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Abstract
Roll forming is a continuous process in which a moving metal sheet passes through numerous pairs of opposing forming
rolls. The shafts of the roll forming mill are equipped with these rolls and must be set up and aligned to achieve the required
final profile of the sheet. The practically relevant task of predicting the profile geometry of this incremental rolling process
with varying characteristics of the metal sheet entering the mill requires an accurate description of the stiffness behavior of
the shaft with rolls, which is the most compliant part of the roll forming mill. In this paper, the measured force-deflection
characteristic of the shaft without rolls is compared with predictions of various theoretical models, followed by the adoption
of the shear deformable beam model of the shaft with nonlinear elastic supports in the bearings. The coefficients of the cubic
stiffness characteristics of the rotational springs as well as the effective length between the supports are identified based on
the experimental data for the deflections, measured along the shaft for various loading levels. The theoretical predictions are
obtained via the nonlinear finite element model of the shaft. The model thus provided shows high accuracy compared with
the measurements. The paper’s results serve as a foundation for models to predict the stiffness of shafts with rolls.

Keywords Roll forming · Roll forming mill · Parameter identification · Stiffness behavior · Mechanical model

1 Introduction

In roll forming, two opposing shafts with rolls, which
are usually different for each forming pass, carry out
the bending and determine the shape of the deformed
profile [5]. The consecutively arranged forming passes
incrementally form the final profile. The forming forces,
which, depending on various parameters of the forming
pass, vary significantly, cause deflections of the upper and
lower shafts. In this paper, standard (conventional) mills,
which are supported on both ends, are investigated. The
stiffness of a shaft with equipped rolls depends on many
parameters and is different for each forming pass. The
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deflections of the shafts, which are caused by the forming
forces, have to be compensated for by adjusting them.

Although rolling is a very different process to roll
forming, the necessity of accounting for the shaft distortion
is the same and some approaches exist in the field of rolling.
In the case of rolling thick sheets, special roll mills such
as continuous variable crown (CVC) and pair cross (PC)
mills equipped with roll shifting, roll crossing, and work
roll bending exist as means to account for shaft distortion
[3, 4, 15]. However, in the case of rolling thin sheets, this
problem is pronounced and amplified due to the work rolls
having contact to each other on the edges. For this case, an
advantageous constructive setup of the mill is not sufficient
and the resulting (non-uniform) distribution of the contact
pressure must be accounted by other means. In [6], the
authors propose a sophisticated beam model in order to
simulate the process of rolling sheet metals and research
the effect of rolling parameters on rolling of thin sheet
during work roll edge contact. The introduced model takes
several effects (deformation due to bending, deformation
due to shear, contact etc.) into account and is implemented
by means of the influence function method. Although
investigations regarding the roll mill or shaft distortion have
been carried out and exist in the field of rolling, it is still
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not common in the field of roll forming. Within the scope of
this paper, a nonlinear model for the shaft of a roll forming
mill is implemented and its parameters are identified by the
use of physical experiments or measurements.

According to Bhattacharyya et al. [2], the forming force
can be divided into three main components: the load that
is due to transverse folding and associated stretching, the
load that is due to longitudinal reverse bending after the
deformed strip reaches the next roll, and the clamping or
“bite” load. Inertial forces can be neglected because of the
low feed rate of the sheet and the resulting low angular
velocities of the shafts [9]. If eccentricity of the rolls on
the shaft and the out-of-roundness of the rolls are neglected,
the forming process can be described as a steady-state
condition [8]. For new profile cross-sections, the alignment
of the shafts of the forming mills, especially in the vertical
direction, takes up to 16 h. Understanding and being able to
describe the stiffness behavior of the shafts with equipped
rolls, in combination with prior knowledge of the emerging
forming forces, would lead to a reduction of the set-up time,
because the necessary infeeding of the shafts against each
other can be predicted in advance. In addition, this would
show the way to a semi-automated alignment of the shafts.
In other studies on numerical roll forming, the rolls are
considered to be rigid bodies that are fixed in space [7, 10–
12, 14, 16]. As a consequence, the compliance of the tool is
neglected. Abeyrathna et al. [1] take the stiffness of the tool
into account by using one linear spring for each upper roll-
set. This means that the upper rolls of each forming pass
have one degree of freedom in the vertical direction. Traub
et al. [13] also use one linear spring in the vertical direction
for each upper roll-set, as well as one linear spring, acting
in the horizontal direction, for each side roll. Müller [9]
compares the normal forces of experimental data with those
acquired by means of numerical simulation for a profile
with a U-shaped cross-section where the rolls are rigid and
fixed in space. The force level of the numerical simulation
is a few times higher than the force level in the experiments.
Subsequently, he uses a simple linear spring to account
for the stiffness of the tool. All these approaches neglect
both the nonlinear bending behavior and the bending line.
The changing contact conditions of the rolls in dependence
of the load can be predicted only with a more complex
representation of the stiffness behavior of the shaft.

This paper investigates the stiffness behavior of the
shaft without rolls and develops suitable shear deformable
beam models. In order to validate the accuracy of the
developed models, experiments are carried out. To the best
of the authors’ knowledge, research solely committed to
modeling the shaft is still a lacuna. The paper considers
itself exclusively with the shaft, leaving the rolls out of the
picture. The shaft is viewed as a fully linear Timoshenko
beam. For reasons of simplicity and clarity, the model

presented here neglects the key connection and views the
shaft as a stepped beam without a key or the groove for
it. The radial load is modeled as a single radial force.
The modeling of the support conditions proves to be
particularly challenging. Different approaches are tested,
such as ideal supports versus elastic supports in the form of
springs. Since the parameters of the supports are not known
beforehand, we carry out a parameter identification by using
experimental data as a reference. Ultimately, a linear beam
model in which the supports are modeled in terms of a
linear (radial) spring acting on one boundary of the beam
and a linear (radial) and a cubic (rotational) spring acting
on the other boundary proves to be the most successful
option. Additionally to the beam model, a 3D continuum
FEM model in ANSYS was set up in order to gain a deeper
understand of the occurring nonlinear effects.

2 Experimental structure andmeasurements
used for future identification

2.1 Standard roll formingmill

This paper investigates the stiffness behavior of the shafts
and the forming stands of a standard (conventional) mill.
The three main components of the forming mill are the
drive-side stand, the operator-side stand, and the shaft (see
Fig. 1). Among these three components, the shaft is the most
compliant one.

The drive-side faces the drivetrain, and during produc-
tion, at least one shaft of each forming pass is usually
connected to the drivetrain. The operator-side stand can be
removed easily to equip the shafts with rolls (which are
not displayed in Fig. 1). Both stands are positioned on the
mill bed with a feather key, and the mill bed mountings
1 are fastened to it with screws. To increase the rigid-

ity of the forming stands and to mount some additional
parts, the head 4 and the respective mill bed mounting
can be connected with a supporting plate (not mounted in
Fig. 1). To measure the vertical load during the experi-
ments, one force sensor 8 per forming stand is installed.
The vertical positioning of the upper and lower shafts 7
is done with the help of a manual spindle drive 6 con-
nected with the corresponding bearing pedestal. Normally,
the movement of the drive-side pedestal 2 and the move-
ment of the operator-side pedestal 3 are synchronized
with a connector tube 9 . The bearing pedestals are guided
along the guide posts 5 with a clearance that, due to
manufacturing tolerances, ranges between 0.1 and 0.2 mm.
The clearance between the bearing pedestals and the guide
posts for the drive-side as well as the operator-side is
close to the upper tolerance limit of 0.2 mm, verified by
measurements.
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Fig. 1 Components of the roll forming mill

2.2 Shaft

As previously mentioned, the shaft is the most compliant
component of the roll forming mill. Figure 2 shows only the
lower shaft, on which the force sensors are placed. All parts
of the assembly are just represented in a simplified way. The
supports and pedestals of the upper shaft are identical.

The drivetrain can be connected at 1 . The shaft is
three-way supported by (from left to right) one angular
contact ball bearing 2 , one needle roller bearing 3 in
the bearing pedestal on the drive-side 6 , and another
identical needle roller bearing in the bearing pedestal on
the operator-side 7 . Due to the bearing arrangement, the
drive-side pedestal initiates a relatively high moment into

o
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Fig. 2 Structure and supports of the shaft
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Fig. 3 Dimensions of the shaft

the guide posts 8 . By contrast, the force application point
of the needle roller bearing on the operator-side lies on the
plane of the axis of the guide posts so that, in the ideal
case, no moment is initiated there. In general, the rolls are
positioned between the shaft shoulder on the drive-side and
the bearing sleeve 4 ; by tightening the nut 5 , the rolls
are pretensioned, which also increases the stiffness. Here no
rolls are used, so no pretension force can be applied. Dowel

pins 9 keep the force sensor 10 aligned horizontally and
prevent the rotation of the mounting plate when the spindle
drive is in use. The diameter of the shaft is a function of the
coordinate x. The geometrical properties of Table 1 refer to
Fig. 3 (as well as Fig. 8). As for the material parameters in
Table 1, E is the Young’s modulus, G is the shear modulus,
and κS is the shear deflection constant for a circular-shaped
cross-section.

2.3 Sensor application and data acquisition

The data for validating the model are generated on the
original shaft. Axial probes on discrete positions (shown in
Fig. 4) give the deflection of the shaft when it is forced to
bend. For this purpose, LVDT sensors (TESA GT62 DC)
are used.

Table 1 Geometry and material parameters of the shaft

d1 = 50 mm a = 588.5 mm

d2 = 68 mm b = 603.5 mm

d3 = 65 mm c = 648.4 mm

d4 = 64.8 mm d = 663 mm

d5 = 35 mm e = 714.5 mm

α = 22deg f = 350 mm

E = 210000 N
mm2 l1 = 631 mm

G = 79300 N
mm2 l2 = 97 mm

κS = 0.9 l = 728 mm
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Fig. 4 Experimental setup

The piezo-based force sensors (Kistler 9333A), which

are represented as 10 in Fig. 2, measure the induced
load on the drive-side and on the operator-side. All
data are acquired by means of a DAQ system (National
Instruments 9205). An application coded in Matlab is used
for calculations and storing data. The load, employed by
a single force, is applied by manually infeeding the upper
shaft against the lower shaft. The force is transmitted
to the lower shaft via a special roll setup on the upper
shaft (Fig. 4). The data acquisition rate is 50 Hz for all
measurements.

The deflection of each bearing pedestal is measured
simultaneously so as to compensate for the deflection of
the pedestals and get the deflection of the shaft in its
“pure” form. This is done by repeating the experiment and
measuring the deflections of the corners of the bearing
pedestals and the applied forces. These four datasets,
detected on each of the lower bearing pedestals, are used
to calculate an arithmetic mean of the vertical deflection
occurring in the experiment on both the operator- and drive-
side. The calculated values are then used to compensate
the occurring deflections of the shaft according to their
position in the experiment between the forming stands. The
experiments to gather this data are also repeated five times
and the arithmetic mean of these measurements is used
for compensation later on. The information gathered about
the deflections induced by known force levels is used to
compare the models with the observations made in reality
(Figs. 11, 5, 18, and 16). In all following measurement
data, the deflection of the pedestals is already accounted
for. To guarantee precision, every experiment is repeated
several times and measured outliers are not considered.
Due to small remaining deviations between repeated
measurements, a mean value of these measurements is used
for all further considerations.

Fig. 5 Vertical load vs. deflection at force application point
(experimental data)

3 Sources of nonlinear behavior

Figure 5 plots the applied concentrated force over the
deflection of the force application point. The blue line
represents the mean of the measuremend data for five
repetitions, and the green line represents the linearized data
with its range of deviations between the load level of 0 kN
and 20 kN. The occurring forming forces during production
can reach higher load levels. In order to avoid surface
damage on the lower shaft (small contact area), the upper
limit is set to 20 kN. When the two lines are compared, a
progressive stiffness behavior can easily be observed. This
means that by increasing the load level, the overall stiffness
increases. The following sections further discuss the causes
of nonlinearity. The nonlinear behavior may originate from
the bearings and the changing contact conditions between
the guide posts and the bearing pedestals on the drive-side.

3.1 Continuum FEMmodel in ANSYS

A continuum FEM model with the commercial software
ANSYS is set up, in order to gain a deeper understanding
of the observed nonlinear effects. As just the deflections of
the lower shaft are of interest in this study, only the lower
shaft with its pedestals and guide posts is considered in
the model. The forming stands are omitted, which allows a
direct comparison with the compensated measurement data.
As the material is isotropic and the whole experimental
setup is symmetric about the XY-plane, only half of the
model is discretized with quadratic hexahedron elements.
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The displacement boundary conditions of the bearing
pedestals in y-direction are set to zero at the location
of the spindle axis, which allows tilting of the pedestals
but no vertical movement. The guide posts are cut at the
height of the upper surface of the mill bed mountings
and all degrees of freedom are locked there. The only
contact area in den model is defined between the guide
posts and the pedestals. In order to determine the nonlinear
load/moment over displacement/rotation (with operating
clearances) behavior, connectors are used. As the rolling
elements of the bearings can only transmit compression
stresses, only the corresponding upper or lower area of
the projection of the bearings on the pedestals and shaft
are coupled (ball bearing not pretensioned). The external
maximum force for the FEM calculation is extended to
35 kN in order to investigate the behavior of the shaft under
higher loads.

3.2 Radial and tilting stiffness of the bearings

In needle roller bearings, there is, theoretically, a line
contact between the rolling elements and the inner and
outer rings. In ball bearings, on the other hand, there is, in
theory, a point contact between the rolling elements and the
inner and outer rings. The result is a much higher radial
stiffness of the needle roller bearings. The radial load over
displacement that is characteristic of both bearing types can
be described with a power function, and both bearing types
display a progressive behavior.

Fig. 6 Radial stiffness of the needle roller bearing and angular contact
ball bearing (data from manufacturer)

Higher load leads to higher deformation of the rolling
elements and the rings and, therefore, to a lager contact
area. The pressure distribution in the contact zones can be
described by means of the Hertzian theory. Figure 6 shows
the force over displacement curves of the two bearing types
(experimental data from manufacturer). To obtain these
curves, only a radial force is applied on the inner ring of
the bearing. The linearized values are calculated between
0 kN and 20 kN for the angular contact ball bearing and
between 0 kN and 40 kN for the needle roller bearing.
The different force ranges for the linearization are due to
the different support reactions. Compared with the angular
contact ball bearing, the needle roller bearing is about seven
times stiffer. If the radial bearing stiffnesses (see Fig. 6)
are divided by the linearized stiffness of the whole system
(measurement data: vertical load vs. deflection at the force
application point; see Fig. 5), we get a factor of about 135
for the needle roller bearing and a factor of about 19 for
the angular contact ball bearing. As the linearized bearing
stiffnesses are way higher compared to the linearized overall
stiffness, it is to say that the main source of nonlinear
behavior of the system cannot be explained by just the
nonlinear radial stiffness. In fact, one could deduce that it
does not make a difference whether the linearized radial
stiffness or the actual nonlinear behavior of the bearing is
used in the nonlinear model.

In addition to the radial stiffness, the needle roller
bearing has a tilting stiffness. Because the angular contact
ball bearing is not pretensioned, the tilting stiffness can
be assumed to be zero. The tilting stiffness of the needle

Fig. 7 Tilting stiffness of the needle roller bearings and their actual
rotation angle (data from manufacturer and results of 3D FEM model)
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Fig. 8 Ideal pinned-roller-roller
support model of the shaft

roller bearings is shown in Fig. 7 (blue lines—experimental
data from manufacturer). Due to the possible operating
clearance of the bearings, the tilting stiffness is expected
to be of no impact. To establish which clearance actually
predominates in the presented case, the two extreme cases
(maximum and minimum clearances) are computed. The
calculated deflections with the maximum clearance show
the best correspondence with the experimental data, so the
assumption can be made that the clearance of the needle
roller bearing is around 65.6 μm. Figure 7 also displays
the rotation angle over the applied force for points B and C
(green lines in Fig. 8). If the operating clearance is 65.6 μm,
no moment owing to the tilting stiffness of the needle roller
bearing is induced in the shaft. At point B, the rotation angle
is much smaller than at point C. The support at point C can
be seen as an ideal hinge. Neither the radial bearing stiffness
nor the tilting stiffness of the bearings has a major influence
on the nonlinear behavior of the system.

3.3 Development of the support reactions over the
induced load

As shown in Fig. 8, the angular contact ball bearing at point
A acts as a fixed bearing, and the needle roller bearings at
points B and C act as floating bearings. Accordingly, it is a
statically over-determined system.

The operating clearance is 65.6 μm for the needle roller
bearing and 27 μm for the angular contact ball bearing. In a
statically overdetermined system, the support reactions are
dependent on the bending stiffness of the beam. In addition,
the clearance of the needle roller bearing and the angular
contact ball bearing on the drive-side are responsible for a
change of the force direction at point A.

Figure 9 displays the reaction forces at the supports
(results of 3D FEM model) over the external force. The
green line represents the reaction force at the operator-
sided needle roller bearing, and the blue line represents
the drive-side forces. Up to an external force of 4 kN,
all forces are in the positive y-direction. The clearance
of the angular contact ball bearing is smaller than that of
the needle roller bearing, which means that the angular
contact ball bearing gets in contact first. Therefore, the
pedestal tilts counterclockwise, which leads to an immediate
contact of the needle roller bearing. If the external load

further increases, the pedestal tilts clockwise and the force
magnitude of the contact ball bearing starts to decrease
at a force level of 4 kN. At a force level of 6 kN, the
angular contact ball bearing is no longer in contact; thus,
the reaction force tends to 0 kN. By continuing to increase
the external load level, the reaction force becomes negative,
so that the angular contact ball comes into contact with the
upper part of the pedestal. During this low external load
level, the overall stiffness of the system starts to increase.
Starting at a force level of 6 kN, the angular contact ball
bearing creates an opposing force, thereby stiffening the
system. From a force level of around 16 kN, all reaction
forces increase linearly. Hence, the overall stiffness also
becomes linear. This can also be observed by looking at the
results of the finite element calculation of the 3D model. To
sum up, the operation clearance of the bearings is a major
source of nonlinearity.

Fig. 9 Reaction forces at the three supports (data from 3D FEM
model)
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Fig. 10 Tilting of pedestals due to clearance

3.4 Tilting of bearing pedestals

Due to the clearance between the bearing pedestals and the
guide posts, which is assumed with 0.2 mm, the bearing
pedestals can tilt. This leads to an increased deflection of
the shaft. Figure 10 shows the geometric relations.

The angle of inclination α of the pedestals can be
calculated thus:

cot(α) = h

w
, cos(α) = d

u
, u + w = D

cos(α)D = sin(α)h + d → α ≈

D − d

h
(1)

The free rotation angle α0 of the drive-side bearing
pedestal is, due to clearance, up to 1.48 mrad. Because
of the induced moment, the contact area between the
guide posts and the pedestals is dependent on the external
force. The moment leads to a deflection of the guide
posts.

4Mechanical models and implementation

In this section, the development of a suitable beam
model, which has to show high accuracy compared to
the measurement data, is presented. This can be seen
as an general approach starting with the simplest beam
models to finally end up with a beam model with
nonlinear elastic springs. For all upcoming models, the
shaft is considered as a fully linear, shear deformable
beam (Timoshenko theory). It is exposed to a single
force F that is acting in the vertical direction (negative
y-direction).

4.1 Simple linear models

As a first attempt to describe the deflection of the shaft,
the ideal pinned-roller-roller support model in Fig. 8 is
used. For this model, all supports are fixed in the vertical

Fig. 11 Comparison between simple models and results of the
experiments for external load of 20 kN

direction. The origin of the coordinate system in the x-
direction is on the axis of the guide posts on the drive-side.

The red line in Fig. 11 shows the computed bend-line
for the ideal pinned-roller-roller support model (Fig. 8)
for a concentrated force of 20 kN. The red dots represent
the discrete displacement values of the LVDT sensors,
where the deflections of the bearing pedestals are already
compensated. The blue line is the polynomial fit through
the measurement data. If the measured deflection data are
compared with the ones of the ideal pinned-roller-roller
support model, it becomes obvious that the model highly
overestimates the stiffness of the shaft. This means that the
stiffness of the drive-side is not as high as in the ideal case,
because the supports A and B move in vertical direction
due to the phenomenons described in Sections 3.2, 3.3 and
3.4. So the basic assumptions that are normally made for
ideal supports are not valid in this case. In what follows,
the two extreme cases concerning the stiffening effect of
the drive-side pedestal are presented in order to estimate the
boundaries of the possible deflections.

The bend-lines for the two models are also shown in
Fig. 11. For the ideal clamped-roller support model (Fig. 12)
and the ideal pinned-roller support model (Fig. 13), the
supports A and B of the ideal pinned-roller-roller support
model (Fig. 8) of the shaft are reduced to one support AB,
which is at the horizontal position of B from the ideal
pinned-roller-roller support model. The minimal deflections
would occur if the drive-side is modeled as a clamped
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Fig. 12 Ideal clamped-roller support model

support (Fig. 12). The maximal deflections, on the contrary,
would occur if the drive-side is represented by a simple
pinned support (Fig. 13). The ideal pinned-roller-roller
support model (Fig. 8) is nearly as stiff as the clamped-
roller support model (Fig. 12). However, both overestimate
the stiffness of the experimental bending-line. The pinned-
roller support model (Fig. 13), on the other hand, is too
compliant, but it is still the model that best describes
the bend-line. So the stiffening effect of the drive-side
angular contact ball bearing is not as high as assumed.
For all models, the Timoshenko beam theory is used; the
differential equations for the bend-line are:

dw(x)

dx
= −ϕ(x) + Q(x)

GAks

dϕ(x)

dx
= M(x)

EJz
(2)

Here E is the Young’s modulus, Jz is the second moment
of area about the neutral axis z, M is the moment about the
neutral axis, G is the shear modulus, w is the deflection in
the negative y-direction, A is the area of the cross section,
ks is the shear correction factor, and ϕ is the angle of
inclination of the cross section. As the shaft is stepped,
the diameter and therefore A and Jz are dependant on
the position in x-direction. The kinematic assumptions of
the Timoshenko theory are that the normals to the axis
of the beam remain straight after deformation and that
the thickness of a cross-section does not change during
the deformation. In contrast to what the Bernoulli-Euler
theory says, the angle ϕ is not simply the derivative of
the deflection. The angle between the normal to the cross-
section and the vertical axis is greater than 90◦ because
of the additional shear deformation. As a consequence,
a Bernoulli-Euler beam is stiffer and experiences lower
deflections than a Timoshenko beam. In the particular case
of the considered shaft, the maximum relative error of
deflection between Bernoulli theory and Timoshenko theory
for the three models at a force level of 20 kN is 5.7%.

Fig. 13 Ideal pinned-roller support model

Thus, only the Timoshenko theory is relevant to the study
presented here. The diagram also shows that the bend-line
is not symmetrical between B and C.

4.2 Linear and nonlinear models with springs

The final model to describe the stiffness behavior is an
adaption of the simple pinned-roller support model (see
Fig. 13). The supports are modeled by two linear vertical
acting springs and one rotational spring (see Fig. 14). The
two linear springs represent the linearized radial stiffness
of the needle roller bearings with linear stiffness values of
kABT = kCT = 1708 · 103 N

mm (see Fig. 6). These values
are kept constant, as the system does not react sensitively to
their variation.

Preliminary experiments with a rotational spring at
point C have demonstrated that this position (operator-
side) has no notable tilting stiffness and is far less stiff
than the drive-side. Thus, a rotational spring in position
C is omitted. A rotational spring at point AB accounts
for the stiffening effect of the drive-side. The reduced
center of rotation of the needle roller bearing, the angular
contact ball bearing on the drive-side as well as the bearing
pedestal has to be between the two bearings. Therefore, the
position of point AB, which is equivalent to the effective
length lM between the supports, will be determined in
the course of the identification of the parameters. For the
rotational spring, a linear as well as a nonlinear approach
is chosen. The rotational moments and the potential
energies of the spring are thus determined by the following
expressions:

Linear : MAB(ϕ) = kAB ϕ

Nonlinear : MAB(ϕ) = k1AB ϕ + k2AB ϕ3

Linear : UAB(ϕ̄) =
ϕ̄∫

0

MAB(ϕ) dϕ = 1

2
kAB ϕ̄2

Nonlinear : UAB(ϕ̄) = 1

2
k1AB ϕ̄2 + 1

4
k2AB ϕ̄4 (3)

3370 Int J Adv Manuf Technol (2021) 112:3363–3375



Fig. 14 Linear and nonlinear model with springs

Here we omit the quadratic term of the nonlinear
spring based on the assumption that the supports react
symmetrically to the load (e.g., F and −F should cause
reactions of the same magnitude). In Section 4.4, the values
of the two parameters lM and kAB for the linear model and
the three parameters lM , k1AB, and k2AB for the nonlinear
model will be determined in the course of the identification
of the parameter.

4.3 Implementation of the FEmodel

We discretize the beam with shear deformable 1D-beam
elements, as shown in Fig. 15. The element is of the length
le and possesses three nodes, namely i, j, and k. The local
element coordinates −1 ≤ ξ ≤ 1 have their origin in
the center of the element. Each node receives a degree of
freedom (DOF) for deflection, denoted as w, but only the
outer two nodes i and k are assigned a rotational DOF ϕ.
The local element-coordinate vectors can then be introduced
as follows:

uel = (
wi wj wk

)T
, ϕel = (

ϕi ϕk
)T

(4)

uel contains the DOFs for deflection, and ϕel those for the
rotational angles. As for the kinematics of the element, we
use a quadratic ansatz for the deflection and a linear ansatz
for the rotation angle:

wel(ξ) = 1

2
(wi (−1 + ξ) ξ + wk (1 + ξ) ξ − 2 wj (−1 + ξ2))

ϕel(ξ) = 1

2
(ϕi (1 − ξ) + ϕk (1 + ξ)). (5)

The considered problem (see Fig. 14) is both a
conservative and a static problem. Thus, the chosen

Fig. 15 Shear deformable beam element

approach is to minimize the total potential energy of the
system. The total energy Utotal is the sum of the strain
energy of the beam elements Uint, the deformation energy
of the springs Usprings, and the energy of the external forces
Uext:

Utotal = Ustrain + Usprings + Uext. (6)

The strain energy of a single shear deformable beam
element n as U

(n)
el is defined as:

U
(n)
el = le

4

∫

el(n)

(
EJz

(
dwel(ξ)

dξ

)2

+κS GA

(
dwel(ξ)

dξ
− ϕel(ξ)

)2
)

dξ .

(7)

In Eq. 7, A stands for the cross-sectional area, and
Jz denotes the area moment of interia around the z-axis.
Both are functions of ξ . The other properties have been
defined above. After introducing an appropriate mapping
scheme of the local element DOFs to the entries of the
vector of the global DOFs q, the sum over the internal
energies of each beam element results into the total strain
energy Ustrain(qk). The integrals are computed using the
Gauss quadrature rule with two integration points per
element. This process of assembling the expression for
the total strain energy can be schematically represented as
follows:

{w(n)
i → q[3 el(n) − 2], ϕ

(n)
i → q[3 el(n) − 1],

w
(n)
j → q[3 el(n)], w

(n)
k → q[3 el(n) + 1],

ϕ
(n)
k → q[3 el(n) + 2]}

Ustrain =
Nel∑
n=1

U
(n)
el ,

(8)

was implemented using the Wolfram Mathematica com-
puter algebra environment1.

In Eq. 8, Nel denotes the total number of elements used
for discretization.

Subsequently, the deformation energy of the springs is
defined in Eq. 9. One can identify the global DOFs that
are associated with the springs in a straightforward way,

1http://www.wolfram.com/mathematica
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since the springs act on the first and the last element of the
established mesh (mapping scheme according to Eq. 8).

Linear : Usprings =1

2
kABT q[1]2 + 1

2
kCT q[3 Nel + 1]2

+ 1

2
kAB q[2]2

Nonlinear : Usprings =1

2
kABT q[1]2 + 1

2
kCT q[3 Nel + 1]2

+ 1

2
k1AB q[2]2 + 1

4
k2AB q[2]4

(9)

As for the energy of the external forces, only a single
force F is acting on the system, and the energy results in:

Uext = F wel(ξ)
∣∣
ξ=ξF

(10)

In Eq. 10, it is necessary to convert the local DOFs
into the appropriate global DOFs (according to Eq. 8).
Therefore, the element on which F is acting and the local
position of F on this element, which is denoted by ξF, must
be known.

A solution (equilibrium state) of the generalized nodal
displacements is obtained by minimizing Utotal. To enable
this condition, the gradient of Utotal must be equal to
zero. Thus, we obtain a system of nonlinear algebraic
equations

∂Utotal

∂qi

= 0, for i = {1, 2, 3, ..., 3Nel + 2},

which is solved iteratively with the help of Newton’s method
using the Wolfram Mathematica software environment.

4.4 Objective function for optimization

In order to adapt the existing numerical models in
accordance with the experiments conducted, a parameter
identification or optimization must be carried out. The aim
is to identify the length lM and the spring parameters
kAB for the linear model as well as k1AB and k2AB

for the the nonlinear model such that the results of
the numerical simulation are as close as possible to the
measured deflections along the beam and for the entire
range. The identification is conducted for a set of different
loads:

F = {20 kN, 15 kN, 10 kN, 3 kN, 1 kN} (11)

The objective functions, which are desired to be
minimized, are introduced as follows:

Rj =

⎛
⎜⎜⎜⎝

i=7∑
i=1

(wi − Mi)
2

i=7∑
i=1

Mi
2

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
F=F [j ]

Linear : Obj(lM, kAB) =
j=5∑
j=1

Rj

Nonlinear : Obj(lM, k1AB, k2AB) =
j=5∑
j=1

Rj

(12)

Here wi are the numerically predicted deflection value
for the discrete displacement sensor position i at the
load level j and Mi are corresponding measured values.
The objective function used is the sum over the relative
errors Rj . They are defined for a certain load F =
F [j ], as the computed error sum of squares

∑
(wi − Mi)

2

divided by the sum of squares of the measurement
values

∑
M2

i such that all measurements become equally
important.

As already mentioned, the upper bound is set to 20 kN
in order to avoid surface damage. In contrary, the lower
bound of 1 kN is set due to the fact that lower load
levels for this type of roll forming machine are not
applicable. The problem at hand is also bound up with
constraints, as the stiffness parameters of the springs must
be positive and the length in the range of 631 mm <

lM < 728 mm (position between the needle and the ball
bearing).

Upon minimizing the objective function, the according
parameters can be found. To minimize the objective
function, the Newton method is applied.

5 Results

5.1 Parameter identification results of the linear
model with springs

The identified parameters for the linear model are depicted
in Table 2 and the corresponding bend-lines for the different
loads as dashed lines are displayed in Fig. 16. The solid
lines, which are the polynomial fit through the discrete
measured deflections, serve as a reference for the accuracy
of the used model.

As for the optimization of the linear rotational spring,
all loads are considered, and it is to be expected that a
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Table 2 Identified parameters lM and and kAB

lM = 679 mm kAB = 1.3 · 108 Nmm
rad

deflection curve in the medium load range best complies
with the experimental data, which is the case for a load of
10 kN. For other loads, however, there is a larger deviation
between the experimental data and the predicted deflections,
which again emphasizes the nonlinearity present in the
system. On the one hand, for the lower loads, the model
is too stiff on the other hand for higher load levels
too compliant. Thus, a nonlinearity can be observed and
good compliance as to the measurements and the fully
linear model is, in general, not achievable for a load
that can take on values in a large range. The point AB
shifts 48 mm in negative x-direction compared to point
B in the ideal pinned-roller support model (compare to
Fig. 8).

The solutions for the linear model were verified by
comparing them with the results of the analytical solution
of the equations of the beam theory. This comparison
also makes it possible to test the convergence of the
finite element model. The relative error of deflection of
the analytical solution in comparison with the numerical
solution, at the position where F is acting, is plotted against
the number of elements (see Fig. 17). Since the slope of
the linear function (due to logarithmic scaling) is about 2, a
quadratic convergence is observed.

The convergence test was only carried out for the linear
model. We defined a relative error of around 10−3 as

Fig. 16 Deflection curves of linear model

Fig. 17 Convergence analysis

acceptable. Therefore, for subsequent computations, a mesh
density of around 0.5 elements

mm is defined. This corresponds
to a discretization with a total number of 340 elements.

5.2 Parameter identification results of the nonlinear
model with springs

The coefficient of the linear term in the rotational spring
characteristic results to zero (see Table 3). Thus, only the
cubic term in the characteristic remains.

Since the value of k2AB is high, the rotational spring
displays a rather stiff behavior. Interestingly, the bearing
characteristic in Fig. 6 shows a qualitatively similar cubic
behavior. Regarding the results of the nonlinear model
(Fig. 18), a great improvement can be deduced, since
the compliance of the measurements with the predicted
deformations is quite good, even over the whole range of
loads. The optimal length lM has the same value as for the
linear model. To further quantify the occurring deviations
in the linear model compared to the ones of the nonlinear
model and to emphasize the superior compliance in the
nonlinear model, Fig. 19 plots the relative errors. The
relative errors are defined according to Eq. 12.

The maximum relative error for the linear model is
around 8% in the linear model, whereas in the nonlinear
model, it is less than 0.05%, except for the load of 1 kN, it is
around 2%. For a load of 10 kN, the linear model even has
a smaller error than the nonlinear model.

Table 3 Identified parameters lM , k1AB, and k2AB

lM = 679 mm k1AB = 0 Nmm
rad k2AB = 1.39 · 1013 Nmm

rad
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Fig. 18 Deflection curves of nonlinear model

5.3 Additional results of the nonlinear model

Furthermore (in Fig. 20), the adjusting rotation angles
in the supports are plotted over the same discrete load
range as before. As is to be expected, the green curve,
denoting the drive-side rotation angles, shows a larger slope
than the blue curve, denoting the rotation angles on the
operation-side. Thus, the drive-side indeed acts more stiffly

Fig. 19 Relative errors: linear model vs. nonlinear model

Fig. 20 Resulting rotational angle ϕ in the supports AB and C

than the operation-side. The curves for interpolating the
discrete points in Fig. 20 are cubic functions, which seem
appropriate for description.

Finally, in Fig. 21, we plot the identified nonlinear
bending moment characteristic of the support of the
operator-side. This moment corresponds to the used cubic

Fig. 21 Bending moment MAB at point AB, against the external
force F
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spring characteristic of Eq. 3. However, in Fig. 21, the
moment is plotted over the load, instead of the rotation angle
of the drive-side.

6 Conclusion

The nonlinear stiffness behavior of the shaft without
equipped rolls of a rolling stand of a conventional mill
was investigated in the study presented here. The objective
was to find out which parameters influence the nonlinear
behavior so that a suitable model to describe the nonlinear
stiffness of the shaft can be developed. A two supports
Timoshenko beam model with two linear radial acting
springs and one nonlinear rotational spring showed the
best results. To get validation data for the parameter
identification, we carried out an experiment that measured
the force on the drive-side, the force on the operator-sided
pedestal, and the discrete deflection values. The parameters
of the distance between the supports and the spring were
identified by minimizing the relative errors between the
computed values and the measurement values. The bend-
line of the model and the measurement data for an external
force of up to 20 kN agree to a considerable extent.
Thus, we conclude that the model succeeds in describing
the nonlinear behavior of the shaft. The major cause of
nonlinear stiffness behavior is the operating clearance of the
two bearings at the drive-side.

In the future, further investigations must be conducted
on the behavior of the shaft with equipped rolls. We will
develop a simple mechanical model to describe the stiffness
of a shaft with rolls. In the course of doing so, we will
take into account additional parameters, such as pretension
force, different rolls, and clearance, between the shaft and
the rolls.
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