1,351 1,375
Daily Exp. 0,28 0,525 0,423 2,178 3,198 0,428 0,515
Account B. 0,272 0,483 0,363 2,193 3,136 0,458 0,504

0

1

2

3

4

5

6

7

8

M
ax

im
um

 R
es

po
ns

e
Ti

m
e

[s
]

Figure 7.4: Test Results for 8 Slaves and 8 Expressways

Simulating 8 expressways implies the handling of up to 800.000 tuples per minute. There-
fore, this configuration denoted the most challenging task for the analysed stream processing
system. Two of the observed scenarios did not finish the simulation, whereas two of the re-
maining analyzed configurations did not meet the imposed requirements. Therefore, the best
performance regarding the initial operator placement has been achieved by Similar ID, while the
best performing load balancing approach within the analyzed environment turns out to be the
Particles approach, which can be observed in Figure 7.4.

50

Comparison to other Stream Processing Engines

Results for other stream processing systems, executing the Linear Road benchmark, are pre-
sented in Table 7.3. By looking at these results it becomes obvious, that scalability is one of the
major challenges still being faced. So it is possible to achieve a rating of 2.5 with one core, but
as soon as the number of cores rises, the amount of expressways per core decreases significantly.
A ratio of one expressway per core, when executing on more than one core, is a result, which
must not fear the comparison with other stream processing engines, that have been benchmarked
by Linear Road.

Name Year L #cores Comment
Aurora 2004 2.5 1
SPC 2006 2.5 170 3 GHz Xeon
XQuery 2007 1.5 1
scsq-lr 2007 1.5 1 Laptop
DataCell 2009 1 4 1.4 s average response time
stream schema 2010 5 4
CaaaS 2011 1 2 Streaming MapReduce
ESC 2012 4 4
ESC 2012 8 8

Table 7.3: Linear Road Result Comparison (on the basis of [33])

51

CHAPTER 8
Conclusion and Future Work

In this thesis, adaptability approaches for distributed stream processing systems have been de-
veloped, and the performance of each strategy has been analyzed and compared with each other.
Therefore, the main focus of this thesis has been the determination of an operator placement
approach, which is best suited for the use in distributed stream processing systems.

It has been shown, that the developed initial placement strategy Similar ID, which assigns
operators to nodes according to their unique key within the system, performs best. Furthermore,
if an optimal placement of operators is not prevailing within the system, the Particles load bal-
ancing strategy turned out to move the operators in a way, that the system performed better than
with any other examined load balancing approach.

Despite the low response times, that have been observed by the use of the Similar ID strategy,
as well as by the use of the Particles load balancing, it should be noted, that none of these
approaches is generally suited for every possible scenario. In order for both approaches to
deliver optimal results, the scenario, that is being executed, must allow a best-suited operator
distribution and the implementations for Similar ID and Particles need to guide the system in
the direction of an ideal operator placement.

After the foundation for an advanced distributed stream processing system has been laid
by the creation of this thesis, there are many possibilities for the extension of its functionality
and the optimization of its performance. Since it is still possible to overload the system, and
thereby rendering it useless for data stream evaluation, the number one priority should be the
development, analysis and implementation of a load shedding technique, similar to the works
presented by Tatbul et al. [26] [27]. Other possible, and any less interesting, feature extensions
are presented in Table 8.1.

53

Feature Feature Description

Load Shedding An implementation of a load shedding technique for ESC, similar to
the works presented by Tatbul et al. [26] [27], could prevent a drop in
latency when confronted with very high bursts of data in an unusual long
and coherent amount of time.

Multiple
Queries

As for now it is only possible to have one query, or scenario, active
inside of ESC. For this feature, ESC could be extended to allow the
definition and usage of multiple query graphs at the same time.

Processing
on the
GPU

When performing massively parallel computation, the usage of the GPU
is essential in top scoring systems regarding current benchmarks. Tech-
niques and frameworks for using the GPU for processing user functions
could be examined, and an adapter could be created which guides as an
interface for ESC to do computations on the GPU.

Hot Code
Reloading

If the code for the currently active scenario changes, every node needs
to be stopped, equipped with the updated code, and restarted. When
there are a lot of nodes involved, this approach is not feasible. As Erlang
already provides methods for hot code reloading and code reload events,
these techniques should be analyzed and implemented into ESC.

Improved
Scenario
Description

The description of a scenario is currently possible through two steps.
First of all, a scenario configuration file needs to be created in an Er-
lang dependant format. Secondly, the functionality of the processing
elements needs to be programmed in Erlang modules using the Erlang
programming language. In order to make the system more flexible, the
web interface should be extended to allow the user to interactively cre-
ate and modify scenario graphs. Further on, it should be possible to
describe the functionality of a processing element in another program-
ming language, for example Javascript.

Performance
through NIF

Erlang provides an interface for the usage of system dependent code,
meaning for example modules written in C and compiled for one spe-
cific computer architecture. This code is, on the one hand, extremely
fast compared to functionality written directly in Erlang, but, on the
other hand, mostly platform dependent and hard to write. In a future
version of ESC, performance critical parts of the system itself could be
programmed with the help of modules written for specific architectures
making use of the native interface. Thereby, a huge increase in perfor-
mance could be achieved.

Table 8.1: ESC Future Work

54

Bibliography

[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cherni-
ack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S Maskey, Alexander Rasin, Esther
Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The Design of the Borealis Stream
Processing Engine. In Second Biennial Conference on Innovative Data Systems Research
(CIDR 2005), Asilomar, CA, January 2005.

[2] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sang-
don Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new model
and architecture for data stream management. The VLDB Journal, 12(2):120–139, August
2003.

[3] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT Press,
Cambridge, MA, USA, 1986.

[4] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey, Esther
Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear road: a stream data manage-
ment benchmark. In Proceedings of the Thirtieth international conference on Very large
data bases - Volume 30, VLDB ’04, pages 480–491. VLDB Endowment, 2004.

[5] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Book-
shelf, 2007.

[6] Irina Botan, Donald Kossmann, Peter M. Fischer, Tim Kraska, Dana Florescu, and Rokas
Tamosevicius. Extending xquery with window functions. In Proceedings of the 33rd
international conference on Very large data bases, VLDB ’07, pages 75–86. VLDB En-
dowment, 2007.

[7] Uwe Brinkschulte, Mathias Pacher, and Alexander Von Renteln. Towards an artificial hor-
mone system for self-organizing real-time task allocation. In Proceedings of the 5th IFIP
WG 10.2 international conference on Software technologies for embedded and ubiquitous
systems, SEUS’07, pages 339–347, Berlin, Heidelberg, 2007. Springer-Verlag.

[8] Donald Carney, Ugur Çetintemel, Alex Rasin, Stanley B. Zdonik, Mitch Cherniack, and
Michael Stonebraker. Operator scheduling in a data stream manager. In VLDB, pages
838–849, 2003.

55

[9] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M.
Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred Reiss, and
Mehul A. Shah. Telegraphcq: continuous dataflow processing. In Proceedings of the 2003
ACM SIGMOD international conference on Management of data, SIGMOD ’03, pages
668–668, New York, NY, USA, 2003. ACM.

[10] CISCO. Cisco completes acquisition of truviso. http://shar.es/GeNmR, 2012.

[11] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony of coop-
erating agents. Trans. Sys. Man Cyber. Part B, 26(1):29–41, February 1996.

[12] Ericsson AB. Erlang. http://erlang.org/doc/man/erl.html, 2012.

[13] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455 (Proposed Standard),
December 2011.

[14] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and Myungcheol Doo.
Spade: the system s declarative stream processing engine. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, SIGMOD ’08, pages
1123–1134, New York, NY, USA, 2008. ACM.

[15] Sven Graupner, Artur Andrzejak, Vadim E. Kotov, and Holger Trinks. Adaptive service
placement algorithms for autonomous service networks. In Sven Brueckner, Giovanna
Di Marzo Serugendo, Anthony Karageorgos, and Radhika Nagpal, editors, Engineering
Self-Organising Systems, volume 3464 of Lecture Notes in Computer Science, pages 280–
297. Springer, 2004.

[16] Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park, Philippe Selo,
and Chitra Venkatramani. Design, implementation, and evaluation of the linear road bench-
mark on the stream processing core. In 25th ACM SIGMOD International Conference on
Management of Data (SIGMOD 2006), June 2006.

[17] LOFAR. LOFAR | LOFAR. http://www.lofar.org/, 2012.

[18] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

[19] MIT. Medusa. http://nms.csail.mit.edu/projects/medusa/, 2003.

[20] MIT. MIT intelligent transportation systems. http://mit.edu/its/mitsimlab.html, 2012.

[21] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Distributed
stream computing platform. In Wei Fan, Wynne Hsu, Geoffrey I. Webb, Bing Liu, Chengqi
Zhang, Dimitrios Gunopulos, and Xindong Wu, editors, ICDM Workshops, pages 170–177.
IEEE Computer Society, 2010.

56

[22] Franz Rammig, Tales Heimfarth, and Peter Janacik. Biologically inspired methods for or-
ganizing distributed services on sensor networks. In Kirstie Bellman, Michael G. Hinchey,
Christian Müller-Schloer, Hartmut Schmeck, and Rolf Würtz, editors, Organic Computing
- Controlled Self-organization, number 08141 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[23] Ichiro Satoh. Bio-inspired deployment of distributed applications. In Proceedings of In-
ternational Workshop on Multi-Agents (PRIMA2004), Lecture Notes in Computer Science
(LNCS. Springer, 2004.

[24] Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. Esc: To-
wards an elastic stream computing platform for the cloud. In 4th IEEE International Con-
ference on Cloud Computing (CLOUD’11), pages 348–355, 2011.

[25] Mehul A. Shah, Michael J. Franklin, Samuel Madden, and Joseph M. Hellerstein. Java
support for data-intensive systems: experiences building the telegraph dataflow system.
SIGMOD Rec., 30(4):103–114, December 2001.

[26] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stonebraker.
Load shedding in a data stream manager. In Proceedings of the 29th international confer-
ence on Very large data bases - Volume 29, VLDB ’03, pages 309–320. VLDB Endowment,
2003.

[27] Nesime Tatbul, Uǧur Çetintemel, and Stan Zdonik. Staying fit: efficient load shedding
techniques for distributed stream processing. In Proceedings of the 33rd international
conference on Very large data bases, VLDB ’07, pages 159–170. VLDB Endowment,
2007.

[28] The Apache Software Foundation. Apache ZooKeeper. http://zookeeper.apache.org/, 2010.

[29] Hans ulrich Heiss and Michael Schmitz. Decentralized dynamic load balancing: The par-
ticles approach. In Proc. 8th Int. Symp. on Computer and Information Sciences, pages
115–128, 1993.

[30] QI Yang and Haris N. Koutsopoulos. A Microscopic Traffic Simulator for evaluation of
dynamic traffic management systems. Transportation Research Part C-emerging Technolo-
gies, 4:113–129, 1996.

[31] Stanley B. Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur Çetintemel, Magdalena
Balazinska, and Hari Balakrishnan. The aurora and medusa projects. IEEE Data Eng.
Bull., 26(1):3–10, 2003.

[32] Erik Zeitler and Tore Risch. Processing high-volume stream queries on a supercomputer.
In Proceedings of the 22nd International Conference on Data Engineering Workshops,
ICDEW ’06, pages 147–, Washington, DC, USA, 2006. IEEE Computer Society.

[33] Erik Zeitler and Tore Risch. Massive scale-out of expensive continuous queries. PVLDB,
4(11):1181–1188, 2011.

57

APPENDIX A
Simulation Results Summary

A.1 Load Distribution

0

100

200

300

400

500

600

700

800

900

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101
106
111
116
121
126
131
136
141
146
151
156
161
166
171
176

Tu
pl

es
 p

er
 M

in
ut

e
(K

)

Minute of Simulation

1 Expressway 4 Expressways 8 Expressways

Figure A.1: Load Distribution

59

A.2 4 Slaves - 4 Expressways

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute)

Particles Load Balancing

Figure A.2: Similar ID Placement

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Particles Load Balancing

Figure A.3: Random Placement

60

0

2

4

6

8

5 K
57 K
109 K
155 K
193 K
223 K
259 K
288 K
316 K
339 K
353 K
371 K
382 K
391 K
398 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

5 K
57 K
109 K
155 K
193 K
223 K
259 K
288 K
316 K
339 K
353 K
371 K
382 K
391 K
398 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

5 K
57 K
109 K
155 K
193 K
223 K
259 K
288 K
316 K
339 K
353 K
371 K
382 K
391 K
398 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Particles Load Balancing

Figure A.4: Least Loaded Placement

A.3 4 Slaves - 8 Expressways

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute)

Particles Load Balancing

Figure A.5: Similar ID Placement

61

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Particles Load Balancing

Figure A.6: Random Placement

0

2

4

6

8

9 K
113 K
217 K
308 K
385 K
445 K
516 K
574 K
630 K
676 K
705 K
740 K
761 K
779 K
792 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

9 K
113 K
217 K
308 K
385 K
445 K
516 K
574 K
630 K
676 K
705 K
740 K
761 K
779 K
792 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

9 K
113 K
217 K
308 K
385 K
445 K
516 K
574 K
630 K
676 K
705 K
740 K
761 K
779 K
792 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Particles Load Balancing

Figure A.7: Least Loaded Placement

62

A.4 8 Slaves - 4 Expressways

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute)

Particles Load Balancing

Figure A.8: Similar ID Placement

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

5 K
61 K
117 K
164 K
205 K
241 K
273 K
304 K
332 K
351 K
369 K
381 K
391 K
399 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Particles Load Balancing

Figure A.9: Random Placement

63

0

2

4

6

8

5 K
57 K
109 K
155 K
193 K
223 K
259 K
288 K
316 K
339 K
353 K
371 K
382 K
391 K
398 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

5 K
57 K
109 K
155 K
193 K
223 K
259 K
288 K
316 K
339 K
353 K
371 K
382 K
391 K
398 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

5 K
57 K
109 K
155 K
193 K
223 K
259 K
288 K
316 K
339 K
353 K
371 K
382 K
391 K
398 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Particles Load Balancing

Figure A.10: Least Loaded Placement

A.5 8 Slaves - 8 Expressways

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute)

Particles Load Balancing

Figure A.11: Similar ID Placement

64

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

9 K
122 K
233 K
328 K
409 K
480 K
545 K
607 K
662 K
700 K
735 K
760 K
779 K
794 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Figure A.12: Random Placement

0

2

4

6

8

9 K
113 K
217 K
308 K
385 K
445 K
516 K
574 K
630 K
676 K
705 K
740 K
761 K
779 K
792 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

No Load Balancing

0

2

4

6

8

9 K
113 K
217 K
308 K
385 K
445 K
516 K
574 K
630 K
676 K
705 K
740 K
761 K
779 K
792 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Naive Load Balancing

0

2

4

6

8

9 K
113 K
217 K
308 K
385 K
445 K
516 K
574 K
630 K
676 K
705 K
740 K
761 K
779 K
792 KM

ax
 R

es
po

ns
e

Ti
m

e
[s

]

Incoming Events per Minute

Particles Load Balancing

Figure A.13: Least Loaded Placement

65

APPENDIX B
ESC User Manual

B.1 Introduction

ESC (pronounced “Escape”) is a distributed stream processing platform written in Erlang. It
offers a simple programming model in which programs are specified by directed acyclic graphs
(DAGs). The following chapters describe the system requirements of ESC, where to get a copy
of ESC, the installation procedure and some scenarios, that are shipped with the system.

B.2 Requirements

As ESC runs within an Erlang virtual machine so the requirements for running ESC are identical
with the requirements for running the current Erlang release. The current Erlang release can
be obtained from http://www.erlang.org/download.html. Currently the version
R15B01 of Erlang is supported for running ESC.

It should be noted that the system requirements for running ESC are very low. But when
it comes to the execution of a specific scenario the requirements to the underlying hardware
rise according to the requirements of the scenario under execution. For executing the Linear
Road scenario with 0.5 expressways there should be at least one computer with 4 GB memory, a
minimum of 4 GB free disc space and a dual core CPU with 2 GHz. Due to the distributed char-
acteristics of ESC there also can be several computers connected to each, which in combination
meet the described minimum requirements.

In order to use the ESC monitoring interface, a browser with support for the current web
socket protocol (draft-ietf-hybi-thewebsocketprotocol-17), which is described under the URL
http://tools.ietf.org/html/rfc6455, is necessary. These include at the moment
every current WebKit based browser, Opera since version 10.70 and Firefox since version 4.0
beta 7. For development the Google Chrome browser in version 19.0.1084 has been used. In
order to view the web interface, a web server software like the Apache HTTP Server or Microsoft
IIS is required.

67

http://www.erlang.org/download.html
http://tools.ietf.org/html/rfc6455

Summary

• 256 MB RAM and 50 MB free hard drive space

• recent Erlang VM (http://www.erlang.org/download.html)

• GNU GCC compiler (http://gcc.gnu.org/)

• Cygwin (Windows) & GNU Bash (http://www.gnu.org/software/bash/)

• Webserver (e.g. Apache HTTP Server or Microsoft IIS Express)

• Browser with support for current web socket protocol (e.g. Google Chrome)

B.3 Installation

First of all the most recent Erlang version needs to be installed, which can be obtained from
http://www.erlang.org/. For a UNIX based operating system the current version from
the package management system should be sufficient. If not already present, a web server soft-
ware should be installed to view the ESC web interface. It is possible to obtain for example a
copy of the Apache HTTP server from http://httpd.apache.org/ or a copy of the
Microsoft IIS Express from http://www.microsoft.com. A recent browser support-
ing the current web socket protocol needs to be installed. The current version of the Google
Chrome browser is recommended, which can be obtained from https://www.google.
com/chrome. If ESC should run on a Microsoft Windows operating system, Cygwin needs to
be installed (http://www.cygwin.com/). Make also sure that the GNU GCC compiler is
installed and available (http://gcc.gnu.org/) on your system.

ESC can be pulled from gitvienna.vitalab.tuwien.ac.at:esc.git to a folder
of your choice. Afterwards the web server needs to be configured to point into the folder
%ESC_HOME%/priv/www/ for viewing the ESC web interface. If a Microsoft Windows oper-
ating system is used, Cygwin must be started. For every other operating system a console (GNU
Bash is recommended) must be opened. It has to be ensured that the opened console points to the
ESC installation directory. By executing the command bash start_master.sh the master
node is started to which all slave nodes can connect from this point on. The ESC interface can
be accessed by opening the URL http://localhost/index.xhtml in the installed web
browser (depending on your webserver configuration). Within another console window a slave
node can be started by executing the command bash start_slave1.sh. Attention: It is
not recommended to start the master and the slave application on the same computer when exe-
cuting scenarios with high computational requirements! In order to connect other machines from
the network it is necessary to adjust the IP addresses inside the scripts start_master.sh and
start_slave1.sh accordingly.

68

http://www.erlang.org/download.html
http://gcc.gnu.org/
http://www.gnu.org/software/bash/
http://www.erlang.org/
http://httpd.apache.org/
http://www.microsoft.com
https://www.google.com/chrome
https://www.google.com/chrome
http://www.cygwin.com/
http://gcc.gnu.org/
http://localhost/index.xhtml

Summary

• Erlang installation (http://www.erlang.org/)

• installation webserver and browser (with support for the web socket protocol)

• pull copy of ESC (git@vienna.vitalab.tuwien.ac.at:esc.git)

• point the web server to the folder %ESC_HOME%/priv/www/

• open Cygwin console (Windows) or GNU Bash and go to the ESC installation directory

• execute command bash start_master.sh

• open another console window and execute command bash start_slave1.sh

• open the URL http://localhost/index.xhtml inside the browser (URL de-
pends on your webserver configuration)

• for connecting other nodes from the network it is necessary to adjust the IP addresses in
the scripts start_master.sh and start_slave1.sh accordingly

B.4 Configuration

ESC can be configured by the scripts start_master.sh or start_slave1.sh respec-
tively. The possible command line arguments are presented in the following two tables.

start_master.sh

Argument Description

-d When this parameter is given then the application is compiled in de-
bug mode before running it. Every debug output is saved into the file
log/esc.log. As debug output puts a huge amount of load on the
system, this setting should be used with care.

-c When this parameter is provided the application is compiled before it is
started.

-m NODE The name under which the master node should be reachable. The default
parameter is master127.0.0.1. It should just be necessary to adjust
the IP part of the name, either via the command line argument or directly
inside the script.

Table B.1: Parameter for the Master Application

69

http://www.erlang.org/
http://localhost/index.xhtml

start_slave.sh

Argument Description

-m NODE Name of the master node to which the slave will connect. The default
value is master127.0.0.1.

-s NODE Name of the slave node under which the slave node will be reachable.
This name should be unique under all slave nodes. The default name is
slave1127.0.0.1.

-d Starts the slave in a “detached” state, which means it cannot be con-
trolled via the command line anymore.

Table B.2: Parameter for the Slave Application

B.5 The ESC-Web-Interface

ESC can be controlled either directly via the command line, or via the web interface. As men-
tioned earlier if you want to use the web interface it is necessary to have a recent browser
installed, which supports the web socket protocol, as well as a web server that points to the
location of the folder containing the index.xhtml file inside the ESC installation directory.
If everything has been setup correctly, you should be able to see the web interface by accessing
http://localhost/index.xhtml (depending on the configuration of your web server).

Web Sockets

The usual approach when writing client applications was to poll the server for the availability of
new data to update the client view. This approach has the advantage that the server does not have
to keep many connections open and no state needs to be preserved. The downside is that due to
the polling a huge computational overhead is created on the server side. Especially when dealing
with stream processing applications and their monitoring a polling approach is not desirable as
it could slow the system down immensely.

With the use of web sockets a permanent connection is established between the browser
and the server, in which both sides are able to initiate data transfers (push approach). By using
this technique, the server application is able to push information, e.g. load information that he
received from his slave nodes, to the client browser. The advantage is a huge speed increase on
the client as well as an on the server side. As of now there can be only one active connection to
the server application, due to the yet missing connection management.

More information on web sockets can be obtained by reading the respective Wikipedia arti-
cle (http://en.wikipedia.org/wiki/WebSocket) or the RFC (http://tools.
ietf.org/html/rfc6455).

70

http://localhost/index.xhtml
http://en.wikipedia.org/wiki/WebSocket
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455

Web Interface

When accessing the ESC web interface for the first time, the home view shown in Figure B.1
is displayed. At the top of the page you can see the navigation bar together will a status field.
Within the status field messages regarding the communication with the server are displayed.
Whenever there occurs an error or no connection to the server could be established, the messages
appear in red, all other messages appear in green. The home view gives information about the
available sections, which will also be described in the following chapters.

Figure B.1: ESC Web Interface - Home

System Monitor

The System Monitor view, which is shown in Figure B.2, shows all nodes currently connected
to the master and their worker. Within the System Monitor view it is possible to connect new
nodes (which should not be necessary, as slave nodes connect themselves automatically), create
new local nodes and remove (detach) nodes. The creation of new local nodes involves the
initialisation of a detached slave instance on the machine of the master node and should only be
used for debugging or testing purposed.

Another feature is the monitoring of workers currently running on a specific node. This
feature can be activated or deactivated by clicking “Activate Worker Monitoring” or “Deactivate

71

Worker Monitoring” respectively. It is not recommended to use worker monitoring when dealing
with more than 1000 workers per node as it could slow down the system immensely and therefore
worker monitoring is per default deactivated.

Figure B.2: ESC Web Interface - System Monitor

With worker monitoring activated, several color patterns can be applied, defining the colour-
ing of the worker. The currently available color patterns include “Load”, “Same Worker Key”
and “Same Pe-Id”. An overview of the available colourings and how they work is given in Table
B.3 and an example of the “Same Pe-Id”-colouring is given in Figure B.3.

72

Load A worker process is coloured by its load (messages in his
queue). When its queue length is bigger than zero, its
colour is red. If no messages are in its message queue than
its colour is green.

Same Worker Key The colouring of the worker processes is based on the
worker key. Whenever a new worker key occurs a new
random colour is assigned to that worker key.

Same Pe-Id The colouring of the worker processes is based on the Pe-
Id. Whenever a new Pe-Id occurs a new random colour is
assigned to that Pe-Id.

Table B.3: Worker Coloring Patterns

Figure B.3: ESC Web Interface - System Monitor with Coloring

73

System Log

Within the System Log view (depicted in Figure B.4) every log output of the application can be
traced and filtered. To prevent unnecessary load and bandwidth consumption, the log entries are
only updated whenever the System Log view is selected. It is possible to filter the log output by
the severity (debug, info, warn, error), by the module name or by a custom string. A combination
of all three filters is also possible. Whenever new log entries occur, the browser automatically
scrolls down to keep the new entries visible, but this feature is only enabled when the scrollbar
is on the bottom position.

Figure B.4: ESC Web Interface - System Log

Scenario Configuration

The Scenario Configuration view displays the scenario graph of the currently loaded scenario.
Additionally to that, the active scenario can be changed and specific events can be fired. The list
of scenarios is derived from the scenarios available inside of the scenario folder within the ESC
installation directory.

In future versions of ESC it should be possible to create new scenarios or to modify existing
scenarios within the web interface. By clicking on a node the currently active functionality of
the specific node shall appear and it should be possible to adjust the code either in Erlang or in
another programming language of your choice.

74

Figure B.5: ESC Web Interface - Scenario Configuration

Scenario Output

The Scenario Output view can be used by the running scenario to publish its results to the web
interface. This can be achieved by calling i_main:output_event(Event). Afterwards
the event should be visible within the web interface.

B.6 Creating and Running Scenarios

In order to create your own scenario for ESC the following steps are necessary:

• Create an new folder inside the scenarios folder with your scenario name as folder name

• Place a new file inside the folder with a name of the form scenario_name.config

• Adjust the contents of the configuration file according to your needs (see Chapter B.5)

75

• Place your source files inside the scenario folder into a sub folder of your choice (be
careful not to take a file name or module name that has been taken by any other module
or file within the ESC application, including all other scenarios)

• Start ESC by executing the command bash start_master.sh -c

• Load your scenario by executing m:load_scenario(scenario_name).

• The scenario is now running and can receive events

B.7 Create scenario configuration file

The scenario configurations file contains three sections: a graph section, a processing element
description and a plug-in section. The following example from the Linear Road scenario shall
give an overview of the possible settings and their meaning.

{graph, [% scenario graph as a list of adjacent PE-Ids
{xway0, [car]}, {car, [accident_evaluator]},
{accident_evaluator, []}

]}.

{pe_ids, [% PE-Ids with module, arguments and options
{xway0, [

{module, lr_xway}, {arguments, []},
{events, any}, {node, any} {hibernate, off},
{movable, false}

]}
]}.

{properties, [% global scenario properties
{load_balancing_strategy, lb_none},
{placement_strategy, pl_least_loaded}

]}.

Listing 12: Scenario Configuration

B.8 Example Scenarios

Some example scenarios come together with ESC and can be found inside the folder scenar-
ios. These scenario include the demo scenario, which basically used to do unit testing, and
the Linear Road scenario which implements the Linear Road benchmark. The Linear Road
benchmark has been developed to test the performance of stream data management systems
by simulating the traffic on a specific amount of expressways. More information concern-
ing the Linear Road benchmark can be found under http://pages.cs.brandeis.edu/
~linearroad/ and in Chapter B.8.

76

http://pages.cs.brandeis.edu/~linearroad/
http://pages.cs.brandeis.edu/~linearroad/

Demo Scenario

The Demo scenario is used mainly for debug purposes and unit testing. In order to generate load
inside the processing elements each element generates a certain amount of prime numbers. For
the consumption of memory random strings are created and saved in the state of the worker. The
demo scenario contains the following processing elements:

input Used for receiving incoming events.

non_movable A processing element that is not allowed to move between
nodes.

heavy_non_movable Also a processing element that is not allowed to move, like
non_movable, but additionally this processing elements
contains large strings in its memory.

small A processing element with a low memory and load con-
sumption.

heavy A processing element with high load and memory con-
sumption.

output The processing element used for receiving output events.

Table B.4: Processing Elements for Demo Scenario

Linear Road

As described before, the Linear Road benchmark simulates the traffic on a specific amount of
expressways. The exact specifications for the Linear Road benchmark can be observed in the pa-
per located under http://www.cs.brandeis.edu/~linearroad/linear-road.
pdf. In order to start the Linear Road benchmark input data is needed. This input data can
be generated as described under http://pages.cs.brandeis.edu/~linearroad/
mitsiminstall.html.

After the generation of input data for a specific amount of expressways, the simulation can be
started by executing the command lr_simulation:start(“history_input”, “stream_input”). After a
period of three hours the simulation is finished and all results are written into the output folder
of the Linear Road scenario folder.

77

http://www.cs.brandeis.edu/~linearroad/linear-road.pdf
http://www.cs.brandeis.edu/~linearroad/linear-road.pdf
http://pages.cs.brandeis.edu/~linearroad/mitsiminstall.html
http://pages.cs.brandeis.edu/~linearroad/mitsiminstall.html

	Introduction
	Background: Distributed Stream Processing
	Background: Adaptability Techniques
	Contribution

	State of the Art
	Distributed Stream Processing
	Adaptation to Load Changes
	Conclusion

	Related Work
	Nature Inspired Algorithms
	Conclusion

	Architecture of ESC
	Main Components of ESC
	Scenario Definition and Event Processing
	Worker Migration

	Operator Placement Approaches
	Initial Worker Placement
	Load Balancing

	Benchmarking Distributed Stream Processing Systems
	Benchmarking with Linear Road
	Linear Road Benchmark Implementation in ESC

	Results
	Evaluation Framework
	Test Results

	Conclusion and Future Work
	Bibliography
	Simulation Results Summary
	Load Distribution
	4 Slaves - 4 Expressways
	4 Slaves - 8 Expressways
	8 Slaves - 4 Expressways
	8 Slaves - 8 Expressways

	ESC User Manual
	Introduction
	Requirements
	Installation
	Configuration
	The ESC-Web-Interface
	Creating and Running Scenarios
	Create scenario configuration file
	Example Scenarios

